y
[

arXiv:cond-mat/0209249v1 [cond-mat.soft] 10 Sep 200

The Mystery of the Ramsey Fringe
that Didn’t Chirp

D. M. Harber, H. J. Lewandowski, J. M. McGuirk[*], and E. A. Cornell[*]
JILA, National Institute of Standards and Technology and Department of Physics,
University of Colorado, Boulder, Colorado 80309-0440

Abstract

We use precision microwave spectroscopy of magnetically trapped, ultra-cold 3"Rb
to characterize intra- and inter-state density correlations. The cold collision shifts
for both normal and condensed clouds are measured. The results verify the presence
of the sometimes controversial “factors of two”, in normal-cloud mean-field energies,
both within a particular state and between two distinct spin species. One might
expect that as two spin species decohere, the inter-state factor of two would revert to
unity, but the associated frequency chirp one naively expects from such a trend is not
observed in our data.

1 Introduction

When one studies the statistics of arrival times of photons emitted from an incoherent
source, one finds that immediately after detecting a photon, one is twice as likely
to detect a second photon than one would expect from the time-averaged detection
rate. This “photon bunching” effect can be understood as arising naturally from the
quantum statistics of a noisy bosonic field. If one detects a photon, one can infer that
the randomly fluctuating boson field is near a peak in its amplitude. Small wonder
then that one is likely to detect another photon soon. Similar effects are seen in
the correlations in the arrival times of bosonic atoms falling from a cold cloud [1].
Within an atomic cloud itself, these statistical effects are best thought of as density
fluctuations. Just as the short-time peak in photon arrival statistics is suppressed
in a coherent (laser) beam of photons, the density fluctuations in a cloud of bosonic
atoms is suppressed if the atoms are Bose-condensed. This effect has been seen in the
analysis of expansion energy of condensates [2, 3] and in the comparison of three-body
recombination rates in condensates versus thermal clouds [4].

In a recent series of experiments we examined the effects of these density fluctuations
on the hyperfine transition frequency in ultra-cold normal and in Bose-condensed
rubidium [5]. The MIT hydrogen group performed early work in this area [6]. In this
shorter conference proceedings, we review our spectroscopic study [5] with particular
emphasis on the effects of decoherence on the density correlations between two distinct
hyperfine states. A cloud of thermal atoms begins initially in a single hyperfine state.
A microwave pulse coherently splits the cloud into two distinct hyperfine states with
a well-defined relative phase. Ramsey spectroscopy, sensitive to the density effects,
shows that the two states initially have the same factor of two in their inter-state
density correlations as each does in its intra-state density correlations. What we find
counter-intuitive is that as time evolves and the two spin species begin to decohere, we
see no corresponding shift in the frequency of the Ramsey fringes. Thus, with apologies
to Arthur Conan Doyle, we came up with the title of the present manuscript.
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2 Hyperfine Spectroscopy

Spatial inhomogeneity of the transition frequency was minimized through the use of
a pair of energy levels which experience the same trapping potential. At a magnetic
field of ~ 3.23 G the |1) = |FF = 1,my = —1) and |2) = |F = 2, my = 1) hyperfine
levels of the 5S; /5 ground state of 87Rb experience the same first-order Zeeman shift.
For a normal cloud at 500 nK, each energy level is Zeeman shifted by ~10 kHz across
the extent of the cloud, however at 3.23 G the differential shift of the two levels across
the cloud is ~1 Hz. Compared to the differential Zeeman shift, the energy shift due to
cold collisions is then a relatively large effect at high densities, making measurements
of collisional shifts in this system possible. The small inhomogeneity allows for long
coherence times, ~2 seconds and longer for low-density clouds, making this system
attractive for precision measurements as well as for the study of coherence in finite
temperature systems.

The experimental setup has been previously described [7] and will be briefly summa-
rized here. Approximately 10° 8"Rb atoms are loaded into a vapor cell magneto-optical
trap (MOT). The atoms are then optically pumped into the |F = 1) state by turning
off the repump beam while the MOT beams remain on. Then the trapping beams
are turned off and the MOT coils are ramped to a high current, forming a 250 G/cm
gradient to trap |1, —1) atoms in the quadrupole field of the coils. The quadrupole
coils are mounted on a linear servo-motor controlled track which then moves the coils
44 cm, from the MOT region to a loffe-Pritchard trap in the ultra-high vacuum re-
gion of the system. The Ioffe-Pritchard trap consists of two permanent magnets which
provide a 450 G/cm radial gradient. Two pairs of electromagnetic coils, a pinch and a
bias, provide confinement in the axial direction, which is aligned perpendicular with
respect to gravity. At a typical bias field of 3.23 G atoms in the |1, —1) state experi-
ence {230, 230, 7} Hz trap frequencies. The sample is further cooled by rf evaporation,
and condensates of up to 10° atoms can be formed. Imaging is performed by the use
of adiabatic rapid passage to transfer atoms from the |1, —1) state to the |2, —2) state.
Anti-trapped |2, —2) atoms rapidly expand for 2-5 ms and then are imaged through
absorption by a 20 us pulse of 581, |2, —2) — 5P3/5 |3, —3) light.

A two-photon microwave-rf transition is used to transfer atoms between the |1) and
|2) states. A detuning of 0.7 MHz from the |2,0) intermediate state provides a two-
photon Rabi frequency of ~ 2.5 kHz. Ramsey spectroscopy of the |1) — |2) transition
is performed by measuring the total number of atoms remaining in state |1) after a
pair of Z pulses separated by a variable time delay is applied [8]. The frequency of the
resulting Ramsey fringes is the difference between the transition frequency ri12 and
the two-photon drive frequency. In previous work we measured local variations of v12
by detecting the number of atoms remaining in state |1) at specific spatial locations
along the axis of the normal cloud [7]. By analyzing the spatio-temporal variations
of v12, combined with the measured evolution of the |1) state after a single I pulse,
we were able to spatially resolve the evolution of spin waves [9]. In this work, in
order to perform measurements of r12 insensitive to spin waves, one of the following
two techniques was used. With one technique the entire cloud, rather than specific
spatial locations, was monitored to average out the effects of spin waves. Alternatively
Ramsey spectroscopy was restricted to interrogation times short compared to the spin
wave frequency [10].

One effect which shifts the transition frequency v12 is the differential Zeeman shift.
The Breit-Rabi formula predicts a minimum in v12 at Bo = 3.228917(3) Gauss, thus



the |1) and |2) energy levels experience an identical Zeeman shift at B = By. The
differential Zeeman shift about By can be approximated as vi2 = Vmin + 8(B — Bo)2
[11]. Measuring v12 for different magnetic fields allows us to calibrate our magnetic
field from the expected dependence. By working at the vicinity of B = By we greatly
reduce spatial inhomogeneity of v12 and also become first-order insensitive to temporal
magnetic field fluctuations.

3 Density Shifts

A second effect which shifts v12 arises from atom-atom interactions. In the s-wave
regime, where the thermal de Broglie wavelength of the atoms is greater than their
scattering length, atoms experience an energy shift equal to oz477r:2 an, where « is
the two-particle correlation at zero separation, n is atom number density, a is the
scattering length, and m is the atom mass. Therefore for a two-component sample

the expected energy shift of each state is
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The shift of the transition frequency in Hz can then be written as
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n
and n = ni1 + no.

For non-condensed, indistinguishable bosons, o = 2 due to exchange symmetry,
therefore aff = ajs = 2 in a cold normal cloud (where the superscript ¢ or nc
refers to condensed of non-condensed atoms respectively). Distinguishable particles
do not maintain exchange symmetry, making afs = 1 for a incoherent two-component
mixture. However if a two-component sample is prepared by coherently transferring
atoms from a single component, such as in Ramsey spectroscopy, then the excitation
process maintains exchange symmetry, and we might expect afs = 2 [12]. In this
scenario the collisional shift should be calculated using aff = abs = afs = 2, leading
to a predicted frequency shift of
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Figure 1: Measurement of the cold collision shift. Solid and open circles repre-
sent measurements of the normal cloud and condensate respectively. The solid
line is a fit to the normal cloud data Avia = 0.1(0.4) — 3.9(0.3)1073n; the
dashed line is a fit to the condensate data Avjy = —0.1(1.4) — 1.9(0.2)10713n

where Avy is in Hz and n is in cm™3.
2h
Avig = En(azz —a11 + (2a12 — a11 — a22)f). (6)

This result can also be obtained by solving the transport equation [13, 14]. From
spectroscopic studies [15] the three 8TRb scattering lengths of interest have been de-
termined to be a2e = 95.47a0, a12 = 98.09a0, and a11 = 100.44ap, where ag is the
Bohr radius. The frequency shift can then be written as

Aviz = %aon(—4.97 +0.27f). (7

If on the other hand the |1) and |2) states do not maintain exchange symmetry, such
that a5 = 1, then the frequency shift would instead be

Avip = %aon(—él.f)? —97.82f). (8)

These two models are clearly distinguished by the dependence of v12 on f.

When we perform Ramsey spectroscopy with a pair of 5 pulses, the populations of
the |1) and |2) states are equal, and thus f = 0 during the interrogation time. From
Eq. (4) it is apparent that with f = 0 the collisional shift is sensitive only to aj;° and
a;; terms. For these measurements the bias field was set to By, and the transition
frequency was measured for a range of densities. To adjust density of the sample,
the number of atoms in the initial MOT load was varied. All normal cloud data was
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Figure 2: Testing the exchange symmetry between the |1) and |2) states. The
transition frequency is measured as f is varied for a normal cloud at fixed peak
density of 7 x 10'2 cm™2 and temperature of 510 nK. The solid line is the
fit, which yields af§/ajf o5 = 1.01(2), which is to say, inter- and intra-state
density correlations are quite accurately the same. The dotted line indicates
the expected slope for af§/ajf 9 = 1/2.

taken at the same temperature of 480 nK, and all condensate data was taken with high
condensate fractions in order to minimize effects due to the normal cloud. The density
for the normal cloud was found by fitting Gaussian profiles to absorption images of the
clouds and extracting the number, temperature, and density. To measure condensate
density Thomas-Fermi profiles were fit to absorption images of the condensates and
the total number, Ny, in the condensates and the Thomas-Fermi radius along the long
axis, Z, were extracted.

The results of this measurement are shown in Fig. 1. Comparing the collisional shift
measured for the normal cloud to that measured for a condensate gives aj/af; =
2.1(2). 1If instead we assume ajF = 2 and «f; = 1, then the data for both the
condensate and normal cloud can be used to obtain a value for the difference in
scattering lengths of a2z — a11 = —4.92(28)ao, in agreement with values determined

from molecular spectroscopy [15].

4 Inter-state density correlations

Exchange symmetry between the |1) and |2) states can be tested by working at a fixed
density and varying the relative |1) to |2) population by varying the length of the first
Ramsey pulse [16]. In this case the first term in Eq. (4) will be constant and the
measurement will test oy and a1z as well as the o}y and a;; terms. To minimize sys-
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Figure 3: A data set of Ramsey fringes probing for frequency shifts as a function
of coherence. For this measurement normal clouds at a temperature of 480 nK
and a peak density of 3.2 x 10'3 cm ™2 were used.

tematics the interrogation times were kept short, making precise frequency determina-
tion difficult. Nevertheless, our measurement (Fig. 2) indicates afs /a7 22 = 1.01(2),
where we have used the spectroscopically determined scattering lengths. This clearly
indicates that exchange symmetry is maintained between the |1) and |2) states.

5 Where’s the chirp?

As a thought experiment, imagine distinct thermal populations of |1) and |2) atoms,
separately prepared, then mixed together, with the energy of interaction (proportional
to afs) measured for instance calorimetrically. Surely in this case the density fluctua-
tions in state |1) and in state |2) would be uncorrelated, and af5 would be determined
to be 1, not 2. We lack the experimental sensitivity to make such a calorimetric mea-
surement, and our Ramsey-fringe method of measuring energy differences obviously
would not work for incoherent mixtures. We speculated, however, that if afs = 2
for coherent superpositions, and if afs = 1 for incoherent mixtures, then for partially
decohered samples, afs would take on some intermediate value. So by performing a
measurement similar to that in Fig. 2 we might expect to see a more negative slope for
a partially decohered sample; alternatively a frequency chirp in the Ramsey fringes
may be seen as the sample decoheres.

We probed the time evolution of a5 in a way similar to Fig. 2; however rather than
varying f we set f ~ 0.8 then measured v12 with long interrogation times, looking for
a frequency chirp as the fringe contrast decreased. This method has the advantage
that there is a relatively small |2) state population, so effects arising from |2) loss are
minimized. Seven data sets were taken for this measurement; an example is shown



in Fig. 3. By allowing a linear frequency chirp in the fit of the Ramsey fringes, the
frequency shift can be constrained to —0.2(3) Hz by the time the fringe contrast has
reduced to 1/e [17]. However if we hypothesize that afs goes from 2 to 1 linearly as
fringe contrast goes from 100% to 0% we would expect a frequency shift of —20(2) Hz
as the fringe decayed, while the experimental limit is a factor of 40 smaller. Clearly
this appealing but unrigorous model is far too naive.

6 Conclusion

Where’s the chirp? In truth we don’t know. Our theorist friends tell us that our
confusion arises from our assuming that the frequency shift Avio arise from the dif-
ference in chemical potentials, p2 — p1. Instead, they say, we should directly evaluate
the Boltzmann equations for the spin in an inhomogeneous system [13, 14]. This we
have not as yet done, but even if this solves the mystery in a formal sense, we are
reluctant to give up the cherished notion that the frequency of the transverse spin
precession is a direct measurement of the energy difference between spin up and spin
down. For those of us raised in the traditions of atomic physics, it is a pleasure to note
that a two-level system can still yield surprises, 75 years after the advent of quantum
mechanics.

We acknowledge useful conversations with the other members of the JILA BEC
collaboration. This work was supported by grants from the NSF and NIST.
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