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Jones, Brandon A. (Ph.D., Aerospace Engineering Sciences)

Efficient Models for the Evaluation and Estimation of the Gravity Field

Thesis directed by Prof. George H. Born

Current astrodynamics applications require a rapid evaluation of the gravity field and an effi-

cient approach to gravity estimation. The commonly used spherical harmonic model does not meet

either of these needs. To address these issues, this research considers two new gravity representa-

tions: the cubed-sphere and the MRQSphere models. Offering a means for rapid evaluation, the

cubed-sphere model yields an effectively constant computation time for any degree of the modeled

gravity field. Analyzing the model’s performance in a series of Monte-Carlo-like tests characterizes

its effects on both orbit propagation and determination. When compared to the spherical har-

monic gravity model, the cubed-sphere model improves computational efficiency without causing

any significant deviation in resulting trajectories. Using this new model in sequential orbit deter-

mination improves the computational efficiency of the time update. As a result, the measurement

update now dominates the filter execution time for near real-time applications. Since cubed-sphere

models of higher degree require only a slight change in computation time, orbit propagation and

determination systems may now use this model to improve fidelity without any significant change

in cost. To address the gravity estimation problem, combining a new multiresolution technique

with nearly optimal quadratures (for the sphere) invariant under the icosahedral group defines the

MRQSphere model. This new multiresolution representation allows for gravity estimation via a

naturally staged approach to a celestial body with an unknown gravity field, which aids in the

design of missions to small bodies. To test the new model’s capabilities, this research simulates a

mission to an asteroid. Tests include the characterization of a MRQSphere model derived from the

asteroid’s spherical harmonic model, and the estimation of a model via observations of the gravity

potential. For such a simplified scenario, the results indicate that the MRQSphere model meets the

estimation accuracy requirements; future work is recommended to fully explore its capabilities.
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Chapter 1

Introduction

1.1 Motivation

Although it is commonly used for modeling the gravity field, the spherical harmonic model

fails to adapt to modern demands. For this reason, there are a variety of new methods for represent-

ing the gravity field that allow for faster evaluation, efficient estimation, and improved reliability.

These new models come in a variety of forms, from interpolation between discrete points, to rep-

resentations based on surface integrals over a given body. This research focuses on profiling two of

these new models for modern astrodynamics and geodesy applications.

The astrodynamics community now requires efficient and accurate evaluation of the gravity

field for rapid orbit propagation. Reasons for these requirements include, but are not limited to:

the increasing number of objects tracked by satellite surveillance networks, the need for near real-

time precise orbit determination, and increasing fidelity requirements for Monte-Carlo simulations.

Increasing the degree (which increases accuracy) of the gravity representation in the spherical har-

monic model quadratically increases the computation requirement for evaluating the gravity field.

Thus, highly-accurate gravity evaluation with this model requires a reduction in computational

efficiency. Although modern computing resources help to mitigate this issue, such improvements

fail to match increasing demands. Additionally, hardware based solutions may not yield robust

implementations and lack universal portability.

When using satellite-based observations of gravity, current models fail to meet estimation

demands. For example, scientists now require localized gravity models to observe temporal vari-
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ations in the gravity field in a specific region. However, the spherical harmonic model does not,

directly, yield a localized representation. One may derive a local gravity model using the higher-

degree terms in the spherical harmonic model, but this becomes increasingly difficult when using

measurements gathered at orbit altitudes. Traditionally, geodesists seek improved measurement

accuracy to resolve these high-degree terms, but numerical issues start to create problems.

The international space community currently considers asteroid missions a high priority,

but the spherical harmonic model is poorly suited for such applications. It is poorly suited to

representing the gravity field for aspherical bodies, which includes many asteroids and comets.

Additionally, the gravity field is mostly unknown before arrival. Thus, we require a staged approach

to the small body before any low-altitude operations or precise landing may occur. The spherical

harmonic model provides no such natural approach for the gravity estimation problem.

Developing new gravity representations requires a balance of several factors, including those

mentioned briefly above. To achieve such a balance, we study two new models: the cubed-sphere

and the MRQSphere model. These models may be converted between one another, allowing for the

selection of the proper model for a given application. This research profiles these models for the

problems of rapid gravity evaluation and efficient estimation of the gravity field.

1.2 Background

1.2.1 Representing the Gravity Field

Developing a full understanding of gravity has occupied the minds of scientists for almost

500 years. In 1586, Simon Stevin conducted the first falling ball experiments to demonstrate that

objects of unequal mass accelerate at the same rate. Galileo Galilei followed these experiments,

albeit more scientifically, by using an inclined plane (Galilei, 1638). The next major advance in

defining the gravitational field came with Newton’s Law of Universal Gravitation (Newton, 1687),

which defines the gravitational force exerted by one body on another. Newton’s Law of Universal

Gravitation is commonly applied to point masses, but still holds for spheres of uniform density
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(see, e.g., Laplace, 1798). However, all known planetary bodies deviate from these assumptions.

The next major advance in modeling the gravity field was developed by Pierre-Simon Laplace.

Laplace (1798) derived (expressed in notation later developed by Thomson and Tait (1879)) the

differential equation

∇2U = 0, (1.1)

where U is the gravity potential. Thus, we refer to this equation as Laplace’s Equation. Using the

Legendre polynomials, Laplace (1798) developed the first solution of this equation with boundary

values on the sphere. This early model only included the zero-order terms, i.e. variations in the

gravity field invariant with longitude. Thomson and Tait (1879) later generated a solution that

includes nonzero order terms via the associated Legendre functions. For astrodynamics applications,

we refer to this latter form as the spherical harmonic model of the gravity field.

Einstein’s Theory of General Relativity, which generalizes special relativity and Newton’s

Law of Universal Gravitation, leads to the need of higher order perturbations of the gravity field

described by the bending of both space and time by mass (Einstein, 1916). This theory accounts

for some inconsistencies between observations and Newtonian gravity, such as the error in the

Newtonian estimate of the precession of Mercury’s perihelion. In this research, we only consider

the Newtonian case.

Gravity representations may be split into the four categories discussed by Tscherning (1986):

(1) a series expansion of orthogonal functions, (2) a linear combination of potential functions, (3)

linear combinations of functions defined via splines, kernels, or finite elements, and (4) collocation

methods using minimum norm or least squares. In this dissertation, we use models of the forms

(1)-(3). Representations of the form of (4) prove to most accurately represent local variations in

the gravity field, but the model is not optimal for global variations (Tscherning, 1986). Since local

variations attenuate with altitude (as implied by Newton’s Law of Universal Gravitation for a finite

mass), global variations dominate satellite dynamics. Thus, we do not discuss collocation methods

in this document. We now turn our attention to the first three representations.
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1.2.1.1 Series Expansions of Orthogonal Functions

The spherical harmonic model represents the gravity field as a linear combination of an

infinite number of orthogonal functions on the sphere. These functions, often called spherical

harmonics, use the associated Legendre functions of the first kind for a given degree and order.

The frequency of each function increases with degree, which implies a smaller wavelength. These

shorter wavelengths correspond to smaller areas on the sphere. Thus, high-degree models imply

increased spatial resolution of the model. Contributions to the gravity field are often described

by these terms, i.e. long-wavelength variations correspond to low degree functions, etc. Detailed

treatments of this model may be found in Hofmann-Wellenhof and Moritz (2006), Kaula (1966),

Montenbruck and Gill (2005), and many others.

As the degree of available gravity models increases, so does the difficulty of accurately evalu-

ating the associated Legendre functions. Most methods utilize recursive formulations (for example

Rapp, 1982; Tscherning et al., 1983; Clenshaw, 1955). However, one must be careful to select a

numerically stable formulation (see, e.g., Lundberg and Schutz, 1988). Other methods compute

the functions in the frequency domain via Fourier transforms (Colombo, 1981; Dilts, 1985). With

current models available up to degree 2,160 (Pavlis et al., 2008) and ultra-high degree models in de-

velopment, research is ongoing. Jekeli et al. (2007) proposed a method that demonstrates stability

up to degree 10,800 by isolating stable oscillations based on a desired accuracy.

Use of the spherical harmonic model has extended beyond simple orbit propagation. Semi-

analytic theories for time varying orbit elements and relative satellite motion utilize expansions

of the spherical harmonic model. For example, sun-synchronous and critically inclined orbits are

often formulated in terms of the spherical harmonic model. Hofmann-Wellenhof and Moritz (2006),

Seeber (2003), Vallado and McClain (2007), and Kaula (1966) provide details on these semi-analytic

orbit propagation techniques. Early methods of satellite geodesy used these theories for gravity

field estimation via observed perturbations from the expected elliptical orbits (see, e.g., Heiskanen

and Moritz, 1967).
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The traditional form of the spherical harmonic model has a singularity at the poles (see,

e.g., Pines, 1973). Given finite precision representations of numbers in modern computers, this is

actually a small region in the vicinity of the polar axis at which this model becomes undefined.

Although the probability of a satellite passing directly over a pole is low, and usually known in

advance, this remains a concern for real-time satellite state estimation. Alternate representations

of the gravity potential have been proposed, particularly those in Pines (1973) and Gottlieb (1993),

which remove the singularity. As reformulations of the classical spherical harmonic model, these

alternatives also combine an infinite number of orthogonal functions on the sphere.

Like the spherical harmonic model, the ellipsoidal harmonic model represents one solution to

Laplace’s equation, albeit with boundary values on the surface of an ellipsoid. Use of this model

for astrodynamics applications has increased with recent interest in asteroids, with one such model

estimated for 433 Eros (Garmier et al., 2002). Instead of Legendre functions, the ellipsoidal har-

monic model uses Lamé functions of the second kind. Full descriptions of the ellipsoidal harmonics

may be found in Hobson (1931), Kaula (1966), and Garmier and Barriot (2001).

1.2.1.2 Linear Combination of Potentials

Models using a linear combination of potentials usually assume a collection of point masses,

i.e. the sum of individual gravity potentials yields the total potential of a system. However, other

forms exist.

Past applications of point-mass models include studies of the lunar gravity field. Muller and

Sjogren (1968) identified the presence of mass concentrations, dubbed mascons, in the moon. Based

on the locations of these mascons, Gottlieb (1970) estimated a gravity model using subsurface point

masses to account for gravity anomalies. Wong et al. (1971) took this process one step further, and

considered a collection of subsurface disks, each with uniform density. Both studies found improved

orbit determination accuracy when using such models.

Werner and Scheeres (1997) presents a model for evaluating the gravity field of any general

polyhedron. An irregularly shaped body, such as an asteroid, may be represented by a polyhedron



6

to some precision. Formulating the gravity potential as a volume integral of differential masses,

the gravity field may be represented by a linear combination of surface integrals on each face

and edge of the polyhedron. This model satisfies Laplace’s equation at any point outside of the

body, with accuracy limited by an assumption of constant density and the accuracy of the shape

representation (Werner and Scheeres, 1997). Instead of a single polyhedron, Scheeres et al. (2000)

defined the body as a collection of polyhedra, allowing for each polyhedron to have a different,

but individually uniform, density. Unfortunately, the polyhedron model is computational intensive

(Werner and Scheeres, 1997; Colombi et al., 2008).

Instead of the polyhedron model, some applications reduce computation time by considering

an irregularly shaped object as a collection of point masses. Geissler et al. (1996) defined the

asteroid 243 Ida by a collection of uniformly distributed point masses to study reaccretion patterns

of ejecta from the Azzurra crater. Ashenberg (2005) attempted to simplify the computational

burden of the full-body problem using a collection of point masses to represent the primary body.

Werner and Scheeres (1997) demonstrates this improved efficiency, unfortunately, comes at the cost

of accuracy.

1.2.1.3 Linear Combination of Nodes

Some gravity models define the gravity field, or some derived quantity, as a collection of

nodes with interpolation performed between them for evaluation of the gravity field. Typically,

these models provide fast evaluation or estimation capabilities.

The earliest (known) gravity model based on a collection of discrete nodes was proposed in

Junkins (1976), and further studied in Junkins (1977), Junkins and Saunders (1977) and Engels and

Junkins (1980). This model used finite element techniques to represent the gravity field. Based

on latitude and longitude, values were stored at discrete points up to an altitude of 1.2 Earth

radii, with evaluation between nodes accomplished via interpolating polynomials. With the second

degree terms represented using the spherical harmonic model, Junkins (1976) represented terms

up to degree 23 using the finite element model. Orbit propagation demonstrated over an order of
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magnitude improvement in computation speed with peak errors of 25 m. The authors concluded

that their model was not the optimal solution and further research would allow for refinements and

accuracy improvements. We are not aware of any published research using this model after Engels

and Junkins (1980).

Colombi et al. (2008) established a similar finite element scheme for irregularly shaped pri-

mary bodies. In Junkins (1976), the ellipsoidal shape of the Earth allowed for an easy, albeit

nonuniform, definition of the finite element mesh. However, irregularly shaped objects, such as

asteroids, require a more adaptive grid. Colombi et al. (2008) uses octrees for data storage and

rapid recall of the coefficients used for polynomial interpolation. Most orbit propagation errors,

when compared to a polyhedron model, were within 4 m with peak errors of 20 m. In Colombi

et al. (2009), the authors refine this model to allow variable density nodes, based on gravity vari-

ations, and switched to B-spline interpolation. Orbit propagation results were similar to those of

the cubetree model.

Beylkin and Cramer (2002) proposed three new models: (1) B-splines defined on the surface

of a sphere, (2) polynomials on subdivisions of the surface of the cube, and (3) B-splines on the

surface of a cube. The third model is the cubed-sphere model, which combines the benefits of the

first two. A major goal in the development of these models was to improve computational efficiency

when using geopotential models. Effectively, it is a trade of speed for memory, i.e. file size. Modern

computers have more than sufficient memory for this purpose. In (1), defining B-splines on the

surface of the sphere maintains the stretching and the resulting oversampling near the poles. In

(2), using piecewise polynomials on the face of the cube requires a higher sampling rate than using

splines. In (3), using splines on the faces of the cube does not have stretching near the poles

associated with the first model, and uses the lower sampling rate associated with splines. Hence,

option (3) is more efficient. Beylkin and Cramer (2002) proposed this new cubed-sphere model,

but, as of the start of this research, it had not yet been profiled for astrodynamics applications.

As opposed to fast evaluation, similar models were designed for optimizing the gravity esti-

mation problem. For the previous models of this section, values at the nodes are computed using
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another base model, i.e. the spherical harmonic model. Meissl (1981) designed and generated the

first finite element model for the estimation problem by solving for the gravity field at a collection

of nodes when given inhomogenous terrestrial measurements. Results demonstrated that the com-

putational requirement for such an estimation process was superior to other methods at the time.

Svensson (1984) independently developed a similar method. More recently, Fas̆ková et al. (2010)

extended such a finite element representation to three dimensions to approximate the gravity field

above the Earth’s surface in a small region. Although not yet defined, the tools presented in Beylkin

and Monzón (2010) and Ahrens and Beylkin (2009) combine to generate another discretized model

for optimal estimation. We explore this model further in this research.

1.2.2 Towards Efficient Evaluation of the Gravity Field

Demands for gravity model accuracy and computational efficiency are increasing. Satellite

missions requiring autonomy must generate a navigation solution in real-time, but onboard com-

putational resources are limited. Missions like COSMIC (Rocken et al., 2000) require reduced

orbit determination evaluation times to provide near real-time observations of space and terrestrial

weather (Hwang et al., 2008). The Jet Propulsion Laboratory also generates near real-time orbit

determination solutions for the Jason-2 satellite (Desai et al., 2010) and the full GPS constellation

(Weiss et al., 2010). In the case of Jason-2, the orbit determination system requires a 200×200

model (Bertiger et al., 2010). Some systems observe and generate orbit determination solutions of

multiple satellites. The US Air Force maintains a catalog of all known space objects, and propa-

gates the state of each forward in time, along with the state-error covariance matrix, to continue

tracking and predict any collisions. In 2004, the Air Force tracked approximately 10,000 space

objects (Tirpak, 2004). In just five years, that estimate almost doubled to 19,000 objects (James,

2009). As the catalog continues to expand, so does the the computational burden of these surveil-

lance operations. Thus, such systems require rapid orbit propagation for both catalog estimation

and propagation. Gravity models also limit simulation capabilities, especially for real-time and

Monte Carlo studies for requirements definition, trade studies, and flight software verification and
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validation. Tasks such as these require computationally efficient models of the satellite dynamics.

When using the common spherical harmonic model of the gravity potential, model com-

putation time increases quadratically with degree (Beylkin and Cramer, 2002). In other words,

increasing the degree and order of the gravity model by a factor of 10 results in a factor of 100

increase in operations required for evaluation. Thus, increasing the fidelity of models used in or-

bit propagation requires a considerable increase in computation time. Figure 1.1 illustrates this

quadratic increase.

Figure 1.1: Average execution time (over 10,000 evaluations) for the spherical harmonic model of
a given degree and order.

The spherical harmonic model may be made faster through a careful implementation. The

most common approach reduces the number of operations required to compute the associated

Legendre functions (Bettadpur et al., 1992; Gottlieb, 1993). Another approach seeks to reduce the

model to the subset of orthonormal functions that dominate the solution (Hujsak, 1996). Other

techniques demonstrate improved speed by reformulating the model entirely.

In the early days of gravity model development, available memory partially limited computing

capabilities. This led to the development of gravity estimation and modeling techniques that
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minimize memory requirements (see, e.g., Deprit, 1979). Since modern computers have memory

limitations on the order of gigabytes, this is no longer a concern. For this reason, new methods for

improving the efficiency of gravity field evaluation use these changes in modern computers to swap

computation time for larger memory requirements.

Junkins (1976) first identified the need for fast evaluation of the gravity field, which motivated

the development of the previously described finite elements model. This reformulation of the gravity

field yielded an order of magnitude reduction in computation time (Junkins, 1976), but the model

went largely unused. Ryan Russell of the Georgia Tech Institute of Technology recently began using

this model for space situational awareness (SSA) applications.1 However, that work has yet to be

published.

Gravity acceleration approximation functions (GAAF) also reduce the computational burden

of evaluation (Hujsak, 1996). Using a pseudocenter unique to the point of evaluation, the two-body

equation is evaluated. Least squares techniques are used to determine these pseudocenters at node

points based on a given gravity model and a required accuracy. Interpolation is then used to

evaluate the gravity field at points between nodes. Results demonstrate a GAAF model equivalent

to a 70×70 spherical harmonic model requires the same computation time as a 5×5 model. However,

the GAAF models tested in Hujsak (1996) were optimized for efficient evaluation at the expense of

precision with the spherical harmonic model from which it was derived.

1.2.3 Towards Efficient Estimation of the Gravity Field

1.2.3.1 Earth-Based Estimation

Estimation of the gravity field began with pendulum experiments conducted at or near the

Earth’s surface during the time of Newton. Inconsistencies between these measurements identified

the nonuniformity of the gravity field over the Earth’s surface. Heiskanen (1938) provided the first

estimate of the second-degree zonal and tesseral harmonics using such terrestrial observations. The

launch of Sputnik signaled the start of satellite geodesy, with the tracking of the Vanguard mission
1 http://www.dodsbir.net/selections/sttr1 09B.htm
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yielding the first measurement of the third-degree zonal term (O’Keefe et al., 1959). Modern geodesy

combines both these terrestrial and satellite-based observations to estimate the gravity field. A

comprehensive history of gravity estimation, up to the time of publication, may be found in Nerem

et al. (1995). These first efforts laid the foundations for the gravity field estimation techniques

employed today, and were efficient and well suited to the capabilities of the time. However, modern

computers, which provide more memory and parallel processing capabilities, provide opportunities

for improved gravity estimation.

Accuracy and resolution of gravity models improved considerably with the emergence of

satellite geodesy. A lack of terrestrial-based gravity measurements over large bodies of water lim-

ited estimation of the global gravity field (Nerem et al., 1995). Satellite geodesy offers a solution

to this problem by measuring perturbations in the satellite’s orbit over these areas. Early al-

timetry missions yielded more data through the 1990’s, culminating in the development of the

70×70 Joint Gravity Model 3 (JGM-3), which combined terrestrial observations with those of the

TOPEX/Poseidon satellite (Tapley et al., 1996). Using highly-accurate range measurements be-

tween two satellites, the GRACE mission provides a means for estimating a 200×200 spherical

harmonic model (Tapley et al., 2005). Such satellite-based observations, which offer higher tempo-

ral resolution, also provide information on the time-varying gravity field, i.e. changes in the gravity

field caused by mass flow. Lemoine et al. (2010) consider these temporal changes to be one of the

largest sources of error in modern precise orbit determination.

Estimating higher-resolution spherical harmonic models via satellite measurements fails to

meet accuracy requirements for observing local gravity fluctuations. Observations of changes in the

gravity field over a given area provide information on the change in mass over time, i.e. ice melt,

rainfall, etc. Terrestrial methods for generating such observations require measurements covering

large distances with adequate temporal resolution, and for extended periods of time. Such methods

are inefficient and costly. Satellite geodesy offers an alternative method for monitoring such changes

in the gravity field. Increased accuracy in space-based measurements of gravity provides information

on the shorter-wavelength contributions, which allows for better spatial resolution of the estimated
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model. Thus, localized models may be derived from the spherical harmonic model. However,

these high-degree terms are highly dependent on the estimation algorithm and assumptions. For

example, Sørensen and Forsberg (2010) demonstrate that different approximation techniques yield

estimates in the change in mass of Greenland that differ by as much as 100 gigatons per year.

Such discrepancies must be resolved before making quantitative conclusions based on the satellite

determined temporal variations in the local gravity field.

1.2.3.2 Asteroid-Based Estimation

Interest in missions to small bodies, such as asteroids and comets, has grown considerably

in recent years. One of the options proposed in the 2009 Review of the U. S. Human Spaceflight

Plans Committee calls for the consideration of robotic and human missions to asteroids (Augustine

et al., 2009). Beginning in 2000, the NEAR Shoemaker spacecraft (Cheng et al., 1997) inserted into

orbit about the asteroid 433 Eros, and studied it for a year before landing. The Hayabusa satellite

(Fujiwara et al., 2000) journeyed to 25143 Itokawa, and operated in a proximity of the asteroid for

several months before landing, collecting a sample, and returning in June of 2010. Additionally, the

DAWN satellite (Russell et al., 2004), which was launched in 2007, will explore the dwarf-planet

Ceres and the asteroid 4 Vesta in the next three years. The ESA Rosetta (Glassmeier et al., 2007)

mission, the joint Russia and China mission Phobos-Grunt (Marov et al., 2004), NASA Goddard’s

proposed OSIRIS-REx, and the potential JAXA Hayabusa-2 are just a few of the planned missions

to small bodies currently in development.

The planning and execution of these asteroid missions has identified new gravity estimation

problems. Very little may be known about the gravity field of a target asteroid before arrival,

thereby adding complications to initial mission design. The irregular shapes of these asteroids imply

large gravity perturbations, requiring a staged approach. Unfortunately, the spherical harmonic

model provides no natural description of such a mission design. Finally, for precision landing and

operations close to the primary body, the likelihood of needing to evaluate a gravity model within

the spherical harmonic model’s circumscribing sphere increases.
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Although we have little information on the gravity field of the asteroid before orbital opera-

tions, some methods exists for generating an initial approximation. We may observe interactions

with other bodies to estimate the asteroid’s mass, and thus its gravitational parameter. Addition-

ally, radar derived models of the shape may be generated (Scheeres et al., 1996, 1998). With these

initial estimates of the total mass and shape, we can estimate the gravity perturbations using a

polyhedron representation with uniform density (Werner and Scheeres, 1997). However, there is no

a priori knowledge of the gravity field error with this assumption. Takahashi and Scheeres (2010)

demonstrate that a series of high-altitude flybys may be performed to estimate the low-degree

terms. Although these methods may reduce the orbital mission time by providing a low-accuracy

estimate of the gravity field, higher accuracy models, which are required for low-altitude operations

or precise landing, must be made in situ.

When estimating the gravity field of a relatively unknown primary body, it is important to

stage the estimation in a natural manner. In such a procedure, one would like to first obtain the

low spatial frequencies of the model and, then, gradually higher spatial frequencies as we approach

the body. The spherical harmonic model is ill-suited for such an approach since its components do

not decay fast enough. For this reason, estimation within that model is done typically all at once

using all available data, and after fixing the degree of the approximation.

(a) 25143 Itokawa (b) 433 Eros

Figure 1.2: Asteroids 25143 Itokawa and 433 Eros, as seen from opposite sides
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The primary concern for small-body gravity representations is the shape of the primary

body. Irregularly shaped bodies pose problems for using the spherical harmonic models. As seen

in Figure 1.2, the asteroids 433 Eros and 25143 Itokawa are roughly elliptical in shape. For this

reason, the elliptical harmonics model is more appropriate than the spherical one. Results indeed

demonstrate the advantages of the elliptical harmonics gravity model (Garmier et al., 2002). For

both the spherical and elliptical harmonic models, the partial sum diverges for points within the

circumscribing sphere (or ellipsoid), thus limiting the minimum valid altitude. Unfortunately,

not all asteroids are ellipsoidal and, thus, other gravity representations suited for a more-or-less

arbitrary shape are desired.

Several models have attempted to solve the issue of shape. Werner and Scheeres (1997)

models the asteroid as a constant density polyhedron that converges on a solution for all points

outside of the object. Gravity estimation methods have been suggested (Scheeres et al., 2000),

but such a model is computationally expensive (Werner and Scheeres, 1997). The pubtree model,

the interpolation model based on the polyhedron, improves computational efficiency but is poorly

suited for estimation (Colombi et al., 2009). Park et al. (2010) considers an alternate approach,

representing the body as a collection of spheres (or cubes) with fixed locations, and estimating

the mass of each element. However, this model may become computationally expensive and the

estimation problem ill-conditioned if the number of masses is large. Additionally, these models do

not yield a staged approach.

1.3 Dissertation Overview

In this research, we apply the cubed-sphere model and a new multiresolution model (MRQ-

Sphere) to fast orbit propagation and gravity estimation, respectively. For the cubed-sphere model,

we assess improvements in computational efficiency, while also characterizing any changes in prop-

agated trajectories. Given this characterization, we then integrate the model with the orbit deter-

mination process, thus allowing for high-fidelity satellite state estimation with little or no sacrifice

in computation cost. The MRQSphere model uses quadratures (for the sphere) invariant under the
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icosahedral group, which we apply to the estimation problem for a simplified mission to 433 Eros.

In this study, we do not address the issues of shape of the primary body and leave this issue for

the future. This study proves the model may be used for estimation, and justifies future work.

In Chapter 2, we present the gravity models used throughout this document. The reader will

find detailed descriptions of the cubed-sphere and the MRQSphere models. We also present perti-

nent mathematical tools used in formulating these representations. In Chapter 3, we briefly present

the orbit determination tools used in this research. We do not provide detailed derivations, but

present the algorithms and principle equations for future discussion. In Chapter 4, we discuss the

methods used to configure the cubed-sphere and MRQSphere models. This includes a presentation

of the trade-offs, i.e. speed for memory, that must be considered by the user before generating the

model. We establish a framework for model configuration, which we use in the remainder of the

document. Chapter 5 characterizes orbit propagation errors and computation improvements when

using the cubed-sphere model. We integrate the cubed-sphere model with the orbit determination

process and present results in Chapter 6. This includes an expansion in the number of models

represented, when compared to Chapter 5, and their impacts on the orbit determination process.

Chapter 7 characterizes the use of the MRQSphere model for gravity estimation. Specifically, this

chapter applies the model to an asteroid, and, using a simplified simulation, verifies the model may

be used for gravity estimation. Finally, Chapter 8 presents a summary of research contributions,

conclusions, and describes future work to characterize these new gravity models.



Chapter 2

Modeling the Gravity Field

As a satellite orbits a primary body, gravity perturbations cause deviations from a Keple-

rian orbit. As mentioned in Chapter 1, there are several methods for mathematically describing

these perturbations. This chapter provides an overview of the gravity models used throughout this

document. We begin with a presentation of the different forms of the spherical harmonic model,

which includes the classical, Pines, and the Cartesian models. Next, we present a simple point-

mass model. The last two sections describe the new models profiled in the document. Section 2.3

describes the cubed-sphere gravity model. This description includes a brief overview of the mathe-

matical tool employed, and finally a description of the full model. Finally, Section 2.4 presents the

MRQSphere model, including a mathematical overview and a model description.

2.1 Spherical Harmonic Models

Newton’s Universal Law of Gravitation states the attraction between two particles may be

written as

F = M2r̈ = G
M1M2

r2
r̂ (2.1)

where G is the gravitational constant, M1 and M2 are the masses of the primary and secondary

bodies, respectively, and r is the distance between them in direction r̂. When combined with

Newton’s Second Law, we have

r̈ =
µ

r2
r̂ (2.2)
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where the gravitation parameter µ is simply GM1. This acceleration vector may also be derived

by evaluating the gradient of the potential function

U =
µ

r
, (2.3)

which satisfies Laplace’s equation

∇2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0. (2.4)

The above equations treat the primary body with mass M1 as a point mass. It is trivial to

demonstrate the same equation holds true for the potential at a point outside of a sphere with

uniform mass. Equation 2.4 remains valid for the gravity potential of any differential mass ρ dx dy

dz, or the sum of any such masses (Kaula, 1966). Thus, any representation of the gravity potential

must satisfy Laplace’s Equation.

One solution to Laplace’s Equation, with boundary values on the surface of the sphere, is

found via the spherical harmonics. This spherical harmonic model represents variations in the

gravity field as a sum of orthogonal functions on the sphere. In one of its most common forms, we

write the spherical harmonic gravity model

U(r, φ, λ) =
µ

r

∞∑
n=2

(
R

r

)n n∑
m=0

P̄n,m [sin(φ)] {C̄n,m cos(mλ) + S̄n,m sin(mλ)} (2.5)

where R is the primary body reference radius, the spherical coordinates r, φ, and λ correspond

to the radius, geocentric latitude, and longitude, respectively, P̄n,m[x] are the associated Legendre

functions of degree n and order m, and the Stokes coefficients C̄n,m and S̄n,m describe the specific

model. We note that the bar above a given variable refers to the normalized form of the given

variable. Kaula normalization (Kaula, 1966) is of the form

Sn,m =
S̄n,m
Πn,m

Cn,m =
C̄n,m
Πn,m

Pn,m = Πn,mP̄n,m. (2.6)

where

Πn,m =

√
(n+m)!

(n−m)!(2− δ0m)(2n+ 1)
. (2.7)
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δ0m is the Kronecker delta, i.e. δ0m = 1 for m = 0 and δ0m = 0 for m 6= 0. For unit Cn,m and Sn,m,

this normalization yields a value of 4π when integrating the inner sum of Equation 2.5 over the

sphere. The amplitude and phase of these functions are determined by the model specific Stokes

coefficients, while frequency results from the degree and order of the specific term. The following

sections discuss the Legendre functions and the different forms of the spherical harmonics model

used in this document.

2.1.1 Associated and Derived Legendre Functions

Before discussing the full model, it is prudent to describe the functions used to model the

variations in the gravity field on the sphere. Specifically, we discuss the variations as a function of

the geocentric latitude φ for different degree n and order m. In the spherical harmonic model, these

variations are often represented by the associated Legendre functions (ALFs) Pn,m[x]. For large

degree models, specifically those greater than degree 150, we require a fully normalized form of the

ALFs to prevent overloading of the double precision floating point values. We use the method of

Rapp (1982) to generate the fully normalized ALFs, or

P̄0,0[x] = 1

P̄1,0[x] =
√

3x

P̄1,1[x] =
√

3(1− x2)1/2 (2.8)

P̄n,n[x] =

√
2n+ 1

2n
(1− x2)1/2P̄n−1,n−1[x] n > 1

P̄n,m[x] = Bn,mxP̄n−1,m[x]− Bn,m
Bn−1,m

P̄n−2,m[x] m < n

where

Bn,m =

√
(2n+ 1)(2n− 1)
(n+m)(n−m)

. (2.9)

Since the Bn,m coefficients are not a function of x, they may be precomputed at software initial-

ization and stored in memory for future use. The functions Pn,0 are also known as the Legendre

polynomials. Several forms of the ALFs exist, most notably those provided in Hofmann-Wellenhof
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and Moritz (2006), Kaula (1966), the Tscherning (1976) reformulation of Clenshaw (1955), and

Colombo (1981). Although Tscherning (1976) indicates the method of Rapp (1982) is not the most

computationally efficient, Lundberg and Schutz (1988) demonstrated it is the most numerically

stable of the fully normalized methods for large degree n.

Both the Pines and Cartesian models (described below) require a reformulation of the ALFs,

called the derived Legendre functions An,m[x] (DLFs). The ALFs are related to the DLFs by

Pn,m[x] = (1− x2)m/2An,m[x]. (2.10)

Lundberg and Schutz (1988) recommend the DLF formulation

Ā0,0[α] = 1

Ā1,0[α] = α
√

3

Ā1,1[α] =
√

3 (2.11)

Ān,n[α] =

√
2n+ 1

2n
Ān−1,n−1[α] n > 1

Ān,m[α] = αBn,mĀn−1,m[α]− Bn,m
Bn−1,m

Ān−2,m[α] m < n

where we provided Bn,m in Equation 2.9. The method of Equation 2.11 is the DLF form of the

ALF formulation of Rapp (1982).

2.1.2 The Classic Formulation

The classic model refers to the model presented in Equation 2.5, and discussed in many basic

astrodynamics texts (e.g. Kaula, 1966; Vallado and McClain, 2007; Bate et al., 1971; Tapley et al.,

2004b). This model has been studied extensively in the literature (e.g. Deprit, 1979; Cunningham,

1970; Tscherning et al., 1983; Melvin, 1985), and is characterized by the method used to solve for

the ALFs. The acceleration vector, in Cartesian coordinates, at a given point is found using

r̈ =
(
∂r

∂r

)T∂U
∂r

+
(
∂φ

∂r

)T∂U
∂φ

+
(
∂λ

∂r

)T∂U
∂λ

, (2.12)
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where

∂r

∂r
=

[
x

r

y

r

z

r

]T
∂φ

∂r
=

1√
x2 + y2

[
−xz
r2

−yz
r2

1− z2

r2

]T
(2.13)

∂λ

∂r
=

1
x2 + y2

[
−y x 0

]T
.

Upon differentiating Equation 2.5, the partials required for Equation 2.12 are

∂U

∂r
= − µ

r2

∞∑
n=2

n∑
m=0

(
R

r

)n
(n+ 1)P̄n,m [sin(φ)] {C̄n,m cos(mλ) + S̄n,m sin(mλ)}

∂U

∂φ
=

µ

r

∞∑
n=2

n∑
m=0

(
R

r

)n
{P̄n,m+1[sin(φ)]Π′n,m −m tan(φ)P̄n,m[sin(φ)]}

×{C̄n,m cos(mλ) + S̄n,m sin(mλ)} (2.14)

∂U

∂λ
=

µ

r

∞∑
n=2

n∑
m=0

(
R

r

)n
mP̄n,m[sin(φ)]{S̄n,m cos(mλ)− C̄n,m sin(mλ)}

where

Π′n,m =

√
(n+m+ 1)(n−m)(2− δ0m)

2
. (2.15)

As seen in the result for ∂φ/∂r, there is a singularity at the poles for this model. We must include

the scale factor Πn,m+1/Πn,m in ∂U/∂φ to ensure proper cancellation of the normalization factors.

We compute the values of Π′n,m at initialization and store them in memory to reduce computation

time.

2.1.3 The Pines Formulation

A second formulation represents the gravity field without the presence of a singularity at the

poles. This Pines model (Pines, 1973) operates on the direction cosines of the coordinates, i.e. the

satellite position is represented by

r = r


s

t

u

 (2.16)
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where

s =
x

r
, t =

y

r
, u =

z

r
. (2.17)

The addition of a fourth term, r, adds a fourth partial sum. We use the implementation of the

Pines model presented by Spencer (1976) with minor variations to improve computational efficiency.

Specifically, we reorganize terms and use the normalized form of the DLFs previously described.

The Pines formulation of the gravity potential is

U(r, s, t, u) =
µ

r

∞∑
n=0

(
R

r

)n n∑
m=0

Ān,m[u]D̄n,m, (2.18)

where D̄n,m will be defined shortly. When removing the singularity at the poles, a 1/ cosm(φ) factor

was introduced (Lundberg and Schutz, 1988). This factor was then incorporated into the recursion

relation for the ALFs, resulting in the creation of the DLFs. Variations in the longitudinal direction

are represented by

p0 = 1 (2.19)

q0 = 0 (2.20)

pm = spm−1 − tqm−1 (2.21)

qm = sqm−1 + tpm−1 (2.22)

and

D̄n,m = C̄n,mpm + S̄n,mqm (2.23)

Ēn,m = C̄n,mpm−1 + S̄n,mqm−1 (2.24)

F̄n,m = S̄n,mpm−1 − C̄n,mqm−1. (2.25)

The acceleration is found by evaluating

r̈ =


a1

a2

a3

+ a4


s

t

u

 (2.26)
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where

a1 =
µ

Rr

∞∑
n=0

(
R

r

)n+1 n∑
m=0

mĀn,m[u]Ēn,m (2.27)

a2 =
µ

Rr

∞∑
n=0

(
R

r

)n+1 n∑
m=0

mĀn,m[u]F̄n,m (2.28)

a3 =
µ

Rr

∞∑
n=0

(
R

r

)n+1 n∑
m=0

Ān,m+1[u]D̄n,m

Π′n,m+1

Π′n,m
(2.29)

a4 = − µ

Rr

∞∑
n=0

(
R

r

)n+1 n∑
m=0

Ān+1,m+1[u]D̄n,m

Π′n+1,m+1

Π′n,m
. (2.30)

When evaluating the Pines model of degree n, the derived Legendre functions of degree

n+1 are required, which reduces the computational performance. The Pines model has since been

improved by Fantino and Casotto (2009), but this new implementation was not considered for this

research.

2.1.4 The Cartesian Formulation

The Cartesian model (Gottlieb, 1993) (sometimes referred to as the Gottlieb model) is a

reformulation of the Pines model to operate directly on the planet-centered, planet-fixed Carte-

sian coordinates. Like the Pines model, the Cartesian model introduces a fourth term to prevent

ambiguity at the poles. Thus, several similarities will be immediately evident. However, only the

derived Legendre functions up to degree n are required.

The Cartesian formulation of the gravity potential is

U =
µ

r
+
µ

r

∞∑
n=2

(
R

r

)n n∑
m=0

Ān,m

[z
r

]
D̄n,m (2.31)

with the acceleration vector found by evaluating

r̈ = − µ
r3

r +
µ

r2




a1

a2

a3

−
(za3

r
+ a4

) r
r

 . (2.32)
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The variations in the longitudinal direction are also described by

p̄0 = 1 (2.33)

q̄0 = 0 (2.34)

p̄1 =
x

r
(2.35)

q̄1 =
y

r
(2.36)

p̄m = p̄1p̄m−1 − q̄1p̄m−1 (2.37)

q̄m = q̄1q̄m−1 + p̄1q̄m−1 (2.38)

and

D̄n,m = C̄n,mp̄m + S̄n,mq̄m (2.39)

Ēn,m = C̄n,mp̄m−1 + S̄n,mq̄m−1 (2.40)

F̄n,m = S̄n,mp̄m−1 − C̄n,mq̄m−1 (2.41)

The ai coefficients are then

a1 =
∞∑
n=2

(
R

r

)n n∑
m=1

mĀn,m

[z
r

]
Ēn,m (2.42)

a2 =
∞∑
n=2

(
R

r

)n n∑
m=1

mĀn,m

[z
r

]
F̄n,m (2.43)

a3 =
∞∑
n=2

(
R

r

)n n∑
m=0

Ān,m+1

[z
r

]
D̄n,m

Π′n,m+1

Π′n,m
(2.44)

a4 =
∞∑
n=2

(
R

r

)n n∑
m=0

(n+m+ 1)Ān,m
[z
r

]
D̄n,m. (2.45)

2.2 Point-Mass Model

The point-mass model refers to a gravity field resulting from a collection of N point masses

within a given spherical volume with radius Rp. Each point mass is described by the values ηi and

Ri, which represent the mass and position of mass i, respectively. The total gravitation acceleration

(r̈p) is

r̈p = −G
N∑
i=1

ηi (r−Ri)
|r−Ri|3

(2.46)
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and the gravity potential is

U(r) = −G
N∑
i=1

ηi
|r−Ri|

. (2.47)

We use

G = 6.67428× 10−20 km3/(kg · sec2) (2.48)

for the gravity constant (Mohr et al., 2007).

We may represent a point-mass model using a spherical harmonic expansion. For a given set

of point masses,

C̄ ′n,m =
1

M(2n+ 1)

N∑
i=1

(
ri
Rp

)n
P̄n,m[sin(φi)] cos(mλi)ηi (2.49)

S̄′n,m =
1

M(2n+ 1)

N∑
i=1

(
ri
Rp

)n
P̄n,m[sin(φi)] sin(mλi)ηi, (2.50)

where (Ri, φi, λi) is the location of the i-th point mass in spherical coordinates, and

M =
N∑
i=1

ηi. (2.51)

Equations 2.49 and 2.50 are presented in Thompson et al. (2008), with alterations to yield the

normalized Stokes coefficients.

2.3 Cubed-Sphere Gravity Model

Originally proposed in Beylkin and Cramer (2002), the cubed-sphere model defines a new

method to compute geopotential and acceleration. Essentially, the sphere is mapped to a cube

with a new coordinate system defined on each face. Each face is segmented by an uniform grid

and interpolation is performed to find the acceleration. Multiple spheres, each mapped to a cube,

are nested within each other and interpolation is performed between adjacent shells to account for

the acceleration variation in the radial direction. The mapping of a sphere to a cube is illustrated

in Figure 2.1. A grid spacing scheme is established with values for acceleration precomputed at

intersections of the grid lines. Basis splines, or B-splines, were selected to represent functions on

each face of the cube. The following sections describe the cubed-sphere model in detail.
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Figure 2.1: Illustration of the mapping from a sphere to a cube.

A major goal of the cubed-sphere model development is to improve computational efficiency

in using geopotential models. Effectively, it is a trade of speed for memory, i.e. file size. However,

a modern computer has more than the sufficient memory for this purpose.

2.3.1 Basis Spline Interpolation

Future sections of this chapter assume a fundamental understanding of basis splines, or B-

splines. Thus, we include a basic description here. This includes a general discussion of B-splines,

B-spline interpolation, and a fast Fourier transform (FFT) algorithm for generating interpolation

coefficients.

After selecting a set of n nodes T = t0, . . . , tn−1, called knots, a B-spline may be defined by

Bjm(x) = ωjmBj,m−1(x) + (1− ωj+1,m)Bj+1,m−1(x) (2.52)

where m is the degree of the spline, j is an index,

ωjm =
x− tj

tj+m − tj
, (2.53)

and

Bj0(x) =


1, tj ≤ x < tj+1

0, otherwise.

(2.54)

For T and B-splines of degree m, there are n−m−1 piecewise polynomials defined by Equation 2.52

that are nonzero in the range [t0, tn−1).
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As indicated by Equations 2.53 and 2.54, nodes govern the shape and range of a given B-spline.

Several of these polynomials are illustrated in Figure 2.2 using the knots and degree indicated. We

note the increase in sharpness of the peaks corresponding to locations of repeated roots and lower

degree. Repeated roots may create a discontinuity, which has been illustrated for completeness.

The cubed sphere does not include any repeated roots, thus this discontinuity is not an issue. A

thorough discussion of the node and degree relationship may be found in deBoor (2001).

We commonly use B-splines to approximate a function g(x) by

g(x) ≈ g̃(x) =
n−m−2∑
j=0

αjBjm(x) (2.55)

for x in the range defined by T. After a selection of T and m, we may determine the weights αj to

best approximate g(x) when given γi = g(xi) at a sequence of data sites xi. Knots and data sites

may not necessarily coincide. Like any interpolation scheme, we may control accuracy by the knot

density and the degree of the basis functions.

Figure 2.2: Example B-splines for various degree m and knots T.

We now derive an algorithm to solve for the weights αj in the frequency domain using Cardinal
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B-splines. A Cardinal B-spline is centered at one of a set of equally spaced knots tj . We may define

such a B-spline as the convolution

Bm(x) = (Bm−1 ∗B0)(x), (2.56)

where

B0(x) =


1, |x| ≤ 1

2

0, otherwise.

(2.57)

For our purposes, we only consider B-splines of odd degree m, thus Bm, being centered at tj , is an

even function and nonzero only in the interval [tj − (m + 1)/2, tj + (m + 1)/2]. We dropped the

index term j since Cardinal B-splines are simply an integer translation of each other, and may be

accounted for in the independent variable x. On taking the Fourier transform of B0,∫ +∞

−∞
B0(x)e−2πixξdx =

sinπξ
πξ

, (2.58)

we obtain ∫ +∞

−∞
Bm(x)e−2πixξdx =

(
sinπξ
πξ

)m+1

. (2.59)

For our purposes, we use a periodized version of B-splines on the interval [0, 1]. Subdividing [0, 1]

into N = 2k subintervals, where N ≥ m + 1 (in practice N � m + 1), we consider the basis of

B-splines on this subdivision,

{Bm(Nx− j)}j=0,1,...,2k−1 . (2.60)

Let us consider a function g(x) that may be written as

g(x) =
N−1∑
j=0

αjBm(Nx− j). (2.61)

Instead of using the basis of B-splines, we may also write the same function as

g(x) =
N−1∑
j=0

γjLm(Nx− j) (2.62)

where Lm are interpolating splines of a given degree m, i.e.

Lm(l) = δl,0, (2.63)
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where l is an integer and δi,j is the Kronecker delta function. The definition of interpolating splines

implies that the coefficients in Equation 2.62 are, in fact, the values of the function g(x) on the

lattice,

γl = g(l/N). (2.64)

In our problem, we are given the values γl = g(l/N) and need to find the coefficients αj in

Equation 2.61. We have∫ 1

0
Bm(Nx− j)e−2πixndx =

1
N
B̂m

( n
N

)
e−2πijn/N , (2.65)

and computing the Fourier coefficients of g in Equation 2.61, we obtain

ĝn =

 1
N

N−1∑
j=0

αje
−2πijn/N

 B̂m

( n
N

)
= α̂nB̂m

( n
N

)
. (2.66)

Similarly, we compute the Fourier coefficients of g in terms of interpolating splines,

ĝn =

 1
N

N−1∑
j=0

γje
−2πijn/N

 L̂m

( n
N

)
= γ̂nL̂m

( n
N

)
. (2.67)

The B-splines and the interpolating splines are related by (see, e.g., Chui (1992))

L̂m

( n
N

)
=
B̂m

(
n
N

)
a
(
n
N

) (2.68)

where

a(ω) =
∑
j∈Z

∣∣∣B̂m(ω + j)
∣∣∣2 . (2.69)

It may be shown that a(ω) is a trigonometric polynomial (see, e.g., Chui (1992))

∑
j∈Z

∣∣∣B̂m(ω + j)
∣∣∣2 =

m∑
l=−m

B2m+1(l)e−2πilω, (2.70)

thus simplifying the evaluation of a(ω). Finally, substituting Equation 2.68 into Equation 2.67, we

get

ĝn = γ̂n
B̂m

(
n
N

)
a
(
n
N

) , (2.71)

which implies

α̂n =
γ̂n

a
(
n
N

) . (2.72)



29

In other words, applying the discrete Fourier transform to the data values γl = g(l/N), scaling by

the factor 1/a
(
n
N

)
and applying the inverse discrete Fourier transform, we obtain the coefficients

αj in Equation 2.61. The two dimensional case is a straightforward extension, where

α̂k,l =
γ̂k,l

a
(
k
N

)
a
(
l
N

) . (2.73)

2.3.2 Model Description

The cubed-sphere model may be used to approximate any number of elements defined on

a primary body. For example, it can approximate each component of acceleration, or the gravity

potential. The accelerations are not directly derived from the potential, but are stored separately

(in a submodel). Thus, in order for a model to provide both potential and three components of

acceleration, values of all four parameters are stored at each point for future interpolation. In the

following sections, any reference to modeling the gravity potential may also be applied to modeling

acceleration (with the appropriate adjustments). This description of the cubed-sphere model follows

that of Jones et al. (2010b).

The cubed-sphere model is currently derived from an existing gravity model, hereafter called

the base model. Although other models such as a polyhedron or mascon may serve this role, we

currently use the spherical harmonic model as the base model. In the cubed-sphere model, the first

four nonzero terms of the spherical harmonic expansion, i.e. the two-body term, J2, the (∗)2,1, and

(∗)2,2 terms are used directly. The cubed-sphere model does not include the lower order terms to

reduce the range of approximated values, thereby decreasing the cost of maintaining accuracy in

the local model. The geopotential values computed by the remaining terms in the base model are

then represented by the basis functions on the surface of the cube.

Temporal variations, such as solid or liquid tides, influence the geopotential. These variations

mostly affect lower degree terms of the potential. The cubed sphere only models terms of degree

greater than or equal to a chosen minimum degree and order, in this case 3. This parameter may

be adjusted to allow for perturbations in the lower degree terms while higher degree terms are

expressed in the cubed-sphere formulation. Of course, this may slightly affect computation time.
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A key parameter of the cubed-sphere model is the grid size, N . Similar to the degree and

order of the spherical harmonic model, the grid size defines the density of the grid on each cube

face and is a measure of model fidelity. For a given altitude, the values of latitude and longitude

are segmented such that

λ = 2πx, φ = 2πy (2.74)

where x and y are discrete values in the range [0, 1). In order to have a fast algorithm to compute

coefficients of the B-splines from the values of the spherical harmonic model, the values of the

latitude, φ, are extended to the interval [0,2π). It may not be readily apparent how this is done,

but this will be explained in a moment.

Latitude and longitude are mapped to a two dimensional grid, with spacing N−1, specified

by x and y to solve for the B-spline coefficients. As described in Section 2.3.1, the interpolation

coefficients are easily computed in the Fourier domain. Since the grid variables x and y are 1-

periodic, we may use the two-dimensional FFT algorithm to provide a fast method for finding the

B-spline coefficients.

If φ only varies from −π/2 to π/2, or 0 to π, then y is not 1-periodic and the FFT algorithm

cannot be used directly. To periodically extend the Earth’s geopotential, we duplicate it to complete

the period. The mathematical formulation of the new geopotential, Up, is then

Up(r, φ, λ) =


U(r, φ, λ) if 0 ≤ φ < π,

U(r, 2π − φ, λ+ π) if π ≤ φ < 2π,

(2.75)

and φ is now a value in the range [0, 2π). Thus, Up is 2π-periodic. The offset of the longitude by

π in the second case of Equation 2.75 assures that all spherical harmonics are extended smoothly

(with all derivatives) to the interval [0,2π). One can see this by the fact that one period of φ

circumscribes the primary body. Thus, Up is infinitely differentiable in both variables so that the

trapezoidal rule can be used to discretize the Fourier integrals. The FFT algorithm may be used

directly to compute the B-spline coefficients. Note that the doubling of the geopotential model is

only used to generate these coefficients.
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To prevent grid distortion given the ambiguity of longitude at the poles, the coordinate

system is rotated so that the poles lie along the equator, which is equivalent to using the transverse

mercator map projection. A second x-y plane is generated after this rotation, with the FFT

algorithm applied and a second set of B-spline coefficients determined. B-spline coefficients are

defined over the surface of the two x-y grids, which are then broken into appropriate segments to

generate the faces of a cube. Each cube face has a new x-y grid with axes defined over the range

[−1, 1]. Four segments along the middle latitudes are selected from the first set of coefficients, with

each segment corresponding to a cube face. The two remaining faces at the poles are selected from

the second set. We illustrate this process in Figure 2.3.

Although grid spacing is preserved along the face of the cube, we note that the grid size on

each face is N/4 by N/4. This parameter is used in the naming convention for a given model. A

CS-X model is a cubed-sphere model where X corresponds to the grid size on a cube face, or N/4.

To summarize, we have described the geopotential model at a given altitude on the surface of a

cube.

Figure 2.3: Illustration of the mapping of the Earth surface to a x-y plane to make Up 2π-periodic.
Selected portions form the cubed sphere. The second plot illustrates the process for the rotated
coordinate system.
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Since the spherical harmonics is a global model, an uniform grid density is forced over the

complete surface to model the high frequency variations. Of course, a true Earth model will have

relatively large variations in the gravity field as location changes. This is especially true along

coastal and mountain regions. As discussed in Beylkin and Cramer (2002), the cubed sphere was

originally developed with multiresolution techniques in mind. However, adjusting the grid density

to these levels reveals noise in the original spherical harmonics terms. The noise could be removed,

which effectively modifies some higher degree terms. Thus, the cubed sphere would no longer agree

with the spherical harmonic model, which may currently cause resistance to its use. Additionally,

early tests of the model for Beylkin and Cramer (2002) demonstrated only small gains in speed as

a result of such change, and only a marginal decrease in memory required.

Figure 2.4: Illustration of the increased density of primary shells with closer proximity to the
primary body (left figure), and an example of the subshell spacing between primary shells (right)
for the cubed-sphere model.

A user specified number of nested, concentric shells is required for interpolation in the radial

direction. Shell spacing is determined by defining a set number of points (hj) equally spaced in the

interval [0, 1]. Shell locations are then
R

rj
= 1− h2

j , (2.76)

where rj is the radial distance of the spherical shell. We note that as the shell radius, rj , approaches

infinity, R/rj tends to 0. Shell density increases for lower altitudes, corresponding to the inverse
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square relationship between geopotential and radius. This is illustrated in Figure 2.4. The final

shell at infinity is used only as a boundary for determination of the subshells.

The primary shells each consist of subshells for interpolation in the radial direction. The

cubed sphere approximates the potential using Chebyshev polynomial interpolation of degree l,

U(x) =
l∑

i=0

aiTi(x), (2.77)

where ai are (spatially dependent) coefficients and Ti are Chebyshev polynomials, values of which

are computed via the three term recurrence,

T0(x) = 1 (2.78a)

T1(x) = x (2.78b)

Ti(x) = 2xTi−1(x)− Ti−2(x). (2.78c)

The space between subshells is mapped to the range [−1, 1] where zero corresponds to the mid-

point between primary shells. The subshells are then positioned at the roots of the l+1 degree

Chebyshev polynomial (the so-called Gaussian nodes). This is illustrated in Figure 2.4 for a 5th

degree Chebyshev scheme with six subshells. The Gaussian nodes are selected in order to minimize

interpolation error (see, e.g., deBoor (2001)).

In generation of the cubed-sphere model, each subshell is independent of all others. B-spline

coefficients for each subshell are generated as previously described using the applicable altitude for

the evaluation of Equation 2.75. A total of (l + 1) × (M − 1) subshells are computed, where M

is the number of primary shells. It is important to note that the mapping to the cube is simply

used for data storage, finding the spline coefficients, and preventing a concentration of points at

the poles. All values described by the model, more specifically components of acceleration, are still

represented in the spherical coordinate system.

Grid density is kept constant for all subshells at all altitudes. Since the high-frequency

variations in the spherical harmonics attenuate quickly with altitude, the required grid density

for higher altitudes is less than those required closer to the planet. This has not been currently
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integrated with the cubed sphere, but multiresolution techniques such as the one presented in

Section 2.4 may be employed.

Continuity of the model determined values may be a concern for some applications. Primary

shells may be generated to overlap. This has not yet been explored, but the multiresolution tech-

nique of Section 2.4 would eliminate this need. Given the lack of overlap in the primary shells,

model discontinuities may exist at the primary shell boundary. However, proper configuration re-

duces these discontinuities to within the model noise. Specifically, the discontinuities are less than

the machine precision for the given acceleration values. Discontinuities do not exist between faces

of the cube since the FFT algorithm used to solve for the interpolation coefficients utilizes the

entire gravity field at the given altitude.

Evaluation of the cubed-sphere model is fairly straightforward. Lower degree components of

geopotential are computed directly using the spherical harmonic coefficients stored in the model.

For higher degree terms, the point of interest is mapped to the cube. The value is obtained by the

interpolation on the l+1 subshells within the primary shell containing the point of interest. The

coefficients required for Equation 2.77 are then

ai =
2− δi0
l + 1

l∑
j=0

UjTi(xj), (2.79)

where Uj is the potential on the j-th subshell at xj , and δij is the Kronecker delta function.

The conversion from spherical (φ, λ) to cube coordinates (x, y, n) is summarized in Table 2.1,

and was adapted from Beylkin and Cramer (2002) with some simplifications and corrections of

misprints. For the cube coordinates, n refers to the face of the cube. The first four faces represent

the sphere at the middle latitudes between -π/4 and π/4, while faces 5 and 6 correspond to the

polar regions. For faces 1-4, the conversion to the x-y coordinate system is simply a map from

the appropriate angle range (e.g. [−π, π/2)) to [-1,1). The mappings for faces 5 and 6 result from

rotating the sphere so that the poles lie on the equator. The original φ and λ values are converted to

Cartesian coordinates, and then rotated about the x-axis by −π/2. The new Cartesian coordinates

are converted to a new φ′ and λ′ and mapped to the range [-1,1) in a manner similar to faces 1-4.
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The equations for faces 5 and 6 in Table 2.1 are derived from this procedure.

Table 2.1: Spherical to cube face coordinates conversion. Note γ = − cosφ sinλ, ω = tanφ/ cosλ,
and α = 4/π.

Face Angle Ranges X-coordinate Y-coordinate
1 −π ≤ λ < −π/2, −π/4 ≤ φ ≤ π/4 αλ+ 3 αφ
2 −π/2 ≤ λ < 0, −π/4 ≤ φ ≤ π/4 αλ+ 1 αφ
3 0 ≤ λ < π/2, −π/4 ≤ φ ≤ π/4 αλ− 1 αφ
4 π/2 ≤ λ < π, −π/4 ≤ φ ≤ π/4 αλ− 3 αφ
5 φ > π/4 α tan−1(ω)− 2 α sin−1(γ)
6 φ < −π/4 α tan−1(ω) + 2 α sin−1(γ)

The number of elements that must be stored in the model may be found using

Number of elements = 6P (l + 1)(M − 1)
(
N

4
+m

)2

, (2.80)

where P is the number of submodels (i.e. three submodels for acceleration and one for potential),

m is the degree of the B-spline interpolation scheme, and other values were defined previously.

For a cubed-sphere model intended to represent the acceleration terms for a 20×20 spherical har-

monic model using a fifth-degree Chebyshev interpolation, eleventh degree B-spline interpolation,

14 primary shells, and 20 grid lines per face (N = 80), the model requires 1,349,244 B-spline co-

efficients. Obviously, estimation of the model from satellite observations is intractable, thus we do

not consider the problem of estimating terms of the cubed-sphere model using satellite geodesy

techniques. The MRQSphere model, which we present in Section 2.4, describes a model optimized

for the gravity estimation problem.

2.4 MRQSphere Model

In this section, we describe the mathematical tools employed to create the Multiresolution

Representation using Quadratures for the Sphere model (MRQSphere). This includes a description

of the quadratures for the sphere, and the approximation by Gaussians that allows for the mul-

tiresolution expression of the gravity field. We combine these tools to define the new model, and
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provide the equations for evaluating the gravity potential, acceleration, and the Jacobian of the

acceleration.

2.4.1 Quadratures for the Sphere

The standard model representing variations in the gravity field in the latitudinal and lon-

gitudinal directions uses the spherical harmonics, which are global functions on the sphere. An

approach to replace them with better localized functions has been developed (Ahrens and Beylkin,

2009) and uses quadratures on the sphere invariant under the icosahedral group. Due to the in-

variance of the positions of the nodes under this discrete group, the nodes do not concentrate and

have a near uniform distribution on the sphere. These quadratures are also near optimal, as far

as the number of nodes required to integrate all spherical harmonics of a fixed degree and order.

This combination of properties yields an analogue of the Lagrange-type interpolation on the sphere.

As a result, we replace the spherical harmonics by a set of functions concentrated at the nodes of

the quadrature and generated by a single function. Instead of estimating the coefficients of the

spherical harmonics, the new quadratures allow direct estimation of the gravity field at the quadra-

ture nodes. This section provides a brief introduction to the techniques introduced by Ahrens and

Beylkin (2009).

Starting with Equation 2.5, and after representing the radial distance in units of primary

body radius ρ (= r/R), we write

U(ρ, φ, λ) =
µ

R

∞∑
n=0

ρ−(n+1)Vn(φ, λ) (2.81)

where

Vn(φ, λ) =
n∑

m=0

Pn,m[sinφ] (Cn,m cosmλ+ Sn,m sinmλ) . (2.82)

Let PN be the space of spherical harmonics of maximum degree and order N . Using the reproducing

kernel,

KN (α ·α′) ≡
N∑
n=0

2n+ 1
4π

Pn,0(α ·α′), (2.83)
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for any function f in PN , we have

f(α) =
∫

S2

KN (α ·α′)f(α′)dα′, (2.84)

where α and α′ denote unit vectors on the sphere S2. A more detailed discussion of the reproducing

kernel may be found in Ahrens and Beylkin (2009).

Discretizing Equation 2.84 using quadratures with M nodes to integrate all functions in

the subspace P2N , we obtain an analogue of Lagrange interpolation on the sphere. In Ahrens and

Beylkin (2009), the location of the nodes (αi) have been chosen to be invariant under the rotations of

the discrete icosahedral group, thus preventing them from concentrating at any particular location.

As a result, we have

f(α) =
M∑
j=1

KN (α ·αj)wjf(αj) (2.85)

where wj are the weights of the quadratures and f(αj) are the values of the function at the nodes.

The number of nodes M is chosen to integrate exactly the product of the two functions KN and f ,

whose degree and order does not exceed 2N . As an example, for approximating the gravity field

of degree 7, we use the number of nodes necessary to integrate the subspace P14. In Figure 2.5,

we provide examples where N refers to the maximum degree of the function in the Lagrange-type

interpolation.

(a) 2N=14, 72 Points (b) 2N=30, 372 Points

Figure 2.5: Sample quadratures for the sphere for different degree models. The blue points indicate
vertices of the icosahedron, and the red points are all other quadrature nodes.
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We illustrate the reproducing kernelKN in Figure 2.6. As the degreeN increases, the function

tends toward the delta function on the sphere. Thus, special care must be taken when evaluating

Equation 2.83 to prevent numerical error due to cancellation. Interpreting Equation 2.83 as the

Christoffel-Darboux formula (see Chapter 3 of Szegö (1975)), we obtain

KN (γ) =
N + 1

4π
PN,0(γ)− PN+1,0(γ)

1− γ
, (2.86)

and using Equation 4.5.4 of Szegö (1975), we then arrive at

KN (γ) =
N + 1

4π
P

(1,0)
N (γ), (2.87)

where P (1,0)
N is the Jacobi polynomial with α=1 and β=0. To simplify notation and prevent confu-

sion of P (1,0)
N with the Legendre polynomials PN , we denote

K̄N (γ) = P
(1,0)
N (γ) =

4π
N + 1

KN (γ). (2.88)

Using the three term recurrence for Jacobi polynomials (see Equation 8.961.2 of Gradshteyn and

Ryzhik (2007)), we write

K̄n(γ) = (c1γ + 1/c0)K̄n−1(γ)− c2K̄n−2(γ) (2.89)

with

K̄0(γ) = 1 (2.90)

K̄1(γ) =
3
2
γ +

1
2
. (2.91)

and

c0 = (n+ 2)(2n+ 1)

c1 = (2n+ 1)(2n+ 3)/c0 (2.92)

c2 = n(2n+ 3)/c0. (2.93)

We use Equations 2.89 and 2.88 to compute values of the kernel KN (γ).
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Figure 2.6: Sample plots of the reproducing kernel KN as a function of the angle between the
vectors α and α′ for various degrees N .
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2.4.2 Approximation by Gaussians

To obtain a multiresolution representation instead of Equation 2.81, following Beylkin and

Monzón (2010) we replace ρ−(n+1) for all n by an approximation using Gaussians. Specifically, for

any required precision ε > 0, there exists a step size h and a positive M such that

∣∣e−xy −Gε,M (x, y)
∣∣ ≤ ε (2.94)

where

Gε,M (x, y) =
hx√
4π

M∑
j=0

e−
x2

4
esj−y2e−sj + 1

2
sj (2.95)

and

sj = sstart + jh. (2.96)

For details, we refer to Beylkin and Monzón (2010).

Since the ρ−(n+1) term in Equation 2.81 may be rewritten as e−(n+1) ln ρ, applying Equa-

tion 2.95 yields

ρ−(n+1) ≈ Gε,Z(ln ρ, n+ 1) =
h(n+ 1)√

4π

∑
j∈Z

e−(n+1)2e−jh/4−(ln ρ)2ejh−jh/2

=
h(n+ 1)√

2π

∑
j∈Z

σ−1
j e−(n+1)2/(2σ2

j )e−(ln ρ)2σ2
j /2 (2.97)

where

σ2 = 2ejh. (2.98)

Substituting Equation 2.97 into Equation 2.81 and reorganizing, we have

Ũ(ρ, φ, θ) =
µ

R

∑
j∈Z

e−(ln ρ)2σ2
j /2Zj(φ, θ) (2.99)

where

Zj(φ, θ) =
h

σj
√

2π

∞∑
n=0

(n+ 1)e−(n+1)2/(2σ2
j )Vn(φ, θ). (2.100)

The sum in Equation 2.99 extends over all integers Z. However, most terms are negligible, and

we designate a subset J of Z as the range of indices corresponding to the terms with significant

contribution. We denote the truncated version of Equation 2.99 as Ũ(ρ, φ, θ; J).
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In Figure 2.7, we provide the error for a sample set of parameters used with the function Gε,J

described by Equation 2.97. When generating Gε,J, the specified accuracy ε determines the value

h. The subset J is then found to meet these requirements for the given ρ. The error is uniform for

all applicable n and will decrease for ρ−n < 4× 10−13 with n sufficiently large.

Figure 2.7: Error in Gε,∞(≈ ρ−n) up to degree n for ρ = 1 + 0.25
6378 , h=1/3, and J = {−30, . . . , 70}.

This figure is reproduced from Beylkin and Monzón (2010).

2.4.3 Model Description

We now combine these mathematical tools to create the MRQSphere model of the gravity

potential. Substituting the coordinates φ and λ with the unit vector α, we use Ũ(ρ,α; J), and

represent the terms Zj(α) in Equation 2.100 using the analogue of Lagrange interpolation on the

sphere, i.e. Equation 2.85. Thus, we write the MRQSphere model as

Ũ(ρ,α; J) =
µ

R

∑
j∈J

e−(ln ρ)2σ2
j /2Zj(α) (2.101)

Zj(α) =
M∑
i=1

KN (α ·αi)wiZj(αi) (2.102)

In our approach we estimate functions Zj(α) directly, thus avoiding any use of the spherical har-

monics when evaluating the model. This Cartesian representation also eliminates any singularity

at the poles when evaluating the acceleration. We note that, for a given accuracy, the exponential
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cutoff in Equation 2.100 allows us to predict the degree of the subspace of spherical harmonics for

the functions Zj and, thus, choose the appropriate number of quadrature nodes for estimation. We

also note that, as described in Beylkin and Monzón (2010), the number of terms in Equation (2.99)

depends only weakly on the required resolution and is relatively small. For a fixed ρ, only a few

terms in Equation (2.99) contribute to the potential.

Unlike the cubed-sphere gravity model, whose primary purpose is a fast evaluation of the

gravity field, the MRQSphere model is intended for estimation as it attempts to minimize the

number of unknown parameters. We note that the radial part of this new model may be applied

to the problem of fast evaluation as well. Once estimated, the model may be converted to the

cubed-sphere model, but we do not address such a conversion in this research.

Since the MRQSphere model is semi-analytic, we take the derivatives of Equations 2.85

and 2.99 to solve for the gradient, and thus the acceleration vector. We express the coordinates of

the system in Cartesian coordinates where

r = [ x, y, z ]T (2.103)

and the angles φ and λ are represented by the unit vector r̂. Starting with Equation 2.99,

∂Ũ

∂r
=

µ

R

∑
j∈Z

[
Zj(r̂)

∂

∂r

(
e−(ln ρ)2σ2

j /2
)

+ e−(ln ρ)2σ2
j /2

∂Zj(r̂)
∂r

]
. (2.104)

Solving for the first partial derivative in the right hand side with ρ = r/R,

∂

∂r

(
e−(ln ρ)2σ2

j /2
)

= −e−(ln ρ)2σ2
j /2

σ2
j

2
∂(ln ρ)2

∂r

= −e−(ln ρ)2σ2
j /2

(
σ2
j ln ρ
r2

)
r. (2.105)

Upon differentiating Zj(r̂) in Equation 2.102,

∂Zj(r̂)
∂r

=
∂

∂r

(
M∑
l=1

KN (r̂ ·αl)wlf(αl)

)

=
M∑
l=1

wlf(αl)
∂KN (r̂ ·αl)
∂(r̂ ·αl)

∂(r̂Tαl)
∂r

=
M∑
l=1

wlf(αl)
∂KN (γ)
∂γ

([
∂r̂
∂r

]T
αl

)
(2.106)
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where γ = r̂ ·αl. Finally, differentiating Equations 2.86, 2.89, 2.90, and 2.91 yields

∂Kn(γ)
∂γ

=
N + 1

4π
∂K̄n(γ)
∂γ

(2.107)

where
∂K̄n(γ)
∂γ

= c1K̄n−1(γ) +
(
c1γ +

1
c0

)
∂K̄n−1(γ)

∂γ
− c2

∂K̄n−2(γ)
∂γ

(2.108)

with

∂K̄0(γ)
∂γ

= 0 (2.109)

∂K̄1(γ)
∂γ

=
3
2
. (2.110)

The resulting acceleration vector, with terms expressed using matrix operations, is

r̈ = ∇Ũ =
µ

R

∑
j∈J

e−(ln ρ)2σ2
j /2

[(
−
σ2
j

r2
(ln ρ)Zj(r̂)

)
r +

(
∂r̂
∂r

)( M∑
l=1

wlZj(αl)
∂Kn(γ)
∂γ

αl

)]
(2.111)

where
∂r̂
∂r

=
(
∂r̂
∂r

)T
=

1
r
I3×3 −

rrT

r3
. (2.112)

To facilitate future integration of the MRQSphere model with the orbit determination process,

and to evaluate the Laplacian (∇2Ũ), we solve for the Jacobian of the acceleration vector with

respect to the state. This Jacobian is also the second derivative of Ũ with respect to the satellite

position. These are often referred to as the variational equations.

We begin by solving for the second partial derivative of Equation 2.99,

∂2Ũ

∂r2
=

µ

R

∑
j∈Z

[
Zj(r̂)

∂2

∂r2

(
e−(ln ρ)2σ2

j /2
)

+2
∂

∂r

(
e−(ln ρ)2σ2

j /2
)(∂Zj(r̂)

∂r

)T
+e−(ln ρ)2σ2

j /2
∂2Zj(r̂)
∂r2

]
. (2.113)

The first derivatives were previously provided in Equations 2.105 and 2.106. After taking the second

derivative of the exponential,

∂2

∂r2
e−(ln ρ)2σ2

j /2 =
σ2
j

r2
e−(ln ρ)2σ2

j /2

(
2 ln ρ+ σ2

j (ln ρ)2 − 1
r2

rrT − (ln ρ)I3×3

)
. (2.114)
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The derivative of Equation 2.106 is then

∂2Zj(r̂)
∂r2

=
M∑
l=1

wlZj(αl)


∂Kn(γ)
∂γ


αTl

∂
∂r

(
∂r̂
∂x

)
αTl

∂
∂r

(
∂r̂
∂y

)
αTl

∂
∂r

(
∂r̂
∂z

)

+
∂2Kn(γ)
∂γ2

[
∂r̂
∂r
αl

] [
∂r̂
∂r
αl

]T
 (2.115)

where
∂2Kn(γ)
∂γ2

=
N + 1

4π
∂2K̄n(γ)
∂γ2

, (2.116)

∂2K̄n(γ)
∂γ2

= 2c1
∂K̄n−1(γ)

∂γ
+
(
c1γ +

1
c0

)
∂2K̄n−1(γ)

∂γ2
− c2

∂2K̄n−2(γ)
∂γ2

, (2.117)

and
∂2K̄0(γ)
∂γ2

=
∂2K̄1(γ)
∂γ2

= 0. (2.118)

The ∂r̂/∂x, ∂r̂/∂y, and ∂r̂/∂z terms refer to the first, second, and third column, respectively, of

the matrix provided by Equation 2.112. Thus, we have the variational equations, expressed in a

slightly more compact form,

∂2Ũ

∂r2
=

µ

R

∑
j∈Z

e−(ln ρ)2σ2
j /2

{
σ2
j

r2

(
2 ln ρ+ σ2

j (ln ρ)2 − 1
r2

rrT − (ln ρ)I3×3

)

−

(
2σ2

j ln ρ
r2

)
r
(
∂Zj(r̂)
∂r

)T
+
∂2Zj(r̂)
∂r2

}
. (2.119)

The sum of the diagonal elements of this matrix yields the Laplacian ∇2Ũ of the model. Since Ũ

is an approximation, ∇2Ũ = 0 for the MRQSphere model is not identically zero. However, since

we control the precision, the error may be made arbitrarily small. We compute the Laplacian for

the MRQSphere model in Section 7.1.1 and show that the error is small and corresponds to the

original choice of ε, the required precision, in the construction of the model.



Chapter 3

Estimation Methods

In this chapter, we present several estimation techniques with applications to the orbit de-

termination problem. We do not provide a full derivation of these tools, or a detailed explanation

of their uses or implementation. We only provide the details required for future discussion. More

detailed descriptions of the orbit determination process may be found in Tapley et al. (2004b)

and Crassidis and Junkins (2004). The first section discusses some preliminary mathematics, most

notably the linearization of the observation and satellite dynamics models. The second section

presents the basics of least squares estimation. Finally, we provide a brief treatment of two nonlin-

ear estimation techniques.

3.1 Preliminaries

The orbit determination process seeks to provide an accurate estimate of a satellite’s state,

any other set of parameters that may affect the motion of the satellite, or any variables affecting

the observation of said motion. These parameters comprise the estimated state vector X. We use

the notation X̄ and X̂ to indicate a priori knowledge and the filter estimated state, respectively.

The orbit determination process is usually performed using observations to estimate: (1) a state

at a single point in time or (2) estimate the state when observations are available. The selection of

each technique varies with the specific application.

We wish to estimate the vector X, of length n, based on a collection of p observations Yi at

time ti. Observations may be gathered over l epochs, yielding m = l × p total observations. We
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assume the system dynamics may be described by

Ẋ = F (X, t) (3.1)

X(t◦) ≡ X◦ (3.2)

and the observations at time ti are related to the estimated state by

Yi = G(Xi, ti) + εi, i = 1, 2, . . . , l. (3.3)

The εi describe the observation modeling errors at ti.

When using many estimation techniques, the nonlinear orbital dynamics require a lineariza-

tion about a reference solution X∗. We may propagate the reference solution to any point in time

based on an initial condition X̄∗◦ and the system dynamics, i.e. Equation 3.1. In linearizing the

problem, we derive a deviation from the reference trajectory

x = X−X∗, (3.4)

i.e. the difference between the true solution and the reference trajectory. We note that a lower-case

letter signifies a deviation vector. The variations in time of the deviation vector, to first order, are

then

ẋ = A(t)x (3.5)

where

A(t) =
[
∂F (ti)
∂X(ti)

]∗
. (3.6)

The notation []∗ indicates evaluation using the reference trajectory at the appropriate time. The

solution to Equation 3.5 may be expressed as

xk = Φ(tk, ti)xi (3.7)

where

Φ̇(tk, ti) = A(tk)Φ(tk, ti) (3.8)

Φ̇(ti, ti) = In×n. (3.9)
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We refer to Φ(tk, ti) as the state transition matrix, which maps a deviation vector from ti to tk.

Similarly, we use deviations in the observations

yi = Yi −G(X∗i , ti), (3.10)

with x related to y by

yi = H̃(ti)xi + εi (3.11)

and

H̃(ti) =
[
∂G(ti)
∂X(ti)

]∗
. (3.12)

We may also relate x◦, the deviation vector at time t◦, to all observations at all times by

y =



y1

y2

...

yl


= Hx◦ + ε (3.13)

where

H =



H̃(t1)Φ(t1, t0)

H̃(t2)Φ(t2, t0)
...

H̃(tl)Φ(tl, t0)


, ε =



ε1

ε2

...

εl


. (3.14)

Most orbit determination techniques seek to estimate the deviation vector x using the deviations

in the observations y based on a reference trajectory X∗. We may then add this deviation vector

to the reference trajectory to generate an updated estimated state vector.

3.2 Least Squares Estimation

For an unknown vector x with n elements, we may relate them to a vector of m observations y

by

y = Hx + ε. (3.15)
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The least squares estimator selects the value of x that minimizes the sum of the squares of the

terms in ε, i.e. it minimizes

J(x) =
εT ε

2
. (3.16)

The 1/2 scale factor simplifies derivations of the various solutions of least squares estimation. In

the following sections, we describe two solutions of the least squares problem. For a comprehensive

discussion of least squares estimation, see Lawson and Hanson (1974).

3.2.1 Solution via Normal Equations

In the case of an overdetermined problem (m > n), we cannot simply solve the linear system

Hx = y. Writing the normal equation solution to the least squares problem

(
HTH

)
x̂ = HTy, (3.17)

we note that we have a new linear system with a mapping matrix HTH and observations HTy.

This solution assumes H is of rank n and E[εεT ] = Im×m. The product HTH effectively squares

the condition number of the matrix H. For any linear system Ax = y, the condition number of A

describes the size of changes to the solution x with changes in observations y. If the observations

are highly correlated, H has a large condition number, and, thus, Equation 3.17 may yield an

inaccurate solution. Additionally, if H is not of rank n, then HTH is non-singular and we cannot

evaluate (HTH)−1 to solve for x̂.

If a priori information is available, i.e. an initial estimate x̄◦ with an associated state-error

covariance matrix P◦, and a measurement-error covariance matrix R = E[εεT ], we may use the

weighted-least-squares normal equation

(
HTR−1H + P̄−1

◦
)
x̂◦ =

(
HTR−1y + P̄−1

◦ x̄◦
)
. (3.18)

The state-error covariance matrix P = E[(x̂ − x)(x̂ − x)T ] provides an estimate of the statistical

error in the estimate x̂. For the solution of Equation 3.18, we solve for the state-error covariance

matrix via

P◦ =
(
HTR−1H + P̄−1

◦
)−1

. (3.19)
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If the condition number of H is large, the condition number for HTR−1H+ P̄−1
◦ may also be large.

Practical applications of these least squares solvers, especially systems requiring linearization,

use iteration to converge on an estimated state. In theory, each iteration reduces |x̂|, thereby

bringing the estimated state closer to the true state. More details on this process may be found in

Tapley et al. (2004b).

3.2.2 Singular Value Decomposition Methods

If the rank of H is less than n, or the condition number is sufficiently large, then Equa-

tions 3.17 and 3.18 may not provide an adequate estimate for x. In these cases, we use the singular

value decomposition (SVD), writing

H = USV T (3.20)

where both U and V are unitary matrices (i.e. V TV = I), and S is a diagonal matrix with singular

values. Explicitly indicating zero singular values, we write

S =

S′ 0

0 0

 (3.21)

where the r × r matrix S′ contains the non-zero singular values and r is the numeric rank of H.

We assume that singular values below a certain threshold are set equal to zero. The pseudoinverse

of H is calculated using the SVD, and solutions of Equation 3.15 may be expressed as

x̂ = V

S′−1 0

0 0

UTy. (3.22)

For the weighted least squares using SVD, the solution is written as

x̂ = V

S′−1 0

0 0

UTBy, (3.23)

where

BH = V TSU (3.24)
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and

R−1 = BB. (3.25)

We note that using the SVD solution of least squares estimation is not commonplace in orbit

determination, but some applications exist (Boikov et al., 2007; Marshall, 1999; Ahn, 1996; Hinga,

2004).

The state-error covariance matrix, P = E[(x̂−x)(x̂−x)T ], where x is the true value, provides

some statistical information on the quality of the solution x̂. In the case of least squares estimation

with SVD,

E[(x̂− x)(x̂− x)T ] = E


V

S′−1 0

0 0

UTBy − x


V

S′−1 0

0 0

UTBy − x


T


= E

V
S′−1 0

0 0

UB (y −Hx) (y −Hx)T BTUT

S′−1 0

0 0

V T



= V

S′−1 0

0 0

UBE [εεT ]BTUT

S′−1 0

0 0

V T

= V

S′−2 0

0 0

V T (3.26)

3.3 Non-Linear Filters

The least squares estimator presented in the previous section uses a linearized approximation

of the system to provide an estimate of X. In this section, we discuss methods that include some

higher-order effects: the extended and unscented Kalman filters.

3.3.1 Extended Kalman Filter

The extended Kalman filter (EKF) is a slight modification of the conventional Kalman filter

(CKF). The CKF is a sequential filter; a class of filters that generate an estimated state as each



51

observation becomes available. Hence, the CKF, or some variant thereof, may provide a real-time

estimate of the satellite state. In the CKF, we propagate the reference trajectory X∗ without any

updates between observations. The EKF algorithm updates the reference trajectory after each

measurement update. We will only discuss the EKF, and refer the reader to Tapley et al. (2004b)

for more information on the CKF.

The first step in the EKF is to perform a time update of the state-error covariance matrix.

Given an estimate of the state X̂◦ at time t◦, we propagate the state forward in time using F (X, t)

to time ti. We designate this newly updated state as X̄i. The time ti corresponds to the time of

the next observation Yi. We then map P◦ forward in time using

P̄i = Φ(ti, t◦)P◦ΦT (ti, t◦) +Q (3.27)

whereQ is a process noise matrix to account for errors in the state dynamics model. Upon evaluating

the state-to-observation mapping matrix in Equation 3.12 with X̄i at ti, we solve for the Kalman

gain

K = P̄iH̃
T
(
H̃P̄iH̃

T +R
)−1

. (3.28)

Using the observation deviation vector

y = Yi −G(X̄i, ti), (3.29)

we generate the estimated state and state-error covariance matrix

X̂i = X̄i +Ky (3.30)

Pi =
(
In×n −KH̃

)
P̄i. (3.31)

This procedure continues for each observation Yi at time ti.

Although considered a nonlinear filter, the EKF relies on a linearized formulation of the

system dynamics and observation-state relationships. This is most notable in the method used to

map the state-error covariance matrix forward in time, thus only providing a first order propagation.
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3.3.2 Unscented Kalman Filter

Instead of propagating P via the state-transition matrix, the unscented Kalman filter (UKF)

uses the unscented transformation. Based on the covariance matrix and the estimated state, the

unscented transformation generates a collection of σ-points Xj where the j signifies one of the

2n+ 1 points. Each of these points are propagated forward in time using F (Xj , t), and recombined

to create a time updated X̄i+1 and P̄i+1. This filter does not require a linearized system, thus

it approximates the state instead of a deviation vector. In this section, we describe the UKF

algorithm. Further details may be found in Julier and Uhlmann (1997) and Julier (2002). The

formulation presented here uses that of Van der Merwe and Wan (2001).

We start with a priori knowledge of the filter state X̂i and covariance matrix Pi with n

estimated parameters, as well as the measurement-error covariance matrix R. After selecting a

value for the parameter α such that 10−4 ≤ α ≤ 1, we generate the weights

Wm
◦ = λ/(n+ λ) (3.32)

W c
◦ = Wm

◦ + (3− α2) (3.33)

Wm
i = W c

i = 1/(2(n+ λ)), i = 1, . . . , 2n (3.34)

where

λ = 3α2 − n. (3.35)

The scale factor α determines the distance from the mean of the σ-points. We use α = 1.0, which

yields 3σ distances from the estimated state. Additionally, we define the unscented transformation

scale factor by

γ =
√
n+ λ. (3.36)

The UKF time update uses the unscented transformation to generate a propagated state-

covariance matrix P̄i+1. Starting with X̂i and Pi at ti, we generate the σ-points

X◦,i = X̂i, Xj,i = X̂i + γAj , Xj+n,i = X̂i − γAj , j = 1 . . . , n, (3.37)
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where Aj is the j-th column of the Cholesky decomposition A of P , i.e. P = AAT . We then

propagate each point forward using F (Xj,i, ti) for j = 0, . . . , 2n to generate the σ-points Xj,i+1

at ti+1. Finally, we combine the propagated σ-points to generate the time updated state and

covariance matrix

X̄i+1 =
2n∑
j=0

Wm
j Xj,i+1 (3.38)

P̄i+1 = Q+
2n∑
j=0

W c
j

(
Xj,i+1 − X̄i+1

) (
Xj,i+1 − X̄i+1

)T (3.39)

where Q is a process noise matrix.

The measurement update uses time-updated σ-points to generate a mean observation, and

corrects the a priori state based on differences between the mean and observed observation. First,

we compute new σ-points X̄j,i+1 using Equation 3.37 with X̄i+1 and P̄i+1. Unlike the propagated

σ-points, these new points incorporate Q. For each σ-point vector, we compute an observation

Yj = G
(
X̄j,i+1, ti+1

)
(3.40)

with a mean observation

Ȳ =
2n∑
j=0

Wm
j Yj . (3.41)

After solving for the innovation and cross-correlation covariance matrices

Pyy = R+
2n∑
j=0

W c
j

(
Yj − Ȳ

) (
Yj − Ȳ

)T (3.42)

Pxy =
2n∑
j=0

W c
j

(
Xj,i+1 − X̄i+1

) (
Yj − Ȳ

)T
, (3.43)

we perform the measurement update

K = PxyP
−1
yy (3.44)

X̂i+1 = X̄i+1 +K
(
Y − Ȳ

)
(3.45)

Pi+1 = P̄i+1 −KPyyKT (3.46)

where Y is the vector of observations. Beginning with Equation 3.37, we then repeat this process

for observations at ti+2 with initial estimates X̂i+1 and Pi+1.
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As illustrated in the algorithm, the UKF does not require the evaluation of the Jacobian of

the state dynamics, i.e. the A(t) matrix. No state-transition matrix is generated, thus we do not

depend on a linear approximation of the state dynamics to propagate the state-error covariance

matrix. The unscented transformation includes second order effects, and third order effects for

Gaussian distributions (Van der Merwe and Wan, 2001). With no linearization of the system

required, this classifies as a nonlinear filter.



Chapter 4

Configuring the Cubed-Sphere and MRQSphere Models

This chapter describes the techniques employed to configure the cubed-sphere and MRQ-

Sphere gravity models. As described in Chapter 2, both of these models require an approximation

scheme determined by the target accuracy (or precision). The user must select a model con-

figuration, i.e. approximation scheme, to meet a specific accuracy, measurement, and/or speed

requirement. This chapter discusses the trades one must consider when designing these models,

and describes the methods employed in this research. This chapter begins with a description of the

elements considered when configuring the cubed-sphere model, along with methods used for recent

studies. A similar discussion of the MRQSphere model then follows.

4.1 Cubed-Sphere Model Configuration

The principal configuration parameters for the cubed-sphere model include: the base gravity

model, the degree of the B-spline interpolation, the Chebyshev interpolation degree, the grid size,

and the number of primary shells. Selection of these parameters is driven by the required evaluation

speed, model precision (when compared to the base model), and file size. In principle, any two of

these properties may be optimized, which causes a reduction in the third element.

The file size, specifically the number of B-spline interpolation coefficients stored in the model,

is determined by

Number of coefficients = 6P (l + 1)(M − 1)
(
N

4
+m

)2

, (4.1)
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where P is the number of parameters in the model, l is the degree of the Chebyshev interpolation,

M is the number of primary shells, N is the number of grid points per 360◦, and m is the degree of

the B-spline interpolation. Upon inspection, the number of elements increases quadratically with

N and m, thus the grid size and B-spline degree are the largest factors in file size. An increase in

the density of the Chebyshev or B-spline interpolation nodes increases M or N , respectively. Small

changes in l and M yield relatively large changes in the file size, and, thus, cannot be ignored.

The degree of the B-spline and Chebyshev interpolants determine the speed of the model.

Although evaluation time may be lowered through implementation, there is a limit to such improve-

ments. A reduction in degree always yields a decrease in the number of and computation time for

the interpolation basis function evaluation. Unfortunately, lower degree interpolation schemes also

increase error, thus improved evaluation time adversely impacts accuracy. Interpolation data node

density may be increased to maintain accuracy, which results in increased memory requirements.

An increase in the density of interpolation nodes or the degree of interpolation improves ac-

curacy, which reduces either the execution or memory efficiency of the model. Conversely, reducing

the density of the nodes or the interpolation degree reduces accuracy. Thus, all three elements are

inversely related and have opposite effects on the model.

4.1.1 Spherical Harmonic Base Model Selection

As discussed in Chapter 2, we derive the cubed-sphere model from a given base model.

Previous versions of the cubed-sphere model, specifically those of Beylkin and Cramer (2002),

used the classic formulation of the spherical harmonics, which contains a singularity at the poles.

These singularities pervade to the cubed-sphere model. The core formulation of the cubed-sphere

model yields no such singularities, except when present in the base model. To remove the polar

singularity, we now consider the Pines and the Cartesian models as potential base models. In this

section, we compare the three formulations of the spherical harmonics to assess their potential use

in the cubed-sphere model.

Although the classical and the Pines model have been compared (Casotto and Fantino, 2007;
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Fantino and Casotto, 2009), no comprehensive comparisons with the Cartesian model have been

found. Casotto and Fantino (2007) and Fantino and Casotto (2009) demonstrate that the compu-

tational efficiency of the Pines model is less than the classical model, mainly due to the addition of

the fourth partial sum associated with the radial distance. To characterize accuracy, they developed

and compared two versions of each formulation: one version used double precision, while the second

employed quadruple precision. In theory, numerical stability improves with quadruple precision,

and a comparison between the two versions provides an approximation of the numerical stability

of the double precision version of the software. The numerical performance between the formula-

tions, using the EGM96 360×360 model (Lemoine et al., 1998), was statistically equal with roughly

14.5 digits of accuracy in acceleration. We note that double precision values are only accurate to

approximately 15 digits. Unfortunately, Gottlieb (1993) only verified the Cartesian model using

a small selection of low-degree analytic solutions and compared the computation times to those

of the Pines model. Thompson et al. (2008) verified the accuracy of the Cartesian model using a

5×5 spherical harmonic model generated from 10 point masses. Since models become increasingly

unstable with higher degrees (see, e.g., Lundberg and Schutz, 1988), these methods of verification

are insufficient. In this section, we use an amalgam of the two methods to verify the Cartesian

model and characterize its relative execution time.

Deprit (1979) states the formulation of the Pines model presented in Pines (1973) includes an

error for computations at the poles. Additionally, it is unclear if this statement only applies to the

variational equations presented in the paper. This error was possibly corrected in the presentation

by Spencer (1976), but this has not been confirmed. Thus, this study of the formulations of the

spherical harmonic model was further required to clarify model accuracy.

Using the point masses derived from the technique outlined in Appendix A, we define a true

gravity field using a point-mass model that approximates the Earth GGM02C spherical harmonic

model (Tapley et al., 2005) to degree 7. Stokes coefficients higher than degree 7 are used, but deviate

from the Earth’s GGM02C values. The 50 points listed in Tables A.1 and A.2 are illustrated in

Figure 4.1, with larger masses represented by bigger points. The total mass of the system was
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selected to yield a gravitation parameter equal to the Earth GGM02C value. From these points,

we derive a 200×200 gravity model using Equations 2.49 and 2.50.

Figure 4.1: Point masses used to define a true gravity model.

We distribute test points in a 1◦×1◦ grid at a radius of 6378.1363 km and evaluate each

formulation to generate potential and acceleration vectors at each location. We then compare

the true values, based on the point-mass model, to the spherical harmonic model values to assess

accuracy. We define accuracy by the number of common digits (CD),

CD = log10

∣∣∣∣ αt
αe − αt

∣∣∣∣ , (4.2)

where αt is the true value and αe is the test value.

Figure 4.2 illustrates the accuracy of the models when using a 200×200 model. The figure im-

plies that all models are accurate to only 3-7 digits. However, since this is true for all formulations,

we deem this a result of model truncation. Increasing the degree of evaluation supports this hy-

pothesis. The agreement of the classical model at the poles is 0 (since the resulting accelerations are

not a valid floating point number). The z-component accuracy of all models drops noticeably at the

equator, but this component of the acceleration is relatively small. Thus, the absolute error in the

Z acceleration remains small. Other than the singularities, results indicate no noticeable differences

between the models. Although somewhat expected, this proves the mathematical formulations do
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not result in numerical computation issues.

Figure 4.2: Average numerical precision of gravity potential (U) and the components of acceleration
for the different formulations of the spherical harmonic model, evaluated to degree 200, when
compared to the true gravity field. The Pines model and Classic model values have been offset by
+1 and -1, respectively.

Figure 4.3: The figure on the left profiles the average execution time of the cubed sphere and the
three spherical harmonic model formulations. The figure on the right demonstrates the execution
time normalized by the execution time of the classic model.

We include a comparison of the average execution time, based on 106 evaluations, in Fig-
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ure 4.3. For lower degree and order models, the classic formulation is slower than the other formu-

lations. We believe this is due to the initial evaluation of the trigonometric functions used in the

recursive formulation of sin(mλ) and cos(mλ). Both the Pines and Cartesian models are slower

than the classic model for larger degree due to the addition of the fourth partial sum. The Cartesian

model is faster than the Pines model because the derived Legendre functions of degree n+1 are not

evaluated.

Based on these results, we selected the Cartesian model as the new base model for the cubed-

sphere gravity model. Aside from the polar singularity, there is little difference in the accuracy of

the mathematical models. Although generally less computationally efficient than the classical for-

mulation, the Cartesian model eliminates the singularity at the poles. The additional computation

burden only impacts the model generation time, which is a one-time cost for each model generated.

4.1.2 Interpolation Configuration

Beylkin and Cramer (2002) proved that the gravity field could be approximated by the cubed-

sphere gravity model. No stringent precision requirements were considered, and the degree of the

B-spline and Chebyshev interpolating polynomials were selected ad hoc. In the case of the grid

on the surface of the cube, grid spacing equaled half the spatial resolution described by the given

spherical harmonic base model to match the Nyquist sampling rate. For our purposes, we configure

the model to achieve a given precision relative to the base model.

For this process, we assume an absolute precision ε at or above a minimum altitude rmin.

For the Earth and Moon, one may use the gravitation parameter and the two-body acceleration to

convert a relative precision, e.g. number of accurate digits, to an absolute precision for the total

model. For example, assuming a target precision of D digits, we write

ε(r) =
µ

r2
10−D (4.3)

where ε corresponds to the target absolute precision at the radius r. The method proposed here

seeks to configure the cubed-sphere model precision to less than ε for all r ≥ rmin.
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Selection of the B-spline and Chebyshev interpolation degrees, along with the associated node

densities, are determined empirically to meet the precision requirements. To simplify this process,

specifically to reduce the computation time associated with generating a model for testing, we

construct a cubed-sphere model restricted to a subset of primary shells above and below rmin. We

dub this a “reduced” model. This method assumes the largest model errors will be close to rmin,

which is typically valid. Test software was developed to evaluate the model at a number of random

points above rmin. For each point, the cubed-sphere model is compared to the base model and the

absolute deviation is calculated. We then use the maximum deviation of all points to characterize

the precision of the reduced model. Tests utilizing 105 random points prove sufficient, with any

increase yielding similar results.

After testing the reduced model, we generate a full model to further assess the model precision

and ensure requirements are met for all r ≥ rmin. We select a set of points on the unit sphere

corresponding to the regions of peak gravity variations, e.g. the Andes mountain range, and evaluate

the model at each of these points for multiple r ≥ rmin. We compare the precision of the acceleration

vector, defined by the magnitude of the difference between the cubed-sphere- and base-model

acceleration vectors, to ε(r). We use this comparison to profile the overall precision of the model.

If this new model fails to meet precision requirements, we adjust the parameters and retest.

4.1.3 Exploration of Possible Configurations

In this section, we explore several possible configurations of the cubed-sphere model while

providing an example of the configuration process. We explore the trade-offs associated with

selecting the interpolation schemes and node density based on model requirements. This includes

configuring and testing three models, one each that considers evaluation time, file size, and precision

to be of a lower priority.

For this test, we define three properties: (1) precise, (2) small, and (3) fast. Deviations from

the base model for a “precise” model are less than 8.9×10−15 km/s2, while an “imprecise” model

has a maximum deviation of 8.9×10−11 km/s2. The latter requirement yields 1-2 digits of precision
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for the portion of the gravity field described by the interpolation schemes, i.e. not represented by

a low-degree spherical harmonic model, at 300 km and greater. A “small” model requires the least

amount of memory to achieve the target precision. Finally, a “fast” model uses the lowest degree

interpolation possible to meet the precision requirements. For reasons of computer limitations, the

maximum allowed model size was 1.8 GB.

Table 4.1: Summary of the models used to explore cubed-sphere configuration trade-offs.

Model l m M N Size (MB)
Max. Deviation

(km/s2)
Speed (×10−6 s)

Fast and Small 3 5 4 104 3.2 6.8×10−11 2.9
Precise and Fast 3 5 70 424 624 7.9×10−15 3.1

Precise and Small 11 11 4 120 12 3.4×10−15 14.5

We generate cubed-sphere models that combine two of the different properties, but at the

detriment of the third. Table 4.1 describes the resulting model configurations, which we developed

using the procedure outlined in the previous section. All models used a 24×24 spherical harmonic

base model. We note that the 624 MB precise and fast model does not approach the 1.8 GB

memory limitation. Model size will increase with increased precision requirements, but this model

is sufficient for this test. The maximum deviation values provided describe the precision of the

reduced model. We base the evaluation speed on an average execution time of 106 points.

Figures 4.4 and 4.5 describe the resulting performance of the models described by Table 4.1.

Speed of evaluation improves by almost an order of magnitude with reduced degree of interpola-

tion, while a precise and fast model requires considerably more memory. Figure 4.5 demonstrates

precision requirements, which are indicated by the reference line, are met by both “precise” mod-

els. Given capabilities of modern computers, memory is, arguably, the least important of the three

trade-offs for this low degree model. However, higher degree models require considerably more

memory to allow for lower-degree interpolation, making them expensive. Thus, speed must be

sacrificed for memory in those cases.
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Figure 4.4: File size and average evaluation speed for the different test models.

Figure 4.5: Precision of the three test models with changes in altitude.
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4.2 MRQSphere Model Configuration

We now discuss the methods developed to configure the MRQSphere model for use in gravity

estimation. Since we optimize the MRQSphere model for the gravity estimation problem, model

size is only an issue in determining the size of the estimated state vector in the filter. We assume

this is not an issue. When compared to the spherical harmonic and cubed-sphere models, the

MRQSphere is inefficient for evaluation of the gravity field. Thus, we are primarily concerned with

model accuracy.

We base the model accuracy on the achievable measurement accuracy for estimating the

gravity field. For this reason, when discussing the MRQSphere model, we are concerned with

accuracy and not precision. For a mission to an unknown celestial body, i.e. an asteroid, measure-

ment accuracy is primarily determined by the two-way Doppler measurements gathered by Deep

Space Network (DSN) tracking of the satellite. For an Earth-based mission, intersatellite range,

Earth-based Doppler, satellite laser ranging (SLR), and GPS observations influence the achievable

gravity measurement accuracy. We note that measurements of the gravity field are usually inferred

by perturbations of the satellite motion when compared to a reference trajectory. In this section,

we do not consider a single measurement type, and only discuss the general problem for configuring

a model for a given accuracy.

Unknown parameters for the MRQSphere model include the Gaussian approximation step

size h, the indices J ⊂ Z, and the degree N for each shell. We assume the node locations and

weights are already determined. This assumption is valid given the method described in Ahrens

and Beylkin (2009) develops nodes accurate to the limitations of double precision numbers.

We now want to further understand the affects of J and Nj on the MRQSphere model. In

Figure 4.6, we plot the terms of the series in Equations 2.97 and 2.100 for h = 0.5. As seen in Fig-

ure 4.6(a), points at low altitudes are highly dependent on the shells with a larger σj (corresponding

to larger indices j). As altitude increases, these terms decay exponentially fast, and terms with

smaller σj dominate the sum. For example, note in Figure 4.6(a) the relative contribution of the
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j=−2 shell at ρ values of 1 versus 10. At ρ = 10, this shell provides the largest single contribution

to Gε,J, but weakly affects the approximation at low altitudes. Thus, only a small subset of shells

are required when evaluating the gravity field at high altitudes, and the selection of shells depends

on user defined precision ε. As we may see in Figure 4.6(b), a small σj implies a low degree n to

achieve a given accuracy, and, conversely, a large σj value implies a larger degree shell. Thus, as

expected, low-degree models will be needed at high altitudes where terms with smaller σj dominate.

(a) Shell contributions (n=2) (b) Shell degree contribution

Figure 4.6: Sample Gaussians for h = 0.5, which illustrate the relative contribution of different
parameters on the MRQSphere model. The first figure illustrates the contributions of the different
shells to the function Gε,J with variations in orbit radius (in units of R). The second figure
demonstrates the contribution of gravity degree n for a given shell.

Table 4.2: Data points used to determine β1 and β2 using a least-squares fit.

h ε h ε

0.9 4.95×10−5 0.5 7.65×10−9

0.8 1.23×10−5 0.4 5.50×10−11

0.7 2.11×10−6 0.3 1.64×10−14

0.6 2.00×10−7

Selection of the step size h is not immediately apparent for a target accuracy ε, so we assume

the relationship may be written as

h =
1

β1 + β2 log ε−1
(4.4)
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where β1 and β2 are unknown constants. We derive these constants empirically using a small subset

of experimentally determined values, which we provide in Table 4.2. Solving for the constants using

the linear system 

1/h1

1/h2

...

1/hn


=



1 log ε−1
1

1 log ε−1
2

...

1 log ε−1
n


β1

β2

 , (4.5)

we arrive at

β1 = 0.0983589778057344 (4.6)

β2 = 0.234434655957678. (4.7)

We note that the relationship in Equation 4.4 is not exact, but provides a method for calculating

an approximate value of h. We then make slight corrections to the approximate value to achieve a

target accuracy.

Figure 4.7: A sample configuration of the approximation Gε,J to ρ−(n+1) where relative accuracy,
represented by CD, decays with n while the absolute accuracy ε remains nearly constant.

Relative accuracy of the approximation of ρ−(n+1) by Gaussians decreases with altitude. We
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include a sample configuration in Figure 4.7 that exhibits such phenomenon. For ρ−(n+1) < ε, the

absolute accuracy requirements are met while the approximation may be no longer valid. Thus, we

must select a step size h to meet accuracy requirements over a range [ρmin, ρmax] where the gravity

field may be evaluated or estimated.

Before defining the configuration procedure employed for studies described in Chapter 7, we

must define some notation. First, we designate ρk as an element of the ordered set of discrete radii

{ρ0, ρ1, . . . , ρmin} such that ρk > ρk+1. Additionally, we define the set Jk = {jmin, jmin + 1, . . . , jmax}

as the minimal set of integers such that
∣∣∣Gε,Jk

(ρk, n)− ρ−(n+1)
k

∣∣∣ ≤ ε.
We now define the procedure employed when configuring the MRQSphere model. First, we

select a value of h that meets the accuracy requirements of Gε,J(ρ) at the largest ρmax where the

gravity model may be applied. We remind the reader that these accuracy requirements are based

on achievable estimation accuracy with the available measurements of the gravity field. Assuming

a set J such that truncation does not influence approximation accuracy, we determine an initial

value of h using Equation 4.4 and then refine that value to meet accuracy requirements. With

h now selected, we solve for the minimal set J0 = {jmin, jmin + 1, . . . , jmax} that meets accuracy

requirements at ρmax. We then determine the minimum ρ0 such that
∣∣∣Gε,J0(ρ0, n)− ρ−(n+1)

0

∣∣∣ ≤ ε.

We now have a set J0 used to evaluate Gε,J0(ρ, n) where ρ ≥ ρ0. Increasing jmax by one, J1 =

{jmin, jmin + 1, . . . , jmax = jmax + 1}, and we then solve for ρ1. We continue this procedure until

ρk ≤ ρmin. The collection of sets Jk with corresponding radii ρk form a table that determines the

number of terms in the function Gε,J(ρ, n). An example may be found in Table 7.2.

The final parameter that must be determined is Nj , the degree of the functions Zj(α) repre-

sented using quadratures for the sphere, for each shell j. Recalling Equation 2.100 and Figure 4.6(b),

terms decay exponentially with n. Thus, Zj(α) varies weakly with n, and decay rates are deter-

mined by σj . Thus, we may limit the degree of the function represented by the quadratures.

We now develop a method for truncation while meeting a given accuracy on the sphere.
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Assuming Vn(α) = 1, we write the series in Eq. 2.100 as

SN =
N∑
n=0

sn =
N∑
n=0

(n+ 1)e−(n+1)2/(2σ2
j ). (4.8)

We then select a degree n for the given shell such that |Sn − Sn+1| < δ where δ is the required

accuracy. δ may be an absolute accuracy, but, in practice, we use an accuracy relative to s2. For

example, we may write

δ = s210−D = 3e−4.5/σ2
j 10−D (4.9)

where D is the number of significant digits and σj is the appropriate value of the given shell. We

select the s2 term because the V0 term is described by the two-body equation while the V1 term

is zero if the origin of the coordinate system is collocated with the center of mass of the primary

body. Higher degree terms (s3, s4, etc.) may be selected if the MRQSphere model is only required

to model higher degree contributions to the gravity field.

The values of Vn(α) are unknown, still creating some difficulties in selecting an absolute

accuracy δ for a given shell. Until the values of Zj(α) are better determined, we recommend

selecting a higher degree model than necessary for initial processing. After generating an initial

estimate of the gravity model, Zj(αi) values may be projected onto lower degree subspaces (see

Section 7.2.2). If these lower degree shells still meet accuracy requirements, the user may continue

the process to determine the lowest valid degree for the quadratures on the sphere.



Chapter 5

Orbit Propagation with the Cubed-Sphere Model

In Chapter 2, we presented the cubed-sphere model for fast evaluation of the gravity field.

Specifically, this model precomputes coefficients used for B-spline interpolation to evaluate the

gravity field at a given point in space. In this chapter, we characterize its use for orbit propagation.

This portion of the research assumes the spherical harmonics model represents the true gravity

field, and our goal is to reduce orbit propagation time while minimizing any change in resulting

trajectories when using the cubed-sphere model. Sections 5.1 and 5.2 were published in Jones et al.

(2010b).

To assess the impact of using the cubed-sphere model, we look at differences in the propagated

trajectories and the ability of the new model to adhere to mathematical constraints imposed by

potential theory. In the first section, we describe the general test procedure. In the second section,

we study orbit propagation improvements with cubed-sphere models designed for accuracy at the

expense of computational efficiency. The third section considers faster cubed-sphere models with

relaxed precision and memory requirements. Finally, we summarize the results of this chapter.

5.1 Test Description

In this section, we describe the orbit propagation methods used throughout the remainder

of this chapter. This includes a brief description of software and algorithms, along with all envi-

ronment parameters (e.g. Earth orientation parameters) required for evaluation. We generated all

trajectories in this chapter using these methods, unless otherwise noted.
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We minimized software development time by using the TurboProp orbit integration package.

This software provides integration tools implemented in C, which may be used in MATLAB or

Python. The cubed-sphere model, along with the necessary interface code, was implemented within

the TurboProp framework. Tests requiring orbit propagation used the TurboProp Runge-Kutta 7(8)

integrator (based on Fehlberg (1968)) with an integration tolerance of 10−12. Further technical

details on the TurboProp integrators may be found in Hill and Jones (2009).

For test orbits, we employ a variety of initial conditions, and generate states every 20 seconds

over a total 24 hour propagation time span. The initial orbit altitudes span from 100 to 1,000

km at 50 km intervals. Cubed-sphere model accuracy relative to that of the spherical harmonic

model decreases at lower altitudes. We provide most altitude specific results at 300 km, since most

satellites orbit at or above that altitude. The right ascension of the ascending node ranged from

0◦ to 180◦ in 5◦ increments, while the inclination varied from 0◦ to 85◦ in 2.5◦ intervals. We set

all other classical orbit elements to zero. The maximum inclination of 85◦ avoids the singularity

at the poles in the classical formulation of the spherical harmonic model. Thus, for each altitude,

we propagated 1,295 orbits. We set the Greenwich sidereal time to 0◦ at the epoch time, with an

Earth rotation rate of 360◦ per solar day about the planet-fixed z-axis. We used the planetary

reference radius and gravitation parameter dictated by the base model. We propagate each set of

initial conditions using the cubed-sphere model and the corresponding base model, with resulting

trajectories stored for future comparison.

5.2 Models Designed for Accuracy

In this section, we focus on cubed-sphere models designed for high-precision, when compared

to the base model, at the expense of computation time. As will be described later, we wish to limit

fluctuations in the Jacobi-like integration constant, which demonstrates the ability of the model to

adhere to mathematical constraints.
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5.2.1 Model Configuration

We generate cubed-sphere models corresponding to the 20×20, 70×70, and 150×150 spher-

ical harmonic Grace Gravity Model 2, Combined (GGM02C) (Tapley et al., 2005). As mentioned

previously, we are primarily concerned with maximizing orbit propagation precision, followed by

minimizing the model file size. We provide the configuration of these cubed-sphere model in Ta-

ble 5.1.

Table 5.1: Cubed sphere configurations used for orbit propagation tests.

Property Value
B-spline degree (m) 11

Chebyshev polynomial degree (l) 11
Number of primary shells (M) 14

Grid Density
(N) for:

CS-30 / 20x20 120
CS-76 / 70x70 304

CS-162 / 150x150 648

A majority of the results presented in Section 5.2 were generated before the work of Jones

et al. (2010c), which includes the selection of the Cartesian model as the base model for the cubed

sphere and the development of the model configuration procedure presented in Chapter 4. We first

configure the cubed-sphere representation of the 150×150 model, and use these parameters, except

for grid density N , for all lower degree models. We select a target relative precision of 14 digits,

yielding a maximum model error of 8.9×10−17 km/s2 (or 8.9×10−9 mGal) at 300 km. With this

precision, we minimize fluctuations in the integration constant (see Section 5.2.2), which helps to

ensure long-term orbit propagation accuracy. Since these models use the classical formulation of

the spherical harmonics as the base model, they contain a singularity at the poles.

In Figure 5.1, we provide the variations in the gravity anomalies with height as altitude in-

creases for 42 points on the Earth’s surface. We select 30 points at random, with the remaining 12

points corresponding to regions of large absolute gravity variations. The anomalies of Figure 5.1 are

referenced to the GGM02C spherical harmonic model. We indicate required precision with the ref-
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erence line in each figure, which verifies the three cubed-sphere models meet precision requirements

at or above 300 km for these points. As expected, peak variations in the cubed-sphere model with

respect to the spherical harmonics occur at lower altitudes. Additionally, the largest anomalies

occur for the higher degree models. At various altitudes, the differences become discretized due

to machine precision and the relatively low contribution the gravity perturbations modeled by the

cubed sphere have on the overall gravitational acceleration.

Figure 5.1: Variations in gravity anomalies with altitude for 42 points on the Earth using the
CS-30, CS-76, and CS-162 models.

For the CS-162 model, there is a region below 300 km and around 10−10 mGal where the

variations are periodic. In this case, the differences on the face of the cube are small, and, thus, are

weakly affected by the grid spacing. However, approximation error still varies based on proximity

to the shells used for Chebyshev interpolation. Thus, as the altitude increases at this point on the

Earth’s surface, the error periodically increases and decreases.

Although the results of Figure 5.1 indicate that precisions requirements have been met, we

conduct a more comprehensive test at an altitude of 300 km. We visualize the gravity anomaly

variations of the cubed-sphere with latitude and longitude, and represent these results as gravity

anomalies projected onto the surface of the Earth. We evaluate the acceleration vector at a common

altitude with latitude and longitude varied in 0.5◦ intervals. The magnitude of the differences in
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the vector is then illustrated in Figures 5.2, 5.3, and 5.4. Like in the orbit propagation tests,

acceleration vectors were not computed at the poles to avoid the singularities.

Longitude (deg)

L
at

it
u

d
e 

(d
eg

)

 

 

−150 −100 −50 0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

M
ag

n
itu

d
e o

f G
ravity A

n
o

m
alies (x10

−7 m
G

al)0

0.05

0.1

0.15

0.2

0.25

Figure 5.2: CS-30 gravity anomalies at 300 km
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Figure 5.3: CS-76 gravity anomalies at 300 km

Fig 5.2 illustrates the gravity anomalies for the CS-30 model, and shows that anomalies are

less than 10−7 mGal, with most below 10−8 mGal. The cube grid is visible, e.g. over the East Indies.
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The regions of peak variation correspond to regions of high gravity fluctuations, as determined by

the spherical harmonic model (e.g. the Himalayan mountain ranges and the East Indies). We note

that the GGM02C gravity model is not accurate to 10−7 mGal (Tapley et al., 2005), and the gravity

anomalies in Figures 5.2 through 5.4 are within the error of the base model.

We provide gravity anomalies for the CS-76 model in Figure 5.3. This figure indicates the

average precision of the model meets the accuracy requirement of 8.9×10−8 mGal, however peak

errors are as large at 1.6×10−7 mGal. The grid spacing is visible, albeit with a smaller spacing as

expected with the increased node density. Regions of higher differences are more isolated than the

CS-30 case, with peak anomalies near the Himalayas, Pacific rim, and South America. Magnitude

of the anomalies are larger, which corresponds to the results seen in Figure 5.1, but still meet

accuracy requirements.
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Figure 5.4: CS-162 gravity anomalies at 300 km

The gravity anomalies for the CS-162 model at 300 km are found in Figure 5.4. The model

meets precision requirements and the grid spacing is still visible, but areas of peak variations are

isolated to select regions. Like the previous cases, these regions correspond to those with a generally

large variation in the gravity field. The largest anomaly may be found off of the coast of Haiti at

approximately 18◦ latitude and -67◦ longitude.



75

5.2.2 Integration (Jacobi) Constant Comparisons

A given geopotential model must satisfy the Laplace equation,

∇2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
= 0. (5.1)

Unfortunately, the direct calculation of the second derivatives within the cubed-sphere model from

accelerations results in the loss of accuracy of 1-2 digits. To avoid such a loss of accuracy, values

of the derivatives may be added to the model based on the variational equations of the spherical

harmonic model.
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Figure 5.5: Changes in integration constant with the new CS-162 model configuration versus the
configuration of Beylkin and Cramer (2002) for an orbit with an inclination of 15◦ and right
ascension of 50◦ at a 300 km altitude.

Instead of testing the cubed sphere under the Laplace criterion, this study applies another

technique using the Jacobi-like integration constant (Bond and Allman, 1996),

K =
ṙ · ṙ

2
−
[µ
r
− U(r, t)

]
− ω · (r× ṙ). (5.2)

This constant assumes that the geopotential is time varying in the inertial reference frame, which

is valid due to Earth rotation. Here, ω is the angular velocity of the primary body. For a valid

gravity model and a propagated orbit, K must remain constant over time, or K(t)−K(t◦) = 0. To

simplify notation, we denote K◦ = K(t◦). In practice, the constant fluctuates due to the numerical

integration process and errors in the estimate of the gravity field.
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We designed these new models to improve accuracy, specifically the integration constant

performance, when compared to the models developed for Beylkin and Cramer (2002). Figure

5.5 illustrates the extent of the improvement. Previously, the cubed sphere integration constant

deviations were consistently 1-3 orders of magnitude greater than those of the spherical harmonic

model. This would have resulted in reducing the validity of the model for applications requiring

long-term orbit propagation. In some cases, such as this example, the integration constant test for

the new cubed sphere model performs even better than the spherical harmonic model.

Table 5.2: Percentage of runs where O(K-K◦) is less than the other model.

Model Cubed Sphere Spherical Harmonics
CS-30 0.024% 0.020%
CS-76 0.012% 0.008%
CS-162 0.264% 0.272%
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Figure 5.6: Comparison of the integration constant variations for the CS-30 model with the spherical
harmonics base model. Error bars are 1-σ.

A major concern when comparing the variations in the integration constant for the cubed

sphere and the spherical harmonic models is the relative magnitude of the fluctuations. In some

cases, the magnitude of the variations of the cubed-sphere model were as much as an order of

magnitude less than the spherical harmonic model, and vice versa. Table 5.2 provides the percentage
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of the 24,605 runs for each model that exhibited this behavior. In most cases, the order of magnitude

of the fluctuations was the same. However, a small percentage of the tests yielded integration

constant changes an order of magnitude less for one model when compared to the other. In the

case of the CS-162 model, where the percentage of runs sharply increased, tests at altitudes at or

below 250 km exhibited the larger fluctuations.

In Figure 5.6, we illustrate the performance of the CS-30 model under the integration constant

test as compared to the spherical harmonic model. The top figure depicts the relative performance

of the maximum fluctuations. For the comparison of the fluctuation magnitude, the maximum

absolute deviation for both the cubed-sphere model orbit and the spherical harmonics orbit are

differenced. We compute the mean, median, min, max, and standard deviation of these differences

for all orbits at a given altitude, and illustrate these values for all altitudes tested. We note that a

negative number indicates the integration constant fluctuations for the cubed-sphere model orbit

are less than those of the spherical harmonic model orbit. The bottom subplot portrays the relative

performance of trends in the integration constant variations. For each orbit, we perform a linear

fit to the integration constant fluctuations. The trend in the fluctuations is described by the slope,

with Figure 5.6 illustrating the differences in these trends. For the slope in the trend line, units

are designated as mm2/sec2/hour, since the units of the integration constant are mm2/sec2 (i.e.

change in the constant per hour). For altitudes below 400 km, the mean and median magnitude

differences indicate the spherical harmonic model slightly outperforms the cubed sphere. However,

the average difference drops to nearly zero above 400 km. The maximum and minimum differences

remain consistent. Given the mean and median differences in the trend line slope are around zero

with 1-σ values within 0.01 mm2/sec2/hour, the two models typically have the same long term

trend.

Similarly, Figure 5.7 illustrates the integration constant performance for the CS-76 model.

We note that the magnitude and trend of the integration constant change is larger for the cubed

sphere at lower altitudes, but settles at around 300 km. The median is smaller than the mean at

these lower altitudes, indicating a relatively small number of tests increase the mean value. Again,
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Figure 5.7: Comparison of the integration constant variations for the CS-76 model with the spherical
harmonics base model. Error bars are 1-σ.

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

M
a
x
(
m
m
^
2
/s
^
2
)

Max K-K
◦
and Trend Differences

Mean

Median

Min

Max

200 400 600 800 1000

Orbit Altitude (km)

−0.04

−0.02

0.00

0.02

0.04

0.06

0.08

0.10

T
r
e
n
d
(
m
m
^
2
/s
^
2
/h
r
.)

Figure 5.8: Comparison of the integration constant variations for the CS-162 model with the
spherical harmonics base model. Error bars are 1-σ.
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the models closely agree for higher altitudes, as indicated by the mean and median values with

small error bars.

Results for the CS-162 model are provided in Figure 5.8. We note that some extreme values

have been truncated to improve visibility of performance statistics at higher altitudes. In the case

of the magnitude differences, the minimum values for the 100 and 150 km orbits are -3.39 and

-1.51 mm2/sec2, respectively. The maximum values are 5.20 and 1.79 mm2/sec2. In the case of

the trend slope differences, the missing maximums are 0.44 and 0.14 mm2/sec2/hour. Like the

CS-76 model, differences between the cubed sphere and spherical harmonic models are greater at

lower altitudes. This trend remains consistent through the remaining tests, and is attributed to

the greater differences in the gravity anomalies at lower altitudes seen in the next section. In this

case, the differences in the models settle around 250 km.

5.2.3 Orbit Propagation Comparisons

To assess the orbit propagation accuracy, we difference the propagated trajectories from those

using the spherical harmonic model, and compute the 3D RMS difference. An orbit propagation

“error” refers to the difference between the cubed sphere and the spherical harmonic model orbits.
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Figure 5.9: Summary of the total 3D RMS orbit propagation differences for the CS-30, CS-76 and
CS-162 models at a given initial altitude.
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Figure 5.9 summarizes the orbit propagation results for the CS-30, CS-76, and CS-162 cubed-

sphere models. These 3D RMS values include the state differences at all times and orbits, inde-

pendent of the orbit initial conditions. Orbit position and velocity differences are on the order of

fractions of a mm and mm/sec, respectively. The magnitude of the orbit propagation errors for the

three models converges at 200 km, and continues with a slight downward trend as orbit altitude

increases. At low altitudes, results improve with reduced fidelity of the base model, which is con-

sistent with the gravity anomalies provided in Figure 5.1. Of course, these results may be adjusted

by an appropriate configuration of the cubed sphere for high-degree base models. However, this

demonstrates that very close agreement with the base model can be achieved.

Table 5.3: Average Speedup Factor for the Cubed Sphere Versus the Base Model

Cubed-Sphere Model Spherical Harmonic Model Average Speedup Factor
CS-30 20x20 0.73
CS-76 70x70 5.97
CS-162 150x150 30.82

In Table 5.3, we present the ratio of the time required to propagate the orbit using the

spherical harmonics and the cubed sphere. The computation time used in these calculations includes

only the execution of the Runge-Kutta 7(8) algorithm, and does not include file load times or

initialization. As expected, the file load time for the cubed sphere exceeds that of the spherical

harmonics, however this may be mitigated through a careful implementation. Propagation using the

CS-30 model is slower than the corresponding spherical harmonics model. Later results demonstrate

the cubed-sphere model can be faster than the spherical harmonic model for all degrees greater

than 20. We also note that these results are computer and compiler dependent. These results are

an average over six individual computers, each with different capabilities. Evaluation time of the

spherical harmonic model varied most with each computer.

In Figures 5.10 and 5.11, we illustrate orbit propagation performance for the CS-162 model

at 300 km. There do not appear to be any trends in the errors when observing their distribution

based on inclination and right ascension of the ascending node. The relatively large deviation at
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Figure 5.10: Spatial distribution and histogram of the 3D RMS position differences for propagated
orbits initially at 300 km with the CS-162 model.
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Figure 5.11: Spatial distribution and histogram of the 3D RMS velocity differences for propagated
orbits initially at 300 km with the CS-162 model.
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the right ascension of the ascending nodes and inclination combination of 120◦ and 37.5◦ is directly

correlated with gravity anomalies in Figure 5.4. Specifically, the orbit groundtrack intersects the

large gravity anomalies at approximately 28◦ latitude and 92◦ longitude twice during the orbit, and

once directly over the peak anomaly near Haiti. Other than this orbit, all others are within 0.015

mm of those computed via the spherical harmonics. The spatial distribution of the velocity errors

roughly corresponds to that of the position errors.
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Figure 5.12: Distribution of 3D RMS differences for propagated orbits initially at 300 km with the
CS-30 model.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

3D RMS Position Error (10^-2 mm)

0

20

40

60

80

100

120

N
u
m
b
e
r
o
f
R
u
n
s

0.0 0.5 1.0 1.5 2.0 2.5

3D RMS Velocity Error (10^-5 mm/s)

0

20

40

60

80

100

120

N
u
m
b
e
r
o
f
R
u
n
s

Figure 5.13: Distribution of 3D RMS differences for propagated orbits initially at 300 km with the
CS-76 model.

Histograms of the propagated state errors for the CS-30 and CS-76 models at 300 km are

provided in Figures 5.12 and 5.13, respectively. We do not include corresponding contour plots
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since results are similar to those seen for the CS-162 model. Accuracy differences in the CS-30 and

CS-76 models are illustrated sufficiently by the histogram plots.

Table 5.4: Cubed Sphere State 3D RMS Performance at 300 km

Model Component Min Max Mean Median

CS-30
Position (mm) 4.70x10−5 0.0200 0.0042 0.0036

Velocity (mm/s) 2.99x10−8 2.27x10−5 4.84x10−6 4.11x10−6

CS-76
Position (mm) 3.25x10−5 0.0177 0.0041 0.0033

Velocity (mm/s) 3.22x10−8 2.04x10−5 4.73x10−6 3.79x10−6

CS-162
Position (mm) 5.71x10−5 0.0176 0.0040 0.0033

Velocity (mm/s) 2.50x10−8 2.04x10−5 4.64x10−6 3.80x10−6

Table 5.4 summarizes the 3D RMS orbit propagation differences at 300 km. To better

interpret these results, we perform a similar test using no gravity perturbations, i.e. the two-

body problem, and compare results to those computed via Kepler’s Equation. In Table 5.5, we

provide these two-body propagation errors. After comparing these two tables, we see that the mean

and median errors are similar, but slightly larger with gravity perturbations. This implies that, at

this level of precision in the cubed-sphere models, the orbit propagation tolerance dominates the

mean error. We may change this by using a different integration tolerance, but we expect to lose

approximately three digits when integrating for 24 hours. However, the differences in the gravity

models increase the minimum and maximum errors by an order of magnitude.

Table 5.5: Keplerian Orbit Propagation Accuracy at 300 km

Component Min Max Mean Median
Position (mm) 1.16×10−4 0.0062 0.0015 0.0012

Velocity (mm/s) 1.27×10−7 7.19×10−5 1.71×10−6 1.42×10−6

Orbits with an eccentricity of 0.05 were tested using a similar scheme with the altitude of

periapsis set at 300 km. Results are comparable to those depicted here for all three of the cubed-

sphere models. Although increasing the variations in the eccentricity provides a more comprehensive

comparison, larger values yield an altitude of apoapsis above 1000 km. At these altitudes, the

gravity anomalies of the cubed sphere relative to the spherical harmonics are below the machine



84

precision (as seen in Figure 5.1). Thus, higher eccentricities are not of significant interest.

To test the effects of primary shell boundaries on propagated orbits, differences for a circular

orbit at 358.7702 km were profiled. This altitude corresponds with the lower bound of the 4th pri-

mary shell. Both the integration constant and the orbit differences tests yield results comparable

to those already illustrated for a 350 km orbit. Thus, for these cubed-sphere models, the possi-

ble discontinuities at primary shell boundaries do not appear to influence the orbit propagation

differences.

5.3 Models Designed for Speed

In this section, we consider orbit propagation with cubed-sphere models designed for optimal

speed. We repeat the tests described previously, but, for reasons described in the next section, we

raise the minimum altitude tested to 200 km.

5.3.1 Model Configuration

We generate CS-106f, CS-100f, and CS-176f models based on 20×20, 70×70, and 150×150

spherical harmonic models, respectively, that are precise to 12 digits (8.9×10−15 km/s2 or 8.9×10−7

mGal) at or above 300 km. We also limit file sizes to 1.8 GB. To prevent any confusion with previous

or future models, we temporarily add the ‘f’ suffix to designate a fast model.

Table 5.6: Summary of fast cubed-sphere models for rapid orbit propagation

Model Base Model l m M N Size (MB)
Max. Deviation

(km/s2)
CS-106f 20×20 3 5 70 424 623 3.8×10−15

CS-100f 70×70 3 9 160 400 1385 9.0×10−15

CS-176f, 200-1,000 km 150×150 3 9 56 704 1379 6.8×10−15

We provide descriptions of these fast cubed-sphere models in Table 5.6. With these models,

we reduce the radial interpolation from eleventh to third degree polynomials. Similarly, we shift

from eleventh to fifth or ninth degree B-splines. We note that the increased degree of B-Spline
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interpolation m from the CS-106f to CS-100f models allows for the use of a sparser grid when

modeling the higher spatial resolution of the 70×70 model. Additionally, due to memory limitations

and the region of interest, we only generate a CS-176f model covering altitudes in the range 200-

1,000 km. The properties listed in Table 5.6 for the CS-176f model reflect this radially constrained

model.

Figure 5.14: Variations in gravity anomalies with altitude for 42 points on the Earth using the
CS-106f, CS-100f, and CS-176f models.

Figure 5.15: CS-176f gravity anomalies at 300 km
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Figure 5.14 illustrates the variations in the gravity anomalies with altitude for the fast cubed-

sphere models. For the 200-1,000 km altitude range, these models meet precision requirements.

Unlike the other models, anomalies for the CS-106f model do not decay with altitude, which affects

later orbit propagation results. All models demonstrate the periodic variations seen in Figure 5.1.

Again, this is a result of decreasing precision with distance from the Chebyshev interpolation nodes.

In Figure 5.15, we present the gravity anomalies at 300 km above the Earth’s surface for the

CS-176f model. The cubed-sphere grid spacing no longer dominates the gravity differences. Instead,

differences are correlated with the absolute gravity variations for the Earth. These anomalies are

within the 8.9×10−7 mGal precision requirement at 300 km. We do not provide results for the

CS-106f and CS-100f models since they yield results similar to those of Figures 5.2 and 5.3, except

with a larger magnitude. They also meet the precision requirements.

5.3.2 Orbit Propagation Comparisons

Using the same procedure described in Section 5.2.3, we compare the trajectories generated

via the cubed-sphere model with those using the spherical harmonic model. We provide the speedup

factors for these fast models in Table 5.7. Results demonstrate that sacrificing two digits of precision

in the cubed-sphere model yields 2-3 times faster integration than the models of Section 5.2. Lower

degree models yield the largest improvements because of the greater reduction in degree of the

B-spline interpolants.

Table 5.7: Average Speedup Factors for the Fast Cubed-Sphere Models Versus the Base Model

Cubed-Sphere Model Spherical Harmonic Model Average Speedup Factor
CS-106f 20x20 2.24
CS-100f 70x70 12.54
CS-176f 150x150 60.10

We summarize orbit differences in Table 5.8. When compared to the results in Table 5.4,

the minimum errors increase by an order of magnitude. Although slightly larger, the mean and

median errors are still dominated by the orbit propagation algorithm. Finally, the maximum errors
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Table 5.8: Cubed Sphere State 3D RMS Performance at 300 km

Model Component Min Max Mean Median

CS-106f
Position (mm) 8.6×10−4 0.0392 0.0075 0.0060

Velocity (mm/s) 7.59×10−7 4.54×10−5 8.65×10−6 6.87×10−6

CS-100f
Position (mm) 5.84×10−4 0.0287 0.0056 0.0045

Velocity (mm/s) 5.67×10−7 3.33×10−5 6.41×10−6 5.09×10−6

CS-176f
Position (mm) 3.85×10−4 0.0225 0.0039 0.0033

Velocity (mm/s) 4.17×10−7 2.61×10−5 4.51×10−6 3.71×10−6

increase by approximately a factor of two.

Figure 5.16 illustrates the 3D RMS orbit propagation errors with the fast cubed-sphere mod-

els. Lower altitude orbits exhibit a slightly reduced accuracy, which is expected given the reduced

model accuracy. For the CS-106f model, errors do not attenuate with altitude as a result of the

reduced slope in the gravity anomaly changes with height seen in Figure 5.14. Otherwise, high-

altitude trajectory errors are similar to those in Figure 5.9.

Figure 5.16: Summary of the total 3D RMS orbit propagation differences for the CS-106f, CS-100f
and CS-176f models at a given initial altitude.
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5.4 Chapter Summary

Results indicate that the cubed-sphere model can closely approximate a spherical harmonic

model. Tests demonstrate agreements in orbit propagation on the order of fractions of a millimeter.

Integration of orbits via the cubed-sphere model equivalent to a 150x150 spherical harmonic model

was over 30 times faster than via the base model. As Table 5.3 indicates, the break-even point is

achieved at above degree 20.

Cubed-sphere models configured for a highly-precise representation of the gravity field greatly

reduced variations in the integration constant, with changes consistent between the cubed sphere

and the spherical harmonic models. The agreement between the models is reduced below 200 km.

In some cases, the cubed-sphere model actually performs better than the corresponding spherical

harmonic model, probably due to the random nature of fluctuations in the integration constant

near the limit of the machine precision. Gravity anomalies were also reduced, and are now within

10−6 mGal for all altitudes above the Earth, and less than 10−7 mGal for altitudes at or above 300

km when using the current configuration.

Models designed for fast evaluation demonstrated an additional 2-3 times improvement in

orbit propagation speed. Given the relaxed precision requirements, gravity anomalies were an

order of magnitude greater than those of the models designed for accuracy. However, orbit prop-

agation accuracy was only slightly reduced. Thus, assuming reduced orbit propagation accuracy

requirements, large improvements in propagation speed may be achieved.



Chapter 6

Orbit Determination with the Cubed-Sphere Model

In this chapter, we extend the use of the cubed-sphere model to the problem of orbit deter-

mination. The previous chapter demonstrates that the cubed-sphere model can provide increased

orbit propagation efficiency with little or no difference when compared to base model derived so-

lutions. As mentioned in Chapter 1, the astrodynamics community now requires near real-time

orbit determination for multiple applications. Here, we study the effects of faster state propagation

on the computational efficiency of real-time and near real-time orbit determination systems. As

mentioned in Chapter 2, estimation of the interpolating coefficients in the cubed-sphere model is

intractable, thus we do not consider corrections to the gravity field in this chapter. We cover gravity

estimation using the MRQSphere model in Chapter 7.

The first section describes the configuration of the cubed-sphere models used throughout this

chapter. We then describe the filter implementation used for future orbit determination tests. Next,

we describe the addition of second derivatives, i.e. the Jacobian of the gravity acceleration with

respect to the position, to the cubed-sphere model for use in the extended Kalman Filter (EKF).

This includes a description of the precision of the generated state transition matrix. Section 6.4

details the tests employed to assess filter performance with the cubed-sphere model, followed by

results of these tests in Section 6.5. Finally, we summarize all results in Section 6.6. The methods

in this chapter are similar to those in Jones et al. (2010c), but many of the results have been

improved with better software implementations.
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6.1 Model Configurations

Before adding the cubed-sphere model to the orbit determination process, we require a larger

selection of models, i.e. models based on 20×20 through 200×200 spherical harmonic models in

increments of 10×10. In Chapter 5, we fix the degree of the Chebyshev interpolation for all models

and only vary the grid density on the surface of the cube. Using the procedure described in

Section 4.1.2, we now allow this parameter to vary with each model. For this reason, models using

Chebyshev polynomials of degree ten or less will exhibit improved computational efficiency when

compared to those of Chapter 5. However, we still use eleventh degree B-splines for all models.

Like the cubed-sphere models of Section 5.2, we require a precision of 8.9×10−9 mGal at 300 km

in altitude or above for these new models, and minimize the file size at the detriment of evaluation

speed. Configurations of these new cubed-sphere models may be found in Table 6.1.

For these models, we change the formulation of the spherical harmonic base model to remove

the singularity at the poles. In this chapter, we simulate a GRACE satellite, which has an inclination

of 89◦. For this reason, we switch to the Cartesian formulation of the spherical harmonic model

(see Section 4.1.1) to avoid any problems when evaluating the gravity field 1◦ from the poles.

In Figures 6.1 and 6.2, we illustrate variations in the gravity anomalies, as a function of

height, for all of the models described in Table 6.1. Each model satisfies the precision requirement

at or above 300 km in altitude. Some models exhibit discontinuities between primary shells (e.g.,

see the CS-94 model), but these jumps remain within the precision requirement.

6.2 Filter Implementation

In this research, we study filter efficiency improvements for both the EKF and UKF when

using the cubed-sphere model for evaluation of the gravity field. Section 3.3 introduces each of these

filters. In this section, we describe both the filter configurations and integration of the cubed-sphere

model with the EKF and UKF.

Using the EKF requires the evaluation of the gravity acceleration’s Jacobian with respect to
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Figure 6.1: Differences between the spherical harmonic model and the cubed-sphere model for base
model degrees 20 through 130.
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Figure 6.2: Differences between the spherical harmonic model and the cubed-sphere model for base
model degrees 140 through 200.
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Table 6.1: Precise cubed-sphere gravity model configurations for degree 20 through 200.

Model Base Model l m M N Size (MB)
CS-34 20×20 6 11 14 136 34
CS-48 30×30 7 11 14 192 67
CS-62 40×40 8 11 14 248 115
CS-76 50×50 8 11 14 304 163
CS-94 60×60 8 11 14 376 237
CS-100 70×70 9 11 14 400 294
CS-112 80×80 9 11 14 448 361
CS-122 90×90 9 11 14 488 422
CS-136 100×100 9 11 14 544 515
CS-148 110×110 10 11 14 592 662
CS-150 120×120 10 11 14 600 679
CS-156 130×130 10 11 14 624 731
CS-164 140×140 10 11 14 656 802
CS-174 150×150 11 11 14 696 978
CS-184 160×160 11 11 14 736 1087
CS-192 170×170 11 11 14 768 1178

CS-198A 180×180 11 11 14 792 1248
CS-198B 190×190 11 11 14 792 1248
CS-198C 200×200 11 11 14 792 1248

the satellite position; a capability we now add to the cubed-sphere model. Recall that the EKF

maps (to first order) the covariance matrix Pi−1 from time ti−1 to ti using the state transition

matrix Φ(ti, ti−1) in Equation 3.27. As implied by Equations 3.8 and 3.6, generation of Φ(ti, ti−1)

requires the Jacobian of the gravity acceleration

∂F (ti)
∂X(ti)

=
∂agrav

∂r
=
∂2U

∂r2
=



∂2U

∂x2

∂U2

∂x∂y

∂U2

∂x∂z

∂U2

∂x∂y

∂2U

∂y2

∂U2

∂y∂z

∂U2

∂x∂z

∂U2

∂y∂z

∂2U

∂z2


. (6.1)

Since this matrix is symmetric, we only require the evaluation of six terms: ∂2U/∂x2, ∂2U/∂y2,

∂2U/∂z2, ∂2U/∂x∂y, ∂2U/∂x∂z, and ∂2U/∂x2. We model these derivatives as submodels in the

cubed-sphere model. This requires additional memory since P in Equation 2.80 has been increased

by 6. With this addition, we add the cubed-sphere model to the EKF.
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Since the UKF propagates individual σ-points, and does not require the evaluation of any

Jacobians, we require no changes to the cubed-sphere model for this filter. We add capabilities to

the integration software that simultaneously propagates the σ-points, but this is simply a choice

of implementation. One may also propagate each point forward in time via separate executions of

the integration software.

To make this assessment of orbit determination speed improvements more realistic, we include

the NRLMSISE-00 (Picone et al., 2002) model of atmospheric density in the filter’s force model.

Highly precise orbit determination systems require the modeling of all known perturbing forces,

e.g. atmospheric drag. The contribution of each of these perturbations varies with time, the satellite

state, and other variables. We are interested in low-altitude scenarios where gravity perturbations

are strongest, thus requiring higher-degree gravity models. The second largest perturbing force for

such low-altitude satellites is drag due to interactions with the residual atmosphere (Vallado and

McClain, 2007). We model the drag acceleration by

adrag = −1
2
CDA

m
ρ(t, r) |vrel|vrel (6.2)

where CD is the coefficient of drag, A and m are the satellite’s area and mass, respectively, ρ is the

atmospheric density, and vrel is the velocity vector of the satellite relative to the atmosphere. We

assume

vrel = vsat − ω⊕ × rsat, (6.3)

where ω⊕ is the rotation vector of the Earth. In other words, we presume the residual atmosphere

has circular motion based on the primary body’s rotation rate. Atmospheric density models seek

to provide an accurate value of ρ based on the satellite position, time, and other parameters. Given

the computational complexity of modern atmospheric density models, we include the NRLMSISE-

00 model in our filter dynamics. Specifically, we use C code provided by Dominik Brodowski.1

With the increased fixed-cost of evaluating the equations of motion, including this model reduces

integrator speedup. We also include CD in the estimated state vector and assume A/m is known.
1 http://www.brodo.de/space/nrlmsise/
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We include filter process noise to compensate for force modeling errors. Incorrect propagation

of the filter state, due to errors in the force model, impacts a filter in various ways. To partially

account for these errors, we include filter process noise in both the EKF and UKF. This adds a

correction term Q (see Equations 3.27 and 3.39) to the time update of the state covariance matrix

(Tapley et al., 2004b), which we define as

Q =


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Ẍ

0 0
∆t3

2
σ2
Ẍ
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

, (6.4)

where ∆t is the time between measurements and σẌ , σŸ , and σZ̈ represent the standard deviation

of the unknown acceleration in each component direction. Filter tuning refers to the selection of

these σ values, which are largely unknown, to yield a more accurate estimate. Including Q prevents

filter saturation, i.e. the ignoring of observations because the state-error covariance matrix is nearly

zero. Derived from Equations 4.9.47 and 4.9.50 of Tapley et al. (2004b), Equation 6.4 assumes a

constant acceleration in each component direction for small ∆t. In this implementation, we do

not add process noise for large ∆t since this violates the constant acceleration assumption. We set

σQ = σẌ = σŸ = σZ̈ and select a value such that approximately 97.1% of all estimated state errors

are within the 3-σ filter covariance ellipsoid. We generate a value of σQ for each gravity model

degree.

During the course of research, we observed that the mapping of the state-error covariance

matrix using Φ(ti, ti−1) in the EKF did not prevent filter saturation when observation gaps are
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present. Thus, we apply the phasing factor

P̄i = 4∆t/γ ∗
(
Φ(ti, ti−1)Pi−1ΦT (ti, ti−1)

)
(6.5)

to the covariance matrix after an observation gap where γ is a time scale. We note that we either

apply this phasing factor or the process noise matrix Q, but never both at the same time. We

set γ = 60 minutes (3600 sec), meaning this phase factor doubles the estimated-state standard

deviation every hour when observations are not available. The UKF did not exhibit this problem,

which we attribute to the inclusion of second- and third-order effects in propagating the covariance

matrix with the unscented transformation.

In both the EKF and UKF, we process a combination of range ρ and range-rate ρ̇ measure-

ments

ρ =
√

(X −Xs)
2 + (Y − Ys)2 + (Z − Zs)2 (6.6)

ρ̇ =
(

(X −Xs)
(
Ẋ − Ẋs

)
+ (Y − Ys)

(
Ẏ − Ẏs

)
+ (Z − Zs)

(
Ż − Żs

))
/ρ (6.7)

where X, Y , and Z are the inertial components of the satellite position and Xs, Ys, and Zs are the

inertial components of the reference station position. We then set

G(ti) =

ρ
ρ̇

 , (6.8)

and, using Equation 3.12,

H̃ =


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ρ
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ρ
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Ż − Żs − ρ̇
∂ρ

∂Z
ρ

X −Xs

ρ

Y − Ys
ρ

Z − Zs
ρ


∗

. (6.9)

We include rows of Equation 6.9 as appropriate for a given set of observations.

6.3 Propagation of the State Transition Matrix

To determine the minimum precision required for the cubed-sphere-model representation of

the Jacobian, we approximate the effects of errors in A(t) on the resulting state transition matrix
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Φ(t, t◦). By limiting the number of accurate digits in A(t), and thus Φ̇(t, t◦), we reduce the accuracy

of mapping a state deviation vector ∆x0 with Φ(t, t◦). In summary, we control the accuracy of A(t)

and observe errors in the mapped deviation vector. We select an initial satellite state by fixing the

semimajor axis, eccentricity, and true anomaly to 6678.1363 km, 1.0×10−5, and 0◦, respectively, and

randomly select the inclination, right ascension of the ascending node, and argument of periapsis.

We convert these orbital elements into Cartesian coordinates to get an initial state X0. Using the

two-body equations and a perturbed A(t), we propagate X0 forward in time for 10 sec to generate

a state X10 and Φ(10, 0). In a second execution of the integrator, we propagate X′0 = X0 + ∆x0 to

get X′10. We provide more information on the selection of ∆x0 below. We map ∆x0 forward using

Φ(10, 0), and calculate the error in the deviation vector (computed via the state transition matrix)

using

δx10 = Φ(10, 0)∆x0 − (X′10 −X10), (6.10)

where X′10 −X10 describes the true propagation of the deviation vector. For a common precision

of A(t), we compute a mean RSS δx10 over 1,000 of these tests.

Figure 6.3: Monte Carlo analysis of errors in a deviation vector mapped via Φ(t, 0), where t = 10 sec
(left) and t = 86400 sec (right), as a function of the relative accuracy of the force model Jacobian
and the magnitude of the deviation vector ∆x0.

We also perform this test for different deviation vector magnitudes. When generating a

deviation vector ∆x0, we randomly select an azimuth and elevation angle (relative to the inertial
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frame), and combine this direction with a given magnitude to generate an initial deviation in the

position vector. We perform this process again to generate a velocity perturbation, but scale the

magnitude by 1/100. The position and velocity deviation vectors combine to form a full deviation

∆x0.

Figure 6.3 illustrates the 3D RMS errors in mapping a deviation vector using Φ(t, t◦) in

the test previously described. The precision of the Jacobian indicates the relative accuracy of the

A(t) used for propagating the state transition matrix. For this relatively small time interval of 10

sec, errors in A(t), and thus Φ(t, t◦), weakly affect errors in the mapping of ∆x0. Increasing the

accuracy of the Jacobian beyond six digits, i.e. a precision less than 10−6, demonstrates a negligible

reduction in errors.

The second plot in Figure 6.3 provides results for the same test, but with the propagation

time increased from 10 sec to 1 day. In this case, we see a larger variation in the mapping accuracy.

For precise orbit determination, i.e. systems with deviation-vector magnitudes closer to 1 to 10 cm,

accuracy beyond ten digits yields little improvement. We typically do not use a state transition

matrix that maps over such a large time interval in sequential orbit determination. Such capabilities

are usually required for batch processing, i.e. simultaneous processing of observations over a large

time interval.

We now assess the precision of the state transition matrix computed via the cubed-sphere

model when compared to solutions using the spherical harmonic model. For this process, we use

a procedure similar to that of Section 5.2 for the CS-34, CS-100, CS-174, and CS-198C cubed-

sphere models. We use CD to quantify the differences in Φ(t, t◦). In this case, Φ(t, t◦) is a 6×6

matrix containing values of multiple magnitudes and different units. Given these characteristics,

we measure precision by Equation 4.2 instead of an absolute value, e.g. m/s2. Additionally, instead

of providing 36 values of CD at each point in time, we average over all 36 values at all times for a

given altitude.

We generate cubed-sphere models representing the terms of the Jacobian using the parameters

provided in Table 6.1. Using the same model configuration for representing the gravity acceleration
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and its Jacobian yields a faster evaluation, i.e. reducing the number of duplicate evaluations. We

note that differentiation reduces accuracy by 1-2 digits. If we require a Jacobian accurate to 14

digits, like the acceleration, then we must reconfigure the models to achieve this accuracy. As

demonstrated in Figure 6.3, we do not require an A(t) matrix this accurate.

Figure 6.4: Precision, in CD, of the state transition matrix computed using the CS-34, CS-100,
CS-174, and CS-198C cubed-sphere gravity models when compared to those computed via the
spherical harmonic base model. Provided statistics include the mean precision with 1-σ error bars
and the minimum precision.

Figure 6.4 illustrates the mean precision, with 1-σ error bars, of the cubed-sphere model

derived elements of Φ(ti, t0) with compared to those of the corresponding base model. Results

demonstrate 12 to 13 digits of precision for altitudes at or above 300 km, with standard deviations of

approximately 1 digit. Minimum values appear small, however values with low precision correspond

to values with a small magnitude. Thus, their contribution to the mapping of Pi is small.

We provide the 3D RMS position and velocity errors for these tests in Figure 6.5. Like results

of the previous chapter, position errors remain sub-millimeter, and decrease slightly with altitude.
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This extends conclusions from the previous chapter to models of degree 200, i.e. the cubed-sphere

model is capable of representing a 200×200 spherical harmonic model with little or no difference

in propagated trajectories.

We note that these Φ(ti, t0) results affect a batch filter more than a sequential filter. In the

sequential algorithm, like the CKF and EKF, we integrate from ti−1 to ti. In such a process, we use

the initial condition Φ(ti−1, ti−1) = In×n with each execution of the integration algorithm. Thus,

differences in Φ(ti, ti−1) when computed via the cubed-sphere and spherical harmonic model are

removed with each filter time update. However, batch methods like the least squares algorithm in

Section 3.2 require Φ(ti, t◦), with differences accumulating.

Figure 6.5: Summary of orbit propagation 3D RMS state differences for the CS-34, CS-100, CS-
174, and CS-198C cubed-sphere gravity models when compared to trajectories computed with the
corresponding spherical harmonic model

6.4 Filter Test Description

We consider scenarios based on satellites at three different orbit altitudes for this study: the

Ocean Surface Topography Mission (OSTM)/Jason-2 (Lambin et al., 2010), the Gravity Recovery

and Climate Experiment (GRACE) (Tapley et al., 2004a), and a GPS Satellite (ARINC Engineering
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Services, 2004). The GRACE satellite orbits at an altitude of approximately 485 km, while the

Jason-2 satellite has a higher orbit at ∼1,336 km. Orbit determination systems for these two

satellites require a fairly high degree model (Bertiger et al., 2010; Kang et al., 2006). In the case

of GRACE, the orbit altitude is low enough to aid in estimating the gravity field to degree 200.

GPS satellites orbit at roughly 20,500 km, thus high-degree models are not required. However,

we consider this satellite since current efforts seek to generate near real-time orbit determination

solutions for the GPS constellation (Weiss et al., 2010). To prevent confusion with GPS-based

observations of the Jason-2 and GRACE satellites (see measurement description below), we refer to

the satellite in the final scenario as a semi-synchronous, or SemiSync, satellite. A semi-synchronous

satellite has a 12 hour period.

Table 6.2: Initial conditions for the simulated Jason-2, GRACE, and SemiSync satellites

Element Jason-2 GRACE SemiSync
Semimajor Axis (km) 7714.1363 6863.1363 26559.8

Eccentricity 0.01 0.0 0.01
Inclination (deg) 66.0 89.0 55.0

Right Ascension of Ascending Node (deg) 61.662 80.690 272.85
Argument of Perigee (deg) 149.654 357.069 0.0

True Anomaly (deg) 178.548 15.869 11.68

We generate “truth” orbits for each satellite using the most accurate satellite force models

available at the time of this research. For gravity, we use the full GGM02C (Tapley et al., 2005)

200×200 spherical harmonic gravity model. The Jacchia-Bowman 2008 (JB2008) (Bowman et al.,

2008) model provides the most realistic representation of atmospheric density available. We use

the TurboProp RK5(4) numerical integration tools (Hill and Jones, 2009) for both generation of

the true trajectories and within the filters themselves. To generate a higher drag perturbation,

we select a simulation epoch time of July 14, 2000 00:00:00 UTC, which corresponds to a solar

maximum. Using these force models and the initial states provided in Table 6.2, we propagate

forward 24 hours to a final time of July 15, 2000 00:00:00 UTC.

Table 6.3 describes the a priori and modeling errors included in these scenarios. We assume
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Table 6.3: Summary of filter error sources. Truth+σ means true value plus zero mean, 1-σ Gaussian
noise. Sigma values are provided where appropriate.

Element Truth Value Filter Value
Initial Position True Position Truth + 1-σ, σ = 0.01 km
Initial Velocity True Velocity Truth + 1-σ, σ = 0.001 km/s

Initial CD 2.3 2.0
Gravity Estimate GGM02C 1-σ clone of GGM02C

Gravity Model Degree 200×200 Test dependent
Atmospheric Density Model JB2008 NRLMSISE-00

GPS Satellite True Position Truth + periodic error (σ = 2.8 cm)
SLR/DORIS Station True Position Truth + 1-σ, σ = 2 cm

a reasonably accurate a priori solution, which primarily affects filter settling time and not overall

accuracy. The NRLMSISE-00 atmospheric density model does not incorporate the latest advance-

ments in space weather modeling; hence its reduced accuracy when compared to the JB2008 model.

We model errors in the estimated gravity field using 1-σ gravity clones, which we explain in more

detail below. Using each of the models in Table 6.1, we vary the truncation of the filter gravity

model with each test to assess computational improvement as a function of degree. To simulate

errors in the location of the measurement reference station or GPS ephemeris, we add additional

errors in the filter models. We add Gaussian noise with zero mean and a standard deviation of 2

cm to the filter estimate of the ground station locations. The filter modeled GPS satellite position

includes a 2.8 cm 1-σ error in each component direction. This corresponds to the estimated 5 cm

RSS position error of the IGS ultra-rapid ephemeris (Dow et al., 2009). To model the 15 minute

sampling period provided by the IGS solution, we make the GPS position error periodic with a

2π/15-minute frequency and a random phase offset. Thus, the maximum possible measurement bias

is 5 cm and never drops to 0 cm. We note that the intention of this research is to study computa-

tion improvements and relative precision, and not the absolute accuracy of the orbit determination

process. However, we include these errors to increase the realism of the test.

Gravity clones allow for the incorporation of statistical uncertainty, i.e. the gravity model
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estimate covariance matrix, in Monte-Carlo-like tests. Given

PC̄Snm
= STS, (6.11)

where S is upper triangular and computed via the Cholesky decomposition, we may generate a

gravity clone

Clone = C̄Snm + S~e (6.12)

where C̄Snm is a vector of the Stokes coefficients describing the spherical harmonics gravity model,

PC̄Snm
is the full estimation error covariance matrix of the Stokes coefficients, and ~e is a vector of

random numbers with zero mean and unit variance.

We generate five 1-σ gravity clones using the publicly available portion of the GGM02C spher-

ical harmonic model covariance matrix. The University of Texas Center for Space Research (CSR)

only releases the diagonal terms of the GGM02C covariance matrix, but indicates that correlations

are small. Given this reduced PC̄Snm
, we do not generate true clones, but, likely, a conservative

representation of the gravity errors. We generate corresponding cubed sphere representations of

these clone models using the configurations of Table 6.1. We use each clone in the orbit determi-

nation process, and average absolute filter errors to generate an error incorporating uncertainty in

the gravity field.

For these filter tests, we consider the measurement types: Earth-based range observations,

Earth-based range-rate, and satellite-based range. These systems approximate observations from

the Satellite Laser Ranging (SLR) (Pearlman et al., 2002), Doppler Orbitography and Radioposi-

tioning Integrated by Satellite (DORIS) (Tavernier et al., 2006), and Global Positioning System

(GPS) services, respectively. We base locations of the SLR2 and DORIS3 ground stations on the

actual network. The simulated GPS satellite constellation uses the optimal 24 satellite design de-

scribed by Massatt and Zeitzew (1998). Using the true satellite trajectory, we generate simulated

observations relative to the measurement reference point, and then add Gaussian noise. For the

GRACE and Jason-2 scenarios, we provide measurements, when available, every 10 sec. For the
2 http://ilrs.gsfc.nasa.gov/stations/index.html, Retrieved August 7, 2008
3 http://ids.cls.fr/html/doris/network.html, Retrieved August 7, 2008



104

SemiSync scenario, we reduce this to every minute. More accurate measurement types are available,

such as GPS carrier phase, but they often require additional processing. The goal of this research

is to characterize computation improvements for systems requiring fast orbit determination algo-

rithms and high-degree gravity models. Thus, we do not consider measurement types requiring

additional computational resources.

Table 6.4: Observation Noise Properties

Measurement Gaussian Measurement Noise Filter Observation σ

GPS Pseudorange 1 m 1.002 m
SLR Range 5 mm 4 cm

DORIS Doppler 2 mm/s 1 cm/s

We provide simulated observation properties in Table 6.4. We do not estimate the mea-

surement reference locations; thus, the filter must compensate for the station location error as a

measurement error. We select the filter observation σ value to yield a normal distribution of prefit-

residual errors in filter processing, i.e. the differences between the filter predicted observations and

the provided observations were normally distributed with zero mean and a standard deviation

approximately equal to the filter observation σ value. Thus, the filter observation σ value also

accounts for errors in the locations of the GPS satellites and ground stations.

In Figure 6.6, we provide the process noise σQ for each of the filter tests, and use the same

values in both the EKF and UKF. As mentioned previously, we select these values to yield filter

errors that agree with the filter state-error covariance matrix. We verified the proper tuning of the

filter process noise by comparing the filter estimated 1-σ error to the actual measurement 1-σ error.

Values were approximately equal, implying measurement noise accounts for the demonstrated filter

errors. Further changes in process noise will not necessarily improve filter accuracy. With a higher

measurement error, we expect an increased state error. When coupled with errors in the filter force

model, this induces more error in the time-updated filter state. Thus, do to the larger measurement

error, we require a larger process noise σQ for the GPS pseudorange scenarios. Given the lower

altitude of the GRACE satellite, the increased magnitude of the gravity model error requires an
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even larger σQ. Process noise for the SemiSync satellite is virtually zero because of its high-altitude

orbit, which reduces the effects of both gravity and atmospheric density modeling errors.

Figure 6.6: Filter process noise σQ values.

6.5 Orbit Determination Results

6.5.1 Filter Execution Time Considerations

In this section, we discuss the two principle elements affecting the execution time of the EKF

and UKF: the time and measurement updates. We use results of this section to understand the

filter speedup results in Section 6.5.2.

Figure 6.7 illustrates the integration speedup when using the cubed-sphere model instead

of the spherical harmonic model. Like the tests of Chapter 5, we propagate an initial condition

using both the cubed-sphere and spherical harmonic models, then compute an orbit propagation

speedup factor. For each gravity model degree, we perform this test 30 times and compute the

average speedup. In the single-state results, we integrate the position and velocity of a single

satellite for 24 hours. The UKF-like integration propagates 13 satellite state vectors, and reflects

the integration speedup for our implementation of the cubed-sphere model in the UKF. Finally, the

third plot describes the speedup when integrating one satellite state vector and the state transition
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matrix. The matrix operations in this third test, which have not yet been fully optimized within

TurboProp (Hill and Jones, 2009), increase the fixed cost of evaluating the force model; thus, the

speedup factor decreases.

Figure 6.7: Speedup factors when using the cubed-sphere model, as opposed to the spherical
harmonic model, for propagation. The second and third plots describe the speedup for integration
methods used in the UKF and EKF filters, respectively.

The single-state results in Figure 6.7 reflect a change in the computer used for testing. In

Chapter 5, the CS-162 model provided approximately 30-times faster integration than when using

the 150×150 spherical harmonic model. In Figure 6.7, the speedup factor when using the CS-174

model is around 21. Instead of averaging over results from multiple computers like the previous

test, we perform these experiments on the CCAR computer Cheetah, which provides the fastest

evaluation of the spherical harmonic model. Thus, they represent a conservative assessment of

integration speedup. We use this same computer for all future speed performance tests.

For Figure 6.8, we duplicate the methods of Figure 6.7, but include the NRLMSISE-00

atmospheric density model and compute the drag acceleration in the satellite dynamics. Including

the density decreases the percentage of the overall computation cost associated with the gravity

model. As a result, we expect integration speedup factors to decrease. However, the percentage
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decrease is not as large for integration with the state transition matrix due to the required matrix

operations.

Figure 6.8: Speedup factors when using the cubed-sphere and NRLMSISE-00 density models for
propagation. This includes speedup factors for orbit propagation methods used in the UKF and
EKF filters.

To gain some analytic insight into the affect of reduced time update computation time on

orbit determination efficiency, we generate an approximation of the filter speedup SF based on the

measurement update evaluation time TM and orbit propagation speedup factors SI . We separate

the filter execution time into a sum of the time and measurement updates, and write the filter

speedup factor

SF =
TSH + TM
TCS + TM

, (6.13)

where TSH and TCS are the evaluation times of the time update using the spherical harmonic model

and the cubed-sphere model, respectively. We assume a constant TCS for all cubed-sphere models,

and that TM does not vary between the cubed-sphere and spherical harmonic model tests. Upon

representing time in units of TCS , we write

SF ≈
SI + T̃M

1 + T̃M
(6.14)
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where
TSH
TCS

≈ SI , (6.15)

and T̃M = TM/TCS . Although integration dominates the execution of the time update, other

operations add some computation cost. Hence, Equation 6.15 is an approximation. We now

have an estimate of the filter speedup as a function of the measurement update evaluation time,

normalized by TCS , and the integration speedup. Figure 6.9 illustrates the filter speedup predicted

by Equation 6.14, and indicates that, for the integration speedup factors provided in Figure 6.8,

we require an efficient measurement update to achieve large gains in filter efficiency.

Table 6.5 includes statistics on the average time between observations and the average number

of observations per measurement update for the five filter scenarios. These statistics influence the

time required for measurement processing. For the scenarios using GPS measurements, there are

no data gaps. For the Jason-2 SLR scenario, relatively large data gaps raise the average time

between observations by almost a factor of two. We process more observations in the SemiSync

SLR scenario than all others due to its high altitude, i.e. the high altitude makes the satellite visible

to a large number of ground stations for longer periods of time.

Figure 6.9: Predicted filter speedup factors as predicted by Equation 6.14.
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Table 6.5: Observation Statistics for Each Simulation

Scenario Average Data Gap (sec) Average Number of Obs
GRACE GPS 10 11.3
Jason-2 GPS 10 11.0
Jason-2 SLR 17.5 4.9

Jason-2 SLR+DORIS 10.5 6.4
SemiSync SLR 60 17.5

In Figure 6.10, we provide the values of T̃M for all simulations. T̃M values decrease slightly

for higher degree, corresponding to increasing TCS , but remain approximately constant for each

scenario. These results, in combination with Figure 6.9, imply that SLR simulations will yield the

largest filter speedup factor. For this case, data gaps increase the average TCS , thus decreasing T̃M

while preserving SI . Inclusion of the DORIS data reduces the data gaps and increases the number

of observations processed per measurement update; hence, T̃M increases. The SemiSync scenarios

have the largest measurement update evaluation time given the large number of observations.

Normalized measurement processing time for the EKF increases because the time required for

integration decreases with fewer states, i.e. integration of n(2n + 1) elements in the UKF versus

n(n+ 1) in the EKF, where n is the number elements in the satellite state vector.
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Figure 6.10: Measurement update evaluation times, in T̃M , for all UKF (left) and EKF (right)
simulations. We place T̃M on the x-axis to facilitate comparison with Figure 6.14.
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6.5.2 Filter Execution Time Results

Figure 6.11 illustrates the speedup factors for the EKF and UKF. As implied by Figure 6.10,

speedup factors vary with the filter and scenario. As a result of the relatively low T̃M , processing of

SLR measurements in the Jason-2 scenario exhibits the largest benefit when using the cubed-sphere

model. Filter speedup does not reach the levels of the orbit propagation speedup factors. Further

improvements will require a more efficient measurement update implementation.

Figure 6.11: Filter speedup factors for the UKF (left) and EKF (right) simulations.
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Figure 6.12: Change in filter execution times for the UKF (left) and EKF (right) simulation. We
demonstrate this change by normalizing all execution times by the time required to complete the
corresponding 20×20 scenario.

In Figure 6.12 we provide the filter execution time normalized to the execution time of the
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Figure 6.13: Speedup factors for the Jason-2 satellite using GPS observations provided at different
rates in the UKF (left) and EKF (right).

20×20 model, which illustrates the change in filter execution with increasing gravity model degree.

For the cubed-sphere model, only the degree of the Chebyshev interpolation increases with the

degree of the base model, thus slightly increasing the computation time. Execution time for filters

using the cubed-sphere-model filter increases by a factor of 1.14, whereas the spherical-harmonic-

model filter increases by as much as a factor of 15 for the UKF. Thus, assuming an increase in

integrator memory requirements is acceptable, a filter may use a higher-degree gravity model with

little additional computation cost.

For Jason-2 precise orbit determination, the NASA Jet Propulsion Laboratory processes GPS

normal points every 5 minutes, but may change to every 30 sec.4 For Figure 6.13, we process GPS

observations at these reduced frequencies, and illustrate the increased speedup factors for the Jason-

2 satellite. With the increased orbit propagation time required for these longer intervals, the filter

speedup factor improves. JPL uses a square-root information filter for Jason-2 orbit determination,

which is closer to the EKF than the UKF. For this test, the EKF integrator speed increases by

almost a factor of 5 for the 5 min scenario, and 2.5 for the 30 sec test.

Figure 6.14 illustrates the ratio of the execution times for the UKF with the cubed-sphere

model and the EKF with the spherical harmonic model. Although the UKF includes higher-order

dynamics in the propagation of the estimated-state covariance matrix, the additional computation
4 Personal communication with Shailen Desai of the NASA Jet Propulsion Laboratory
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cost limits its use. Assuming a given system allows for orbit determination with a high-degree

spherical harmonic model, we seek to determine the cost of switching to an UKF with the cubed-

sphere model. The figure indicates that such a switch may be possible, with little or no additional

computation cost, for systems using high-degree models and larger data gaps. In the case of the

Jason-2 satellite with a model of degree 180 or higher, using an UKF with the cubed-sphere model

provides faster orbit determination than the EKF with the spherical harmonic model. Otherwise,

for high-degree models, orbit determination with a 200×200 model in the UKF requires a maximum

of 50% more computational resources when compared to using the spherical harmonic model in the

EKF.

Figure 6.14: Execution time of the UKF with the cubed-sphere model, when normalized by the
execution time for the EKF with the spherical harmonic model.

6.5.3 Filter Precision

In this section, we discuss differences between filter solutions generated with the cubed-

sphere model and those using the spherical harmonic model. First, we provide a short treatment

of absolute accuracy for the GRACE and Jason-2 scenarios, but only to provide a sense of scale

for later results. We do not provide plots of the absolute accuracy for the SemiSync satellites with

model degree. Given the large altitude, no improvement is exhibited for higher degree models,
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and all 3D RMS position and velocity errors remain accurate to approximately 9.64 cm and 0.013

mm/s, respectively. Then, we discuss changes in the filter estimated state when using different

gravity formulations.

Figure 6.15 illustrates the absolute accuracy of the filters in the GRACE and Jason-2 sce-

narios. We note that errors decrease with increased gravity model degree, with GRACE errors

decreasing until degree 80 and Jason-2 accuracy improving to degree 50. This indicates the prin-

ciple source of estimation error using the low-degree models is gravity truncation. In position, the

filter performance improves by as little as a factor of 2 when using a gravity model of higher-degree,

and velocity errors are reduced by almost an order of magnitude.

Figure 6.15: 3D RMS filter performance for the GRACE (left) and Jason-2 (right) scenarios. Solid
and dashed lines correspond to UKF and EKF results, respectively.

In Figure 6.16, we provide the 3D RMS difference between the EKF scenarios using the

cubed-sphere and the spherical harmonic models. We calculate these 3D RMS values using all

differences for all gravity clones for a given gravity model degree. Given a filter accuracy on the

order of centimeters, these results demonstrate little deviation between the two filters. We do

see smaller differences for the GRACE and Jason-2 GPS scenarios, which we attribute to larger

process noise, i.e. an increased weighting of observations in the filter solution of Equation 3.30

and 3.45. Therefore, with a larger process noise matrix, we decrease the contribution of the system

dynamics in the filter estimated state, and, thus, lessen differences cause by the two gravity models.
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Conversely, with less process noise, the filter places more weight on the force model in estimating

the state, thus failing to reduce differences created by slight variations in the force model. We

note that several 3D RMS values for the SemiSync satellite are effectively zero, i.e. any differences

remain less than the floating point error. Hence, they are not visible on this logarithmic plot.
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Figure 6.16: 3D RMS differences between EKF solutions (left) and covariance matrices (right)
computed with the cubed-sphere and spherical harmonics models.

Also in Figure 6.16, we provide RMS differences of the diagonal elements of the covariance

matrix, i.e. the the filter’s estimated-state variances. We see similar deviations in these variances,

i.e. the variances in the SLR and DORIS scenarios are greater than the GPS scenarios, except in

the case of velocity. In this latter case, differences are within 1-2 orders of magnitude.

Figure 6.17 illustrates the differences between the cubed-sphere- and spherical-harmonic-

based solutions using the UKF. Typically, differences for the SLR and DORIS scenarios remain

larger. We note that the differences between the cubed-sphere- and spherical-harmonic-based filters

using GPS measurements increase by an order of magnitude when compared to the differences for

the EKF. In the case of the SLR and DORIS scenarios, the more accurate measurements negate

this fact.

As seen when comparing Figures 6.16 and 6.17, state-error covariance matrix deviations

for the UKF increase by as much as eight digits when compared to those of the EKF. The UKF

includes second, and possibly third, order effects in the propagation of the covariance matrix. Small
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deviations in the σ-points yield larger differences in these higher orders, which reduce the precision

between the covariance matrices generated when performing a time update via the cubed-sphere

versus the spherical harmonic model. Given state-error covariance values on the order of 105 or

106 mm2, the resulting covariance matrices still agree to at least seven 7 digits. However, we

do not, typically, require such accuracy of the state-error covariance matrix. Tests demonstrate

that increasing the α value in the UKF (see Section 3.3.2), reduces the magnitude of these UKF

differences, and decreasing it increases the differences. Increasing α reduces the contribution of the

σ-points in calculating the time updated P̄i; thus, the small differences in the propagated σ-points

no longer influence the filter. We recommend that this phenomenon be further explored to verify

this interpretation.
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Figure 6.17: 3D RMS differences between UKF solutions (left) and covariance matrices (right)
computed with the cubed-sphere and spherical harmonics models.

6.6 Chapter Summary

In this chapter, we integrated the cubed-sphere model with both an EKF and UKF. Models

included in this test were designed for optimal precision with the base model. We used these new

filter configurations to demonstrate that orbit determination with the cubed-sphere model yields

computation improvement with little difference in the estimated state. The state differences them-

selves are dependent on the process noise included in the filter. However, all results demonstrate
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state differences several orders of magnitude below the best orbit determination capabilities avail-

able today. Scenarios using GPS pseudorange observations, which include a larger process noise

matrix, yielded differences an order of magnitude greater when using a UKF.

We also demonstrated the propagation accuracy of a cubed-sphere-model-based state tran-

sition matrix. The trajectory propagation with the cubed-sphere model provides a highly-precise

Φ(ti, ti−1) when compared to those computed via the spherical harmonic model. Additionally, this

test demonstrated that cubed-sphere models representing a 200×200 spherical harmonic model also

yield small differences in integrated states.

Results demonstrate an improvement in computational efficiency of the orbit determination

process, especially for high-degree systems. However, further improvements also required increased

measurement update efficiency. Thus, while removing the computational burden of the gravity

model for the orbit determination process, we require additional work to optimize both the time

and measurement updates for larger computation gains.



Chapter 7

Gravity Estimation with the MRQSphere Model

In Chapters 5 and 6, we discussed the cubed-sphere gravity model, which was designed for

efficient evaluation of the gravity field. Now, we shift to a model designed for gravity estimation: the

Multiresolution Representation using Quadratures for the Sphere, or MRQSphere, model. Except

for the orbit propagation statistics, we presented these results in Jones et al. (2010a).

In Chapters 2 and 4, we presented the MRQSphere model and the techniques employed for

model configuration. In this chapter, we demonstrate the MRQSphere’s estimation capabilities.

We accomplish this by applying the model to the asteroid 433 Eros, and use the NEAR15A gravity

model (Konopliv et al., 2002) as the true gravity field. We then define the estimation method and

present results from a simulation study.

7.1 MRQSphere Model for 433 Eros

We base the configuration of a model, i.e. the stepsize h and J ⊂ Z, on the model accuracy

requirements dictated by the accuracy of measurements (see Chapter 4). Here, we focus on a

model analogous to the low-degree model generated using radiometric and landmark data from the

NEAR mission to 433 Eros. This 15x15 spherical harmonic gravity model (NEAR15A) (Konopliv

et al., 2002) primarily used observations of the satellite at orbits 2 Eros radii (RE) and above,

where Eros’ radius is 16 km. For reference, we provide an isometric view of Eros in Figure 7.1,

which we based on the radiometric shape model determined by the NEAR mission (Zuber et al.,

2000). As demonstrated later, the side lobes of Eros influence accuracy results. Only the gravity
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perturbations, i.e. gravity field terms of degree 2 or greater, are modeled by the MRQSphere model.

Figure 7.1: An isometric view of the asteroid 433 Eros.

Table 7.1: Configuration of the MRQSphere representation of the NEAR15A spherical harmonic
model

Parameter Value
Gaussian Stepsize (h) 0.425

Precision ε of approximating ρ−(n+1) 5×10−10

Relative accuracy of truncating the sum Zj (Equation 2.100) 7 significant digits

Table 7.2: Shells required for a given range of radius (accurate to 10−5)

Range (in RE) Jmin Jmax
Above 33.963085 -5 0

33.963085 - 17.221399 -5 1
17.221399 - 10.223156 -5 2
10.223156 - 6.437202 -5 3
6.437202 - 4.578281 -5 4
4.578281 - 3.412891 -5 5
3.412891 - 2.702480 -5 6
2.702480 - 2.244688 -5 7
2.244688 - 1.925941 -5 8

We provide the selected parameters for the NEAR15A MRQSphere model in Table 7.1. Recall

that, for the MRQSphere model, we express radial distance as ρ, or units of primary body radii.

When generating Figure 2.7, we began with knowledge of ρ, h, and ε, and used these parameters
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to determine J. Here, we instead use the procedure discussed in Section 4.2 to find ρk such that

|ρ−(n+1) −Gε,Jk
(ρ)| < ε when given h, ε, and Jk. Using this method, we generate Table 7.2, which

specifies the shells required when evaluating the MRQSphere model at a given altitude. For our

MRQSphere model, 14 shells are required with indices j = −5, . . . , 8 for orbit radii above 1.93 RE .

We refer to a shell with index j as “shell j.”

Figure 7.2: Precision (in units of 10−10) of the approximation by Gaussians of ρ−(n+1) using shells
-5 through 1 at a radius of 17.2214 RE .

In Figure 7.2 we illustrate the precision of approximating ρ−(n+1) using Gaussians with the

parameters shown in Table 7.1. We see in this figure that, unlike at the other altitude ranges

listed in Table 7.2, the shells used at a radius slightly above 17.221399 barely meet the precision

requirement of 5×10−10. This influences future results, specifically, the precision of the MRQSphere

model as the radius decreases towards 17.22 RE . The upper boundary for including shell 2 may be

changed to avoid this phenomenon but we have not done so intentionally.

With Jk and ρk now specified, the shell degrees, and thus the number of quadrature nodes

required, may be determined. We select the number of terms in Zj to achieve a relative accuracy

of 7 significant digits and provide the resulting values in Table 7.3. Quadratures for the sphere

are currently available only for particular degrees, thus, for a given j, we use the minimal number

of nodes that guarantees proper integration. We denote the corresponding degree as nmax. Ad-
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ditionally, we place an upper limit of degree 15 on the shells given that the NEAR15A model is

15×15.

Table 7.3: Required gravity field degree (nmax) and the number of quadrature nodes for each shell

j ∈ J nmax M j ∈ J nmax M

-5 4 32 2 14 312
-4 4 32 3 15 372
-3 4 32 4 15 372
-2 7 72 5 15 372
-1 7 72 6 15 372
0 9 132 7 15 372
1 11 192 8 15 372

7.1.1 Baseline Performance

To provide a basis of comparison, and gain a more thorough understanding of the ideal

performance of the MRQSphere model used for this study, we perform a set of baseline tests. The

results of these tests profile the accuracy of the model given the true NEAR15A spherical harmonic

model, which we used to derive the functions Zj at the quadrature nodes for this baseline model.

Figure 7.3: Precision of the nominal MRQSphere model with the spherical harmonic model, defined
by the number of common digits between them. The figure on the right provides the distribution
of accuracy with radius.
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A comparison of the MRQSphere model accelerations with those of the spherical harmonic

model is provided in Figure 7.3. Recall that we defined CD, the number of common digits, in

Equation 4.2. In the case of acceleration, we treat each component of the vector separately. As

the radius decreases, the precision improves. For a fixed absolute accuracy ε, which controls the

approximation via Gaussians, the number of accurate digits in Equation 2.97 increases for lower

altitudes. As the radius decreases towards 17 RE , the precision deteriorates slightly. We associate

this deterioration with slightly reduced accuracy at this radius as described in Figure 7.2.

Figure 7.4: Precision of the nominal MRQSphere model and the spherical harmonics at 2 RE .

In Figure 7.4, we illustrate the spatial distribution of gravity anomalies, when compared to

the spherical harmonic model. The regions with the largest anomalies correspond to the locations

of the extremal locations of the asteroid, and, thus, match the largest Bouguer anomalies. These

regions of relatively large gravity variations agree with those determined by the NEAR15A model

(Konopliv et al., 2002).

To characterize the Laplacian of the MRQSphere model, we provide experimental evidence

that demonstrates that the error corresponds to the selected accuracy of the model. The Laplacian

is evaluated via Equation 2.119 by adding the diagonal elements of the resulting 3×3 matrix. We
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Figure 7.5: Relative accuracy of the Laplacian (∇2Ũ) of the idealized MRQSphere model when
compared to the maximum diagonal element of the variational equation matrix. The figure on the
right provides the distribution of relative accuracy with radius.

Figure 7.6: Laplacian for the nominal h=0.425 MRQSphere model at r = 2 RE
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calculate the relative error between the resulting sum and the largest value on the diagonal. A

histogram of the numerically computed values are included in Figure 7.5, which demonstrates the

Laplacian error is approximately 10−5, with a worst-case error of 10−3. Similar to the accuracy

of the acceleration vector, the error for the Laplacian of the model becomes smaller as altitude

decreases. However, these results demonstrate increased variations in the model accuracy near the

shell boundaries. This is apparent for the higher altitudes tested in Figure 7.5 where the altitude

range for each shell is larger.

Figure 7.6 demonstrates that, like the acceleration vector, the Laplacian has a spatial de-

pendence. Specifically, the regions near the side lobes of the asteroid, where gravity variations are

greatest, exhibit a reduction in accuracy.

Figure 7.7: Summary of 3D RMS orbit propagation errors using the baseline MRQSphere model
for Eros.

In Figure 7.7, we present the orbit propagation accuracies of the MRQSphere model. The

test procedure follows that of Chapter 5, i.e. each orbit is initially circular at a given altitude

with the indicated right ascension of ascending node (Ω) and inclination. For each altitude, we

propagate orbits using a grid uniformly spaced in Ω and inclination. Differences are relative to
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Figure 7.8: Distribution of 3D RMS differences for propagated orbits initially at 17 km with the
nominal Eros MRQSphere model.

Figure 7.9: Orbit propagation properties for two equatorial orbits about 433 Eros.
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orbits propagate with the NEAR15A spherical harmonic model. Results demonstrate a maximum

3D RMS orbit propagation accuracy at a fraction of a millimeter, except for orbits initially at 17

km in altitude.

In Figure 7.8, we provide detailed results for the 17 km orbits. We note that the y-axis of the

histogram is logarithmic. As indicated by the contour plot, equatorial orbits result in the largest

error. Further investigation demonstrates that interactions with the lobes of Eros cause a decrease

in altitude to a region below the valid altitude range of this MRQSphere model.

Figure 7.10: Distribution of 3D RMS differences for propagated orbits initially at 20 km with the
nominal Eros MRQSphere model.

For Figure 7.9, we propagated two equatorial orbits, one each initially at Ω values of 0◦ and

90◦. The figure illustrates the propagation error and the simulated orbit altitude and eccentricity.

Due to the relatively fast rotation rate of Eros, orbits initially at right ascensions close to 90◦ and

270◦ have extended periods of interactions with the lobes. These interactions exert a larger torque

on the orbit, thus changing the orbit elements. In this case, it forces the radius of periapsis to drop

below 2 RE , and, hence, below the minimum orbit altitude for this MRQSphere model. We note

that equatorial orbits within approximately 2 RE in radius correspond to the regions of instability

derived in Scheeres (2002).

For the purpose of comparison, we provide details on the orbits initially at an altitude of 20
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km in Figure 7.10. These orbits remain within the range covered by the MRQSphere model, and,

thus, errors are less than 0.11 mm.

7.2 Model Estimation

In this section, we describe the procedure used to estimate the NEAR15A gravity field using

the MRQSphere model. First, we describe the estimated state and the observations used, followed

by a description of the estimation algorithm employed. Additionally, we define a redistribution

technique that allows us to correctly distribute the estimated gravity field among the shells. Finally,

we provide and discuss results of the estimation process.

7.2.1 Estimation Process

To simplify the gravity estimation process for this proof of concept, we only estimate the

terms of the gravity field. This differs from missions to bodies beyond Earth orbit that often utilize

a statistical filter, usually a square-root information filter (SRIF), to estimate the the satellite

position, gravity field, and other parameters using radio science and other observations. Here, we

assume the satellite state is known, with measurements of the gravity potential provided with some

accuracy. Furthermore, we only estimate the Zj values for a single shell at a time as we approach

the asteroid. Thus, our estimated state vector is

Xj =



√
w1Zj(α1)

√
w2Zj(α2)

...

√
wMZj(αM )


(7.1)

where M is the number of nodes for a given shell. The reason for the
√
wi factor will be explained

below. We then rewrite Equation 2.85, in terms of Zj , as

Zj(α) =
M∑
i=1

KN (α · αi)
√
wi(
√
wiZj(αi)). (7.2)
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Additionally, we constrain the observations to include those of the satellite within the altitude

range for a single MRQSphere shell, and only estimate one shell at a time. We first estimate the

outermost shell, and then reduce the altitude range to proceed to the next shell (given estimates of

all previous shells). Since the MRQSphere model starts with the initial range of shells -5 through

-1, we must assume an a priori estimate of these shells is available. Section 7.2.3 discusses how this

may be accomplished.

Figure 7.11: Singular values for the H matrix when estimating the j=0 shell with 132 nodes.

Since we only estimate one shell at a time, designated as shell j, contributions of previously

estimated shells to the observed potential must be removed. Our observation U ′i is thus

U ′i =
RE
µ

Ui − µ

|ri|
−

∑
k=jmin,...,j−1

Ũ(ri; J = {k})

 (7.3)

where Ui is the original observation and jmin is the lowest index in the MRQSphere model. Note that

we have also removed the two-body contribution and scaled the observation by µ/RE to simplify

the computations. We add Gaussian noise to the observation with zero mean and a standard

deviation of 1×10−11. This noise was selected to provide approximately five, and as little as three,

digits of accuracy in the observation, which matches the corresponding parameters selected for the

MRQSphere model. The resulting state to observation mapping matrix H for observation U ′i at
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position ri is

H =
[
e
−

“
ln
|ri|
RE

”2
σ2

j /2Kn(r̂i · α1)
√
w1 . . . e

−
“

ln
|ri|
RE

”2
σ2

j /2Kn(r̂i · αM )
√
wM

]
. (7.4)

In Figure 7.11, we provide the singular values of the H matrix defined in Equation 7.4 when

estimating the j=0 shell. As illustrated, H is not full rank and the normal least-squares algorithm

of Section 3.2.1 will not suffice. Thus, we use the SVD algorithm described in Section 3.2.2 for

estimating the MRQSphere gravity field, and set scaled singular values less than 10−15 to zero.

To model the observations, we simulate a collection of satellite orbits using the full NEAR15A

spherical harmonic gravity model, which we consider the true gravity field. Nine sets of observations

are generated, one each for the range of orbit radii in Table 7.2. Thus we have one set of observations

for each of the shells indexed from 0 through 8. We propagate orbits long enough to provide

(roughly) complete coverage of the gravity field, i.e. groundtracks overlay the full surface of the

asteroid, and sample the orbit in 5 minute increments. The initial sidereal time of the asteroid was

0◦ with a rotation rate of 3.3116598×10−4 rad/s (from Konopliv et al. (2002)).

7.2.2 Estimated Gravity Field Redistribution

Since the shells, as defined by Gaussians, overlap, the estimation process does not control

how a contribution of a particular degree n influences the model. Thus, estimated functions Zj

may deviate from their definition in Equation 2.100. To match the estimated function Zj to that

definition, we use projectors onto the subspace of the spherical harmonics. The reproducing kernel

in Equation 2.84 is essentially a projector. Let us consider a function f in the subspace Pn and the

kernel Km, where m ≤ n. By multiplying both sides of Equation 2.85 by
√
wi, and changing the

index of summation to prevent confusion with elements of Jk, we have

√
wifm(αi) =

M∑
l=1

(
√
wiKm(αi · αl)

√
wl)(
√
wlfn(αl)), (7.5)

where the number of nodes M is sufficient to discretize Equation 2.85 exactly. The matrix Km,

with elements
√
wiKm(αi · αl)

√
wl, is a projector on the subspace Pm from the subspace Pn. The
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eigenvalues of this matrix are either 1 or 0. The inclusion of
√
wl in Equation 7.5 is the reason we

used these factors in Equation 7.1.

We now describe a method for using these projectors to properly distribute the gravity field

among the shells of the MRQSphere model. First, we select a shell with index j and associated

quadrature nodes at αi (usually the last shell estimated), which models the function Zj of degree

N . Next, we evaluate the currently estimated potential Ũ(ρkαi; Jk = {jmin, . . . , j}) at the nodes

(αi) of the selected shell j. The radius ρk is the lowest valid radius for the set Jk, i.e. the model

using only shells jmin through j. Applying the projector, we generate the values
√
wiUm(αi) at

each of the quadrature nodes, where Um(αi) refers to the potential of degree m. We perform this

operation for each degree m = 2, . . . , N − 1. Rearranging Equation 2.81 and multiplying by
√
wi,

we have

√
wiVm(αi) =

(
√
wiUm(αi))−

m−1∑
p=2

ρ−(p+1)(
√
wiVp(αi))

 ρm+1

= ((
√
wiUm(αi))− (

√
wiUm−1(αi))) ρm+1. (7.6)

Thus, after mapping the full estimated gravity potential to the lower degree subspaces, we now

have a representation of Vm(αi) for m = 2, . . . , N − 1. Using

Vm(βk) =
M∑
i=1

Km(βk · αi)
√
wi(
√
wiVn(αi)), (7.7)

we compute the mth degree projections at the nodes βk of any lower-index shell in the MRQSphere

model. Finally, we combine Equations 7.7, 2.99, and 2.100 to recompute values at the nodes for

all shells. Through this process, the information on the gravity field is properly distributed among

the shells of the MRQSphere model.

In Figure 7.12, we illustrate the effect of this redistribution process. For this example, we

use the SVD algorithm to simultaneously estimate shells -2, -1, and 0. The SVD least-squares

algorithm appears to estimate shells -2 and -1 correctly, but not shell 0. However, the overall fit to

the data is within the measurement noise. After applying this redistribution algorithm, we recover

the correct values on the shell 0. Although it is not apparent in the pictures, the accuracy of shells

-2 and -1 is also slightly improved.
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We note that the current redistribution algorithm does not include a correction of the state-

error covariance matrix. Solving this issue has been designated as future work.

Figure 7.12: Example improvement in gravity field estimation when using the redistribution algo-
rithm with the MRQSphere model.

7.2.3 Estimation Results

As mentioned previously, we assume a low-degree spherical harmonic model is available to

initialize shells -5 through -1 in the MRQSphere model. Let us show that a low-accuracy, low-degree

spherical harmonic model valid at large distances is sufficient to satisfy this assumption. For this

purpose, we conduct three groups of tests. First, we assume no a priori knowledge of the gravity

field. Second, we assume that a low-accuracy spherical harmonic model, valid at large distances,

is available. Finally, we assume a full, true spherical harmonic gravity model for comparison. We

calculate the initial estimates of shells -5 through -1 using this a priori gravity model. We also

consider the outcome as a function of which shells participate in estimation.

To generate the low-accuracy spherical harmonic model, we scale the 1-σ standard deviations

for each term of the NEAR15A model by 104. We selected this value to yield a σ for the C2,0 term
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of the same order of magnitude as C2,0. We then apply Gaussian noise with zero mean and the

scaled σ to the true value. For the zonal terms through degree 4, this generates a Stokes coefficient

on the same order of magnitude as its true value. For all other terms, the σ value may be orders of

magnitude greater than the NEAR15A coefficient. We expect that, in practice, initial estimates of

the gravity field will be more accurate than that. Before spacecraft rendezvous, an initial estimate

of the gravity field may be generated using radar imaging of the asteroid. In this case, evaluation of

surface integrals over the resulting polyhedron shape of the small body yields a low-degree spherical

harmonic model (Werner and Scheeres, 1997). Additionally, an initial low-degree spherical harmonic

model may be generated using a series of asteroid flybys before capture (Takahashi and Scheeres,

2010).

Table 7.4 presents the statistical accuracy of the resulting acceleration vectors for the differ-

ent a priori models after estimating all shells. The table also illustrates the effects of increasing

the number of shells estimated using the first data set. Shells one through eight are estimated

individually for all tests. We note that there is no statistical difference in estimating only shell zero

with either a low accuracy a priori gravity model or a true gravity model. However, the effects of

providing no initial gravity model has a noticeable impact. For the remainder of this section, we

examine results for the estimation of shell 0 with the low-accuracy gravity model.

Table 7.4: MRQSphere determined acceleration precision with the true spherical harmonic model
for various combinations of a priori estimates and state vectors. Values presented are mean CD
and 1-σ standard deviations.

Shells Estimated (j index) Zeros Low Accuracy True
-5, -4, -3, -2, -1, 0 3.511/.698 3.399/.698 3.340/.769

-2, -1, 0 2.866/.726 2.789/.730 3.288/.760
0 4.073/.668 5.416/.727 5.394/.695

In Figure 7.13, we provide a histogram of the precision of the acceleration vectors with those

determined by the spherical harmonic model. Unlike the baseline results presented in Figure 7.3,

precision is roughly uniform for all radii. For that baseline model, ε determines the absolute limit

of the MRQSphere model accuracy. Figure 7.13 demonstrates that, as expected, the estimation
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problem further limits accuracy based on the estimation algorithm employed and the measurement

accuracy. In this case, measurement accuracy of 4 or 5 digits yields a model accurate to just as

many digits. The decrease in precision for low altitude points, i.e. points requiring the evaluation

of shell 8, is a result of reduced accuracy for the final shell estimated. If the estimation process

had been truncated with shell 5 and only points above 4.6 RE were tested, results demonstrate

this downward trend would still be seen. These results have not been provided in the interest of

brevity.

Figure 7.13: Precision of the estimated MRQSphere model with the spherical harmonic model,
defined by the number of common digits between them. The figure on the right provides the
distribution of accuracy with radius

Figure 7.14 provides the relative accuracy of the Laplacian of the estimated model. Unlike the

acceleration vector, there is a small radial dependency on the accuracy of the Laplacian, especially

as the radius decreases towards 17.22 RE . Like the idealized model results of Figure 7.5, the

ability of the Laplacian to satisfy the constraints of potential theory depends on the accuracy of

the model. In this case, an MRQSphere accurate to 5 digits yields a Laplacian with a relative

accuracy of approximately 10−5.

Figure 7.15 illustrates the spatial distribution of errors in the estimated MRQSphere model.

Errors do not correspond to regions of high gravity variability, but are more coupled with the dis-
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Figure 7.14: Relative accuracy of the Laplacian (∇2Ũ) of the estimated MRQSphere model when
compared to the maximum diagonal element of the variational equation matrix. The figure on the
right provides the distribution of significant digits with radius.

Figure 7.15: Gravity anomalies for the estimated MRQSphere model at r = 2 RE
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tribution of measurements over the surface of the asteroid. In Figure 7.16, we process observations

for shell 8 with large regions deprived of measurements. Peak anomalies have doubled in magnitude

and correspond to regions with no observations. Regions with observations exhibit results mostly

comparable to those in Figure 7.15. Of course, this is an issue with the spherical harmonic gravity

model as well. A primary example of this phenomenon is estimation of the lunar gravity field where

little is known about the Moon’s far side gravity terms (Konopliv et al., 2001).

Figure 7.16: Gravity anomalies for the estimated MRQSphere model at r = 2 RE with spatial gaps
in data.

Figure 7.17 illustrates the 3D RMS orbit propagation error after 24 hours using the same

method as that of the orbit propagation test in Section 7.1.1. In this discussion, we ignore orbits at

altitudes less than 1 RE since such orbits correspond to regions of orbit instability, and propagation

errors are also a product of orbit altitudes below the applicable range of the MRQSphere model.

Orbits initially at a 20 km altitude, corresponding to the range required for shell eight, have a 3D

RMS accuracy on the order of 1 m. This error decreases with altitude as the absolute error of the

estimated MRQSphere model decreases, i.e. the two-body term dominates and gravity perturbations

attenuate. However, a 1 m 3D RMS errors is less than the 5 m orbit determination error for the

NEAR mission satellite at comparable altitudes.
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Figure 7.17: Summary of 3D RMS position and velocity errors for orbits propagated with the
estimated MRQSphere model versus the spherical harmonic model.
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7.3 Chapter Summary

In this chapter, we provided an example configuration of the MRQSphere model representing

the gravity field of the asteroid 433 Eros. We used this example to describe performance of the

model in the idealized situation. The construction of the MRQSphere model is dependent on

several user-defined tuning parameters, most notably the accuracy of the Gaussian approximation

of inverse powers of distance ρ. This approximation allows for the multiresolution representation

of the gravity field and leads to the definition of the shells to account for its angular variations.

This chapter also demonstrated the estimation capabilities of the MRQSphere gravity rep-

resentation for a small body using measurements of the gravity potential. We have presented a

systematic method for estimating the gravity field using a multiresolution representation. Given

an initial gravity model, each shell of the MRQSphere model is estimated separately as the satellite

slowly approaches the primary body. As information on the total gravity field improves, a redis-

tribution algorithm applies corrections to previously estimated shells. Using measurements with

relatively low accuracy and relatively good spatial distribution, a MRQSphere model was estimated

with accuracies comparable to the measurements provided. Like the spherical harmonic model, large

regions without measurements yielded a reduced accuracy in the total gravity field.



Chapter 8

Summary and Conclusions

This research considered two new gravity models, the cubed-sphere and MRQSphere models,

and their implications for fast orbit propagation and efficient estimation. This chapter summarizes

this research, states conclusions, and describes future work.

8.1 Summary of Contributions

We presented and demonstrated the use of the cubed-sphere and MRQSphere models for

astrodynamics applications. The cubed-sphere model provides rapid evaluation of the gravity field,

with applications to orbit propagation and determination, while the MRQSphere model allows for

the estimation of the gravity field. We presented these models, the mathematical tools they employ,

and the methods used to configure them based on a given set of requirements. We then tested these

models to determine their benefits to astrodynamics applications.

We characterized the impacts of using the cubed-sphere model in satellite orbit propagation.

To accomplish this, we performed a series of Monte-Carlo-like studies by comparing propagated

trajectories, including their required computation time, with those generated using the spherical

harmonic model. Propagation speed improved when using the cubed-sphere model, especially for

higher degrees. For highly-precise models, orbit propagation yielded 3D RMS differences on the

order of fractions of a millimeter over 24 hours. When we reduced the precision requirements by

two digits and relaxed the memory limitations, we generated a cubed-sphere model that was two

to three times faster with only a small reduction in precision of the propagated orbits.
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We merged the cubed-sphere model with the extended and unscented Kalman filters to

demonstrate its use in sequential estimation. In this process, we altered the gravity model to

represent the gravity acceleration’s Jacobian using an additional six submodels, thus allowing for

the generation of a state transition matrix for state-error covariance matrix propagation. We then

tested the cubed-sphere model in the EKF and UKF, with speedup factors depending on the den-

sity of observations. By observation density, we refer to the number of observations per unit of

time. For low-observation-density scenarios, the time update dominates the filter execution time;

thus, faster orbit propagation yields faster filter execution. Since the additional computation time

required for cubed-sphere models of higher degree is small, orbit determination systems may use

high-degree gravity models with little change in computational burden. We also demonstrated

that using the cubed-sphere model for orbit determination provides highly precise solutions when

compared to those generated using the spherical harmonic model.

We applied the MRQSphere model to the problem of gravity estimation for small bodies. In

this simplified study, we modeled and estimated the gravity field for the asteroid 433 Eros. We

generated two models: (1) one derived directly from the NEAR15A spherical harmonic model,

and (2) a model based on simulated observations of the gravity potential. Based on required

accuracy, this MRQSphere model outlined a staged approach to the primary body that allowed

for a systematic determination of the gravity field. Using a simplified scenario, we estimated a

MRQSphere gravity model that met accuracy requirements when provided measurements with a

sufficient spatial distribution. Estimation error increased when we removed this condition, i.e. added

gaps in our observation of the gravity field. However, this phenomenon is a problem for other gravity

models.

8.2 Conclusions

This research demonstrates that the cubed-sphere model reduces the computational burden

for orbit propagation and determination systems. Faster orbit propagation, including the propa-

gation of the state-error covariance matrix, will help existing space surveillance systems to quickly



139

predict the motion of a catalog of space objects, and may prove to be an important element for

future systems that are expected to track over 100,000 objects. Faster orbit determination al-

lows for: (1) reduced computational burden for real-time and near real-time orbit determination,

and (2) the inclusion of higher degree gravity models in orbit determination systems limited by

computation time. However, improved efficiency of the time update software shifts more of the

computational burden towards measurement processing in the filter. Thus, for dense data, we

require faster measurement update algorithms and techniques to achieve large improvements in

computational efficiency. Additionally, other force models, such as atmospheric density, will now

dominate the computation time required for a filter time update.

The MRQSphere model defines a new method for estimating the gravity field, with potential

applications to future asteroid missions. Configuration of this model incorporates measurement

and model accuracy requirements. Given such a configuration, the MRQSphere model defines a

natural, staged manner for approaching a primary body. This simplifies the mission design problem

by adding constraints to achieve a given accuracy. Conversely, this aspect provides information on

a mission’s capability to meet accuracy requirements, i.e. directly correlates knowledge of measure-

ment accuracy and mission design with the highest degree gravity model that may be estimated.

8.3 Future Research

Some research may still be conducted to improve the cubed-sphere model. With recent

developments in approximation theory, some of the tools used within the model are no longer

optimal. However, given the low cost of memory in modern computers, the model still meets

current demands. We instead mention improvements for the current formulation of the cubed-

sphere model. The relatively fast attenuation of the higher-degree contributions to the gravity field

yield an improved precision with the base model as altitude increases. This means the cubed-sphere

model includes too many nodes at these higher altitudes. Improvements may be made to reduce

memory requirements by preventing this oversampling of the base model. Additionally, we currently

model the gravity potential Jacobian using six additional submodels. This increases the memory



140

by, at minimum, a factor of two. Other methods, such as direct differentiation of the interpolating

functions, may allow for a reduced footprint. Impacts to model computation time and precision

with such changes are not yet understood, and, thus, would require additional research. Finally,

the configuration methods may be altered to incorporate knowledge of the statistical accuracy of

a given base model. This relaxes model precision requirements, thus allowing for faster evaluation

and a reduced file size. We have not performed this task since a reduced precision may cause

hesitation in the adoption of this model.

Several opportunities exists for further characterizing the use of the cubed-sphere model for

orbit determination. In this research, we only considered sequential estimation techniques. With

the addition of the Jacobian, we may now use this model in a batch least squares estimation

algorithm. This is more congruent with the estimation techniques employed by the Air Force for

space object catalog estimation. Additionally, the model should be tested in a third-party orbit

determination system such as GIPSY-OASIS or GEODYN. This aids in disseminating the model

and provides a more realistic estimation of navigation efficiency improvements.

Our research involving the MRQSphere model simply proves that it may be used for gravity

estimation, but more research is required. In the context of small bodies, the two major goals

for future work are: (1) integrating the MRQSphere model with a more traditional orbit determi-

nation scheme using a square-root information filter (SRIF), and (2) altering the representation

for evaluation within the circumscribing sphere. Integration of the model with the SRIF should

demonstrate the MRQSphere’s applicability to small-body gravity estimation and provide a more

realistic characterization of the model’s estimation capabilities using radio science observations.

A challenge in this task is defining an algorithm to correct the estimated-state covariance matrix

using the redistribution algorithm. Research to allow for evaluation of the MRQSphere determined

gravity field within the circumscribing sphere is ongoing.

Use of the MRQSphere model is not limited to small bodies. Potential applications include

Earth-based gravity estimation, although a more localized representation is desired for such an

application. This allows for high-degree solutions, i.e. one on par with current representations,
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without increasing the computational burden caused by evaluating the reproducing kernel for each

node on the sphere.

We have not considered what improvements the MRQSphere model may have on future mis-

sion design or scientific studies. Semi-analytic theory currently exists for orbit perturbations using

the spherical harmonic model, which is especially important for characterizing the dynamical envi-

ronment near such irregularly shaped objects. Additionally, geodesists use the spherical harmonic

model to measure mass flux and, in combination with other data, to constrain estimates of mass

distribution in a given body. Such applications of the MRQSphere have not yet been considered,

but are somewhat premature at this stage.
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Szegö, G., Orthogonal Polynomials, 4th ed., American Mathematical Society, Providence, RI, 1975.

Takahashi, Y. and Scheeres, D. J., “Rapid Characterization of a Small Body Via Slow Flybys,” in
20th Annual AAS/AIAA Spaceflight Mechanics Meeting , San Diego, California, February 15-17
2010.

Tapley, B., Ries, J., Bettadpur, S., Chambers, D., Cheng, M., Condi, F., Gunter, B., Kang, Z.,
Nagel, P., Pastor, R., Pekker, T., Poole, S., and Wang, F., “GGM02 - An Improved Earth Gravity
Field Model from GRACE,” Journal of Geodesy , Vol. 79, pp. 467–478, 2005.

Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C., “The Gravity Recovery and Climate
Experiment: Mission Overview and Early Results,” Geophysical Research Letters, Vol. 31, No. 9,
p. L09,607, May 2004a.



149

Tapley, B. D., Schutz, B. E., and Born, G. H., Statistical Orbit Determination, first ed., Elsevier
Academic Press, Burlington, MA, 2004b.

Tapley, B. D., Watkins, M. M., Ries, J. C., Davis, G. W., Eanes, R. J., Poole, S. R., Rim, H. J.,
Schutz, B. E., Shum, C., Nerem, R. S., Lerch, F. J., Marshall, J. A., Klosko, S. M., Pavlis, N. K.,
and Williamson, R. W., “The Joint Gravity Model 3,” Journal of Geophysical Research, Vol.
101(B12), pp. 28,029–28,050, 1996.

Tavernier, G., Fagard, H., Feissel-Vernier, M., LeBail, K., Lemoine, F. G., Noll, C., Noomen,
R., Ries, J. C., Soudarin, L., Valette, J.-J., and Willis, P., “The International DORIS Service:
Genesis and Early Achievements,” Journal of Geodesy , Vol. 80, No. 8-11, pp. 403–417, November
2006.

Thompson, B. F., Hammen, D. G., Jackson, A. A., and Crues, E. Z., “Validation of Gravity
Acceleration and Torque Algorithms for Astrodynamics,” in 18th Annual AAS/AIAA Spaceflight
Mechanics Meeting , Galveston, Texas, January 28 - 31 2008.

Thomson, W. and Tait, P. G., Treatise on Natural Philosophy , Cambridge University Press, 1879.

Tirpak, J. A., “Securing the Space Arena,” Air Force Magazine, Vol. 87, No. 7, pp. 30–34, July
2004.

Tscherning, C. C., “Computation of the Second-Order Derivatives of the Normal Potential Based
on the Representation by a Legendre Series,” Manuscripta Geodectica, Vol. 1, pp. 71–92, 1976.

Tscherning, C. C., “Functional Methods for Gravity Field Approximation,” in Mathematical and
Numerical Techniques in Physical Geodesy , Lecture Notes in Earth Sciences, Vol. 7, edited by
H. Sünkel, pp. 1–47, Springer Berlin / Heidelberg, 1986.

Tscherning, C. C., Rapp, R. H., and Goad, C., “A Comparison of Methods for Computing Gravi-
metric Quantities from High Degree Spherical Harmonic Expansions,” Manuscripta Geodectica,
Vol. 8, pp. 249–272, 1983.

Vallado, D. A. and McClain, W. D., Fundamentals of Astrodynamics and Applications, third ed.,
Microcosm Press and Springer, Hawthorne, CA and New York, NY, 2007.

Van der Merwe, R. and Wan, E. A., “The Square-Root unscented Kalman Filter for State and
Parameter-Estimation,” in 2001 IEEE International Conference on Acoustics, Speech, and Signal
Processing , Vol. 6, pp. 3461–3464, Salt Lake City, Utah, May 7-11 2001.

Weiss, J. P., Bertiger, W., Desai, S., Haines, B. J., Harvey, N., and Lane, C., “Near Real Time
GPS Orbit Determination: Strategies, Performance, and Applications to OSTM/Jason-2,” in
AAS Guidance, Navigation, and Control Conference, Breckenridge, Colorado, February 6-10
2010.

Werner, R. A. and Scheeres, D. J., “Exterior Gravitation of a Polyhedron Derived and Compared
with Harmonic and Mascon Gravitational Representations of Asteroid 4769 Castalia,” Celestial
Mechanics and Dynamical Astronomy , Vol. 65, pp. 313–344, 1997.

Wong, L., Buechler, G., Downs, W., Sjogren, W. L., Muller, P., and Gottlieb, P., “A Surface-Layer
Representation of the Lunar Gravitational Field,” Journal of Geophysical Research, Vol. 76,
No. 26, pp. 6220–6236, 1971.



150

Zuber, M. T., Smith, D. E., Cheng, A. F., Garvin, J. B., Aharonson, O., Cole, T. D., Dunn, P. J.,
Guo, T., Lemoine, F. G., Neumann, G. A., Rowlands, D. D., and Torrence, M. H., “The Shape
of 433 Eros from the NEAR-Shoemaker Laser Rangefinder,” Science, Vol. 289, pp. 2091–2101,
September 2000.



Appendix A

Point-Mass Model Approximating a Set of Low-Degree Stokes Coefficients

In Chapter 4, we require a point-mass model that, when converted to Stokes coefficients,

approximates the GGM02C gravity model (Tapley et al., 2005) to the largest achievable degree.

We treat this point-mass model as a true gravity field for comparing the different formulations of

the spherical harmonic model. This appendix describes a least-squares approach to generate such

a point-mass gravity model.

A.1 Models for Least Squares Fitting of the Stokes Coefficients

In this section, we outline the tools required to generate a point-mass representation of the

GGM02C spherical harmonic model. We perform a normal least-squares fit (see Section 3.2.1) of

the Stokes coefficients to solve for the positions of these point masses. We may also solve for their

masses, but this increases the condition number of the state-observation mapping matrix H̃. Thus,

attempts to simultaneously solve for the mass were not as effective. We define the location of a

single point mass

ri =
[
xi yi zi

]T
, (A.1)

and wish to estimate the location of all N point masses. We write the full estimated state vector

X =



r1

r2

...

rN


(A.2)
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where N is the number of point masses estimated.

In this least-squares approach, we fit to the spherical harmonics coefficients of the GGM02C

model up to a degree nmax, thus

Y = {C̄nm, S̄nm ∈ GGM02C : n ≥ 2, n ≤ nmax,m ≤ n}. (A.3)

As presented in Chapter 2, we may derive a set of Stokes coefficients C̄ ′nm and S̄′nm from a collection

of point masses using

C̄ ′nm =
1

M(2n+ 1)

N∑
i=1

(
ri
Rp

)n
P̄nm[sin(φi)] cos(mλi)ηi (A.4)

S̄′nm =
1

M(2n+ 1)

N∑
i=1

(
ri
Rp

)n
P̄nm[sin(φi)] sin(mλi)ηi (A.5)

where (ri, φi, λi) is the location of the i-th point with mass ηi, Rp is the radius of the primary

body, P̄nm is the associated Legendre function of degree n and order m, M is the total mass, and

M =
N∑
i=1

ηi. (A.6)

Using Equations A.4 and A.5, we define

Gnm(X) =

C̄ ′nm(X)

S̄′nm(X)

 , (A.7)

and constitute G(X) using Gnm(X) for all n and m such that n ≥ 2, n ≤ nmax, and m ≤ n. When

evaluating Equations A.4 and A.5, we convert from Cartesian to spherical coordinates using

ri =
√
x2
i + y2

i + z2
i (A.8)

φi = sin−1 zi
ri

(A.9)

λi = tan−1 yi
xi
. (A.10)

The state-to-observation sensitivity matrix for a given i-th point mass is

H̃i,nm =
[
∂Gnm(ri)

∂ri

]∗
=


∂C̄ ′nm
∂xi

∂C̄ ′nm
∂yi

∂C̄ ′nm
∂zi

∂S̄′nm
∂xi

∂S̄′nm
∂yi

∂S̄′nm
∂zi


∗

=


C̄ ′nm
∂ri

S̄′nm
∂ri


∗

(A.11)
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for coefficients of degree n and order m. Differentiating Equations A.4 and A.5, we have

∂C̄ ′nm
∂ri

=
nηi

RpM(2n+ 1)

(
ri
Rp

)n−1

P̄nm[sin(φi)] cos(mλi) (A.12)

∂C̄ ′nm
∂φi

=
ηi

M(2n+ 1)

(
ri
Rp

)n ∂P̄nm[α]
∂α

cos(φi) cos(mλi) (A.13)

∂C̄ ′nm
∂λi

= − mηi
M(2n+ 1)

(
ri
Rp

)n
P̄nm[sin(φi)] sin(mλi) (A.14)

and

∂S̄′nm
∂ri

=
nηi

RpM(2n+ 1)

(
ri
Rp

)n−1

P̄nm[sin(φi)] sin(mλi) (A.15)

∂S̄′nm
∂φi

=
ηi

M(2n+ 1)

(
ri
Rp

)n ∂P̄nm[α]
∂α

cos(φi) sin(mλi) (A.16)

∂S̄′nm
∂λi

=
mηi

M(2n+ 1)

(
ri
Rp

)n
P̄nm[sin(φi)] cos(mλi). (A.17)

Finally, we write

∂C̄ ′nm
∂ri

=
[
∂C̄ ′nm
∂ri

(
∂ri
∂ri

)
+
∂C̄ ′nm
∂φi

(
∂φi
∂ri

)
+
∂C̄ ′nm
∂λi

(
∂λi
∂ri

)]
(A.18)

∂S̄′nm
∂ri

=
[
∂S̄′nm
∂ri

(
∂ri
∂ri

)
+
∂S̄′nm
∂φi

(
∂φi
∂ri

)
+
∂S̄′nm
∂λi

(
∂λi
∂ri

)]
. (A.19)

We provided the equations for the partials of the spherical coordinates with respect to the Cartesian

coordinates in Equation 2.13. The more complete state-to-observation mapping matrix is then H̃ ′,

which is comprised of

H̃ ′n,m =
[
H̃1,n,m H̃2,n,m . . . H̃N,n,m

]
(A.20)

for each degree n and order m term included in Y.

In the spherical harmonic model, the degree n=1 terms are zero when the center of mass of

the primary body is at the origin of the body centered coordinate system. That is the case for the

GGM02C model. However, the current formulation of this least squares approximation does not

necessarily satisfy this constraint. Thus, we add an additional ‘observation’ to constrain the center

of mass to the origin. We write the distance of the center of mass from the origin

r◦ = |r◦| =
√
x2
◦ + y2

◦ + z2
◦ (A.21)
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where

r◦ =

∑k
j=1 ηiri
M

. (A.22)

Upon augmenting the H̃ ′ matrix

H̃ =

 H̃ ′
∂r◦
∂X

 , (A.23)

we write the partial derivatives
∂r◦
∂ri

=
[
∂r◦
∂xi

∂r◦
∂yi

∂r◦
∂zi

]
, (A.24)

where

∂r◦
∂xi

=
x◦ηi
r◦M

(A.25)

∂r◦
∂yi

=
y◦ηi
r◦M

(A.26)

∂r◦
∂zi

=
z◦ηi
r◦M

. (A.27)

A.2 Solution

We estimate X using the least squares algorithm described in Chapter 3. We note that, since

the positions of the point masses are constant in the planet fixed frame, Φ(ti, t◦) = I; thus, H=H̃.

We set the observation variance-covariance matrix

R =

PC̄S 0

0 σ2
r◦

 (A.28)

where PC̄S is a diagonal matrix of the variances associated with the GGM02C model, and σr◦ = 105

km. We initially place 25 larger masses near the center of the coordinate system, and distribute

25 smaller masses randomly on the surface of the Earth. We then solve for the position of the 50

point masses and approximate the GGM02C model to degree 7. Estimation of any higher degree

terms fails to converge on a solution for this implementation.

We illustrate the resulting spherical harmonics coefficients in Figure A.1, with differences

between the point-mass solution and the GGM02C values provided in Figure A.2. The values of

the points masses may be found in Tables A.1 and A.2.



155

Figure A.1: Absolute values of the GGM02C and point-mass model determined spherical-harmonic-
model coefficients.

Figure A.2: Difference between the Stokes coefficients determined using a collection of masses and
the GGM02C model.
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Table A.1: 25 of 50 point masses used to define the reference model for characterizing the spherical
harmonics formulations, which was designed with GM = µ = 398600.4415 km3/s2.

Mass Radius (km) Latitude (deg) Longitude (deg)
.039996 1153.92372750503 6.43173112711670 -18.1550206202232
.039996 860.720628046090 -41.2092043927566 -31.7268065330912
.039996 1013.56725204395 -29.9234575672558 72.0926838647558
.039996 811.062605873362 -54.8466224074458 -58.1857803960244
.039996 672.530541847089 7.13897532117478 153.347910434484
.039996 850.198325569758 61.1067412779413 141.502833973025
.039996 675.546074058148 -46.3622171176600 125.168971691340
.039996 801.873833806594 45.7570854020121 -112.391271168268
.039996 433.731110872869 10.6933343621237 -165.718659103055
.039996 1093.14438016795 3.61883605011266 -71.9140091101436
.039996 306.855252301518 -24.8604823451530 -161.095029397592
.039996 997.139177386362 53.8777439277858 -32.9197960330570
.039996 315.817633075392 -12.6067491584611 -153.539643434976
.039996 490.246943437380 -7.92374784384371 140.556366586796
.039996 629.960761637284 -6.64664992096353 132.887431456942
.039996 316.344017381063 -12.4577513153309 -144.584093912332
.039996 430.759718998166 -46.6960283495022 144.040417410937
.039996 1121.21313537526 15.1011043375355 36.6857600726105
.039996 875.667619580378 55.5683985563732 33.8939278219740
.039996 680.927238345851 14.7188887646595 -128.259875649750
.039996 540.808278127778 22.5585202559987 -155.530935124254
.039996 1020.69903885308 -30.6470489444354 20.2568448788601
.039996 1034.27477603497 20.2354013005163 91.4886280869801
.039996 515.946764430866 -56.9455200666397 -154.156034494238
.039996 740.792997846867 -27.4907867963254 -117.747669891304
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Table A.2: 25 of 50 point masses used to define the reference model for characterizing the spherical
harmonics formulations, which was designed with GM = µ = 398600.4415 km3/s2.

Mass (units of M) Radius (km) Latitude (deg) Longitude (deg)
4×10−6 5828.78809276127 5.82218716513003 147.414584023154
4×10−6 4387.05609962843 -71.0540639180324 86.4012102435706
4×10−6 5309.27543794979 40.3926537386017 -39.8315906510258
4×10−6 4572.54589559061 35.9855986958989 145.267050355714
4×10−6 4726.93906337121 -59.3193607308720 -149.852565370887
4×10−6 6098.60553490051 3.24531118581967 117.411722064867
4×10−6 5362.15538685248 36.7402507705754 -79.4424363488290
4×10−6 5133.31699750134 4.09768321837324 -165.004484079539
4×10−6 4139.95853535821 30.0058272105687 -111.220538347931
4×10−6 4722.93716655481 39.9414193847231 -33.4029118176349
4×10−6 5220.40417759491 -74.6164823047343 128.433756598078
4×10−6 5289.36463390104 -68.9492496448170 75.1260031000578
4×10−6 4348.69876521043 -68.7010675321301 43.7259673114938
4×10−6 4652.28118512938 -5.78673650687255 -53.7472768813786
4×10−6 3677.80870225334 45.1159304045092 100.447317621847
4×10−6 4111.84902706709 74.7972999900462 7.17705076195400
4×10−6 4412.99506732648 26.0766658123727 -92.3039682830442
4×10−6 3940.83197004955 38.7143633398815 -35.1244256768768
4×10−6 5057.67609428604 -83.8335056459668 -21.2571989800688
4×10−6 5437.83872303049 40.0024983599406 135.099606483756
4×10−6 4204.84101297012 45.3430000180872 27.6946840376581
4×10−6 5100.47275493532 -8.96277899110691 -127.328068420352
4×10−6 4096.88520241790 30.6696084032430 -99.2175830376057
4×10−6 3872.69140166276 -20.0285253948458 -124.856591228904
4×10−6 4545.90423574725 32.0918203654867 171.781131737086


