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Tamma, Venkata Ananth (Ph.D., Electrical Engineering) 

 

Engineering Optical Properties using Plasmonic Nanostructures 

Thesis directed by Prof. Wounjhang Park 

 

Plasmonic nanostructures can be engineered to take on unusual optical 

properties not found in natural materials. The optical responses of plasmonic 

materials are functions of the structural parameters and symmetry of the 

nanostructures, material parameters of the nanostructure and its surroundings and 

the incidence angle, frequency and polarization state of light.  

The scattering and hence the visibility of an object could be reduced by coating 

it with a plasmonic material. In this thesis, presented is an optical frequency 

scattering cancelation device composed of a silicon nanorod coated by a plasmonic 

gold nanostructure. The principle of operation was theoretically analyzed using Mie 

theory and the device design was verified by extensive numerical simulations. The 

device was fabricated using a combination of nanofabrication techniques such as 

electron beam lithography and focused ion beam milling. The optical responses of 

the scattering cancelation device and a control sample of bare silicon rod were 

directly visualized using near-field microscopy coupled with heterodyne 

interferometric detection.  The experimental results were analyzed and found to 

match very well with theoretical prediction from numerical simulations thereby 

validating the design principles and our implementation. 

Plasmonic nanostructures could be engineered to exhibit unique optical 

properties such as Fano resonance characterized by narrow asymmetrical 
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lineshape. We present dynamic tuning and symmetry lowering of Fano resonances 

in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano 

resonance was achieved by application of uniaxial mechanical stress. The design of 

the nanostructures was facilitated by extensive numerical simulations and the 

symmetry lowering was analyzed using group theoretical methods. The 

nanostructures were fabricated using electron beam lithography and optically 

characterized for various mechanical stress. The experimental results were in good 

agreement with the numerical simulations. The mechanically tunable plasmonic 

nanostructure could serve as a platform for dynamically tunable nanophotonic 

devices such as sensors and tunable filters.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To My Parents, Sister and Family. 

 



vii 

 

ACKNOWLEDGMENTS 

 

First, I would like to express my profound thanks and gratitude to my parents, 

sister and family. I could not have accomplished this without their support, 

encouragement and love. I would like to thank all my teachers and professors for 

teaching me all that I know. 

I would like to thank my advisor Dr. Wounjhang Park for his guidance and support 

during my Ph.D. study.  

I would like to thank Prof. Edward F. Kuester for his advice and guidance during 

my study at CU Boulder. I am grateful to Prof. Rafael Piestun for letting me use 

his lab and equipment during my thesis work. I would like to acknowledge the rest 

of my committee, Prof. Garret Moddel and Dr. Chris Holloway for their valuable 

comments and inputs. 

I would like to acknowledge present and former group members and co-workers 

who have helped me during the course of my study. I would also like to 

acknowledge Prof. J. B. Lee and Kyung-hak Choi at University of Texas at Dallas 

for their help with fabrication and Prof. Yeshaiahu Fainman and Maurice Ayache 

at University of California at San Diego for their help with the setup of the 

heterodyne near-field scanning optical microscope. 

Finally, I would like to thank my dear friends everywhere for their support and 

encouragement.  



viii 

 

Table of Contents 
CHAPTER I .................................................................................................................... 1 

A. Introduction ................................................................................................ 1 

B. Maxwell’s Equations .................................................................................. 3 

C. Absorption, scattering and extinction of light by particles ...................... 6 

D. Optical properties of materials .................................................................. 9 

E. Optical near-field characterization ......................................................... 14 

CHAPTER II ................................................................................................................. 22 

A. Introduction .............................................................................................. 22 

B. Theoretical background: Scattering by infinite dielectric cylinder ........ 26 

C. Design and parametric analysis .............................................................. 34 

D. Implementation of scattering cancelation device at optical frequencies 52 

E. Results of optical characterization and analysis of experimental data . 68 

CHAPTER III ................................................................................................................ 86 

A. Introduction .............................................................................................. 86 

B. Fano resonance ......................................................................................... 97 

C. Fano resonance in tunable plasmonic nanostructures ......................... 101 

D. Fano resonance in circular heptamer .................................................... 106 

E. Fano resonance in nanorod heptamer ................................................... 115 

CHAPTER IV .............................................................................................................. 131 

A. Conclusions ............................................................................................. 131 

B. Possible Future work ............................................................................. 134 

REFERENCES……………………………………………………………………………….150 

 



ix 

 

TABLE OF FIGURES 

Figure I-1: Schematic showing the scattering of incident electromagnetic wave by an arbitrary 

object O. ........................................................................................................................................................ 7 

Figure I-2: Comparison of (a) real part and (b) imaginary part of gold dielectric function between 

measured data from Ref. 6 and Drude-Lorentz model. ........................................................................... 13 

Figure I-3: Optical and SEM images of NSOM probes mounted on tapered metalized optical 

fibers. The bend in the fiber can be clearly seen in (a) and (b). Images (c) and (d) show the apertures 

at the tip of the probe. ............................................................................................................................... 16 

Figure I-4: Schematic showing the various operating modes of the NSOM. (a) Illumination mode 

(b) collection mode and (c) reflection mode .............................................................................................. 17 

Figure I-5: Schematic of the H-NSOM system used for optical characterization of photonic 

structures. .................................................................................................................................................. 19 

Figure II-1: Schematic describing the heuristic analysis of the scattering reduction phenomenon 

by use of plasmonic covers. The white and black colored arrows show the dipole moments induced in 

the cover and object respectively. For suitable values of cover thickness and permittivity, these 

opposing dipoles cancel out each other rendering the object invisible. .................................................. 27 

Figure II-2: Schematic showing the structure and field orientations for the analytical solution. A 

cylindrical object with radius a and permittivity ε3 is coated with a cover of thickness (ac-a), where ac 

is the total radius of the cylinder with plasmonic cover. The cover permittivity is ε2 and the 

background medium has a permittivity ε1. .............................................................................................. 29 

Figure II-3: Plots of scattering coefficients as a function of cover thickness for various lossless 

cover permittivity values of (a) 1 (uncoated rod) (b) -2 and (c) -8. .......................................................... 33 

Figure II-4: (a) Plot of scattering cross-section as a function of coating thickness for cover 

permittivity values of -2, -4 and -8. (b) Plot of scattering cross-section as a function of cover 

permittivity for various coating thickness. In both cases, the cylinder radius and cylinder 

permittivity were 100 nm and 9 respectively. The permittivity of the background medium was 2.25. 

The wavelength at which the calculations were carried out was 1550 nm. .......................................... 36 



x 

 

Figure II-5: (a) Plot of scattering cross-section as a function of coating thickness for cover 

permittivity values of -2 with loss (Im{ε}) values of 0.5 and 1  (b) Plot of scattering cross-section as a 

function of coating thickness for cover permittivity values of -8 with loss (Im{ε}) values of 2 and 4. . 38 

Figure II-6: Geometry of the simple layer/stratified medium used to model the dilute metal. .... 42 

Figure II-7: Results of a design example for layered effective media plotting the effective 

permittivity for the parallel and perpendicular polarizations. ............................................................... 46 

Figure II-8: Schematic of gold grating structure used for analytical calculation of effective 

permittivity of gold grating structure. ..................................................................................................... 47 

Figure II-9: Scattering cross-section as a function of wavelength for bare and scattering 

cancelation device. The bare rod diameter was chosen to be 180 nm. The plasmonic material 

consisted of eight gold gratings each of width 15 nm and periodicity of 70 nm. The gold thickness was 

13 nm. ......................................................................................................................................................... 48 

Figure II-10: Plot of real part of effective permittivity as a function of period for various fin 

widths. ........................................................................................................................................................ 50 

Figure II-11: Plot of wavelength dependent scattering cross-section for various gold thicknesses 

of 10 nm, 15 nm and 20 nm a constant fin width of 15 nm and periodicity 70 nm. .............................. 51 

Figure II-12: Schematic of the fabricated scattering cancelation device structure and the 10 μm 

wide input waveguide. The distance between the edge of waveguide and center of rod is 5 μm. ........ 53 

Figure II-13: Scanning electron micrograph showing a fabricated bare rod. The average rod 

diameter measured near the vertical center was ~185 nm. ................................................................... 55 

Figure II-14: Scanning electron micrograph showing the metal coated bare rod with a net 

diameter of ~230 nm measured near the vertical center of the rod giving a gold thickness of 13 nm. 57 

Figure II-15: Scanning electron micrograph showing the rod after FIB milling. The diameter at 

the top of the rod was measured to be ~172 nm giving a gold thickness of 12 nm. .............................. 58 

Figure II-16: (a) low magnification scanning electron micrograph image of top view of the 

fabricated structure and (b) lower magnification scanning electron micrograph image showing both 

the fabricated rod as well the 10 μm wide input waveguide. ................................................................. 59 



xi 

 

Figure II-17: Scanning electron micrographs of fabricated devices with larger diameter and 

increased fin widths showing reduced sidewall angles. .......................................................................... 62 

Figure II-18: Low magnification scanning electron micrograph of the scattering cancelation 

structure after silicon dioxide coating. ..................................................................................................... 63 

Figure II-19: Scanning electron micrograph showing the fabricated bare rod as well the 10 μm 

wide input waveguide. Inset shows a higher magnification image of the bare rod. ............................. 64 

Figure II-20: Comparison of scattering cross-section obtained from simulations of SCD rod with 

averaged diameter of 185 nm and measured thickness of 13 nm for varying fin widths from 15 nm to 

50 nm (b) Plot of scattering cross-section for rod diameters and fin widths values measured at 

various points along the rod height. In both cases, the scattering cross-section of a bare rod with 

diameter 240 nm is also plotted for comparison. The SR values for each curve are tabulated in Table 

II-2. ............................................................................................................................................................. 66 

Figure II-21: Cartoon depicting the scattering process and the expected measurement results. 

The total field is a sum of the incident plane wave and the scattered spherical wave. ........................ 69 

Figure II-22: (a) Plot of scattering cross-section at 1550 nm with varying cover permittivity 

obtained from simulations of coated cylinder with cylinder permittivity 8. (b) Plot of curvature 

parameter C as a function of cover permittivity. (c) Plot of SR in dB as a function of the curvature 

parameter C and (d) plots of fringe curves for various cover permittivities. ......................................... 72 

Figure II-23: (a) schematic of area scanned (b) NSOM scan results for the bare rod sample at 

1550 nm (c) NSOM scan results for the SCD sample at 1550 nm .......................................................... 74 

Figure II-24: (a) schematic of area scanned (b) NSOM scan results for the bare rod sample at 

1550 nm (c) NSOM scan results for the SCD sample at 1550 nm .......................................................... 76 

Figure II-25: Two dimensional field plots of |Ez| extracted from simulations for (a) bare rod (b-

d) SC Devices with measured rod diameter, grating width cases of (200 nm, 50 nm), (185 nm, 35 nm) 

and (160 nm, 20 nm) respectively. ............................................................................................................ 77 



xii 

 

Figure II-26: (a) Comparison of first fringe curves extracted form NSOM scan data and 

simulations using measured structural parameters for the SC device. (b) Comparison of the first 

fringe curves extracted from simulation and experimental data for the bare rod and SC device ....... 79 

Figure II-27: Study of the cross-section plots extracted from experimental and simulation results 

for bare rod and SC device. ....................................................................................................................... 81 

Figure II-28: Plots of cross-section data extracted from experiment and simulation data (a) Plot 

comparing the experimental data extracted from NSOM and simulations for the SC device (b) Plot 

comparing the data extracted from NSOM scans and those extracted from simulations for rod 

diameter 160 nm and grating width 20 nm. (c) Comparison of cross-section data extracted from 

simulation and experiment for the bare rod (d) Comparison of cross-section data for bare rod and SC 

device extracted from simulations and experiments. .............................................................................. 83 

Figure II-29: Cross-sectional data extracted from NSOM and topology scan data. Fig. II-29 (a, b) 

plot the NSOM signal and topology signal from bare rod scan and (c, d) plot the NSOM signal and 

topology signal from SC device scan. ........................................................................................................ 84 

Figure III-1: Schematic of the sphere of radius a in an electrostatic field. The field is oriented 

along the z direction. The permittivity of the sphere is ε1 and that of the background is εm. .............. 87 

Figure III-2: (a) Plot of absorption and scattering cross-sections of a gold sphere with radius 50 

nm in air. (b) Plot of |E/E0| for a gold nanoparticle of radius 50 nm in air. ......................................... 92 

Figure III-3: Schematic for heuristic analysis for a dimer showing formation of anti-bonding and 

bonding modes also called as dark and bright modes respectively. ....................................................... 94 

Figure III-4: Comparison of absorption and scattering cross-sections for the plasmonic dimer 

composed of two gold nanospheres of radius 50 nm and gaps of 10 nm and 20 nm. ............................. 95 

Figure III-5: Field plots of |E/E0| for the dimer system with gap (a) 10 nm at 565 nm and (b) 20 

nm at 580 nm. ............................................................................................................................................ 96 

Figure III-6: Plot of the Lornztian lineshape of Eqn. (3.11) for various damping values. ............ 98 

Figure III-7: Schematic of the classical model used to obtain lineshape of the Fano resonance. . 99 

Figure III-8: Plots of Fano resonance line shapes for various coupling strengths. ..................... 101 



xiii 

 

Figure III-9: Schematic showing arrays of gold heptamer structures embedded in PDMS 

substrate (b) Low magnification SEM image showing arrays of gold heptamers (c) High 

magnification SEM image showing top view of single gold heptamer (d) Tilted view of gold heptamer

 .................................................................................................................................................................. 108 

Figure III-10: Experimentally measured and simulated extinction spectra for mechanical stress 

along the horizontal direction with (a) horizontal polarization (b) vertical polarization of incident 

light ........................................................................................................................................................... 109 

Figure III-11: Evolution of charge distribution in circular heptamer with uniaxial stress along 

the x direction. ......................................................................................................................................... 112 

Figure III-12: Schematic showing the splitting of doubly degenerate modes in circular heptamer 

to azimuthal and radial modes in nanorod heptamer. .......................................................................... 116 

Figure III-13: Simulated extinction and absorption spectra for the azimuthal nanorod heptamer. 

(a) and (c) plot the extinction spectra for parallel and perpendicular polarizations respectively while 

(b) and (d) plot the absorption spectra for parallel and perpendicular polarizations respectively. ... 118 

Figure III-14: Evolution of charge distribution for nanorod heptamer with uniaxial stress along 

the x direction. ......................................................................................................................................... 120 

Figure III-15: Scanning electron micrographs of (a) low magnification image showing the array 

of gold nanorod heptamers (b) high magnification image showing the individual nanorod heptamer.

 .................................................................................................................................................................. 123 

Figure III-16: Experimentally measured and simulated extinction spectra for nanorod heptamer 

with mechanical stress along the horizontal direction. (a) and (c) plot the experimental spectra for 

parallel and perpendicular polarizations and (b) and (b) plot the simulated spectra for the parallel 

and perpendicular polarizations. ............................................................................................................ 125 

Figure III-17: Simulated extinction and absorption spectra for the azimuthal nanorod heptamer. 

(a) and (b) plot the extinction spectra and absorption spectra for nanorod structure with varying 

central nanocylinder diameter respectively while (c) and (d) plot the extinction and absorption 

spectra for varying gap respectively. ...................................................................................................... 127 



xiv 

 

Figure III-18: (a) Plot of experimentally measured extinction spectra for parallel polarization of 

light (b) SEM images of fabricated radial nanorod heptamer structures with inset showing high 

magnification image of the nanorod structure. ..................................................................................... 128 

 



1 

 

CHAPTER I  

INTRODUCTION AND BACKGROUND MATERIAL 

A. Introduction 

Engineered photonic structures have garnered attention worldwide due to their 

unusual optical properties generally unavailable in nature. Photonic crystal 

structures mimic crystal lattice structures and are made up of periodic obstacles 

where the periodicity is comparable to the wavelength of light. On the other hand, 

metamaterial nano-structures mimic the averaged optical response of atoms and 

molecules present in natural materials. Both these contrasting approaches have 

been used in the past to demonstrate many novel effects.  

Although such artificial dielectric media were well known in the past in the 

microwave regime, recent advances in nanofabrication technologies have enabled 

the demonstration of photonic crystals and metamaterial structures in the optical 

regime. Initially, interest in artificial photonic structures was generated due to 

their promise of negative refractive index at optical frequencies. Negative refraction 

is an unusual phenomenon that is not observed in natural materials. It was 

proposed that a perfect lens made of negative index material could have the ability 

to achieve resolution much smaller than that obtainable with a conventional lens. 

In addition to negative refraction, optical invisibility cloaking is another hallmark 
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area of application for metamaterial structures and has attracted research attention 

worldwide.  

Currently, research into artificial photonic nanostructures has diversified into 

broader areas such as sensing, next generation solar cells, efficient light generation 

and detection, nano-medicine, imaging and on-chip communication. Recently, huge 

strides have been made in understanding the optical properties of engineered 

plasmonic nanostructures. The extreme localization of light in metallic 

nanostructures generated a lot of interest in the use of plasmonic nanostructures for 

chemical and bio-sensing. These plasmonic nanostructures could also be used as 

meta-atoms to make a more complex metamaterial or plasmonic molecule to obtain 

engineered optical properties. Given that light-matter interactions are essentially 

nanoscale processes and the bulk of the electronic and vibrational processes in 

materials occur in the optical regime, the study of artificial photonic structures like 

plasmonic nanostructures could prove profitable due to their ability to control and 

manipulate light at the nanoscale. It is hoped that this ability could translate to 

better devices for the end user in terms of efficiency, cost etc.  

In this dissertation work, two novel artificial photonic structures are presented 

along with details of their design, fabrication and characterization. First, 

metamaterial-based scattering cancelation structure is presented. These structures 

could have applications in optical invisibility cloaking and sensing. Also presented 

is a tunable Fano resonance in plasmonic nanostructures fabricated on flexible 

substrates. This structure holds tremendous promise in a wide variety of 
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applications including sensors, optical filters and modulators, etc. The role of 

symmetry in achieving tuning of the Fano resonance is discussed. 

B. Maxwell’s Equations 

Maxwell’s equations are a set of four differential equations which summarize 

the behavior of electromagnetic waves in nature [1]. They can be written in the 

following differential form 

     
 

  
  

       

    
  

  
   

 

        
  

  
     

(1.1) 

where, E and B represent the electric field intensity (in SI units of V/m) and 

magnetic field density (in SI units of T [Tesla]), J represents the total current 

density (in SI units of A/m2) and ρ represents the total charge density (in SI units of 

C/m3). ε0 is a physical constant also known as the permittivity of free space and is 

approximately 8.85419 × 10-12 F/m. μ0 is a physical constant commonly known as 

vacuum permeability and is exactly 4π × 10-7 H/m.  

It can be clearly seen from Eqn. 1.1 that all electromagnetic fields are 

ultimately due to charges and currents, which are also influenced by the fields. All 

natural materials consist of free and bound charges and hence it is expected that 

they both interact with electromagnetic radiation. The total charge density (ρ) and 
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the total current density (J) in Eqn. (1.1) contain both the bound and free terms and 

hence (1.1) are also commonly known as the ‘microscopic’ Maxwell’s equations. The 

‘macroscopic’ Maxwell’s equations are obtained by considering only the free charges 

and currents explicitly. The differential form of (1.1) is re-cast as 

         

       

    
  

  
   

 

    
  

  
    

(1.2) 

where, ρf represents the free charge density (in SI units of C/m3), Jf represents 

the free current density (in SI units of A/m3), D represents the electric displacement 

field (in SI units of C/m2) and H represents the magnetic field intensity (in SI units 

of A/m). D and H are defined as 

         

  
 

  
   

(1.3) 

where, P represents electric polarization density (in SI units of C/m2) and M 

represents magnetic polarization density (in SI units of A/m). P and M are related 

to the bound charge density ρb and bound current density Jb by 

          

       (1.4) 
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It must be emphasized that Eqn. (1.1) and (1.2) are the same fundamental 

equations written in different ways. A constitutive relation accounts for the 

material properties and in general is 

      

  
 

 
 

(1.5) 

The ε and μ in Eqn. (1.5) depend on the nature of the material and in general 

are functions of frequency. In addition to the differential form, Eqn. (1.1) and (1.2) 

can also be written in integral form. As Maxwell’s equations are differential 

equations, boundary conditions and initial conditions need to be specified in order to 

obtain a unique solution. Thus, the use of Eqn. (1.2) and (1.5) in conjunction with 

necessary boundary and initial conditions would completely describe the 

electromagnetic fields in a given region of space. 

From the curl relations in Eqn. (1.1) or (1.2) and for source free regions, the 

coupled differential Maxwell’s equations are decoupled to yield two separate second 

order partial differential equations, one each in E and B known as the wave 

equations shown below 

       
   

   
 

(1.6a) 

       
   

   
 

(1.6b) 

with the speed of light in the medium given by     √  . 

For time-harmonic fields of the form E= E0 exp(-iωt), Eqn. (1.6a) can be written 

as 
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          (1.7) 

where, the wave number in the medium k = ω/c and ω is the angular frequency. 

The magnitude and direction of the rate of energy transferred by 

electromagnetic waves as they propagate through a medium is given by the 

Poynting vector S = E X H with SI units of W/m2. The Poynting vector S is an 

instantaneous value and most detectors including the human eye only detect the 

time averaged value of Poynting vector. For such cases, the averaged Poynting 

vector is defined for time harmonic fields as  

    
 

 
         

(1.8) 

where, E and H denote the complex phasor fields.  

C. Absorption, scattering and extinction of light by particles 

Let us consider an arbitrarily shaped object O placed in a non-absorbing 

medium with homogenous and isotropic dielectric constants εb and μb as shown in 

Fig. I-1. The object is assumed to be composed of a homogenous medium with 

dielectric constants ε and μ. Let us assume that the object is placed in the path of a 

beam of light with irradiance I and is propagating along the direction shown in Fig. 

I-1. We assume that the light originates at a distance far away from the object. The 

detector is also placed at a distance much larger than the wavelength of light in the 

background medium, say air. 
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Figure I-1: Schematic showing the scattering of incident 

electromagnetic wave by an arbitrary object O. 

 

The electromagnetic power received by the detector in absence of the object in 

all directions would be larger than the power received in presence of the object. 

Here, we do not consider objects such as optical lenses or metallic focusing elements 

that focus energy to a small volume. Therefore the presence of the object causes 

extinction of the incident beam as seen at the detector. This difference in power flow 

is accounted for by the power absorbed by the object and power scattered by the 

object in all directions. The optical extinction by the object depends on the size, 

shape and orientation of the object, dielectric properties of the object (arising from 

either structural or chemical composition), the dielectric properties of the 

surrounding medium and the polarization state and frequency of the incident light 

beam. To quantify the absorption, scattering and extinction of light by an object, an 

imaginary sphere of radius r (radius larger than object size) and surface A is 
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constructed around the object. The total electric field could be expressed as a sum of 

the incident and scattered field and similarly for the magnetic field. 

                    

                   (1.9) 

Therefore the rate of energy extinction could be written as a sum of the energy 

absorption rate and energy scattering rate.  

                 (1.10) 

where,  

     ∫
 

 
           

 

          
 

       ∫        
 

 ̂    
(1.11) 

where  ̂  is the unit outward radial normal to the surface A of the imaginary 

sphere. σ(ω) is the AC conductivity of the material composing the object and V is the 

volume of the object. The time averaged scattered power is given by 

         
 

 
                

   
(1.12) 

The absorption, scattering and extinction cross-sections (units of m2) are given 

by 

     
    

 
 

∫
 
            

 
          

 
 

(1.13a) 

       
      

 
 

∫        
 

 ̂   

 
 

(1.13b) 

                 (1.13c) 



9 

 

Scattering of light by particles is a very important problem in electromagnetics 

as light scattering is a fundamental physical process in nature and further details 

can be found in [2, 3]. 

The artificial electromagnetic structures presented in this thesis: scattering 

cancelation device and plasmonic nanostructures, are well characterized by their 

cross-sections. Therefore, most of the numerical simulations performed in this 

thesis were devoted to computing the absorption, scattering and extinction cross-

sections for the scattering cancelation device and plasmonic nanostructures. The 

Eqns. (1.13) were used to obtain the various cross-sections from the field data 

exported from simulations. The simulations used to compute the cross-sections were 

performed by the finite-element method using the commercial code COMSOL V3.5a.  

D. Optical properties of materials 

The formulation of Maxwell’s equations presented in Eqn. (1.1) to (1.5) makes it 

abundantly clear that the macroscopic (bulk) optical properties are a consequence of 

microscopic charges and currents, both free and bound. The macroscopic optical 

constants of materials have been extensively measured at various frequency ranges 

and tabulated [4]. In the classical model developed to explain the optical properties 

of materials, a medium consisting of atoms and molecules is represented as a 

collection of different types of oscillators, each with their own characteristic 

resonance frequency [5]. The oscillator model was first introduced by Henrik 

Lorentz on the assumption that a negative charge (electron) is held in stable orbit 

around a positive charge (nucleus). The mass of the nucleus (M) is assumed to be 
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much larger than that of the electron (m). The reduced mass of the system (Mr) is 

the harmonic mean of M and m and Mr ~ m as M >> m. Physically, an incident 

oscillating electric field would cause oscillations of the atomic dipole. The nucleus 

due to its larger mass is assumed to be stationary whereas the lighter electron 

oscillates back and forth about its equilibrium position at the frequency of the 

incident light. Thus the oscillating electron and fixed nucleus constitute an 

oscillating dipole which re-radiates the field with a time/phase lag. This time/phase 

lag is further characterized in terms of the refractive index of the medium. Lorentz 

modeled the displacement of atomic dipoles as harmonic oscillators with damping. 

The damping was introduced to account for any losses that may be present in the 

system. The Lorentz model for dielectrics predicts the frequency dependent 

permittivity function as 

        
   

    

 

   
         

 
(1.14) 

where,           is the high frequency response of the medium, N is the 

number of dipoles per unit volume or the atomic density, mr is the reduced mass of 

the system and e is the charge associated with the electron. γ is the damping rate 

and characterizes the rate of energy loss from the oscillator. ω0 is the resonant 

frequency corresponding to one of the many natural frequencies of the atom 

(corresponding to frequencies of atomic transition) and is proportional to 

    √
 

  
 

(1.15) 
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where K is the Coulomb restoring force between the nucleus and the electron 

and mr is the reduced mass of the system.  

 The classical Lorentz oscillator model can predict the optical dielectric 

function of materials very accurately. As the reduced mass of bound electron system 

is approximately the mass of an electron and hence very small, it can be expected 

that the optical responses due to bound electrons occur at the ultra-violet and 

visible frequency ranges. Since atoms absorb and emit light at multiple discrete 

transition frequencies, it can be expected that the dielectric function includes 

contributions from multiple oscillators. In the case of multiple oscillators, Eqn. 

(1.14) is modified as 

        
   

    
∑

  

    
          

 

 
(1.16) 

where, ω0j and γj are the frequency and damping associated with discrete 

transition j. fj is the oscillator strength for transition j. 

Vibrational oscillators too can be modeled using the Lorentz oscillator model. 

Vibrational oscillators are different from bound electron oscillators as they arise 

from the oscillations of atoms and ions. Vibrational oscillators typically occur in 

ionic crystals and polar molecules which contain oppositely charged ions. An 

oscillating dipole is produced when these ions vibrate from their equilibrium 

positions leading to an optical response. Since the atoms and ions have much larger 

mass than electrons, it can be expected that the reduced mass of such a system 

would be larger than the bound electron system. Hence, optical responses due to 
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vibrational oscillators tend to occur at lower frequencies falling in the infrared 

region of the optical spectrum.  

The optical response due to free electrons could be modeled by modifying the 

Lorentz oscillator model. In metals and doped semiconductors, the free electrons 

make dominant contributions to the optical properties. For free electrons, the 

restoring force between nucleus and free electron, K = 0, and thereby the resonance 

frequency ω0 is also zero. Hence, Equation (1.14) is re-cast as 

       
  

 

        
 

(1.17) 

where, ωp is known as the plasma frequency and γ the damping rate and 

   √
   

   
 

(1.18) 

This model is known as the Drude-Lorentz model and explains the high 

reflectivity of metals at optical frequencies. Typically, for a metal N is on the order 

of 1028 m-3 and this leads to the plasma frequency to occur in the ultra-violet regime. 

In the work presented in this thesis, gold has been extensively used to fabricate 

plasmonic metamaterial structures. Fig. I-2 compares the experimentally measured 

complex dielectric constants of gold with those obtained from the Drude-Lorentz 

model (here and elsewhere in this thesis, the relative dielectric constant is to be 

understood). Gold is a noble metal with valency of 1 and electron density of ~5.9 × 

1028 m-3 giving a plasma frequency, ωp/2π ~ 2.18 × 1015 Hz. The damping rate, γ/2π 

is roughly 4.35 × 1012 Hz. These parameters were used to compute the dielectric 
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response using the Drude-Lorentz model. The experimental values were extracted 

from the data tabulated in [6]. 

 

Figure I-2: Comparison of (a) real part and (b) imaginary 

part of gold dielectric function between measured data 

from Ref. 6 and Drude-Lorentz model. 

 

The Drude-Lorentz model is a good approximation to the experimental data at 

frequencies well below the plasma frequency, and the metal behaves like a perfect 

electric conductor at microwave and radio frequencies. In the visible region, the 

metal becomes lossy due to inter-band transitions and this causes the measured 

data to deviate from the model based on a purely free electron system. At 

frequencies higher than the plasma frequency the metal becomes transparent and 
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behaves like a lossy dielectric material in accordance with the Lorentz-Drude 

model. 

It can be observed from Fig I-2 (a) that the Re{ε} obtained using Drude-Lorentz 

model agrees reasonably with experimental data. However, the experimentally 

measured Im{ε} plotted in Fig. I-2 (b) deviates widely from the theoretical 

predictions. This is because the simple Drude-Lorentz model fails to account for 

inter-band transitions in gold. It is however possible to account for interband 

transitions and obtain an exact fit to the experimental data using multiple Lorentz 

oscillator terms in addition to the Drude-Lorentz term. Ref. [7] models optical 

functions for several commonly used plasmonic materials such as gold, silver and 

copper among others by use of additional Lorentz oscillator terms. Therefore, it 

would be advisable to use the experimentally measured permittivity values of gold 

for all nanophotonics applications. In all the numerical modeling work presented in 

this thesis, the complex dielectric constants of gold used were obtained from the 

experimentally measured data tabulated in [6].  

E. Optical near-field characterization 

In conventional optical microscopy, the object under inspection is imaged using 

a lens system which acts as a low-pass spatial frequency filter. The higher spatial 

frequency information of the object is lost during the near-field (d < λ) to far-field (d 

>> λ) transformation of light. This is the fundamental reason behind the diffraction 

limit that imposes a lower bound on achievable spatial resolution in conventional 

optical microscopy [8, 9]. The high-frequency spatial information of the object is 



15 

 

carried by evanescent waves which spatially decay very rapidly in the vicinity of the 

object. It was proposed by Synge in 1928 that a subwavelength aperture in metal 

could be brought close to the object to collect the near-field information thereby 

improving the optical resolution [10] and the theory behind the idea was later 

confirmed [11]. Synge’s idea was not immediately implemented due to technological 

challenges faced in placing a subwavelength aperture in the vicinity (<10 nm) of the 

object. The concept was demonstrated at microwave frequencies for λ=3 cm with 

λ/60 resolution [12]. It was only in 1984 that this concept was demonstrated at 

optical frequencies [13, 14], and the technique is now known as scanning near-field optical 

microscopy (SNOM) or near-field scanning optical microscopy (NSOM). A review of the 

theoretical background and technological details of NSOM are detailed in [15].  

Synge’s idea was to use an aperture of diameter 100 nm in a metal film to probe 

the near-field of the object. Practically, the idea is implemented by milling a small 

subwavelength aperture in a metal coated tapered optical fiber probe. The probe is 

then brought into very close proximity (<10 nm) to the surface of the sample under 

investigation using a piezo driver under feedback (see [15]). The tapered optical 

fiber is fabricated either by pulling under heat [16] or chemical etching [17]. The 

probes are then coated with metal (usually gold, silver or aluminum) and 

subwavelength apertures of diameters > 50 nm are milled in the metal layer by use 

of a focused ion beam milling machine. The tapered probe is then mounted on a 

tuning fork probe mount. Optical microscope images and scanning electron 

micrographs (SEM) of some aperture probes are shown in Fig. I-3. Fig. I-3 (a) shows 

the optical microscope image of a tuning fork mount with the bent tapered 
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metalized probe below the tuning fork. Fig. I-3 (b) shows a higher magnification 

image of the bend in the tapered optical probe with red light emitted from the tip of 

the probe. Fig. I-3 (c) shows the SEM image of the tip of a metalized probe with a 50 

nm aperture and Fig. I-3 (d) shows the shows the SEM image of the tip of a 

metalized probe with a 110 nm aperture. Due to the small aperture size, the NSOM 

probe typically has a wavelength dependent collection efficiency in the order of 10-5 

to 10-6 and therefore control over the aperture size is critical [18].  

 

Figure I-3: Optical and SEM images of NSOM probes 

mounted on tapered metalized optical fibers. The bend in 

the fiber can be clearly seen in (a) and (b). Images (c) and 

(d) show the apertures at the tip of the probe. 
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The NSOM can be operated in multiple modes as detailed in Fig. I-4. The three 

basic modes: illumination, collection and reflection are illustrated in Figs. I-4 (a, b 

and c) respectively.  

 

Figure I-4: Schematic showing the various operating 

modes of the NSOM. (a) Illumination mode (b) collection 

mode and (c) reflection mode 

 

Many other modes are possible, but they would be a combination or variation of 

the three basic modes of operation. Fig I-4 (a) details the illumination mode which 

was the original mode of operation proposed by Synge. The NSOM probe is used to 

illuminate the sample and the scattered light is collected in the far-field. Fig. I-4 (b) 

shows the setup for collection mode. The sample is illuminated with light and the 

scattered light is collected by the NSOM probe. This method also works for photonic 

crystal or metamaterial samples like the scattering cancelation device sample 

presented later in the thesis. We typically operate the NSOM in the collection mode. 
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Fig. I-4 (c) shows the setup for NSOM operation in reflection mode and is similar to 

operation in illumination mode. 

In any mode of operation, the probe is brought into contact with the sample and 

the sample is scanned point-by-point in a raster scan or in a free-form scan 

depending on the application. The tuning fork mount is a popular method to control 

the motion of the NSOM probe. The arrangement of the probe on the mount is 

clearly shown in Figs. I-3 (a, b). When the probe is brought in contact with the 

sample, the spacing between the probe and sample is very small (<10 nm). At these 

distance scales, the atomic forces play an important role and these separation 

dependent forces could be either attractive or repulsive. By monitoring the 

frequency and phase of the tuning fork in a feedback loop, the NSOM probe can be 

well controlled using dedicated hardware and software. 

A heterodyne near-field scanning optical microscope (H-NSOM) setup was used 

in the experiment presented in the thesis. The H-NSOM enhanced the capability of 

the traditional NSOM by addition of heterodyne interferometric detection. The H-

NSOM was built around the commercial NSOM head Multiview 2000 from 

Nanonics Imaging, Israel [19]. Briefly, the Multiview 2000 has two computer 

controlled 3-axis stages which allow for independent position control of the sample 

and the probe. The sample is placed on the bottom scanner (3-axis stage) and the 

probe is fixed to the top scanner. The NSOM probes used in the experiments were 

manufactured by Nanonics and optical and SEM images of some representative 

probes are shown in Fig. I-3. The tapered optical fiber was manufactured by pulling 
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an optical fiber under heat. Later, the fiber was bent and chromium (adhesion 

layer) and gold metal layers were coated by evaporation. Focused ion beam milling 

was used to create the apertures at the tip of the probe. The probe was then 

mounted onto the tuning fork mount. The Lab view based control software 

NanoWorkShop V1760 was used to control the piezo drivers which determine the 

position of the probe.  

The NSOM setup was connected into an arm of an all fiber Mach-Zehnder 

interferometer to enable heterodyne detection of the signals. A schematic of the H-

NSOM is shown in Fig. I-5.  

 

Figure I-5: Schematic of the H-NSOM system used for 

optical characterization of photonic structures. 
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The H-NSOM setup was designed to operate at the telecom wavelength of 1550 

nm. The bandwidth of the H-NSOM is limited by the bandwidths of the optical 

elements in the interferometer. The input light from a laser (C-band: 1530 nm to 

1565 nm) was fed to a 90/10 fiber coupler which then branched out into the two 

arms of the interferometer. Both the arms were loaded with an Acousto-Optic 

Modulator (AOM) and polarization paddle. In our setup, ω1 = 40 MHz and ω2 = 

40.070 MHz giving a difference frequency of 70 kHz. The signal arm of the 

interferometer also included the NSOM and received 90% of the input light power. 

The output of the NSOM probe was directly connected to a 99/1 fiber coupler 

whose other input was connected to the reference arm. The reference arm was 

connected to the 1 % input of the fiber coupler. The output of the fiber coupler was 

then connected to an InGaAs detector. The output of the detector was connected to a 

Lock-in amplifier (Stanford Research Systems SR530) which was also fed with the 

difference signal generated by an RF mixer. The lock-in then outputted two voltage 

signals which were proportional to the amplitude of the measured optical signal and 

the relative phase of the measured signal in relation to the reference signal. The 

analog outputs of the lock-in and the feedback data (topology) were then converted 

into digital form and inputted into a computer for further analysis. 

The use of heterodyne interferometric detection has many advantages. First, 

normal detectors respond to the time averaged Poynting vector (proportional to 

|E|2) and thereby phase information is lost. However, using the interference 

phenomenon, the phase information can be embedded in the amplitude term of the 
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total interference signal. Hence, the heterodyne interferometry technique could be 

used to obtain both the phase and amplitude (|E|) information. The Mach-Zehnder 

interferometry setup was implemented entirely using optical fibers. This made the 

setup sensitive to thermal currents. Therefore, to ensure the stability of the 

interferometry setup, the entire H-NSOM setup including the NSOM head was 

placed in custom built plastic boxes. 

The main advantage of the heterodyne system is the improvement of the signal 

to noise ratio of the optical signal due to the use of a lock-in. The lock-in essentially 

behaves as a very high gain amplifier. In H-NSOM setup, the weak signal collected 

from the probe is interfered with a strong reference signal. The signal information is 

now encoded into the amplitude variations of the interference signal. The total 

signal gain is approximately given by√|    | |       |, where, |Eref| is the amplitude 

of reference and |Esignal| is the signal amplitude. The gain could be large as the 

signal power is typically in the nW range and the reference power could be much 

higher (in the mW range). 
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CHAPTER II  

SCATTERING CANCELATION DEVICE 

A. Introduction 

Invisibility cloaking devices have a long history of enthralling aficionados of 

fantasy and science fiction. Recent advances in metamaterial technology and 

nanofabrication techniques have helped realize invisibility cloaking devices with an 

eye towards practical applications. Despite being in a nascent stage, scientific 

literature on invisibility cloaking devices, both electromagnetic and acoustic, has 

grown by leaps and bounds. Recently, a variety of invisibility cloaking devices 

designed using different approaches have been explored. In particular, 

electromagnetic invisibility cloaking devices designed using techniques such as 

transformation optics [20-23], scattering cancelation [24, 25], transmission line 

networks [26, 27] and anomalous resonances [28-30] have been proposed at both 

microwave and optical frequencies. Despite the variation in techniques, all 

electromagnetic invisibility cloaking devices attempt to render the cloaked object 

invisible to electromagnetic radiation over a finite frequency bandwidth by 

suppressing the scattered fields produced by the object in all directions with zero or 

minimal power absorbed by the cloaking device itself.  

Recently, transformation optics has been used to design and demonstrate a 

variety of metamaterial based invisibility cloaks [20-23]. Invisibility cloaks designed 
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using transformation optics have the ability to cloak large objects with sizes much 

larger than the wavelength and are practically insensitive to the shape and 

dielectric constants of the object to be cloaked. Although transformation optics has 

proved to be a powerful design tool, its requirement of anisotropic materials with 

extreme values of optical constants places makes it difficult to implement using the 

metamaterial structures. Subsequently, a new cloak design was proposed to hide 

objects in front of a mirror plane [31]. This ground plane cloak was designed using a 

non-Euclidean conformal mapping technique and required a modest range of optical 

constants with minimal anisotropy making it highly suitable for implementation at 

optical frequencies [32]. Many groups have demonstrated two-dimensional (2D) 

implementations of the ground plane cloak at optical frequencies [33-35]. In 

addition, using near-field microscopy, it was demonstrated that the operational 

bandwidth of such 2D implementations was limited by waveguide dispersion 

thereby restricting the inherent broadband behavior expected from the original 

design using transformation optics [36]. In this regard, a generally applicable 

technique was suggested to extend the bandwidth of such 2D implementations by 

conformal deposition of a dielectric layer. Recently, three-dimensional (3D) 

implementations of the ground plane cloak have been demonstrated at both 

microwave [37] and optical frequencies [38, 39]. In addition, the intrinsic anisotropy 

in certain uniaxial crystals was also used to demonstrate three-dimensional 

cloaking at visible frequencies [40, 41].  
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In contrast to the invisibility cloaks designed using transformation optics, the 

cloaks designed using the scattering cancellation technique are highly dependent on 

the shape and dielectric properties of the object to be cloaked and typically the 

entire structure has to be smaller than the wavelength. Previously, the concept of 

scattering cancellation has been applied to invisibility cloaks [24, 42, 43] and 

minimal scattering antennas [44]. Also, artificial electromagnetic surfaces have 

been used to reduce forward scattering from cylindrical objects [45]. However, the 

recent spurt of scholarly interest in metamaterials and plasmonic materials has led 

to a renewed interest in scattering cancellation technique applied to invisibility 

cloaking. Recently, it was shown that the scattering cross-section of spherical and 

cylindrical objects could be drastically reduced when covered with plasmonic and 

metamaterial coatings [25, 46]. In particular, it was shown that the dominant 

dipolar contribution to the scattering from a spherical or cylindrical dielectric 

objects could be canceled out when coated by a layer of material with negative or 

very low values of real part of permittivity. Also, the higher order multipole 

contributions could be suppressed albeit at the cost of design complexity. 

Later, the theory was extended from isolated spherical or cylindrical objects to 

collections of closely spaced particles with sizes larger than the wavelength [47]. 

Although this technique is inherently non-resonant, the operational bandwidth of 

objects covered by a single layer of plasmonic material is limited by the dispersion 

of the plasmonic cover. It was shown that the operational bandwidth could be 

extended by use of multiple layers of plasmonic covers [48]. Recently, cylindrical 
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objects coated with plasmonic covers were studied under broadband non-

monochromatic illumination and the cloak performance was evaluated [49]. Also, 

the scattering cancellation technique has been extended to study plasmonic 

cloaking of irregularly shaped objects with anisotropic scattering properties [50]. It 

has also been theorized that instead of covering an object with a plasmonic cloak, 

similar scattering reduction could be obtained by surrounding the object with 

suitably designed discrete satellite plasmonic scatterers making the entire system 

of particles invisible to an observer [51].  

Potential applications for plasmonic cloaking have included cloaked sensors and 

antennae [52, 53], cloaked near-field probes [54, 55] and reduction of optical forces 

exerted on plasmonic cloaks [56]. It has been proposed to use parallel plate 

metamaterial structures to achieve plasmonic cloaking at microwave frequencies 

[57] and the concept has been extended to infrared and optical frequencies [58]. 

Recently, plasmonic cloaking of a cylindrical object using parallel plate 

metamaterials in two-dimensional waveguide geometry was experimentally 

demonstrated at microwave frequencies [59]. More recently, plasmonic cloaking of a 

finite cylindrical object in free space was experimentally demonstrated at 

microwave frequencies [60]. At optical frequencies, the proposed methods to achieve 

plasmonic cloaking include the use of metamaterial inclusion based cylindrical 

cloaks for TE and TM polarization [61], concentric shells made up of thin layers of 

different materials as a plasmonic cover around a spherical or cylindrical object 
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[62], and the use of a shell of nanoparticles to surround a spherical or cylindrical 

object [63, 64].  

Presented in this chapter is an experimental demonstration of scattering 

reduction by use of plasmonic covers at optical frequencies. A cylindrical object was 

designed to be reduced scattering at 1550 nm by a plasmonic cover made up of gold 

grating structure. The structure was fabricated using a combination of electron 

beam lithography and focused ion beam milling. The optical responses at 1550nm of 

the structure as well as a control bare cylinder with no plasmonic cover were 

directly visualized using a heterodyne near-field scanning optical microscope (H-

NSOM). The measured characteristics were found to agree well with the simulated 

results thereby validating the design principle and the present implementation. 

B. Theoretical background: Scattering by infinite dielectric cylinder 

The scattering cancellation theory could be applied to reduce the scattering 

cross-section of small objects. This could be achieved by covering the object with 

single or multiple layers of plasmonic materials. The permittivity and thickness of 

the cover are designed such that they scatter out of phase with the dielectric object. 

This is due to the opposite dipole moments induced in the cover and the object that 

cancel each other resulting in reduced scattering leading to reduced visibility of the 

object. A very simple heuristic analysis of the scattering cancelation phenomenon 

was presented in [25] and is re-drawn in Fig. II-1 below.   
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Figure II-1: Schematic describing the heuristic analysis of 

the scattering reduction phenomenon by use of plasmonic 

covers. The white and black colored arrows show the 

dipole moments induced in the cover and object 

respectively. For suitable values of cover thickness and 

permittivity, these opposing dipoles cancel out each other 

rendering the object invisible. 

 

In the heuristic analysis presented in Fig. II-1, we use quasi-static 

approximation and assume identical incident field conditions in all cases. An 

incident exciting field induces a local polarization P in the dielectric cylinder. When 

integrated over the volume of the cylinder, the polarization yields a dipole moment 

which consequently causes scattering. Under identical incidence conditions, the 

cover would show a local polarization field which is opposite in direction to that 

induced in the cylinder. When the cylinder and cover are combined, we can then 

expect that the dipole moment induced in the cylinder cancels the moment induced 

in the cover thereby reducing the scattering of the combined system. 

Scattering by spherical and cylindrical objects are canonical problems in 

electromagnetic scattering theory, as exact solutions to Maxwell’s equations can be 

directly obtained [2, 3]. Initial solutions to scattering of light by spherical objects 
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(easily extended to infinite cylinders) were obtained by Ludvig Lorenz and Gustav 

Mie and hence known as the Lorenz-Mie solution to Maxwell’s equations. Exact 

solutions to Maxwell’s equations could also be obtained for stratified/coated spheres 

and infinite cylinders. Since the scattering cancelation theory proposed to reduce 

scattering of an electrically small object by coating it with single or multiple layers 

of plasmonic materials, it can expected that exact solutions to the present design 

problem could be obtained by application of Lorenz-Mie theory. The possibility of 

achieving reduced visibility by use of such coatings was theoretically predicted in 

the past [2, 24] (See Ref. 2, Page 149, Eqn. 5.36). 

A brief discussion of the scattering by an infinite dielectric cylinder coated by a 

thin layer of homogenous material is presented below. The structure and field 

polarizations under consideration are shown in Fig. II-2. The problem is divided 

into three regions with Region I representing the homogenous background medium 

with permittivity ε1, Region II representing the homogenous dielectric cover with 

permittivity ε2 and Region III representing the homogenous dielectric medium 

composing the cylinder with permittivity ε3. In all cases, the material is assumed to 

be non-magnetic (μ = μo), as most materials are non-magnetic at optical frequencies. 

In the ith region, the wavenumber ki is related to angular frequency ω by the 

dispersion relation   
            where εi is the permittivity function associated 

with that region. 



29 

 

 

Figure II-2: Schematic showing the structure and field 

orientations for the analytical solution. A cylindrical 

object with radius a and permittivity ε3 is coated with a 

cover of thickness (ac-a), where ac is the total radius of the 

cylinder with plasmonic cover. The cover permittivity is ε2 

and the background medium has a permittivity ε1. 

 

The input electric field is polarized along the z direction (parallel to the axis of 

the infinite cylinder) and is denoted as the transverse magnetic (TM) polarization. 

In the following, the time dependence eiωt is assumed throughout. 

An input plane wave in region I can be expanded into cylindrical harmonics as 

    
       ∑   

 

    

        
    

(2.0) 
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Let      
      be the scattered field in the ith region. Then both     

    and     
      

satisfy the wave equation in the ith region. 

       
      (2.1) 

Solving the above equation in the three regions yields general solutions as 

follows. 

In Region I, 
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(2.2) 

in Region II, 
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(2.3) 

and in Region III, 

    
         ∑   

 

    

          
    

(2.4) 

Here J is the Bessel function of the first kind and H1 and H2 are Hankel 

functions of the first and second kind, respectively. Once the electric fields are 

determined, the magnetic fields can be obtained by using the Maxwell’s equations in 

time-harmonic form 

  
  

   
     

(2.5) 

Application of the boundary conditions at ρ = a and ρ = ac for both the electric 

and magnetic field components yields the following set of linear equations 
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(2.6) 

As we are interested in the behavior of the scattered field in Region I 

(background medium), we proceed to find only An using the determinant method. 
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(2.7) 

The total field in Region I is given by the sum of incident field and scattered 

field in region I as 

    
       ∑   

 

    

             
        

    (2.8) 

In order to achieve scattering cancelation, we want the scattered field in region 

I to vanish  

    
         ∑   

 

    

    
       

      
(2.9) 

This is possible if An = 0 for some n at a certain frequency. This means that the 

numerator in Eqn. (2.7) must be zero for certain values of n 
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An can easily be evaluated numerically for various parameter values. Once An is 

obtained, then we can numerically obtain the total field in Region I. 

The scattering cross-section of the entire structure is obtained using 

        
 

  
[|  |

   ∑|  |
 

 

   

] (2.11) 

The A0 coefficient corresponds to the n=0 or dipolar term. For subwavelength 

particles, it is expected that the dipolar term dominates over the higher order 

terms. 

We study the effect of scattering reduction at λ = 1 m by analyzing the various 

the An coefficients as functions of cover thickness for a bare cylinder of radius 5 cm 

in the air background medium and for the same cylinder coated with a plasmonic 

material of different permittivity. The summation in Eqn. (2.11) was terminated 

when the error in scattering cross-section was < 1 % after multiple summations and 

this generally corresponded to 4 terms in the summation. In the Figs. II-3 (a-c), we 

plot |  | for n = 0, 1 and 2 as a function of the cover thickness. The y axis has been 

plotted in logarithmic scale to include the n=1 and n=2 terms. The uncoated 

cylinder case is plotted in Fig. II-3 (a) and the An coefficients are constant 

throughout as expected. Fig. II-3 (b, c) plots the response of the An coefficients when 

the cylinder is coated with a cover of permittivity of -2 and -8, respectively, with no 

loss.  
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Figure II-3: Plots of scattering coefficients as a function of cover 

thickness for various lossless cover permittivity values of (a) 1 

(uncoated rod) (b) -2 and (c) -8. 
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The plots show that the higher order modes (multipolar modes) too could be 

minimized due to the cover but with a different cover thickness. However, the value 

of the A1 and the A2 terms are generally small enough to be neglected. But 

comparing the solid line (dipolar term) across Fig. II-3 (a-c), it can be confirmed that 

the scattering due to dipolar term could be reduced by covering the cylinder with a 

plasmonic material. An interesting point to note is that the A1 and the A2 terms are 

modified due to the presence of the cover. Although the cover was primarily 

designed to reduce the dipolar scattering, it tends to reduce the higher order terms 

as well although not by a lot. By suitably engineering a cover or layers of covers, it 

might be possible to null all the terms in the scattering expansion. But with a single 

cover, the higher order terms could limit the achievable scattering reduction for 

larger cylinder sizes and thicker covers. The cover permittivity values of -2 and -8 

require a cover thickness equal to or greater than the cylinder radius. This tends to 

increase the total particle size thereby increasing the values of the higher order 

terms. 

C. Design and parametric analysis 

The final goal was to implement the scattering cancelation structure at optical 

frequencies and characterize it using the heterodyne-NSOM setup. Since the 

heterodyne setup operates at a wavelength of 1550 nm, the design wavelength of 

minimal scattering was chosen to be 1550 nm. The radius of the cylinder was 

chosen to be 100 nm (~ λ/16 at 1550 nm) which would a reasonable size to fabricate 
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using electron-beam lithography. The diameter of the cylinder would then be 200 

nm or ~λ/8 and hence would be sub-wavelength in size.  

The key variables which affect the design of the system are the radius and 

permittivity of the dielectric cylinder, the thickness and permittivity of the cover 

and the permittivity of the background medium. An understanding of the 

relationship between the parameters might help simplify the design process. Based 

on the heuristic analysis presented earlier, we can compare the volume integrals of 

polarization between the cylinder and cover and seek the conditions that would 

make them equal in magnitude and opposite in sign. In the two-dimensional 

geometry, volume which reduces to area is proportional to the square of the radius. 

Since the polarization is proportional to the permittivity, we can expect that the 

cylinder radius/cover thickness and material permittivity will be inversely related 

to each other. A thicker cover would require lower cover permittivity and vice versa.  

 Fig. II-4 (a) plots the scattering cross-section (Cscatt) as a function of the 

coating thickness for different values of cover permittivity with no loss and Fig. II-4 

(b) plots the Scattering cross-section (Cscatt) as a function of cover permittivity for 

different values of the cover thickness. In both cases, the cylinder radius and 

cylinder permittivity are kept constant at 100 nm and 9 respectively. The 

background permittivity is also kept constant at 2.25. All three constant values are 

readily achievable at optical frequencies. The wavelength at which the calculations 

were carried out was 1550 nm. 
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Figure II-4: (a) Plot of scattering cross-section as a function 

of coating thickness for cover permittivity values of -2, -4 

and -8. (b) Plot of scattering cross-section as a function of 

cover permittivity for various coating thickness. In both 

cases, the cylinder radius and cylinder permittivity were 

100 nm and 9 respectively. The permittivity of the 

background medium was 2.25. The wavelength at which 

the calculations were carried out was 1550 nm. 
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From Fig. II-4, it can be observed that as predicted by the heuristic analysis, the 

thickness of the cover that results in minimum scattering is inversely related to the 

cover permittivity. Thinner covers need a smaller value of cover permittivity while 

thicker cover films need a larger value of permittivity. It can also be observed that 

the minimum value of scattering cross-section becomes smaller as the cover 

thickness is reduced since the total size is smaller for thinner cover, thereby making 

the dipole term dominant. With a thicker cover, the higher order modes would 

contribute more to the total scattering and these higher order modes would not be 

nulled by the dipole cancelling mechanism. The scattering cancellation technique is 

inherently non-resonant which leads to design flexibility in the choice of cover 

thickness and permittivity values as seen in Fig. II-4. However, the use of resonant 

plasmonic metamaterial structures as covers would destroy the non-resonant 

behavior and make the system narrow-band. Hence, it would be advisable to 

implement the plasmonic metamaterial structure as a non-resonant system. 

In practice, a cover made up of a plasmonic material would have some loss. The 

loss in the cylinder dielectric can be ignored as it would typically be much smaller 

than the loss in the plasmonic material. Fig. II-5 (a) repeats the results of Fig. II-4 

(a) the Re(εcover) = -2 case with loss (Im{ε}) values of 0.5 and 1 and Fig. II-5 (b) 

repeats the results of Fig. II-4 (a) for Re(εcover) = -8 with loss (Im{ε}) values of 2 and 

4.  
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Figure II-5: (a) Plot of scattering cross-section as a function 

of coating thickness for cover permittivity values of -2 

with loss (Im{ε}) values of 0.5 and 1  (b) Plot of scattering 

cross-section as a function of coating thickness for cover 

permittivity values of -8 with loss (Im{ε}) values of 2 and 

4. 
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Despite the large ohmic loss added, it can be seen that the scattering cross-

section is not dramatically altered. This is an important consideration as practical 

plasmonic materials composed of very thin metal layers can have increased losses 

compared to bulk materials, due to surface scattering. The loss could be amplified in 

resonant systems, but the non-resonant nature of the scattering cancellation 

method makes it less sensitive to the loss in plasmonic materials. 

So far, the analysis has been performed at a single wavelength for a non-

dispersive cover permittivity. However, practical implementations would need to 

use natural or engineered plasmonic materials whose dielectric function could 

typically be described by the Drude-Lorentz model. At optical frequencies, 

commonly used plasmonic materials include noble metals such as gold and silver. 

These materials have a negative real part of permittivity at wavelengths above 

their plasma wavelength. Hence, these materials may possibly be directly used as 

plasmonic covers for scattering cancelation devices operating at visible 

wavelengths.  

However, at near infrared frequencies gold has a very large negative real part of 

permittivity. This would imply that the cover thickness would need to be very small. 

We investigate this further by tabulating the required cover thickness for a variety 

of metals using their experimentally measured dielectric constants at 1500 nm [4, 

6]. The dielectric cylinder radius was chosen to be 100 nm and the cylinder 

permittivity was chosen as 9. The permittivity of the background medium was 
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chosen to be 2.25. Also tabulated is a figure of merit named ‘Scattering Reduction 

(SR) indicating the scattering cancelation performance and is defined as  

 

          

                          

                             
  

(2.12) 

  

Metal Re(ε) at λ = 1550 

nm 

Im(ε) at λ = 1550 

nm 

Thickness 

(nm) 

SR 

(dB) 

Gold -108 10 4 17 

Silver -122 3 3.6 20 

Copper -106 14 4 15 

Titanium -7 33 10 2 

Chromium -3 30 11 2.5 

Iron -17 32 10 3.5 

Nickel -48 46 6 5 

Table II-1: Tabulation of required cover thickness for thin films 

of metals used as covers.  

 

Based on the results in Table II-1, it would be optimum to use silver, gold or 

copper due to their large Scattering Reduction values. However, the cover would 

need to be extremely thin due to the large negative values of the real part of 

permittivity. Reliable deposition of such thin films is generally difficult to achieve. 

Therefore, it is necessary to design a suitable, low loss plasmonic metamaterial 
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structure to achieve reduced visibility due to scattering reduction at near-infrared 

frequencies.  

The reason that gold, silver and copper have such large negative values of real 

part of permittivity at around 1550 nm is due to the fact that their plasma 

frequency is in the ultraviolet regime. From the previous studies of cover 

permittivity and cover thickness, we observe that -5 ≤ Re(εcover)  ≤ -15 could be 

considered an optimum range for the cover permittivity. This would mean that the 

plasmonic metamaterial structure would need to have a plasma frequency closer to 

1550 nm. As the plasma frequency is proportional to the square root of the free 

electron density, reducing the free electron density would lower the plasma 

frequency. This could be thought of diluting the free electron density and hence we 

could think of this metamaterial as a dilute metal. Previously, different types of 

artificial structures with a Drude-Lorentz type permittivity response have been 

proposed. Brown [65], Rotman [66] and Golden [67] demonstrated that the “Rodded 

Medium”, composed of thin metallic wires embedded in a dielectric background, 

behaved as artificial plasma with behavior similar to that of metals at visible 

frequencies. Recently, Pendry proposed a similar structure now well known as the 

wire medium [68]. The wire medium is inherently non-resonant and therefore 

broadband.  

We chose to implement the dilute metal as a gold grating etched around the 

circumference of the cylinder (nanorod). This method was chosen to leverage the 

high resolution milling capabilities of the Focused Ion Beam (FIB) machine. A 
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simple theoretical model for the dilute metal composed of a gold grating structure is 

outlined below and further details can be found in [69]. We start by considering the 

optical properties of the stratified/layered composite material. Fig. II-6 shows the 

geometry of the problem. 

 

Figure II-6: Geometry of the simple layer/stratified 

medium used to model the dilute metal. 

 

Let us consider a structure composed of multiple thin layers of two different 

materials stacked on top of each other. Let the period of stacking be L and f1 and f2 

be the fill fractions of the two layers. In the above example, we consider only two 

material layers with the restrictions that the thickness of each layer be much less 

than the wavelength of light inside the material and the sum of fill fractions is 

unity (f1+f2=1). This technique can be easily extended to multiple layers provided 

the restrictions on thickness and fill fractions are satisfied [69]. Let us assume for 

now that both layers are made of non-magnetic materials. Let the darker bar (with 
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fill fraction f1) represent gold and we use a Drude-Lorentz type permittivity function 

to model its dielectric response, εgold(ω),  

           
  

 

        
 

(2.13) 

where, ωp represents the plasma frequency and γ represents the damping rate. 

Let the lighter bar (with fill fraction f2) represent a dielectric material (also called 

the host material) with permittivity function εd. From the geometry of the problem, 

we can visualize two principal polarizations and each polarization is associated with 

a corresponding effective permittivity representing the dielectric response of the 

entire stratified structure. When the incident electric field is in the xz plane, we 

observe that the field is always parallel to the interface between the two films. We 

choose to call this the parallel polarization and the effective permittivity is labeled 

as εp. When the incident electric field is along the y direction, we observe that the 

field is always perpendicular to the interface between the two films. We choose to 

call this the perpendicular polarization and the effective permittivity is labeled εs.  

For parallel polarization, the electric field in all the layers is the same according 

to the boundary conditions imposed by the Maxwell’s equations. But the electric 

flux density D is not constant throughout. Taking an averaged value for the 

polarization, we get 

                   (2.14) 

For perpendicular polarization, the electric flux density would be continuous 

across the interface. Hence by the constitutive relations the electric field would be 
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discontinuous across the interface. Taking an averaged value for the polarization, 

we obtain a harmonic mean 

      
       

            
 (2.15) 

Substituting Eqn. (2.13) into (2.14) and noting that f1+f2 = 1, we obtain the 

following results 

                  
    

 

        
 

(2.16) 

Let us write, 

  
              (2.17) 

And let us call ωpd as the dilute plasma frequency given by 

    √     (2.18) 

Then Eqn. (2.18) can be rewritten as 

        
  

   
 

        
 

(2.19) 

Eqn. (2.19) has the same form as Eqn. (2.13); the Drude-Lorentz model. When f1 

<< 1, then we can see that the dilute plasma frequency ωpd is less than ωp. Thus, by 

controlling the fill fraction of gold in the composite we can tune the plasma 

frequency of the composite material.  

Repeating the procedure for the effective permittivity for perpendicular 

polarization we find 
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  (  
  

 

        
)

  
   

    
 

        

 

(2.20) 

where, 

  
               (2.21) 

The results of Eqn. (2.20) show that εs(ω) has both a pole and a zero. The zero 

occurs at a plasma frequency similar to the normal metal. However, the 

permittivity function exhibits a resonance when the denominator is zero. This 

would be possible at the resonance frequency    given by 

   √
  
  
     

(2.22) 

Results of a numerical example are presented in Fig. II-7 with the x axis is 

reversed and in a logarithmic scale. Let us assume εd = 2.25, f1 = 0.2 and therefore f2 

= 0.8; the plasma frequency ωp is assumed to be 1 rad/s and damping rate is 

assumed to be zero (lossless system). The solid line plots the permittivity function of 

the pure metal notated as εmetal. The dashed line plots the permittivity function of 

the dilute metal notated as εdilute.  From the above equations, the plasma frequency 

of the dilute metal is calculated to be 0.45 rad/s and is more than halved from the 

original value. The dotted line plots the response of the resonant effective 

permittivity for the perpendicular polarization and is denoted as εres. From the 

above equations, the resonant frequency is calculated be 0.54 rad/s and lower than 

the real metal plasma frequency. 
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Figure II-7: Results of a design example for layered 

effective media plotting the effective permittivity for the 

parallel and perpendicular polarizations. 

 

A schematic of the grating structure used as the plasmonic metamaterial is 

shown in Fig. II-8. The periodicity of the grating structure was P and the fill 

fraction of gold is determined by the grating width W. The grating height H entered 

the scattering cancelation device model as the cover thickness. The incident wave 

was along the y direction and the electric field along the z direction. The dark color 

represents the gold grating and white color a dielectric material like silicon dioxide 
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and was different from the background material. The choice of gold metal and 

silicon dioxide surrounding the gold grating was dictated by the fabrication 

procedures as detailed later. 

 

Figure II-8: Schematic of gold grating structure used for 

analytical calculation of effective permittivity of gold 

grating structure. 

 

The effective permittivity for the above structure was calculated using Eqn. 

(2.16) after substituting f1 = W/P. The complex dielectric constants of gold used 

were obtained from the measured data tabulated in [6] and the refractive index of 

silicon dioxide was assumed to be 1.45. This effective cover permittivity was used in 

the scattering cancelation device model developed earlier. To obtain the periodicity 

of the grating, we assume the center rod of diameter to be180 nm, surrounded by 

eight gold gratings. The periodicity was calculated to be 70 nm from the center rod 

diameter of 180 nm. The thickness of the cover was chosen to be 15 nm and the 

grating width was varied until the scattering cross-section minimum occurred at 

1550 nm. The permittivity of the cylinder was assumed to be 9 and the permittivity 

of the background was assumed to be 2.25.  
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Plotted in Fig. II-9 are the results obtained from the analytical method (using 

Eqns. (2.7), (2.11), (2.19) and (2.20)) confirming the scattering reduction due to the 

plasmonic metamaterial cover for TM polarization. The solid line plots the 

scattering cross-section of the bare cylinder, and the dashed line plots the scattering 

cross-section of the scattering cancelation device (SRD). 

 

Figure II-9: Scattering cross-section as a function of 

wavelength for bare and scattering cancelation device. 

The bare rod diameter was chosen to be 180 nm. The 

plasmonic material consisted of eight gold gratings each 

of width 15 nm and periodicity of 70 nm. The gold 

thickness was 13 nm. 
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The bare rod diameter was chosen to be 180 nm so that it would still be 

subwavelength (~λ/8.6 at 1550 nm). To obtain the minimum scattering cross-section 

at 1550 nm, the gold grating width was found to be 15 nm. The SR value at 1550 

nm was 19 dB. The value of the effective permittivity at 1550 nm was -22.3+2.3i 

and much larger than the optimum value between -5 and -15. To obtain a smaller 

value of effective permittivity would require either an increase of periodicity or a 

reduction in the gold grating width (also called fin width). From initial experiments 

with the Focused Ion Beam (FIB) machine, it was found that 15 nm was the 

minimum attainable fin width and the above design already used that value. 

Therefore, the only recourse would be to increase the diameter of the cylinder and 

thereby increase the periodicity to maintain at least eight grating periods around 

the rod.  

Plotted in Fig. II-10 is the real part of effective permittivity as a function of 

periodicity for various fin widths. In order to achieve Re(εeff) ~ -10 with the least 

periodicity, the fin width would need to be 10 nm. Fin widths of 10 nm would be 

very difficult to fabricate. If we choose a fin width of 20 nm, which could be easier to 

fabricate, the periodicity would need to increase to ~150 nm. This translates to a rod 

diameter of 380 nm or λ/4 at λ=1550 nm. At such large rod sizes, the dipolar mode is 

no longer the dominant scattering mode and therefore the SR would be very small. 

We observe that the diameter of the rod (and thereby the periodicity) and the fin 

width are thus constrained within a narrow range of allowable values. Hence, the 
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cover thickness is an important and easily controllable parameter to tune the 

minimum of the scattering cross-section. 

 

Figure II-10: Plot of real part of effective permittivity as a 

function of period for various fin widths. 

 

Plotted in Fig. II-11 is the scattering cross-section for various gold coating 

thicknesses with constant fin width of 15 nm and periodicity of 70nm. The variation 

of gold thickness by 10 nm tunes the minimum of scattering cross-section by around 
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400 nm. The value of scattering cross-section was 4.5 × 10-8 m2 at 1400 nm and 1.6 × 

10-8 m2 at 1800 nm.  

 

Figure II-11: Plot of wavelength dependent scattering 

cross-section for various gold thicknesses of 10 nm, 15 nm 

and 20 nm a constant fin width of 15 nm and periodicity 

70 nm. 

 

The above analytical technique for calculation of frequency dependent 

scattering parameters based on effective permittivity is only an approximate 

method as it does not take into account the curvature of the cylindrical rod. A study 

taking into account the curvature was done in [57] and a technique for obtaining the 
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effective parameters has also been proposed. However, the proposed technique 

would complicate the fabrication procedures and hence we obtained the solution to 

the fabricated SC device structure by the Finite Element Method (FEM) using the 

commercial solver COMSOL V3.5a. 

D. Implementation of scattering cancelation device at optical 

frequencies 

The design strategies of such complicated nanostructures are guided by the 

capabilities and limitations of the fabrication and characterization techniques. 

Therefore, the design of the scattering cancelation device (SCD) followed the 

fabrication closely so as to arrive at the right design parameters which could then 

be fabricated. As discussed earlier, we decided to characterize the SCD using the 

Heterodyne-NSOM setup. The H-NSOM setup is optimized to operate in collection 

mode using metal coated tapered aperture probes at infrared wavelengths. 

Therefore, we chose to design the SCD for operation in the near-infrared spectrum 

for transverse magnetic (TM, electric field perpendicular to the device) polarization 

in a quasi-two-dimensional waveguide geometry. The structure was fabricated on a 

silicon-on-insulator (SOI) wafer consisting of a 340 nm thick single crystalline 

silicon layer on top of a 2 µm thick silicon dioxide (SiO2) over a bulk silicon 

substrate.  

As described previously, the SCD structure consisted of a silicon nanorod, 

340nm high with a design diameter of 180 nm surrounded by a plasmonic 

nanostructure made up of eight gold fins surrounded by silicon dioxide. A 10 μm 
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wide silicon waveguide was used to illuminate the SCD structure by a plane wave. 

The structure was placed 5 μm from the edge of the waveguide. The entire structure 

was coated with a 370 nm thick layer of SU8 photoresist which was hard baked. 

The SU8 photoresist served as a background medium in which light could propagate 

and also served as a surface over which NSOM scans could be reliably performed. In 

addition, the SU8 surface served to isolate the gold nanostructure from the metal 

coated NSOM probe thereby preventing any unwanted interactions which could 

potentially lead to artifacts in the NSOM scan. After curing and hard baking the 

SU8, the sample was then cleaved so that light could be coupled into the device by 

butt-coupling (also known as end-coupling) an optical fiber. The fabrication of the 

SCD nanostructure was performed using electron beam lithography to define the 

rod and focused ion beam milling to define the gold grating structure. A schematic 

of the entire structure is shown in Fig. II-12. 

 

Figure II-12: Schematic of the fabricated scattering 

cancelation device structure and the 10 μm wide input 

waveguide. The distance between the edge of waveguide 

and center of rod is 5 μm. 
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The fabrication process began by photo-lithographically defining the 10 μm wide 

input waveguide and alignment marks for future patterning of the rod by electron 

beam lithography. Then, the pattern on the resist was transferred to a 100 nm thick 

chromium mask using a lift-off procedure. A thin layer of PMMA positive electron 

beam resist was spin coated. Using the previously defined alignment marks, the 

silicon nanorod was defined using electron beam lithography. After developing the 

PMMA resist, a protective layer of 20 nm thick chromium was deposited and lift-off 

was performed to transfer the rod pattern to the 20 nm thick chromium layer. 

Reactive ion etch of silicon was carried out with the combined 120 nm chromium 

protection layer. This step etched away silicon in all areas except those below the 

chromium layer and thereby shaped the input waveguide and the rod 

simultaneously. The chromium layer was then dissolved using a chromium etchant 

to reveal the bare rod. At this point, the structure was imaged using scanning 

electron microscopy to verify the size of the fabricated rod, and one such image is 

shown in Fig. II-13. The sidewall of the fabricated rod was not exactly vertical and 

had a small slope. The diameter at the top of the rod was measured to be ~160 nm 

and the diameter at the bottom was measured to be ~200 nm. The sidewall angle 

was calculated to be ~86.5° from the horizontal. Due to the sidewall angle being so 

close to 90°, the non-vertical sidewall was ignored as it was assumed that it would 

not cause any appreciable deviations in the scattering response. 
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Figure II-13: Scanning electron micrograph showing a 

fabricated bare rod. The average rod diameter measured 

near the vertical center was ~185 nm. 

 

Future work could consider the perturbation in the scattering cross-sections due 

to the non-vertical sidewall. As shown in the Fig. II-13, an average diameter of 185 

nm was measured near the vertical center of the rod, and this value was used in 

further calculations. 

Based on numerical simulations performed using COMSOL (to be presented 

later), the thickness of the gold layer was designed to be 13 nm assuming a 20 nm 
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fin width. From the initial experiments using FIB, we found that gold had a 

tendency to melt under even a light dose of gallium ions. In order to protect the gold 

film, it was coated with a layer of chromium as a protection layer since chromium 

was found to withstand milling by gallium ions. Once the combined gold and 

chromium layer was milled to the required dimension, the chromium was 

chemically etched leaving behind only the required gold nanostructure. Gold was 

found to be resistant to the chromium etchant while silver was etched away. It is for 

this reason that the combination of gold and chromium was chosen despite silver 

being a material with lower optical loss as tabulated in Table II-1.  

Based on the above information and some experimentation, it was decided to 

deposit a 13 nm thick layer of gold followed by a 10 nm thick chromium layer. In a 

standard line-of-sight deposition system, the metal would not be deposited on the 

sidewalls of the rod. Therefore, in order to also deposit the metals on the sidewall, 

the evaporation was performed in an off-axis rotating evaporator. Both the metals 

were evaporated with a slow deposition rate in the same run without breaking 

vacuum. Slow deposition rate was required for such low thickness values to obtain 

good quality uniform films. Formation of non-continuous particulate films would 

significantly increase the optical losses. The rods were imaged using the scanning 

electron microscope and the rod size carefully measured to verify the deposited 

thickness. This process was repeated a couple of times until the desired results were 

obtained. Fig. II-14 shows an image of the bare rod shown in Fig. II-13 after coating 

by gold and chromium layers.  
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Figure II-14: Scanning electron micrograph showing the 

metal coated bare rod with a net diameter of ~230 nm 

measured near the vertical center of the rod giving a gold 

thickness of 13 nm. 

 

The diameter at the top of the rod was ~ 205 nm and the diameter at the bottom 

was measured to be ~ 245 nm indicating that the combined thickness of the metals 

was about 26 nm and matched the thickness required by design. An average 

diameter of 231 nm was measured near the vertical center of the rod. 

Next, the gold fins were defined by using the focused ion beam to mill the gold. 

The gallium ion beam came in from the top of the rod to obtain more control while 
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milling. This was the most delicate and labor intensive task of the entire process. A 

series of dose tests was performed to ensure minimal fin width variation. After the 

metal layers had been milled to the required size, the chromium layer was removed 

using the chemical etchant and the structure was imaged using the scanning 

electron microscope. An image of the coated rod (shown in Fig. II-14) after 

completion of the milling and etching process is shown in Fig. II-15.   

 

Figure II-15: Scanning electron micrograph showing the 

rod after FIB milling. The diameter at the top of the rod 

was measured to be ~172 nm giving a gold thickness of 12 

nm. 
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Fig. II-16 (a) shows a low magnification scanning electron micrograph of a top 

view of the fabricated structure and Fig. II-16 (b) displays a lower magnification 

scanning electron micrograph showing both the fabricated rod as well the 10 μm 

wide input waveguide. 

 

Figure II-16: (a) low magnification scanning electron 

micrograph image of top view of the fabricated structure 

and (b) lower magnification scanning electron micrograph 

image showing both the fabricated rod as well the 10 μm 

wide input waveguide. 

 

Some important data were extracted from the images in Fig. II-15 and II-16 (a).  

From Fig. II-15 it can be seen that the fin width is not uniform throughout the 

height of the rod. The fin width is smaller at the top and larger at the bottom of the 

rod.  The measured diameter at the top of the rod is ~ 172 nm which indicates that 

the thickness of gold grating structure at the top is about 12 nm compared to the 
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design value of 13 nm. The varying fin width cannot be directly estimated from Fig. 

II-15 due to the angle at which the image was taken. However, the gap between the 

fins could be estimated reasonably accurately as the gap was almost in a frontal 

position to the detector. 

The gap at the bottom of the device was measured to be ~20 nm and at the top 

was measured to be ~50 nm. As the periodicity was ~70nm, the fin widths could be 

back calculated to be ~20 nm at the top of the rod and ~50 nm at the bottom of the 

rod. The fin width at the bottom of the rod could be further verified by the 

measurements of fin width from Fig. II-16 (a). Due to the tapering of the rod, the 

top view image should indicate the maximum fin width which corresponded to the 

fin width at the bottom of the rod.  

Averaged measurements over all the fins in Fig. II-16 (a) indicated that the fin 

width at the bottom of the rod was ~50 nm in agreement with the measurements 

made from Fig. II-15. From the measurement, the sidewall angle of the fin was 

measured to be ~ 2.5°. Previously, vertical FIB milling was used to fabricate a 

three-dimensional (3D) optical metamaterial with negative refraction at visible 

frequencies [70]. The side wall angle reported was 4.3°. Similarly, photonic crystals 

fabricated using vertical FIB milling reported sidewall angles varying between 5° to 

1.5° [71]. Therefore, the measured sidewall angle was found to be in the same range 

as the previously reported sidewall angles. 

From the reported fin width variation and slope, the fin width at the center of 

the rod was calculated to be ~35 nm and would exceed the design value of 20 nm by 
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15 nm. This changed the SC device performance as the minimum value of scattering 

cross-section would blue shift down to lower wavelengths. Due to this, the figure of 

merit SR might also decrease implying that the SCD would only partially suppress 

the scattering. As explained previously, the principle of operation of the device was 

to surround a dielectric volume (area) by a certain amount of plasmonic volume 

(area) so that the oppositely induced dipoles in the dielectric and plasmonic 

materials cancel each other. From the fabricated structure, it is observed that the 

dielectric volume (rod) is still surrounded by a certain volume of plasmonic material 

and thereby we still expect the SCD to function with degradation in performance. 

The increase in volume could be calculated to be approximately 38 %.  

Also, we found that the sidewall angle could be further reduced in rods with 

increased diameters showing that the fabrication method holds promise. Fig. II-17 

shows scanning electron microscope images of such fabricated structures with 

larger rod diameter and increased fin widths. The devices would still function as 

scattering cancelation devices at wavelengths other than 1550 nm. 
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Figure II-17: Scanning electron micrographs of fabricated 

devices with larger diameter and increased fin widths 

showing reduced sidewall angles. 

 

The penultimate step of the fabrication process included the removal of the gold 

from all areas of sample excluding the plasmonic gold nanostructure. In order to 

protect the gold nanostructure from the chemical etchant, a thin layer of silicon 

dioxide was coated over the combined silicon nanorod and gold grating structure 

using the probe deposition system within the focused ion beam machine. It is for 

this reason that in the effective medium analysis we assumed a silicon dioxide 

background medium. Fig. II-18 shows scanning electron micrograph of the structure 
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after coating with a thin layer of silicon dioxide and the thickness of the deposited 

layer was estimated to be ~20 nm after comparing with the rod size in Fig. II-16 (a). 

 

Figure II-18: Low magnification scanning electron 

micrograph of the scattering cancelation structure after 

silicon dioxide coating. 

 

In the final step of the fabrication procedure, the entire sample was coated with 

a thin film of SU8 photoresist. After curing and hard bake, the sample was cleaved 

to expose the silicon waveguide to enable butt-coupling of light from a fiber. The 

thickness of the SU8 layer was estimated to be 370 nm. 
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In addition to the SCD sample, a control sample was also fabricated to compare 

with the performance of the SCD. The control sample consisted of a bare silicon rod 

with diameter 240 nm. The total diameter of the SC device structure including 

silicon dioxide coating was 250 nm and hence the diameter of the bare rod was 

chosen to be close to 250 nm. Scanning electron micrographs of the bare rod control 

sample is shown in Fig. II-19. 

 

Figure II-19: Scanning electron micrograph showing the 

fabricated bare rod as well the 10 μm wide input 

waveguide. Inset shows a higher magnification image of 

the bare rod. 
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In order to obtain an estimate of the scattering reduction performance we ran 

numerical simulations using COMSOL in a 2D geometry. The structural and 

refractive index parameters were re-estimated based on the analysis of fabricated 

structure. The dielectric constants of bulk silicon were obtained from [4] and the 

refractive index data of SU8 was obtained directly from the manufacturer [72]. As 

the device was fabricated on 340 nm thick silicon on insulator wafer with SU8 over 

coating, the effective index of the guided TM01 mode was obtained at various 

wavelengths. The obtained wavelength dependent effective index was used to 

describe the optical properties of the nanorod in a 2D geometry. Although such thin 

films with low refractive indices do not support a bounded mode, wave propagation 

such media is still possible with a weak unguided mode that could be described by a 

small range of effective indices. An ‘effective’ refractive index of 1.48 was obtained 

by conducting NSOM measurements on a test sample. By direct visualization of 

light propagating through the SU8 medium, the phase information from many 

measurements was averaged to obtain the ‘effective’ index. Subsequent 

investigations using numerical simulations revealed little difference between the 

simulations with ‘effective’ index of 1.5 and 1.48 respectively. However, the value of 

1.48 was used as it was measured experimentally. 

Plotted in Fig. II-20 (a) is a comparison of the scattering cross sections for SCD 

rods with averaged silicon rod diameter of 185 nm and measured gold thickness of 

13 nm for various measured fin widths. In addition to comparing the averaged rod 

diameter and measured fin widths, we compare scattering cross-sections for the rod 
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diameter and fin width combinations measured at various points along the rod 

height. The comparison is plotted in Fig. II-20 (b). In both cases, for comparison, the 

scattering cross-section of a bare rod with diameter 240 nm is also plotted. 

 

Figure II-20: Comparison of scattering cross-section 

obtained from simulations of SCD rod with averaged 

diameter of 185 nm and measured thickness of 13 nm for 

varying fin widths from 15 nm to 50 nm (b) Plot of 

scattering cross-section for rod diameters and fin widths 

values measured at various points along the rod height. 

In both cases, the scattering cross-section of a bare rod 

with diameter 240 nm is also plotted for comparison. The 

SR values for each curve are tabulated in Table II-2. 
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From Fig. II-20 (a), the response of the averaged fin width of 35 nm has blue 

shifted by around 200 nm compared to the design wavelength of 1550 nm. Table II-2 

lists the values of scattering reduction for SC devices with the given rod diameter 

and fin width combinations taken from the curves plotted in Fig. II-20 (a, b) in 

relation to the scattering cross-section of the bare rod of diameter 240 nm. The 

wavelength for comparison is 1550 nm. The gold thickness is 13 nm in all cases. 

 

Rod Diameter (nm) Fin Width (nm) Scattering Reduction (dB) 

160 20 11.2 

185 15 17 

185 25 10 

185 35 4.8 

185 50 2.1 

200 50 2.4 

Table II-2: Scattering Reduction at 1550 nm for various Rod 

diameter and finwidth pairs extracted from Fig. II-20. The gold 

thickness in all cases was 13 nm. 

 

As seen in Figs. II-14 and II-15, the variation in rod diameter and fin width 

with height was uniform and linear without any abrupt jumps. Therefore, the 

scattering cross-section for the entire structure would lie within the bounds set by 

the scattering cross-section curves for rod diameter & fin width sets of (160 nm, 20 

nm) and (200 nm, 50 nm), i.e between ~11.2 dB to ~ 2.4 dB.  As seen from Fig. II-20 
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(b), the scattering cross-section plots for the SCD with measured rod diameter and 

grating widths are deviated from the plots for the original design. The minima of 

the scattering cross-section occur at wavelengths below 1420 nm for all the three 

cases of measured rod diameter and grating widths. However, as seen in Fig. II-25 

(b), the scattering cross-section values for the three cases at 1550 nm are well below 

that of the bare rod indicating that the SC device would have a degraded 

performance when compared to the wavelengths at which the SR is the maximum 

(or minima of the scattering cross-section curve).  

E. Results of optical characterization and analysis of experimental 

data 

The scattering cancelation device structure was designed such that its 

performance could be directly visualized using the heterodyne near field scanning 

optical microscope (H-NSOM). Fig. II-21 shows a cartoon describing the physical 

process causing the scattering and the expected output from the H-NSOM. The total 

field is a sum of the incident plane wave and the scattered spherical wave. However, 

as detectors measure only the electric field squared (|E|2), the actual perturbed 

electric field (E) distribution cannot be directly discerned. The electric field 

amplitude (|E|) and phase distribution can be obtained using a heterodyne 

interferometry setup. 
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Figure II-21: Cartoon depicting the scattering process and 

the expected measurement results. The total field is a 

sum of the incident plane wave and the scattered 

spherical wave. 

 

We expect the measured field amplitude and phase for the bare rod sample to 

look like the plots shown on the right hand side of Fig. II-21. The measured 

amplitude would contain the typical parabolic fringe pattern due to the interference 

between incident plane wave and scattered cylindrical wave [73].  

As mentioned earlier, the concept of invisibility cloaking by scattering reduction 

has been demonstrated earlier at microwave frequencies [59] and the scattering 

reduction of the cloak was verified by calculating the scattering cross-section from 

experimentally measured field data. In order to calculate the scattering cross-

section, the complex scattered fields and the incident power need to be known 

accurately. The complex scattered field could be calculated from the incident and 



70 

 

measured total electric field. At optical frequencies, the measured complex scattered 

field could be obtained using heterodyne interferometry techniques. The exact 

incident power over multiple sample measurements could be easily calculated at 

microwave frequencies by proper calibration of the source. The detector collection 

efficiency can also be more carefully calibrated in microwave frequency 

measurement setups. However, such conditions would be very difficult to achieve in 

the proposed optical measurements due to the many uncertainties in 

measurements.  

The bare rod and the SCD samples were fabricated on two different wafers. It 

would be very difficult to achieve exactly same butt-coupling efficiency in both the 

two cases due to the two different cleave conditions and manual fiber alignment. 

Multiple probes of similar aperture dimensions were used to visualize the near-field 

performance of the SC Device and bare rod and collection efficiency varied among 

the probes. Due to the probe fabrication technique, the size of the aperture varies 

widely and this variation affects the wavelength dependent collection efficiency of 

the probe [18]. Due to these issues, it would not be possible to arrive at a precise 

value of input power for the two samples and hence the measured scattering cross-

section of bare rod and SCD sample could not be calculated accurately. Therefore, 

the SCD performance would need to be verified by comparison of certain key 

parameters between experimental and simulation data. From the Fig. II-21, it could 

be expected that the fringes extracted from the field amplitude data may be used to 

characterize the scattering performance. In particular, as the fringes contain 
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information regarding the scattered fields and could be measure accurately, more 

emphasis was given to the characterization of the fringes. 

The relation between the fringe curvature and scattering cross-section is further 

investigated. Similar to the results of the numerical example presented in Fig. II-4 

(b), the SR at 1550 nm of the coated cylinder is plotted in Fig. II-22 (a) for varying 

cover permittivity with cover thickness of 20 nm. To calculate SR, the scattering 

cross-section of the coated cylinder was normalized with respect to the scattering 

cross-section of a bare rod with diameter 240 nm. The SR is seen to have a peak at a 

cover permittivity of about -18. The cylinder permittivity was chosen to be 8 as it is 

close to the TM effective permittivity of silicon at 1550 nm and the cylinder 

diameter was chosen to be 180 nm. From the simulations, the |E| field was plotted 

and the fringe curves were extracted for various permittivity values. Fringe curves 

for some selected permittivity values are plotted in Fig. II-22 (d) and the fringe 

curves are seen to fit a parabolic shape. The fringe curves extracted form 

simulations were all centered (offset removal) such that the minimum of the 

parabola occurred at (x, y) = (0,0). The curvature parameter C (in units of m-1), 

which is indicative of the curvature of the parabola, was calculated from the fringe 

curves for various permittivities at x = -1 μm. The Fig. II-22 (b) plots the curvature 

parameter C as a function of the cover permittivity. The data in Figs. II-22 (a, b) 

were combined and Fig. II-22 (c) plots the SR as a function of the curvature 

parameter C.  
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Figure II-22: (a) Plot of scattering cross-section at 1550 nm 

with varying cover permittivity obtained from simulations 

of coated cylinder with cylinder permittivity 8. (b) Plot of 

curvature parameter C as a function of cover permittivity. 

(c) Plot of SR in dB as a function of the curvature 

parameter C and (d) plots of fringe curves for various 

cover permittivities. 

 

In Fig. II-22 (c), the black curve is seen to have a steeper and more negative 

slope compared to the red curve indicating that the fringe curvature has a more 

rapid change for cover permittivities greater than -18 and the fringe curvature can 
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be expected to vary slowly cover permittivities more negative than -18. It is clear 

from Figs. II-22 (b, c) that the fringe curvature is linearly related to the scattering 

reduction (in dB) and thereby the scattering cross-section of the bare rod/SCD. The 

analysis presented used a lossless cover permittivity. In practice, the cover 

permittivity would have some loss. Future work could consider performing the 

analysis with loss. However, we expect that addition of reasonably small loss would 

not change the data very much. 

The experiment was performed using the Heterodyne-NSOM setup described in 

Section I-E. All measurements were performed at 1550 nm and a C band laser (1530 

nm to 1565 nm) was used as the light source. The polarization paddle in the signal 

arm in the H-NSOM setup was used to set the polarization of the light which was 

then butt-coupled into the cleaved sample. Two different sets of aperture NSOM 

probes were used in the experiments. In the both the sets, a single mode fiber 

(Corning SM-28) was used to fabricate the NSOM probe. In the first set of 

experiments with low spatial resolution of ~120 nm, the aperture of the NSOM 

probe was 200 nm. This resulted in much larger collection efficiency and increased 

contrast. But in order to characterize the fringes more accurately, the subsequent 

experiments were performed with higher spatial resolution of ~30 nm. To achieve 

this, the apertures of the NSOM probes used were 100 nm and 150 nm. This caused 

a reduction in the collection efficiency but improved the spatial resolution. 

In the first set of scans, a large area of 30 μm × 30 μm was scanned. The 

number of scan points was 256 × 256 thus leading to a spatial resolution of ~120 
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nm. Both the bare rod and SCD sample were scanned using the same probe with an 

aperture of 200 nm and the output power of the laser was kept constant at 10 mW 

for both the scans. The sensitivity of the lock-in detector was maintained constant 

at 20 mV for both the scans. The Figs. II-23 (a, b) plot the heterodyne detector 

amplitude output (in Volts) proportional to the absolute value of the measured 

electric field. Both the results have been plotted with the same color scale also 

shown. Both the samples were scanned at a wavelength of 1550 nm. 

 

 

Figure II-23: (a) schematic of area scanned (b) NSOM scan 

results for the bare rod sample at 1550 nm (c) NSOM scan 

results for the SCD sample at 1550 nm 
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In both the cases of the bare rod (Fig. II-23 (a)) and SCD rod (Fig. II-23 (b)), the 

light propagation in the waveguide is clearly seen. The bright spot at the tip of the 

waveguide was caused by the out of plane light scattering due to the discontinuity 

at the waveguide edge. In the bare rod results in Fig. II-23 (a), the large light 

scattering due to the bare rod can be clearly seen and compared with the scattering 

image shown in Fig. II-21. The exaggerated bending of the fringes and the forward 

scattered component can be clearly distinguished. In addition, the large back-

scattering also contributes to the bright spot near the edge of the waveguide. As the 

same probe was used to measure both samples, it is important to mention that the 

bare rod sample was scanned first using the probe.  

In contrast, the result for the SCD in Fig. II-23 (b) does not show an 

exaggerated bending of the fringes as seen in the bare rod results. This indicates 

that the fringes produced due to scattering by SCD were different from the fringes 

due bare rod scattering. As the fringes are a direct consequence of the scattering 

properties, it could be concluded that the SCD takes on different scattering 

properties compared to the bare rod.  

In order to investigate the effect further, we performed high resolution scans 

over small areas close to the rod/device. The Figs. II-24 (a, b) show the heterodyne 

detector amplitude output (in Volts) proportional to the absolute value of the 

measured electric field. Both the results have been plotted with the same color scale 

also shown. Both samples were scanned at the same wavelength of 1550 nm. 

 



76 

 

 

Figure II-24: (a) schematic of area scanned (b) NSOM scan 

results for the bare rod sample at 1550 nm (c) NSOM scan 

results for the SCD sample at 1550 nm 

 

The bare rod results in Fig. II-24 (a) was obtained over the scan area of 12 μm × 

12 μm. The number of points in the scan was 300 × 300 giving a scan resolution of 

40 nm. The output power of the laser was 5 mW and the detector sensitivity was set 

to 1 mV. The SCD result in Fig. II-24 (b) was obtained over the scan area of 8 μm × 

8 μm. The number of points in the scan was 256 × 256 giving a scan resolution of 

~31 nm. The output power of the laser was 10 mW and the detector sensitivity was 
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set to 10 mV. Both the bare and device scans were performed using two different 

NSOM probes of apertures 150 nm and 100 nm respectively.  

In order to compare with experimental results, two dimensional |Ez| field plots 

extracted from the simulations are plotted in Figs. II-25 (a, d) for the bare rod and 

SC device respectively. 

 

Figure II-25: Two dimensional field plots of |Ez| extracted 

from simulations for (a) bare rod (b-d) SC Devices with 

measured rod diameter, grating width cases of (200 nm, 

50 nm), (185 nm, 35 nm) and (160 nm, 20 nm) 

respectively. 
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Fig. II-25 (a) plots the |Ez| field extracted from simulations for the bare rod of 

diameter 240 nm. Figs. II-25 (b-d) plot the |Ez| field extracted from simulations for 

the SC device with measured rod diameter, grating width cases of (200 nm, 50 nm), 

(185 nm, 35 nm) and (160 nm, 20 nm), respectively. Additional parameters used in 

simulations were: silicon dioxide coating thickness of 20 nm, silicon dioxide 

refractive index of 1.45 and background medium index of 1.48. An observation of 

Fig. II-25 (a-d) reveals a difference in the curvature of the fringes between the bare 

and SC device cases. This difference in curvature was ascribed to the difference in 

scattering properties between the bare rod and SC device. As the first fringe behind 

the rod/SCD is the closest to the rod/SCD, we could expect that the first fringe 

would carry significant information in terms of curvature to help discern between 

the bare rod and SCD cases. Therefore, we analyze the first fringe very carefully by 

extracting the first fringe curve from both experiment and simulation data. 

Fig. II-26 (a) plots the first fringe curves extracted from experimental data and 

simulations for the SC device. The simulations were performed using the measured 

structural parameters (rod diameter and grating width) and the results have been 

plotted in Figs. II-25 (b-d). The fringe curves extracted from the simulations of the 

rod diameter and grating width cases of (200 nm, 50 nm) and (185 nm, 35 nm) are 

different from the results from simulations using rod diameter and grating width 

case of (160 nm, 20 nm) and the fringe curve extracted from simulations using rod 

diameter and grating width case of (160 nm, 20 nm) agrees with the experimental 

data.  
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Figure II-26: (a) Comparison of first fringe curves extracted 

form NSOM scan data and simulations using measured 

structural parameters for the SC device. (b) Comparison 

of the first fringe curves extracted from simulation and 

experimental data for the bare rod and SC device 

Fig. II-26 (b) plots the first fringe curves extracted from the simulation and 

experimental results for the bare rod and SC device. For the SC device, the fringe 
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curves obtained from simulations were extracted numerically from the simulation 

using the measured rod diameter of 160 nm and grating width of 20 nm. For the 

bare rod, the fringe curves were obtained from the simulations using measured bare 

rod diameter of 240 nm. The fringe curves obtained from experiments were 

manually extracted from the images in Fig. II-24 (a, b) for the bare rod and SC 

device respectively. Five independent manual curve extractions were performed and 

then arithmetically averaged to obtain the final fringe curve. 

The fringe curves for both the bare rod and SC device extracted from simulation 

and experimental results agree well with each other and the obvious difference in 

curvatures confirm that the bare rod and the SCD take on different scattering 

properties. The fringe curves extracted from SCD simulations for parameter sets of 

(200 nm, 50 nm). (185 nm, 35 nm) and (160 nm, 20 nm) have a curvature parameter 

C roughly 2.78, 2.99 and 3.32 respectively. The curvature parameter C for bare rod 

fringe curves extracted from simulations is roughly 1. 

Another approach to verifying the fringe information is to study cross-sectional 

plots passing through the center of the rod/device. A vertical cross-section plot 

would re-state the fringe curve comparison plots in a different way and are shown 

in Fig. II-27. The lines on the plot indicate the plane from which the cross-section 

data was extracted from the two dimensional field amplitude data. Fig. II-27 (a, b) 

plot the cross-sections from the |E| plot obtained from simulations for the bare rod 

and SC device cases respectively. The distance between the peaks is ~1.5 μm for the 

bare rod results and ~1 μm for the SC device results. From the experimental data, 
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distance between the peaks is ~1.6 μm in the bare rod case and ~1 μm in the SCD 

case.  

 

Figure II-27: Study of the cross-section plots extracted from 

experimental and simulation results for bare rod and SC 

device. 
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From a horizontal cross-section plot, we can obtain the distance between the rod 

and the first fringe. In addition, distances between the first fringe and subsequent 

fringes could also be estimated. The distance between the center of the rod and first 

fringe peak position varied between 200-400 nm between the SC device and bare 

rod. Since the spatial resolution used in the H-NSOM scans was about 30 nm, the 

fringe positions could be resolved reasonably well enough to enable comparisons 

with simulation data. The cross-section data extracted from simulation and 

experiment are compared in Fig. II-28. Fig. II-28 (a) compares the cross-section data 

for the SC device. Plotted together are the experimental data and the data extracted 

from simulations using the three measured rod diameter and grating cases. The 

data extracted from simulations using measured rod diameter and grating width of 

(160 nm, 20 nm) agreed very well the experimental data and was also much 

different than the simulation data using measured rod diameter and grating width 

cases of (200 nm, 50 nm) and (185 nm, 35 nm). These two data sets have been re-

plotted in Fig. II-28 (b). Fig. II-28 (c) compares the cross-section data for the bare 

rod extracted from simulations and experiments. Fig. II-28 (d) compiles the 

simulation and experimental data for the bare rod and SC device. In general, the 

cross-section data obtained from simulation and experimental data are shown to 

have excellent agreement with each other. 
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Figure II-28: Plots of cross-section data extracted from experiment and 

simulation data (a) Plot comparing the experimental data extracted from 

NSOM and simulations for the SC device (b) Plot comparing the data 

extracted from NSOM scans and those extracted from simulations for rod 

diameter 160 nm and grating width 20 nm. (c) Comparison of cross-section 

data extracted from simulation and experiment for the bare rod (d) 

Comparison of cross-section data for bare rod and SC device extracted from 

simulations and experiments. 

 

In Fig II-28 (b), the sharp dips (marked by the dotted lines) in the field 

amplitude plots are due to the presence of the metal grating as the field value 

reduced at those points due to the boundary condition. The dips could be clearly 

observed in both the simulation and experimental cross-section data. From the 
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experimental data, the distance between the dips is ~200 nm and corresponds to the 

combined thickness of rod (average diameter 185 nm) and gold layer  (average 

thickness of 26 nm) of 210 nm. 

In order to choose the correct cross-section plane in the experiment, the topology 

scan was also considered. The SC device was very lightly visible in the topology scan 

as a slight bump and that was sufficient to help choose the correct cross-section 

passing through the rod. This is seen in the horizontal cross-section data extracted 

from bare rod H-NSOM scan shown in Fig. II-29. Fig. II-29 (a, b) plot the NSOM 

signal and topology signal from bare rod scan and Fig. II-29 (c, d) plot the NSOM 

signal and topology signal from SC device scan. 

 

Figure II-29: Cross-sectional data extracted from NSOM and topology 

scan data. Fig. II-29 (a, b) plot the NSOM signal and topology signal 

from bare rod scan and (c, d) plot the NSOM signal and topology signal 

from SC device scan. 
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From the cross-section data for the SC device plotted in Fig. II-28 (b), we 

observe that there is a very slight misalignment in the first fringe position. The 

peak of the first fringe occurs at x ~ -250 nm from the simulation data and x ~-230 

nm from the experimental data. This difference of ~20 nm between the experiment 

and simulation data is smaller than the spatial resolution and could be treated as 

experimental error. In addition, from the topology signals plotted in Figs. II-29 (b, 

d), it can be observed that the SU8 thickness varies non-uniformly close to the 

rod/SCD. This non-uniform variation in the background medium could have also 

caused the very slight difference in the fringe position. Despite the small difference, 

the data from experiments agrees well with the data extracted from simulations. 

From the presented analysis, we find that the key characteristics of the first 

fringe extracted from simulation and experiments agree well. In particular, the 

contrast in fringe curvature seen between the fringe curves extracted from bare rod 

data and SC device data for both simulation and experimental data indicate that 

the bare rod and SC device both have different scattering cross-section properties. 

Two-dimensional simulations were performed on the SC device whose structural 

parameters were extracted from scanning electron micrographs on fabricated 

devices. These agreements between the experimental results and theoretical 

predictions strongly suggest that the scattering cancelation device has a reduced 

scattering cross-section compared to the control sample. From simulations on the 

structure with measured rod diameter 160 nm and grating width 20 nm, it was 

calculated that the SC device could reduce the scattering by up to 11 dB.  
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CHAPTER III  

TUNABLE FANO RESONANCE IN PLASMONIC NANOSTRUCTURES 

A. Introduction 

The field of plasmonics is mainly concerned with the study of light interactions 

at metal-dielectric boundaries. The free electrons at the surfaces of metal films are 

coupled to the electromagnetic field and exhibit characteristic resonances. Typically, 

plasmonic materials have resonances in the visible frequencies as the plasma 

frequency of metals lies in the ultra-violet regime. The condition for existence of 

surface plasmons is that the real part of dielectric function of the material be less 

than zero, Re{ε}<0 and the surface plasmon resonance would be prominent for small 

losses (Im{ε}<<-Re{ε}). This condition is naturally satisfied by metals at frequencies 

below their plasma frequencies. However, artificial electromagnetic surfaces could 

be engineered to mimic the behavior of surface plasmons at virtually any frequency. 

These artificial materials, also called as spoof or designer plasmonic materials have 

been demonstrated at both microwave [74, 75] and terahertz frequencies [76, 77]. 

Plasmonics is a very rich and well developed area of research and many texts [78, 

79] and review articles have been published [80-82]. Readers are referred to the 

references for further information on plasmonics and its applications. In this 

chapter we are mainly concerned with tunable Fano resonances in plasmonic 
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nanostructures fabricated on flexible substrates. We present details regarding the 

design, fabrication and characterization of the tunable Fano resonance. 

Our study is focused on the complex interactions between various plasmonic 

resonances. Plasmonic nanostructures may support localized surface plasmon 

resonances which generally depend on their shape and size [78]. The plasmonic 

resonance in a nanoparticle of size a could be analyzed by electrostatic 

approximations provided that a << λ. For example, a could be the diameter of a 

spherical nanoparticle or the largest side of a triangular particle. When a  << λ, the 

incident harmonic electromagnetic field would be nearly constant across the volume 

of the particle and therefore the electrostatic approximation would be valid. For 

simplicity, we consider a spherical particle since exact solutions could be easily 

obtained using spherical harmonics. 

Consider a homogenous, isotropic sphere placed in an arbitrary medium of 

permittivity εm. The incident harmonic field is approximated to be a uniform static 

electric field along the z direction shown in Fig. III-1. 

 

Figure III-1: Schematic of the sphere of radius a in an 

electrostatic field. The field is oriented along the z 

direction. The permittivity of the sphere is ε1 and that of 

the background is εm. 
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The incident electric field is given by, 

      ̂  (3.0) 

Let the sphere have a permittivity of ε1 and be different from the background 

permittivity. This induces a charge on the surface of the sphere and distorts the 

incident field. The scalar electric potentials in each medium would satisfy the 

Laplace equation 

                        

                       (3.1) 

And the electric fields in each medium could be obtained by 

                        

                       (3.2) 

where, E1 and Φ1 are the electric field and scalar potential inside the sphere and 

E2 and Φ2 are the electric field and scalar potential outside the sphere. Due to 

symmetry, the potentials are independent of the azimuthal angle ϕ. The potentials 

satisfy the boundary conditions at the sphere-medium interface (at r = a), 

       

  
   

  
   

   

  
  

(3.3) 

In addition, we expect that at far enough distances from the sphere, the incident 

field is unperturbed by the sphere. 

   
   

                 

The following functions are known to satisfy Eqn. (3.1) and (3.3) 
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(3.4a) 

                

     
      

    

  
 

(3.4b) 

The incident field creates a charge distribution on the sphere causing a dipole to 

be formed along the z direction. The potential of an ideal dipole with infinitesimally 

small separation between the charges is given by 

  
   

      
 

     

      
 

(3.5) 

where, p is the electric dipole moment. 

The field outside the sphere is a superposition of incident field and field of an 

ideal dipole with charges given by those induced on the sphere. Therefore, we can 

represent the sphere as an ideal dipole at the origin  

        
     

      
   (3.6) 

Thus the incident field polarizes the sphere and the polarizability is given as 

      
     

      
 (3.7) 

We have replaced a sphere in an electrostatic field by an ideal dipole whose 

dipole moment is found using a given polarizability. However, the actual field is 

time harmonic and the frequency variation enters the dipole model of Eqn. (3.7) 

through the frequency dependent permittivity values ε1(ω).  

The absorption and scattering cross-sections for the dipole and for a plane wave 

incidence are 
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(3.8b) 

where k is the wave number in the background medium [2, 4]. 

From Eqn. (3.8a) and (3.8b), we can observe that the absorption and scattering 

cross-sections have different dependences on a and k. For small particles and 

assuming a << λ, we find that absorption cross-section dominates over the 

scattering cross-section. However, for larger particles the scattering cross-section 

would dominate the absorption cross-section due the rapid scaling of the 

contribution from the radius term a.  

An important result is derived from Eqn. (3.8b). The scattering cross-section is 

observed to have a zero when ε1 = εm and as expected, it suggests that there is no 

sphere present to perturb the field. However, when the denominator is zero, or 

when ε1 = -2εm, the polarizability, the absorption cross-section and the scattering 

cross-section are at resonance and their values are limited by the imaginary part of 

the permittivity function ε1(ω).  

If Im{ε} = 0 or could be neglected, then the condition for resonance may be 

written as 

               (3.9) 

Eqn. (3.9) is known as the Frohlich condition [78] which represents the localized 

surface plasmon oscillation of the metal nanoparticle. For any plasmonic 

nanostructure, Eqn. (3.9) is rewritten as 
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                         (3.10) 

where ε(ω) is the frequency dependent permittivity of the plasmonic material 

and F(structure) is a function of the structure (shape and size) of the plasmonic 

nanostructure.  

As a numerical example, we consider a gold sphere of radius 50 nm in air. The 

frequency dependent permittivity function was obtained from the data tabulated in 

[6]. The absorption and scattering cross-sections are plotted in Fig. III-2 (a). The 

cross-section data was obtained from numerical simulations performed using 

commercial finite-element software COMSOL. The peak near 520 nm is due to the 

surface plasmon resonance. The large values of the absorption cross-section at small 

wavelengths (between 300 nm to 400 nm) are caused by the large loss in gold due to 

inter-band absorption. As expected, due to the small size, the absorption cross-

section dominates the scattering cross-section. The gold nanoparticle is seen to have 

a surface plasmon resonance at about 540 nm. The field plot of |E/E0|at λ=540 nm 

is plotted in the Fig. III-2 (b).  
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Figure III-2: (a) Plot of absorption and scattering cross-

sections of a gold sphere with radius 50 nm in air. (b) Plot 

of |E/E0| for a gold nanoparticle of radius 50 nm in air. 
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The amplitude of electric field in the very close vicinity of the nanoparticle is 

found to be enhanced roughly 6 times when compared to the incident field 

amplitude. The field enhancement is a characteristic feature of any plasmonic 

nanostructure and is commonly referred to as the plasmonic ‘hotspot’. The discovery 

and various applications of plasmonic hotspots have been the driving force behind 

many plasmonic research initiatives worldwide [80, 81]. The resonance 

characteristics of an individual nanoparticle are strong functions of the particle 

shape and size as the plasmonic nanoparticle could be thought of as a deep 

subwavelength cavity resonator. For example, the fundamental resonance of a 

nanorod is red-shifted compared to the nanosphere resonance due to a longer cavity 

length. As the particle sizes are increased, the electrostatic approximation breaks 

down and the effects of field retardation would need to be considered. Due to the 

retardation of the depolarizing field inside the particle, the plasmon resonance is 

red shifted. In addition, increasing particle size also increases the radiation 

damping of the plasmon resonance leading to broader resonant line widths.  

Many interesting phenomena occur when multiple plasmonic resonators are 

coupled. Similar to many other types of coupled resonator systems, the behavior of a 

coupled plasmon system can be predicted using methods similar to molecular 

orbital theory. A heuristic analysis is presented for a dimer (two coupled particles) 

composed of two nanospheres in Fig. III-3. The nanospheres need not be identical as 

in the presented example. The system is equivalent to the standard quantum 

mechanical problem of the formation of a hydrogen molecule from two individual 
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hydrogen atoms and energy level splitting into bonding and anti-bonding orbitals. 

In Fig. III-3, the black arrow represents the incident field direction and the white 

arrow represents the dipole moment of each nanosphere. Let pa and pb be the net 

dipole moments of the anti-bonding and bonding states respectively formed by the 

vector sum of the individual nanosphere dipole moments.  

 

Figure III-3: Schematic for heuristic analysis for a dimer 

showing formation of anti-bonding and bonding modes 

also called as dark and bright modes respectively. 

 

As shown in the Fig. III-3 the combination of two isolated nanospheres splits 

the energy level into two separate levels. The hybridization of the individual 

nanosphere levels leads to bonding and anti-bonding levels in the dimer [83]. In the 

bonding level, the individual dipole moments are in the same direction and add up. 

This causes a large net dipole moment for the dimer mode and is easily coupled to 

the incident plane wave with the same direction as the dipole causing a strong 

scattering peak. On the other hand, in the anti-bonding level, the individual dipole 
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modes are opposing each other and cancel out. This causes a weak or vanishingly 

small net dipole moment and hence the mode would not couple well with the 

incident plane wave. Hence this mode is ‘dark’ to the incident light and is known as 

a dark mode [84]. The concept of molecular orbital theory has been successfully 

applied to plasmonic structures and could be used to analyze complicated plasmonic 

nanostructures [85].  

The plasmonic resonance is strongly dependent on the coupling between 

nanoparticles and the coupling between the individual particles is a function of the 

gap/spacing between the particles. As an example, a dimer structure composed of 

two gold spheres was studied numerically using COMSOL. The radius of each gold 

sphere was 50 nm and the gaps studied were 20 nm and 10 nm. The absorption and 

scattering cross-sections for the two gap cases are plotted in Fig. III-4. 

 

Figure III-4: Comparison of absorption and scattering 

cross-sections for the plasmonic dimer composed of two 

gold nanospheres of radius 50 nm and gaps of 10 nm and 

20 nm. 
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The large scattering peak corresponds to the bright or bonding mode and is 

further verified by the field plots of Fig. III-5. The scattering peak position is a 

function of gap size.  The bright modes for the dimer with gaps of 10 nm and 20 nm 

are at 565 nm and 580 nm respectively. The absorption cross-sections are smaller 

than the scattering cross-sections due to the larger size of the dimer system when 

compared with the individual particle. As expected, the dark modes are not 

prominently visible in the scattering spectrum for both the gap cases. Figs. III-5 (a, 

b) plot the field plot of |E/E0| for the gap cases of 10 nm at 565 nm and 20 nm at 

580 nm respectively. 

 

Figure III-5: Field plots of |E/E0| for the dimer system 

with gap (a) 10 nm at 565 nm and (b) 20 nm at 580 nm.  
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In the Figs. III-5 (a, b), the arrows plot the direction of the electric field. For a 

horizontal polarization of incident electric field, the directions of the arrows inside 

the spheres indicate that in both cases the dipole moments add up and lead to a 

large scattering as expected for a bright mode. The field enhancement factors for 10 

nm and 20 nm gaps are about 34 and 17 respectively and are clearly a function of 

the spacing.  

While it is obvious that a smaller gap could lead to larger enhancements, it can 

be observed that the scattering due to the dipole-like bright mode increases with 

decreasing gap. However, a large scattering would lead to increased extinction of 

the incident beam as it passes through a medium or film containing these plasmonic 

nanostructures. On the other hand, the dark mode would have a much lower 

scattering and imply an increased light transmission. Therefore, it might be useful 

to engineer a system with large field enhancements and low scattering cross-

sections at certain wavelengths. Such nanostructure could have many potential 

applications in chemical and bio-sensing, optical filters and modulators among 

others.  

B. Fano resonance 

Due to its confined nature, the localized surface plasmon oscillator could be 

modeled well by a simple mechanical oscillator under external harmonic force [78]. 

The equations of motion are very similar to the constructs developed for the Lorentz 

oscillator model. The magnitude of the complex amplitude of the oscillation can be 

shown to have a functional form given by 
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(3.11) 

where A is a constant (scale factor) and Γ is the damping associated with a 

resonance frequency ω0. The Lorenztian lineshape is the standard response in many 

physical systems and is a symmetric resonance. A large damping leads to a 

broadening of the resonance as seen in the plots of Lorenztian lineshape of Eqn. 

(3.11) plotted in Fig. III-6. The resonance frequency was chosen to be 10 rad/s with 

the constant A taken to be unity. Radiative damping is one of the primary 

mechanisms for the broadening of the dipolar response from plasmonic 

nanostructures and can be accounted for by increasing the damping/loss.  

 

Figure III-6: Plot of the Lornztian lineshape of Eqn. (3.11) 

for various damping values. 
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In 1961, Ugo Fano discovered the asymmetric Fano resonance profile while 

studying the auto-ionizing states of atoms [86]. A simple classical description of the 

Fano resonance can be found in [87, 88] and the extension to plasmonic structures 

can be found in [89, 90]. Fano resonance arises from the interferences between a 

narrow discrete resonance and a broad spectral line. In the classical mechanics 

analog [88], the Fano resonance is modeled as two coupled harmonic oscillators with 

losses and coupling strength g. One of the oscillators models a broad spectral line 

(or a bright mode) with resonance frequency ωb and a large damping γb (the large 

radiative loss of a bright mode). The other oscillator models a narrow discrete 

resonance (or a non-radiative dark mode) with resonance frequency ωd and a low 

damping γd. The broad spectral line is driven by a harmonically varying external 

force          . The model can be schematically described by the arrangement 

shown in Fig. III-7.  

 

Figure III-7: Schematic of the classical model used to 

obtain lineshape of the Fano resonance. 

 

In terms of these fundamental parameters, the Fano resonance line shape can 

be expressed as 
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where A is a constant (scale factor) and κ is the reduced frequency given by 
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Δ is the resonance shift given by 
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C is a constant given by 
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As usual, Γ is the resonance width, 
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(3.16) 

q is the asymmetry parameter 

  
   

    
  

    
 

(3.17) 

And finally, b is the screening parameter 

  
  

   

  
 

(3.18) 

In Fig. III-8, we plot F as a function of ω where F is determined by Eqn. (3.12)-

(3.18) for the following parameters: the bright resonance frequency was chosen to be 

10 rad/s and the damping was chosen to be 1 Hz, the dark resonance frequency was 

chosen to be 10.1 rad/s and the damping was chosen to be 0.01 Hz and the 

proportionality constant was chosen to be unity. The calculations were performed 

for three different values of coupling strength g = 1, 2 and 4. Compared with the 
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Lorenztian lineshapes plotted in Fig. III-6, the Fano resonance lineshapes are seen 

to be highly asymmetric. In addition, increasing the coupling strength broadens the 

curves as well as shifts the resonant frequency. This agrees with the Eqn. (3.16) and 

(3.14) which show that the damping and resonance shift are proportional to the 

square of coupling strength. The Fano resonance is seen to be very sensitive to the 

coupling strength between the bright and dark modes. In plasmonic nanostructures, 

coupling strength is engineered by varying the gaps. 

 

Figure III-8: Plots of Fano resonance line shapes for 

various coupling strengths. 

C. Fano resonance in tunable plasmonic nanostructures 

Complex metallic nanostructures support a collective surface plasmon 

resonance. In this system, the surface plasmon resonances of constituent elements 

couple together to form collective modes delocalized over the entire structure. The 

behavior of the collective plasmon modes depends strongly on the details of the 
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nanostructure, opening new opportunities to investigate the interaction between 

plasmonic nanostructures and also to engineer the nature of the resonance for 

various applications, for example, in sensing and nonlinear devices. Much of the 

current research has been directed towards metal nanoparticle aggregates in which 

the nanoparticle size, spacing between the nanoparticles, and symmetry of the 

aggregate could lead to different coupled plasmon modes [91-98]. The high 

sensitivity to the structural parameters is of special interest because it makes the 

system an excellent candidate for mechanically tunable devices. Structural tuning 

by mechanical stress is a natural way to achieve wide tunability in artificial 

electromagnetic materials, which derive their properties from structural design. 

Mechanical tuning has been applied to photonic crystals, which exhibit many novel 

properties stemming from their periodicity [99]. Recently, tunable negative index 

imaging by a flexible photonic crystal has been reported [100]. Similar strategies 

have also been applied to metamaterials in which plasmonic nanostructures were 

subject to mechanical stress to tune their resonances and thereby achieve a tunable 

metamaterial response [101]. It therefore seems only natural to explore the 

mechanical tuning of plasmonic nanostructures whose resonance is highly sensitive 

to their structural parameters, and mechanically tunable resonances have been 

demonstrated for a dolmen-type resonator [102] and nanoparticle dimer [103].  

Fano resonances have attracted worldwide research interest recently due to 

their asymmetric line shape, sharp resonance, and sensitivity to a variety of 

parameters. Fano resonances have recently been realized in plasmonic 
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nanostructures and metamaterials. The reader is referred to [104] for a review of 

Fano resonance in plasmonic nanostructures. Due to its narrow linewidth and high 

sensitivity to structural and environmental parameters, Fano resonance has great 

potential for photonic applications such as sensing [105]. A heptamer is one of the 

reported plasmonic nanostructures that support a Fano resonance [94-98] and it is 

predicted to exhibit a very large Fano resonance spectral shift upon tuning of the 

surrounding media's refractive index [97]. Like the plasmonic dimers discussed 

earlier, Fano resonance in a heptamer is also highly sensitive to the gaps between 

the metal nanoparticles and the symmetry of the heptamer [97]. Therefore, the 

heptamer structure is a good candidate to demonstrate a tunable Fano resonance 

through refractive index tuning, structural tuning, and symmetry tuning. 

Refractive index tuning is limited by the small range of attainable refractive index 

changes, while mechanical tuning, which can tune the gaps between metal 

nanoparticles and the symmetry of the heptamer, can produce much wider 

tunability and is capable of tuning structural parameters and symmetry 

simultaneously. Symmetry breaking is of particular interest, as it could not only 

lead to resonance frequency shifts but also alter the fundamental characteristics of 

the modes, leading to dramatic changes in the optical properties. In this chapter, we 

discuss the Fano resonances in plasmonic heptamer structures fabricated on flexible 

polymers.  

From the previous discussion on dimer system, it is obvious that increasing the 

number of particles within the plasmonic nanostructure would lead to a very 
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complicated mode structure. This is akin to the formation of molecules from 

individual atoms. Hence, the plasmonic nanostructure could be thought of as an 

artificial electromagnetic molecule. The spectrum of such a molecule would consist 

of many modes, both bright and dark. In addition, suitable engineering of the 

structure could lead to mode interactions thereby either creating new modes or 

extinguishing existing modes. As discussed earlier, dark modes have vanishingly 

small dipole moments and hence are not strongly excited by incident plane waves. 

Therefore, numerical simulation techniques such as finite element method (FEM) 

and finite difference time domain (FDTD) might not be able to excite the dark 

modes using plane waves.  

Alternately, the eigenmodes of the structure could be obtained in the static limit 

by solving the boundary integral eigenvalue equations for the charge distribution 

[106, 107]. In addition, the symmetry of the heptamer structure would suggest that 

group representation theory could be used to correlate the symmetry of the system 

with that of the eigenmodes and thereby index the eigenmodes of the heptamer 

system. However, since this approach is valid only in the static limit, it cannot 

properly describe the retardation effects that must be taken into account in a 

system with size larger or comparable to λ. However, numerical simulation 

techniques such as FEM, FDTD and generalized multiparticle Mie (GMM) theory 

[108] do take into account the retardation effects and hence used as complementary 

approaches along with the electrostatic method. Description of the group theory 

techniques used to study the symmetry of the heptamer eigenmodes are beyond the 
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scope of this thesis and the readers are referred to [109] for further information and 

the nomenclature used. 

The boundary integral eigenvalue approach is briefly described. Consider a 

system composed of an arbitrary array of N nanoparticles, the surface charge 

distribution     ⃗  of its jth surface plasmon mode satisfies the boundary integral 

eigenvalue equation [106, 107] 

    ⃗  
  

  
∮     ⃗⃗⃗ ⃗ 

 ⃗    ⃗⃗⃗ ⃗

| ⃗    ⃗⃗⃗ ⃗|
   ̂   

(3.19) 

where the integral is over the whole surfaces of the N nanoparticles and  ̂ is the 

unit vector normal to the surfaces of the N particles at point  ⃗. The eigenvalue λj 

determines the system resonance frequency ωj through the electric permittivity ε(ω) 

of the array by the relationship 

    (  )    
    

    
 

(3.20) 

where, εb is the electric permittivity of the medium surrounding the 

nanoparticles. The eigenfunction     ⃗  describes the self-sustained surface charge 

distribution of the jth mode of the system. By solving eigenvalue Eqn. (3.19) 

numerically, we obtain the charge distribution on the heptamer structure which 

then allows for analysis of the symmetry of the modes.  

All the fabricated heptamer structures share common fabrication procedures 

and are briefly discussed. The heptamers were fabricated by an electron-beam 

lithography and lift-off process. The fabrication procedure started with a silicon 

wafer with a 100 nm chromium film thermally evaporated on it. The chromium 
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serves as a protection layer for the PDMS membrane during the silicon dry etch 

process, preventing overetching and reducing undesirable cracks in the PDMS 

membrane. A bilayer of a polymethyl methacrylate (PMMA) resist and copolymer 

was coated on top of the chromium layer, and electron beam lithography was 

carried out to define the heptamer structure. Gold was then thermally evaporated 

onto the patterned resist, and the final gold heptamer structure was obtained by 

lift-off. A monolayer of (3-mercaptopropyl-) trimethoxysilane (MPTS) was deposited 

on the gold surface to function as an adhesion promotion layer and to improve 

contact between gold and PDMS. PDMS with a thickness of 850 µm was spin-coated 

on the heptamer structure to completely cover the heptamer structure and was 

cured at 100 °C for 2 hours. Finally, the silicon substrate was completely dry etched 

by SF6-based reactive ion etching, leaving the heptamer embedded PDMS 

membrane with chromium protection layer at the bottom. After removal of 100 nm 

chromium layer, a completely freestanding PDMS membrane with the embedded 

heptamer structure was obtained. 

D. Fano resonance in circular heptamer 

The gold heptamer structure was composed of seven gold nanocylinders 

embedded in a flexible polydimethylsiloxane (PDMS) membrane. Thanks to the 

high elasticity of the PDMS membrane, the gaps between the gold nanocylinders 

could be accurately tuned by mechanically stretching the PDMS membrane, leading 

to tuning of the Fano resonance. The gold heptamer was designed to have seven 

gold nanocylinders with a diameter of 150 nm and height of 80 nm. The gap 
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between cylinders was designed to be 30 nm. For reliable optical characterizations, 

large arrays of gold heptamers were fabricated covering an area of 400 × 400 µm2.  

Fig. III-9 (a) shows a schematic diagram of a free-standing PDMS membrane 

with an embedded array of heptamers. Scanning electron microscopy (SEM) 

confirmed that high-quality heptamers were successfully fabricated with structural 

parameters close to the design values. Figs. III-9 (b-d) show the SEM images of the 

fabricated heptamer array. From the high magnification SEM image shown in Fig. 

III-9 (c), the diameter of the gold cylinder was measured to be 147 nm. Fig. III-9 (c) 

also shows that the heptamer structure was fabricated in such a way that its 

vertical dimensions were 3.7% smaller than the design values. As a result, the gaps 

between the cylinders were 33 nm along the horizontal direction and 28 nm along 

the diagonal. The heptamers were subsequently stretched along the horizontal 

direction shown in Fig. III-9 (c). The optical extinction spectra were taken for two 

orthogonal polarizations: parallel and perpendicular to the direction of mechanical 

stress. The original heptamer structure is isotropic and thus should exhibit 

identical spectra for the two polarizations. However, due to the slight anisotropy of 

the actual fabricated heptamer, there was a slight shift in spectra for the two 

orthogonal polarizations. 
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Figure III-9: Schematic showing arrays of gold heptamer 

structures embedded in PDMS substrate (b) Low 

magnification SEM image showing arrays of gold 

heptamers (c) High magnification SEM image showing 

top view of single gold heptamer (d) Tilted view of gold 

heptamer 

 

As shown in Fig. III-10, the position of the Fano resonance, which presented 

itself as a dip in the extinction spectrum, was 829 nm for the x polarization, while 

the y polarization showed a dip at 838 nm. To confirm the small split was due to the 

imperfect fabrication, which resulted in 3.7% smaller dimensions along the y 

direction, numerical simulations using the commercial software COMSOL were 
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carried out. Fig. III-10 shows that the simulations accounting for the vertical 

shrinkage in the actual fabricated structure precisely reproduced the Fano 

resonance positions of experimentally measured spectra. Overall, the agreement 

between the simulation and experiment was excellent. 

 

Figure III-10: Experimentally measured and simulated 

extinction spectra for mechanical stress along the 

horizontal direction with (a) horizontal polarization (b) 

vertical polarization of incident light 

 

The mechanical stress lowers the symmetry and lifts the degeneracy, producing 

distinct behaviors for the two mutually orthogonal polarizations. Fig. III-10 (a) 
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shows experimentally measured and simulated extinction spectra at the induced 

mechanical strain values of 0%, 7%, 18%, and 30% with polarization parallel to the 

mechanical stress (x direction), as indicated in the inset of Fig. III-10 (a). The Fano 

resonance exhibited a moderate blue shift from 829 to 814 nm. Here, the 

mechanical strain is defined as the percent change in the center-to-center spacing 

between adjacent gold cylinders along the x direction. The strain values were 

measured indirectly by recording the changes in the length of the heptamer array, 

which could be directly imaged by optical microscopy and these strain values were 

used for numerical simulations. Fig. III-10 (b) shows the experimental and 

simulation spectra for the polarization perpendicular to the mechanical stress. In 

this case, the Fano resonance redshifted significantly from 838 to 874 nm. In 

addition to the spectral shifts in the opposite directions, the extinction spectra for 

the x polarization showed an additional feature at a shorter wavelength when the 

heptamer is under mechanical stress. This feature is noticeable at all strain values 

in simulations and also visible in experimental spectra for strain values of 18% and 

30%. In contrast, this feature is clearly absent in all simulated and experimental 

spectra for y polarizations.  

To gain insight into the observed behavior, we analyze the symmetry of the 

eigenmodes obtained from the boundary integral eigenvalue calculations. The 

heptamer structure has the symmetry of point group D6h. Consequently, the 

eigenmodes can be indexed by the irreducible representations of D6h. As per 

conventional nomenclature of irreducible representations (detailed in [109]), A and 
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B always refer to one-dimensional representations, E refers to two-dimensional 

representations and T refers to three-dimensional representations. The subscripts g 

and u indicate odd and even representations under symmetry. Each representation 

is associated with certain transformation properties which guide the symmetry 

behavior of the representation. The transformation properties of all irreducible 

representations within a given point group are summarized in a character table 

found in all texts on group representation theory. For example, Appendix C of [109] 

presents the character table for all 32 crystallographic point groups. The 

eigenmodes (charge distribution) of the heptamer structure are indexed by the 

irreducible representations of the point group D6h. The transformation and hence 

symmetry properties of each eigenmode can then be found from the corresponding 

entry in the character table.   

Assuming the modes are excited by normally incident light with definite in-

plane polarization, only the optically active in-plane modes are considered. Among 

the irreducible representations of D6h, only E1u has a net dipole moment and thus 

optically active. Furthermore, we consider only the two lowest energy E1u modes in 

the unstressed gold heptamer structure as all higher order modes are masked off by 

strong absorption by gold. In the first column of Fig. III-11, we show the charge 

distribution of the two lowest energy E1u modes in an unstressed gold heptamer 

structure composed of seven identical gold spheres where the sphere diameter is 

150 nm and gap between the spheres is 25 nm. Here the modes shown in Fig. III-11 

(a, b) belong to the lowest energy E1u mode, and (d) and (e) to the second lowest E1u 



112 

 

mode. The E1u irreducible representation is a two-dimensional representation, and 

thus the E1u modes are doubly degenerate with two orthogonal states having a net 

dipole moment in the x and y directions, respectively.  

 

Figure III-11: Evolution of charge distribution in circular 

heptamer with uniaxial stress along the x direction. 
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Accordingly, the four charge distributions shown in the first column of Fig. III-

11 possess a net dipole moment where (a) and (d) are x-dipoles and (b) and (e) are y-

dipoles. Depending on the energy and the relative alignment of the dipole moment 

of the center sphere to those of the six satellite spheres, the E1u modes can be 

classified as dark or bright modes. The lower energy E1u mode shown in Fig. III-11 

(a, b) is a dark mode where the dipole moment of the center particle aligns against 

the dipole moments of satellite particles, making the total dipole moment small. On 

the other hand, the higher energy E1u mode shown in Fig. III-11 (d, e) is a bright 

mode where the dipole moments align together and add up. The energies of these 

two E1u modes were found to be 2.394 and 2.459 eV or 517.8 and 504.0 nm, 

respectively. These mode energy values would be accurate only for heptamers made 

of very small nanoparticles, as the boundary integral eigenvalue calculations are 

valid in the static limit only. For larger sizes, retardation effects will shift and 

broaden the modes. The resultant overlap and interference between the two modes 

lead to a Fano resonance. The bright mode will broaden much more significantly 

than the dark mode, resulting in a Fano resonance that manifests itself in the form 

of a dip in the extinction spectrum, as observed in Fig. III-10.  

When the heptamer is under uniaxial mechanical stress, the symmetry of the 

system is lowered to D2h. The doubly degenerate E1u mode splits into two non-

degenerate modes belonging to B2u and B3u irreducible representations of the point 

group D2h. Fig. III-11 shows the evolution of charge distribution as the mechanical 

stress is applied along the x direction. It clearly shows the original doubly 
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degenerate modes split into x-dipole (B3u) and y-dipole (B2u) modes. Remarkably, the 

nature of the modes is mostly preserved. That is, the bright E1u mode splits into 

bright B2u and B3u modes, while the dark E1u mode spawns dark B2u and B3u modes. 

Also, all modes shift to shorter wavelengths with increasing mechanical strain 

values. However, the B3u modes, which have dipole moment along the direction of 

mechanical stress, shift more than the B2u modes with dipole moment perpendicular 

to the mechanical stress. This leads to the polarization dependence, as the B3u 

modes interact with x-polarized light and B2u with y-polarized light. Therefore, as 

the heptamer is stretched along the x direction, x-polarized light would show 

resonance features in the shorter wavelengths than the y-polarized light. Even 

when the retardation effects are included and the resonance peaks broaden and 

shift, this general behavior survives and leads to the experimental observation seen 

in Fig. III-10.  

The scattering spectra for x polarization also show an additional dip at shorter 

wavelengths. The additional dip is apparent in the spectra for 18% and 30% strain 

for x polarization but is clearly missing in all spectra for y polarization. This can be 

explained by observing that the optically inactive B1u mode in the unstressed 

heptamer becomes an optically active B3u mode under uniaxial stress along the x 

direction. As shown in Fig. III-11 (c), the charge distribution plots reveal that this 

B3u mode is also a dark mode where the dipole moment of the center sphere aligns 

antiparallel against those of the satellite spheres, thereby producing a second Fano 

dip in the scattering spectra. In contrast, there are no other modes of the unstressed 
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heptamer evolving into the B2u mode within the wavelength range investigated, and 

thus we do not see any additional dip for the y polarization. Further details on the 

circular heptamer can be found in [110]. 

E. Fano resonance in nanorod heptamer 

The tuning of Fano resonance in circular heptamer showed that optical response 

of the structure could be controlled by symmetry tuning of the heptamer structure. 

The symmetry of the constituent nanoparticle could also be varied in order to 

achieve tuning of optical response. To maintain the D6h symmetry of the heptamer, 

only the six satellite particle symmetries can be tuned while the center particle 

would still need to be a circular nanocylinder. In circular nanoparticles, the dipole 

mode is doubly degenerate while this degeneracy is lifted in nanorods due to the 

inherent anisotropy of nanorods. This is shown schematically in Fig. III-12 where 

the white colored arrows represent the radial modes and gold colored arrows 

represent azimuthal modes. Therefore, we analyze heptamer structures composed of 

hexagonal arrangement of nanorods around a central circular nanoparticle as 

shown in Fig. III-12. Irrespective of the rod orientation, the eigenmodes of the 

nanorod heptamer structure can still be indexed by the irreducible representations 

of D6h as they still maintain the D6h symmetry. We study the azimuthal nanorod 

structure with the orientation of the nanorods shown in Fig. III-12. 
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Figure III-12: Schematic showing the splitting of doubly 

degenerate modes in circular heptamer to azimuthal and 

radial modes in nanorod heptamer. 

 

The gold heptamer structure was composed of six gold nanorods surrounding a 

central nanocylinder and the heptamer was designed to be embedded in a flexible 

membrane. Similar to the circular heptamer, the gaps between the gold 

nanoparticles could be accurately tuned by mechanically stretching the PDMS 

membrane, leading to tuning of the Fano resonance. The azimuthal gold heptamer 

was designed to have six gold nanorods, each with a length of 95 nm, width of 50 

nm and gold thickness of 40 nm. The center nanocylinder was designed to have a 

diameter of 147 nm and gold thickness of 40 nm. The gap between the edges of 

center nanocylinder and nanorod was designed to be 22 nm.  
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Extinction and absorption cross-sections were calculated from COMSOL 

simulations of the nanorod heptamer with the structural parameters given above. 

In the simulations, the heptamers were stretched along the horizontal (x-axis) 

direction shown in Fig. III-12. The extinction and absorption spectra were 

calculated for two orthogonal polarizations: parallel and perpendicular to the 

direction of mechanical stress. Like in circular heptamer, the mechanical stress 

produces distinct behaviors for the two mutually orthogonal polarizations. Fig. III-

13 shows simulated extinction and absorption spectra at the induced mechanical 

strain values of 0 %, 13 %, 26 %, and 42 %.  Fig. III-13 (a, b) plots the extinction and 

absorption spectra with polarization parallel to the mechanical stress (x direction). 

The Fano resonance exhibited a moderate blue shift from 745 to 700 nm. Fig. III-13 

(c, d) plots the extinction and absorption spectra with polarization perpendicular to 

the mechanical stress (x direction). The Fano resonance is found to slightly red shift 

from 745 to 760 nm. 

In addition to the spectral shifts in the opposite directions, the absorption 

spectra for both the parallel and perpendicular polarization showed additional 

features at shorter wavelengths when the heptamer was under mechanical stress. 

This feature is noticeable at strain values of 26 % and 42 % and can be clearly 

observed from the absorption spectra plotted in Fig. III-13 (b, d) for parallel and 

perpendicular polarization respectively. In both the absorption spectra for parallel 

and perpendicular polarization, there appears a small absorption peak at λ ~ 520 

nm and this corresponds to the characteristic transverse resonance of the localized 
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surface plasmon associated with the width of the gold nanorod and therefore this 

resonance is ignored. In addition, the absorption spectra for perpendicular 

polarization showed a feature at roughly 620 nm for mechanical at strain values of 

26 % and 42 %. 

 

Figure III-13: Simulated extinction and absorption spectra 

for the azimuthal nanorod heptamer. (a) and (c) plot the 

extinction spectra for parallel and perpendicular 

polarizations respectively while (b) and (d) plot the 

absorption spectra for parallel and perpendicular 

polarizations respectively. 
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To gain insight into the observed behavior, we analyze the symmetry of the 

eigenmodes obtained from the boundary integral eigenvalue calculations. Like the 

circular heptamer, the nanorod heptamer structure too has the symmetry of point 

group D6h. Assuming the modes are excited by normally incident light with definite 

in-plane polarization, only the optically active in-plane modes are considered. In the 

first column of Fig. III-14, we show the charge distribution of the two lowest energy 

E1u modes in an unstressed gold nanorod heptamer structure with the same 

structural dimensions that were used in COMSOL simulations and mentioned 

earlier. Here, the modes shown in Fig. III-14 (a, b) belong to the lowest energy E1u 

mode, and (d) and (e) to the second lowest E1u mode.  

Similar to the charge distributions obtained for the circular heptamer and 

plotted in Fig. III-11, the four charge distributions shown in the first column of Fig. 

III-14 possess a net dipole moment where (a) and (d) are y-dipoles and (b) and (e) 

are x-dipoles. The lower energy E1u mode shown in Fig. III-14 (a, b) is a dark mode 

where the dipole moment of the center particle aligns against the dipole moments of 

satellite particles, making the total dipole moment small. On the other hand, the 

higher energy E1u mode shown in Fig. III-14 (d, e) is a bright mode where the dipole 

moments align together and add up. This is similar to the behavior of the lower 

energy E1u mode in the circular heptamer. In both the circular and nanorod 

heptamer cases, the lower energy E1u mode is always a dark mode. 

In the circular heptamer, the energies of the lower and higher energy E1u modes 

were found to be 2.394 and 2.459 eV or 517.8 and 504.0 nm, respectively. In the 
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nanorod heptamer, the higher energy E1u mode was found to be 2.134 eV or 581.0 

nm. But, the energy of the lower energy E1u mode seemed to depend on the 

orientation of the dipole. The energy of the x-dipole was 1.890 eV or 656 nm and the 

energy of the y-dipole was slightly lower at 1.884 eV or 658 nm.  

 

Figure III-14: Evolution of charge distribution for nanorod 

heptamer with uniaxial stress along the x direction. 



121 

 

However, from the extinction and absorption spectra plotted in Fig. III-13, the 

Fano resonance position coincided at 745 nm for both parallel and perpendicular 

polarizations. The small discrepancy in the energy could be caused due to numerical 

errors while computing the eigenmodes especially due to the sharp corners of the 

nanorods. The COMSOL simulation model avoided sharp corners by chamfering the 

edges of the nanorod.  

The calculated mode energy values would be accurate only for heptamers made 

of very small nanoparticles, as the boundary integral eigenvalue calculations are 

valid in the static limit only. As discussed earlier, retardation effects will shift and 

broaden the modes for larger heptamer sizes and the resulting overlap and 

interference between the two modes leads to a Fano resonance. The bright mode 

will broaden much more significantly than the dark mode, resulting in a Fano 

resonance that manifests itself in the form of a dip in the extinction spectrum, as 

observed in Fig. III-13.  

When the heptamer is under uniaxial mechanical stress, the symmetry of the 

system is lowered to D2h. The doubly degenerate E1u mode splits into two non-

degenerate modes belonging to B2u and B3u irreducible representations of the point 

group D2h. Fig. III-14 shows the evolution of charge distribution as the mechanical 

stress is applied along the x direction. The original doubly degenerate modes split 

into x-dipole (B3u) and y-dipole (B2u) modes and the nature of the modes is mostly 

preserved. That is, the bright E1u mode splits into bright B2u and B3u modes, while 

the dark E1u mode spawns dark B2u and B3u modes. This is very similar to the 
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behavior of Fano resonance observed in the circular heptamer under mechanical 

stress. Both the dark and bright B2u and B3u modes shift to shorter wavelengths 

with increasing mechanical strain values. Again, similar to the behavior observed in 

circular heptamer, the B3u modes, which have dipole moment along the direction of 

mechanical stress, shift more than the B2u modes, with dipole moment 

perpendicular to the mechanical stress. This leads to the polarization dependence 

similar to that observed in the circular heptamer. Even when the retardation effects 

are included and the resonance peaks broaden and shift, this general behavior 

survives and leads to the behavior of Fano resonance seen in Fig. III-13.  

As mentioned earlier, the absorption spectra for y polarization show an 

additional feature at shorter wavelengths for 26 % and 42 % strain for y 

polarization only. This can be explained by observing that the optically inactive B2u 

mode in the unstressed heptamer becomes an optically active B2u mode under 

uniaxial stress along the y direction. The energy of this mode increases slightly with 

x stretching from 2.109 eV or 588 nm in the unstressed heptamer to 2.098 eV or 591 

nm for the heptamer with 30 % mechanical strain. In addition, from Fig. III-14, the 

mode is seen to have a y-dipole and therefore interacts with the y polarization. The 

nanorod heptamer differs from the circular heptamer in the behavior of this 

optically active mode. In the circular heptamer, the optically inactive B1u mode in 

the unstressed heptamer becomes an optically active B3u mode under uniaxial stress 

along the x direction. The energy of the mode decreases under mechanical stress 
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and the mode is seen to have an x-dipole and thereby interacts with the x 

polarization.  

The fabrication procedures for the nanorod heptamer were similar to those used 

to fabricate the circular heptamer. The targeted design took the structural 

parameters used to obtain the simulation results presented so far. Similar to the 

circular heptamer sample, a large array of gold heptamers were fabricated covering 

an area of 400 X 400 µm2. Figs. III-15 (a, b) show the scanning electron micrograph 

(SEM) images of the fabricated nanorod heptamer array. From the high 

magnification SEM image shown in Fig. III-15 (b), the central nanocylinder was 

found to be slightly ellipsoidal in shape. 

 

Figure III-15: Scanning electron micrographs of (a) low 

magnification image showing the array of gold nanorod 

heptamers (b) high magnification image showing the 

individual nanorod heptamer. 
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. The measured diameter along the horizontal direction was 140 nm and was 

156 nm along the vertical direction. The width of all the rods was about 49 nm 

whereas the height varied among the rods from 100 nm to 92 nm. The gaps between 

the nanorods and central particle were 29 nm along the horizontal direction and 16 

nm along the diagonal. The heptamers were subsequently stretched along the 

horizontal direction shown in Fig. III-15 (b). The optical extinction spectra were 

taken for two orthogonal polarizations: parallel and perpendicular to the direction 

of mechanical stress. The extinction spectrum for original nanorod heptamer design 

had strong polarization dependence as plotted in Fig. III-13. However, due to the 

structural variations of the actual fabricated heptamer structure, there was a shift 

in spectra for the two orthogonal polarizations. 

As shown in Figs. III-16 (a, c), the position of the Fano resonance, which 

presented itself as a dip in the extinction spectrum, was 745 nm for the x 

polarization, while the y polarization showed a dip at 790 nm. Fig. III-16 (a) shows 

experimentally measured extinction spectra at the induced mechanical strain 

values of 0%, 10% and 20% with polarization parallel to the mechanical stress (x 

direction). The Fano resonance exhibited a moderate blue shift from 745 to 715 nm. 

Fig. III-16 (c) shows the experimentally measured spectra for the polarization 

perpendicular to the mechanical stress. The Fano resonance also exhibited a 

moderate blue shift from 790 to 765 nm. To confirm the small split was due to the 

imperfect fabrication, numerical simulations using COMSOL were performed. Fig. 

III-16 (b, d) shows that the simulations accounting for the fabrication imperfections 
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in the actual fabricated structure reproduced the Fano resonance positions of 

experimentally measured spectra. Overall, the agreement between the simulation 

and experiment was excellent.  

 

Figure III-16: Experimentally measured and simulated 

extinction spectra for nanorod heptamer with mechanical 

stress along the horizontal direction. (a) and (c) plot the 

experimental spectra for parallel and perpendicular 

polarizations and (b) and (b) plot the simulated spectra for 

the parallel and perpendicular polarizations. 

 

If in the azimuthal nanorod heptamer, the nanorod orientation were to be 

changed from azimuthal direction to radial direction, then we could obtain the 
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radial nanorod heptamer structure as shown in Fig. III-12. Simulations were 

performed to study the optical responses of the radial nanorod heptamer for 

structural parameters similar to those used to fabricate the azimuthal nanorod 

heptamer. The structural parameters were varied widely and it was found that the 

radial nanorod heptamer did not support a Fano resonance for structural 

parameters similar to those used to fabricate the azimuthal nanorod heptamer. 

Extinction and absorption cross-section calculated using COMSOL simulations are 

plotted in Fig. III-17 for the parallel polarization of incident light. Figs. III-17 (a, b) 

plot the extinction and absorption cross-sections obtained from COMSOL 

simulations of radial nanorod heptamer structure with constant rod length of 95 

nm, width of 50 nm and thickness of 40 nm. Although the diameter of the central 

nanocylinder was varied, the gap between the edges of nanocylinder and nanorod 

were kept constant at 22 nm. Despite the large variations in diameter of central 

nanoparticle, the radial nanorod structure does not support a Fano resonance. Figs. 

III-17 (c, d) plot the extinction and absorption cross-sections obtained from 

COMSOL simulations of radial nanorod heptamer structure with constant rod 

length of 95 nm, width 50 nm and gold thickness 40 nm. The gap between the 

nanorod and central nanoparticle were widely varied and it was found that the 

radial nanorod heptamer structure did not support Fano resonance. 
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Figure III-17: Simulated extinction and absorption spectra 

for the azimuthal nanorod heptamer. (a) and (b) plot the 

extinction spectra and absorption spectra for nanorod 

structure with varying central nanocylinder diameter 

respectively while (c) and (d) plot the extinction and 

absorption spectra for varying gap respectively. 

 

The observation from simulation studies were confirmed experimentally. Radial 

nanorod heptamer structure was fabricated with following structural parameters: 

rod length 105 nm, rod width 60 nm, central nanocylinder diameter 97 nm, gap 32 

nm and gold thickness 40 nm. Scanning electron micrographs of the fabricated 

structure are shown in Fig. III-18 (b). The heptamers were subsequently stretched 

along the horizontal direction shown in the inset of Fig. III-18 (b) and the optical 
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extinction spectra were recorded for polarization parallel to direction of mechanical 

stress. Fig. III-18 (a) plots the measured extinction spectra for mechanical strain 

values of 0 %, 13 %, 21 % and 32 %. It can be observed that the radial nanorod 

heptamer structure did not support Fano resonance thus confirming the theoretical 

predictions. 

 

Figure III-18: (a) Plot of experimentally measured 

extinction spectra for parallel polarization of light (b) 

SEM images of fabricated radial nanorod heptamer 

structures with inset showing high magnification image of 

the nanorod structure. 

 

As shown in Fig. III-12, the modes in the circular nanocylinder particles were 

decomposed into azimuthal and radial modes. Further, the inherent anisotropy of 

nanorods was used to split the radial and azimuthal modes in the circular heptamer 

structure to azimuthal and radial modes in nanorod heptamer structure. From the 

results presented so far, it is observed that the circular heptamer and azimuthal 

nanorod heptamer both support Fano resonance while the radial heptamer did not 
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support Fano resonance. Therefore, the resonance in the circular heptamer is 

composed mainly of the azimuthal component. In addition to symmetry tuning 

caused by mechanical stress, the Fano resonance in heptamer structures could also 

be tuned by engineering the orientation of the nanoparticles constituting the 

satellite nanoparticle structure. 

Assuming an ideal heptamer structure with no fabrication defects, the doubly 

degenerate E1u mode of the D6h representation ensures that the heptamer structure 

exhibits identical optical responses for both the x and y polarizations thereby 

rendering it polarization insensitive. Therefore, the heptamer structure is an 

excellent candidate not only to achieve Fano resonance but also to be able to tune 

the Fano resonance in multiple ways (refractive index, structure and symmetry).  

In conclusion, the Fano resonance in the plasmonic heptamer structures 

fabricated on flexible substrate was dynamically tuned by application of uniaxial 

stress. The various features observed in the spectra of both the unstressed 

heptamer and heptamer under uniaxial stress were explained using group 

representation theoretical methods. The Fano resonance in the unstressed 

heptamer was due to the interaction between the two E1u modes. When uniaxial 

stress was applied, the shift in the Fano dip was dependent on the polarization 

dependence of the x-dipole (B3u) and y-dipole (B2u) modes. Finally, application of 

large mechanical stress caused the optically inactive mode to become an optically 

active mode and the character of this mode varied between the circular and nanorod 

heptamers. Except for some details, the characteristics of the Fano resonance in the 
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azimuthal nanorod heptamer structure are found to be qualitatively similar to the 

behavior of the Fano resonance in circular heptamer. Radial nanorod heptamer 

structure did not support a Fano resonance. These results clearly show that novel 

optical responses could be created by engineering of plasmonic nanostructures. 

Fano resonance could have potential applications in chemical and bio-sensing, 

optical filters, non-linear optics, fast optical switching and modulation among 

others.  
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CHAPTER IV  

CONCLUSIONS AND FUTURE WORK 

A. Conclusions 

The rapid progress in theoretical understanding of plasmonic nanostructures 

coupled with advances in nanofabrication technologies has unveiled an array of 

interesting optical phenomena. These unusual optical phenomena could be 

engineered by controlling the structural geometry and symmetry in addition to the 

material properties of the nanostructure and its surroundings.  

In this thesis, we presented a scattering cancelation device operating at 1550 

nm and composed of a silicon nanorod covered by a plasmonic material. The 

plasmonic material was made up of eight symmetrically placed gold nano grating 

structure embedded in a thin film of silicon dioxide. The principle of operation of the 

device was analyzed using Mie theory and the influence of key parameters on the 

performance was discussed. The structure was fabricated using a combination of 

top-down nanofabrication techniques such as electron beam lithography and focused 

ion beam milling. The fabrication procedures were discussed and the presented 

scanning electron micrographs taken during various stages of the fabrication 

process confirmed that the dimensions of the device during each stage was close to 

the initial design specifications obtained from numerical simulations. In addition to 

the scattering cancelation sample, a control sample consisting of a bare silicon 
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nanorod was also fabricated. The diameter of the bare rod was measured to be 240 

nm. The optical responses of the scattering cancelation device and the bare rod were 

directly visualized at 1550 nm using heterodyne-NSOM operating in the collection 

mode. The visualized optical responses consisted of interference fringes formed by 

the incident wave and the wave scattered by the object. The fringes were 

characterized by their curvature and distances from the center of the device/bare 

rod. The experimental data were carefully analyzed and key fringe parameters such 

as curvature and distance from center of device/rod agreed well with theoretical 

predictions extracted from numerical simulations which took into account the 

variations in structural dimensions due to fabrication imperfections. The results 

from numerical simulations also indicated that the scattering due to scattering 

cancelation device was suppressed by about 11 dB when compared to scattering 

from the bare silicon rod. The good agreement of experimental data with those 

obtained from numerical simulations validated the design principles and our 

implementation. My contribution to this work involved the design and simulations 

of the reduced scattering device, setup of the heterodyne NSOM system followed by 

optical characterization of the samples using the H-NSOM system and analysis of 

experimental data. 

 We also presented tunable Fano resonance in plasmonic nanostructures 

fabricated on flexible substrates and the Fano resonance was dynamically tuned by 

application of uniaxial mechanical stress. The plasmonic nanostructures consisted 

of gold heptamers whose structural parameters were obtained by performing 
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extensive numerical simulations using COMSOL. To complement the COMSOL 

simulations, eigenmodes of the structure were obtained in the static limit by solving 

the boundary integral eigenvalue equations for the charge distribution in the 

heptamer. Two different gold heptamer structures were fabricated: circular 

heptamer and nanorod heptamer. The circular heptamer consisted of six gold 

nanocylinders arranged in a hexagonal arrangement around a central gold 

nanocylinder. The nanorod heptamer replaced the outer six nanocylinders in the 

circular heptamer with nanorods while retaining the central nanocylinder. Both the 

circular and nanorod heptamers were fabricated using electron beam lithography 

and embedded into a thick PDMS membrane using procedures described in the 

thesis. The Fano resonances in the fabricated devices were optically characterized 

for various applied uniaxial mechanical stress. The spectral features that were 

observed in experiments were correlated with data obtained from numerical 

simulations and the observed spectral behaviors were explained using group 

theoretical methods. The experimental results agreed well with the data obtained 

from numerical simulations and it was shown that symmetry could be a powerful 

tuning mechanism in plasmonic nanostructures. The heptamer structure could be 

used in applications such as chemical and bio-sensing, fast optical modulators and 

optical filters. The unusual optical properties exhibited by plasmonic 

nanostructures could be combined with mechanical tunability and could serve as a 

platform for dynamically tunable nanophotonic devices such as sensors and tunable 

filters. My contribution to this work involved design and simulation studies of 
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circular and nanorod heptamer structures and involved in optical characterization 

of fabricated heptamer nanostructures. 

B. Possible Future work 

The research work on scattering cancelation device structure presented in this 

thesis clearly validates the design principles and the present implementation. 

However, it could be useful to calculate the scattering cross-section obtained from 

experimental data. In the thesis, we mentioned that the device and bare rod 

samples were fabricated on two different wafers. Therefore, the uncertainties in 

butt-coupling efficiency for the two different wafers and variations in NSOM probe 

collection efficiencies over multiple probes prevented us from computing the 

scattering cross-section from experimental data. Future work could possibly 

attempt to calculate the scattering cross-sections of device and bare rod from 

experimental data. Such a measurement could be possible if both the device and 

bare rod were fabricated on the same sample and illuminated by the same 

waveguide. For example, the input waveguide could be split into two new 

waveguides using a T junction and the two new waveguides could be used to 

illuminate the bare rod and scattering cancelation device simultaneously for the 

same but-coupling efficiency. If the two rods were placed close enough, then they 

could be visualized by NSOM in a single scan thereby enabling the accurate 

computation of scattering cross-sections from experimental data. In addition, the 

present concept could be extended to achieve practical devices such as reduced 

visibility detectors. For example, the silicon nanorod could be doped to create a PN 
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junction which could be used as an optical detector at visible frequencies. Some part 

of the plasmonic nanostructure (such as one of the gold grating in this case) could 

function as electrical contacts. By creating a row of such detectors, each tuned to a 

different wavelength, it might be possible to construct an on-chip spectrometer for 

chemical and biomedical applications.  

 The Fano resonance in gold heptamer structures presents excellent 

opportunities for practical applications in sensing and optical modulators. The 

addition of mechanical tuning further improves the offerings of such a structure. 

The gold heptamer structures could be used to implement electro-optic modulators 

due to the large field enhancements coupled with the narrow Fano linewidths. Due 

to the large field enhancement in the gaps between nanoparticles, the optical non-

linearity materials such as Kerr non-linearity would be greatly enhanced. Such 

plasmon enhanced optical nonlinearity could be used for all optical switching and 

modulators. Materials exhibiting the optical Kerr effect can be characterized by 

their second-order nonlinear refractive index n2. For most natural materials the 

value of n2 is in the range 10-18 to 10-20 m2/W. Therefore, in order to obtain refractive 

index n variations in the order of 0.01 would require large beam irradiances in the 

order of several hundred GW cm-2. The field enhancement in most plasmonic 

materials is highly dependent on the gap and values of |E/E0| of several 100’s could 

be readily achieved giving intensity enhancements in order or 104 to 105 thereby 

reducing the required beam irradiance or increasing the achievable refractive index 

variation for a fixed beam power. Compared to nanoparticle aggregate systems with 
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broad scattering peaks, Fano resonance has a narrow and asymmetrical linewidth 

thereby reducing the refractive index variations required to cause a tuning of the 

resonance position. In addition, Fano resonance has a lower scattering than the 

background ensuring higher transmitted beam power. Therefore, Fano resonance 

could be an ideal candidate to implement devices such as optical modulators and 

switches. 
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