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Abstract

An SEM thansient analysis of a Lossless Lerminated
thansmission Line as wellf as a transmission Line with an
arbitharnity-Located Load {8 presented. Extensive numerical
nesults fon the behavions of the SEM pofes in the complex
frequency plane, their mode distributions along the Line,
and the final transient curnent hesponses are afsc presented.
In addition, detailed physical explanations to some of the
SEM modal behavions, and thein effects on the time-domain
response, are provided. In particular, occunrence of degenet-
acies between the SEM modes and the existence of two different
sets of natunal modes on an off-center Loaded Line cte discussed.
Analogy between a Loaded transmission Line and a loaded thin-

wire antenna £s also noted.
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1. INTRODUCTION

Transient on terminated transmission lines has been studied by many
authors [1-5]). In general, there are three different methods .available in
analyzing the transients on a lossless terminated line [5]: the well-known
series-method, Volterra integral equation method and the so-called singularity
expansion method (SEM). These methods have been briefly compared by Tai in
[5]. As has been concluded in [5], the SEM, compared to the other two methods,
furnishes the complete solution without iteration, provided that the so-called
SEM poles' singularities of the frequency domain response are available; and
therefore it is inherently a more numerically efficient scheme for the design
and synthesis of the late time response of an arbitrary-loaded transmission
line [6, Appendix DJ.

Qur study of the present problem however, is mainly motivated by our
desire to interpret the SEM modal behaviors of a loaded thin-wire antenna [7].
The results obtained for.the behaviors of the SEM poles and related mode dis-
tributions of a lossless loaded transmission line will facilitate that inter-
pretation, and can provide some physical explanations for the modal as well
as the transient behaviors of a loaded thin-wire antenna.

Presently, a general SEM solution does not seem to be available for a
terminated transmission line with an arbitrarily located load. The SEM
analysis in [5] is only given for a lossless transmission line terminated in
one end with a load while the source and observation points are both located
on the other end. Even for this rather simple case, no parametric study of
the SEM poles, their modal distributions along the line or the final transient
response, is given for a complex load. Few numerical results for the series

R-L, R-C and R-L-C terminated lines are reported in [8]. However, those



results, which are presented for the SEM poles only, do not show the effect
of the resistor R as it varies, and hence, do not lend themselves to the
study of modal degeneracy.

Starting with the so-called telegraphist's equation, a systematic deri-
vation of the SEM representation for an end-(impedance) terminated transmission
line, is presented in section 2. Modal equation for the SEM poles (natural
frequencies) as well as an explicit expression for the natural mode current
of a lossless transmission 1ine with an arbitrarily located load, is derived
in section 3. Extensive numerical results for the natural frequencies and
modes of varjous center as well as off-center loaded lines are presented in
this section, and the occurrence of the modal degeneracies, for certain load
qombinations, are fully investigated. Finally in section 4, the corresponding
SEM representation for the transient response of the Toaded transmission line
of section 3 is derived, and the numerical results for the transient responses
are presented. A “critically-damped" transmission 1ine is also defined in

section 3 and its transient behavior is discussed in section 4.

2. ENDS-LOADED TRANSMISSION LINE; FORMULATION

Consider the lossless transmission Tine of Figure 1-a, which is driven
by a pair of delta-function voltage generators, tvg(t), Vg(t) a VOH(t-to),
located at z = z'. Defining the Fourier transformation pair as
] +Hiw(t-t )
f I(t;z,z')e gt (1.1)

1~ —1m(t-t0)
I(t;z,z") o f I{w;z,z")e div (1.2)

-0

the so-called telegraphist's eguations for the current and voltage can

(w;z,2")

therefore be written as [9]



Vg(t)
-r;\+
Y
I
4 : R i
tl : 0 72
(N —
| +\/- '
[ I
! . I
2:=0 2:=2 2=L
Fig. 1-a: Ends-loaded transmission line.
Vg(t) Z,
—()
\‘J ml
! |
! I
Ztl : Ro | thz Yin Yy
I
JI\ !
| = z :
| 1 " |
z2:=0 z2=2 z=d z=L
Fig. 1-b: Transmission line with an arbitrarily located Tload,
and its eaquivalent resonant circuit.
Z9
I
I
z,[ % lz = 2] = [z
I
o L/2 - l | I
e L and fe—— | /2 ——

Figs. 1-c and 1-d: A symmetric-terminated center-loaded
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dl _ . o N e 1y = Tl 1
a? = ('lU)CO)V V(UJ,O,Z ) = Zt]I(w,O:z )
dg ] . ZVO . ’ - ‘ ~ .
El_z_ = (10_)}?,0)1 + 7 —-u-)-- 6(2-2 ) V(N;L,z ) = ZtZI(UJ;I-gz )

(2) (3)

which immediately reduces to the following wave-equation for the current

2 2
W 1
(dz? ' c ) ) -zc°v°6(z—z ) )

is the velocity of propagation, and ¢, and 20 are

(=%

where ¢ =
% c

00

the capacitance and inductance per unit length of the line, respectively.

Solution of (4) may be written as
I{w;z,z') = Io(w)g](w;L-z<)gz(w;z>) (5}

where z, = max (z,z'), and 91 and g, are defined as the current distributions
<  min

in the two regions z < z' and z > z', respectively. After invoking the

end conditions, given in (3) at z = 0 and z = L, the following expression for

9, and 99 is obtained:

i2z izl idl-) -
9q 2(m;z) = @ - Ty (w)e e (6)
’ 1,2
wherein the reflection coefficients Ft and Ft are given by
1 2
- 2 o 7
T w) = 2 i R =f — 7
1:]’2 Zt] 2(uﬂ + RO 0 Cq

The amplitude I0 in (5) s directly related to the source condition at
z = z'.. The requirement from (4) that the derivative of I has to have a

jump of -ZCOVO at the source point, yields



. 0
_iv -1EL
Io(w) = (sz) € Alw) (8)
where P
AMw) =1 - 1"t (L\J)I‘t (w)e °© (9)
1 2

After some rearrangement, the expression for the total current in (5) can

be written alternatively as

V| i2(z.-2) i9L-2) %z
4 - 1 — 0 C > < - . I c . 1 C
I{w;z,z') 'Gﬁﬁ; e AT Ft2(91(uhL z')e +Ft1g2(w,z ) e
(10)

Physically the first term represents the outgoing current wave from the
source, while the second and third terms are the reflected waves away from
the z = Land z = 0ends of the line, respectively.

It is evident from (5) and (8), that in addition to the pole, w = 0
of Vg(m), the only other singularities of I(w;z,z'), in the complex w-
plane, are isolated at the SEM poles W and ~w§ which are the solutions
of j2 28|

C - =
1 - Tt](ms)rtz(ms)e =0, s=0,1,2,... (11)

It can be easily shown that the roots of (11) can exist only in the lower
half of the compiex w-plane; this is consistent with the time causality
principle for the time convention e 14t

To find the time-domain response for the total current in(5), we now

perform the Fourier inverse transformation, as given by (1.2). By deforming

the contour of integration into the lower half of the w-plane (Figure 2)

Z>-Z

, the residues at the poles of I(w;z,z') are captured

for t - to_z

and finally we get

S O L L L Lt YA S
I(t;z,z )=(ﬁ0‘)[P0+ ) TSA—'-S(’E) 65(2' )6 (z)e : O]H(t_to- ‘ )12)

0 §=-00
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Fig. 2: Deformation of contour in the complex w-plane.



where H is the unit-step function and P0 is the residue at the pole

w=0 of Vg(w), [1-r, (0)I[7 -1, (0)]
_— 1 2 _ (13)
0 1 -

Also in (12)
Tl Tt
A {ug) = ) + T o)

and Gs(z) is the so-called natural mode current defined by

o 0,

i Tsz I11:1 (“’s) % i—(—:i(L-z)

GS(Z) =@ + —'I.,—t"—'(a'—)) e (15)
2 ]

wherein + or - sign is chosen when s 1is odd or even, respectively. To

obtain the transient response for the voltage one may now simply use

¢

V(t;z,z') = - c]—ad-z-[ 1(t;z,2')dt’ (16)
0

0

where I(t;z,z') 1is given by (12).

It should be mentioned here that the response in (12) could be derived
from (6), through a more systematic SEM procedure by means of Mittag-Leffler
theorem [10]. This procedure, which is given in Appendix A. evpands the
frequency-domain result of (5) in terms of the SEM poles before a transfor-
mation into the time-domain.

A comparison between the SEM representation on {12) and the transient
formulation obtained by the so-called "series-method" in Appendix B, shows
the advantages of the SEM in calculation of the "late-time" response. For
the "early-time" response however, the series-method, which is based on the
series expansion of A{w) in (5) and a term by term Fourier inverse transfor-

mation, will be more efficient as is discussed in Appendix B.



For the symmetric case of Z, =17, = Zy, the modal equation (11) and

t t
1 2
the natural mode current (15) reduce to
w
» i2 ?SL Z,(w) - R
A({DS) =1 - I‘t(ws)e =0 , Ft(m) = m (17)

Gs(z) e ¢ 1e €
o e cos[%? (z--%)] » S odd

I

1
~no
47}

——
—
oo

f

w
i sin[?é-(z-%)] » S even

It is worthy to note that for this symmetric case the expression in (12)

is analogous to the SEM representation, given in [6], for the current
response on a finite thin cylindrical antenna. For the antenna problem in
[6]1 however, the corresponding GS has a more complicated form which involves
a function expressing the current on an infinite antenna, instead of expo-
nential function in (18), and the corresponding Q}ws) represents the
reflection from the end of a semi-infinite antenna. Nevertheless, the
transmission-Tine formulation of (12), (17) and (18) may be used to determine
an approximate response for the current on a very thin-wire antenna, if one

replaces the terminal impedance, Z by an effective terminated function

t?
resulting from the radiation of the antenna (Zta), and Ro by the "antenna
average characteristic impedance” .(Zoa). By using the expressions given by
Schelkunoff [11] for Zta and Zoa’ Tai [8] has used this transmission-line
model to calculate the natural frequencies (SEM poles) for a thin-cylindrical
antenna. A numerical example, for the 1st-layer natural frequencies, in [8]
shows however that the "transmission-1ine model" formulation for the antennas,
(i.e., eq. (17) with Zt = Zta and R0 = Zoa) without a suitable modification for
the current distribution, is inadequate to yield a satisfactory result for the

wire antennas, except for a very thin-wire antenna.



3. TRANSMISSION LINE WITH AN ARBITRARILY LOCATED LOAD

3.1 Natural Frequencies and Natural Mode Currents

3.1.1 Resonance condition. The ends-terminated transmission line of

section 2, which is now loaded with an impedance Zl(w) located at z = d,
is shown in Fig. T-b. For this system the free current distribution on the

line in the absence of any real source, can be written as
fz(w;z,d) = Vz(w)Y(m;z,d) (19)

where Vz(w) = -Zz(w)fz(w;d,d) is a fictitious equivalent voltage generator

located at z = d. In general, the “admittance" function Y(w;z,z') is the
normalized current at z on a “unloaded” {i.e., in the absence of the load
22) transmission line due to a source at z'. Therefore by using the expression

given in (5) for the current on an unloaded 1ine, we may write

L
Y(w;z,z') = 52 flwsz,z') (20)
Roﬂlmj
where A{w) is given by {9) and
flwsz,z') = g;(wil-z )g,(w;2,) (21)

wherein g, and g, are expressed in (6).
In order to obtain the resonance condition for the loaded transmission

line, we now let z = d in (19) to yield the following modal equation

=0 ; s =0,1,2,... (22)

h z -y
Hhere D(w) = AMw) + R (uﬂ[} ‘e f(w;d,di] (23)
0

Roots of (22), which can exist only in the lower half of the complex w-plane,
are the natural or resonance frequency, mi , of the free current oscillations

on the transmission 1ine system. It is of significance to note that the
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modal equation (22) could be physically interpreted as the resonance
condition for the equivalent circuit shown in Fig. 1-b. In fact, free

. . . . %
current in this circuit resopates at w= e whenever

Yo(wg) + ¥, (w) =0 (24)

where Y2 = iL- and Yin is the input admittance to the line at z = d.
')
But by using eq. (5) and the definition of the input admittance, we have
= Y(wid,d); {25)

and consequently (24) is equivalent to (22), as expected.
The current distribution of the natural mode mi is given by the free
current (19) at w = wi. Therefore, aside from a normalization factor, the

natural mode current for a Toaded transmission line is simply defined as:

f(wg;z,d)

F
32 (26)

A 2
g'l (wS; L‘Zd<) gz(w5;2d>)
where Z4, =max(z,d). It is clear that, by using (9), the natural mode in

< min
(26) can also be expressed in terms of an outgoing current wave from the load,

at z = d, and two reflected waves from the ends, at z = 0 and 2z = L.

A special case: For a center-loaded symmetric terminated transmission line,

i.e. d= L and Z, =127, =12, , the modal eguation (22) can be reduced

to the following two equations:

Ys
i—Q;L
1 - I‘t(ws)e = O,Q. (27.1)
w
s
1-r e (we € =0 (27.2)

where Tt and Fg are the end and load reflection coefficients, respectively.
7, (w)-R
- _t,% 0

t, 0 Z't ﬂmii-Ro

r
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It is useful here to make some remarks regarding the equations in (27). As
is evident the roots of equation (27.1) correspond to these natural modes
which do not "see" and are not affected by the center-load. It is also
interesting to note that the resonénce condition in (27.2) is identical to
that of a terminated line of Fig. 1-a, i.e. eq. (11), with Zt =1, it2==2t

1
and L + £ . Consequently, the (even) modes of the center-loaded line of

2
Figure {1-c) are identical to the modes of the equivalent transmission Tine
of Fig. 1-d. In general, the modal equations in {27) are transcendental
equations which have to be solved numerically in order to obtain the natural
frequencies wi, s =0, 1, #2,... . For a resistive loaded and terminated

line however, a simple analytical solution can be obtained. 1In fact for

22 = RE and Zt = Rt’ we readily have

i Re * Ro
(Eﬁ)“zf'?s'?“ R, - R, (26.1)

s =0, 1, +2,...

. R, +R R +R
L) 2 . i [ ( t o) ( 0 E)J
—1 w =25-1-= lnj—w—=" ]+ n | 5—= (28.2)
(Cﬂ 2s5-1 om Rt -Ro R0 - RQ

In the next section we will discuss this special case and also present
numerical results for the solutions of the modal equations (2+) and (22),

for various Zg(w) and d.

3.1.2 Natural frequencies of a loaded, open-circuit transmission line.

ve now present some numerical examples for the natural frequencies and
the corresponding natural modes distributions of a center as well as an off-
center loaded lossless transmission line. For simplicity, the results which

will be discussed here are obtained for a symmetric open-circuit terminated

line, i.e., Z, =17 _ - = and consequently Ft = Pt +1. The modal

LY 1 2
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equation (22) and the natural mode distribution (26) can then be simplified

*0 %L Zsz(“”;) % d g
sin(ws EJ -2 Ro sin(wS 7;) sin (ms(L-d)/c) =0 (29)
'}
w
i2 -—g L uss wi’
Fs(z) = (4e ) sin(j; zd<) sin[ <= (L 'Zd>)] (30)

In addition to the simplicity of calculations, our interest in this special
case stems from our desire to interpret and justify the SEM properties of a
thin-wire cylindrical antenna [7]. In fact, because the end-reflection
coefficient of a thin-wire antenna indeed approaches +1 as the wire radius
approaches zero [6], a loaded transmission line with open ends will provide
some specific information about the nature and behavior of the natural fre-

quencies and mode distributions of a thin-wire antenna.

Natural frequencies of a center-loaded transmissjon line

In the first set of results, natural frequencies of a center-loaded
transmission line will be presented. The corresponding resonance condition
is given by egqn. (29) with d = %3 or more explicitly by the set of equations

on (27) with ry = +1. Then, the first equation in {27) has the zeroes at

Ly
e’ 2s

=25 , s=0,2*1,1*2,... (31)
which correspond to the natural modes, with odd distributions in z, that
are not affected by the lcad. We now discuss selutions of eq. (27.2):

a) Purely resistive load, i.e. Z, = Ry:

As was discussed earlier, for a resistive-loaded 1ine the second equation

in (27) has solutions which are given by (28.2), or more explicitly
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( é;') wgs 17 25-1- Rn{;;;i) yoorp <] (32.1)
s =0,z1, 2,
(&) wyo=2s- 1 Qn(:f:) R (32.2)
where re = ;E-. These natural frequencies in the complex w-plane are shown
0

in Figure 3, as the normalized resistive load, o varies from 0 to ». As

can be seen in (32) and the figure, in addition to the conjugate poles at

*
wi and - mi » §>1, there is a single wﬁ pole located on the imaginary

axis. This so-called “"evanescent-mode" exists for r, > 1. As r, » 1,
2

[
1 (u&) + o and therefore as r, increases for 1 - s to 1 + ¢ (¢ > 0) it is

m s £
L % £

. . L .
not possible to determine whether wy i > w,. OF W > Wy, 5. This

difficulty is due to the uncertainty in choice of the logarithmic branch in
(32) for this idealized pure resistive case. It can easily be shown from (32)

however, that if r, has an imaginary part, i.e. r, + i§ , then choice of

g
the principal value of the logarithmic function in (32) yields

)
Woe 7 > U , §>90 (33.1)
Woe 1 > Woe o § <0 (33.2)

as ry varies from 0 to =, Consequently for a load with RQ - CQ, i.e.
RECR in series, or Rﬂ - LQ, i.e. Rng in series, the corresponding natural

frequencies are expected to behave Tike (33.1) or (33.2), accordingly.

b) ?esistiv? load in series with a capacitance (RE" CE) or an inductance
R, - L,):
£ e

By numerically solving eq..(27.2}, the natural frequencies of the various
center-loaded transmission line are obtained and shown in Figures (4-8). The

results for the series RR - C2 and Rg - Lz Toads are plotted in Figs. 4 and 5,
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respectively. In these figures the capacitance or the inductance is normalized

to give an impedance value of Xo = 0.1 and 1.0 or X = 0.1 and 1.0 at the
frequency of w = %; . As can be seen, the natural frequencies of these

transmission lines vary from ones corresponding to the symmetric modes of
a line of length L when r = 0 to ones corresponding to a line havina half

of the length, i.e. L when r - ».  In this transition the natural frequencies

2
wé, pass through "turning" points with maximum attenuation (i.e., where
R
lIm(wi)[ is maximum). As r (= E&) increases from 0 to « however, the
0

natural frequencies of the Rﬂ - CQ Toaded line move upward in the complex

w-plane (i.e., (mgs_]) + 25), whereas those of the Rz - LQ loaded 1ine

Im
move downward (i.e., Im(w%s—l) + 25 -2), as was discussed earlier for a
s1ightly reactive load. For the Rz - CQ loaded 1ine in Figure 4, the first
natural frequency moves upward in the w-plane and coincide with the second
(odd) mode (i.e., W, in (31)), as r approaches infinity. Like in the case
of a resistively Toaded Tine, there is always an evanescent mode located on
the imaginary axis for 1< r< « |

The situation for a resistance in series with an inductance is quite
different, however. For the Ro-Ly loaded case, as r increases, the first
natural frequency approaches the negative imaginary axis, torms a degenerate
mode (i.e., a double SEM pole) there with its conjugate pair, -MT* , and
then the two poles split apart and move in the opposite directions along
the negative imaginary axis and finally approach -i0 and -i»as r + «,
In general the double pole which occurs for a "critical” value of resistor
r=r. satisfies the condition that the derivation of the modal equation
alsc vanishes, i.e.

D'(wi’) =0 (34)
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for a line with arbitrary-located load, and

Y

[T‘t(tui) T‘_Q'(mi)]‘«!- i %["t(uai) Pﬂ(mc =0 (35)

for a center-loaded symmetric-terminated line. Equation (34) or (35) can

be used together with eaquation (22) or (28.2) to determine wi and its
corresponding re- By an analogy to circuit theory [12] a loaded 1ine which
satisfies the condition in (34) or (35) may be called a "eritically-damped”
transmission Tine. For the examples in Fig. 5 the line is "critically-damped"

at re = 1.164, for X = 0.1, and at rc ~ 1,948, for X = T.

¢ ) Resistive Toad in parallel with a capacitance (Ry 1 ¢,):

In Fig. 6 the natural frequencies of a parallel RQIICR loaded Tine for
xc = 10 and 100, with r varies from 0 to « are depicted. The results
resemble those of the series R£ - C£ case in Fig. 4 with two important differ-
ences. First the zero order (i.e., "evanescent") mode for RQHC2 Toad in
Fig. 6 exists for 0 < r < =, while for R2 - Cz loaded 1ine, this mode
exists only when r > 1. Secondly, as order of the modes increases, Im(mi)
of the "turning" points (i.e., points where |Im(w§)l is maximum), for
RKIIC2 loaded 1ine decreases while for R, - C, case increases. It is worthy
to mention that this latter behavior of the parallel RQH C, loaded trans-
mission line is similar to that of the natural frequencies of a resistively
center-loaded thin-wire cylindrical antenna [7]. It is not surprising then

to find out that for the latter problem, gap width of a Tumped resistive load

can have a distinctive effect on natural frequencies, as noted in [71.

d ) Resistive load in series with both a capacitance and an inductance
(R2 - L2 - CQ):

Figure 7 shows the Tocations of the first three (even) natural frequencies

of a series RE - LE - C2 center-loaded transmission line in the complex w-plane.
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The results are plotted for X. = 0.1 and various values of the inductive
impedance X - In general, one can conclude from the behavior of the natural
frequencies in Fig, 7 that adding a very small inductance X to the RR' Cjl
load of Fig. 4, causes a particular (2s-1}th mode to approach the negative
imaginary axis, as r increases, and form a double pole there with

- wi* at r. = 1+ e{e <<1); while the rest of the modes, (2s - 3)th and Tower,
traverse in a similar fashion as a R2 - Cﬂ Toaded case. For this particular
pair however, the double pole splits into two poles moving away from each
other along the negative imaginary axis when r > 1 + €, reminiscent of a

Rg - Ln circuit. Now, by slightly increasing X) s for some value of r,

the degeneracy between the (2s-1)th and (2s-3)th modes occurs; and then the
(2s-1)th mode approaches (é;)w%s_z = 25-2 (note that.the odd modes (g;Jm25=

2s, s = 0,1,2,... remain unaffected by the center-load) and (2s-3)th mode
shifts down toward the imaginary axis. By increasing X, this process con-
tinues; as can be seen in Fig. 7 for X = 0.01, fifth natural frequencies
shift down toward (E;Jm4 =4 as r varies from 0 to «, while third one
approaches the negative imaginary axis to form the double pole and then split
into two modes. Meanwhile for X = 0.01, the first natural frequency shifts
up toward (g;sz = 2 as r-»« and behaves like that of a Rg-CE loaded Tine in
Fig. 4. By increasing X[ » for some certain values of r and K
0.01 < X < 0.1, the degeneracy between the third and first modes occurs, and
L > 0.1 all of the modes behave 1ike those in Fig. 5. for the
RR - L2 loaded 1ine. It may be useful to mention that the degenerate modes in

finally for x

the complex w-plane as well as the double mode on the imaginary axis satisfy
the equation (35).
Based on the above explanation for the behavior of the natural frequencies

of a R2 - Lﬁ - CQ loaded Tine, one may now arque that for the RR - Cg Toad
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in Fig. 4, the natural frequency at -i» on the imaginary axis, as r
approaches 1, is a double pole which is formed by the (even) «-th mode and
its conjugate pair, —mi*, I'. In fact wi = -j= at re © 1 fora
R2 - CR loaded 1ine {which can be considered as a limiting case of a
Ry = Ly - Cy as XL + 0) satisfies the "critical-damping" condition in (35).
Therefore, the "evanescent" natural frequencies on the imaginary axis for
v > 1 in Fig. 4 are indeed the continuation of the locus of the «~-th natural
frequency in the complex w~plane, as r varies from 1 to «.

In Fig. 8, we have shown the first two (even) natural frequencies of a
(Rg - L) IICQ center-Toaded transmission line, for x, = 0.075, x_ =10,
and as r varies from 0 to =. Although it is not shown in Fig. 8, but we found
the natural frequencies of this line to behave 1ike those of the series

R, - Lg - Cﬁ case in Fig. 7, as XL varies. For the latter case however, the

'Q;
double pole (i.e., "critical-damping") always occurs for a “critical” Toad

r. > 1, whereas for the (Rrly G, case in Fig. 8, we have r_> 15 this is
expected because of the behavior of the natural frequencies of the Ry|C, Toaded
line in Fig. 6.

Before concluding the results for the center-loaded line, it is worthy

to mention that simple approximate expressions for the "evanescent" natural

%
w L
frequencies (i.e., cg = -f0,) can easily be obtained from (27.2). These
approximations are given by X
~ C . —
Oy = yo7~ » X >> p-1
for the RZ - C2 load,
e (Ior . I-r 1
% ('77_)xc ’ v X,

for the R2|| C, load, and
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r=95
.96
97

Fig. 8: Variation of the natural frequencies of a (R,-L )|/ C, center-loaded
transmission line as a function of r = RE/RO; Z2 = Ro[(r- 1SxL)/

(1-82 X/%c =18 v/x )1, S = wlfen , x_ =10 and x, = 0.075.
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I el .
o2 ° X * r-1> L

for the Ry - LQ toad, where T2 corresponds to the second evanescent mode,

i.e. the one with the Targer Ty

Natural frequencies of an off-center Toaded transmission-line

The natural frequencies of an off-center loaded transmission line are
shown in Figures 9 and 10 for resistive and series R-C loads, respectively.
In general for an off-center loaded line, there are two different sets of
natural frequencies, each corresponding to resonances predominantly in one

of the two segments of the transmission Tine, separated by the load.

a) Purely resistive load, f.e. Z, =R,

For a pure resistive load located at z = d, one set of natural frequencies

vary from é? wi = 2s-1, when r = 0, to g;-wi = (%T)s, s=0,1,2,3,...,
L £
3

when r =«; whereas the other set vary from —

on = 2s, when r = 0, to

_l__ R: .._...._..._.—_-I = = o0 -
or We = | —y ) sy s =1,2,3,..., when r . These two sets corre

spond to resonances which are predominant in the segments, 0 to d. and d

to L of the line, respectively. In addition, it can be shown from eq. (29)
7

that as —§& = r approaches 1, the first set of the natural freguencies behave

1ike ° .
(g;) mi = (%ﬁ)[ZS-T - %-Rn (—T;;FJ] , r=1-¢ (36.1)
(B)wf = GPles -1 (I501, reTse (36.2)

where s = 0, =1, 22

Toad is located at %-= 0.35 and as r increases, the first natural frequency

.. and e <<1. As shown in Figure 9, when the resistive

shifts up in the complex w-plane and behaves like (36.1) as r approaches 1.

Meanwhile, the second natural frequency shifts down and approaches 6133' on

the real axis, as r varies from 0 to «.
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b) Resistive load in series with a capacitance, Ry - €

Figure 10 shows the behavior of the natural freguencies in the complex
w-plane when a capacitance is added to the resistive load of Fig. 9. As
shown in Fig. 10, for the capacitive impedance Xe = 0.05 and as the values
of the resistor r increases from 0 to «, the natural frequencies of the
first two modes move transversely in opposite directions, while those of the
higher order modes move in the same direction, upward, in the complex w-plane.
By increasing Xc however, for some specific values of r and X
0.05 < X < 0.7, the first two modes become degenerate, i.e. w% =-w§ s
and finally as shown in the figqure, for Xo = 0.1, the first and second natural
frequencies shift up in the complex w-plane and anproach the pcints 67%§'and
ﬁf%g on the real axis, respecfive]y, as r approaches infinity. As will
be shown later, for X, = 0.1 the first and second natural frequencies
correspond to resonances predominantly in the two segments, z = 0.35L to L,
and z = 0 to 0.35 L, of the loaded Tine. As can be seen in Fig. 10, there is
also an “"evanescent” mode with natural frequencies Tocated on the negative
imaginary axis {shown only for Xe = 0.1 case). As was discussed earlier
for the center-loaded 1ine, these natural frequencies can be interpreted as
those of the «-th mode for r > 1.

Although it is not shown in Figure 10, but it is evident that for some
values of r and Xo < 0.05, the degeneracy between the higher order modes
of the two sets of natural frequéncies can occur. In fact, adding an
infinitesimal capacitance to the resistive load of Fig. 9 causes all of the
natural frequencies of the two set shift transversely in the opposite direc-
tions in the complex m-b]ane, as r increases from 0 to . By increasing

the values of the capacitive impedance X the modal degeneracies occur
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and finally as was discussed earlier, for Xe > 0.1 all of the natural
frequencies of the two sets move in the same direction, i.e., upward, in
the w-plane, as r varies between 0 and «.

Finally, the first ten natural frequencies of the two sets of modes,
for Xc = 0.1 and r =1, are shown in Fig. 11. As can be seen, one set
has a much larger |Im(w§)| than the other one; hence a more rapid decay in

time of modes of the former set is expected.

3.1.3 Current distributions of the natural modes

Normalized current distributions of the lower order natural modes of
R2 - C£ and Rg- LR loaded, open-circuit transmission lines are discussed
in this section. For an open circuit terminated line, the natural mode
distribution is given by Fs(z) in (30). The results presented here however,

are normalized such that for each mode Fs(z) has a maximum magnitude of one,

a} Natural modes distributions of a center-loaded transmission line.

Figures 12-a and 12-b show the {magnitude) distribution of the first
natural mode for a R, - C, center-loaded line with x. = 0.1. As shown in the
figures, the current distribution of the first natural frequency varies from
a symmetric mode, given approximately by sin(nz/L), when r = 0, to a mode
given by |sin(2nz/L)|, when r = . Near the "turning" point region, r =~ 1,
the mode has nearly a hyperbolic-sine, sinh, distr%bution. We note that in
this region the time domain response of such a mode decays rapidly because
of the large value of its Im(m%) in Fig. 4.

Figures 13-a and 13-b show the first natural mode current distribution

of an Ry - Lo center-loaded line, for a normalized inductive impedance X = 1.0.

One can see in these figures that as r approaches the “critical” value of
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Fig. 12-a:

First normalized natural mode current distribution of
a series RR- C2 center-loaded transmission line, for

X. = 0.1 and various values of r = RH/R0 < 1.
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Fig. 12-b: First normalized natural mode current distribution of
a series Rg- Cz center-loaded transmission line, for

x = 0.1 and various values of r = R,/R_ > 1,
C 20
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NSTURAL MOOE CURRENT OIST.

——— Rl = ] 05

g. 13-a:

First norralized natural mode current distribution of
a series RR— Lg center-loaded transmission line, with

X = 1.0 and for values of r smaller than the "critical"
resistor, re = 1.948,
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Fig. 13-b:

First normalized natural mode current distribution of
a series Ry-1y center-loaded transmission Tine for
X = 1.0 and various values of r = Rleo‘ For r > r,

the first mode splits into two "evanescent" modes; for
r=3, these modes correspond to the natural frequencies,

(L/cw)ng = -70.23166 and (L/cn)wg2 = -i1.9962.

L
. W
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re® 1.948 (corresponding to the double pole in Fig. 5) the mode distribution
along the line approaches a sinh form. Then for r»~ Fes 85 shown in
Fig. 13-b, the first natural mode splits apart into the two modes both having
an entirely sinh distribution. In time-domain however, one of the modes, i.e.
wﬁz, is expected to decay faster than the other one, due to the larger atten-
uation of its natural frequency in Fig. 5.

b) ?qtura] modes distributions of an off-center loaded-transmission

ine.

In order to investigate the effect of an off-set, normalized natural mode
current distributions of a transmissin Tine with an off-center load, RR-CR,
located at %-= 0.35, are shown in Figs. 14-15. The results are plotted for
the normalized capacitive impedance Xo = 0.1. Figure 14 shows the current
distribution of the first natural mode for such a line. As shown, this
distribution varies from the symmetric mode of a line of Tength L, when r=0,
to the one corresponding to a line of length 0.65L, when r = =, For the
second mode in Figs. 15-a and 15-b however, the current distribution varies
from the unsymmetric mode of a 1ine of length L, when r = 0, to the one
corresponding to a 1ine of length 0.35L, when r = =, In addition, it can
now be clearly seen from Figs. 14-15 that the first and second modes resonate
predominantly in the two segments, 0.35L to L, and 0 to 0.35L, of the trans-
mission line, respectively; confirming our earlier discussion, regarding the
existence of these two different sets of natural modes on an off-center loaded-
line. These two sets of natural mode complement each other's distribution
along the line for r>>1 as shown in Figs. 14 and 15-b for R2 - CE load as
r approaches », and as can clearly be seen in Fig. 16 for a resistive-loaded

line. In the latter case, resistive load with the normalized value of r=5
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Fig. 14:

First normalized natural mode current distribution of
a series Rg' C!L off-center loaded transmission line

with d/L = 0.35, X = 0.1 and as the value of r= RQ/R0
varies from zero to infinity.
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Fig.

15-a:

Second normalized natural mode current distribution of

a series Rg-Cz
d/L = 0.35, xC

r=Ry/R <1

off-center loaded transmission 1ine with
= 0.1 and for various values of
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Fig. 15-b:

—=e— AL = 1,03

==~ Rl = 1.185

——- AL =20

—_— AL = IN

Second normalized natural mode current distribution
of a series Rg"cg off-center loaded transmission line

with d/L = 0.35, Xe

r = R£/R0 > 1.

= (.1 and for various values of
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ANRTURAL, MODE CURRENT OXST.

Fig. 16: First and second normalized natural mode current
distributions for a transmission line with an off-
center resistive load r = 5, located at d/L = 0.45.
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is located at g—= 0.45, and the corresponding results are plotted for the
L 2 L 2

first two natural frequencies, i 1.82763 - 10.058265 and or Yo T
2.21336 - 10.072131. As shown in Fig. 16, the normalized current distribu-
tions of w% and mg are predominantly resonant in the segments 0.45 to L
and 0 to 0.45L of the Tine, respectively. Finally, as can be seen in

Figs. 14-15, the first and second natural modes, for the RE--Cg loaded Tine
have nearly sinh distributions for r = 0.9 and 1 < r < 1.03, respectively.
These distributions are expected because of the behavior of the natural fre-
quencies in the complex w-plane for these values of r, which are in the
"turning point" regions as shown in Fig. 10,

It should be noted that the current distributions plotted in Figs. 12-16
wére normalized and did not show the relative excitation of each mode. The
problems of mode excitation is physically more relevant and meaningful when
it is studied in the time~domain. This problem will be discussed in
section 3.2.2.

3.2 Transient Response of a Loaded Transmission Line, Driven by a Pair of
Slice Voltage Generators

3.2.1 The SEM Representation.

Let us suppose that the impedance loaded transmission 1ine of Fig. 1-b
is driven by a pair of slice voltage generators tvg(t), Vg(t) = VOH(t-tO)
located at z = z'. The total current distribution on the line can be
obtained by superposition of the currents due to the real and "fictitious"

sources located at z' and d, respectively. By using (5), we therefore have

Pluiz,2') = '\ig(w) V(wsz,2') + V5 (w) Y(wsz,d) (37)

where Vz(w) = -Zg(m) Plwid,z') s the voltage developed across the load

v etivty
impedance Z; Vg(m) = —9—§Zr——— is the Fourier transformation of Vg(t)
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and  Y(w;z,2') dis given by (20). We may now solve (37) at z = d to obtain

fg'(m;d,z'), .
V (w)A(w)

*(wd,2') = J—Dm— Y (03d,2') (38)

where A(w) and D(w) are given by (9) and (23) respecitvely. Subsequently

the total currentin (37) can be written as

by Z, (w)A{w)
I"(wsz,2') = ¥ (m)[Y(w z,2'}) - —-Tﬂzn———¥(w d,z'} Y (w;2,d)] (39.1)
- -iZL
V (w)e te Zg_(w) *1-—-L
- RyA(w) [f(w;z’zl) TR D( o) f(w;d,Z')f(w;z,d{]

(39.2)

where in writing (39.2), the definition in (20) has been used. We note that

from (23),
Zo(w.) ‘i—tgL 1
_ﬁ;h—-e = ?C;Ea:ay [D(w) - A(m)} (40)

which upon insertion into (39.2), yields the following result:

- "‘(0) \7 (w) "T.(g"-LN
I (wsz,2') = I7(wsz,2') + f—e € Z(usz,2') (41)
)

where -

. V {w) -i2L

(0) . [} - 9 (=] c . 1 .

IE (w,Z,Z ) - Ro D(w)f(w;d,d) f(w,d,z )f(muz.d) (42)
and

f. RN . ' 1 . 1 .

r{wsz,z') = M) [flwsz,2') - Twsd.a) flwsd,z' ) flwsz,d)] (43)

To this end, one may now substitute for f from (21) into (43) and
see that -
clw;z,z') = 0 for z_<d<z

and therefore for the case when the observation point and voltage source are
located in two different segments of the line separated by the load, the

current distribution can be further reduced to
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fg‘(m;z,z') = fgo)(m;z,z') o Zosd oz
- . W
Vq(w) e-'l EL
"R sy 99 (wsk - 209, (wsz,) (44)

for z, <d < z_ where z, = max (z,z'). As can be seen, in addition to

> .
< mmn

the pole singularity of Vg(m), the only other singularities of (44) in the
complex w-plane are the roots of D(w) = 0.

For other values of d, z, and z, we note that:

i) ¢ does not have any singularities at A{w) = 0, as can be shown
by using (21) and (43).

ii) I, does not possess any new pole at f({w;d,d) = 0, as can be shown

from (41) and is apparent from (39).

Consequently, TQ in (41) possesses pole singularities only at D(mi) =0,
which appear in the first termm (i.e., féo)) of {41). And therefore the
expression for féﬁ) in (42) is all what we will need in obtaining the time-
domain solution for an impedance-loaded transmission line with a voltage
source.

Tq obtain the transient response of the total current in (41), we now
apply the Fourier inverse transformation in (1.2). By deforming the contour
of integration into the upper (lower) half of the w-plane for (t-—to)

smaller {larger) than (z-z'), we fina];y obtain the following SEM representation:

. R

v o c ~iw_ (t-t {]

I (t,z,2') = (ﬁngéo + ) E 7 Fs(z')FS(z)e 50

0 §= - mSFS(d)D'(wS)
zZ. -7
H(t-t-—>—-<——) (45)
o
where the natural mode current Fs(z) is given by (26). The constant Q

in (45) is the residue at the pole, w = 0, of Vg(w) .
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3.2.2 Numerical Results

In al1 of the following numerical examples, we assumed that the loaded
transmission lines are terminated in open-circuit at both ends, i.e.,
r, = rtz =+1, and we used up to the first fifty modes to compute the time
response. The "early-time” response (i.e., before the first reflected wave
from the end reaches the observation point) in each case was further compared
with the first term in the "series method" solution {see Appendix B) to
confi}m its aécuracy. In general, it was found that only first few modes
are needed to achieve convergence and excellent accuracy for the "late-time"
response. For the "early-time" response however, many terms in (45) are
needed for an accurate result; nevertheless, we found a much faster conver-
gence for the response of a Rz"Lz loaded Tine than that of a RR— C2 loaded
one. For the Rg--L2 (center load) case, ten to fifteen (even) modes were

generally found to be sufficient to yield accurate results for the "early-

time" response.

Results for a center-loaded transmission Tine

a) R, - L, loaded Tine:

Figures 17 - 21 show the driving-point current response of a series RE—L2
center-loaded transmission line, center-driven by a voltage source, with a
step-function time response. In Fig. 17, the responses of an inductive loaded
Tine (r=0), for two values of the inductive impedance X » are compared with
that of the unloaded one. As we see, increasing the inductive impedance X|
increases the time between two subsequent zero crossings of the current,
indicating an effective lengthening of the Tine. One could expect this
behavior from Fig. 5, becéuse the natural freguencies for X = 1 {and r = 0)

have smaller values than those of X = 0.1, causing the slower oscillation
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Fig. 17: Transient response of the driving-point current on an

by a voltage generator with output VOH(t).

inductive center-loaded transmission line, center-driven
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AESFONSE OF THE TRANS. — LINE
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Fig.

18-a:

Transient response of the driving-noint current on a
RR' L, center-loaded transmission line, center-driven

by a voltage generator with output VOH(t); X = 1,
r<r. e 1.948.
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18-b: Transient response of the driving-point current on a Rg- L2

center-loaded transmission 1ine, center-driven by a
voltage generator with output VOH(t); x =1,
r>r, = 1.948.
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in the time-domain. The rapid variations of the amplitude, for X = 0.1, in

the vicinity of %;-r 2,3,4,..., i.e., when the reflections from the ends
reach the observation point, are also noticeable 4n Fig. 17. ‘Figures 18-a and
18-b show the transient responses of a Rz"Lﬂ loaded line, for X = 1 and

as the values of the normalized resistor r vary. We notice that injtially,

increasing r reduces the current amplitude and increases the “oscillation-

| period." For the values r = 1.945 and r = 1.95, which are extremely close to

i

1.948, see Fig. 5) of the lowest order mode,

the response decays very fast in time and rapidly approaches zero for %F_z 2

the “"critical-load re (rc

(i.e., after two reflections from the ends); this can be referred to as the
"critically-damped” response, as was discussed earlier in section 3.1.2,

For r > re however, the current does not cross the time axis and decays

very slowly in time as shown for r = 3 and 5 in Figure 18-b. By an analogy
to the circuit theory [12], the transient response for r > re (r=3 and &

in Figure 18-b) may be referred to as the "over-damped" response. Similarly,
the transient current for r < rc (r=0, 0.5, 1 in Fig. 18-a) may be called
the oscillatory or the "underdamped" response.

In order to examine the contributions from the different SEM modes to
the total response, we have included in Figures 19-21, the time-response of
each mode. Unquestionably, the major contribution to the total current for
r= 1,945, i .e. near critical damping, comes from the first mode, which is
much more efficiently excited than the higher order modes. It was found
however, that for r = 1.95 (i.e., for r very close to, but larger than
critical load, rc), the two “evanescent' modes (corresponding to the two
poles on the imaginary axis in Fig. 7) are the dominant components which
have extremely large amplitudes, but substantially cancel each other to give

the small total current shown in Fig. 18-b. As r 1increases however, the
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Fig. 19: Transient response of the driving-point current on a
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second "evanescent" mode which has a larger attenuation (seé Figs. 5 and
13-b), contribu;es only in the very early times and decays very rapidly in
time, as shown in Figs. 20 and 21 for v = 3 and 5, respectively. One can
conclude from Figs. 19-21 that to calculate the total response for an R-L
Toaded line, with r close to the critical value of r. as wé]] as for

r> res only the first few natural modes are needed.

Transient responses of the current at z = %— and z = %%— for a

Rz-Lg center loaded line, driven by a voltage generator located at z‘==%,

are shown in Figs. 22 and 23. As can be seen in Fig. 22, there is no current

at z = %—unti] %F—= 0.25 at which time the incident current wave arrives,

causing the response to rise up to a maximum. At %%—= 0.75, the current wave

reflected from the z = 0 end reaches the observation point at z = %-and causes

the total current to drop. At %?-= 1.25, the second set of the reflected

waves arrive at the observation point. This set includes a "primary" wave

reflected from the z = L ead and a "“secondary” current wave (i.e., an
incident wave which is already reflected from the load at d = %) reflected

at the z = 0 end. The repeat of the process at %%-= 1.75, 2,... causes the

damped oscillations in the total current. A similar discussion as above

could be used to explain the transient behavior of the current at z = %%—in

Fig. 23. However, contrary to the previous cases (i.e., Figs. 17-22), in

computing the response in Fig. 23, the modes with odd distributions (i.e.,
w L
== s, S even), which do not "see" the center load, have also contrib-

cm
uted to the total current at z = %%—. Nevertheless, since the modes with

w_L
the natural frequencies 7?——= s, s =4, 8, 12,..., have zero amplitudes

at z = %-and %%-, they are not excited by the source at z' =

contribute to the total current at z = %%—.

and do not

i

b) RE -Cz loaded line:

In Figures 24-28, the current response of a series Rg-qlcenter—1oaded
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1ine are plotted. The results are given for the normalized capacitive
impedance, Xe = 0.1. Figure 24 shows the effect of the capacitive Toading

(r = 0) on the driving point current response of transmission line, center-
driven by a voltage generator with a step-function time response, Vg = VOH(t).
The capacitive load effectively shortens the line; this is the opposite
effect of the inductive load in Fig. 17. Figure 25 shows the effects of
adding a resistor in series to the capacitive load of Figure 24; as expected
the resistive load reduces the current amplitude. In addition, at r = 1.05
the current response rapidly approaches zero for %F—z,1, where for r = 2

the response does not cross the time axis. To explain these latter behaviors,
we have shown in Figure 26 and 27 the individual response of the first three
modes. As shown for r = 1.05 in Fig. 26, the amplitudes of the evanescent

and first modes are very large, but opposite in the sign for %F-g 0.25.

For %§-> 0.75 however, the first mode is the dominant component and its

large attenuation factor is responsible for the fast decay (“"critical-
damping") of the total current response for %% >1. As r increases however,
the first mode's excitation at z =-% becomes smaller and the evanescent mode
now becomes the dominant component in the late time; and consequently, its

sinh mode distribution causes the non-oscillatory {or “over-damped") behavior
of the total current, as shown for r = 2 in Fig. 27,

Finally, the response of the Rg - Cﬂ center-loaded line, when the source
and observation points are Tocated at z' = %— and z = %3 respectively, is
shown in Figure 28. As expected, due to the time causality in summation 1in
(45), the current is zero for %%—< 0.25; also the effects of the reflections
from the two ends of the 1ine at'%; = 0.75, 1.25,... can be clearly seen in
this figure. '
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Results for an off-center loaded transmission 1ine

To show the transients on an off-center loaded transmission line, the
representation in {45) was used to ca]cﬁ]ate the current response of a
Ri— C, Toaded Tine with X = 0.1, d = 0.35L and z' = 0.65L. The results
are shown in Figs. 29-31 for the observation points, z = 0.35L and z = 0.65L,
respectively. For the response at %—= 0.35 in Fig. 29, dncreasing r

reduces the current's amplitude; nevertheless the response at r = 1 decays

more rapidly for %; > 2, than that at r = 2, as one might expect from its
sinh distribution in Fig. 15-b. For the response at %—= 0.65 in Fig. 30,

the normalized current, for all values of r, is one until %%—= 0.6 at when

the reflected current wave from the load at %-= 0.35 reaches the observation
peint. For %; > 0.6 however, increasing the values of r increases the

amplitude; this is because as r becomes larger, the “load reflection
coefficient,” Tl, gets closer to one, and consequently a substantial part

of the incident wave reflects back toward the observation point. In fact,

as r approaches infinity, PE + 1 and the observation point "sees" the
point g—= 0.35, as the end of a shorter line having the length 0.65L. It is
obvious that for r = «, the response will be identical (but with the oscilla-
tion period %%-= 1.3 instead of 2) to that shown in Figure 24, for no load case.
Finally in Fig. 31, the individual time responses of the first three modes
for the r = 2 load of Fig. 30 are shown. It can be seen that the first mode
is the dominant component of the total current, while the "evanescent mode"
contributes only in the early times. The second mode is very weakly excited,
as one might have expected from the behavior of its natural mode distribution
in Fig. 15-b. Although not shown in Fig. 31, but we found the third and fifth

modes to be more strongly excited than the second and fourth omes. In general,
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since the source and observation points are both located at %-= 0.65, only
the "first set" of natural modes, s = 1,3,5,... effectively contribute to
the total response, as was discussed in section 3.1.2.

Before concluding this section, it is worthy to mention that the SEM
solution in (45) was found to be more appealing than the "conventional"
serfes method for calculating the "late-time" response. Bgcause the only
time-dependent term in the summation in (45) is that of e-1mst, therefore
once the first several natural frequencies and modes distributions are
evaluated, they can easily be used to compute the current respénses at any
value of t. As was discussed earlier, the convergence of the summation in
(45) for "early-time" is generally slow; however, the response of a finite
transmission line for the "early-times" (i.e., before the first reflected
wave from the ends reaches the observation point) is identical to that of
an infinite line. Subsequently, the simple expressions which can be easily
obtained for a loaded infinite Tine may be used to calculate the "early-time"
responses of the corresponding loaded finite transmission lines. Those
expressions for varjous impedance loads are given by (B.6) - (B.9) in

Appendix B.
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4. CONCLUSION

The SEM modes behaviors and the transient responses of various
impedance loaded transmission 1ines were studied in this report.

In general, it was shown in section 3.1 that the corresponding natural
frequencies of the R, - €y and Ry - Ly loaded Tines move transve;se1y in the
opposite directions in the complex w~plane as the values of r = ﬁf vary from
0 to =. In addition, the nature of the "evanescent mode" for R2 - Cl and
Rz Hcg loaded 1ines, and the occurrence of a "double pole" on the imaginary
axis for R, - L, as well as modal degeneracies for (Rz’ L, CE) loaded-Tlines,
were discussed. It was also shown that for an off-center loaded line, there
are two different sets of natural modes which resonate predominantly in the
two segments of the line, separated by the load.

In section 3.2, the corresponding SEM representation for the transient
current reasponse of the loaded transmission line of section 3.1 was derived. It
was shown that onlya'part of the frequency-domain response ('fsto) in (42)) of a trans-
mission Tine with an arbitrarily-located load, contributes to the final SEM
representation for the time-domain response. The numerical results for the
transient current response, for various load parameters and locations as well
as various source and observation points, were presented. The “"critically-
damped" as well as the so-called "under-damped"” and "over-damped" transmission
lines were also defined in this section, and their transient responses were
interpreted and explained through the behaviors of the corresponding natural
frequencies, in the complex w-plane, and modes distributions along the line.
In particular, it was shown that for a Rﬁ - L, center-loaded Tine with open-
circuit terminations,the (load) current response will be "critically-damped”
if r=r_ where r,_ is the critical resistor, corresponding to the critical

c c
natural frequency (i.e., the "double pole") which satisfies the equation (35).
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The "under-damped", or oscillatory, and the "over-damped", or non-oscillatory
responses occur. for . r < re and r > Fes respectively.

The numerical results and discussions in section 3.2.2 demonstrated
that how the behaviors of the natural frequencies and modes in section 3.1
could be used to predict the corresponding behavior of the transient response
of the transmission line. This provides an effective tool in the design and
synthesis of the loaded transmission lines,

The time-domain SEM representations (12) and (45) were obtained for an
excitation wave form of a time unit step-functions only. When the excitation
voltage Vg(m) has pole singularities besides the one at w = 0, the corre-
sponding transient response can be determined by simply adding the residues’
contributions at these poles to those at the SEM poles. In that case the
corresponding P and Q functions in (12) and (45) will be exponentially
time-dependent. It should also be mentioned that all of the numerical
results in section 3.1.2 and 3.2.2 were presented only for the open-circuit
terminated lines because of our desire to interpret the SEM properties of a

loaded thin-wire antenna. It can easily be explained from the modeal equation

(27.2) that for a short-circuit termination, the natural frequencies for a

Rﬂ"ti center-loaded 1ine, behave like those in Fig. 4, while for a RR-CR
center-load, the behavior is similar to those in Fig. 5. These behaviors
are the opposite of those corresponding to an open-circuit termination, as
one might expect.

Finally, by studying the present problem, a number of similarities between
the SEM modal behavior of a loaded transmission 1ine and that of a loaded
thin-wire antenna was uncovered. For example, it was found that the natural

frequencies of a resistively loaded thin-wire cylindrical antenna, in the
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complex w-plane, behave like those of a R2 HQE loaded 1ine. By an analogy,
one may expect that the natural frequencies of a resistively loaded thin-
wire circular Toop behaves 1ike those of a (R, ,L,) Toaded line. Furthermore,
any modal degemeracies, critical-damping, etc., which was discussed for
various loaded transmission 1ines in section 3, can also be expected for
properly loaded thin-wire antennas. Therefore the results presented in this
work not only explain physically some of the SEM modal behaviors of the
loaded antennas, but also will establish foundations which will give clues
to what changes one may expect (in the complex w-plane, mode distributions,
etc.) if the load combination, parameters or location is varied. Then,
after the changes, according to the rough "trahsmission-Iine model" are
desirable, one may proceed with the more involved and time consuming compu-
tations for the corresponding antenna problem.

As a concluding remark, it should be mentioned that the SEM analysis
presented in this work can be easily extended to formulate the transient
SEM representation of a lossy transmission line. A brief formulation of
this latter problem is given in [6, Appendix D]. A more detailed analysis
together with the corresponding numerical results will be presented in a

future report.
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APPENDIX A

In this Appendix, the expansion of the frequency-domain current response
of a transmission Tine in terms of its natural frequencies by means of Mittag-
Leffler theorem is presented; and an inherent difficulty in the final time-
domain response arising from the use of this theorem is discussed.

According to Mittag-Leffler theorem [10], if a function f(x} is
bounded at infinity and analytic at the origin, it can be expanded into a
residue series in terms of its poles,

Flx) = £(0) + ] Py (o * ) (A7)
n=1 *n  *n
where X, is a simple pole of F(x) and " is the corresponding residue

= 1im [(x-x )f(x)]

XX
n

Let us now consider the current distribution given in (5), which can

at this pole, i.e., o

also be written as

[(wz,2') = Vy(w) ¥ (w5z,2") (A.2)
where _1 @
Y(w;z,2') = -RI— e—ﬂm—g](w L-z )gz(w z,) (A.3)

We now apply the Mittag-Leff]er theorem to the "admittance" function
Y(w;z,z') and expand (A.3) in terms of the natural frequencies W s
= 0,21, £2,... which are the zeros of A(w) in (9). Then, according to

(A.1) and after some simplification, finally we have

°° (w
Y{wsz,2') = ¥(0;2,2') + ; Z ( 1_ -—J J}TTE;) 6 (2)6.(z") (A.4)
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provided that Y(w;z,z') does not possess any pole at w= 0. In (A.4),
Gs(z) is the natural mode current given by (15). If Y 1is not analytic
at the origin, i.e., has pole at w = 0, one may subtract out this pole
singularity from (A.3) and apply the theorem in (A.1) to the remaining
analytic part.

The SEM representation for the frequency-domain current is now given
by (A.Z)_with Y(w;z,z') expressed in (A.4). For a step-function excitation

V (0 = ——9-, and the representation is given by

r

(w_)
L t‘,_'\.“é;) 6 (2)6, (')

s

fiz) = =27 (0i22) + g2 ] (5
Hwsz,z') = — VY (032,2") + 57— (—
’ @ Ro gmmm 07U ) s

(A.5)
By performing the Fourier inverse transformation given in (1.2), we

finally get the following time-domain SEM representation

v o Tt (u) -lw(t-t,)
[(ttgiz,z') = X I “’;s (26 (e 50 H(tet,)
(A.6)
where [1-1, (0)1[1-T, (0)]
P, = 1 2 : (A.7)

The expression in (A.6) is identical to the representation in (12) except
for the argument of the unit-step function, H. The step-function in (12)

explicitly demonstrates the time causality, which requires the total current

zZ -2
response to be zero for t-t) < ZFE;Ji- . In (A.6) however, an extremely
large number of terms are needed for convergence of the current response,
z. -z
> <

tozmnfm't-to< <
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APPENDIX B

In this Appendix, we present the so-called "series-method" formulation
for the transient respoﬁse of the impedance terminated transmission line
of Figure 1-a.

From (5), the cdrrent in the real frequency domain is given by

. W

i iy it

H{w;z;2') = (wRo)e ) g.l(m;L—z<) gz(m;z>) (B.1)
0

where 91 .2 and A(w) are given by (6) and (9) respectively. But Taylor
3
series expansion of the denominator in (B.T1) yields

. 20

: = {1~-T,T, e
Aw) bt
g2 2-&9
=1+T, T, e & +(r, T, )%e % +... (B.2)
Ht 4t

where the reflection coefficients I‘t and r, are given by (7). By
1 2

applying the Fourier inverse transformation given in (1.2), we then have

v\ ©® P2 P21 P4y,
I(t;z,z')=( O)I l-I:ecO—I‘ ec1-I’ e € ¢

21TR0 ) w t] t2

. W 2w

=L i=—L . 4w .

¢ 3][- c i—L ~fo(t-t )
+I't I't ]+I't I'te +(I. T )28 C +“;|e Odw

1 *2 1 72 t:1 1:2
(8.3)
where
Ly=2,-2,, Ly=z,+z , Ly={(L-2)+(L-2) and

-
S
I

=(L-z) +(L+2z) .
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It is evident that the integrand in (B.3) contains an incident current wave
eminating from the voltage source at z = z*' and an infinite number of
reflected currents eminating from each end of the transmission line. By
integrating each term of the integrand separately, one obtains the following

"series-method" representation
iV @
. - 0 . - .
Htizaz) = gt 1[0y il + 2nl) -y, (el on)

- Um’m.(t;Lz + 2mb) + Um.,m.(t;L3 + 2mL)J (B.4)

where m' = m+1 and

w Jnoom
Tt Tt, -fu(t-t - %)
Dl = [ —1Ze ' (8.5)

- Q0

Once the terminal loads Zt] and th are given, the integral in (B.5)
can be evaluated analytically. It is worthy to note that the expression in
(B.4), obtained for an ends-loaded transmission line is also valid for a
center-loaded Tine (Zt] =14 th = Zt) provided that the source or the
observation point is located at the center (see Figures 1-c and 1-d).

Time-domain solutions (B.4) and (12), obtained by two different methods
must be equivalent, since both are the solutions of the same differential
equation. For early times first term in (B.4) gives the total current,
while in (12) many terms are needed for an accurate result. For late times
however, the summation in (12) converges very fast and is more efficient
than that in (B.4).

A "series-method” representation, similar to that in (B.4), could also
be obtained for the transient response of a transmission line with an

arbitrarily located Toad. In general, the response of loaded finite
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transmission Tine for the "early times" (i.e., before the first reflected

current wave from the ends reaches the cbservation point) is identical to

that of the corresponding infinite Iine; It can easily be shown that the

transient response of a loaded infinite 1ine with the load, Ry - Cys R2||Cg

or Rz“ Lz’ located at d
is simply given by

and the voltage generator, VOH(t), located at z',

e V.
I e(tiz,2') = H(T -z I)Ro(rgn q(tsz,2') (B.6)
where
q_(t;Z.Z') = exp[- ﬂ( =7 (T - —[z—zl)] ; forR,-C, (B.7)
=T +r exp[-n( )x (T - 15~5—lJ] for R, |IC, (B.8)
-1- e_xp[--rr(r:l]-}(T Sz foreg-r, (89)
wherein

T=£L§': r

R Ly 1 . _ L
:..R_‘Q'__a xc=(E)Eﬂ,—-’ XL-(C'IT)LQ;

In obtaining (B.6) we have assumed that z,<d 2z where z = max , .y

< mn

The simple expressions in (B.6) to (B.9) can be used together with the

SEM representation in (45) to efficiently calculate the transient response

of a loaded finite transmission line.



