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Chapter 1

Introduction

In 1936, Hausdorff improved on a 1935 result by Kantorovich and Fichtenholz, who showed
that p(w) has 227 ultrafilters, by generalizing to p(k) for any cardinal x [3]. The proof rests on
the existence of an independent family of size 2% in the Boolean algebra p(k). A subset X of a
Boolean algebra A is said to be independent if its members generate a free subalgebra of A, or
equivalently if no monomial over X is 0. The question of whether this result can be generalized
to any infinite complete Boolean algebra was probably first forlumated by Efimov in 1970 (the
situation for finite Boolean algebras is too simple to be interesting, and it is easy to find large non-
complete Boolean algebras without very many ultrafilters, e.g. Finco(k), the set of finite and cofinite
subsets of k, has only x many ultrafilters). This question was finally answered in the affirmative by
Balcar and Franék in 1982 [1], though prior to this partial solutions where porvided by Kesl’yakov,
Koppelberg, Monk, and Blaszczyk. As in Hausdorff’s proof, Balcar and Franék guarantee a large
amount of ultrafilters by exhibiting a large independent family. The study of independent families
is interesting in its own right and is a natural part of the study of cardinal invariants on Boolean
algebras, treated extensively in [10]. The large and small independence functions ind and i for a

Boolean algebra A are defined as follows:
ind(A) = sup {|X| : X is an independent subset of A}

i(A) = min {|X|: X is a in infinite maximal independent subset of A}

These functions have been studied in some detail in [4],[6],[7],[8],[9], and [10]. From this



perspective the Balcar-Franék Theorem can be restated as “If A is complete and infinite then
ind(A4) = |A]”.

In the proof of their famous theorem, Balcar and Franék introduce a more general notion of
independence. If X C A, then {{z, —z} |z € X} forms a set of partitions of unity in A, and the
condition that X be independent is equivalent to the condition that [[,.p f(z) # 0 whenever F
is a finite subset of X and Vx € F (f(x) € {z,—=x}). If we replace {{z, —z} |z € X} with a set P
whose members are partitions of unity of arbitrary size, then we say analogously P is independent
if [[,cr f(p) # 0 whenever F' is a finite subset of P and Vp € P (f(p) € p). If each member of P
has size A, we say P is A-independent in A. If P is A-independent and P U {q} is not independent
whenever ¢ is a A-sized partition of unity in A, we say P is maximal A-independent. For any
cardinal A, the large and small A-independence functions A-ind and A-i can now be defined in the
natural way:

A-ind(A) = sup {|P| : P is Aindependent in A}
A-i(A) = min {|P] : P is infinite and maximal A-independent in A}

It is natural to ask which of the known results pertaining to ind and i generalize to A-ind
and A-i and under what conditions on A, and this thesis provides some answers to these types of

questions. In addition to some more basic results, we formulate and prove a generalized version of

the Balcar-Franek theorem itself and prove the equivalence of n-i on infinite algebras for all n € w.



Chapter 2

Definitions and Notation

We adopt the set theoretical notation of [5] and notation for the arithmetic of Boolean
algebras of [4]. For sets x and y and a cardinal &, Yz is the set of functions from y to z, [z]" is the
set of subsets of x of size k, and [x]<" is the set of subsets of z of size less than x.

When it is clear from the context, 0 and 1 are understood to mean the additive and multi-
plicative identities of the Boolean algebra under discussion. When it is necessary to be explicit,
subscripts will be used, e.g. 04 is the additive identity in A. We will always use 4+ and - and — for
the Boolean operations, usually implying - by adjacency and omitting the symbol.

We will use the shorthand “BA” for “Boolean algebra”. If A is a BA and B C A, (B) will
denote the subalgebra of A generated by B, <B>id will denote the ideal of A generated by B, and if
A is complete, (B)“™ will denote the smallest complete subalgebra of A containing B, while (A)“™
will generally denote the completion of A. In formulating products it will sometimes be convenient
to use the convention ' = z, 2° = —x for # an element of a BA. The set of nonzero elements of
a BA A will be denoted A*. This notation may also be applied to a subset S of a BA that is not
necessarily a subalgebra, so ST = S\ {0}. The notation z | y will be used in two different ways:
If Ais a BA and a € A then A | a is the BA {ab|b € A}, with operations inherited from A, except

that 141 = a and (=b)ajq = (=b)a - a. If f is a function and S is a subset of its domain, then

f IS is the restriction of f to S. The meaning of | will always be clear from the context.



If A is a Boolean algebra and X C p(A), we define X-mon, the set of monomials over X, by

X-mon = {Hf(x)’FE [(X]<¥, f:F—>UF, and Vo € F' (f(x) Gx)}

zeF

Usually each member of X will consist of partitions of unity, X will be indexed by some cardinal k
and each member of X by some cardinal A, e.g. X = {po|a € k} and Va € k (po = {zap|f € A}),

in which case

X-mon = {H Tof)|F € [k and f: F — )\}.
a€l

Y CA let X ={{y,—y}|y € Y} and let Y-mon = X-mon. Thus Y-mon is the set of monomials
over Y, and Y is independent if and only if 0 ¢ Y-mon. Accordingly, a subset X of p(A) is
independent if and only if 0 ¢ X-mon. We generalize the spectrum of maximal independent sets
of a BA

spind(A4) = {|X| : X is infinite and maximal independent in A}

in the natural way:
A-spind(A) = {|P] : P is infinite and maximal A-independent in A} .

Note that by definition 2- spind(A) = spind(A), 2-i(A) =i(A), and 2-ind(A) = ind(A).



Chapter 3

The Boolean Algebra Freely Generated by sk-many M-partitions

It will be useful to define and prove some results regarding a canonical “almost free” algebra
generated by an independent set of A-partitions.
For A and « cardinals, let X = {z,s|a € k, B € A} be a set with (o, 8) # (¢, ') = zap #

zop and define Fry (k) = Fr(X)/I, where

{Zaptosla € K, B,y € A, and B # 4} A>w

id
<{:Bag:nm|a €k, Byy€E A and B #~} U {—25@ Togla € /{}> A<w
Let 7 : Fr(X) — Fry(x) be the natural homomorphism. For all o« € k and 8 € A let yo5 = m(z0p),
let po = {yap|B € A} and let P = {py|a € k}. Henceforth P defined thusly will be called the

canonical set of generating partitions of Fr) (k).
Claim. P is a A-independent set in Fry(k) and |J P generates Fry (k).

Proof. Clearly | J P generates Fr(X)/I, as |J P = 7[X]. To see that each p, is a partition of unity,
fix a. For distinct 8 and v in A\ 248%Tay € I = YapYay = 0, S0 p, is pairwise disjoint. If A < w,
_ZBEA Tag € 1 = _E,Be/\ Yap = 0 = Z,Be/\ Yap = 1. If X > w, suppose for contradiction that,
for some nonzero a in Fry(k), V5 € X (axqp = 0). Fix such a, and fix b € Fr(X) \ I such that
m(b) = a. We can write b as a finite sum of monomials over X and b ¢ I = Im € X-mon \I such
that m < b. Fix such m and fix F € [X]<%, f: F — 2 such that m = [, 2/@). Because m ¢ I,
Vo ek (|[{B€Mxsge FF N f(xsg) =1}|) < 1. In particular, there is at most one § < X such

that x4 € F' and f(zqp) = 1. Fix such f if it exists, and otherwise take an arbitrary 8 € X such



that z,3 ¢ F', using finiteness of F'. By assumption ayag = 0 = brag € I = maqop € I = 3G a
finite subset of {x5,25:/0 € K, 7,6 € A and vy # €} such that mz,s < > G. Let h: Fr(X) — 2 be

a homomorphism with Vo € X

p

1 zeF A f(zx)=1
h(z) =<1 T = Tap

0 otherwise

Note that V6 € x there is at most one v € X such that h(zs,) = 1 = k(> G) = 0, but also
h(mz) = 1, contradiction. So in fact Va € Fry(x)* 38 € A (ayas # 0) = D pao exists and is 1.

To see that the p, are independent, suppose for contradiction that 0 € P-mon. Then 3F €
[X]<“and f : F — 2such that [[,.p 2@ € I, withVa € k (| {8 € Mzag € F A f(2as) =1}| < 1).
Let h: Fr(X) — 2 be a homomorphism with Vz € X

1 z€eF A f(z)=1
fz) =

0 otherwise

so that, as above, for all a € s and distinct 3,7 € A (h(2a) =0 V h(Tay) =0) = h(zasTay) =0,
while h ([T,cp xf(x)) = 1. But [[,ep2/@ € I = 3G € [{zapTay|a €K, B,y € X and B # }]<¥

such that [] . /@) < 3" G. Applying h to both sides of this inequality yields a contradiction. [J

Any element of F'r(X) can be written as a finite sum of disjoint monomials over X. It would
be nice to have a similar normal form for elements of Fry (), using P as above, but unfortunately
not every element of Fry(x) can be written as a finite sum of P-monomials; with notation as above,
—yoo € Fr,(w) is an example. However, a nice normal form result can be obtained by slightly
modifying our notion of a monomial.

If P = {pa|o € K} is a set of A-sized partitions of a BA and Vo € k po = {zapla € k, B € A},
define P-mon*, the augmented set of monomials over P, by P-mon*=

I zor IT [ = D° 2as ‘F,Ge K<Y, FNG =0, f:F—= X\ andVa e G H, € [N\|<¥ 3,
acl acG BEH



or, equivalently,

P-mon™ = {H f(a)

acl

F € [k]=¥ and f(a) € po U {—ZG‘G € [pa]<‘“} for all o € F}

Thus we allow, for each « in a finite subset of k, either one member of p, or the complement of

the sum of finitely many members of p, as a factor in our product.

Theorem 1. Fach element of Fry(k) can be written as a finite sum of disjoint members of P-mon*,

where P is the canonical set of generating partitions of Fry (k).

Proof. Again using pa, T3, and y,s as in the remarks following the definition of Fry(k), Va € Fry (k)
fix b € Fr(X) such that a = m(b) and M a finite pairwise disjoint subset of X-mon such that
b= > M. It suffices now to show that Vm € M \ I (7(m) € P-mon*), because then M pairwise
disjoint = 7[M \ I] pairwise disjoint and clearly a = > w[M] = > n[M \ I].

For m € M \ I write m as a finite product of monomials over the 7~ 1[p,], i.e.

m=1] II =&,

a€F BEG

where F € [k]|<% and Va € F (G, € [A]<%) and f, : G4 — 2. For any a € F there is at most
one € G, such that fo(8) = 1, because otherwise m € I. Let F/ = {a € F|1 € f,[G,]} and
define g : F/ — X by g(a) = the unique § € G, with f,(8) = 1. Note that Vo € F' V3 €
Ga \{9(a)} (Taga)Zas € I) = Yag(a) < —Yas, 80

H yi%(ﬁ) = Yag(a) H “Yap | = Yag(a)-

BEGa BEGa\{g(a)}
If a € F\ F' then [[5cq, yi%(ﬁ) = [lgeq, —Yap = — X_pec, Yas SO putting these together we have

ol = T TT o2 = I1 IT o™ T T0 o = Moo 1 (= 35 s

a€F BeGy a€cF’ BeGy a€F\F’ BeGy acl’ aEF\F' BEGq

which is in P-mon*, as desired. O

Recall that, for two subsets X and Y of a BA, X is dense in Y means Vy € Y Jdz € X+

such that z < y.



Corollary 2. If P is the canonical set of generating partitions for Fry(k) then P-mon is dense in

Fry(k).

Proof. By Theorem 1 it suffices to show P-mon is dense in P-mon*. For any nonzero m € P-mon*

write

m = H Yaf(a) H - Z Yap

aEF aeG BEH

with F' and G disjoint finite subsets of k, f : FF — A, and Va € G (H,, € [A]<%). If X is finite then,
by the way I is defined in the definition of Fry(x), we have — > p, = 0. Thus Va € G there is some
na € A\ H,, because otherwise m < — Z,BeHa Yapg = 0. We extend f to FUG by letting f(a) = na.
If X\ is infinite then each A\ H, is nonempty because H, is finite, and we extend f to F' UG by
setting f() to be an arbitrary member of A\ H,. Either way f(a) ¢ Ho = Yaf(a) < — X gem, Yab>

SO

m = H Yaf(a) H - Z Yap > H Yaf(a) € P-mon,

a€EF aceG BEHy acFUG

as desired. ]

Theorem 3. For any cardinals k and A

Fry(k) = @Finco()\),
the free product of k many copies of Finco(\).

Proof. By the characterization of free products [4, Proposition 11.4.], it suffices to exhibit a set
{ha|a € K} of one-to-one homomorphisms from Finco(A) into Fry (k) such that {h,[Finco(\)]|a € Kk}
is an independent set of subalgebras who’s union generates Fry (k). Again we use the canonical set
of generating partitions of Fry(x) as defined above. For o € k define h, : Finco(\) — Fry(k) by
setting ha({8}) = yap for all § € X and extending h to a homomorphism, so that

> e Yop x is finite
ha(z) =

— > genz Yap A\ is finite



Clearly ho[Finco(A)] = (pa), and if z € Finco(A)™, then hy () is a nonempty sum of P-monomials
= hq(x) # 0 by independence of P, showing h, is one-to-one. If F € [5]<“ and Va € F (x4 €
(pa)), then [IocF Ta is a nonempty sum of P-monomials, so again by independence of P [],cp Za #
0, showing {hs[Finco(N)]|a € k} = {(pa) |o € Kk} is an independent family of subalgebras of Fry ().

Finally, |,,.,. hol[Finco(A)] = |J P, which generates Fry(x) by the claim following the definition of

aER

Fry(k). O

Theorem 4. A Boolean Algebra A has a A-independent set of size k if and only if A contains an

isomorphic copy of Fry(k)

Proof. The “if” direction follows from the claim following the definition of Fry(x). For the other
direction, suppose A is a BA and @ = {qa|a € k} is an independent set of partitions of unity in A.

The proof of Theorem 3 can now be applied with @ in place of P to show (| Q) = @, Finco(\) =

O

Fry(k), so (@) is the desired subalgebra of A.



Chapter 4

A-independence

We prove some basic results regarding A-ind.

Theorem 5. If A is a BA and A-ind(A) = k for cardinals A\ > 3, k > 1, then Vn € w N

A (n-ind(A) > k). In particular ind(A) > k.

Proof. Let P = {pq|a € k} be a A-independent set in A and Va € & let p, = {zp|6 € A\}. Fix
n € wN A We construct a k-sized n-independent set in A. Thus if A-ind(A) is not attained the
argument can be applied to all x < A\-ind(A) to prove n-ind(A4) > A-ind(A). For each «a € k let
Go = {zaplB<n—-1} U< — Z Tag
B<n—1
Let Q = {ga|a € k}. Clearly @Q is a set of n-partitions, and P-mon is dense in @-mon, so ) inherits

independence from P. O

The above sum in the definition of ¢, may not exist if n > w, so for a more general version

we require that A have the necessary sums, and the proof is identical:

Theorem 6. If A is a BA and M-ind(A) = k for cardinals X\ > 3, k > 1, then Vu < A, if A is

ut-complete, p-ind(A) > k.

O
The following theorem shows that the completeness condition in Theorem 6 is necessary by

showing that, for example, Fry, (w) has no N;-sized partition of unity. First, we make a definition
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and prove a convenient lemma. Recall that a BA A is compact if whenever S C A and ) S =1
there is a finite subset S’ of S such that Y 5" = 1 (This definition is not very interesting under
the axiom of choice, because then every infinite BA has an infinite partition of unity, so compact
just means finite). If A is an infinite cardinal, in [2] Cichon defines A to be A-compact if whenever
S € [A]=* and 3. S = 1 there is a finite subset S’ of S such that °8" = 1 (In fact he makes an
equivalent definition using the dual notion of sets who’s products are 0). We extend this definition
by saying A is < A-compact if whenever S € [A]<* and 3" S = 1 there is a finite subset S’ of S such

that 5" = 1. An easy example of a <-compact BA is Finco(\).
Lemma 7. If B is a <A-compact BA, then the free product B @ Finco(\) is < A-compact.

Proof. Let A = Finco(\). Following [4, 11.5] and the subsequent remarks, we view A and B as
subalgebras of A & B and make use of the fact that AN B = {0,1} and 0 ¢ A" - BT. Suppose
SCBa@®A |S| =k <A and )8 =1. If Kk < w we are done, so assume kK > w. By [4,
Proposition 11.4.(c)] B & A is generated by AU B, so each z € S is a finite sum of products
of the form ab with a € A and b € B. Without loss of generality each x € S is itself such a
product, so for each x € S we can write £ = a,b, with a, € A and b, € B. For each o« € X let
So = {x € S|{a} <a,}. For all @ € A, because {a} is an atom of A we have

{ay={a}-) 5= ({a}-2)=) ({a}-as-ba) = Y ({a}-ba).

reS zesS TESa

This implies that > b, = 1. In fact, otherwise there is some nonzero ¢ € B such that b,c =0

TESy

for all x € S,, hence

0#{a}-c=> (o} by-c) =0,

:EES&

contradiction. Thus for each o € \ we can fix F,, a finite subset of S, with ersa b, = 1. Each F,
is a finite subset of S and |[S]<“| = |S| = Kk <\, so there is some fixed F' € [S]<* and R € [\]Z¥
such that Yo € R (F, = F). For all x € F there are infinitely many « in R, all of which satisfy
{a} < ag, and a, € Finco()), so a, must be cofinite. Let G = Y _p —a,, so G is finite. We

claim §' := F U (Upeq Fa) is the desired finite subset of S with )5 = 1. It suffices to show
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Va € A Vb € BY Jdo € S’ such that z{a}b # 0. If a € G, take & € F, such that b,b # 0 and if
a ¢ G take x € F such that byb # 0. In either case a € ay, so v {a}b = a,b; {a} b= {a} (b:b) # 0,

as desired. O

Corollary 8. For any infinite cardinal X and n € w, €,., Finco(A) is < A-compact.

1EN

Proof. We proceed by incuction on n. The base case is clear, and if @,,, Finco()) is < A-compact

then @,c,, 1 Finco(A) = (@, Finco(A)) @ Finco(A) is < A-compact by Lemma 7. O

Theorem 9. If k, A\, and p are infinite cardinals and k < p < X, then Fry(k) has no partition of

unity of size p.

Proof. Suppose S is a p-sized subset of Fry(x) and > S = 1. We show S is not pairwise disjoint.
Let P be the canonical set of generating partitions for Fry(x). By Theorem 1, without loss of
generality we may assume each x € S is a member of P-mon*. Note that in particular this means

0 ¢ S. For each x € S write

r= [

OLEFI

where F), is a finite subset of x and each x, € (p,). There are only x many finite subsets of &,
so there is some fixed F € [k]<* and R € [S]2% such that Vo € R (F, = F). Thus for z € R we
have x € <Uaera>- Note also that Fry (k) = <Uaera> @ <UQEH\F pa>, and by assumption each
x € S can be written as a.b,, with a € <Uaera> and b, € <Uaeﬁ\Fpa>. If x € R then b, = 1,

SO T = ay.

1:ZS§ZawE<Upa>,

€S acl

so by Corollary 8 there is a finite subset 5" of S with ¢ a; = 1. Now we can take any x € R\ S’
and use the fact that Zyes, ay =1 to find y € S’ such that aya, # 0. But z € R and y € S, so
by # 0 and thus zy = azayb, # 0 by freeness of the product ({J,ep Pa) ® <UQEH\F pa>. This shows

S is not pairwise disjoint, as desired. O

Theorem 10. If A is a BA and ind(A) > w, then n-ind(A) = ind(A) for 2 <n < w.
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Proof. That ind(A) > n-ind(A) follows from Theorem 5. For the other direction, suppose ind(A) =
k and let X be an independent subset of A with |X| = k. Fix n € w\ 2. We construct a k-
sized m-independent set in A, handling the case when ind(A) is not attained as in Theorem 5.
Let Y = {yo|a € K} be a partition of X into x many subsets of size n. For each a € k let
Yo ={Zaili <n} C X and Vf € "2 let

= 100

<n

For each o € k let po = {zaf|f : n — 2} and let P = {p,|o € }. We check that each p, is a

partition of unity:

Zpa - Z fo(l H Tai + _xai) = 17

fin—=2i<n i<n
and, if f(j) # g(j) for some j € n,

N (Hwé&”) (H ) <100 g,

<n <n

SO P is a partition of unity. By disjointness of Y, P-mon C X-mon, so P inherits indpendence

from X. |P| =k and Va € k (|pa| = 2" > n), so by Theorem 5 n-ind(A) > 2"-ind(A4) > k. O]

Theorem 11. If A is wi-complete and ind(A) > w, then w-ind(A) = ind(A).

Proof. That w-ind(A) < ind(A) follows from Theorem 5. To prove ind(A) < w-ind(A), we use a
k-sized independent subset of A to construct a k-sized w-independent set in A. Let X C A be
independent with |X| = k. Let {Y,|a € k} be a partition of X into x many countably infinite sets.

For each a € k let Y, = {zan|n € w} and define a partition of unity po, = {yan|n € w} as follows:

w
Vn > 0 let yon = Tan - H (—Zam) and let yo0 = — Zyan.

m<n n=1

It is clear from the definition that each p, is a partition of unity. Note that z,0 < yoo and
Pa \ {Za0} € X-mon, so 0 ¢ py, = |pa| = w. To see that the p, are independent, we again use the
fact that o0 < yao to note that VF € [s|<“ Vf : F > w

H Yaf(a H Laf(a) H Tan | € X-mon = H Yaf(a) # 0,

a€EF a€F n<f(a) a€EF

S0 {pa|a € K} is the desired w-independent set. O
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It is perhaps worth noting that, in building A-independent sets in BAs, completeness con-
ditions are often necessary only make infinite pairwise disjoint sets into partitions of unity. If we
replaced “partition of unity” with “pairwise disjoint set” in the definition of A-independent, while
we would have perhaps a less natural generalization, several proofs would be a bit simpler. For
example, in Theorem 11 we could remove the completeness condition and replace — Y| yan with
Tq0 in the proof, ending up with an independent k-sized set of \-sized pairwise disjoint sets. This
result is proved later as Lemma 17.

Monk has shown that, for BAs Ay and Ay, ind(Ag x A1) = max {ind(Ayp),ind(A1)} [7, Corol-
lary 1.2]. In the proof, the implicit assumption that Ay x A; have an infinite independent set is

essential, so we formulate the generalization accordingly.

Theorem 12. For BAs Ay and Ay and X a cardinal, if (Ag X A1) has an infinite A\-independent

set then A-ind(Ap x A1) = max {\-ind(Ap), A-ind(A441)}.

Proof. Let A = Ay x A;. To show A-ind(A) < max {A-ind(Ap), \-ind(A4;)}, suppose P is an infinite

A-independent set in A. We show either Ag or A; has a A-independent set of size |P|.
Case 1. Vm € P-mon (my(m) # 0)

Then in particular each z € |JP is also in P-mon = mo(z) # 0, so Vp € P (|m[p]| =
A). Clearly each m[p] is a partition of unity, and {mo[p]|p € P} is independent by assumption so

{mo[p]|p € P} is the desired A-independent set in Ay.
Case 2. Im € P-mon (m(m) = 0)

Fix ' € [P]*¥ and f: F' — |JF such that Vp € F' (f(p) € p) and m = [ f(p). I claim
{mi[p]|lp € P\ F} is the desired A-independent set in A;. It suffices to show that {m[p]|p € P\ F'}
is independent, because then it follows as in Case 1 that 71[p] is a A-partition whenever p € P\ F.
Suppose for contradiction that n € (P \ F) and m(n) = 0. Then nm € P-mon and m(nm) =
m1(nm) = 0 = nm = 0, contradicting the independence of P. Thus {m[p]|p € P \ F'} is the desired

M-independent set in Aj, finishing this direction of the proof.
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To show A\-ind(A) > max {\-ind(A4p), A-ind(A;)}, suppose P is a A\-independent set in A; for
i € 2. We show A has a A-independent set of size |P|. By symmetry assume i = 0. For all p € P let
p = {za|a € A} and define p’ € A by p' = {(20,1)}U{(zq,0)|a € X\ 1}. Clearly p’ inherits pairwise
disjointness from p, and > p' = (D p,1) = (1,1) = 14, so {p'|p € P} is a set of A-partitions of A.
Let P' = {p'|p € P}. |P'| = |P|, and 04, ¢ P-mon = my[P’-mon] = 04 ¢ P’-mon, showing that P’

is the desired A-independent set in A. O
An easy induction yields the following:

Corollary 13. If {A;|i € I} is a finite set of atomless BAs and X is a cardinal, then
A-ind (H AZ') = max {\-ind(4;)]i € I}
el
O
The following theorem concerns the moderate product of a set {4;|i € I} of BAs over a

subalgebra B of p(I), denoted []2; A;. The moderate product is defined as follows:

el

Definition. If {A;|i € I} is a set of BAs and B < p(I), then
B
HA" = {f € HAZ| {i € I|f(i) ¢ {0,1}} is finite and {i € I|f(i) =1} € B} .
i€l i€l

Thus the moderate product generalizes the weak product in that if B = {0, 1} then Hze 7

Hze 7 Ai. In general the moderate product is inbetween the weak and full product, in the sense that

it may contain more members of the full product.

Theorem 14. If {A;}, € I is an infinite set of atomless BAs, B < p(I), and X is an infinite

cardinal,

A-ind (HA > < sup ({\-ind(4;)|i € I} U {\-ind(B)})

el

Proof. Let A = HZBGI A;. Suppose P is a set of A-partitions of A and |P| = k, where & is greater

than sup ({M-ind(A4;)|i € I} U { -ind(B)}). We show P is not independent. Let P = {p,|a € k}
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and Vo € k let po = {xqp|8 € A}. For each o € k and € X let Sog = {i € I|zap(i) ¢ {0,1}} and

define y,3 € A as follows:

1 1€ Sag \ U’Y<5 So«y

Yap(i) = <0 i € SapNUyopSar -

v<B

Lrag(i) iel\ Sap

Note that S,g is finite so y,p differs from x5 on finitely many indeces, and hence y,3 € B < A.
For each a € k let go = {yap|B € A} and let Q = {ga| € k}. I claim @ is a set of partitions of
unity in B. To see that each g, is pairwise disjoint, fix o € x and suppose 8,7 € A, v < 8. We

partition [ into four subsets:
Case 1. i € Sop N Say
Then yap(i) = 0 = yap(i)yay (1) = 0.
Case 2. i € S48\ Say-
Then xo5(i) # 0, xay(i) € {0,1}, and p, is pairwise disjoint = 24 (i) = 0 = Yy, (i) = 0 =
Yap(1)Yar (i) = 0.
Case 3. i € I\ Sop and i € Sy .
As in case 2, but with the roles of 8 and ~ switched, yo5(i) = 0 = yas(i)ya~ (i) = 0.

Case 4. i € I\ (SapU Say).

Then yo5(i) = 2a5(i) and Yoy (1) = Tay (i) = Yap(i)Yay (i) = Tap(i)Tay(i) = 0. In any case
YaB(1)Yary (1) = 0, 50 Yasyas = 0, showing g, is pairwise disjoint. To see that ¢, is a partition of

unity, we partiton I into two subsets:
Case 1. i € Uge) Sop
Let e = min {8 € Ali € Sus} so that ya.(i) =1 = ZﬂeA Yap (i) = 1.

Case 2. i € I\ Upey Sap
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Then 50 Yap(i) = Doger Tap(i) = 1. In any case (3_qa)(i) =1, 50 3 ga = 1 as desired.

Our goal is to produce a monomial m € P-mon such that |{i € I/m(i) #0}| < w. If
Yap = 0 for some o € k and B € A, then Vi € I\ Sup (2ap(i) = yas(i) = 0), s0 m = x4
is the desired monomial. In this case let F' = {a}. Otherwise @ is a set of A-partitions of B
and |Q] = k > Mind(B), so @ is not independent. Fix F € [k]<“ and f : F — X\ such that
[locrYaf@) = 0 and let m = [[,cp Taf) Note that m € P-mon, [U,cr Saf)l < w, and
Vi € I\ Uper Saf(a) V@ € F (Zaf) (i) = Yafa)(i) = m(i) = [locr Yasa)(i) = 0), so m is the
desired monomial. In either case fix such m and F and let S = {i € I|m(i) # 0}. If z,3[S] = {0}
for some o € k\ ' and 8 € A, then 0 = ma,g € P-mon so P is not independent and we are done.
Thus we may assume Va € x\ F' VS € A 3i € S such that z,35(i) # 0. For each o € k\ F let
Do = {Zap | S|B € A} and let P' = {p/,|a € x\ F}. Note that P’ is a set of A-partitions of [], g A;.
By Corollary 13 A-ind ([[;cg Ai) < £ = |P'|, so there is some n’ € P’-mon such that n’ = 0. Fix
G € [\ F|*¥ and g : G — A such that n' =[] c (:cag(a) 1'S) and let n = [[,cqr Tag(a)- Note
that n(i) = n'(i) = 0 whenever ¢ € S and that m(i) = 0 whenever i € I\ S, somn=0. FNG =)

so mn € P-mon, showing P is not independent. O

For A > w, Fr(k) is an example of an arbitrarily large BA without even one A-partition; [4,
Corollary 9.18] states that every free algebra satisfies the countable chain condition, and thus has
no uncountable pairwise disjoint set. The following theorem shows that, for A > w, there are BA’s
with arbitrarily large independence and arbitrarily large pairwise disjoint sets that still have no

A-independent sets of size larger than 1.

Theorem 15. For k, A uncountable cardinals, let X = {zo]a € K}, let Y = {ya|la € A}, and let
A=Fr(XUY)/I, where I = {zqxgla#p N «a, f€ k1. Then no two uncountable partitions

of A are independent.

Proof. For a € Fr(X UY), we use the shorthand [a] for {x € Fr(X UY)|zAa € I} € A. First we
show that Yo € k the function f : Fr(Y) — A | [x,] defined by f(a) = [zqa] is an isomorphism.

It is easy to see f is a homomorphism. Because Y-mon is dense in Fr(Y'), to show injectivity it
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suffices to show f(m) # 0 whenever m € Y-mon™. For any m € Y-mon™ take g a homomorphism
from Fr(X UY) to 2 with g(m) = g(z4) =1 and V5 € k \ {a} (g9(zg) =0). Now g(zom) =1 and
Va € I (g(a) =0), so f(m) = [xom] # 0 as desired. Each element of Fr(X UY') is a finite sum of
monomials in (X UY')-mon, so to show surjectivity is suffices to show Vm € X UY-mon [z,m] €
flFr(Y)]. To see this, note that if 8 € &\ {a} then [ro25] =0, s0 [z4 - —25] = [24]. It follows that
Vm € X-mon ([zom] € {0,[z4]}), so Vm € X UY-mon, writing m = mxmy with mx € X-mon
and my € Y-mon, we have [xom]| = [xomxmy] € {0, [xamy]} C f[Fr(Y)] as desired.

Now suppose for contradiction that P and @) are two independent uncountable partitions of
A. For each p € Fr(X UY) with [p] € P, fix M, € [(X UY)-mon]~* such that p = 3" M,. For each

m € (X UY)-mon fix Fy, € [ X UY]*¥ and f,, : F},, — 2 such that m = [lecr, zfm(@),
Case 1. dp € Fr(X UY) with [p] € P such that Vm € M, (1 € f,[X N Fy)).

Fix such p and Vm € M, take oy, €  such that fm (2a,,) = 1. Note that [p] <3, cr [#a,]-
By independence of P and @ we have ¥ [q] € Q ([pg] # 0) = V[q] € Q Im € M,, such that [pgz,,,] #
0. @ is uncountable, so we can take Q" C @ such that @’ is uncountable and m € M, such that
Vq] € Q' ([pgza,,] # 0). Now {[pqza,,]|[q] € Q'} is an uncountable partition of A [ [z4,,] = Fr(Y),

contradiction.
Case 2. Vp € Fr(X UY) with [p] € P 3m € M, such that 1 ¢ f,,[X N Fp,].

For each such p fix such m and call it m,,. For any pair p, p’ € Fr(X UY") with [p], [p/] €
P and [p] # [p], write m, = mpyxmpy and my = myxmyy with myx, myyxy € X-mon and

mpy, Myy € Y-mon and fix a € k with z, ¢ Fp, U Fmp,. Note that, by choice of m, and m,y,

mpx = H —z and myx = H —x.

zGFmPX a:EFmP,X
As in the proof of the surjectivity of f above, it follows that [zompx] = [:Uampzx] = [za] =
[a:ampymp/y] = [xampmp/] < [pp] = 0 = zampymyy € I. As in the proof of the injectivity of

f above, the right choice of a homomorphism from Fr(X UY) to 2 gives a contradiction unless
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mpymyy = 0. By independence of Y, this implies 33 € X such that (yz € i, NEm, A fm, (yg) #
fo (43)) =

H yfmp(y) H yfmp,(y)zo'

yEY NFpy, erﬂFhﬂ

Thus

H yfmp(y) [p] € P

yEYﬁth

is an uncountable pairwise disjoint subset of Fr(Y'), contradiction.

4.1 A Generalized Version of the Balcar-Franék Theorem

We point out some necessary concessions in attempting a full generalization of the Balcar-
Franek Theorem to partitions of arbitrary size. The Balcar-Franék Theorem states that any infinite
complete BA A has an independent subset of size |A|. We would like to find necessary and sufficient
conditions for a complete BA A to have a A-independent set of size k for cardinals A and x. The
obvious requirement that A have at least one partition of unity of size A is not enough, as shown
by taking A > w, & > 2%, and setting A = 2* x (Fr(x))*™. A is a product of complete algebras
and hence complete, |A| > k = x*, and 2* provides a partition of unity of size A, but A has no

A-independent set of size k.

Proof. Let my: A — 2" and m; : A — (Fr(k))™™ be the projection maps. Suppose for contradiction
P is a k-sized A-independent set in A. Fr(x) has no uncountable pairwise disjoint subset and is dense
in (Fr(x))™ = (Fr(k))“" has no uncountable pairwise disjoint subset. Thus |{z € p|mi(z) # 0} | <
A, so | {x € p|m(z) =0}| = A for all p € P. For each p € P let p’ = {x € p|mi(x) = 0}. The set
p’ does not contain 0 for any p € P so 0 ¢ mg[p']. The p’ are pairwise disjoint so the mo(p’) are as
well, which means {mo[p']|p € P} is an independent set of \-sized pairwise disjoint subsets of 2.

But then | (mo[lJ X'])| > & > 2*, contradiction. O

In this example 2* provides the desired A-sized pairwise disjoint set and (Fr(x))“™ provides
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the cardinality, without either providing a large A-independent set. We may try to remedy this
by requiring that A be atomless, but then taking A > w and x > 2%, A = (Fry(w))*™ x (Fr(k))™

provides a similar counterexample without atoms.

Proof. Each factor of A is complete and atomless so A is as well. In forming the completion of
Fry(w) there are at most 21T (@)l = 22 sums and products that must be added to the algebra, so
| (Fry(w))™ | < 2* < k and |A| = | (Fr(k))*™| > k. Suppose for contradiction that P is a k-sized
A-independent set in A. As above Fr(x) has no uncountable pairwise disjoint sets, so there is a
k-sized independent set of A-sized pairwise disjoint sets in (Fry(w))®". These pairwise disjoint sets

generate a subalgebra of size > &, contradiction. O

To motivate the correct set of conditions on A, we must generalize the notion of atomlessness.
In Balcar and Franék’s proof, the complete algebra A is written as a product Ag x Aj, there Ay
is atomic and A; is atomless. The cases |Ag| = |A| and |A;| = |A| are then treated separately.
If |Ag| = |A| then |Ap| must be isomorphic to an infinite powerset algebra, and Hausdorff’s 1936
result [3] provides the desired large intependent set. The bulk of the proof is the case |A;| = |A],
and uses heavily the atomlessness of A;. In formulating the generalization we restrict our attention
to atomless BA’s, but treat powerset algebras along the way in Corollary 21. The statement “A
is atomless” is equivalent to the statement “Va € A 3 a 2-partition of A [ a”, which generalizes

2

naturally to the condition “Va € A 3 a A-partition of A [ a”. This, along with completeness, is

enough to guarantee the desired |A|-sized independent set of A-partitions of A.

Theorem 16. If A is a complete BA and A < |A|, then A has a A-independent set of size |A| iff

B < A such that |B| = |A| and B | b has a \-partition for allb € BY.
Before embarking on the proof, we prove four lemmas.

Lemma 17. If a BA A has an independent subset of size k > w then there is a k-sized independent

set P of infinite pairwise disjoint subsets of A.
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Proof. Let X = {aq,|a € k} be an independent subset of A. Take @ = {qn|a € K} C [k]¥ a partition
of k into k-many w-sized subsets and Va € k write g, = {Ban|n € w}. For each o € k let

Pa = {aﬁm =Y ag,,.In€ W}

m<n

and let P = {py|a € k}. Then Vo € k

Ynmew m<n— <a3an - — Zaﬁak> . (aﬁam - — Z agak) < —ag,,, - ABom = 0,

k<n k<m

SO P, is pairwise disjoint. By pairwise disjointness of () we have P-mon C X-mon, so P inherits

independence from X. O

Lemma 18. Let, fori € I and A > 2, U; be an infinite independent set of A-partitions of a BA

A;. Then [[,c; Ai has a A-independent set of size [[;c; |Uil.

icl

This is a direct generalization of [4, Corollary 13.10], which states that if U; is an independent
subset of A; for each i € I then [[,.; A; has an independent set of size [[,.;|Us|. The proof is
almost identical, and makes use of [4, Lemma 13.9], which states that for a family (X;);cs of infinite
sets, [ [;c; Xi has a finitely distinguished subset of size | [[,.; Xi|. A subset F of [],.; X; is finitely
distinguished if, for each finite subset { f1, ..., fn} of F' with fi, ..., f, pairwise distinct, there is some

i € I such that f1(i),..., fn(i) are pairwise distinct.

Proof. By [4, Lemma 13.9], let U be a finitely distinguished subset of [[,.; U; with |U| = |[[;c; Uil.
For each f € U and i € I enumerate f(i) = {ajo|a € A} in a one-to-one fashion. For each av € A
define fo € [lic; Ai by fa(i) = aiq and let Py = {fola € \}. We show that P := {P|f e U}
is the desired A-independent set. For all f € U and i € I, {fo(i)la € A} € Uiy = > ey fali) =
14, = Y qerfa = 1. Moreover, if a # 3 then Vi € I (fo(i) - f3(i) = 04;) = fa- fg = 0, so the
Py are partitions of unity. To see that P is independent, VF' € [U]<“ V§ : F — |J{Py|f € F} with
6(f) € Py we show [[;cp 0(f) # 0. Take i € I such that f(i) # g(i) for any distinct f,g € F. Now

by independence of m;[F] we have (erF (5(f)) (i) # 04, = [I;ep 6(f) # 0, as desired. O
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Lemma 19. If a BA A is AT -complete and there is a k-sized independent set of \-sized pairwise

disjoint subsets of A, then A has a k-sized A-independent set.

Proof. Suppose P = {pa|a € k} is an independent set of pairwise disjoint sets and Vo € k p, =

{xap|B € A}. For each o € k let

do = (Pa \ {Za0}) U { — E Tag
Be\{0}

and let Q = {qa]a € k}. Thus we use AT-independence to enlarge each 0 as necessary to make

sure » g, = 1. Clearly @ is the desired M-independent set. O

Lemma 20. For any infinite cardinals & and A, if [ e, Fr(k) < B for a complete BA B then B

has a k-sized A-independent set.

Proof. By Lemma 17 let Q = {go|a € £} be an independent set of w-sized pairwise disjoint sets of
Fr(k) and Va € k write ¢o = {ban|n € w} with n # m — banbam = 0. The following construction
requires a A-sized subset U of p()\) with VF € [U]<¥ (| F| = A) and VF € [U]2¥ (NF = 0).
In other words U generates a regular ultrafilter on p()). To that end, take f : p ([\]<¥) = p(N)
an isomorphism of BA’s, let U’ = {{S € [\]<¥|S 2 R} |R € [A\|<“}, and let U = f[U’], as in the
)

construction in [**] of a regular ultrafilter on p(A). Enumerate U = {Uy|a € A}. For each o € K

let po = {aqp|B € A} where, for each 3 € A, ang € [],c) Fr(x) is defined inductively by

bam YE€Us AN m=min{n € wVé < B ans(7) # ban}
VyeX anp(y) = .

0  v¢Us
Note that such m will always exist when v € Ug, because in that case v € ({Us|0 < 8 A v € Us} =
[{Uslo < B N yeUst| <w=|{n w3 < B ans(y) =ban}| < w. It remains only to show that
P := {pa|a € k} is an independent set of \-sized pairwise disjoint subsets of B, because then by
Lemma 19 B has a k-sized A-independent set. To prove pairwise disjointness, note that if a € k

and S and J are distict members of A then, Vv € A,

[aaﬁ('Y) =0V aas(y) =0V Imnecw (aaﬁ(V) = ban 7# bam = aas(7))], s0 aa,@('V) ~aqs(y) = 0.
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Thus aqg - aqs = 0, showing p,, is pairwise disjoint.
To prove independence, VF' € [k]<“ Vf: F — Alet G = f[F] and fix v € (e Up, so that

Aaf(a) 7 0 whenever a € F'. By independence of Q (Iaer aaf(a)) (7) # 050 [[oer @af@) # 0,

showing P is independent. O

The following corollary was probably known to Balcar and Franék in 1982 and is proved

directly in Monk’s upcoming book.
Corollary 21. For any cardinals k and A, if A < k then A-ind(p(k)) = 2~

Proof. Clearly M-ind(p(r)) < 2%, as |p(k)| = 2". For the other direction, by Theorem 6 it suffices

to show k-ind(p(k)) > 2". Let P = {z,|a € K} be a partition of k into x many subsets of size k.

p(r) = [[ o(5) T 2o = ] 0(x).

acER ackR

By Hausdorff’s 1936 result [3], ind(p(k)) = &, so p(k) has a k-sized k-independent set by Lemma

20. O

We are now equipped to prove the main theorem. Like the proof of the Balcar-Franek
theorem, this proof relies on [4, Lemma 13.12], which allows us to write a complete BA A as [, 4;
where each A; is homogeneous with respect to a fixed finite list of order preserving cardinal functions
on A. Recall that A is homogeneous with respect to the cardinal function f if f(A [ a) = f(A) for
alla € AT, and f is order preserving on A if f(A | b) < f(A | a) whenever a,b € A with b < a. We
apply the lemma for the single cardinal function ind, which is easily seen to be order preserving on

any BA.

Proof. For the forward direction, if A has a A-independent set X of size |A|, then B := (|JX) < A4
is the desired subalgebra; Va € B take b € X-mon such that b < a and F € [X]<¥ such that
be (JF). Fixingpe X\ F, for any x € p xb € X-mon, so by independence of X zb # 0 and
thus za # 0. p is a partition of unity, so {xa|z € p} is the desired A-partition of B | a.

For the reverse direction, suppose C' < A, |C| = |A| = k, and C | ¢ has a A-partition for all

c € Ct. If A\ < w, this simply means C is atomless, so k > w. By the Balcar-Franék Theorem A
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has an independent subset of size k. By Theorem 11 A has an w-independent set of size k, and
now by Theorem 6 A has a A-independent set of size k.

If A > w, let B=(C)™, the external completion of C, as opposed to the completion within
A. Note that |B| > k and C is dense in B so B | b has a A-partition for all b € BT. We show that
B has a k-sized A-independent set.

By [4, Lemma 13.12] write By = [[,.; Bi where each B; is homogeneous with respect to

i€l
independence and Vi € I 3b; € BT such that B; = B | b;. Each B; is complete so by the Balcar-
Franek Theorem ind(B;) = |B;|, and B; = B | b; so B; has a A-partition of unity X;. Write X; =
{Ziala € A} and B; = [[ ey Bi | Tia. For all a € A, by homogeneity ind(B; | i) = ind(B;) = |B;l,

so B; contains an isomorphic copy of

[T Fe(B:).

aEA
Thus by Lemma 20 B; has a | B;|-sized A-independent set, and by Lemma 18 it follows that B has a

k-sized A-independent set P. We construct from P a A-sized independent set of pairwise disjoint sets
in A. Using density of C'in B, Vm € P-mon take ¢,, € C*" such that ¢,, < m. Using completeness
of A,¥pe PVbeplet ay=> {cm|m € P-mon A m < b}. For each p € P let p’ = {ay|b € p} and
let P! = {p'|p € P}. Clearly |P'| = k, and we claim P’ is as desired. To see that each p’ is pairwise
disjoint and of cardinality A\, note that Vay,aq € p/, if ap - ag # 0 then Im,n € P-mon such that
m < b, n<d,and ¢y, -c, # 0. It follows that m-n #0=>b-d # 0= b =d = a, = aq, showing p/
is pairwise disjoint. Clearly 0 ¢ p’, so [p’| = |p| = A. To see that P’ is independent, Ym' € P-mon
take F' € [J P']< such that m’ = [[F’. Let F = {b € Bla € F'} and note that [[ F € P-mon,

so[[F#0. Forallbe F

[[F<t=eqr<t=ceqr<a=cqr<[[F=]]F #0

proving P’ is independent. Thus A has a k-sized independent set of \-sized pairwise disjoint sets,

and by Lemma 19 A has a k-sized A-independent set. O



Chapter 5

A-independence

We begin with an easy generalization of [9, Lemma 1.2], which states that spind(A) C

spind(A x B), and an application to powerset algebras.

Theorem 22. If Ay and Ay are Boolean algebras and Ag has an mazimal A-independent set of size

k then Agx A1 has a mazimal independent set of size k. Thus A-i(Agx A1) < min {A-i(A4p), A-i(A1)}.

Proof. Let A = Ay x A;. Suppose P is a maximal A-independent set in Ay and |P| = k. Let
P = {pa|a € k} and Vo € k let po = {zap|8 € A}. We build a set of A-partitions in the product
from the z,3. For each a € K let yoo = (za0,1) € A, and for § € X\ {0} let yop = (2ap,0). Let
do = {Yaplf € A} and let Q = {qo|a € k}. Clearly each g, is a partition of unity. To see that Q
is independent, note that Vm € @Q-mon (mg(m) € P-mon = my(m) # 0 = m # 0). To see that
@ is maximal, suppose r is a A-partition of A and let ' = m[r]. If 0 € +/, then fix 2 € r such
that mo(z) = 0. By definition 71 (yo1) = 0, so 04 = zyo1 € (QU {r})-mon. If 0 ¢ +/, then 7’ is a
A-partition of Ap, so by maximality of P there are m € P-mon and z € r such that mo(z)m = 0.
Fix such z and m and write m = [[,cp Taf() for some F € [x]<“ and f: F — X\. Fix y € s \ F
and define n € Q-mon by n = yy1 [[,cp Tqof(a)- The inclusion of y,; ensures that m1(zn) = 0, and

mo(2n) < mo(z H Yaf(a)) = T0(2) H Tof(a) = To(z)m =0,
acl acel

s0 04 = zn € (Q U {r})-mon. In either case 0 € (Q U {r})-mon = (Q U {r}) is not independent, so

@ is the desired maximal A-independent set. ]
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Corollary 23. If k > w and X\ > 2 then A-spind(p(w)) C A-spind(p(k)). Thus Ai(p(k)) <

A-i(p(w))-

Proof. 1If € A-spind(p(w)), let P be a maximal A-independent set in p(w) of size u. Write p(k)
as p(k) |wXx p(k) [ (k\w) = p(w) X p(k\w). By Theorem 22 p(x) has a maximal A-independent

set of size |P|. O

From this it is easy to see that [8, Proposition 36], which states that i(p (w)) > wi, does not
generalize to i (p (k)) > k™ for all cardinals k; Choosing x > 2% provides a counterexample in ZFC,
as then i(p(r)) < i(p(w)) < 2% < kT, and K can be forced down by introducing smaller maximal
independent sets of o (w).

However, if we note that each independent set in g (w) maps to an independent set in g (w) /fin
and instead generalize to g (k) / < k, the proof goes through, and in fact the same technique can
be used to prove the a slightly more general result (Recall that p(k)/ < k = p (k) /I, where

I ={z € p(k):|z| <kK}).
Theorem 24. If k is an infinite cardinal and X\ < k, then A\ (p (k) /<K) > K.

Proof. Suppose P is an independent set of A-partitions of k, |P| = k, and ¥m € P-mon |m| = k.
Write P-mon = {mq|a € k} without redundancy, and Va € k Vj3 € X recursively choose z45 € mq \
{zys]y <a vV (y=a A 0 <)} (This is possible because |{zy5]y <a V (y=a A 0 <B)}]| <
la|X + || < &, while |mq| = k). Now V3 € A\ {0} let yg = {zop|a € £}, and let

Yo =K\ U yg 2 {Taola € K}.
pe\{o}

Thus each yg contains an element of each member of P-mon and yg Nys; = @ for distinct S and
5. Let ¢ = {yg|B € A}. Clearly ¢ is pairwise disjoint, and the definition of gy ensures that ¢ is a
partition of unity. Note that, for all & € k, [{y € klay Can}| =K = |{y>alay Can}|=r=
VB € X (|zg Naq| = k), so not only is P U {¢} independent in p (), but also {f [p||p € P} U f[q]
is independent in g (k) / <k, where f : p (k) = p (k) / <k is the natural homomorphism. Thus no

k-sized A-independent subset of (p (k)) / <k is maximal, showing A-i(p (k) /<kK) > k. O



27

5.1 A-1 for Weak Products

Monk and Mckenzie [6, Theorem 4] have shown that, for I an infinite set and (4;:i € I) a

system of atomless BAs,

W
spind (H Ai> ={w}U U spind (A;) .

icl iel

Most of the results leading to this can be readily generalized to maximal A-independent sets for any
cardinal A\, with the notable exception of the “not easy” direction of [6, Theorem 2|, which shows
that if Ayp and A; are atomless BAs and Ay x A; has a maximal independent set of size x then
either Ag or A; has a maximal independent set of size k. I suspect that the generalized version,
the converse of Theorem 22, holds, but have not found a proof. The following are the generalized

versions of the remaining pertinent results.

Theorem 25. If A = HZ\ZZ A; and for some i € I A; has a mazimal \-independent set of size k

then A has a mazimal A-independent set of size k.

Proof. Let P = {pa|a € k} be a A\-independent subset of p(A;) for some fixed i € I. Write each p,

as {xqp|B € A}, without redundancy. For each o € k and 8 € A define y,3 € A by Vj € I
(

Tag J=1

Yap() =1  j#i A B=0-

0 Jj#FiANB#0

Let go = {yaplf € A} and let Q@ = {go|a € k}. Clearly Q is a set of A-partitions, and Vm €
Q-mon w;(m) € P-mon = m # 0, so @ is independent. To see that @ is maximal, suppose that
r is a A-partition of A. Either 3z € r such that m;(2) = 0 or m;[r] is a A-partition of A;, in which
case by maximality of P in A; 3z € r 3m € P-mon such that 7;(zm) = 0. In either case fix z € r
and m € P-mon such that m;(2m) = 0 and fix F' € [5]<, f: F' — A such that m = [[,cp Taf(a)-
Let n = [[,cr Yaf(a) and fix any v € 5\ F, so that y,1mz € (Q U {r})-mon. For all j € I'\ {i} we
have 7j(yy1mz) < mj(yy1) = 0 and m(y,1mz) < m(mz) = 0, so yyymz = 04, showing Q U {r} is

not independent. O]
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W

acEkR

Theorem 26. If (A,|a € k) is a system of Boolean algebras, B = [] . c. Aa, A is any cardinal,
and A, has an infinite A-independent set for infinitely many «, then B has a countably infinite

mazximal A-independent set.

Proof. Without loss of generality Vo € w let {pan|n € w} be a countably infinite independent set
of A-partitions of A,. For each a € w and n € w write pan = {Tang|B € A}, without redundancy.
We define a set @ = {gn|n € w} of A-partitions in B. For each n € w let g, = {y,3|6 € A}, where

the y,3 € B are defined as follows:

Tang a<n

0 a=mn, =0

ZTan0 + Tant a=n, B=1
ynﬁ(a):

Tang Oé:n,5>1

1 a>n, =0

0 a>n, >0

\

To see that @ is independent, it suffices to show that if k € w and f: k — X then [],,_, Ynf(n) 7 O
If Vo € k (f(n) = 0) then [, .1 Ynfm) (k) = 1. Otherwise let m € k be minimal such that

f(m) # 0 and note that

Hn<m 1 (xmmO + xmml) Hm<n<k Tmnf(n) f (m) =1

ek | J - (wmmf(m)) [in<n<k Tmnf(n) f(m)#1

Either way

n<k m<n<k

by independence of {pyn|n € w}. To see that @ is maximal, suppose r = {z,]a € A} is a par-
tition of unity in B. If o and [ are distinct members of A and {v € |z, () # 0} is infinite,
then {y € k|23 (v) # 0} is finite because otherwise {y € k|zo (7) # 1} and {vy € k|25 (y) # 1} are

both finite = z,2z3 # 0, contradicting pairwise disjointness of r. Without loss of generality
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{a € K|zp (o) # 0} is finite (if not we could use z; in place of zp). Fix m € w such that m >

max {n € w|z (n) # 0}. We show 2o ([],,<, ¥n0) ¥m1 = 0 by partitioning « into three sets.
Case 1. a<m
Then [],,-,,, ¥no (o) = 0.
Case 2. acw\m
Then zp (a)) = 0.
Case 3. v € kK \w

Then Y1 (o) = 0.

In any case zg (Hn<m yno) Ymi(a) = 0, so zp (Hn<m yno) Ym1 = 0. Thus Q U {r} is not

independent, and () is the desired set of partitions. O

Corollary 27. If {A.|a € Kk} is an infinite set of atomless Boolean algebras, B = HZV@@ A, and

n € w, then B has a countably infinite maximal n-independent set.
Proof. By Theorem 10 each A, has an infinite n-independent set, so Theorem 26 applies. O

This does not suffice for a full characteriziation of A-spind for weak products, but at least

we can conclude the following:

Theorem 28. If {A,|a € Kk} is an infinite set of Boolean algebras, A is any cardinal, and A, has
an infinite independent set of A-partitions for infinitely many «, then

W
A-spind (H Aa> C {w}U U A-spind(Aq).

ackK aEkR

5.2 n-1 for Finite n

Results like Theorems 5,6,10, and 11 are not as easy to come by for A-i, as the preservation
of maximality when constructing an independent set of A-partitions using an independent set of

u-partitions presents a bit of a challenge. As an example, consider A =2, u = 3. If A is a BA and
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P is a k-sized 3-independent set in A, we may construct an independent set of size « as in Theorem
5: Let P = {pq|a € k} and Va € k let pq = {Za0, Tal, Taz}- Let X = {zq0|a € k}. Then P-mon is
dense in X-mon so X inherits independence from P, but X is not necessarily maximal. There may
even be a 3-partition that is independent over (X) without being independent over (|JP). The
problem becomes even more difficult when p and A are infinite, but at least in the finite case the

following holds.

Theorem 29. If A is a BA and A has an infinite independent set, then n-i(A) = i(A) for all

necw.
We break the bulk of the proof into two lemmas.

Lemma 30. If a BA A has a mazimal k-sized n-independent set with k > w, then A has a mazximal

Kk-sized n?-independent set.

Proof. If P is a k-sized maximal n-independent set in A, partition P into two k-sized sets @) and
R. Let Q = {¢qu]a € K} and R = {ro|a € k}. For each a € k, let ¢o = {zaili € n} and let
Ta = {Yaili € n}. Let sq = {TaiYaj|(i,7) € n x n} and let S = {sq|a € K}. We show S is the
desired k-sized maximal n?-independent set.

First, Vo € k V(i,j) € nxn, by disjointness of @ and R we have Z4iyaj € P-mon = ZaiYaj 7

0. If (¢,7) and (k,l) € n x n and (4,7) # (k,l), by symmetry assume ¢ # k, and we have

(ZaiYaj) (TakYal) < TaiZak = 0,

showing that |s,| = n? and that s, is pairwise disjoint. To see that s, is a partition of unity,

dosa= ) %z‘yaj:(ZfBai) Sy | =1-1=1.

(i,7)Enxn i€En JjEN
By disjointness of @ and R we have S-mon C P-mon = S inherits independence from P. To see
that S is maximal, suppose r is any n?-partition of A. Let r = {zz|z € n2} and let

r'={zlien—1}U Z Z;

n—1<j<n2
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Clearly ' is an n-partition, so P U {7’} is not independent by maximality of P. For any i with

n—1<1i<n? we have

z; < Z Zj5

n—1<j<n?

so PU{r} is also not independent. Fix i € n? and m € P-mon such that z;m = 0. Using P = RUQ,

write

m =[] #as@) [ vog@

aeF aeG

with F,G € [k]<¥, f : F = n, and g : G — n. Arbitrarily extend f and g to functions from FF'U G

to n and let

n=J1 %as@Vag(r
aceFUG

Thus n € S-mon and n < m = z;n =0, so SU{r} is not independent, showing S is maximal. [J

Lemma 31. If a BA B has a k-sized mazimal n-independent set for 3 <n < w and Kk > w, then

B has a k-sized (n — 1)-independent set.

Proof. Let X be a k-sized maximal n-independent set in B. In case k = w, write X = {r;|i € w}

where r; = {z;j|j € n} without redundancy. Define a function f : |JX — Intalg[0, 1) by

kn+j kn+j+1
f(zi) = wig = { nitl 0T pitt :
kent

For each m € w define a subaglebra Ay, of Intalg[0, 1) by A, = (U;e,, flril) and let A =, ¢, Am.
Claim: The A,, are atomic with atoms { [nim, %) ’k: € nm}, and each atom of A,, is

[Licn Tis) for some § : m — n. We prove by induction on m that ¥m € w

S iem 60 B 0@ AN
| | ) )

nm nm

Yo:m—n Ha:l-(;(i):

em

Because each k € n™ has a unique representation of the form k = >_._ & (i)n™ 1~ for some

em
d : m — n (this is the n-ary representation of k) and from the definition of the x;; it is clear that

Va € Ay, (L(a) > -%), where L is Lebesgue measure, Vm (x,,) will be sufficient to prove the claim.

Ay ={0,[0,1)} = [0,1) is the only atom of Ay, and the only function ¢ from 0 to n is 6 = 0, for
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which 3,06 (1) n%71 7" = 0, so (%) holds. Given (%), V6 :m+1—n

H Lis(i) = H Lig(i) ~

iem+1 em
Yiem 0 (i) n pml—t ZzEm (i)nm 1741 A kn+d0(m) kn+6(m)+1Y
nm nm U nm+1 ’ nm+1 o
kenm
k 5(m) k 6(m)+1 Zzemé() m 1 Zzem () mels Z+1
U m + m+1’ ,m + m+1 N m m :
n n n mn n n

kenm

The above intersection is nonempty exactly when k =Y, 6 (i) n™ %, 80 [Ticpi Tisgi) =

[ZiEm § (i)ynm—1-t N S(m) Yiemd (@) nm1t N §(m) + 1) ﬂ

nm nerl ) nm nm+1

l:ZiEm(S() nm Zlem (i) ™~ Z+1>

nm nm

_ [ZiEmd(i) nm1e N §(m) Yiem 0 (i) nm1 L9 (m) + 1)

nm nm—i—l ) nm nm+1

_ {Ziem S (i)™ + 0 (m) i 0 ()™ 40 (m) + 1)

nm+1 ’ nm+1

ZlEm—l-l 5 ( ) (m+1) 1= Zz€m+1 5 (Z) n(m—H)_l_i + 1
- nm+l ’ | )
which is (#pn1), finishing the proof by induction and proving the claim.

In particular this shows {{z;;|j € n}|i € w} is an independent set of partitions in A. Using

this and the independence or the r;, we see that VF € [JX]<¥ Ve: F — 2

[[zP =00 @GreX zyer e(z)=c(y) =1)VEre X rc Faelr]={0}) « [] flz)¥ =0,
zeF zZEF

so by Sikorski’s extension criterion [4, Proposition 5.6] we can extend f to an isomorphism from

(UX) to (f[UX]) = A. The bulk of the proof now takes place inside A.

For each i € w let R; = {r € [0,1)|r is and endpoint of some interval in 4;} = {

and let R =/,

icw Ri- We inductively define S; € [R]<¥, g; : R — w, {hﬁ\j € n} c B(RU{1}), and
qi C A so that @ := {¢;|i € w} is an independent set of (n — 1)-partitions of A with the property
that Q-mon is dense in A.

First, let Sy = {0}. If S; has been defined, Vr € R let r;” = min(((r,1) N S;) U {1}) and let

gi(r) € w be minimal such that R,y N (r,7;") # 0. Let hf(r) = r and let h?~(r) = r]". Note that
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if € S; then h"'(r) € S; U {1}, and no elements of S; are inbetween r and h?!(r). We now use
gi to define an increasing sequence of real numbers inbetween r and h?fl(r) using elements of R;
for the smallest possible indeces I. Let hi(r) = min (R, N (r,7;7)), and for 0 < j < n — 2 let
thrl(r) = hll(hz(r)) If S;, ¢i, and {hﬂ] € n} have been defined, let ¢; = {y;;|j € n — 1} where
Vien—1

vi= U [h'f(r)»hfﬂ(?“)>-

res;
Given S;, g;, {hi’j € n}, and ¢;, let S;1q1 = {h{(r)h" €85, jEN— 1}.
For all 1 € w and r € S;, we make some usefull observations regarding the above definitions.
First note that A is the identity function, so S; C S;11. We prove by induction that 1 < j <
n—1— (r< hg(r) <rH)A (hi(r) < hgﬂ(r)). Clearly r < h{(r), and g¢(i) is defined to be just
large enough so that the minimality of hl(r) guarantees h!(r) < r". Now assume that j < n — 2
and r < hg(r) <rf. Then rf < (hf(r));F and r € R; = (hf(r))z+ <rf, so (hf(r))j = r;. Thus
. : . . . : - o
Rl(r) < hH(RI(r)) < (Rl (r))f =rf. If j <n—2then hl(r) < hi(hl(r)) =hI""(r), and if j = n—2
then hf(r) < (hf(r));L =rf = hg“(r), finishing the induction. It follows that r < hl(r) < ... <
h?~(r) = ;. Finally, by definition of S;;1, Vj € n—1 we have hf“(r) = (hf(r))ltrl = h::ll(hg (r)).
We are now equiped to prove () is an independent set of partitions of unity. For all ¢ € w,
, . . . -
Uw=U UMow"e)=U U Hewe)=U o) =01
jen—1 jen—1res; reS; jen—1 res;
and
Viken—1 j#k—yynye= ([h{ (r) B () 0 [h;.f (r) B (1)) =0,
res;

so q; is a partition of unity. To see that () is independent, we prove the stronger statement, also
useful in proving Q-mon is dense in A, that Vm € w
Vo :m —mn—1 IreS, such that H Yisi) = [ hfn_l(r)) (5%,
1€Em

by induction on m. If m = 0, any product over m is 14 = [0,1) = [0, A~ *(0)), so r = 0 works for
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this case. Given sy, V0 :m +1—n —1fix r € Sy, such that [[;c,. v;.5) = [r, b ' (r)) so that
TT vist) = o 0 [ b ) = ([P (), 054 9)) 0 [ i () )
iem+1 SESm

The above intersection is nonempty if and only if 7 = s, in which case it is [h%m) (r), h%m)ﬂ(r)),

SO

IT wisw = [P @), w)) = (A (), it (B )

i€m+1

&6(m)

and hy, (1) € Sp1, as desired. Let S = J,., Si- For any 7 € S and any m € w, [r, A% 1(r)) # 0,

i€w
so by *x*,, @ is independent.

To see that Q-mon is dense in A, it now suffices to show R = S, because then for any interval
[r,s) € A we can take m € w such that r, s € S, and note that

> vy =11 2. wi=1=

S:m—n—1iem iem jen—1
30 : m — n — 1 such that [r,s) N [[ic,, %is)y # 0. Fixing such 6, by **,, 3t € Sy, such that
[Licm Yisty = [t,h%fl(t)). For such ¢ we have (t, h”mfl(t)) NSp=0=rs¢ (t, hnm—l(t)) =
[Licim vis@s) € [1,5), showing Q-mon dense in A.

We show R = S. It is clear from the definition of S; that S C R. For the other inclusion,

suppose for contradiction that R\ S # ). Fix ¢ minimal such that R; \ S # 0 and k minimal such

that % ¢ S. S does not contain 0 so k # 0, and by minimality we can fix [ € w such that kn_-l €S

Let r = max (S, N[0, %)) and note that Vs € S, N (r,1) (s > £ ¢ 5)) = g(r) < i by minimality

of g;(r). The same argument shows that Vm > [, if (r, &) = () then g,,(r) <.

n

Case 1. 3m > [ such that (r, %) NSy # 0.

Fix miminal such m. Note that r € Sy,—1 and k% _,(r) is the smallest element of S,,,N(r,1) =

hl _(r) < % Thus h,, ,(r) € Ry, () and 7 > kn_il = R;N(r,%)=0= g,_1(r) > i. Butby

1 ni

the above also g,—1(r) < i, contradiction.

Case 2. Vm > | ((T,%) N Sm =0).
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Then gy, (r) < iforallm > 1. ButVm > 1 (r € Sp, = hp,(r) =151 € Smy1 = hiy 1 (r) < hL(r)).

By minimality of A}, (r) in R, N (r,1), it follows that k., ,(r) ¢ R, (- The R; are increasing,
so Ry ) C Ry, . (r) = 9m(r) < gmy1(r), which means {g,,(r)|m > [} is an infinite set of natural
numbers bounded by i, contradiction.

Thus S = R, and hence Q-mon is dense in A. If we abuse notation a bit and let f[X]| =
{flpllp € X} and let f7[Q] = {f'[g]lg € @}, then because f[X]-mon C A, Q-mon is dense in
f[X]-mon, and it follows that f~![Q]-mon is dense in X-mon. Now that we have a countable set
of (n — 1)-partitions of B whose monomials are dense in X-mon and in who’s monomials X-mon is
dense, we do the same for the uncountable case and then finish the proof for both cases together.

If Kk > w, write X = {ps|a € K} where p, = {z;|i € n} for all & € k, without redundancy.
Partition  into x many subsets of size w, say k = [z, Sp, and VB € & let X = {pa|a € Sp}.
Using the result obtained in the case k = w, V8 € k take Y3 an w-sized independent set of
(n — 1)-partitions of B such that Y3-mon is dense in Xg-mon and vice-versa. For each a € Y-mon
write a = ag, ag,...ag, where the 3; are distinct and each ag, € Yg,-mon. For each i < k take
bg, € Xg,-mon such that bg, < ag,. ag,ag,...ag, > bg bg,...bg, > 0 by independence of X, showing
Upex Y is independent. Let Y be an extension of (Jge, Y3 to a maximal independent set of
(n — 1)-partitions. I claim |Y| = &, and thus Y is the desired maximal independent set. If not,
then [Y| > « and we can fix p,q € Y \ Upe, Ys. Let p = {zi €n — 1} and take b € ¢. Let
r = {200, 20(—b), 21,22, ... , 2n—2} so r is a partition of unity and s, Y5 U {p,q} is independent
= Upey, YsU{r} is independent. But r is an n-partition and X is maximal, so 3a € X-mon 3z € r
such that az = 0. As above, this time using the density of the Yg-mon in the Xg-mon, we

can find o’ € (Jge, Yp-mon such that o’ < a = a’z = 0, contradiction. So [Y] = k (in fact

Y\ Upen Yal <2). O

proof of Theorem 29. For P a maximal n-independent set in A with n > 2, repeated application
of Lemma 31 yields a maximal 2-independent set of size |P|. For P a maximal 2-independent set,

repeated application of Lemma 30 yields a maximal 22k—independent set of size |P| for arbitrarily
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large k € w. Having reached k > logy(logs n), repeated application of Lemma 31 now yields a

maximal n-independent set of size |P|. O

The case kK = w in Lemma 31 is admittedly a bit messy. The following is an alternate, less
constructive but shorter proof. I have included the original above because it shows the relationship
between the n-partitions and the (n — 1)-partitions in a way that is visually presentable; for small
values of n, it is feasable to draw the z;; for the first several ¢ and illustrate how the y;; are built

from these. Many of the messy-to-prove claims in the proof then become readily apparent.

Proof. Suppose X is a countably infinite n-independent set in A. Let f be an isomorphism from
(UX) onto Fry(w). Both Fr,(w) and Fr(,_;)(w) are countable and atomless, so by [4, Corol-
lary 5.16](Any two countably infinite atomless BA’s are isomorphic) there is an isomorphism
g : Frp(w) = Frg,_n(w). Let h = f71og ! let P = {ps|a € w} be the canonical set of gen-
erating partitions for Fr(,_;)(w), and let Y = {h[pa]|a € w}. Because h is an isomorphism and P is
a countably infinite n-independent set, so is Y. For the proof of Lemma 31 it is also necessary that
Y-mon be dense in X-mon and vice-versa. To see this, note that by Corollary 2 P-mon is dense
in Fr,_1)(w) = Y-mon is dense in (|JX) 2 X-mon. The proof of Corollary 2 can be applied to
(U X) as well to show X-mon is dense in ((J X), so a symmetric argument shows X-mon dense in

Y -mon. O



Bibliography

[1] B. Balcar and F. Franek. Independent families in complete boolean algebras. Trans. Amer.
Math. Soc., 274(2):607-618, 1982.

[2] J. Cichon. On the compactness of some boolean algebras. The Journal of symbolic logic,
49(1):63-67, 1984.

(3] F. Hausdorff. Uber zwei sétze von g. fichtenholz und 1. kantorovitch. Studia Mathematica,
6:18-19, 1936.

[4] S. Koppelberg, J.D. Monk, and R. Bonnet. Handbook of Boolean algebras: General theory of
Boolean algebras. North-Holland, 1989.

[5] K. Kunen. Set theory: An introduction to independence proofs, volume 102. Elsevier Science,
1980.

[6] R. McKenzie and J.D. Monk. On some small cardinals for boolean algebras. Journal of
Symbolic Logic, 69(3):674-682, 2004.

[7] JD Monk. Independence in boolean algebras. Periodica Mathematica Hungarica, 14(3):269—
308, 1983.

[8] J.D. Monk. Continuum cardinals generalized to boolean algebras. The Journal of Symbolic
Logic, 66(4):1928-1958, 2001.

[9] J.D. Monk. The spectrum of maximal independent subsets of a boolean algebra. Annals of
Pure and Applied Logic, 126(1):335-348, 2004.

[10] J.D. Monk. Cardinal invariants on Boolean algebras. Birkhauser, 2009.




