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Chapter 1

Introduction

In 1936, Hausdorff improved on a 1935 result by Kantorovich and Fichtenholz, who showed

that ℘(ω) has 22
ω

ultrafilters, by generalizing to ℘(κ) for any cardinal κ [3]. The proof rests on

the existence of an independent family of size 2κ in the Boolean algebra ℘(κ). A subset X of a

Boolean algebra A is said to be independent if its members generate a free subalgebra of A, or

equivalently if no monomial over X is 0. The question of whether this result can be generalized

to any infinite complete Boolean algebra was probably first forlumated by Efimov in 1970 (the

situation for finite Boolean algebras is too simple to be interesting, and it is easy to find large non-

complete Boolean algebras without very many ultrafilters, e.g. Finco(κ), the set of finite and cofinite

subsets of κ, has only κ many ultrafilters). This question was finally answered in the affirmative by

Balcar and Franĕk in 1982 [1], though prior to this partial solutions where porvided by Kesl’yakov,

Koppelberg, Monk, and Blaszczyk. As in Hausdorff’s proof, Balcar and Franĕk guarantee a large

amount of ultrafilters by exhibiting a large independent family. The study of independent families

is interesting in its own right and is a natural part of the study of cardinal invariants on Boolean

algebras, treated extensively in [10]. The large and small independence functions ind and i for a

Boolean algebra A are defined as follows:

ind(A) = sup {|X| : X is an independent subset of A}

i(A) = min {|X| : X is a in infinite maximal independent subset of A}

These functions have been studied in some detail in [4],[6],[7],[8],[9], and [10]. From this
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perspective the Balcar-Franĕk Theorem can be restated as “If A is complete and infinite then

ind(A) = |A|”.

In the proof of their famous theorem, Balcar and Franĕk introduce a more general notion of

independence. If X ⊆ A, then {{x,−x} |x ∈ X} forms a set of partitions of unity in A, and the

condition that X be independent is equivalent to the condition that
∏
x∈F f(x) 6= 0 whenever F

is a finite subset of X and ∀x ∈ F (f(x) ∈ {x,−x}). If we replace {{x,−x} |x ∈ X} with a set P

whose members are partitions of unity of arbitrary size, then we say analogously P is independent

if
∏
p∈F f(p) 6= 0 whenever F is a finite subset of P and ∀p ∈ P (f(p) ∈ p). If each member of P

has size λ, we say P is λ-independent in A. If P is λ-independent and P ∪ {q} is not independent

whenever q is a λ-sized partition of unity in A, we say P is maximal λ-independent. For any

cardinal λ, the large and small λ-independence functions λ-ind and λ-i can now be defined in the

natural way:

λ-ind(A) = sup {|P | : P is λ-independent in A}

λ-i(A) = min {|P | : P is infinite and maximal λ-independent in A}

It is natural to ask which of the known results pertaining to ind and i generalize to λ-ind

and λ-i and under what conditions on λ, and this thesis provides some answers to these types of

questions. In addition to some more basic results, we formulate and prove a generalized version of

the Balcar-Franĕk theorem itself and prove the equivalence of n-i on infinite algebras for all n ∈ ω.



Chapter 2

Definitions and Notation

We adopt the set theoretical notation of [5] and notation for the arithmetic of Boolean

algebras of [4]. For sets x and y and a cardinal κ, yx is the set of functions from y to x, [x]κ is the

set of subsets of x of size κ, and [x]<κ is the set of subsets of x of size less than κ.

When it is clear from the context, 0 and 1 are understood to mean the additive and multi-

plicative identities of the Boolean algebra under discussion. When it is necessary to be explicit,

subscripts will be used, e.g. 0A is the additive identity in A. We will always use + and · and − for

the Boolean operations, usually implying · by adjacency and omitting the symbol.

We will use the shorthand “BA” for “Boolean algebra”. If A is a BA and B ⊆ A, 〈B〉 will

denote the subalgebra of A generated by B, 〈B〉id will denote the ideal of A generated by B, and if

A is complete, 〈B〉cm will denote the smallest complete subalgebra of A containing B, while 〈A〉cm

will generally denote the completion of A. In formulating products it will sometimes be convenient

to use the convention x1 = x, x0 = −x for x an element of a BA. The set of nonzero elements of

a BA A will be denoted A+. This notation may also be applied to a subset S of a BA that is not

necessarily a subalgebra, so S+ = S \ {0}. The notation x � y will be used in two different ways:

If A is a BA and a ∈ A then A � a is the BA {ab|b ∈ A}, with operations inherited from A, except

that 1A�a = a and (−b)A�a = (−b)A · a. If f is a function and S is a subset of its domain, then

f � S is the restriction of f to S. The meaning of � will always be clear from the context.
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If A is a Boolean algebra and X ⊆ ℘(A), we define X-mon, the set of monomials over X, by

X-mon =

{∏
x∈F

f(x)
∣∣F ∈ [X]<ω, f : F →

⋃
F, and ∀x ∈ F (f(x) ∈ x)

}
.

Usually each member of X will consist of partitions of unity, X will be indexed by some cardinal κ

and each member of X by some cardinal λ, e.g. X = {pα|α ∈ κ} and ∀α ∈ κ (pα = {xαβ|β ∈ λ}),

in which case

X-mon =

{∏
α∈F

xαf(α)
∣∣F ∈ [κ]<ω and f : F → λ

}
.

If Y ⊆ A, let X = {{y,−y} |y ∈ Y } and let Y -mon = X-mon. Thus Y -mon is the set of monomials

over Y , and Y is independent if and only if 0 /∈ Y -mon. Accordingly, a subset X of ℘(A) is

independent if and only if 0 /∈ X-mon. We generalize the spectrum of maximal independent sets

of a BA

spind(A) = {|X| : X is infinite and maximal independent in A}

in the natural way:

λ- spind(A) = {|P | : P is infinite and maximal λ-independent in A} .

Note that by definition 2- spind(A) = spind(A), 2- i(A) = i(A), and 2- ind(A) = ind(A).



Chapter 3

The Boolean Algebra Freely Generated by κ-many λ-partitions

It will be useful to define and prove some results regarding a canonical “almost free” algebra

generated by an independent set of λ-partitions.

For λ and κ cardinals, let X = {xαβ|α ∈ κ, β ∈ λ} be a set with (α, β) 6= (α′, β′) → xαβ 6=

xα′β′ and define Frλ(κ) = Fr(X)/I, where

I =


〈{xαβxαγ |α ∈ κ, β, γ ∈ λ, and β 6= γ}〉id λ ≥ ω〈
{xαβxαγ |α ∈ κ, β, γ ∈ λ, and β 6= γ} ∪

{
−
∑

β∈λ xαβ|α ∈ κ
}〉id

λ < ω

.

Let π : Fr(X)→ Frλ(κ) be the natural homomorphism. For all α ∈ κ and β ∈ λ let yαβ = π(xαβ),

let pα = {yαβ|β ∈ λ} and let P = {pα|α ∈ κ}. Henceforth P defined thusly will be called the

canonical set of generating partitions of Frλ(κ).

Claim. P is a λ-independent set in Frλ(κ) and
⋃
P generates Frλ(κ).

Proof. Clearly
⋃
P generates Fr(X)/I, as

⋃
P = π[X]. To see that each pα is a partition of unity,

fix α. For distinct β and γ in λ xαβxαγ ∈ I ⇒ yαβyαγ = 0, so pα is pairwise disjoint. If λ < ω,

−
∑

β∈λ xαβ ∈ I ⇒ −
∑

β∈λ yαβ = 0 ⇒
∑

β∈λ yαβ = 1. If λ ≥ ω, suppose for contradiction that,

for some nonzero a in Frλ(κ), ∀β ∈ λ (axαβ = 0). Fix such a, and fix b ∈ Fr(X) \ I such that

π(b) = a. We can write b as a finite sum of monomials over X and b /∈ I ⇒ ∃m ∈ X-mon \I such

that m ≤ b. Fix such m and fix F ∈ [X]<ω, f : F → 2 such that m =
∏
x∈F x

f(x). Because m /∈ I,

∀δ ∈ κ (| {β ∈ λ|xδβ ∈ F ∧ f(xδβ) = 1} |) ≤ 1. In particular, there is at most one β ≤ λ such

that xαβ ∈ F and f(xαβ) = 1. Fix such β if it exists, and otherwise take an arbitrary β ∈ λ such
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that xαβ /∈ F , using finiteness of F . By assumption ayαβ = 0 ⇒ bxαβ ∈ I ⇒ mxαβ ∈ I ⇒ ∃G a

finite subset of {xδγxδε|δ ∈ κ, γ, ε ∈ λ and γ 6= ε} such that mxαβ ≤
∑
G. Let h : Fr(X) → 2 be

a homomorphism with ∀x ∈ X

h(x) =



1 x ∈ F ∧ f(x) = 1

1 x = xαβ

0 otherwise

.

Note that ∀δ ∈ κ there is at most one γ ∈ λ such that h(xδγ) = 1 ⇒ h(
∑
G) = 0, but also

h(mx) = 1, contradiction. So in fact ∀a ∈ Frλ(κ)+ ∃β ∈ λ (ayαβ 6= 0)⇒
∑
pα exists and is 1.

To see that the pα are independent, suppose for contradiction that 0 ∈ P -mon. Then ∃F ∈

[X]<ω and f : F → 2 such that
∏
x∈F x

f(x) ∈ I, with ∀α ∈ κ (| {β ∈ λ|xαβ ∈ F ∧ f(xαβ) = 1} | ≤ 1).

Let h : Fr(X)→ 2 be a homomorphism with ∀x ∈ X

f(x) =


1 x ∈ F ∧ f(x) = 1

0 otherwise

so that, as above, for all α ∈ κ and distinct β, γ ∈ λ (h(xαβ) = 0 ∨ h(xαγ) = 0)⇒ h(xαβxαγ) = 0,

while h
(∏

x∈F x
f(x)
)

= 1. But
∏
x∈F x

f(x) ∈ I ⇒ ∃G ∈ [{xαβxαγ |α ∈ κ, β, γ ∈ λ and β 6= γ}]<ω

such that
∏
x∈F x

f(x) ≤
∑
G. Applying h to both sides of this inequality yields a contradiction.

Any element of Fr(X) can be written as a finite sum of disjoint monomials over X. It would

be nice to have a similar normal form for elements of Frλ(κ), using P as above, but unfortunately

not every element of Frλ(κ) can be written as a finite sum of P -monomials; with notation as above,

−y00 ∈ Frω(ω) is an example. However, a nice normal form result can be obtained by slightly

modifying our notion of a monomial.

If P = {pα|α ∈ κ} is a set of λ-sized partitions of a BA and ∀α ∈ κ pα = {xαβ|α ∈ κ, β ∈ λ},

define P -mon∗, the augmented set of monomials over P , by P -mon∗=∏
α∈F

xαf(α)
∏
α∈G

− ∑
β∈Hα

xαβ

∣∣∣∣F,G ∈ [κ]<ω, F ∩G = ∅, f : F → λ, and ∀α ∈ G Hα ∈ [λ]<ω

 ,
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or, equivalently,

P -mon∗ =

{∏
α∈F

f(α)

∣∣∣∣F ∈ [κ]<ω and f(α) ∈ pα ∪
{
−
∑

G
∣∣G ∈ [pα]<ω

}
for all α ∈ F

}
.

Thus we allow, for each α in a finite subset of κ, either one member of pα or the complement of

the sum of finitely many members of pα as a factor in our product.

Theorem 1. Each element of Frλ(κ) can be written as a finite sum of disjoint members of P -mon∗,

where P is the canonical set of generating partitions of Frλ(κ).

Proof. Again using pα, xαβ, and yαβ as in the remarks following the definition of Frλ(κ), ∀a ∈ Frλ(κ)

fix b ∈ Fr(X) such that a = π(b) and M a finite pairwise disjoint subset of X-mon such that

b =
∑
M . It suffices now to show that ∀m ∈ M \ I (π(m) ∈ P -mon∗), because then M pairwise

disjoint ⇒ π[M \ I] pairwise disjoint and clearly a =
∑
π[M ] =

∑
π[M \ I].

For m ∈M \ I write m as a finite product of monomials over the π−1[pα], i.e.

m =
∏
α∈F

∏
β∈Gα

x
fα(β)
αβ ,

where F ∈ [κ]<ω and ∀α ∈ F (Gα ∈ [λ]<ω) and fα : Gα → 2. For any α ∈ F there is at most

one β ∈ Gα such that fα(β) = 1, because otherwise m ∈ I. Let F ′ = {α ∈ F |1 ∈ fα[Gα]} and

define g : F ′ → λ by g(α) = the unique β ∈ Gα with fα(β) = 1. Note that ∀α ∈ F ′ ∀β ∈

Gα \ {g(α)} (xαg(α)xαβ ∈ I)⇒ yαg(α) ≤ −yαβ, so

∏
β∈Gα

y
fα(β)
αβ = yαg(α) ·

 ∏
β∈Gα\{g(α)}

−yαβ

 = yαg(α).

If α ∈ F \F ′ then
∏
β∈Gα y

fα(β)
αβ =

∏
β∈Gα −yαβ = −

∑
β∈Gα yαβ, so putting these together we have

π[m] =
∏
α∈F

∏
β∈Gα

y
fα(β)
αβ =

∏
α∈F ′

∏
β∈Gα

y
fα(β)
αβ

∏
α∈F\F ′

∏
β∈Gα

y
fα(β)
αβ =

∏
α∈F ′

yαg(α)
∏

α∈F\F ′

− ∑
β∈Gα

yαβ

 ,

which is in P -mon∗, as desired.

Recall that, for two subsets X and Y of a BA, X is dense in Y means ∀y ∈ Y + ∃x ∈ X+

such that x ≤ y.
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Corollary 2. If P is the canonical set of generating partitions for Frλ(κ) then P -mon is dense in

Frλ(κ).

Proof. By Theorem 1 it suffices to show P -mon is dense in P -mon∗. For any nonzero m ∈ P -mon∗

write

m =
∏
α∈F

yαf(α)
∏
α∈G

− ∑
β∈Hα

yαβ


with F and G disjoint finite subsets of κ, f : F → λ, and ∀α ∈ G (Hα ∈ [λ]<ω). If λ is finite then,

by the way I is defined in the definition of Frλ(κ), we have −
∑
pα = 0. Thus ∀α ∈ G there is some

nα ∈ λ\Hα, because otherwise m ≤ −
∑

β∈Hα yαβ = 0. We extend f to F ∪G by letting f(α) = nα.

If λ is infinite then each λ \ Hα is nonempty because Hα is finite, and we extend f to F ∪ G by

setting f(α) to be an arbitrary member of λ\Hα. Either way f(α) /∈ Hα ⇒ yαf(α) ≤ −
∑

β∈Hα yαβ,

so

m =
∏
α∈F

yαf(α)
∏
α∈G

− ∑
β∈Hα

yαβ

 ≥ ∏
α∈F∪G

yαf(α) ∈ P -mon,

as desired.

Theorem 3. For any cardinals κ and λ

Frλ(κ) ∼=
⊕
α∈κ

Finco(λ),

the free product of κ many copies of Finco(λ).

Proof. By the characterization of free products [4, Proposition 11.4.], it suffices to exhibit a set

{hα|α ∈ κ} of one-to-one homomorphisms from Finco(λ) into Frλ(κ) such that {hα[Finco(λ)]|α ∈ κ}

is an independent set of subalgebras who’s union generates Frλ(κ). Again we use the canonical set

of generating partitions of Frλ(κ) as defined above. For α ∈ κ define hα : Finco(λ) → Frλ(κ) by

setting hα({β}) = yαβ for all β ∈ λ and extending h to a homomorphism, so that

hα(x) =


∑

β∈x yαβ x is finite

−
∑

β∈λ\x yαβ λ \ x is finite
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Clearly hα[Finco(λ)] = 〈pα〉, and if x ∈ Finco(λ)+, then hα(x) is a nonempty sum of P -monomials

⇒ hα(x) 6= 0 by independence of P , showing hα is one-to-one. If F ∈ [κ]<ω and ∀α ∈ F (xα ∈

〈pα〉+), then
∏
α∈F xα is a nonempty sum of P -monomials, so again by independence of P

∏
α∈F xα 6=

0, showing {hα[Finco(λ)]|α ∈ κ} = {〈pα〉 |α ∈ κ} is an independent family of subalgebras of Frλ(κ).

Finally,
⋃
α∈κ hα[Finco(λ)] =

⋃
P , which generates Frλ(κ) by the claim following the definition of

Frλ(κ).

Theorem 4. A Boolean Algebra A has a λ-independent set of size κ if and only if A contains an

isomorphic copy of Frλ(κ)

Proof. The “if” direction follows from the claim following the definition of Frλ(κ). For the other

direction, suppose A is a BA and Q = {qα|α ∈ κ} is an independent set of partitions of unity in A.

The proof of Theorem 3 can now be applied with Q in place of P to show 〈
⋃
Q〉 ∼=

⊕
α∈κ Finco(λ) ∼=

Frλ(κ), so 〈
⋃
Q〉 is the desired subalgebra of A.



Chapter 4

λ-independence

We prove some basic results regarding λ-ind.

Theorem 5. If A is a BA and λ-ind(A) = κ for cardinals λ ≥ 3, κ ≥ 1, then ∀n ∈ ω ∩

λ (n-ind(A) ≥ κ). In particular ind(A) ≥ κ.

Proof. Let P = {pα|α ∈ κ} be a λ-independent set in A and ∀α ∈ κ let pα = {xαβ|β ∈ λ}. Fix

n ∈ ω ∩ λ. We construct a κ-sized n-independent set in A. Thus if λ-ind(A) is not attained the

argument can be applied to all κ < λ-ind(A) to prove n-ind(A) ≥ λ-ind(A). For each α ∈ κ let

qα = {xαβ|β < n− 1} ∪

− ∑
β<n−1

xαβ

 .

Let Q = {qα|α ∈ κ}. Clearly Q is a set of n-partitions, and P -mon is dense in Q-mon, so Q inherits

independence from P .

The above sum in the definition of qα may not exist if n ≥ ω, so for a more general version

we require that A have the necessary sums, and the proof is identical:

Theorem 6. If A is a BA and λ-ind(A) = κ for cardinals λ ≥ 3, κ ≥ 1, then ∀µ < λ, if A is

µ+-complete, µ- ind(A) ≥ κ.

The following theorem shows that the completeness condition in Theorem 6 is necessary by

showing that, for example, Frℵ2(ω) has no ℵ1-sized partition of unity. First, we make a definition
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and prove a convenient lemma. Recall that a BA A is compact if whenever S ⊆ A and
∑
S = 1

there is a finite subset S′ of S such that
∑
S′ = 1 (This definition is not very interesting under

the axiom of choice, because then every infinite BA has an infinite partition of unity, so compact

just means finite). If λ is an infinite cardinal, in [2] Cichon defines A to be λ-compact if whenever

S ∈ [A]≤λ and
∑
S = 1 there is a finite subset S′ of S such that

∑
S′ = 1 (In fact he makes an

equivalent definition using the dual notion of sets who’s products are 0). We extend this definition

by saying A is <λ-compact if whenever S ∈ [A]<λ and
∑
S = 1 there is a finite subset S′ of S such

that
∑
S′ = 1. An easy example of a <λ-compact BA is Finco(λ).

Lemma 7. If B is a <λ-compact BA, then the free product B ⊕ Finco(λ) is <λ-compact.

Proof. Let A = Finco(λ). Following [4, 11.5] and the subsequent remarks, we view A and B as

subalgebras of A ⊕ B and make use of the fact that A ∩ B = {0, 1} and 0 /∈ A+ · B+. Suppose

S ⊆ B ⊕ A, |S| = κ < λ, and
∑
S = 1. If κ < ω we are done, so assume κ ≥ ω. By [4,

Proposition 11.4.(c)] B ⊕ A is generated by A ∪ B, so each x ∈ S is a finite sum of products

of the form ab with a ∈ A and b ∈ B. Without loss of generality each x ∈ S is itself such a

product, so for each x ∈ S we can write x = axbx with ax ∈ A and bx ∈ B. For each α ∈ λ let

Sα = {x ∈ S| {α} ≤ ax}. For all α ∈ λ, because {α} is an atom of A we have

{α} = {α} ·
∑

S =
∑
x∈S

({α} · x) =
∑
x∈S

({α} · ax · bx) =
∑
x∈Sα

({α} · bx).

This implies that
∑

x∈Sα bx = 1. In fact, otherwise there is some nonzero c ∈ B such that bxc = 0

for all x ∈ Sα, hence

0 6= {α} · c =
∑
x∈Sα

({α} · bx · c) = 0,

contradiction. Thus for each α ∈ λ we can fix Fα a finite subset of Sα with
∑

x∈Sα bx = 1. Each Fα

is a finite subset of S and |[S]<ω| = |S| = κ <λ, so there is some fixed F ∈ [S]<ω and R ∈ [λ]≥ω

such that ∀α ∈ R (Fα = F ). For all x ∈ F there are infinitely many α in R, all of which satisfy

{α} ≤ ax, and ax ∈ Finco(λ), so ax must be cofinite. Let G =
∑

x∈F −ax, so G is finite. We

claim S′ := F ∪
(⋃

α∈G Fα
)

is the desired finite subset of S with
∑
S′ = 1. It suffices to show
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∀α ∈ λ ∀b ∈ B+ ∃x ∈ S′ such that x {α} b 6= 0. If α ∈ G, take x ∈ Fα such that bxb 6= 0 and if

α /∈ G take x ∈ F such that bxb 6= 0. In either case α ∈ ax, so x {α} b = axbx {α} b = {α} (bxb) 6= 0,

as desired.

Corollary 8. For any infinite cardinal λ and n ∈ ω,
⊕

i∈n Finco(λ) is <λ-compact.

Proof. We proceed by incuction on n. The base case is clear, and if
⊕

i∈n Finco(λ) is <λ-compact

then
⊕

i∈n+1 Finco(λ) =
(⊕

i∈n Finco(λ)
)
⊕ Finco(λ) is <λ-compact by Lemma 7.

Theorem 9. If κ, λ, and µ are infinite cardinals and κ < µ < λ, then Frλ(κ) has no partition of

unity of size µ.

Proof. Suppose S is a µ-sized subset of Frλ(κ) and
∑
S = 1. We show S is not pairwise disjoint.

Let P be the canonical set of generating partitions for Frλ(κ). By Theorem 1, without loss of

generality we may assume each x ∈ S is a member of P -mon∗. Note that in particular this means

0 /∈ S. For each x ∈ S write

x =
∏
α∈Fx

xα,

where Fx is a finite subset of κ and each xα ∈ 〈pα〉. There are only κ many finite subsets of κ,

so there is some fixed F ∈ [κ]<ω and R ∈ [S]≥ω such that ∀x ∈ R (Fx = F ). Thus for x ∈ R we

have x ∈
〈⋃

α∈F pα
〉
. Note also that Frλ(κ) =

〈⋃
α∈F pα

〉
⊕
〈⋃

α∈κ\F pα

〉
, and by assumption each

x ∈ S can be written as axbx, with a ∈
〈⋃

α∈F pα
〉

and bx ∈
〈⋃

α∈κ\F pα

〉
. If x ∈ R then bx = 1,

so x = ax.

1 =
∑

S ≤
∑
x∈S

ax ∈

〈⋃
α∈F

pα

〉
,

so by Corollary 8 there is a finite subset S′ of S with
∑

x∈S′ ax = 1. Now we can take any x ∈ R\S′

and use the fact that
∑

y∈S′ ay = 1 to find y ∈ S′ such that ayax 6= 0. But x ∈ R and y ∈ S, so

by 6= 0 and thus xy = axayby 6= 0 by freeness of the product
〈⋃

α∈F pα
〉
⊕
〈⋃

α∈κ\F pα

〉
. This shows

S is not pairwise disjoint, as desired.

Theorem 10. If A is a BA and ind(A) ≥ ω, then n-ind(A) = ind(A) for 2 ≤ n < ω.
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Proof. That ind(A) ≥ n-ind(A) follows from Theorem 5. For the other direction, suppose ind(A) =

κ and let X be an independent subset of A with |X| = κ. Fix n ∈ ω \ 2. We construct a κ-

sized n-independent set in A, handling the case when ind(A) is not attained as in Theorem 5.

Let Y = {yα|α ∈ κ} be a partition of X into κ many subsets of size n. For each α ∈ κ let

yα = {xαi|i < n} ⊂ X and ∀f ∈ n2 let

zαf =
∏
i<n

x
f(i)
αi .

For each α ∈ κ let pα = {zαf |f : n→ 2} and let P = {pα|α ∈ κ}. We check that each pα is a

partition of unity: ∑
pα =

∑
f :n→2

∏
i<n

x
f(i)
αi =

∏
i<n

(xαi +−xαi) = 1,

and, if f(j) 6= g(j) for some j ∈ n,

zαfzαg =

(∏
i<n

x
f(i)
αi

)(∏
i<n

x
g(i)
αi

)
≤ xf(j)αj x

g(j)
αj = 0,

so pα is a partition of unity. By disjointness of Y , P -mon ⊂ X-mon, so P inherits indpendence

from X. |P | = κ and ∀α ∈ κ (|pα| = 2n > n), so by Theorem 5 n-ind(A) ≥ 2n- ind(A) ≥ κ.

Theorem 11. If A is ω1-complete and ind(A) ≥ ω, then ω-ind(A) = ind(A).

Proof. That ω-ind(A) ≤ ind(A) follows from Theorem 5. To prove ind(A) ≤ ω-ind(A), we use a

κ-sized independent subset of A to construct a κ-sized ω-independent set in A. Let X ⊆ A be

independent with |X| = κ. Let {Yα|α ∈ κ} be a partition of X into κ many countably infinite sets.

For each α ∈ κ let Yα = {xαn|n ∈ ω} and define a partition of unity pα = {yαn|n ∈ ω} as follows:

∀n > 0 let yαn = xαn ·
∏
m<n

(−xαm) and let yα0 = −
ω∑
n=1

yαn.

It is clear from the definition that each pα is a partition of unity. Note that xα0 ≤ yα0 and

pα \ {xα0} ⊆ X-mon, so 0 /∈ pα ⇒ |pα| = ω. To see that the pα are independent, we again use the

fact that xα0 ≤ yα0 to note that ∀F ∈ [κ]<ω ∀f : F → ω

∏
α∈F

yαf(α) ≥
∏
α∈F

xαf(α) · ∏
n<f(α)

xαn

 ∈ X-mon⇒
∏
α∈F

yαf(α) 6= 0,

so {pα|α ∈ κ} is the desired ω-independent set.
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It is perhaps worth noting that, in building λ-independent sets in BAs, completeness con-

ditions are often necessary only make infinite pairwise disjoint sets into partitions of unity. If we

replaced “partition of unity” with “pairwise disjoint set” in the definition of λ-independent, while

we would have perhaps a less natural generalization, several proofs would be a bit simpler. For

example, in Theorem 11 we could remove the completeness condition and replace −
∑ω

n=1 yαn with

xα0 in the proof, ending up with an independent κ-sized set of λ-sized pairwise disjoint sets. This

result is proved later as Lemma 17.

Monk has shown that, for BAs A0 and A1, ind(A0×A1) = max {ind(A0), ind(A1)} [7, Corol-

lary 1.2]. In the proof, the implicit assumption that A0 × A1 have an infinite independent set is

essential, so we formulate the generalization accordingly.

Theorem 12. For BAs A0 and A1 and λ a cardinal, if (A0 × A1) has an infinite λ-independent

set then λ-ind(A0 ×A1) = max {λ-ind(A0), λ-ind(A1)}.

Proof. Let A = A0×A1. To show λ-ind(A) ≤ max {λ-ind(A0), λ-ind(A1)}, suppose P is an infinite

λ-independent set in A. We show either A0 or A1 has a λ-independent set of size |P |.

Case 1. ∀m ∈ P -mon (π0(m) 6= 0)

Then in particular each x ∈
⋃
P is also in P -mon ⇒ π0(x) 6= 0, so ∀p ∈ P (|π0[p]| =

λ). Clearly each π0[p] is a partition of unity, and {π0[p]|p ∈ P} is independent by assumption so

{π0[p]|p ∈ P} is the desired λ-independent set in A0.

Case 2. ∃m ∈ P -mon (π0(m) = 0)

Fix F ∈ [P ]<ω and f : F →
⋃
F such that ∀p ∈ F (f(p) ∈ p) and m =

∏
p∈F f(p). I claim

{π1[p]|p ∈ P \ F} is the desired λ-independent set in A1. It suffices to show that {π1[p]|p ∈ P \ F}

is independent, because then it follows as in Case 1 that π1[p] is a λ-partition whenever p ∈ P \F .

Suppose for contradiction that n ∈ (P \ F ) and π1(n) = 0. Then nm ∈ P -mon and π0(nm) =

π1(nm) = 0⇒ nm = 0, contradicting the independence of P . Thus {π1[p]|p ∈ P \ F} is the desired

λ-independent set in A1, finishing this direction of the proof.
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To show λ-ind(A) ≥ max {λ-ind(A0), λ-ind(A1)}, suppose P is a λ-independent set in Ai for

i ∈ 2. We show A has a λ-independent set of size |P |. By symmetry assume i = 0. For all p ∈ P let

p = {xα|α ∈ λ} and define p′ ∈ A by p′ = {(x0, 1)}∪{(xα, 0)|α ∈ λ \ 1}. Clearly p′ inherits pairwise

disjointness from p, and
∑
p′ = (

∑
p, 1) = (1, 1) = 1A, so {p′|p ∈ P} is a set of λ-partitions of A.

Let P ′ = {p′|p ∈ P}. |P ′| = |P |, and 0A0 /∈ P -mon = π0[P
′-mon]⇒ 0A /∈ P ′-mon, showing that P ′

is the desired λ-independent set in A.

An easy induction yields the following:

Corollary 13. If {Ai|i ∈ I} is a finite set of atomless BAs and λ is a cardinal, then

λ-ind

(∏
i∈I

Ai

)
= max {λ-ind(Ai)|i ∈ I}

The following theorem concerns the moderate product of a set {Ai|i ∈ I} of BAs over a

subalgebra B of ℘(I), denoted
∏B
i∈I Ai. The moderate product is defined as follows:

Definition. If {Ai|i ∈ I} is a set of BAs and B ≤ ℘(I), then

B∏
i∈I

Ai =

{
f ∈

∏
i∈I

Ai
∣∣ {i ∈ I|f(i) /∈ {0, 1}} is finite and {i ∈ I|f(i) = 1} ∈ B

}
.

Thus the moderate product generalizes the weak product in that if B = {0, 1} then
∏B
i∈I Ai =∏W

i∈I Ai. In general the moderate product is inbetween the weak and full product, in the sense that

it may contain more members of the full product.

Theorem 14. If {Ai}i ∈ I is an infinite set of atomless BAs, B ≤ ℘(I), and λ is an infinite

cardinal,

λ-ind

(
B∏
i∈I

Ai

)
≤ sup ({λ-ind(Ai)|i ∈ I} ∪ {λ-ind(B)})

Proof. Let A =
∏B
i∈I Ai. Suppose P is a set of λ-partitions of A and |P | = κ, where κ is greater

than sup ({λ-ind(Ai)|i ∈ I} ∪ {λ-ind(B)}). We show P is not independent. Let P = {pα|α ∈ κ}
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and ∀α ∈ κ let pα = {xαβ|β ∈ λ}. For each α ∈ κ and β ∈ λ let Sαβ = {i ∈ I|xαβ(i) /∈ {0, 1}} and

define yαβ ∈ A as follows:

yαβ(i) =



1 i ∈ Sαβ \
⋃
γ<β Sαγ

0 i ∈ Sαβ ∩
⋃
γ<β Sαγ

xαβ(i) i ∈ I \ Sαβ

.

Note that Sαβ is finite so yαβ differs from xαβ on finitely many indeces, and hence yαβ ∈ B ≤ A.

For each α ∈ κ let qα = {yαβ|β ∈ λ} and let Q = {qα|α ∈ κ}. I claim Q is a set of partitions of

unity in B. To see that each qα is pairwise disjoint, fix α ∈ κ and suppose β, γ ∈ λ, γ < β. We

partition I into four subsets:

Case 1. i ∈ Sαβ ∩ Sαγ

Then yαβ(i) = 0⇒ yαβ(i)yαγ(i) = 0.

Case 2. i ∈ Sαβ \ Sαγ.

Then xαβ(i) 6= 0, xαγ(i) ∈ {0, 1}, and pα is pairwise disjoint ⇒ xαγ(i) = 0 ⇒ yαγ(i) = 0 ⇒

yαβ(i)yαγ(i) = 0.

Case 3. i ∈ I \ Sαβ and i ∈ Sαγ.

As in case 2, but with the roles of β and γ switched, yαβ(i) = 0⇒ yαβ(i)yαγ(i) = 0.

Case 4. i ∈ I \ (Sαβ ∪ Sαγ).

Then yαβ(i) = xαβ(i) and yαγ(i) = xαγ(i) ⇒ yαβ(i)yαγ(i) = xαβ(i)xαγ(i) = 0. In any case

yαβ(i)yαγ(i) = 0, so yαβyαβ = 0, showing qα is pairwise disjoint. To see that qα is a partition of

unity, we partiton I into two subsets:

Case 1. i ∈
⋃
β∈λ Sαβ

Let ε = min {β ∈ λ|i ∈ Sαβ} so that yαε(i) = 1⇒
∑

β∈λ yαβ(i) = 1.

Case 2. i ∈ I \
⋃
β∈λ Sαβ
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Then
∑

β∈λ yαβ(i) =
∑

β∈λ xαβ(i) = 1. In any case (
∑
qα)(i) = 1, so

∑
qα = 1 as desired.

Our goal is to produce a monomial m ∈ P -mon such that | {i ∈ I|m(i) 6= 0} | < ω. If

yαβ = 0 for some α ∈ κ and β ∈ λ, then ∀i ∈ I \ Sαβ (xαβ(i) = yαβ(i) = 0), so m = xαβ

is the desired monomial. In this case let F = {α}. Otherwise Q is a set of λ-partitions of B

and |Q| = κ > λ-ind(B), so Q is not independent. Fix F ∈ [κ]<ω and f : F → λ such that∏
α∈F yαf(α) = 0 and let m =

∏
α∈F xαf(α). Note that m ∈ P -mon, |

⋃
α∈F Sαf(α)| < ω, and

∀i ∈ I \
⋃
α∈F Sαf(α) ∀α ∈ F (xαf(α)(i) = yαf(α)(i) ⇒ m(i) =

∏
α∈F yαf(α)(i) = 0), so m is the

desired monomial. In either case fix such m and F and let S = {i ∈ I|m(i) 6= 0}. If xαβ[S] = {0}

for some α ∈ κ \ F and β ∈ λ, then 0 = mxαβ ∈ P -mon so P is not independent and we are done.

Thus we may assume ∀α ∈ κ \ F ∀β ∈ λ ∃i ∈ S such that xαβ(i) 6= 0. For each α ∈ κ \ F let

p′α = {xαβ � S|β ∈ λ} and let P ′ = {p′α|α ∈ κ \ F}. Note that P ′ is a set of λ-partitions of
∏
i∈S Ai.

By Corollary 13 λ-ind
(∏

i∈S Ai
)
< κ = |P ′|, so there is some n′ ∈ P ′-mon such that n′ = 0. Fix

G ∈ [κ \ F ]<ω and g : G → λ such that n′ =
∏
α∈G

(
xαg(α) � S

)
and let n =

∏
α∈G xαg(α). Note

that n(i) = n′(i) = 0 whenever i ∈ S and that m(i) = 0 whenever i ∈ I \ S, so mn = 0. F ∩G = ∅

so mn ∈ P -mon, showing P is not independent.

For λ > ω, Fr(κ) is an example of an arbitrarily large BA without even one λ-partition; [4,

Corollary 9.18] states that every free algebra satisfies the countable chain condition, and thus has

no uncountable pairwise disjoint set. The following theorem shows that, for λ > ω, there are BA’s

with arbitrarily large independence and arbitrarily large pairwise disjoint sets that still have no

λ-independent sets of size larger than 1.

Theorem 15. For κ, λ uncountable cardinals, let X = {xα|α ∈ κ}, let Y = {yα|α ∈ λ}, and let

A = Fr (X ∪ Y ) /I, where I = 〈{xαxβ|α 6= β ∧ α, β ∈ κ}〉id. Then no two uncountable partitions

of A are independent.

Proof. For a ∈ Fr(X ∪ Y ), we use the shorthand [a] for {x ∈ Fr(X ∪ Y )|x∆a ∈ I} ∈ A. First we

show that ∀α ∈ κ the function f : Fr(Y ) → A � [xα] defined by f(a) = [xαa] is an isomorphism.

It is easy to see f is a homomorphism. Because Y -mon is dense in Fr(Y ), to show injectivity it
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suffices to show f(m) 6= 0 whenever m ∈ Y -mon+. For any m ∈ Y -mon+ take g a homomorphism

from Fr(X ∪ Y ) to 2 with g(m) = g(xα) = 1 and ∀β ∈ κ \ {α} (g(xβ) = 0). Now g(xαm) = 1 and

∀a ∈ I (g(a) = 0), so f(m) = [xαm] 6= 0 as desired. Each element of Fr(X ∪ Y ) is a finite sum of

monomials in (X ∪ Y )-mon, so to show surjectivity is suffices to show ∀m ∈ X ∪ Y -mon [xαm] ∈

f [Fr(Y )]. To see this, note that if β ∈ κ \ {α} then [xαxβ] = 0, so [xα · −xβ] = [xα]. It follows that

∀m ∈ X-mon ([xαm] ∈ {0, [xα]}), so ∀m ∈ X ∪ Y -mon, writing m = mXmY with mX ∈ X-mon

and mY ∈ Y -mon, we have [xαm] = [xαmXmY ] ∈ {0, [xαmY ]} ⊆ f [Fr(Y )] as desired.

Now suppose for contradiction that P and Q are two independent uncountable partitions of

A. For each p ∈ Fr(X ∪Y ) with [p] ∈ P , fix Mp ∈ [(X ∪ Y )-mon]<ω such that p =
∑
Mp. For each

m ∈ (X ∪ Y )-mon fix Fm ∈ [X ∪ Y ]<ω and fm : Fm → 2 such that m =
∏
x∈Fm x

fm(x).

Case 1. ∃p ∈ Fr(X ∪ Y ) with [p] ∈ P such that ∀m ∈Mp (1 ∈ fm[X ∩ Fm]).

Fix such p and ∀m ∈Mp take αm ∈ κ such that fm (xαm) = 1. Note that [p] ≤
∑

m∈Mp
[xαm ].

By independence of P and Q we have ∀ [q] ∈ Q ([pq] 6= 0)⇒ ∀ [q] ∈ Q ∃m ∈Mp such that [pqxαm ] 6=

0. Q is uncountable, so we can take Q′ ⊆ Q such that Q′ is uncountable and m ∈ Mp such that

∀ [q] ∈ Q′([pqxαm ] 6= 0). Now {[pqxαm ] | [q] ∈ Q′} is an uncountable partition of A � [xαm ] ∼= Fr(Y ),

contradiction.

Case 2. ∀p ∈ Fr(X ∪ Y ) with [p] ∈ P ∃m ∈Mp such that 1 /∈ fm[X ∩ Fm].

For each such p fix such m and call it mp. For any pair p, p′ ∈ Fr(X ∪ Y ) with [p] , [p′] ∈

P and [p] 6= [p′], write mp = mpXmpY and mp′ = mp′Xmp′Y with mpX , mp′X ∈ X-mon and

mpY , mp′Y ∈ Y -mon and fix α ∈ κ with xα /∈ Fmp ∪ Fmp′ . Note that, by choice of mp and mp′ ,

mpX =
∏

x∈FmpX

−x and mp′X =
∏

x∈Fmp′X

−x.

As in the proof of the surjectivity of f above, it follows that [xαmpX ] =
[
xαmp′X

]
= [xα] ⇒[

xαmpYmp′Y

]
=
[
xαmpmp′

]
≤ [pp′] = 0 ⇒ xαmpYmp′Y ∈ I. As in the proof of the injectivity of

f above, the right choice of a homomorphism from Fr(X ∪ Y ) to 2 gives a contradiction unless
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mpYmp′Y = 0. By independence of Y , this implies ∃β ∈ λ such that (yβ ∈ Fmp ∩Fmp′ ∧ fmp(yβ) 6=

fmp′ (yβ))⇒ ∏
y∈Y ∩Fmp

yfmp (y)
∏

y∈Y ∩Fmp′

y
fmp′ (y) = 0.

Thus  ∏
y∈Y ∩Fmp

yfmp (y)
∣∣∣∣ [p] ∈ P


is an uncountable pairwise disjoint subset of Fr(Y ), contradiction.

4.1 A Generalized Version of the Balcar-Franĕk Theorem

We point out some necessary concessions in attempting a full generalization of the Balcar-

Franĕk Theorem to partitions of arbitrary size. The Balcar-Franĕk Theorem states that any infinite

complete BA A has an independent subset of size |A|. We would like to find necessary and sufficient

conditions for a complete BA A to have a λ-independent set of size κ for cardinals λ and κ. The

obvious requirement that A have at least one partition of unity of size λ is not enough, as shown

by taking λ > ω, κ > 2λ, and setting A = 2λ × 〈Fr(κ)〉cm. A is a product of complete algebras

and hence complete, |A| ≥ κ = κλ, and 2λ provides a partition of unity of size λ, but A has no

λ-independent set of size κ.

Proof. Let π0 : A→ 2λ and π1 : A→ 〈Fr(κ)〉cm be the projection maps. Suppose for contradiction

P is a κ-sized λ-independent set in A. Fr(κ) has no uncountable pairwise disjoint subset and is dense

in 〈Fr(κ)〉cm ⇒ 〈Fr(κ)〉cm has no uncountable pairwise disjoint subset. Thus | {x ∈ p|π1(x) 6= 0} | <

λ, so | {x ∈ p|π1(x) = 0} | = λ for all p ∈ P . For each p ∈ P let p′ = {x ∈ p|π1(x) = 0}. The set

p′ does not contain 0 for any p ∈ P so 0 /∈ π0[p′]. The p′ are pairwise disjoint so the π0(p
′) are as

well, which means {π0[p′]|p ∈ P} is an independent set of λ-sized pairwise disjoint subsets of 2λ.

But then | 〈π0[
⋃
X ′]〉 | ≥ κ > 2λ, contradiction.

In this example 2λ provides the desired λ-sized pairwise disjoint set and 〈Fr(κ)〉cm provides
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the cardinality, without either providing a large λ-independent set. We may try to remedy this

by requiring that A be atomless, but then taking λ > ω and κ > 2λ, A = 〈Frλ(ω)〉cm × 〈Fr(κ)〉cm

provides a similar counterexample without atoms.

Proof. Each factor of A is complete and atomless so A is as well. In forming the completion of

Frλ(ω) there are at most 2|Frλ(ω)| = 2λ sums and products that must be added to the algebra, so

| 〈Frλ(ω)〉cm | ≤ 2λ < κ and |A| = | 〈Fr(κ)〉cm | ≥ κ. Suppose for contradiction that P is a κ-sized

λ-independent set in A. As above Fr(κ) has no uncountable pairwise disjoint sets, so there is a

κ-sized independent set of λ-sized pairwise disjoint sets in 〈Frλ(ω)〉cm. These pairwise disjoint sets

generate a subalgebra of size ≥ κ, contradiction.

To motivate the correct set of conditions on A, we must generalize the notion of atomlessness.

In Balcar and Franĕk’s proof, the complete algebra A is written as a product A0 × A1, there A0

is atomic and A1 is atomless. The cases |A0| = |A| and |A1| = |A| are then treated separately.

If |A0| = |A| then |A0| must be isomorphic to an infinite powerset algebra, and Hausdorff’s 1936

result [3] provides the desired large intependent set. The bulk of the proof is the case |A1| = |A|,

and uses heavily the atomlessness of A1. In formulating the generalization we restrict our attention

to atomless BA’s, but treat powerset algebras along the way in Corollary 21. The statement “A

is atomless” is equivalent to the statement “∀a ∈ A ∃ a 2-partition of A � a”, which generalizes

naturally to the condition “∀a ∈ A ∃ a λ-partition of A � a”. This, along with completeness, is

enough to guarantee the desired |A|-sized independent set of λ-partitions of A.

Theorem 16. If A is a complete BA and λ ≤ |A|, then A has a λ-independent set of size |A| iff

∃B ≤ A such that |B| = |A| and B � b has a λ-partition for all b ∈ B+.

Before embarking on the proof, we prove four lemmas.

Lemma 17. If a BA A has an independent subset of size κ ≥ ω then there is a κ-sized independent

set P of infinite pairwise disjoint subsets of A.
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Proof. Let X = {aα|α ∈ κ} be an independent subset of A. Take Q = {qα|α ∈ κ} ⊆ [κ]ω a partition

of κ into κ-many ω-sized subsets and ∀α ∈ κ write qα = {βαn|n ∈ ω}. For each α ∈ κ let

pα =

{
aβαn · −

∑
m<n

aβαm |n ∈ ω

}

and let P = {pα|α ∈ κ}. Then ∀α ∈ κ

∀n,m ∈ ω m < n→

(
aβαn · −

∑
k<n

aβαk

)
·

(
aβαm · −

∑
k<m

aβαk

)
≤ −aβαm · aβαm = 0,

so pα is pairwise disjoint. By pairwise disjointness of Q we have P -mon ⊆ X-mon, so P inherits

independence from X.

Lemma 18. Let, for i ∈ I and λ > 2, Ui be an infinite independent set of λ-partitions of a BA

Ai. Then
∏
i∈I Ai has a λ-independent set of size

∏
i∈I |Ui|.

This is a direct generalization of [4, Corollary 13.10], which states that if Ui is an independent

subset of Ai for each i ∈ I then
∏
i∈I Ai has an independent set of size

∏
i∈I |Ui|. The proof is

almost identical, and makes use of [4, Lemma 13.9], which states that for a family (Xi)i∈I of infinite

sets,
∏
i∈I Xi has a finitely distinguished subset of size |

∏
i∈I Xi|. A subset F of

∏
i∈I Xi is finitely

distinguished if, for each finite subset {f1, ..., fn} of F with f1, ..., fn pairwise distinct, there is some

i ∈ I such that f1(i), ..., fn(i) are pairwise distinct.

Proof. By [4, Lemma 13.9], let U be a finitely distinguished subset of
∏
i∈I Ui with |U | = |

∏
i∈I Ui|.

For each f ∈ U and i ∈ I enumerate f(i) = {aiα|α ∈ λ} in a one-to-one fashion. For each α ∈ λ

define fα ∈
∏
i∈I Ai by fα(i) = aiα and let Pf = {fα|α ∈ λ}. We show that P := {Pf |f ∈ U}

is the desired λ-independent set. For all f ∈ U and i ∈ I, {fα(i)|α ∈ λ} ∈ Ui ⇒
∑

α∈λ fα(i) =

1Ai ⇒
∑

α∈λ fα = 1. Moreover, if α 6= β then ∀i ∈ I (fα(i) · fβ(i) = 0Ai) ⇒ fα · fβ = 0, so the

Pf are partitions of unity. To see that P is independent, ∀F ∈ [U ]<ω ∀δ : F →
⋃
{Pf |f ∈ F} with

δ(f) ∈ Pf we show
∏
f∈F δ(f) 6= 0. Take i ∈ I such that f(i) 6= g(i) for any distinct f, g ∈ F . Now

by independence of πi[F ] we have
(∏

f∈F δ(f)
)

(i) 6= 0Ai ⇒
∏
f∈F δ(f) 6= 0, as desired.
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Lemma 19. If a BA A is λ+-complete and there is a κ-sized independent set of λ-sized pairwise

disjoint subsets of A, then A has a κ-sized λ-independent set.

Proof. Suppose P = {pα|α ∈ κ} is an independent set of pairwise disjoint sets and ∀α ∈ κ pα =

{xαβ|β ∈ λ}. For each α ∈ κ let

qα = (pα \ {xα0}) ∪

− ∑
β∈λ\{0}

xαβ


and let Q = {qα|α ∈ κ}. Thus we use λ+-independence to enlarge each xα0 as necessary to make

sure
∑
qα = 1. Clearly Q is the desired λ-independent set.

Lemma 20. For any infinite cardinals κ and λ, if
∏
α∈λ Fr(κ) ≤ B for a complete BA B then B

has a κ-sized λ-independent set.

Proof. By Lemma 17 let Q = {qα|α ∈ κ} be an independent set of ω-sized pairwise disjoint sets of

Fr(κ) and ∀α ∈ κ write qα = {bαn|n ∈ ω} with n 6= m → bαnbαm = 0. The following construction

requires a λ-sized subset U of ℘(λ) with ∀F ∈ [U ]<ω (|
⋂
F | = λ) and ∀F ∈ [U ]≥ω (

⋂
F = ∅).

In other words U generates a regular ultrafilter on ℘(λ). To that end, take f : ℘ ([λ]<ω) → ℘(λ)

an isomorphism of BA’s, let U ′ = {{S ∈ [λ]<ω|S ⊇ R} |R ∈ [λ]<ω}, and let U = f [U ′], as in the

construction in [**] of a regular ultrafilter on ℘(λ). Enumerate U = {Uα|α ∈ λ}. For each α ∈ κ

let pα = {aαβ|β ∈ λ} where, for each β ∈ λ, aαβ ∈
∏
α∈λ Fr(κ) is defined inductively by

∀γ ∈ λ aαβ(γ) =


bαm γ ∈ Uβ ∧ m = min {n ∈ ω|∀δ < β aαδ(γ) 6= bαn}

0 γ /∈ Uβ

.

Note that suchm will always exist when γ ∈ Uβ, because in that case γ ∈
⋂
{Uδ|δ < β ∧ γ ∈ Uδ} ⇒

| {Uδ|δ < β ∧ γ ∈ Uδ} | < ω ⇒ |{n ∈ ω|∃δ < β aαδ(γ) = bαn} | < ω. It remains only to show that

P := {pα|α ∈ κ} is an independent set of λ-sized pairwise disjoint subsets of B, because then by

Lemma 19 B has a κ-sized λ-independent set. To prove pairwise disjointness, note that if α ∈ κ

and β and δ are distict members of λ then, ∀γ ∈ λ,

[aαβ(γ) = 0 ∨ aαδ(γ) = 0 ∨ ∃m,n ∈ ω (aαβ(γ) = bαn 6= bαm = aαδ(γ))] , so aαβ(γ) · aαδ(γ) = 0.
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Thus aαβ · aαδ = 0, showing pα is pairwise disjoint.

To prove independence, ∀F ∈ [κ]<ω ∀f : F → λ let G = f [F ] and fix γ ∈
⋂
β∈G Uβ, so that

aαf(α) 6= 0 whenever α ∈ F . By independence of Q
(∏

α∈F aαf(α)
)

(γ) 6= 0 so
∏
α∈F aαf(α) 6= 0,

showing P is independent.

The following corollary was probably known to Balcar and Franĕk in 1982 and is proved

directly in Monk’s upcoming book.

Corollary 21. For any cardinals κ and λ, if λ ≤ κ then λ-ind(℘(κ)) = 2κ

Proof. Clearly λ-ind(℘(κ)) ≤ 2κ, as |℘(κ)| = 2κ. For the other direction, by Theorem 6 it suffices

to show κ-ind(℘(κ)) ≥ 2κ. Let P = {xα|α ∈ κ} be a partition of κ into κ many subsets of size κ.

℘(κ) ∼=
∏
α∈κ

℘(κ) � xα ∼=
∏
α∈κ

℘(κ).

By Hausdorff’s 1936 result [3], ind(℘(κ)) = κ, so ℘(κ) has a κ-sized κ-independent set by Lemma

20.

We are now equipped to prove the main theorem. Like the proof of the Balcar-Franĕk

theorem, this proof relies on [4, Lemma 13.12], which allows us to write a complete BA A as
∏
i∈I Ai

where each Ai is homogeneous with respect to a fixed finite list of order preserving cardinal functions

on A. Recall that A is homogeneous with respect to the cardinal function f if f(A � a) = f(A) for

all a ∈ A+, and f is order preserving on A if f(A � b) ≤ f(A � a) whenever a, b ∈ A with b ≤ a. We

apply the lemma for the single cardinal function ind, which is easily seen to be order preserving on

any BA.

Proof. For the forward direction, if A has a λ-independent set X of size |A|, then B := 〈
⋃
X〉 ≤ A

is the desired subalgebra; ∀a ∈ B+ take b ∈ X-mon such that b ≤ a and F ∈ [X]<ω such that

b ∈ 〈
⋃
F 〉. Fixing p ∈ X \ F , for any x ∈ p xb ∈ X-mon, so by independence of X xb 6= 0 and

thus xa 6= 0. p is a partition of unity, so {xa|x ∈ p} is the desired λ-partition of B � a.

For the reverse direction, suppose C ≤ A, |C| = |A| = κ, and C � c has a λ-partition for all

c ∈ C+. If λ < ω, this simply means C is atomless, so κ ≥ ω. By the Balcar-Franĕk Theorem A
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has an independent subset of size κ. By Theorem 11 A has an ω-independent set of size κ, and

now by Theorem 6 A has a λ-independent set of size κ.

If λ ≥ ω, let B = 〈C〉cm, the external completion of C, as opposed to the completion within

A. Note that |B| ≥ κ and C is dense in B so B � b has a λ-partition for all b ∈ B+. We show that

B has a κ-sized λ-independent set.

By [4, Lemma 13.12] write B1 =
∏
i∈I Bi where each Bi is homogeneous with respect to

independence and ∀i ∈ I ∃bi ∈ B+ such that Bi = B � bi. Each Bi is complete so by the Balcar-

Franĕk Theorem ind(Bi) = |Bi|, and Bi = B � bi so Bi has a λ-partition of unity Xi. Write Xi =

{xiα|α ∈ λ} and Bi =
∏
α∈λBi � xiα. For all α ∈ λ, by homogeneity ind(Bi � xiα) = ind(Bi) = |Bi|,

so Bi contains an isomorphic copy of ∏
α∈λ

Fr(|Bi|).

Thus by Lemma 20 Bi has a |Bi|-sized λ-independent set, and by Lemma 18 it follows that B has a

κ-sized λ-independent set P . We construct from P a λ-sized independent set of pairwise disjoint sets

in A. Using density of C in B, ∀m ∈ P -mon take cm ∈ C+ such that cm ≤ m. Using completeness

of A, ∀p ∈ P ∀b ∈ p let ab =
∑
{cm|m ∈ P -mon ∧ m ≤ b}. For each p ∈ P let p′ = {ab|b ∈ p} and

let P ′ = {p′|p ∈ P}. Clearly |P ′| = κ, and we claim P ′ is as desired. To see that each p′ is pairwise

disjoint and of cardinality λ, note that ∀ab, ad ∈ p′, if ab · ad 6= 0 then ∃m,n ∈ P -mon such that

m ≤ b, n ≤ d, and cm · cn 6= 0. It follows that m · n 6= 0⇒ b · d 6= 0⇒ b = d⇒ ab = ad, showing p′

is pairwise disjoint. Clearly 0 /∈ p′, so |p′| = |p| = λ. To see that P ′ is independent, ∀m′ ∈ P -mon

take F ′ ∈ [
⋃
P ′]<ω such that m′ =

∏
F ′. Let F = {b ∈ B|ab ∈ F ′} and note that

∏
F ∈ P -mon,

so
∏
F 6= 0. For all b ∈ F

∏
F ≤ b⇒ c∏F ≤ b⇒ c∏F ≤ ab ⇒ c∏F ≤

∏
F ′ ⇒

∏
F ′ 6= 0,

proving P ′ is independent. Thus A has a κ-sized independent set of λ-sized pairwise disjoint sets,

and by Lemma 19 A has a κ-sized λ-independent set.



Chapter 5

λ-independence

We begin with an easy generalization of [9, Lemma 1.2], which states that spind(A) ⊆

spind(A×B), and an application to powerset algebras.

Theorem 22. If A0 and A1 are Boolean algebras and A0 has an maximal λ-independent set of size

κ then A0×A1 has a maximal independent set of size κ. Thus λ-i(A0×A1) ≤ min {λ-i(A0), λ-i(A1)}.

Proof. Let A = A0 × A1. Suppose P is a maximal λ-independent set in A0 and |P | = κ. Let

P = {pα|α ∈ κ} and ∀α ∈ κ let pα = {xαβ|β ∈ λ}. We build a set of λ-partitions in the product

from the xαβ. For each α ∈ κ let yα0 = (xα0, 1) ∈ A, and for β ∈ λ \ {0} let yαβ = (xαβ, 0). Let

qα = {yαβ|β ∈ λ} and let Q = {qα|α ∈ κ}. Clearly each qα is a partition of unity. To see that Q

is independent, note that ∀m ∈ Q-mon (π0(m) ∈ P -mon ⇒ π0(m) 6= 0 ⇒ m 6= 0). To see that

Q is maximal, suppose r is a λ-partition of A and let r′ = π0[r]. If 0 ∈ r′, then fix z ∈ r such

that π0(z) = 0. By definition π1(y01) = 0, so 0A = zy01 ∈ (Q ∪ {r})-mon. If 0 /∈ r′, then r′ is a

λ-partition of A0, so by maximality of P there are m ∈ P -mon and z ∈ r such that π0(z)m = 0.

Fix such z and m and write m =
∏
α∈F xαf(α) for some F ∈ [κ]<ω and f : F → λ. Fix γ ∈ κ \ F

and define n ∈ Q-mon by n = yγ1
∏
α∈F xαf(α). The inclusion of yγ1 ensures that π1(zn) = 0, and

π0(zn) ≤ π0(z
∏
α∈F

yαf(α)) = π0(z)
∏
α∈F

xαf(α) = π0(z)m = 0,

so 0A = zn ∈ (Q ∪ {r})-mon. In either case 0 ∈ (Q ∪ {r})-mon⇒ (Q ∪ {r}) is not independent, so

Q is the desired maximal λ-independent set.
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Corollary 23. If κ ≥ ω and λ ≥ 2 then λ- spind(℘(ω)) ⊆ λ- spind(℘(κ)). Thus λ-i(℘(κ)) ≤

λ-i(℘(ω)).

Proof. If µ ∈ λ- spind(℘(ω)), let P be a maximal λ-independent set in ℘(ω) of size µ. Write ℘(κ)

as ℘(κ) � ω×℘(κ) � (κ \ω) ∼= ℘(ω)×℘(κ \ω). By Theorem 22 ℘(κ) has a maximal λ-independent

set of size |P |.

From this it is easy to see that [8, Proposition 36], which states that i (℘ (ω)) ≥ ω1, does not

generalize to i (℘ (κ)) ≥ κ+ for all cardinals κ; Choosing κ ≥ 2ω provides a counterexample in ZFC,

as then i(℘(κ)) ≤ i(℘(ω)) ≤ 2ω < κ+, and κ can be forced down by introducing smaller maximal

independent sets of ℘ (ω).

However, if we note that each independent set in ℘ (ω) maps to an independent set in ℘ (ω) /fin

and instead generalize to ℘ (κ) /<κ, the proof goes through, and in fact the same technique can

be used to prove the a slightly more general result (Recall that ℘ (κ) / < κ = ℘ (κ) /I, where

I = {x ∈ ℘(κ) : |x| < κ}).

Theorem 24. If κ is an infinite cardinal and λ < κ, then λ-i (℘ (κ) /<κ) > κ.

Proof. Suppose P is an independent set of λ-partitions of κ, |P | = κ, and ∀m ∈ P -mon |m| = κ.

Write P -mon = {mα|α ∈ κ} without redundancy, and ∀α ∈ κ ∀β ∈ λ recursively choose xαβ ∈ mα\

{xγδ|γ < α ∨ (γ = α ∧ δ < β)} (This is possible because | {xγδ|γ < α ∨ (γ = α ∧ δ < β)} | ≤

|α|λ+ |β| < κ, while |mα| = κ). Now ∀β ∈ λ \ {0} let yβ = {xαβ|α ∈ κ}, and let

y0 = κ \
⋃

β∈λ\{0}

yβ ⊇ {xα0|α ∈ κ} .

Thus each yβ contains an element of each member of P -mon and yβ ∩ yδ = ∅ for distinct β and

δ. Let q = {yβ|β ∈ λ}. Clearly q is pairwise disjoint, and the definition of y0 ensures that q is a

partition of unity. Note that, for all α ∈ κ, | {γ ∈ κ|aγ ⊂ aα} | = κ ⇒ |{γ ≥ α|aγ ⊂ aα} | = κ ⇒

∀β ∈ λ (|zβ ∩ aα| = κ), so not only is P ∪ {q} independent in ℘ (κ), but also {f [p] |p ∈ P} ∪ f [q]

is independent in ℘ (κ) /<κ, where f : ℘ (κ)→ ℘ (κ) /<κ is the natural homomorphism. Thus no

κ-sized λ-independent subset of (℘ (κ)) /<κ is maximal, showing λ-i (℘ (κ) /<κ) > κ.



27

5.1 λ-i for Weak Products

Monk and Mckenzie [6, Theorem 4] have shown that, for I an infinite set and 〈Ai : i ∈ I〉 a

system of atomless BAs,

spind

(
W∏
i∈I

Ai

)
= {ω} ∪

⋃
i∈I

spind (Ai) .

Most of the results leading to this can be readily generalized to maximal λ-independent sets for any

cardinal λ, with the notable exception of the “not easy” direction of [6, Theorem 2], which shows

that if A0 and A1 are atomless BAs and A0 × A1 has a maximal independent set of size κ then

either A0 or A1 has a maximal independent set of size κ. I suspect that the generalized version,

the converse of Theorem 22, holds, but have not found a proof. The following are the generalized

versions of the remaining pertinent results.

Theorem 25. If A =
∏W
i∈iAi and for some i ∈ I Ai has a maximal λ-independent set of size κ

then A has a maximal λ-independent set of size κ.

Proof. Let P = {pα|α ∈ κ} be a λ-independent subset of ℘(Ai) for some fixed i ∈ I. Write each pα

as {xαβ|β ∈ λ}, without redundancy. For each α ∈ κ and β ∈ λ define yαβ ∈ A by ∀j ∈ I

yαβ(j) =



xαβ j = i

1 j 6= i ∧ β = 0

0 j 6= i ∧ β 6= 0

.

Let qα = {yαβ|β ∈ λ} and let Q = {qα|α ∈ κ}. Clearly Q is a set of λ-partitions, and ∀m ∈

Q-mon πi(m) ∈ P -mon ⇒ m 6= 0, so Q is independent. To see that Q is maximal, suppose that

r is a λ-partition of A. Either ∃z ∈ r such that πi(z) = 0 or πi[r] is a λ-partition of Ai, in which

case by maximality of P in Ai ∃z ∈ r ∃m ∈ P -mon such that πi(zm) = 0. In either case fix z ∈ r

and m ∈ P -mon such that πi(zm) = 0 and fix F ∈ [κ]<ω, f : F → λ such that m =
∏
α∈F xαf(α).

Let n =
∏
α∈F yαf(α) and fix any γ ∈ κ \ F , so that yγ1mz ∈ (Q ∪ {r})-mon. For all j ∈ I \ {i} we

have πj(yγ1mz) ≤ πj(yγ1) = 0 and πi(yγ1mz) ≤ πi(mz) = 0, so yγ1mz = 0A, showing Q ∪ {r} is

not independent.
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Theorem 26. If 〈Aα|α ∈ κ〉 is a system of Boolean algebras, B =
∏W
α∈κAα, λ is any cardinal,

and Aα has an infinite λ-independent set for infinitely many α, then B has a countably infinite

maximal λ-independent set.

Proof. Without loss of generality ∀α ∈ ω let {pαn|n ∈ ω} be a countably infinite independent set

of λ-partitions of Aα. For each α ∈ ω and n ∈ ω write pαn = {xαnβ|β ∈ λ}, without redundancy.

We define a set Q = {qn|n ∈ ω} of λ-partitions in B. For each n ∈ ω let qn = {ynβ|β ∈ λ}, where

the ynβ ∈ B are defined as follows:

ynβ (α) =



xαnβ α < n

0 α = n, β = 0

xαn0 + xαn1 α = n, β = 1

xαnβ α = n, β > 1

1 α > n, β = 0

0 α > n, β > 0

To see that Q is independent, it suffices to show that if k ∈ ω and f : k → λ then
∏
n<k ynf(n) 6= 0.

If ∀n ∈ k (f (n) = 0) then
∏
n<k ynf(n) (k) = 1. Otherwise let m ∈ k be minimal such that

f (m) 6= 0 and note that

∏
n<k

ynf(n) (m) =


∏
n<m 1 (xmm0 + xmm1)

∏
m<n<k xmnf(n) f (m) = 1

∏
n<m 1

(
xmmf(m)

)∏
m<n<k xmnf(n) f (m) 6= 1

Either way ∏
n<k

ynδ(n) (m) ≥ xmmδ(m)

∏
m<n<k

xmnδ(n) 6= 0

by independence of {pmn|n ∈ ω}. To see that Q is maximal, suppose r = {zα|α ∈ λ} is a par-

tition of unity in B. If α and β are distinct members of λ and {γ ∈ κ|zα (γ) 6= 0} is infinite,

then {γ ∈ κ|zβ (γ) 6= 0} is finite because otherwise {γ ∈ κ|zα (γ) 6= 1} and {γ ∈ κ|zβ (γ) 6= 1} are

both finite ⇒ zαzβ 6= 0, contradicting pairwise disjointness of r. Without loss of generality
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{α ∈ κ|z0 (α) 6= 0} is finite (if not we could use z1 in place of z0). Fix m ∈ ω such that m >

max {n ∈ ω|z0 (n) 6= 0}. We show z0
(∏

n<m yn0
)
ym1 = 0 by partitioning κ into three sets.

Case 1. α < m

Then
∏
n<m yn0 (α) = 0.

Case 2. α ∈ ω \m

Then z0 (α) = 0.

Case 3. α ∈ κ \ ω

Then ym1 (α) = 0.

In any case z0
(∏

n<m yn0
)
ym1(α) = 0, so z0

(∏
n<m yn0

)
ym1 = 0. Thus Q ∪ {r} is not

independent, and Q is the desired set of partitions.

Corollary 27. If {Aα|α ∈ κ} is an infinite set of atomless Boolean algebras, B =
∏W
α∈κAα, and

n ∈ ω, then B has a countably infinite maximal n-independent set.

Proof. By Theorem 10 each Aα has an infinite n-independent set, so Theorem 26 applies.

This does not suffice for a full characteriziation of λ- spind for weak products, but at least

we can conclude the following:

Theorem 28. If {Aα|α ∈ κ} is an infinite set of Boolean algebras, λ is any cardinal, and Aα has

an infinite independent set of λ-partitions for infinitely many α, then

λ- spind

(
W∏
α∈κ

Aα

)
⊆ {ω} ∪

⋃
α∈κ

λ- spind(Aα).

5.2 n-i for Finite n

Results like Theorems 5,6,10, and 11 are not as easy to come by for λ-i, as the preservation

of maximality when constructing an independent set of λ-partitions using an independent set of

µ-partitions presents a bit of a challenge. As an example, consider λ = 2, µ = 3. If A is a BA and
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P is a κ-sized 3-independent set in A, we may construct an independent set of size κ as in Theorem

5: Let P = {pα|α ∈ κ} and ∀α ∈ κ let pα = {xα0, xα1, xα2}. Let X = {xα0|α ∈ κ}. Then P -mon is

dense in X-mon so X inherits independence from P , but X is not necessarily maximal. There may

even be a 3-partition that is independent over 〈X〉 without being independent over 〈
⋃
P 〉. The

problem becomes even more difficult when µ and λ are infinite, but at least in the finite case the

following holds.

Theorem 29. If A is a BA and A has an infinite independent set, then n-i(A) = i(A) for all

n ∈ ω.

We break the bulk of the proof into two lemmas.

Lemma 30. If a BA A has a maximal κ-sized n-independent set with κ ≥ ω, then A has a maximal

κ-sized n2-independent set.

Proof. If P is a κ-sized maximal n-independent set in A, partition P into two κ-sized sets Q and

R. Let Q = {qα|α ∈ κ} and R = {rα|α ∈ κ}. For each α ∈ κ, let qα = {xαi|i ∈ n} and let

rα = {yαi|i ∈ n}. Let sα = {xαiyαj |(i, j) ∈ n× n} and let S = {sα|α ∈ κ}. We show S is the

desired κ-sized maximal n2-independent set.

First, ∀α ∈ κ ∀(i, j) ∈ n×n, by disjointness of Q and R we have xαiyαj ∈ P -mon⇒ xαiyαj 6=

0. If (i, j) and (k, l) ∈ n× n and (i, j) 6= (k, l), by symmetry assume i 6= k, and we have

(xαiyαj)(xαkyαl) ≤ xαixαk = 0,

showing that |sα| = n2 and that sα is pairwise disjoint. To see that sα is a partition of unity,

∑
sα =

∑
(i,j)∈n×n

xαiyαj =

(∑
i∈n

xαi

)∑
j∈n

yαj

 = 1 · 1 = 1.

By disjointness of Q and R we have S-mon ⊆ P -mon ⇒ S inherits independence from P . To see

that S is maximal, suppose r is any n2-partition of A. Let r =
{
zi|i ∈ n2

}
and let

r′ = {zi|i ∈ n− 1} ∪

 ∑
n−1≤j<n2

zj

 .
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Clearly r′ is an n-partition, so P ∪ {r′} is not independent by maximality of P . For any i with

n− 1 ≤ i < n2 we have

zi ≤
∑

n−1≤j<n2

zj ,

so P ∪{r} is also not independent. Fix i ∈ n2 and m ∈ P -mon such that zim = 0. Using P = R∪Q,

write

m =
∏
α∈F

xαf(α)
∏
α∈G

yαg(α)

with F,G ∈ [κ]<ω, f : F → n, and g : G→ n. Arbitrarily extend f and g to functions from F ∪G

to n and let

n =
∏

α∈F∪G
xαf(α)yαg(α).

Thus n ∈ S-mon and n ≤ m⇒ zin = 0, so S ∪ {r} is not independent, showing S is maximal.

Lemma 31. If a BA B has a κ-sized maximal n-independent set for 3 ≤ n < ω and κ ≥ ω, then

B has a κ-sized (n− 1)-independent set.

Proof. Let X be a κ-sized maximal n-independent set in B. In case κ = ω, write X = {ri|i ∈ ω}

where ri = {zij |j ∈ n} without redundancy. Define a function f :
⋃
X → Intalg[0, 1) by

f(zij) = xij :=
⋃
k∈ni

[
kn+ j

ni+1
,
kn+ j + 1

ni+1

)
.

For each m ∈ ω define a subaglebra Am of Intalg[0, 1) by Am =
〈⋃

i∈m f [ri]
〉

and let A =
⋃
m∈ω Am.

Claim: The Am are atomic with atoms
{[

k
nm ,

k+1
nm

) ∣∣k ∈ nm}, and each atom of Am is∏
i∈m xiδ(i) for some δ : m→ n. We prove by induction on m that ∀m ∈ ω

∀δ : m→ n
∏
i∈m

xiδ(i) =

[∑
i∈m δ (i)nm−1−i

nm
,

∑
i∈m δ (i)nm−1−i + 1

nm

)
(∗m).

Because each k ∈ nm has a unique representation of the form k =
∑

i∈m δ (i)nm−1−i for some

δ : m → n (this is the n-ary representation of k) and from the definition of the xij it is clear that

∀a ∈ Am (L(a) ≥ 1
nm ), where L is Lebesgue measure, ∀m (∗m) will be sufficient to prove the claim.

A0 = {∅, [0, 1)} ⇒ [0, 1) is the only atom of A0, and the only function δ from 0 to n is δ = ∅, for
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which
∑

i∈0 δ (i)n0−1−i = 0, so (∗0) holds. Given (∗m), ∀δ : m+ 1→ n

∏
i∈m+1

xiδ(i) =
∏
i∈m

xiδ(i) · xmδ(m) =

[∑
i∈m δ (i)nm−1−i

nm
,

∑
i∈m δ (i)nm−1−i + 1

nm

)
∩
⋃
k∈nm

[
kn+ δ (m)

nm+1
,
kn+ δ (m) + 1

nm+1

)
=

⋃
k∈nm

([
k

nm
+
δ (m)

nm+1
,
k

nm
+
δ (m) + 1

nm+1

)
∩
[∑

i∈m δ (i)nm−1−i

nm
,

∑
i∈m δ (i)nm−1−i + 1

nm

))
.

The above intersection is nonempty exactly when k =
∑

i∈m δ (i)nm−1−i, so
∏
i∈m+1 xiδ(i) =[∑

i∈m δ (i)nm−1−i

nm
+
δ (m)

nm+1
,

∑
i∈m δ (i)nm−1−i

nm
+
δ (m) + 1

nm+1

)⋂
[∑

i∈m δ (i)nm−1−i

nm
,

∑
i∈m δ (i)nm−1−i + 1

nm

)
=

[∑
i∈m δ (i)nm−1−i

nm
+
δ (m)

nm+1
,

∑
i∈m δ (i)nm−1−i

nm
+
δ (m) + 1

nm+1

)
=

[∑
i∈m δ (i)nm−i + δ (m)

nm+1
,

∑
i∈m δ (i)nm−i + δ (m) + 1

nm+1

)

=

[∑
i∈m+1 δ (i)n(m+1)−1−i

nm+1
,

∑
i∈m+1 δ (i)n(m+1)−1−i + 1

nm+1

)
,

which is (∗m+1), finishing the proof by induction and proving the claim.

In particular this shows {{xij |j ∈ n} |i ∈ ω} is an independent set of partitions in A. Using

this and the independence or the ri, we see that ∀F ∈ [
⋃
X]<ω ∀ε : F → 2

∏
z∈F

zε(z) = 0↔ (∃r ∈ X ∃z, y ∈ r ε (z) = ε (y) = 1)∨(∃r ∈ X r ⊂ F ∧ ε[r] = {0})↔
∏
z∈F

f(z)ε(z) = 0,

so by Sikorski’s extension criterion [4, Proposition 5.6] we can extend f to an isomorphism from

〈
⋃
X〉 to 〈f [

⋃
X]〉 = A. The bulk of the proof now takes place inside A.

For each i ∈ ω let Ri = {r ∈ [0, 1)|r is and endpoint of some interval in Ai} =
{
k
ni

∣∣k < ni
}

and let R =
⋃
i∈ω Ri. We inductively define Si ∈ [R]<ω, gi : R→ ω,

{
hji |j ∈ n

}
⊂ R(R ∪ {1}), and

qi ⊂ A so that Q := {qi|i ∈ ω} is an independent set of (n − 1)-partitions of A with the property

that Q-mon is dense in A.

First, let S0 = {0}. If Si has been defined, ∀r ∈ R let r+i = min(((r, 1) ∩ Si) ∪ {1}) and let

gi(r) ∈ ω be minimal such that Rgi(r) ∩
(
r, r+i

)
6= ∅. Let h0i (r) = r and let hn−1i (r) = r+i . Note that
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if r ∈ Si then hn−1i (r) ∈ Si ∪ {1}, and no elements of Si are inbetween r and hn−1i (r). We now use

gi to define an increasing sequence of real numbers inbetween r and hn−1i (r) using elements of Rl

for the smallest possible indeces l. Let h1i (r) = min
(
Rgi(r) ∩

(
r, r+i

))
, and for 0 < j < n − 2 let

hj+1
i (r) = h1i (h

j
i (r)). If Si, gi, and

{
hji |j ∈ n

}
have been defined, let qi = {yij |j ∈ n− 1} where

∀j ∈ n− 1

yij =
⋃
r∈Si

[
hji (r), h

j+1
i (r)

)
.

Given Si, gi,
{
hji |j ∈ n

}
, and qi, let Si+1 =

{
hji (r)|r ∈ Si, j ∈ n− 1

}
.

For all i ∈ ω and r ∈ Si, we make some usefull observations regarding the above definitions.

First note that h0i is the identity function, so Si ⊆ Si+1. We prove by induction that 1 ≤ j <

n − 1 → (r < hji (r) < r+i ) ∧ (hji (r) < hj+1
i (r)). Clearly r < hji (r), and g(i) is defined to be just

large enough so that the minimality of h1i (r) guarantees h1i (r) < r+i . Now assume that j < n − 2

and r < hji (r) < r+i . Then r+i ≤ (hji (r))
+
i and r+i ∈ Ri ⇒ (hji (r))

+
i ≤ r+i , so (hji (r))

+
i = r+i . Thus

hji (r) < h1i (h
j
i (r)) < (hji (r))

+
i = r+i . If j < n− 2 then hji (r) < h1i (h

j
i (r)) = hj+1

i (r), and if j = n− 2

then hji (r) < (hji (r))
+
i = r+i = hj+1

i (r), finishing the induction. It follows that r < h1i (r) < ... <

hn−1i (r) = r+i . Finally, by definition of Si+1, ∀j ∈ n−1 we have hj+1
i (r) = (hji (r))

+
i+1 = hn−1i+1 (hji (r)).

We are now equiped to prove Q is an independent set of partitions of unity. For all i ∈ ω,

⋃
j∈n−1

yij =
⋃

j∈n−1

⋃
r∈Si

[
hji (r) , hj+1

i (r)
)

=
⋃
r∈Si

⋃
j∈n−1

[
hji (r) , hj+1

i (r)
)

=
⋃
r∈Si

[
r, hn−1i (r)

)
= [0, 1)

and

∀j, k ∈ n− 1 j 6= k → yij ∩ yik =
⋃
r∈Si

([
hji (r) , hj+1

i (r)
)
∩
[
hki (r) , hk+1

i (r)
))

= ∅,

so qi is a partition of unity. To see that Q is independent, we prove the stronger statement, also

useful in proving Q-mon is dense in A, that ∀m ∈ ω

∀δ : m→ n− 1 ∃r ∈ Sm such that
∏
i∈m

yiδ(i) =
[
r, hn−1m (r)

)
(∗∗m)

by induction on m. If m = 0, any product over m is 1A = [0, 1) = [0, hn−10 (0)), so r = 0 works for
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this case. Given ∗∗m, ∀δ : m+ 1→ n− 1 fix r ∈ Sm such that
∏
i∈m yi,δ(i) = [r, hn−1m (r)) so that

∏
i∈m+1

yi,δ(i) = ymδ(m) ∩
[
r, hn−1m (r)

)
=
⋃
s∈Sm

([
hδ(m)
m (s), hδ(m)+1

m (s)
)
∩
[
r, hn−1m (r)

))
.

The above intersection is nonempty if and only if r = s, in which case it is
[
h
δ(m)
m (r), h

δ(m)+1
m (r)

)
,

so ∏
i∈m+1

yi,δ(i) =
[
hδ(m)
m (r), hδ(m)+1

m (r)
)

=
[
hδ(m)
m (r), hn−1m+1

(
hδ(m)
m (r)

))
and h

δ(m)
m (r) ∈ Sm+1, as desired. Let S =

⋃
i∈ω Si. For any r ∈ S and any m ∈ ω, [r, hn−1m (r)) 6= ∅,

so by ∗∗m Q is independent.

To see that Q-mon is dense in A, it now suffices to show R = S, because then for any interval

[r, s) ∈ A we can take m ∈ ω such that r, s ∈ Sm and note that

∑
δ:m→n−1

∏
i∈m

yiδ(i) =
∏
i∈m

∑
j∈n−1

yij = 1⇒

∃δ : m → n − 1 such that [r, s) ∩
∏
i∈m yiδ(i) 6= ∅. Fixing such δ, by ∗∗m ∃t ∈ Sm such that∏

i∈m yiδ(i) =
[
t, hn−1m (t)

)
. For such t we have

(
t, hn−1m (t)

)
∩ Sm = ∅ ⇒ r, s /∈

(
t, hn−1m (t)

)
⇒∏

i∈m yiδ(i) ⊆ [r, s), showing Q-mon dense in A.

We show R = S. It is clear from the definition of Si that S ⊆ R. For the other inclusion,

suppose for contradiction that R \ S 6= ∅. Fix i minimal such that Ri \ S 6= ∅ and k minimal such

that k
ni
/∈ S. S does not contain 0 so k 6= 0, and by minimality we can fix l ∈ ω such that k−1

ni
∈ Sl.

Let r = max
(
Sl ∩ [0, k

ni
)
)

and note that ∀s ∈ Sl ∩ (r, 1)
(
s > k

ni
/∈ Sl

)
⇒ gl(r) ≤ i by minimality

of gl(r). The same argument shows that ∀m > l, if (r, k
ni

) = ∅ then gm(r) ≤ i.

Case 1. ∃m > l such that (r, k
ni

) ∩ Sm 6= ∅.

Fix miminal such m. Note that r ∈ Sm−1 and h1m−1(r) is the smallest element of Sm∩(r, 1)⇒

h1m−1(r) <
k
ni

. Thus h1m−1(r) ∈ Rgm−1(r) and r > k−1
ni
⇒ Ri ∩ (r, k

ni
) = ∅ ⇒ gm−1(r) > i. But by

the above also gm−1(r) ≤ i, contradiction.

Case 2. ∀m > l
(
(r, k

ni
) ∩ Sm = ∅

)
.
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Then gm(r) ≤ i for allm > l. But ∀m > l
(
r ∈ Sm ⇒ h1m(r) = r+m+1 ∈ Sm+1 ⇒ h1m+1(r) < h1m(r)

)
.

By minimality of h1m(r) in Rgm(r) ∩ (r, 1), it follows that h1m+1(r) /∈ Rgm(r). The Ri are increasing,

so Rgm(r) ⊂ Rgm+1(r) ⇒ gm(r) < gm+1(r), which means {gm(r)|m > l} is an infinite set of natural

numbers bounded by i, contradiction.

Thus S = R, and hence Q-mon is dense in A. If we abuse notation a bit and let f [X] =

{f [p]|p ∈ X} and let f−1[Q] =
{
f−1[q]|q ∈ Q

}
, then because f [X]-mon ⊆ A, Q-mon is dense in

f [X]-mon, and it follows that f−1[Q]-mon is dense in X-mon. Now that we have a countable set

of (n− 1)-partitions of B whose monomials are dense in X-mon and in who’s monomials X-mon is

dense, we do the same for the uncountable case and then finish the proof for both cases together.

If κ ≥ ω, write X = {pα|α ∈ κ} where pα = {xi|i ∈ n} for all α ∈ κ, without redundancy.

Partition κ into κ many subsets of size ω, say κ =
⋃
β∈κ Sβ, and ∀β ∈ κ let Xβ = {pα|α ∈ Sβ}.

Using the result obtained in the case κ = ω, ∀β ∈ κ take Yβ an ω-sized independent set of

(n− 1)-partitions of B such that Yβ-mon is dense in Xβ-mon and vice-versa. For each a ∈ Y -mon

write a = aβ1aβ2 ...aβk where the βi are distinct and each aβi ∈ Yβi-mon. For each i ≤ k take

bβi ∈ Xβi-mon such that bβi ≤ aβi . aβ1aβ2 ...aβk ≥ bβ1bβ2 ...bβk > 0 by independence of X, showing⋃
β∈κ Yβ is independent. Let Y be an extension of

⋃
β∈κ Yβ to a maximal independent set of

(n − 1)-partitions. I claim |Y | = κ, and thus Y is the desired maximal independent set. If not,

then |Y | > κ and we can fix p, q ∈ Y \
⋃
β∈κ Yβ. Let p = {zi|i ∈ n− 1} and take b ∈ q. Let

r = {z0b, z0(−b), z1, z2, ... , zn−2} so r is a partition of unity and
⋃
β∈κ Yβ ∪ {p, q} is independent

⇒
⋃
β∈κ Yβ ∪{r} is independent. But r is an n-partition and X is maximal, so ∃a ∈ X-mon ∃z ∈ r

such that az = 0. As above, this time using the density of the Yβ-mon in the Xβ-mon, we

can find a′ ∈
⋃
β∈κ Yβ-mon such that a′ < a ⇒ a′z = 0, contradiction. So |Y | = κ (in fact

|Y \
⋃
β∈κ Yβ| < 2).

proof of Theorem 29. For P a maximal n-independent set in A with n > 2, repeated application

of Lemma 31 yields a maximal 2-independent set of size |P |. For P a maximal 2-independent set,

repeated application of Lemma 30 yields a maximal 22
k
-independent set of size |P | for arbitrarily
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large k ∈ ω. Having reached k > log2(log2 n), repeated application of Lemma 31 now yields a

maximal n-independent set of size |P |.

The case κ = ω in Lemma 31 is admittedly a bit messy. The following is an alternate, less

constructive but shorter proof. I have included the original above because it shows the relationship

between the n-partitions and the (n− 1)-partitions in a way that is visually presentable; for small

values of n, it is feasable to draw the xij for the first several i and illustrate how the yij are built

from these. Many of the messy-to-prove claims in the proof then become readily apparent.

Proof. Suppose X is a countably infinite n-independent set in A. Let f be an isomorphism from

〈
⋃
X〉 onto Frn(ω). Both Frn(ω) and Fr(n−1)(ω) are countable and atomless, so by [4, Corol-

lary 5.16](Any two countably infinite atomless BA’s are isomorphic) there is an isomorphism

g : Frn(ω) → Fr(n−1)(ω). Let h = f−1 ◦ g−1, let P = {pα|α ∈ ω} be the canonical set of gen-

erating partitions for Fr(n−1)(ω), and let Y = {h[pα]|α ∈ ω}. Because h is an isomorphism and P is

a countably infinite n-independent set, so is Y . For the proof of Lemma 31 it is also necessary that

Y -mon be dense in X-mon and vice-versa. To see this, note that by Corollary 2 P -mon is dense

in Fr(n−1)(ω) ⇒ Y -mon is dense in 〈
⋃
X〉 ⊇ X-mon. The proof of Corollary 2 can be applied to

〈
⋃
X〉 as well to show X-mon is dense in 〈

⋃
X〉, so a symmetric argument shows X-mon dense in

Y -mon.
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