
Relaxation-corrected Bootstrap Algebraic Multigrid

(rBAMG)

by

Minho Park

B.S., Kyungpook National State University, 2004

M.S., University of Colorado at Boulder, 2008

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2010

This thesis entitled:
Relaxation-corrected Bootstrap Algebraic Multigrid (rBAMG)

written by Minho Park
has been approved for the Department of Applied Mathematics

Prof. Stephen F. McCormick

Prof. Thomas A. Manteuffel

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Park, Minho (Ph.D., Applied Mathematics)

Relaxation-corrected Bootstrap Algebraic Multigrid (rBAMG)

Thesis directed by Prof. Stephen F. McCormick

Bootstrap Algebraic Multigrid (BAMG) is a multigrid-based solver for matrix equations of

the form Ax = b. Its aim is to automatically determine the interpolation weights used in algebraic

multigrid (AMG) by locally fitting a set of test vectors that have been relaxed as solutions to the

corresponding homogeneous equation, Ax = 0. This thesis introduces an indirect operator-based

interpolation scheme for BAMG that determines the interpolation weights indirectly by “collapsing”

the unwanted connections in “operator interpolation”. Compared to BAMG, this indirect BAMG

approach (iBAMG) is more in the spirit of classical AMG, which collapses unwanted connections in

operator interpolation based on the (restrictive) assumption that smooth error is locally constant.

This thesis also develops another form of BAMG, called rBAMG, that involves modifying

the least-squares process by temporarily relaxing on the test vectors at the fine-grid interpolation

points. The theory here shows that, under fairly general conditions, iBAMG and rBAMG are

equivalent. Simplicity and potentially greater generality favor rBAMG, so this algorithm is at the

focus of the numerical performance study here.

The rBAMG setup process involves several components that are developed in this thesis.

Besides the new least-squares principle involving the residuals of the test vectors, a simple extrap-

olation scheme is developed to accurately estimate the convergence factors of the evolving AMG

solver. Such a capability is essential to effective development of a fast solver, and the approach

introduced here proves to be much more effective than the conventional approach of just observ-

ing successive error reduction factors. Another component of the setup process is the use of the

current V-cycle to ensure its effectiveness or, when poor convergence is observed, to expose error

components that are not being properly attenuated. How we coordinate use of these evolving error

components together with the original test vectors to direct the setup process is a critical issue to

iv

rBAMG’s effectiveness. Another related component is the scaling and recombination Ritz process

that targets the so-called weak approximation property in an attempt to reveal the important ele-

ments of these evolving error and test vector spaces. The details of the components used here are

spelled out in what follows.

The study of rBAMG here is an attempt to systematically analyze the behavior of the al-

gorithm in terms relative to several parameters. The focus here is on the number of test vectors,

the number of relaxations applied to them, and the dimension of the matrix to which the scheme

is applied. A large number of other parameters and options could also be considered, including

different cycling strategies, other coarsening strategies (e. g., computing several eigenvector approx-

imations on coarse levels), different numbers of relaxation sweeps on coarse levels, different possible

strategies for combining test vectors and error components produced by the current cycles, and so

on. Studying all of these options and parameters would not be feasible here. Instead, reasonable

choices are made based on some sample studies (that, in the interest of space, we choose not to

document here), with the hope that the rBAMG algorithm studied here is generally fairly effective

and robust. Our analysis is thus able to focus on how this scheme behaves numerically in the face

of increasing the numbers of test vectors and relaxation sweeps performed on them, as well as the

problem sizes.

Dedication

To

my parents

Jongil Park and Sunhee Kim

my wife

Jimin Shon

my daughter

Lucy Park

vi

Acknowledgements

First and foremost, I would like to express my deep and sincere appreciation to my advi-

sors, Steve McCormick and Tom Manteuffel, who provided me with encouragement, insights, good

advice, and continuous feedback, which was invaluable and helped my achievement that you will

find documented in this thesis. Working under their supervision has been privilege, and I greatly

appreciate their constant support.

My thanks also go to other members of my thesis committee who guided my research: John

Ruge, Marian Brezina, and Scott MacLachlan They were generous with their help whenever I met

difficulties in my study. Their knowledge and experience helped me overcome many obstacles.

I would also like to thank my Korean advisor, Sangdong Kim, who led me to the world of

Mathematics. Without his help, I would not even have started my degree at Boulder.

I would also like to thank my colleagues, Christian Ketelsen, Jacob Schroder, Jose Garcia,

Kuo Liu, and Lei Tang, for their co-operation and contribution, and former graduate students,

James Adler and Geoff Sanders, for their kind a fruitful collaboration and advice.

Last, but not least I wish to extend my heartfelt appreciation to my parents for their en-

couragement and love, and my wife, Jimin, who deserves my deepest gratitude and love for her

dedication and support during my graduate studies.

vii

Contents

Chapter

1 Introduction 1

2 Background 5

2.1 Multigrid Principles . 5

2.2 Classical Algebraic Multigrid . 7

2.3 Adaptive AMG Interpolation . 9

3 Least-Squares-Based Interpolation 11

3.1 Bootstrap Algebraic Multigrid . 11

3.2 Indirect Bootstrap Algebraic Multigrid (iBAMG) . 12

3.2.1 BAMG and iBAMG Conditional Equivalence 14

3.2.2 Residual-corrected BAMG (rBAMG) . 16

3.2.3 Underdetermined Case . 17

3.3 Direct-Connection-Based BAMG (diBAMG) . 19

3.4 iBAMG Theory . 20

3.5 Weighted Iterative Interpolation . 24

4 Fully Adaptive AMG Process 31

4.1 The Adaptive MG Algorithm . 32

4.2 Convergence Estimation . 35

viii

4.2.1 Numerical Illustrations for Convergence Estimation 37

4.3 Setup Cost Considerations . 40

4.3.1 P(N) . 42

4.3.2 INTERP(q,N) . 42

4.3.3 CGO(N) . 43

4.3.4 RITZ(q,N) . 43

4.3.5 Total Setup Cost . 45

5 Numerical Experiments 46

5.1 BAMG vs iBAMG . 46

5.1.1 2D Poisson . 46

5.1.2 Scaled 2D Laplacian . 53

5.1.3 Long-range Interpolation . 55

5.1.4 Variable-coefficient 2D diffusion . 58

5.1.5 Diagonally scaled variable-coefficient 2D diffusion 62

5.2 Adaptive BAMG . 64

5.2.1 Shifted 2D Poisson . 65

5.2.2 Shifted Gauge Laplacian . 68

6 Conclusions and Future Work 73

Bibliography 76

ix

Tables

Table

3.1 Two-level convergence factors of iBAMG (diBAMG) with q vectors and ν relaxations

for 2D Poisson with 9-point stencils and standard coarsening on a 64x64 grid. . . . 19

3.2 Observed two-level convergence factors of standard iBAMG (wrBAMG with ω =

1.3) applied to 2D Poisson with 9-point stencils on a 64x64 grid. 28

3.3 Observed five-level convergence factors of standard iBAMG (wrBAMG with ω = 1.3)

applied to 2D Poisson with 9-point stencils on a 64x64 grid. 29

3.4 Observed two-level convergence factors of standard iBAMG (wrBAMG with ω =

1.3) applied to 2D Poisson with 9-point stencils on a 128x128 grid. 29

3.5 Observed six-level convergence factors of standard iBAMG (wrBAMG with ω = 1.3)

applied to 2D Poisson with 9-point stencils on a 128x128 grid. 30

4.1 Asymptotic convergence factor for V(1,1) cycles and its approximations using rBAMG

with q= ν=10). 38

4.2 Asymptotic convergence factor for V(1,1) cycles and its approximations using rBAMG

with q= ν=1). 38

4.3 Asymptotic convergence factor for V(1,1) cycles and its approximations using rBAMG

with q= ν=10) incorporated a single adaptive cycle. 39

4.4 Asymptotic convergence factor for V(1,1) cycles and its approximations using rBAMG

with q= ν=1) incorporated a single adaptive cycle. 40

x

5.1 Average V(1,1) two-level convergence factors for residual reduction by a factor of

1010 (or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional

model problem (5.1) for various combinations of the number of relaxation sweeps, ν,

and the number of random test vectors, q. Shown here are the average convergence

factors using BAMG (iBAMG). In all cases, a random initial guess was used to test

the resulting cycle. 49

5.2 Average five-level V(1,1) convergence factors for residual reduction by a factor of

1010 (or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional

model problem (5.1) for various combinations of the number of relaxation sweeps, ν,

and the number of random test vectors, q. Shown here are the average convergence

factors using BAMG (iBAMG). In all cases, a random initial guess was used to test

the resulting cycle. 50

5.3 Average six-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 128 × 128 grid 9-point discretization of 2-dimensional

model problem (5.1) for various combinations of the number of relaxation sweeps, ν,

and the number of random test vectors, q. Shown here are the average convergence

factors using BAMG (iBAMG). In all cases, a random initial guess was used to test

the resulting cycle. 51

5.4 Average seven-level V(1,1) convergence factors for residual reduction by a factor of

1010 (or at most 50 cycles) on a 256 × 256 grid 9-point discretization of 2-dimensional

model problem (5.1) for various combinations of the number of relaxation sweeps, ν,

and the number of random test vectors, q. Shown here are the average convergence

factors using BAMG (iBAMG). In all cases, a random initial guess was used to test

the resulting cycle. 52

xi

5.5 Average two-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional model

problem (5.1) subject to diagonal scaling according to (5.3) for various combinations

of the number of relaxation sweeps, ν, and the number of random test vectors, q.

Shown here are the average convergence factors using BAMG (iBAMG). In all cases,

a random initial guess was used to test the resulting cycle. 54

5.6 Average two-level V(1,1) convergence factors for residual reduction by a factor of

1010 (or at most 50 cycles) on a 64 × 64 grid 5-point discretization of 2-dimensional

model problem (5.1) for various combinations of the number of relaxation sweeps, ν,

and the number of random test vectors, q. Shown here are the average convergence

factors using BAMG (iBAMG) with standard coarsening. In all cases, a random

initial guess was used to test the resulting cycle. 57

5.7 Average two-level V(1,1) convergence factors for residual reduction by a factor of

1010 (or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional

model problem (5.4) with the coefficient in (5.5) for various combinations of the

number of relaxation sweeps, ν, and the number of random test vectors, q. Shown

here are the average convergence factors using BAMG (iBAMG). In all cases, a

random initial guess was used to test the resulting cycle. 60

5.8 Average two-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional model

problem (5.4) with the coefficient in (5.6) for various combinations of the number of

relaxation sweeps, ν, and the number of random test vectors, q. Shown here are the

average convergence factors using BAMG (iBAMG) with standard coarsening. In

all cases, a random initial guess was used to test the resulting cycle. 61

xii

5.9 Average two-level V(1,1) convergence factors for residual reduction by a factor of

1010 (or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional

model problem (5.4) subject to diagonal scaling according to (5.7) with coefficient

in (5.5) for various combinations of the number of relaxation sweeps, ν, and the

number of random test vectors, q. Shown here are the average convergence factors

using BAMG (iBAMG). In all cases, a random initial guess was used to test the

resulting cycle. 63

5.10 Total cost (= setup + solver cost) for rBAMG applied to shifted 2D Poisson and N

= 64. 65

5.11 Final number of target vectors and solver convergence factor for rBAMG applied to

shifted 2D Poisson and N = 64. 65

5.12 Total cost (= setup + solver cost) for rBAMG applied to shifted 2D Poisson and N

= 128. 66

5.13 Final number of target vectors and solver convergence factor for rBAMG applied to

shifted 2D Poisson and N = 128. 66

5.14 Total cost (= setup + solver cost) for rBAMG applied to shifted 2D Poisson and N

= 256. 66

5.15 Final number of target vectors and solver convergence factor for rBAMG applied to

shifted 2D Poisson and N = 256. 67

5.16 Summary of the optimal total costs of rBAMG for the shifted Poisson problem, N

= 64, 128, and 256. 67

5.17 Total cost (= setup + solver cost) for rBAMG applied to shifted gauge Laplacian

and N = 64. 69

5.18 Final number of target vectors and solver convergence factor for rBAMG applied to

shifted gauge Laplacian and N = 64. 70

5.19 Total cost (= setup + solver cost) for rBAMG applied to shifted gauge Laplacian

and N = 128. 70

xiii

5.20 Final number of target vectors and solver convergence factor for rBAMG applied to

shifted gauge Laplacian and N = 128. 71

5.21 Total cost (= setup + solver cost) for rBAMG applied to shifted gauge Laplacian

and N = 256. 71

5.22 Final number of target vectors and solver convergence factor for rBAMG applied to

shifted gauge Laplacian and N = 256. 72

5.23 Least squares approximation of BAMG. 72

xiv

Figures

Figure

2.1 Influence of Gauss-Seidel iteration on 2D Poisson. 5

2.2 Smooth error becomes more oscillatory on the coarse grid. 7

3.1 Red-black coarsening in case of an isotropic five-point stencil. 23

4.1 Convergence factors for V(1,1) cycles using rBAMG with q = ν = 10. 37

4.2 Convergence factors for V(1,1) cycles using rBAMG with q = ν = 1. 38

4.3 Convergence factors for V(1,1) cycles using rBAMG with q = ν = 10 incorporated

a single adaptive cycle. 39

4.4 Convergence factors for V(1,1) cycles using rBAMG with q = ν = 1 incorporated a

single adaptive cycle. 40

5.1 Standard coarsening. The white-centered blue circles represent F points and the

red-centered ones represent C points. 55

5.2 Least-squares approximation for BAMG. Shown here are two types of F points, one

involving interpolation from 4 C points and the other involving just 2. 56

5.3 Least squares approximation for iBAMG. 56

5.4 The distribution of the coefficient for (5.4) on [0, 1]2. 60

5.5 Summary of the optimal total costs of rBAMG for the shifted gauge Laplacian

problem, N = 64, 128, and 256. 69

Chapter 1

Introduction

Due to its potential to solve N ×N sparse linear system of equations,

Ax = b, (1.1)

with only O(N) work, multigrid methods have gained a widespread use for solving the large sparse

linear system that arises from the discretization of partial differential equations (PDEs). This

popularity is due to the efficiency that results from two complementary processes: smoothing and

coarse-grid correction. The basic idea of the classical geometric multigrid method is that relaxation

is inexpensive and efficient at eliminating high-frequency (oscillatory) error, while low-frequency

(smooth) error that remains after relaxation can be eliminated on a coarser grid, again by relax-

ation and further elimination on yet coarser grids. Unfortunately, many modern problems involve

discontinuous coefficients, complex geometries, and unstructured grids, which inhibit geometric

multigrid from being applied.

In contrast to standard multigrid methods, algebraic multigrid (AMG [7,8, 16,25]) methods

need not take into account any geometric information about the underlying problem. Instead,

AMG relies on an algebraic sense of smoothness to construct a hierarchy of matrices and intergrid

transfer operators automatically based on the information of the original matrix. AMG can be

classified according to the way in which the interpolation operator is defined based on the expected

characteristics of algebraically smooth error components, which are defined simply as the error that

cannot be attenuated efficiently by relaxation. Classical AMG is based on the assumption that re-

laxation cannot efficiently resolve errors that are locally constant. In classical smoothed aggregation

2

(SA [27, 28]), representative smooth vectors supplied by the user are employed to define columns

of the interpolation operator locally. These user-supplied vectors then define implicitly what is

expected of algebraically smooth errors. While appropriate use of the characteristics of algebraic

smoothness seems essential for obtaining effective solvers, these additional assumptions limit the

scope of applicability of such methods. What is needed are self-learning algebraic multigrid solvers

that automatically determine the full character of algebraically smooth errors. Robust multigrid

solvers with this capability could dramatically increase the applicability of optimal multigrid solvers

over a wide range of discrete problems.

The most recent research in this direction is concerned primarily with the development of self-

learning multigrid algorithms, including the original adaptive AMG algorithm introduced in [8], the

bootstrap AMG approach introduced in [4] and developed further for quantum chromodynamics

in [6], an adaptive scheme based on smoothed aggregation (SA) developed in [13] and [14] and

developed further for lattice QCD in [9], adaptive AMG schemes developed further in [15], and

an adaptive reduction-based AMG algorithm introduced in [23] and [11]. One principal difference

among these self-learning multigrid schemes is that the so-called adaptive approaches have typically

started with just one test vector, while the so-called bootstrap approaches generally start with

several. Both schemes produce the test vectors initially by starting with random initial guesses

to the corresponding homogeneous problem, Ax = 0. The adaptive approach usually constructs

interpolation initially to fit a single initial test vector, and then tests the resulting solver on the

homogeneous problem, starting from another random initial vector. If observed convergence is

not yet acceptable, then the resulting vector is either used to enhance the original test vector

or else added to the test-vector set. The process then continues until acceptable convergence is

observed. BAMG instead constructs interpolation to fit (in a least-squares sense) typically several

initial test vectors. The adaptive schemes are advantageous in that they naturally sort out a rich

and locally independent set of test vectors: a properly implemented adaptive scheme should be

able to generate a local representation of algebraic smoothness that is rich and independent in the

sense that each local vector represents a new character of algebraic smoothness. Unfortunately,

3

adaptive approaches that begin with a single test vector and introduce additional vectors one at a

time can be costly in their initial stages. This can happen because an effective coarse-grid solver

must be developed before returning to the fine grid if the quality of interpolation is to be safely

assessed. Otherwise, it would be difficult to determine whether slow convergence is due to a poor

interpolation operator or a poor coarse-level solver.

To address this concern, we develop a version here of adaptive AMG that begins with several

test vectors that are chosen randomly and subjected to relaxation (for solving the homogeneous

equation), and are then used in a modified least-squares process of fitting interpolation. While this

version fits into the adaptive methodology, we refer instead to it as a BAMG scheme because using

multiple initial vectors is more in the spirit of the bootstrap methodology.

The aim of the least-squares process is to produce a V-cycle for solving (1.1) that converges

quickly in a sense that we describe below. Our approach is to use the initially constructed in-

terpolation operator to create a V-cycle and, in the subsequent adaptive phase, test this current

solver applied to a random initial guess for the homogeneous equation, Ax = 0. For focus and

simplicity of analysis, we define this adaptive phase in a non-recursive way in that we only test the

effectiveness of the current solver on the finest level. As we said, the usual adaptive AMG approach

is to test solver effectiveness recursively on all levels, and not return to finer levels until adequate

performance is observed on the coarse levels. (The original adaptive AMG takes a different ap-

proach by returning directly to the finer grid.) A related recursive approach is also what is now

being studied in the BAMG methods [6]. However, we choose a non-recursive form of the adaptive

phase because it facilitates a systematic focus on the other components of the AMG processes.

The focus of this thesis is on developing strategies that allow for fewer test vectors than are

currently used in bootstrap methods and more efficient self-learning algorithms that are able to

fit several smooth vectors by least-squares approximation. Because of this focus, we obviate the

problem of choosing a good coarse grid by considering cases where this is known in advance. For

a compatible relaxation approach to coarse-grid selection, see [3], [5], [6], and [10].

This thesis is organized into six chapters. Chapter 2 discusses the multigrid methods we use

4

in detail. In Section 2.1, we discuss relevant fundamental multigrid principles. Section 2.2 reviews

the basic components of classical AMG and how we define the AMG interpolation operator. Section

2.3 briefly shows how to compute adaptive AMG interpolation weights.

Chapter 3 introduces a new version of BAMG that determines the interpolation weights

indirectly by “collapsing” the unwanted connections in “operator interpolation”. Compared to

BAMG, this indirect BAMG approach (iBAMG) is more in the spirit of classical AMG, which

collapses unwanted connections in operator interpolation based on the assumption that smooth

error is locally constant. This chapter also introduces a relaxation-corrected version, rBAMG, that

is equivalent to, but possibly easier to implement, than iBAMG.

Chapter 4 introduces the non-recursive adaptive algorithm based on bootstrap AMG inter-

polation. Section 4.1 explains the algorithm more in detail. Section 4.2 introduces and tests the

convergence estimation model that we use in the adaptive process as an accurate indicator of the

speed of convergence of the current solver. In Section 4.3, we consider the theoretical setup cost of

this adaptive process.

In Chapter 5, we report on numerical experiments that confirm effectiveness of the indirect

approach and the non-recursive adaptive algorithm.

Chapter 6 summarizes the results presented here and provides some recommendations for

future work.

Chapter 2

Background

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Error of initial guess

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

Error after 5 iterations

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

Error after 10 iterations

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

Error after 100 iterations

Figure 2.1: Influence of Gauss-Seidel iteration on 2D Poisson.

2.1 Multigrid Principles

In this section, we briefly introduce and discuss two ingredients of multigrid methods: smooth-

ing and coarse-grid correction. Pointwise relaxation methods like Jacobi and Gauss-Seidel are ef-

6

fective at reducing high-frequency (oscillatory) error, but are often poor at reducing low-frequency

(smooth) error. After a few iteration sweeps, the error thus tends to become very smooth. Figure

2 illustrates this error smoothing property of the Gauss-Seidel method.

The principal aim of the multigrid processes, then, is to eliminate the smooth error that

remains after relaxation. Since a coarse-grid problem is much cheaper to solve than a fine-grid one,

the remedy is to approximate this error on a coarse grid where it can again be treated by relaxation

and correction from yet coarser grids. This process is motivated in part by the property (shown in

Figure 2.2) that smooth fine-grid error becomes relatively more oscillatory on coarse levels. Given

an approximation, v, to the exact solution, the algebraic error, e, is the difference between the exact

solution and the current approximation, i.e., e = A−1b− v. The error is unknown, but determined

by the residual:

r = b−Av = A(A−1b− v) = Ae.

Each two grid correction scheme consists of presmoothing, coarse-grid correction, and postsmooth-

ing. One step of such a method proceeds as follows:

Algorithm 2.1 Two-Grid Correction Scheme

(Presmoothing) Relax ν1 times on Ahxh = bh on the fine level with initial guess vh.
(Coarse-grid correction)
- Compute the fine-grid residual rh = bh −Ahvh.
- Restrict the residual by r2h = Rrh.
- Solve A2he2h = r2h on the coarse grid.
- Interpolate the coarse-grid error approximation to the fine grid by eh = Pe2h
- Compute a new approximation by vh ← vh + eh

(Postsmoothing) Relax ν2 times on Ahxh = bh on the fine level with initial guess vh.

The method can be extended to a V-cycle scheme when it is done recursively in that the

coarse-grid problem is solved in the same way as the fine-grid equations, by introducing yet coarser

grids.

Unfortunately, many problems cannot be easily treated by coarsening in a geometrically

based way (e. g., those arising from discretizations based on highly irregular grids) and many more

still do not exhibit the property that relaxation produces geometrically smooth error (e. g., highly

7

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

Fine Level

Coarse Level

Figure 2.2: Smooth error becomes more oscillatory on the coarse grid.

anisotropic problems, stochastic problems like those that arise in quantum chromodynamics, and

problems whose unknowns are scaled in a way that is not available to the solver).

2.2 Classical Algebraic Multigrid

Assume in what follows that A = (aij) ∈ ℜ
n×n. This section is devoted to describing how

classical AMG applied to Ax = b determines the weights in the interpolation operator, which we

denote by P . Because our focus is on the weights of interpolation as opposed to how the coarse

grids are selected, we assume that the fine-level points have already been partitioned into points

that are identified with the coarse grid, the set of which we denote by C, and its complement, which

we denote by F . This partition into C and F points gives rise to the AMG form of interpolation

described as follows: the ith entry of Pe is given by

(Pe)i =



















ei if i ∈ C,

∑

j∈Ci

wijej if i ∈ F.

(2.1)

Here, Ci is the subset of C consisting of points that are used to interpolate to point i /∈ C. Our task

now is to describe in abstract terms how the interpolation weights, wij, are determined. Therefore,

8

for the remainder of this section, we consider a given fixed i ∈ F .

Interpolation only needs to approximate error that is not easily attenuated by relaxation. This

observation gives rise to the first AMG premise: relaxation produces error, e, that is algebraically

smooth in the sense that it exhibits a relatively small residual. Therefore, we can assume that

(Ae)i ≈ 0, that is, that

aiiei ≈ −
∑

j 6=i

aijej .

Consider now the splitting of this sum into its component sums over Ci, the coarse interpolatory

set, and its complement Cc
i , the remaining grid points in the neighborhood of i, by which we mean

the set of points that are connected to i in A (i. e., all points ℓ such that aiℓ 6= 0). We assume for

simplicity in this thesis, unless otherwise stated, that Cc
i is taken only from the neighborhood of i

with strong influence, so it consists of connected F points and other connected C points that are

not in Ci. See [16] for more detailed information about strong and weak connections. With this

splitting, we obtain

aiiei ≈ −
∑

j∈Ci

aijej −
∑

k∈Cc
i

aikek. (2.2)

Observe that, if the second component sum happens to vanish in this approximation (e. g., aik = 0

for k ∈ Cc
i), then we would immediately have a formula that expresses the value of any algebraically

smooth error at point i by its value at points of Ci. This “operator interpolation” formula would

then yield appropriate weights for P given by wij = −aij/aii. This observation suggests, for the

general case
∑

k∈Cc
i
aikek 6= 0, that we may want to “collapse” the unwanted connections (aik for

k ∈ Cc
i) to Ci. Thus, we are led to replacing the ek in the second sum on the right side of (2.2)

with sums that involve only ej for j ∈ Ci.

To replace each ek, k ∈ Cc
i , with a linear combination of the ej , j ∈ Ci, we need to make

a further assumption about the nature of smooth error. Since the historical target for AMG are

partial differential equations of elliptic type, the classical AMG premise is that smooth error is

locally almost constant. This second AMG premise means that we can assume that each ek is

any convex linear combination of the ej , j ∈ Ci, that preserves constants. AMG is based on the

9

particular linear combination where the coefficients are proportional to the connections from point

k to each point j, that is, it is based on the approximation

ek ≈
∑

j∈Ci

akj
∑

ℓ∈Ci

akℓ
ej . (2.3)

Substituting this expression into (2.2) and dividing the result by aii yields interpolation weights

given by

wij =
1

aii






−aij −

∑

k∈Cc
i






aik

akj
∑

ℓ∈Ci

akℓ












. (2.4)

This process of collapsing the unwanted connections in the operator interpolation formula

expressed by (2.2) can be viewed as using a crude but properly scaled truncated interpolation

formula, expressed by (2.3), to interpolate from Ci to ek. (We refer to (2.3) as truncated because

it amounts to operator interpolation at point k where we have simply deleted the unwanted terms

that do not belong to Ci. It is properly scaled in the sense that it is exact for constants.) This

indirect process has the effect of collapsing the unwanted connections, and it leads to the direct

formula for interpolation weights defined in (2.4).

2.3 Adaptive AMG Interpolation

To complement relaxation, all algebraically smooth errors must be approximated well by

vectors in the range of interpolation. Hence, we need to focus on the development of an interpolation

operator that is highly accurate for algebraically smooth vectors, which is one of subjects of this

thesis. The original adaptive AMG (αAMG [15, 22]) interpolation process is different from that

used in classical AMG in that not only the entries in A, but also a representative algebraically

smooth vector x, are used to compute the interpolation weights. We seek interpolation weights

that fit x locally. With this in mind, the formula we use for collapsing unwanted connections is

given by

ek ≈
∑

j∈Ci

akjxk
∑

ℓ∈Ci

akℓxl
ej . (2.5)

10

Note that (2.5) holds when e is replaced by x, so both classical AMG and adaptive AMG are

identical when x is constant. One of the objectives of this thesis is to develop a similar process for

adaptive AMG that accounts for several representative algebraically smooth vectors. This is what

we do in effect in the next chapter when we develop an indirect-interpolation least-squares process

for BAMG.

Chapter 3

Least-Squares-Based Interpolation

Assume for the remainder of this thesis that A ∈ ℜn×n is symmetric and positive definite.

Suppose now that we are given a set of test vectors, e(l), l = 1, 2, . . . , q, that result from ν fine-

level relaxation sweeps on the homogeneous equation, Ae = 0, starting from q distinct random

approximations. (We assume that the initial random vectors are of unit length in the Euclidean

norm to avoid significant scale disparity in the least-squares processes that follow.) Since the focus

is on the process of determining interpolation weights, we continue to assume that the fine-level

points have already been partitioned into the C-points that are identified with the coarse grid and

its F -point complement set. We also assume that the coarse-grid interpolatory set, Ci, has already

been determined for each F -point i. Also, unless otherwise noted (in particular, see Section 3.5), we

assume that the vectors are locally rich in that they are locally independent and numerous enough

to ensure that all of the least-squares problems we introduce are uniquely solvable.

3.1 Bootstrap Algebraic Multigrid

The general form of interpolation operator, P , for AMG is given in (2.1). As described

in the previous section, the choice of weights wij is dictated by two basic premises: relaxation

produces small residuals and relaxed errors are locally almost constant. The first premise is very

general: many matrix equations can be treated by relaxation schemes that produce small residuals

in a sense that leads to usable local operator interpolation formulas. However, many circumstances

arise where errors are not approximately constant in any local sense, so the second premise seriously

12

restricts the applicability of AMG methods. The basic idea behind BAMG is to glean the local

character of algebraically smooth errors from the set of test vectors. This leads to a determination

of the interpolation weights by a direct least-squares fit of the target vectors. Thus, for each i ∈ F ,

we compute

(BAMG) {wij : j ∈ Ci} = argmin
wij

q
∑

l=1

(e
(l)
i −

∑

j∈Ci

wije
(l)
j)2. (3.1)

Note that we assume that all target vectors have the same quality of smoothness, so sorting is

not necessary. Scaling, on the other hand, becomes crucial in the case of varying smoothness. We

discuss this in more detail in Section 4.3.4.

BAMG has generally taken this direct approach to determining the weights of interpolation.

More in the spirit of classical AMG as described in Chapter 2, we now introduce an indirect

approach based on collapsing the unwanted connections in operator interpolation.

3.2 Indirect Bootstrap Algebraic Multigrid (iBAMG)

As with classical AMG, the starting point for determining the interpolation weights is the

residual relation expressed in (2.2), again with Cc
i denoting the complement of Ci in the neigh-

borhood of i. In particular, we assume nonzero unwanted connections: aik 6= 0 for all k ∈ Cc
i .

The objective now is to collapse these connections by approximating the last sum in the residual

equation by a linear combination of the errors at the Ci points. The departure point here is that

we can no longer assume that the target error is approximately constant. Instead, we use the test

vectors to provide the sense of smoothness that we need. As before, once the unwanted connections

have been collapsed, we can use the residual relation to write the F -point error, ei, directly as a

linear combination of the ej for j ∈ Ci, which then yields the desired interpolation weights.

In classical AMG, an approximation is made separately for each ek with k ∈ Cc
i , so this is a

natural approach to take here: for each k ∈ Cc
i , we seek weights βkj, dependent on i, such that

ek ≈
∑

j∈Ci

βkjej .

13

Analogous to the BAMG approach, for this indirect interpolation problem, we use least squares to

determine each βkj:

(iBAMGa) {βkj : j ∈ Ci} = argmin
βkj

q
∑

l=1

(e
(l)
k −

∑

j∈Ci

βkje
(l)
j)2. (3.2)

This process results in the approximation

∑

k∈Cc
i

aikek ≈
∑

j∈Ci

∑

k∈Cc
i

aikβkjej

and resulting interpolation weights

wij =
1

aii



−aij −
∑

k∈Cc
i

aikβkj



 . (3.3)

Compare this expression with the weights for classical AMG given in (2.4). Note that these

weight formulas agree for the case where the βkj reduce to the truncated interpolation formula

given in (2.3).

An alternative to separately collapsing unwanted connections is to approximate all of the

connections at once: for each k ∈ Cc
i , we seek weights αj , again dependent on i, such that

(iBAMGb) {αj : j ∈ Ci} = argmin
αj

q
∑

l=1

(
∑

k∈Cc
i

aike
(l)
k −

∑

j∈Ci

αje
(l)
j)2. (3.4)

This yields the simpler approximation

∑

k∈Cc
i

aikek ≈
∑

j∈Ci

αjej

and resulting interpolation weights

wij =
1

aii
(−aij − αj). (3.5)

3.2.0.1 iBAMGa and iBAMGb Equivalence

Fitting the interpolation weights of all of the unwanted connections at once for each i ∈ F

as iBAMGb does is simpler and less expensive than fitting these weights individually as iBAMGa

does. So it is important to know that these two approaches actually yield the same weights,

provided the least-squares problems are well posed in the sense that the normal equation operator

is nonsingular.

14

Lemma 3.2.1. Denote the vector of values of e(l) at points of Ci by ε(l) and let L be the |Ci|× |Ci|

matrix defined by

L =

q
∑

l=1

ε(l)ε(l)T . (3.6)

If L is nonsingular, then definitions (3.3) and (3.5) are equivalent.

Proof. For each k ∈ Cc
i , let βk denote the vector of values βkj , j ∈ Ci. Also let α denote the vector

of values αj , j ∈ Ci. Then least-squares problem (3.2) results in the normal equation

Lβk =

q
∑

l=1

e
(l)
k ε(l), (3.7)

for each k ∈ Cc
i , while least-squares problem (3.3) results in just the one normal equation

Lα =

q
∑

l=1

∑

k∈Cc
i

aike
(l)
k ε(l). (3.8)

The equivalence between (3.3) and (3.5) now follows from the unique solvability of (3.7) and (3.8)

and the relation

α =
∑

k∈Cc
i

aikβk. (3.9)

An important implication of this lemma is that, if each connection to Cc
i is collapsed to all

Ci points using a rich-enough set of test vectors (note, in particular, that we must have at least |Ci|

test vectors), then the combined approach of iBAMGb is to be preferred because it is equivalent

to, but less expensive than, iBAMGa. However, because of its greater flexibility, iBAMGa may

be useful in cases where different subsets of the interpolatory points are used for each unwanted

connection or the set of test vectors is somehow deficient. We demonstrate this flexibility in Section

3.5 below.

3.2.1 BAMG and iBAMG Conditional Equivalence

The motive behind iBAMG is to attempt to insulate coarsening from a crude interpolation

formula by relegating this formula to the unwanted and hopefully less important connections to i

15

from Cc
i . The hope is that any crudeness in determining the weights would have less impact if it

were used for collapsing the connections indirectly than it would with the approach of determining

interpolation weights directly. It is interesting to observe that the indirect and direct approaches

are also equivalent in the special case that the residuals for all test vectors at point i are 0.

Lemma 3.2.2. Suppose again that the |Ci| × |Ci| matrix L defined by (3.6) is nonsingular. Then

BAMG and iBAMG (either version) are conditionally equivalent in the sense that they give the same

interpolation weights at any point i for which all test-vector residuals are null: r
(l)
i ≡

(

Ae(l)
)

i
=

0, l = 1, 2, · · · , q.

Proof. Denote the vector of values of wij at points of Ci by wi and note that the normal equation

for the BAMG least-squares problem in (3.1) can be written as

Lwi =

q
∑

l=1

e
(l)
i ε(l). (3.10)

The right side of this equation can be rewritten as

q
∑

l=1

e
(l)
i ε(l) =

1

aii





q
∑

l=1

(ri −
∑

j∈Ci

aije
(l)
j −

∑

k∈Cc
i

aike
(l)
k)ε(l)



 .

Letting ai be the vector of coefficients aij , j ∈ Ci, and using the premise that ri = 0, we then have

q
∑

l=1

e
(l)
i ε(l) = −

1

aii



Lai +

q
∑

l=1

∑

k∈Cc
i

aike
(l)
k ε(l)



 .

From (3.8), we can then rewrite the right side of (3.10) as

q
∑

l=1

e
(l)
i ε(l) = −

1

aii
L (ai + α) ,

which in turn yields

wi =
1

aii
(−ai − α).

16

3.2.2 Residual-corrected BAMG (rBAMG)

This equivalence for the case that ri = 0 can be exploited to improve BAMG simply by

incorporating the residual in the least-squares process. Specifically, the least-squares problem for

BAMG given by (3.1) can be modified by the addition of the local scaled residual as follows:

(rBAMG) {wij : j ∈ Ci} = argmin
wij

q
∑

l=1

(e
(l)
i −

∑

j∈Ci

wije
(l)
j −

r
(l)
i

aii
)2. (3.11)

This change to the fitting process yields a new scheme, which we call rBAMG, that is equivalent

to iBAMG for the case that unwanted connections are collapsed to all of Ci and the target vectors

are rich enough locally to guarantee a unique fit. This change should therefore improve the direct

approach insofar as our numerical tests show the superiority of iBAMG. Thus, we can expect this

improved approach to offer better performance for a given number of target vectors and relaxation

steps applied to them.

Note that this modification to the direct scheme is equivalent to temporarily relaxing the

equation at point i and then applying the standard BAMG minimization approach. As such,

rBAMG is related in spirit to the adaptive relaxation scheme described by Brandt in [1] (and

suggested in [3]) that applies relaxation selectively to points exhibiting especially large residuals.

An important implication of this equivalence is that all of the machinery that has so far been

developed for BAMG now applies in effect to iBAMG. For example, this includes processes for

assessing the quality of the current coarse level (i. e., the C − F partition and Ci) as well as the

processes that are designed to improve them (see [4] and [5] for further detail).

A result in [15] shows that adaptive AMG is invariant to diagonal scaling in the sense that

symmetrically scaling A by any positive diagonal matrix does not change the results, provided the

random test vectors are commensurately scaled. This invariance property is important in part

because it confirms some sense of stability of the algorithm. As our next lemma shows, rBAMG is

also scale invariant.

To be specific, let D be any positive diagonal matrix. With the given C/F -splitting, matrices

17

A and D can be written in block form as follows:

A =







Aff Afc

Acf Acc






and D =







Df 0

0 Dc






.

Lemma 3.2.3. Let Â = DAD. Then rBAMG applied to Ax = b with target vectors e(l), l = 1, ..., q,

and rBAMG applied to Âx̂ = b̂ with target vectors ê(l) = D−1e(l), l = 1, ..., q, are equivalent in the

sense that the resulting interpolation operators are related by P̂ = D−1PDc.

Proof. Noting that r̂
(l)
i =

(

Âê(l)
)

i
=

(

DADD−1e
)

i
= (DAe)i = diiri, then the weights for Â are

given by

{ŵij} = argmin

q
∑

l=1

(ê
(l)
i −

∑

j∈Ci

ŵij ê
(l)
j −

r̂
(l)
i

âii
)2

= argmin

q
∑

l=1

(
e
(l)
i

dii
−

∑

j∈Ci

ŵij

e
(l)
j

djj
−

diir
(l)
i

d2iiaii
)2

= argmin
1

d2ii

q
∑

l=1

(e
(l)
i −

∑

j∈Ci

ŵij
dii
djj

e
(l)
j −

r
(l)
i

aii
)2 .

Thus, if wij minimizes (3.11), then so does ŵij
dii
djj

. Hence, we can write the interpolation operator,

P̂ , for Â in the form

P̂ =







Ŵ

I






=







D−1
f WDc

I






= D−1PDc ,

where P is the interpolation operator for A. This proves the assertion.

This lemma confirms that rBAMG is invariant under symmetric positive diagonal scaling in

the sense that the convergence of the process is unchanged and the resulting interpolation operators

are related via the diagonal transformation. This also confirms that the resulting multigrid solvers

are related in the same way, provided the relaxation processes possess this invariance property.

3.2.3 Underdetermined Case

The equivalence results obtained above, together with the improved performance of iBAMG

observed in the next section, suggests that our residual-correction modification to BAMG should

18

generally lead to the need for fewer targets smoothed fewer times. In fact, we may want to consider

how well rBAMG performs when the number of targets is smaller than the number of points of

Ci, that is, when q < |Ci| so that least-squares problem (3.11) has infinitely many solutions. To

decide how to select a sensible solution, we take our cue from iBAMG. When the least-squares

problem for the indirect approach has many solutions, it is important for accuracy alone to control

the size of the resulting weights. It thus seems natural to select the solution of (3.4) with minimal

Euclidean norm. This translates to computing the weights for rBAMG that deviate least in the

Euclidean norm from those obtained by operator truncation: find the least-squares solution, wij ,

of (3.11) with minimal deviation from −aij/aii in the sense of minimizing

∑

j∈Ci

(wij +
aij
aii

)2. (3.12)

The scaled operator coefficients given by −aij/aii in (3.12) are “default” weights in the sense

that the objective is to stay as close to them as possible when the least-squares fit to the targets

is underdetermined. These defaults are not necessarily good weights to use in the adaptive process

because they correspond to truncating the unwanted connections, which, in the model problem,

leads to improperly scaled weights. (Properly scaling in this case can instead be obtained by

collapsing the unwanted connections to the diagonal, for example.) However, it should be kept in

mind that, generally, these defaults would be selected only in the unrealistic case that no targets

are available. Just one target is usually enough to adjust the weights from these targets to obtain

interpolation that is properly scaled.

Note that we are not prevented from using i in the definition of the weights in (3.12) and the

form of interpolation in (3.1). Note also that nothing is forcing us to restrict Ci to the immediate

neighborhood of i: it may include points outside of i’s nearest neighborhood, perhaps at times only

points outside this neighborhood. However, studying these possibilities is beyond the scope of this

thesis and is therefore left for further research.

19

3.3 Direct-Connection-Based BAMG (diBAMG)

In both classical and adaptive AMG [15,22], each ek, where k is a fine-grid point, is replaced

by a linear combination of values of ej from set Ci, and weights in this linear combination are

defined in proportion to the matrix entries akj, so only direct connections have nonzero weights.

Unlike these two methods, iBAMG collapses each F-F connection (or all F-F connections) to all

Ci points with no explicit concern for the proportions of the matrix entries. To understand the

effect of this property, this section introduces a modified iBAMG algorithm that collapses each F-F

connection only to its strong connections. We achieve this strategy by replacing interpolatory set

Ci in (3.2) by Ci ∩Nk, where Nk is the set of neighboring points of k. This yields

(diBAMG) {βkj : j ∈ Ci} = argmin
βkj

q
∑

l=1

(e
(l)
k −

∑

j∈Ci∩Nk

βkje
(l)
j)2. (3.13)

We compare the observed two-level convergence factors of iBAMG and diBAMG in Table

3.1. Although the convergence of diBAMG seems to require fewer vectors and relaxation sweeps

to get the same convergence factor as iBAMG, it is not as efficient overall, especially for the

matrices involving many unwanted connections because the setup cost for diBAMG depends more

substantially on the number of these connections. The equivalence between (3.4) and (3.2) is

due to preserving the same interpolatory set for each unwanted connection, so we can save on

computational cost by collapsing all unwanted connections at once. It is not possible to collapse

all unwanted connections at once in diBAMG.

q/ν 1 2 3 4 5 6

4 .57 .38 .34 .34 .26 .27
(.25) (.13) (.10) (.06) (.06) (.06)

5 .35 .27 .24 .18 .17 .11
(.19) (.07) (.06) (.06) (.06) (.06)

Table 3.1: Two-level convergence factors of iBAMG (diBAMG) with q vectors and ν relaxations
for 2D Poisson with 9-point stencils and standard coarsening on a 64x64 grid.

20

3.4 iBAMG Theory

In this section, we develop a basic theory for BAMG and iBAMG convergence in an AMG

reduction-based framework. The idea behind AMGr is to assume that we solved the F-point

equations exactly in relaxation. (See the comment at the end of this section on the more practical

case that the F-point equations are only approximately solved.) We show here that BAMG and

iBAMG provide good exact coarse-grid correction in the AMGr context, with conditions that

confirm when iBAMG is superior. Here, we only reach a certain point in this direction, with

estimates that still need to be confirmed in practice.

We assume that the target matrix is symmetric and positive definite, has only 1s on the

diagonal (otherwise, we simply diagonally scale it), and is represented in F-C block form as follows:

A =







I −X −Y

−Y T I − Z






.

Letting BAMG interpolation be expressed as

PB =







B

I






, (3.14)

then a variant of iBAMG interpolation (that collapses F-F connections to Cj as opposed to Ci) is

given by

PI =







XB + Y

I






. (3.15)

‘Ideal’ interpolation is given by

P =







(I −X)−1Y

I






. (3.16)

(We refer to P here as ideal because the fact that exact F-point relaxation produces error that is

in the range of P means that an exact coarse-grid correction based on P produces an exact solver.)

First notice that an exact F-point relaxation step is monotonically nonincreasing in energy because

21

it is just an energy-orthogonal projection of the error onto the range of P. Two-grid convergence

based on PB or PI can thus be established simply by showing that coarse-grid correction reduces the

error in the range of P . That is, with subscript A denoting the energy norm (||x||A = (xTAx)1/2),

we can assume that the initial error satisfies

‖Pe‖2A =<







(I −X)−1Y

I






e,A







(I −X)−1Y

I






e >

=<







(I −X)−1Y

I






e,







0

I − Z − Y T (I −X)−1Y






e >

=< e, Se >,

where we have denoted the Schur complement by S = (I − Z − Y T (I −X)−1Y).

Now, using PB to do an exact coarse-grid correction on this error (that is, applying CGCB =

I − PB(P
T
BAPB)

−1P T
BA), we compute the squared-energy convergence factor by

‖CGCBPe‖2A
‖Pe‖2A

=
< ACGCBPe,CGCBPe >

< APe, Pe >

=
< APe, Pe > − < APB(P

T
BAPB)

−1P T
BAPe, Pe >

< APe, Pe >

=1−
< (P T

BAPB)
−1Se, Se >

< e, Se >
.

Then the worst case squared-energy convergence factor is the smallest ǫB ≥ 0 for which

(P T
BAPB)

−1 ≥ (1− ǫB)S
−1.

Note that ǫB ≤ 1 because (P T
BAPB)

−1 is SPD and ǫB ≥ 0 because S−1 ≥ (P T
BAPB)

−1 (‘ideal’

interpolation minimizes eT















W

I







T

A







W

I















−1

e over W for any fixed e). We can rewrite this

bound as

P T
BAPB ≤

1

1− ǫB
S. (3.17)

22

The key now is to realize that the best PB is the ideal one, so we write its F block as

B = (I −X)−1Y + EB . (3.18)

Substituting (3.18) into (3.17), we obtain

ET
B(I −X)EB ≤

ǫB
1− ǫB

S. (3.19)

We can just assume that this holds for some ǫB < 1 if all we want to do is compare iBAMG

to BAMG. Following this line of thinking, we get a similar expression for PI of course, except with

BI replacing B:

ET
I (I −X)EI ≤

ǫI
1− ǫI

S,

where ǫI is the squared-energy convergence factor for iBAMG. It is interesting that EB and EI

have a very simple relationship:

EI = XEB . (3.20)

So, for iBAMG, a little algebra shows that we want the smallest ǫI for which

ET
BX(I −X)XEB ≤

ǫI
1− ǫI

S. (3.21)

Now, the left sides of (3.19) and (3.21) are related as follows:

ET
BX(I −X)XEB ≤ δ2ET

B(I −X)EB ,

where δ bounds X in the sense that X ≤ δI. Note that δ can be interpreted as the fraction of

strength represented in Cc
i relative to Ci, so we can assume that δ is bounded by a constant that is

less than 1 (e.g., δ ≤ 1
2 for the 9-point Laplacian and standard coarsening). You can then conclude

(after a little more algebra) that

ǫI ≤ (
δ2

1− ǫB + δ2ǫB
)ǫB .

Note that the factor in front of ǫB here is always less than 1 by our assumption on δ. Thus,

iBAMG always produces a better convergence factor than BAMG. More importantly, when BAMG

23

converges fairly well, that is, when ǫB is somewhat small, then this factor is approximately bounded

by δ2ǫB. Thus, the (unsquared) energy convergence factor for iBAMG in this case is roughly δ

times that of BAMG.

C C C

C C

C C C

C C

C C C

F F

F F F

F F

F F F

F F

Figure 3.1: Red-black coarsening in case of an isotropic five-point stencil.

We want to emphasize that iBAMG, in contrast to classical BAMG, can provide reasonable

interpolation even when the test vectors are poor. For example, consider the case, illustrated by

Figure 3.1, of a five-point stencil and red-black coarsening. Since no F points have immediate F-

point neighbors, then no test vectors are needed because there is no work for iBAMG to do. Said

differently, this case is characterized by X = 0, and iBAMG therefore yields the ideal interpolation

operator:

PI = P =







Y

I






.

This case is, of course, very special, but it emphasizes the point that iBAMG does not necessarily

24

need especially smooth test vectors, particularly when the F points are very strongly connected to

the C points.

The theory here assumed exact F-point relaxation, which presumably requires exact inversion

of I −X. It is more practical to assume that the F-point equations are only approximately solved.

To study this case, we can write the current error in the energy-orthogonal decomposition form

Pe + Rz, where R =







I

0






. Now, relaxation on the F points is presumably local, so its effect

on the error is to change only z. If Rz is large compared to Pe in energy, then relaxation alone

can effectively reduce the error because I −X is well conditioned (by assumption on δ). We can

therefore assume that we apply a fixed but sufficient number of F-point relaxations to ensure that

Rz is smaller in energy relative to Pe than any desired factor, η. We can thus conclude that the

effect of a coarse-grid correction based on PB is dominated by Pe:

‖CGCB(Pe+Rz)‖A ≤ ‖CGCBPe‖A + ‖CGCBRz‖A ≤ (1 + η)‖CGCBPe‖A

and, similarly,

‖CGCB(Pe+Rz)‖A ≥ (1− η)‖CGCBPe‖A.

Using this expression, together with an analogous result for the coarse-grid correction based on

PB , allows us to modify the theoretical bounds presented above by an arbitrarily small quantity, η.

This, in turn, allows us to apply theory to the practical case that the F-point equations are only

treated by simple relaxation, provided we assume a sufficient number of relaxation sweeps.

3.5 Weighted Iterative Interpolation

The variant of iBAMG determined by (3.15) is generally impractical: instead of collapsing

the ej to Ci as standard iBAMG does, they are collapsed to Cj , which generally leads to an enlarged

coarse-grid stencil. Collapsing to Ci greatly complicates analysis because it depends on i: an ej

may be collapsed to certain C points for one i and the same ej may be collapsed to different C

points for another i. Nevertheless, the theory and form of this variant provide insight into the

25

nature of the standard iBAMG approach and possible methods for improvement. In this direction,

note that we can still write the standard iBAMG interpolation process as a perturbation from the

ideal:

PI =







W + Y

I






. (3.22)

Note also that, using the equivalence between iBAMG and rBAMG, we can write

PI = PR =







B −R

I






, (3.23)

where R corresponds to the residual term in (3.11).

Note finally that the variant of iBAMG defined by (3.15) can be viewed as iterative interpo-

lation using one step of Jacobi applied to B as the initial guess for the linear system

(I −X)Q = Y,

whose solution, Q = (I−X)−1Y , gives ideal interpolation. The point here is that this suggests that

weighting the Jacobi step may result in improvement to standard iBAMG, and that this translates

to a simple weighting of the relaxation-corrected term, R, in (3.23) as the following suggests:

Q← ω(XB + Y) + (1− ω)B

≈ ω(W + Y) + (1− ω)B

= ω(B −R) + (1− ω)B

= B − ωR.

(3.24)

Note that W in the second line of (3.24) is used in real iBAMG interpolation (that collapses F-F

connections to Ci) and the third line comes from the equivalence between iBAMG and rBAMG.

The last line in (3.24) can be achieved to define a weighted rBAMG (wrBAMG) as follows:

(wrBAMG) {wij : j ∈ Ci} = argmin
wij

q
∑

l=1

(e
(l)
i −

∑

j∈Ci

wije
(l)
j − ω

r
(l)
i

aii
)2. (3.25)

The question arises as to what a good choice would be for the relaxation parameter, ω. The

ultimate goal is to produce a multigrid solver with a fairly small and possibly optimal convergence

26

factor. In the AMGr setting that we assume here, optimality translates to determining a suitable

Z for PZ =







Z

I






to minimize

max
x 6=0

‖[I − PZ(P
T
Z APZ)

−1P T
Z A]Px‖2A

‖Px‖2A
.

Now, since I−PZ(P
T
Z APZ)

−1P T
Z A is an orthogonal projection in the energy inner product, we can

rewrite this objective as one of minimizing the largest eigenvalue of the generalized eigenproblem

[P TAP − P TAPZ(P
T
Z APZ)

−1PZB
TAP]x = µP TAPx.

Since

AP =







0

S






,

then this eigenproblem becomes

[S − S(P T
Z APZ)

−1S]x = µSx.

Multiplying both sides of this eigenproblem by S−1 and rearranging yields

(P T
Z APZ)

−1x = (1− µ)S−1x.

Choosing Z to minimize the largest µ for this problem is equivalent to choosing γ = 1
1−µ to minimize

the largest eigenvalue of

P T
Z APZx = γSx.

Noting that

PZ = P +







EZ

0






,

which implies that

P T
Z APZ = S + ET

Z (I −X)EZ ,

we can then conclude that our ultimate goal is to minimize the largest eigenvalue, λ = γ − 1, of

ET
Z (I −X)EZx = λSx.

27

Now, it is easy to see that the iterative interpolation step that characterizes iBAMG can be written

in terms of the error, EZ , as

EZ ← (I − ω(I −X))EZ .

Putting these last two expressions together shows that our aim is to choose ω to minimize the

largest eigenvalue of S−1/2ET
Z (I − ω(I −X))2(I −X)EZS

−1/2. Now, we have no control over EZ ,

so we have no control over EZS
−1/2 either. This reasoning suggests that our ultimate goal is to

choose ω to minimize the largest eigenvalue of (I − ω(I −X))2(I −X), that is,

ω = ωopt =
1

2− λmin(X) − λmax(X)−
√

(1− λmin(X))(1 − λmax(X))
.

We could estimate this optimal choice in general by using a shifted power method to determine

the extreme eigenvalues of X. However, it is important to note that this analysis is for the generally

impractical variant of iBAMG, so it is unclear if this kind of reasoning holds for the practical

version. It is, nevertheless, interesting to note that some model problems yield an X with equal

magnitude but oppositely signed extreme eigenvalues, say, ±γ, which would lead us to choose

ω = 1/(2 −
√

1− γ2) ≤ 1. It is also interesting that our numerical experience for the model

problem suggested that ω ≤ 1 is not as effective as other choices.

Specifically, Tables 3.2 through 3.5 represent observed two-level and five-level convergence

factors of standard iBAMG and wrBAMG using a weight of ω = 1.3, which was observed in several

separate tests to yield the best overall performance. (Each result reported in these tables actually

represents an average of ten runs made for the particular l, q, ν, and N , starting from a different set

of random vectors. We proceeded in this way here and in all of the tests reported in this thesis to

avoid any anomalies with particular runs resulting from unlikely special characteristics of the initial

random vectors.) For a small number of vectors (e.g., q = 4 and 5), wrBAMG results seem more

promising than iBAMG except for the first column, which is generally not of much interest because

of the typically poor performance achieved by a single relaxation of the test vectors. Nevertheless,

it is not clear how best to choose the weight, ω, in (3.25), and more study of this approach is left

for future research.

28

The convergence factor tables shown here and in subsequent chapters are meant to show the

trends in performance of the adaptive/bootstrap methods in terms of the number of initial test

vectors and the amount that they are relaxed. The general trend is naturally dependent on N,

with more work required to achieve the same performance as N increases. These tables also clearly

show the dangers of too little work and the diminishing returns of too much work. Also evident

in these tables are the limiting convergence factors themselves, that is, the best factors that one

can expect if work is not taken into account. These test results may thus provide a guide for those

applications that are expected to require many solutions of linear equations with the same matrix.

On the other extreme, we would assume that the resulting solver would be used to solve just one

linear equation. In this case, taking work into account becomes crucial. We begin reporting on

results of a systematic study of this issue in Section 5.2.

q/ν 1 2 3 4 5 6 7 8 9 10

4 .55 .42 .35 .33 .30 .28 .30 .27 .28 .29
(.58) (.40) (.28) (.24) (.23) (.18) (.18) (.17) (.18) (.18)

5 .38 .27 .21 .18 .17 .17 .15 .14 .12 .12
(.43) (.23) (.18) (.10) (.09) (.08) (.10) (.09) (.10) (.11)

6 .28 .18 .11 .10 .08 .09 .07 .07 .08 .08
(.35) (.16) (.11) (.09) (.07) (.08) (.08) (.09) (.08) (.09)

7 .23 .13 .09 .07 .07 .07 .07 .07 .07 .07
(.30) (.12) (.09) (.07) (.07) (.08) (.08) (.07) (.08) (.08)

8 .19 .11 .07 .07 .07 .07 .07 .07 .07 .07
(.27) (.11) (.07) (.07) (.07) (.07) (.07) (.07) (.07) (.08)

9 .17 .08 .06 .06 .06 .06 .06 .07 .07 .07
(.24) (.10) (.07) (.07) (.07) (.07) (.07) (.07) (.07) (.07)

10 .15 .08 .06 .06 .06 .06 .06 .06 .07 .06
(.22) (.08) (.07) (.07) (.07) (.07) (.07) (.07) (.07) (.07)

Table 3.2: Observed two-level convergence factors of standard iBAMG (wrBAMG with ω = 1.3)
applied to 2D Poisson with 9-point stencils on a 64x64 grid.

29

q/ν 1 2 3 4 5 6 7 8 9 10

4 .95 .91 .91 .91 .90 .89 .89 .88 .89 .88
(.94) (.89) (.81) (.57) (.57) (.51) (.53) (.56) (.45) (.50)

5 .67 .45 .31 .32 .33 .37 .30 .31 .30 .32
(.68) (.35) (.21) (.16) (.14) (.15) (.12) (.13) (.13) (.13)

6 .42 .23 .19 .14 .14 .12 .12 .11 .12 .17
(.50) (.24) (.15) (.13) (.11) (.11) (.10) (.11) (.12) (.11)

7 .32 .16 .12 .10 .11 .10 .12 .10 .10 .10
(.41) (.18) (.13) (.11) (.11) (.11) (.11) (.10) (.11) (.11)

8 .27 .15 .11 .10 .10 .10 .10 .10 .10 .10
(.36) (.17) (.12) (.11) (.10) (.10) (.10) (.10) (.10) (.11)

9 .24 .12 .10 .10 .10 .10 .10 .10 .10 .10
(.33) (.14) (.11) (.10) (.10) (.10) (.10) (.10) (.10) (.10)

10 .22 .11 .10 .10 .10 .10 .10 .10 .10 .10
(.30) (.13) (.11) (.10) (.10) (.10) (.10) (.10) (.10) (.10)

Table 3.3: Observed five-level convergence factors of standard iBAMG (wrBAMG with ω = 1.3)
applied to 2D Poisson with 9-point stencils on a 64x64 grid.

q/ν 1 2 3 4 5 6 7 8 9 10

4 .71 .47 .42 .37 .35 .36 .37 .35 .36 .34
(.77) (.43) (.33) (.28) (.26) (.23) (.22) (.22) (.22) (.23)

5 .58 .29 .26 .24 .22 .21 .20 .19 .16 .17
(.68) (.26) (.18) (.13) (.13) (.13) (.12) (.11) (.11) (.13)

6 .49 .21 .17 .14 .13 .10 .12 .13 .08 .10
(.61) (.18) (.13) (.10) (.10) (.09) (.08) (.09) (.09) (.09)

7 .44 .16 .11 .09 .08 .07 .07 .08 .08 .07
(.57) (.16) (.12) (.08) (.09) (.07) (.08) (.08) (.09) (.07)

8 .39 .13 .09 .07 .07 .07 .07 .07 .07 .07
(.52) (.13) (.09) (.07) (.07) (.07) (.08) (.07) (.07) (.07)

9 .36 .10 .07 .07 .07 .07 .07 .07 .07 .07
(.50) (.12) (.08) (.07) (.07) (.07) (.07) (.07) (.07) (.07)

10 .33 .09 .07 .07 .07 .07 .07 .07 .07 .07
(.46) (.10) (.07) (.07) (.07) (.07) (.07) (.07) (.07) (.07)

Table 3.4: Observed two-level convergence factors of standard iBAMG (wrBAMG with ω = 1.3)
applied to 2D Poisson with 9-point stencils on a 128x128 grid.

30

q/ν 1 2 3 4 5 6 7 8 9 10

4 .98 .97 .97 .97 .97 .97 .97 .97 .97 .97
(.98) (.96) (.95) (.92) (.90) (.89) (.88) (.88) (.88) (.85)

5 .87 .71 .65 .64 .60 .68 .62 .55 .60 .63
(.88) (.55) (.33) (.21) (.21) (.14) (.17) (.14) (.16) (.13)

6 .60 .32 .28 .19 .19 .20 .17 .15 .18 .15
(.70) (.28) (.22) (.15) (.12) (.16) (.11) (.12) (.11) (.11)

7 .52 .20 .15 .12 .11 .11 .11 .13 .10 .10
(.63) (.23) (.15) (.11) (.11) (.10) (.10) (.10) (.11) (.10)

8 .46 .17 .11 .11 .10 .10 .10 .10 .10 .10
(.59) (.20) (.12) (.10) (.10) (.10) (.10) (.10) (.10) (.10)

9 .42 .15 .11 .10 .10 .10 .10 .10 .10 .10
(.56) (.18) (.11) (.10) (.10) (.10) (.10) (.10) (.10) (.10)

10 .39 .12 .10 .10 .10 .10 .10 .10 .10 .10
(.53) (.17) (.11) (.10) (.10) (.10) (.10) (.10) (.10) (.10)

Table 3.5: Observed six-level convergence factors of standard iBAMG (wrBAMG with ω = 1.3)
applied to 2D Poisson with 9-point stencils on a 128x128 grid.

Chapter 4

Fully Adaptive AMG Process

As we said, the adaptive or bootstrap AMG methodology allows for many options, including

where in the coarsening process the current method is tested and how it is improved, how the

original test vectors and emerging error components are combined and used to improve the current

solver, what the schedule should be for visiting the coarse grids in the current solver, and many other

possible aspects of the approach. The focus here is on choosing the number of initial test vectors

and the number of initial relaxation sweeps on them, and how optimal choices here depend on the

problem and its size. We have therefore fixed the design of the other aspects of the methodology

based on our experience during several tests of the various options. The most significant choice

here is to assume that the coarse grid has already been determined. In fact, our numerical study

assumes a uniform fine grid in two dimensions that is coarsened in the standard way by eliminating

every other line of points in each coordinate direction. We also adopt a nonrecursive adaptive

process that is described in detail in the next section. Another important choice we make is to

apply a Ritz process to the set that includes the initial relaxed test vectors and the evolving error

components produced by the current solver. As explained in the next subsection, we also fix the

relaxation process in both the setup and solver phases to be pointwise lexicographic Gauss-Seidel,

with the current solver defined as four indivisible V(1,1) cycles. Other choices that we make in our

approach are revealed later in the process of describing the basic methodology.

The purpose of the Ritz process is to sort out the various levels of smoothness in the subspace

of target vectors. This is needed because fitting interpolation must pay more attention to smooth

32

vectors than it does to oscillatory ones. This is articulated in the so-called weak approximation

property that provides the basic principle we use to determine the proper weights used in the

least-squares process. See [14] for a discussion of this principle and how it is used in the context of

adaptive smoothed aggregation.

For the initial set of randomly generated test vectors, sorting is generally unnecessary because

random unit vectors tend to have the same quality of smoothness. However, as we add error

components to the set of target vectors produced by the current solver, scaling becomes crucial.

We thus use Ritz here to properly sort out vectors based on their smoothness property and scale the

results so that they are of unit length in the energy inner product. The net effect of this scaling is

that the subsequent least-square fit of interpolation will pay most attention to those target vectors

with small Rayleigh quotients, as the weak approximation property dictates.

We should note here that some of the vectors produced by the Ritz process might not exhibit

enough algebraic smoothness to be of use in the least-squares process. That is, scaling by their

energy might produce a very small vector in the Euclidean norm sense. It would thus be possible,

without ill effects, to reduce complexity by discarding these vectors from the target set. We have

not done any filtering in the tests reported here, but plan to incorporate such a feature in future

work.

4.1 The Adaptive MG Algorithm

The importance of two complementary multigrid principles cannot be stressed enough. The

development of an efficient multigrid method depends on these two ingredients. The main idea

behind the adaptive process is to improve interpolation based on slow-to-converge components.

Unlike standard adaptive AMG that typically begins with one test vector, we choose here to begin

by relaxing ν times on a number of random test vectors as initial guesses for solving the homogeneous

problem, Ax = 0. We then compute an interpolation operator, P, based on a least-squares fit of the

target vectors. The coarse-grid operator is then formed by the usual Galerkin approach, P TAP .

On the coarse grid, the pre-images of the fine-grid test vectors under interpolation P (which, for

33

AMG, is just their restrictions to the C points) are used as an initial set of test vectors. These q

vectors are in turn relaxed ν times (in terms of the homogeneous Galerkin coarse-grid problem) and

used in a similar least-squares process to define interpolation to a yet coarser grid. This process

continues to the coarsest level (determined in advance to contain just a few points), where no

further processes or test vectors are needed in the setup because coarsening is not needed there.

This completes the setup phase. Note here that we fix the number of test-vector iterations over all

levels.

Once an initial MG hierarchy has been computed, we test the current method by running

several V (1, 1) cycles. In the next section, we introduce a convergence model that is used to estimate

the asymptotic convergence factors of these cycles, and we describe there how these estimates are

used to determine the progress of the adaptive process. This model also includes a formula for

estimating the cost of the overall solution process. These cost estimates, described in Section

4.3, are used in the setup process to monitor current and projected future costs, which allows us

to determine whether expected improvements in the convergence factors we estimate are worth

continuing the adaptive cycles. The overall flow of our approach is shown in Algorithm 4.1. Note

that it assumes two input parameters, ρgood and ρbad, that guide our judgement as to whether the

estimated convergence factor, ρest, of the current solver is acceptable (ρest ≤ ρgood), unacceptable

(ρbad < ρest), or indeterminate (ρgood < ρest < ρbad). In the first case, we terminate the process;

in the second, we continue; and, in the third, we use the work estimate to decide whether to

terminate or continue. This algorithm also assumes three input cycling parameters, α, ν1, and ν2,

that determine the form of the current solver. Specifically, we define the current solver to consist

of indivisible α V (ν1, ν2) cycles, meaning that we are testing the overall convergence factor for

α applications of a V-cycle that use ν1 relaxation on the descent through coarser levels and ν2

relaxations on the ascent back to the fine grid. Our experience with several numerical tests of other

options on the problems we study below suggest that α = 4 and ν1 = ν2 = 1 are reasonable choices

to make in terms of overall efficiency of the setup and solver process. These choices are what we

use in all of our experiments documented in this thesis.

34

Algorithm 4.1 Non-recursive adaptive AMG algorithm

for j = 0 to maxAdapt do
for k = 1 to coarsest - 1 do

if k == 1 then
if j == 0 then

Pick the set of q random vectors, {x
(1)
(1), ..., x

(1)
(q)}

end if
else

Let x
(k)
(i) = (x

(k−1)
(i))c, i = 1, ..., q + j.

end if
if j > 0 then

{x
(k)
(1) , ..., x

(k)
(q+j)} =RITZ({x

(k)
(1) , ..., x

(k)
(q+j)})

end if
if j == 0 OR (j > 0 AND k > 1) then

Relax on A(k)x
(k)
(i) = 0 ν times, i = 1, ..., q + j.

end if
Compute interpolation, Ikk+1.

Compute the coarse-grid operator, A(k+1) = (Ikk+1)
TA(k)Ikk+1.

end for
Pick random initial x(1).
Apply α V(ν1,ν2) cycles to the homogeneous fine-grid problem, A(1)x(1) = 0.
Estimate the convergence factor, ρest.
Compute ncycle such that ρncycleest < tol.

Compute the total cost, W total
j = W setup

j +W cycle
j (ncycle).

if ρest ≤ ρgood then
stop.

else if ρest > ρbad then

x
(1)
q+j+1 ←− x(1).

continue.
else

if W total
j > W total

j−1 then
stop

else
x
(1)
q+j+1 ←− x(1).

continue.
end if

end if
end for

35

4.2 Convergence Estimation

Access to a simple and efficient stopping criterion is an essential ingredient of our adaptive

methodology, the core component of which is a reliable estimate the quality of the current solver.

We could obtain such an estimate simply by applying the current method enough times to the

homogeneous equation to ensure that a reliable measure of the worst-case convergence factor can

be observed. Unfortunately, in practice, this naive approach usually requires so many cycles that

it has a deleterious effect on overall complexity of the setup process. Our approach instead is to

use a simple extrapolation scheme that is based on just a few observed cycles of the current solver.

Our aim, then, is to develop a very simple model of convergence of the solver that involves just a

few parameters that can be determined by very few observed convergence factors, typically three

or four in our case.

Specifically, the convergence model we develop here is based on the assumptions that each

error is dominated by two orthonormal components, e1 and e2, and that these are eigenvectors of

the cycle’s error propagation matrix with eigenvalues β1 and β2, respectively (β1 > β2). Suppose

now that the error after k cycles, e(k), is a linear combination of these two orthogonal components

with coefficients α1 and α2, respectively. Then, since there are four unknowns, α1, α2, β1, and β2,

we need at least four consecutive errors to determine them:

e(k) = α1e1 + α2e2,

e(k+1) = α1β1e1 + α2β2e2,

e(k+2) = α1β
2
1e1 + α2β

2
2e2,

e(k+3) = α1β
3
1e1 + α2β

3
2e2. (4.1)

We first compute the squared Euclidean norm of these four consecutive errors. Using orthogonality

36

of the two components, one gets

||e(k)||2 = α2
1 + α2

2,

||e(k+1)||2 = α2
1β

2
1 + α2β

2
2 ,

||e(k+2)||2 = α2
1β

4
1 + α2β

4
2 ,

||e(k+3)||2 = α2
1β

6
1 + α2β

6
2 . (4.2)

For the sake of convenience, define Ci = ||e
(k+i)||2, i = 0, ..., 3, and aj = α2

j and bj = β2
j , j = 1,2.

Then

C0 = a1 + a2,

C1 = a1b1 + a2b2,

C2 = a1b
2
1 + a2b

2
2,

C3 = a1b
3
1 + a2b

3
2. (4.3)

Since β1 is of interest in the estimation and prediction model, we eliminate unknowns a1 and a2

in turn. Multiplying the first equation by -b1 and adding the result to the second equation, and

similarly for the third and fourth equation, we obtain

C1 − C0b1 = a2(b2 − b1),

C2 − C0b
2
1 = a2(b

2
2 − b21),

C3 − C0b
3
1 = a2(b

3
2 − b31). (4.4)

Similarly, we eliminate a2, arriving at

C0b1b2 − C1(b1 + b2) = −C2,

C1b1b2 − C2(b1 + b2) = −C3, (4.5)

Thus, b1 is the larger root of the following equation:

x2 − γx+ δ = 0, (4.6)

37

where δ and γ solve






C0 −C1

C1 −C2













δ

γ






= −







C2

C3






.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

number of cycles

co
nv

er
ge

nc
e

fa
ct

or

Figure 4.1: Convergence factors for V(1,1) cycles using rBAMG with q = ν = 10.

4.2.1 Numerical Illustrations for Convergence Estimation

In this subsection, we test the performance of our convergence estimation model. We do this

by first applying just the rBAMG setup process using two different extreme values for the number

of test vectors, q, and number of relaxation sweeps, ν, applied to them, namely, q = ν = 1 and

q = ν = 10. Our target problem here is the shifted 5-point finite difference discretization of the

gauge Laplacian (c.f., [24]) in two dimensions on a uniform doubly periodic grid with red-black

coarse grids. After discretizing the equation (scaled so that 4
h2 is on the diagonal), the smallest

eigenvalue of the operator is shifted to be 1
N2 = 1

642
. We first estimate the asymptotic convergence

factors of the resulting V (1, 1) cycles by running 100 cycles applied to the homogeneous problem

and observing the convergence factor for each cycle. See Figures 4.1 and 4.2. Note that these figures

also clearly illustrate that it takes many iterations to obtain a reliable estimate of the convergence

38

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of cycles

co
nv

er
ge

nc
e

fa
ct

or

Figure 4.2: Convergence factors for V(1,1) cycles using rBAMG with q = ν = 1.

factor. Tables 4.1 and 4.2 compare the asymptotic convergence factors observed in Figure 4.1 and

4.2, respectively, to the estimations obtained from our extrapolation process. Note that, as Table

4.1 shows, our predictions based on just a few cycles are quite accurate even for the somewhat

slowly converging process shown in Figure 4.1. This quality of the estimation degrades in the face

of poor solver convergence, as Table 4.2 shows. However, the ability of our estimation to signal

good convergence is the key here and the approach is very effective in that regard.

Asymptotic Convergence Factor k = 0 k = 1 k = 2

0.77 0.76 0.78 0.78

Table 4.1: Asymptotic convergence factor for V(1,1) cycles and its approximations using rBAMG
with q= ν=10).

Asymptotic Convergence Factor k = 0 k = 1 k = 2

0.99 0.77 0.84 0.88

Table 4.2: Asymptotic convergence factor for V(1,1) cycles and its approximations using rBAMG
with q= ν=1).

39

To carry out these tests further, we proceeded in the same way but incorporated a single

adaptive cycle in the setup after the least-squares fit of interpolation. We thus applied 4 V (1, 1)

cycles to a random initial guess for Ax = 0 and combined the result with the initial test vectors in a

Ritz process. We observe similar behavior of the ability of the extrapolation process to estimate the

convergence factor fairly quickly, especially in the important case of reasonably good convergence

of the current solver.

Our experience here and in other tests suggest that our extrapolation process reduces the

need for cycles by typically a factor of two or more.

0 10 20 30 40 50 60 70 80 90 100
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

number of cycles

co
nv

er
ge

nc
e

fa
ct

or

Figure 4.3: Convergence factors for V(1,1) cycles using rBAMG with q = ν = 10 incorporated a
single adaptive cycle.

Asymptotic Convergence Factor k = 0 k = 1 k = 2

0.26 0.22 0.22 0.26

Table 4.3: Asymptotic convergence factor for V(1,1) cycles and its approximations using rBAMG
with q= ν=10) incorporated a single adaptive cycle.

40

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of cycles

co
nv

er
ge

nc
e

fa
ct

or

Figure 4.4: Convergence factors for V(1,1) cycles using rBAMG with q = ν = 1 incorporated a
single adaptive cycle.

Asymptotic Convergence Factor k = 0 k = 1 k = 2

0.99 0.76 0.84 0.90

Table 4.4: Asymptotic convergence factor for V(1,1) cycles and its approximations using rBAMG
with q= ν=1) incorporated a single adaptive cycle.

4.3 Setup Cost Considerations

In this subsection, we consider the setup cost of the adaptive phase of rBAMG. Assuming as

we do a uniform mesh in two dimensions with a 9-point stencil and standard coarsening, then we can

bound grid and matrix complexity based on the estimate that the number of grid points is reduced

by a factor of approximately 1
4 in each coarsening. Thus, the cost of an operation performed on all

grid levels can be approximately bounded by 4
3 of the cost of the corresponding fine-grid operation.

The dominant operation is a matrix-vector product, which done once on all levels therefore costs

about 4
3 of a fine-grid work unit (the cost of a residual evaluation or matrix-vector product on the

finest grid). We define the following variables and functions used to describe the setup process:

ν the number of relaxations applied to each test vector on every grid but the coarsest;

41

q the number of initial test vectors;

M the number of adaptive setup cycles;

ν1 the number in relaxations on the descent portion of each setup cycle;

ν2 the number in relaxations on the ascent portion of each setup cycle;

α the number of V cycles in each indivisible adaptive cycle;

INTERP(q,N) the cost of forming the interpolation operator on the finest-grid.

P(N) the cost of interpolating a vector to the finest grid;

CGO(N) the cost of forming the Galerkin coarse-grid operator, P TAP ; and

RITZ(q,N) the cost of performing the Ritz projection.

We estimate cost of individual setup processes in terms of fine-grid work units as follows:

(1) initial least-squares fit 4
3(q × ν + INTERP(q,N) + CGO(N));

(2) V cycle 4
3 (ν1 + ν2 + P(N));

(3) jth Ritz process 4
3RITZ(q + j,N); and

(4) jth additional least-squares fit 4
3 (

1
4(q + j)× ν + INTERP(q + j,N) + CGO(N)).

This gives the following form for the total cost of the setup phase:

Wsetup
M =

4

3
(q · ν + INTERP(q,N) + CGO(N))

+

M
∑

j=1

(α
4

3
(ν1 + ν2 + P(n)) +

4

3
RITZ(q + j,N)

+
4

3
(
1

4
(q + j)ν + INTERP(q + j,N) + CGO(N))

=
1

3
((M + 3)q +

M(M − 1)

2
)ν +

4

3
M · CGO(N) + α(M − 1)(ν1 + ν2 + P(N))

+
4

3

M
∑

j=0

INTERP(q + j,N) +
4

3

M−1
∑

j=1

RITZ(q + j,N).

To be more specific here, we analyze each general term in this expression in as follows.

42

4.3.1 P(N)

Because of the assumed grid coarsening factor, this cost is about 1
4 of a work unit.

4.3.2 INTERP(q,N)

For each fine-grid point i, we solve the least-squares problem specified in (3.11). We rewrite

this in matrix form as follows:














e
(1)
j1

... e
(1)
j|Ci|

...
. . .

...

e
(q)
j1

... e
(q)
j|Ci|















q×|Ci|















wkj1

...

wkj|Ci|















|Ci|×1

=















e
(1)
i −

r
(1)
i

aii

...

e
(q)
i −

r
(q)
i

aii















q×1

, (4.7)

where r
(l)
i = (Ae(l))i, l = 1, ..., q. Computing the right side of (4.7) costs 2q flops (requiring a nega-

tion and a division for each right side). Then we solve this equation via the normal equations, which

requires multiplying the matrix in (4.7) and the right side vector by the matrix transpose, comput-

ing a Cholesky decomposition, and performing backward and forward substitutions. Forming the

normal equation requires (2q − 1)|Ci|
2 flops for the matrix-matrix multiplication and (2q − 1)|Ci|

flops for the matrix-vector multiplication. Then Cholesky decomposition requires approximately

1
3 |Ci|

3 flops and each substitution costs |Ci|
2 flops. Thus, the total cost in flops of defining P is

given by

∑

i∈F

(
1

3
|Ci|

3 + (2q + 1)|Ci|
2 + (2q − 1)|Ci|

2 + 2q). (4.8)

There are now three types of fine-grid points in our fully coarsened grid. One-fourth of the

grid is composed of points that lie at the center of a coarse-grid cell, having 4 coarse-grid neighbors

and 4 fine-grid neighbors. One-fourth lie at midpoints of horizontal coarse-grid lines, and one-fourth

lie at midpoints of vertical coarse-grid lines, both having 2 coarse-grid neighbors and 6 fine-grid

neighbors. The final fourth of the fine-grid nodes are also coarse-grid nodes. Taking all of this into

43

account into the expression in (4.8) allows us to estimate it as follow:

N

4
(
1

3
43 + (2q + 1)42 + (2q − 1)4 + 2q)

+
2N

4
(
1

3
23 + (2q + 1)22 + (2q − 1)2 + 2q)

=
N

6
(105q + 64) flops.

Now, one work unit equals the cost of a residual evaluation. For our 9-point operator,

this takes 18N flops (one addition and one multiplication per non-zero in the matrix). Note that

rBAMG requires q work units to compute q residual vectors. Thus, we find that forming rBAMG

interpolation costs 105q+64
6×18 + q ≈ 2q + 0.6 work units.

4.3.3 CGO(N)

The product of an N × N matrix A with an N × Nc matrix P, where Nc is the size of the

first coarse grid, is an N ×Nc matrix whose entries are

(AP)i,j =

N
∑

k=1

AikPkj,

where 1 ≤ i ≤ N is the row index and 1 ≤ j ≤ Nc is the column index.

The triple product of Nc ×N matrix R with AP is Nc ×Nc matrix RAP , whose entries are

(R(AP))i,j =

Nc
∑

k=1

Rik(
N
∑

l=1

AklPlj),

where 1 ≤ i ≤ Nc is the row index and 1 ≤ j ≤ Nc is the column index. Under our model problem

assumption, the cost of forming a coarse-grid operator is thus approximately 6 work units. See [22]

for more detail.

4.3.4 RITZ(q,N)

The idea behind the standard Ritz projection is to extract eigenvalue and eigenvector ap-

proximations of a large matrix A ∈ ℜN×N from a given subspace. More precisely, the process

first extracts the element of the subspace that best represents the smallest eigenvector of A, then

44

chooses the next from the orthogonal complement of this vector that best approximates the second

eigenvector of A.

We start by finding a L2-orthonormal basis that spans the same space as V ∈ ℜN×q. The

QR factorization of the matrix V is given by

V = QR,

where Q ∈ ℜN×q is orthogonal and R ∈ ℜq×q is upper triangular. Note that Q and V have the

same range, but the columns of Q are orthonormal. We then look at the spectrum of the matrix

AQ = QTAQ, which is typically a matrix of much smaller dimension than A (assuming the column

dimension of V is much smaller than the number of rows in A). One has to solve the eigenvalue

problems

AQwi = Diiwi,

where 1 ≤ i ≤ q, which consumes relatively little computational effort as long as q is not too

large. Each Qwi (Ritz vector) is an approximation to an eigenvector of A with corresponding

eigenvalue approximation (Ritz value) Dii = (Qwi)
TA(Qwi)/(Qwi)

T (Qwi). An algorithm for the

Ritz projection is described in what follows.

Algorithm 4.2 Standard Ritz projection

Given matrices A∈ ℜN×N and V∈ ℜN×q,
Apply the QR decomposition to V : V = Q×R where Q′ ×Q = I.
Compute AQ = Q′ ×A×Q.
Compute the spectrum of AQ by [WD] = eig(AQ), where each column of W is an eigenvector of
AQ.
Return V = Q*W.

The matrix V we use in Algorithm 4.2 can be factored into upper triangular and orthogonal

matrices, which can be computed in 2q2(N − q
3) flops [18]. Then the cost of performing the matrix

triple product, QTAQ, can be treated as a sparse-dense matrix product and dense-dense matrix

product. Since we consider work units as matrix-vector product on the finest grid, the cost of

multiplying A and Q is q work units, where q is number of columns in Q. Then AQ can be

computed by multiplying QT to AQ. The cost for multiplying two dense matrices, B and C, with

45

B ∈ Rm×n and C ∈ Rn×q, is m2(2n − 1) flops (or 2m2n if n is large). We can then compute

AQ in q2(2N − 1) flops for a dense matrix product and q work units for a sparse-dense matrix

multiplication. We can ignore the cost of computing the spectrum of AQ because, compared to the

size of A, namely, N , q is relatively small so its cost can be ignored. The last line in (4.2) is a dense

matrix multiplication, which costs Nq(2q− 1). Dividing the operation counts by 18N , we get that

the cost of the Ritz projection is approximately q + q2

3 work units.

4.3.5 Total Setup Cost

Combining these individual setup costs, we see that the total cost of the setup processes is

4

3
(q(ν + 2) + 6.6), if M = 0, or

2

27
M(M + 1)(2M + 1) +

1

6
(ν + 8q + 8)M(M + 1)

+
1

3
(4α(ν1 + ν2 +

1

4
) + q · ν + 4(2q + 6.6) + 24 + 4(

q

3
+ q2))M

+
4

3
(q(ν + 2) + 6.6), if M > 0.

Chapter 5

Numerical Experiments

5.1 BAMG vs iBAMG

The focus of this section is a comparative study of the performance of BAMG and iBAMG. As

is usually done in AMG, the coarse-grid matrices are formed by way of the Galerkin approach based

on the computed interpolation operator, namely, Ac = P TAP . We produce further coarsening by

applying the least-squares processes in BAMG and iBAMG to Ac. Since our focus is on how

these approaches compare in their determination of the weights of interpolation, we force standard

coarsening on every level. In both the BAMG and iBAMG setup phases, we relax q different

random vectors of unit Euclidean length ν times for the homogeneous problem. In all cases, we

use pointwise Gauss-Seidel iteration with lexicographic ordering of the grid points as the relaxation

method. All of the results in the following tables reflect an average residual reduction factor of the

resulting AMG solver over a total residual reduction by a factor of 1010 (or over 50 cycles, whichever

comes first). (All of the tests reported in this thesis are for the basic AMG solver, without the use

any acceleration processes like conjugate gradients.)

5.1.1 2D Poisson

Consider the two-dimensional Poisson problem with homogeneous Dirichlet boundary condi-

tions on the unit square given by

−∆u = f in Ω = (0, 1)2,

u = 0 on δΩ.

(5.1)

47

We discretize (5.1) using standard bilinear elements on a uniform grid, which yields the nine-point

stencil given by

A =
1

3h2















−1 −1 −1

−1 8 −1

−1 −1 −1















. (5.2)

(We scaled A here by h−2 for later convenience.) Although this model problem is not the ultimate

target for these methods, it is important to compare the two bootstrap approaches in this simple

setting because we can take advantage of knowing optimal coarsening and interpolation weights for

the classical AMG approach.

Because of our use of standard coarsening, some of the F points have four neighbors in their

interpolatory set. Thus, the use of fewer than four targets ensures an underdetermined least-squares

system for these points. Accordingly, the first three rows of each table show the results of using

the minimal-deviation iBAMG approach described in Section 3.2.3. (Standard BAMG does not

apply as is to the underdetermined case, since it is generally assumed there that q ≥ |Ci|.) Note

that the use of just one target in Tables 5.1 to 5.4 yields remarkably good performance in all cases,

while performance degrades substantially for q = 2 and 3. This result is somewhat special to this

problem. For q = 1, minimizing (3.12) amounts to choosing the equal interpolation weights that

match the target vector (with the sum of the weights becoming more accurate as the number of

relaxation sweeps is increased). This choice is exactly what is needed for the Poisson problem, so

one vector is sufficient here. In fact, using two vectors results in degradation of convergence, as the

tables show. The results of the next section show a somewhat more monotone pattern of increasing

improvement with increasing q.

Tables 5.1 to 5.4 show results for BAMG (iBAMG) using two levels with h = 1/64, followed

by V-cycles with h = 1/64, 1/128, and 1/256. It is worth pointing out some general trends

that are common to all the results presented. First (ignoring q ≤ 3 for the moment, which will

be discussed below), not surprisingly, convergence generally improves with increasing q and ν.

Generally, increasing q is better than increasing ν. A rough measure of setup cost is q×ν, although,

48

due to the cost of computing interpolation weights, work actually increases somewhat more than

linearly with q. Some trends to note are that V-cycle results, again not surprisingly, are somewhat

worse than corresponding two-level results. This effect is more pronounced for smaller q and ν. In

addition, while the best V-cycle convergence factors for each mesh size are the same, convergence

degrades somewhat with mesh size in more borderline cases. However, the minimal q and ν required

to reach near-optimal convergence increases only mildly, at least for the range of problem sizes

considered.

For q ≥ 4 ≥ |Ci|, the consistent trend is that better performance of the resulting solver is

obtained by more vectors and/or more relaxation sweeps. Moreover, iBAMG tends to provide

substantially better performance for the same number of vectors and sweeps.

49

q/ν 1 2 3 4 5 6 7 8 9 10

1 (.45) (.08) (.06) (.06) (.06) (.06) (.06) (.06) (.06) (.06)

2 (.62) (.47) (.40) (.30) (.33) (.36) (.35) (.33) (.41) (.29)

3 (.42) (.21) (.20) (.17) (.17) (.14) (.14) (.18) (.18) (.16)

4 .70 .54 .44 .41 .37 .38 .39 .39 .38 .36
(.46) (.32) (.27) (.25) (.22) (.23) (.21) (.21) (.20) (.21)

5 .63 .39 .32 .27 .25 .25 .24 .24 .25 .25
(.31) (.18) (.15) (.14) (.13) (.10) (.09) (.11) (.11) (.10)

6 .57 .31 .23 .21 .20 .20 .18 .19 .18 .19
(.21) (.12) (.09) (.07) (.07) (.06) (.06) (.06) (.06) (.06)

7 .53 .26 .20 .16 .16 .15 .14 .14 .14 .13
(.17) (.08) (.06) (.06) (.06) (.06) (.06) (.06) (.06) (.06)

8 .48 .21 .16 .14 .14 .12 .12 .13 .11 .11
(.14) (.07) (.06) (.06) (.06) (.06) (.06) (.06) (.06) (.06)

9 .44 .19 .14 .13 .12 .11 .10 .10 .11 .10
(.12) (.06) (.06) (.06) (.06) (.06) (.06) (.06) (.06) (.06)

10 .41 .16 .13 .11 .11 .10 .09 .10 .09 .09
(.11) (.06) (.06) (.06) (.06) (.06) (.06) (.06) (.06) (.06)

Table 5.1: Average V(1,1) two-level convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional model problem (5.1)
for various combinations of the number of relaxation sweeps, ν, and the number of random test
vectors, q. Shown here are the average convergence factors using BAMG (iBAMG). In all cases, a
random initial guess was used to test the resulting cycle.

50

q/ν 1 2 3 4 5 6 7 8 9 10

1 (.54) (.12) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

2 (.87) (.86) (.85) (.84) (.84) (.84) (.81) (.81) (.80) (.81)

3 (.81) (.70) (.59) (.50) (.41) (.35) (.39) (.30) (.28) (.26)

4 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87
(.87) (.86) (.86) (.86) (.86) (.86) (.85) (.85) (.85) (.85)

5 .86 .83 .79 .78 .78 .78 .76 .72 .77 .79
(.72) (.52) (.39) (.33) (.49) (.48) (.33) (.56) (.29) (.31)

6 .81 .69 .57 .61 .51 .59 .61 .55 .57 .59
(.44) (.24) (.11) (.11) (.09) (.09) (.13) (.17) (.09) (.11)

7 .77 .54 .39 .34 .35 .40 .30 .27 .37 .34
(.31) (.12) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

8 .73 .45 .31 .23 .23 .19 .25 .18 20 .21
(.26) (.10) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

9 .69 .36 .22 .19 .17 .17 .16 .16 .15 .15
(.22) (.09) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

10 .66 .33 .20 .16 .14 .16 .12 .12 .12 .12
(.20) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

Table 5.2: Average five-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional model problem (5.1)
for various combinations of the number of relaxation sweeps, ν, and the number of random test
vectors, q. Shown here are the average convergence factors using BAMG (iBAMG). In all cases, a
random initial guess was used to test the resulting cycle.

51

q/ν 1 2 3 4 5 6 7 8 9 10

1 (.75) (.31) (.11) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

2 (.86) (.86) (.86) (.86) (.86) (.85) (.85) (.85) (.85) (.85)

3 (.84) (.80) (.76) (.73) (.67) (.65) (.61) (.56) (.51) (.48)

4 .87 .87 .87 .87 .87 .87 .87 .87 .87 .87
(.86) (.86) (.86) (.86) (.86) (.86) (.86) (.86) (.86) (.86)

5 .86 .85 .85 .85 .84 .84 .84 .84 .84 .84
(.81) (.75) (.69) (.68) (.67) (.72) (.72) (.70) (.69) (.67)

6 .84 .79 .74 .71 .74 .73 .75 .73 .75 .75
(.66) (.35) (.21) (.22) (.21) (.26) (.18) (.18) (.15) (.21)

7 .82 .71 .61 .56 .58 .54 .51 .53 .60 .60
(.53) (.16) (.10) (.09) (.08) (.08) (.11) (.08) (.09) (.08)

8 .80 .61 .43 .36 .40 .43 .34 .35 .39 .35
(.47) (.13) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

9 .79 .53 .33 .26 .24 .24 .19 .22 .20 .23
(.42) (.11) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

10 .77 .48 .27 .21 .17 .17 .14 .15 .16 .14
(.38) (.10) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

Table 5.3: Average six-level V(1,1) convergence factors for residual reduction by a factor of 1010 (or
at most 50 cycles) on a 128 × 128 grid 9-point discretization of 2-dimensional model problem (5.1)
for various combinations of the number of relaxation sweeps, ν, and the number of random test
vectors, q. Shown here are the average convergence factors using BAMG (iBAMG). In all cases, a
random initial guess was used to test the resulting cycle.

52

q/ν 1 2 3 4 5 6 7 8 9 10

1 (.82) (.61) (.29) (.14) (.08) (.08) (.08) (.08) (.08) (.08)

2 (.86) (.85) (.85) (.85) (.85) (.85) (.85) (.85) (.85) (.85)

3 (.84) (.83) (.82) (.82) (.80) (.78) (.79) (.76) (.77) (.73)

4 .86 .86 .86 .86 .86 .86 .86 .86 .86 .86
(.86) (.85) (.85) (.85) (.85) (.85) (.85) (.85) (.85) (.85)

5 .85 .85 .84 .84 .84 .84 .84 .84 .84 .84
(.83) (.82) (.82) (.81) (.81) (.82) (.82) (.82) (.82) (.82)

6 .84 .82 .81 .81 .81 .82 .82 .82 .82 .82
(.77) (.53) (.43) (.31) (.46) (.47) (.43) (.38) (.51) (.36)

7 .83 .78 .75 .73 .74 .76 .74 .76 .77 .77
(.72) (.31) (.17) (.13) (.14) (.15) (.09) (.08) (.09) (.08)

8 .83 .73 .62 .61 .61 .65 .64 .66 .65 .65
(.69) (.26) (.10) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

9 .82 .68 .48 .43 .39 .41 .41 .39 .36 .35
(.66) (.22) (.09) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

10 .82 .65 .38 .28 .23 .25 .23 .27 .28 .22
(.64) (.20) (.08) (.08) (.08) (.08) (.08) (.08) (.08) (.08)

Table 5.4: Average seven-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 256 × 256 grid 9-point discretization of 2-dimensional model problem
(5.1) for various combinations of the number of relaxation sweeps, ν, and the number of random
test vectors, q. Shown here are the average convergence factors using BAMG (iBAMG). In all
cases, a random initial guess was used to test the resulting cycle.

53

5.1.2 Scaled 2D Laplacian

To maintain the geometric simplicity of our model problem but test performance in the

presence of widely varying coefficients, our next example is produced by symmetrically scaling the

matrix resulting from (5.1) by a positive diagonal matrix D = (Dii) =
(

e(ri)
)

, where ri is a random

number between −5 and 5. The scaling is done as follows:

A← DAD. (5.3)

Results for this test are shown in Table 5.5. For both methods, we see mostly improved

convergence as the number of target vectors and/or smoothing steps increases. The principal

exception is again the case q = 1, although the results are not as remarkable as they were for the

standard model problem. Note that the performance of iBAMG is again substantially better than

that of BAMG in most cases.

Comparing Table 5.5 with 5.1, results are similar for ν ≥ 4. For ν < 4, convergence becomes

increasingly worse (relatively) with smaller ν.

54

q/ν 1 2 3 4 5 6 7 8 9 10

1 (.77) (.58) (.43) (.35) (.30) (.26) (.22) (.23) (.22) (.21)

2 (.77) (.65) (.52) (.42) (.40) (.38) (.36) (.35) (.36) (.35)

3 (.76) (.54) (.32) (.25) (.22) (.21) (.19) (.19) (.19) (.19)

4 .79 .69 .58 .49 .42 .43 .39 .38 .37 .37
(.76) (.54) (.34) (.27) (.26) (.23) (.22) (.20) (.20) (.21)

5 .78 .66 .47 .35 .30 .28 .26 .26 .24 .24
(.75) (.43) (.20) (.13) (.13) (.11) (.10) (.09) (.11) (.11)

6 .78 .64 .43 .27 .23 .20 .20 .20 .19 .19
(.74) (.38) (.15) (.09) (.07) (.07) (.06) (.06) (.06) (.06)

7 .77 .63 .38 .24 .19 .18 .16 .15 .15 .14
(.74) (.35) (.13) (.07) (.05) (.06) (.06) (.06) (.06) (.06)

8 .77 .62 .36 .21 .15 .14 .13 .13 .12 .12
(.73) (.34) (.12) (.06) (.06) (.06) (.06) (.06) (.06) (.06)

9 .77 .62 .33 .19 .14 .12 .12 .10 .10 .10
(.73) (.33) (.11) (.06) (.06) (.06) (.06) (.06) (.06) (.05)

10 .76 .62 .33 .19 .13 .11 .10 .10 .09 .09
(.73) (.32) (.11) (.06) (.05) (.05) (.05) (.05) (.05) (.05)

Table 5.5: Average two-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional model problem (5.1)
subject to diagonal scaling according to (5.3) for various combinations of the number of relaxation
sweeps, ν, and the number of random test vectors, q. Shown here are the average convergence
factors using BAMG (iBAMG). In all cases, a random initial guess was used to test the resulting
cycle.

55

5.1.3 Long-range Interpolation

BAMG naturally allows for long-range interpolation, using any of the given coarse grids.

iBAMG also naturally provides this capability by allowing the collapse of unwanted connections

to any specified subset of the C points. To illustrate this capability, Table 5.6 shows two-level

result for the 5-point Laplace operator with standard coarsening. (See Figure 5.1, where some F

points are not directly connected to any points in Ci.) Figures 5.2 and 5.3 illustrate the collapsing

patterns for BAMG and iBAMG, respectively, with 5-point stencils and standard coarsening.

Figure 5.1: Standard coarsening. The white-centered blue circles represent F points and the red-
centered ones represent C points.

56

C

C

C

C

F

F

F

F

F

F

F

F

F

C

F

F

F

C

Figure 5.2: Least-squares approximation for BAMG. Shown here are two types of F points, one
involving interpolation from 4 C points and the other involving just 2.

C

C

C

C

F

F

F

F

F

F

F

F

F

C

F

F

F

C

Figure 5.3: Least squares approximation for iBAMG.

57

q/ν 1 2 3 4 5 6 7 8 9 10

4 .74 .65 .58 .55 .52 .50 .50 .51 .49 .49
(.67) (.60) (.52) (.45) (.42) (.40) (.41) (.39) (.41) (.38)

5 .72 .55 .44 .39 .38 .37 .36 .36 .35 .35
(.58) (.44) (.35) (.31) (.28) (.26) (.26) (.25) (.25) (.24)

6 .69 .45 .36 .34 .30 .30 .29 .27 .28 .30
(.53) (.34) (.28) (.23) (.21) (.19) (.18) (.18) (.19) (.17)

7 .66 .39 .31 .28 .27 .25 .24 .24 .22 .23
(.46) (.31) (.22) (.16) (.15) (.14) (.14) (.14) (.16) (.13)

8 .65 .35 .27 .24 .23 .22 .21 .21 .20 .20
(.43) (.25) (.17) (.14) (.13) (.12) (.12) (.12) (.13) (.12)

9 .63 .31 .24 .22 .21 .19 .19 .18 .18 .17
(.38) (.22) (.15) (.12) (.11) (.11) (.11) (.12) (.12) (.12)

10 .61 .28 .23 .20 .19 .18 .18 .16 .16 .17
(.36) (.19) (.13) (.11) (.11) (.11) (.11) (.11) (.12) (.12)

Table 5.6: Average two-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 64 × 64 grid 5-point discretization of 2-dimensional model problem (5.1)
for various combinations of the number of relaxation sweeps, ν, and the number of random test
vectors, q. Shown here are the average convergence factors using BAMG (iBAMG) with standard
coarsening. In all cases, a random initial guess was used to test the resulting cycle.

58

5.1.4 Variable-coefficient 2D diffusion

Our next example represents a more taxing problem for optimal solvers. It was chosen

here because it can cause difficulty with some implementations of standard MG. The results for

this specific case are also fairly representative of our experience so far with variable-coefficient

problems, including those with much larger jumps in the coefficients.

Consider the two-dimensional variable-coefficient problem with homogeneous Dirichlet bound-

ary conditions on the unit square given by

−∇ · (d(x, y)∇u) = f in Ω = (0, 1)2,

u = 0 on δΩ .

(5.4)

where, as shown in Figure 5.4, we have

d(x, y) =



















1 .25 < max(|x− .5|, |y − .5|) < .375 ,

1000 otherwise.

(5.5)

We discretize (5.4) by the Galerkin finite element method using piecewise bilinear elements, which

yields the nine-point stencil given by

A =
1

3h2















−dnw − (dnw+dne)
2 −dne

− (dnw+dsw)
2 2(dnw + dne + dsw + dse) −

(dse+dne)
2

−dsw − (dsw+dse)
2 −dse















.

Our element boundaries align with the discontinuities in d so that the entries in this stencil refer

in an obvious way to the values of d in neighboring elements of each grid point. Table 5.7 shows

convergence factors, comparisons, and trends for a 64 × 64 grid that are quite similar to what we

saw for the Poisson case.

In Table 5.8, we show observed convergence factors for the same problem except that the red

island in Figure 5.4 is shifted up and right h = 1
64 so that discontinuities do not align with any

59

coarse-grid line:

d(x, y) =



















1 .25 < max(|x− .5− 1
64 |, |y − .5− 1

64 |) < .375 ,

1000 otherwise.

(5.6)

60

Figure 5.4: The distribution of the coefficient for (5.4) on [0, 1]2.

q/ν 1 2 3 4 5 6 7 8 9 10

1 (.80) (.80) (.72) (.60) (.45) (.35) (.25) (.21) (.16) (.15)

2 (.81) (.81) (.78) (.74) (.66) (.62) (.54) (.51) (.47) (.46)

3 (.81) (.79) (.70) (.58) (.47) (.36) (.28) (.27) (.27) (.28)

4 .81 .81 .78 .73 .67 .59 .54 .50 .45 .44
(.81) (.79) (.70) (.58) (.44) (.35) (.29) (.26) (.24) (.26)

5 .81 .81 .73 .65 .55 .43 .35 .32 .28 .30
(.81) (.75) (.57) (.36) (.23) (.16) (.14) (.11) (.12) (.11)

6 .81 .80 .73 .58 .45 .32 .27 .23 .23 .22
(.81) (.71) (.49) (.30) (.17) (.11) (.08) (.09) (.09) (.07)

7 .81 .79 .68 .51 .36 .25 .20 .17 .15 .16
(.80) (.69) (.44) (.23) (.13) (.09) (.07) (.06) (.06) (.06)

8 .81 .78 .65 .47 .30 .21 .16 .14 .13 .13
(.80) (.67) (.41) (.20) (.11) (.08) (.06) (.06) (.06) (.06)

9 .81 .78 .63 .43 .25 .17 .13 .12 .11 .12
(.80) (.65) (.39) (.19) (.09) (.07) (.06) (.06) (.06) (.06)

10 .81 .78 .62 .39 .22 .15 .11 .10 .11 .11
(.80) (.62) (.33) (.17) (.08) (.06) (.06) (.06) (.06) (.06)

Table 5.7: Average two-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional model problem
(5.4) with the coefficient in (5.5) for various combinations of the number of relaxation sweeps, ν,
and the number of random test vectors, q. Shown here are the average convergence factors using
BAMG (iBAMG). In all cases, a random initial guess was used to test the resulting cycle.

61

q/ν 1 2 3 4 5 6 7 8 9 10

1 (.76) (.78) (.73) (.61) (.49) (.35) (.28) (.24) (.24) (.23)

2 (.77) (.79) (.77) (.74) (.70) (.63) (.54) (.53) (.49) (.47)

3 (.78) (.78) (.70) (.57) (.46) (.36) (.33) (.26) (.27) (.25)

4 .76 .78 .77 .74 .65 .60 .55 .50 .48 .43
(.78) (.77) (.70) (.57) (.49) (.36) (.29) (.31) (.29) (.27)

5 .77 .78 .74 .65 .54 .42 .37 .33 .32 .31
(.78) (.73) (.58) (.37) (.27) (.22) (.20) (.18) (.18) (.17)

6 .78 .78 .72 .56 .45 .32 .27 .24 .24 .24
(.78) (.72) (.52) (.30) (.20) (.19) (.18) (.17) (.17) (.15)

7 .78 .78 .68 .51 .37 .27 .22 .19 .20 .19
(.77) (.69) (.44) (.25) (.19) (.20) (.17) (.16) (.14) (.13)

8 .77 .76 .66 .47 .30 .23 .20 .19 .17 .19
(.77) (.66) (.44) (.23) (.18) (.17) (.14) (.15) (.15) (.12)

9 .78 .76 .63 .43 .26 .20 .20 .19 .18 .18
(.77) (.65) (.38) (.20) (.18) (.16) (.16) (.14) (.14) (.13)

10 .78 .75 .60 .38 .26 .20 .19 .16 .16 .17
(.77) (.62) (.35) (.19) (.18) (.15) (.14) (.15) (.13) (.11)

Table 5.8: Average two-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional model problem
(5.4) with the coefficient in (5.6) for various combinations of the number of relaxation sweeps, ν,
and the number of random test vectors, q. Shown here are the average convergence factors using
BAMG (iBAMG) with standard coarsening. In all cases, a random initial guess was used to test
the resulting cycle.

62

5.1.5 Diagonally scaled variable-coefficient 2D diffusion

Our next example comes from diagonally scaling the matrix resulting from (5.4) with the

coefficient in (5.5) by the positive diagonal matrix D = (Dii) =
(

a
−1/2
ii

)

as follows:

A← DAD. (5.7)

The results as shown in Table 5.9 again are similar to what we have seen in the other examples.

63

q/ν 1 2 3 4 5 6 7 8 9 10

1 (.79) (.79) (.81) (.81) (.81) (.82) (.82) (.82) (.83) (.83)

2 (.77) (.77) (.79) (.80) (.80) (.81) (.80) (.80) (.80) (.80)

3 (.77) (.78) (.79) (.79) (.79) (.75) (.74) (.74) (.69) (.59)

4 .77 .76 .78 .79 .79 .79 .77 .76 .72 .70
(.77) (.77) (.78) (.76) (.75) (.71) (.72) (.65) (.55) (.44)

5 .78 .77 .78 .78 .76 .74 .69 .65 .57 .47
(.77) (.78) (.75) (.69) (.57) (.45) (.44) (.38) (.27) (.25)

6 .78 .76 .77 .77 .75 .69 .63 .56 .48 .34
(.77) (.77) (.71) (.64) (.48) (.38) (.27) (.25) (.24) (.18)

7 .78 .78 .77 .76 .70 .66 .61 .49 .40 .30
(.76) (.77) (.71) (.59) (.47) (.33) (.26) (.21) (.19) (.16)

8 .78 .77 .77 .75 .68 .66 .54 .43 .34 .31
(.75) (.76) (.70) (.57) (.42) (.32) (.25) (.21) (.18) (.15)

9 .78 .78 .77 .75 .70 .63 .55 .40 .33 .26
(.77) (.75) (.67) (.53) (.38) (.28) (.24) (.18) (.16) (.14)

10 .78 .77 .76 .72 .68 .59 .49 .38 .31 .26
(.76) (.76) (.67) (.50) (.37) (.27) (.22) (.18) (.14) (.14)

Table 5.9: Average two-level V(1,1) convergence factors for residual reduction by a factor of 1010

(or at most 50 cycles) on a 64 × 64 grid 9-point discretization of 2-dimensional model problem (5.4)
subject to diagonal scaling according to (5.7) with coefficient in (5.5) for various combinations of
the number of relaxation sweeps, ν, and the number of random test vectors, q. Shown here are the
average convergence factors using BAMG (iBAMG). In all cases, a random initial guess was used
to test the resulting cycle.

64

5.2 Adaptive BAMG

Our final tests focus on performance of the full setup process of rBAMG that uses both

a least-squares phase that determines interpolation based on q initial random vectors relaxed v

times and a subsequent adaptive phase that aims to test and possibly improve the resulting solver.

Guided by our convergence estimation process, each iteration of the adaptive phase assesses the

current solver’s fine-grid convergence factor on random initial guesses for Ax = 0 and, when poor

convergence is observed, combines the resulting error with the test vectors and errors from earlier

adaptive iterations.

In all of our numerical experiments, we used 4 V(1,1) cycles for each adaptive iteration.

The values of two threshold parameters used here for convergence estimation are ρgood = .3 and

ρbad = .8. Note that the adaptive iterations continue until the estimated convergence factor, ρest, is

below ρgood or the estimated total cost for the full solution process is expected to increase. Because

of the five-point form of the gauge Laplacian, it is customary for the first coarsening to be red-black

coarsening to be red-black, making direct (and ‘ideal’) operator interpolation possible. We used this

coarsening here. Because this produces a 9-point coarse-grid stencil on a rotated uniform coarse

grid, we were able to use rotated standard coarsening for the coarser levels. All setup processes

and solvers used pointwise lexicographic Gauss-Seidel as the relaxation scheme.

Each set of test results for each of our two sample problems and each value N is reported

in a pair of tables. The first of each pair assesses the total setup and solver costs in terms of

work units. The setup costs are calculated using the total cost estimates described in the previous

chapter. The solver costs are computed in a separate test phase that applies V(1,1) cycles of the

final solver to a random initial guess for Ax = 0. The solver costs are computed based on using the

observed asymptotic convergence factor to determine how many of these cycles would be needed

to reduce the error for a general linear solve by ten orders of magnitude. The second of the pair of

tables for each test set depicts the number of ‘target’ vectors (test vectors and added adaptive error

components) that were used to fit interpolation for the final adaptive iteration. For both sample

65

problems, we also include a table that summarizes the best results observed for each N.

5.2.1 Shifted 2D Poisson

Here we consider the 9-point stencil in (5.2) shifted by subtracting a constant from the

diagonal of the matrix that is computed so that its smallest eigenvalue is 1
N2 , with N = 64, 128,

and 256.

q/ν 1 2 3 4 5 6 7 8 9 10

4 247 228 201 224 203 231 246 231 233 260

5 210 162 158 155 177 185 180 185 194 202

6 174 152 156 172 177 192 203 205 214 226

7 166 158 166 177 189 201 213 225 237 194

8 165 170 189 192 206 220 233 251 193 185

9 177 181 193 208 223 239 254 242 215 195

10 183 214 208 225 242 259 276 209 198 209

Table 5.10: Total cost (= setup + solver cost) for rBAMG applied to shifted 2D Poisson and N =
64.

q/ν 1 2 3 4 5 6 7 8 9 10

4 6.80 6.20 6.00 6.00 5.70 5.90 6.10 5.70 5.60 5.80
(0.24) (0.26) (0.16) (0.23) (0.19) (0.21) (0.15) (0.19) (0.21) (0.20)

5 7.00 6.20 6.10 6.00 6.20 6.20 6.00 6.00 6.00 6.00
(0.26) (0.24) (0.18) (0.14) (0.13) (0.11) (0.15) (0.11) (0.11) (0.10)

6 7.30 7.00 7.00 7.10 7.00 7.10 7.10 7.00 7.00 7.00
(0.27) (0.19) (0.13) (0.11) (0.13) (0.10) (0.10) (0.10) (0.10) (0.11)

7 8.10 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 7.30
(0.24) (0.15) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.23)

8 9.00 9.00 9.10 9.00 9.00 9.00 9.00 9.00 8.20 8.00
(0.22) (0.13) (0.10) (0.10) (0.10) (0.10) (0.09) (0.12) (0.24) (0.27)

9 10.00 10.00 10.00 10.00 10.00 10.00 10.00 9.70 9.20 9.00
(0.22) (0.11) (0.10) (0.10) (0.10) (0.10) (0.10) (0.16) (0.29) (0.24)

10 11.00 11.20 11.00 11.00 11.00 11.00 11.00 10.20 10.00 10.00
(0.18) (0.11) (0.10) (0.10) (0.10) (0.10) (0.10) (0.25) (0.26) (0.24)

Table 5.11: Final number of target vectors and solver convergence factor for rBAMG applied to
shifted 2D Poisson and N = 64.

Table 5.18 summarizes the optimal results observed in the other tables for the shifted Poisson

problem. For each N, the smallest value is identified in each total cost table, and the corresponding

66
q/ν 1 2 3 4 5 6 7 8 9 10

4 300 247 266 270 267 290 285 286 294 321

5 240 206 171 188 195 198 206 231 241 225

6 192 168 161 165 174 183 203 214 214 226

7 166 160 185 177 189 201 213 225 237 249

8 168 170 179 192 206 220 233 247 261 274

9 176 182 211 208 223 239 254 269 285 290

10 184 192 208 225 242 259 276 293 310 247

Table 5.12: Total cost (= setup + solver cost) for rBAMG applied to shifted 2D Poisson and N =
128.

q/ν 1 2 3 4 5 6 7 8 9 10

4 7.50 6.70 6.80 6.70 6.60 6.60 6.50 6.40 6.40 6.60
(.27) (.21) (.21) (.19) (.17) (.21) (.20) (.20) (.19) (.19)

5 7.40 6.90 6.20 6.40 6.40 6.30 6.30 6.50 6.50 6.20
(.27) (.20) (.25) (.18) (.15) (.17) (.15) (.15) (.15) (.16)

6 7.50 7.20 7.00 7.00 7.00 7.00 7.10 7.10 7.00 7.00
(.28) (.20) (.17) (.11) (.11) (.10) (.10) (.10) (.10) (.11)

7 8.00 8.00 8.20 8.00 8.00 8.00 8.00 8.00 8.00 8.00
(.31) (.17) (.11) (.10) (.10) (.10) (.10) (.10) (.10) (.10)

8 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.00
(.25) (.14) (.10) (.10) (.10) (.10) (.10) (.10) (.10) (.10)

9 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 9.90
(.23) (.12) (.16) (.10) (.10) (.10) (.10) (.10) (.10) (.12)

10 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 10.30
(.21) (.11) (.10) (.10) (.10) (.10) (.10) (.10) (.10) (.23)

Table 5.13: Final number of target vectors and solver convergence factor for rBAMG applied to
shifted 2D Poisson and N = 128.

q/ν 1 2 3 4 5 6 7 8 9 10

4 352 326 314 302 320 310 332 362 385 368

5 271 253 220 227 238 241 255 257 286 293

6 238 167 167 176 183 209 219 227 221 254

7 229 176 175 191 194 206 218 230 242 254

8 207 179 184 207 211 225 238 252 277 279

9 239 187 198 213 228 248 263 274 295 305

10 225 200 212 229 246 269 280 297 315 340

Table 5.14: Total cost (= setup + solver cost) for rBAMG applied to shifted 2D Poisson and N =
256.

q, ν, number of target vectors, and final convergence factors are depicted. The results here suggest

67
q/ν 1 2 3 4 5 6 7 8 9 10

4 8.20 7.80 7.50 7.20 7.10 6.90 7.10 7.30 7.40 7.00
(.30) (.25) (.22) (.23) (.31) (.34) (.26) (.25) (.26) (.38)

5 7.80 7.50 6.90 6.80 6.80 6.70 6.70 6.70 6.90 6.80
(.30) (.21) (.21) (.25) (.22) (.24) (.27) (.21) (.19) (.29)

6 8.10 7.00 7.00 7.00 7.00 7.20 7.20 7.10 7.00 7.20
(.29) (.25) (.20) (.18) (.14) (.13) (.13) (.18) (.11) (.15)

7 8.80 8.10 8.00 8.10 8.00 8.00 8.00 8.00 8.00 8.00
(.26) (.18) (.14) (.11) (.11) (.11) (.10) (.10) (.10) (.10)

8 9.30 9.00 9.00 9.10 9.00 9.00 9.00 9.00 9.10 9.00
(.27) (.18) (.11) (.10) (.11) (.11) (.10) (.10) (.10) (.10)

9 10.60 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00
(.21) (.14) (.11) (.10) (.10) (.13) (.15) (.10) (.16) (.10)

10 11.30 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00
(.22) (.13) (.10) (.10) (.10) (.15) (.10) (.10) (.11) (.19)

Table 5.15: Final number of target vectors and solver convergence factor for rBAMG applied to
shifted 2D Poisson and N = 256.

64 128 256

Total Cost 152 160 167

(q, ν) (6,2) (7,2) (6,2)

Final number of target vectors 7 8 7

Final convergence factor .19 .17 .20

Table 5.16: Summary of the optimal total costs of rBAMG for the shifted Poisson problem, N =
64, 128, and 256.

that the total cost as measured in work unit is fairly insensitive the size of the grid.

68

5.2.2 Shifted Gauge Laplacian

This section extends the results to a shifted two-dimensional gauge Laplacian (c.f., [24]).

The unshifted matrix represents a stencil of the same form as the 5-point Laplacian, but it instead

involves unit random complex numbers in the off-diagonal (more precisely, numbers of form eiθ

h2 on

the off-diagonal and 4
h2 on the diagonal), and it corresponds to a uniform doubly periodic grid.

We then shifted the matrix so that the smallest eigenvalue is h2, making the condition number

O(h−4). This is a very challenging problem on which all classical matrix solvers and conventional

multigrid methods are unacceptably slow. The principle difficulty with the gauge Laplacian is

that algebraically smooth error tends to have very oscillatory geometric character. This provides a

perfect opportunity for adaptive/bootstrap AMG methods to demonstrate their capabilities in the

automatic determination of representative smooth error components.

For comparison to the adaptive scheme based on a single test vector, we add a first row

to each table that shows the results of applying the adaptive AMG scheme (αAMG) developed

in [15] to the shifted gauge Laplacian. This adaptive scheme is similar to rBAMG with q = ν = 1,

except that the number of target vectors is not allowed to increase beyond one in subsequent

adaptive iterations. (Any error produced in an adaptive iteration is instead used just to correct

the current target vector.) Note that the final αAMG convergence factor is always greater than

ρgood, so one near null space component is not enough for this problem. Note also that the optimal

results depicted in Table 5.23 show much more dependence on N, in contrast to the simpler shifted

Laplacian results in Table 5.16. Figure 5.2.2 gives a clearer picture of these comparative trends.

69

q/ν 1 2 3 4 5 6 7 8 9 10

αAMG 361 293 286 288 305 293 354 299 323 351

1 308 266 286 288 255 256 244 244 244 253

2 358 262 241 244 239 230 220 238 236 219

3 289 236 232 208 222 231 227 222 240 240

4 294 233 214 205 197 192 219 221 230 215

5 331 211 217 227 226 228 215 255 276 253

6 303 242 198 233 221 231 241 261 272 294

7 322 229 215 241 238 266 271 284 277 300

8 327 255 266 242 289 277 273 319 312 318

9 368 250 263 269 283 299 330 320 326 328

10 410 312 294 289 315 310 328 319 393 354

Table 5.17: Total cost (= setup + solver cost) for rBAMG applied to shifted gauge Laplacian and
N = 64.

50 100 150 200 250
100

120

140

160

180

200

220

240

260

280

300

Matrix size N

T
ot

al
 c

os
t =

 s
et

up
 c

os
t +

 s
ol

ve
 c

os
t

Shifted 2D Poisson

Shifted Gauge Laplacian

Figure 5.5: Summary of the optimal total costs of rBAMG for the shifted gauge Laplacian problem,
N = 64, 128, and 256.

70

q/ν 1 2 3 4 5 6 7 8 9 10

αAMG 5.60 4.90 4.20 4.50 4.30 5.20 5.50 5.60 4.70 5.10
(.63) (.61) (.60) (.60) (.63) (.60) (.64) (.59) (.64) (.64)

1 5.00 4.90 4.70 4.10 4.30 4.00 3.90 3.80 3.70 3.80
(.39) (.31) (.35) (.44) (.33) (.37) (.34) (.35) (.35) (.35)

2 5.50 5.40 4.90 4.80 4.50 4.20 3.90 4.20 4.10 3.60
(.50) (.31) (.32) (.31) (.35) (.35) (.36) (.34) (.34) (.37)

3 6.50 5.60 5.40 4.90 5.00 5.00 4.80 4.60 4.80 4.70
(.35) (.31) (.31) (.30) (.30) (.30) (.32) (.32) (.31) (.32)

4 7.30 6.20 5.80 5.50 5.30 5.10 5.40 5.30 5.30 5.00
(.31) (.33) (.30) (.32) (.30) (.30) (.29) (.30) (.30) (.30)

5 7.80 6.60 6.60 6.60 6.50 6.40 6.10 6.50 6.60 6.20
(.41) (.33) (.31) (.29) (.29) (.28) (.28) (.28) (.29) (.29)

6 8.80 7.90 7.10 7.50 7.20 7.20 7.20 7.30 7.30 7.40
(.31) (.31) (.33) (.28) (.28) (.27) (.27) (.27) (.27) (.28)

7 9.40 8.50 8.20 8.40 8.20 8.40 8.30 8.30 8.10 8.20
(.38) (.30) (.29) (.27) (.28) (.26) (.26) (.26) (.27) (.26)

8 10.50 9.60 9.60 9.20 9.50 9.30 9.10 9.40 9.20 9.10
(.33) (.31) (.29) (.29) (.26) (.25) (.26) (.26) (.26) (.28)

9 11.70 10.40 10.40 10.30 10.30 10.30 10.40 10.20 10.10 10.00
(.31) (.30) (.27) (.26) (.26) (.24) (.25) (.25) (.26) (.25)

10 12.80 11.80 11.50 11.30 11.40 11.20 11.20 11.00 11.40 11.00
(.30) (.30) (.28) (.27) (.24) (.25) (.25) (.24) (.25) (.25)

Table 5.18: Final number of target vectors and solver convergence factor for rBAMG applied to
shifted gauge Laplacian and N = 64.

q/ν 1 2 3 4 5 6 7 8 9 10

αAMG 463 519 444 456 366 461 465 379 393 444

1 395 280 278 280 281 290 304 280 277 285

2 399 324 265 255 259 268 274 272 304 291

3 348 264 253 240 249 244 238 247 250 263

4 346 255 244 255 267 244 231 229 236 241

5 301 269 284 240 250 215 233 251 272 262

6 334 290 256 275 252 252 236 265 276 270

7 351 297 272 273 302 252 293 289 291 348

8 375 330 283 321 307 303 275 324 319 308

9 403 376 342 314 321 340 309 363 368 359

10 443 371 366 369 370 379 360 390 356 375

Table 5.19: Total cost (= setup + solver cost) for rBAMG applied to shifted gauge Laplacian and
N = 128.

71

q/ν 1 2 3 4 5 6 7 8 9 10

αAMG 6.30 5.40 6.30 6.50 5.20 6.00 6.20 6.70 6.10 6.60
(.78) (.79) (.75) (.76) (.72) (.78) (.77) (.72) (.73) (.76)

1 5.40 5.20 5.00 4.90 4.80 4.80 4.00 4.30 4.10 4.10
(.51) (.30) (.32) (.33) (.33) (.33) (.47) (.39) (.40) (.42)

2 5.70 5.40 5.10 4.90 5.00 5.00 5.00 4.80 4.30 4.20
(.57) (.42) (.36) (.34) (.31) (.33) (.32) (.34) (.44) (.45)

3 6.90 5.90 5.60 5.40 5.40 5.20 5.00 4.80 4.80 5.00
(.38) (.36) (.36) (.32) (.32) (.32) (.33) (.37) (.37) (.33)

4 7.20 6.60 6.20 6.30 6.30 5.80 5.50 5.40 5.30 5.30
(.42) (.31) (.34) (.30) (.32) (.34) (.33) (.31) (.34) (.33)

5 8.10 7.50 7.10 6.60 6.70 6.10 6.30 6.40 6.50 6.30
(.32) (.32) (.40) (.34) (.34) (.34) (.31) (.30) (.33) (.30)

6 8.90 8.50 7.80 7.80 7.50 7.40 7.10 7.30 7.30 7.10
(.39) (.30) (.34) (.34) (.32) (.30) (.29) (.30) (.30) (.30)

7 9.90 9.30 8.90 8.70 8.90 8.20 8.50 8.30 8.20 8.60
(.38) (.30) (.29) (.30) (.28) (.29) (.29) (.29) (.29) (.30)

8 11.00 10.40 9.70 9.70 9.60 9.50 9.10 9.40 9.20 9.00
(.34) (.30) (.33) (.40) (.33) (.28) (.28) (.29) (.30) (.29)

9 12.00 11.30 11.00 10.50 10.60 10.60 10.20 10.50 10.40 10.20
(.33) (.37) (.32) (.36) (.28) (.29) (.28) (.29) (.29) (.29)

10 12.70 12.30 12.10 11.90 11.80 11.70 11.40 11.50 11.10 11.10
(.41) (.29) (.28) (.32) (.28) (.27) (.30) (.28) (.28) (.29)

Table 5.20: Final number of target vectors and solver convergence factor for rBAMG applied to
shifted gauge Laplacian and N = 128.

q/ν 1 2 3 4 5 6 7 8 9 10

αAMG 443 432 455 440 426 438 417 437 443 408

1 440 365 327 375 338 371 417 367 393 370

2 540 368 365 344 310 316 318 341 318 327

3 445 405 413 363 365 344 310 310 333 327

4 467 370 355 315 315 315 351 370 351 338

5 426 360 347 338 312 331 320 307 327 288

6 468 379 365 371 326 308 310 300 329 348

7 527 393 417 333 335 313 383 342 357 349

8 515 435 427 398 344 346 361 399 348 343

9 602 460 456 392 398 396 387 394 401 377

10 618 530 475 497 402 411 369 411 444 406

Table 5.21: Total cost (= setup + solver cost) for rBAMG applied to shifted gauge Laplacian and
N = 256.

72

q/ν 1 2 3 4 5 6 7 8 9 10

αAMG 5.20 4.80 5.20 4.90 4.80 5.10 4.10 4.70 4.60 3.80
(.81) (.81) (.82) (.76) (.82) (.80) (.79) (.87) (.78) (.84)

1 6.10 5.70 5.20 4.80 4.90 4.40 3.90 4.70 3.90 4.30
(.50) (.42) (.37) (.47) (.40) (.51) (.60) (.46) (.59) (.49)

2 4.80 6.60 5.80 6.00 5.20 5.30 5.00 4.90 5.00 5.00
(.86) (.37) (.44) (.36) (.38) (.36) (.39) (.41) (.37) (.37)

3 8.40 6.70 6.00 5.80 5.70 5.70 5.70 5.50 5.30 5.50
(.35) (.46) (.56) (.46) (.46) (.42) (.34) (.36) (.39) (.36)

4 8.70 7.20 7.10 6.80 6.60 6.00 6.40 6.00 5.90 5.90
(.43) (.44) (.39) (.34) (.35) (.40) (.39) (.36) (.42) (.39)

5 9.30 7.90 8.10 7.40 7.30 7.10 7.10 6.80 6.60 6.30
(.35) (.40) (.32) (.36) (.33) (.37) (.33) (.33) (.37) (.35)

6 9.90 9.20 9.00 8.50 8.20 7.80 7.70 7.40 7.60 7.70
(.44) (.34) (.30) (.36) (.31) (.33) (.32) (.34) (.34) (.32)

7 11.40 10.10 10.20 9.10 9.00 8.60 8.80 8.60 8.60 8.40
(.39) (.33) (.31) (.33) (.32) (.32) (.37) (.32) (.32) (.33)

8 11.70 11.20 11.00 10.50 9.80 9.70 9.70 9.90 9.30 9.10
(.42) (.32) (.30) (.31) (.32) (.32) (.30) (.30) (.30) (.33)

9 13.10 12.10 11.90 11.20 11.10 10.90 10.70 10.60 10.50 10.20
(.41) (.33) (.32) (.30) (.30) (.31) (.29) (.29) (.31) (.30)

10 13.80 13.40 12.80 12.40 11.90 11.80 11.30 11.50 11.60 11.20
(.45) (.30) (.30) (.38) (.30) (.30) (.32) (.30) (.29) (.29)

Table 5.22: Final number of target vectors and solver convergence factor for rBAMG applied to
shifted gauge Laplacian and N = 256.

64 128 256

Total Cost 192 215 300

(q, ν) (4,6) (5,6) (6,8)

Final number of target vectors 5.1 6.1 7.4

Final convergence factor .3 .34 .34

Table 5.23: Least squares approximation of BAMG.

Chapter 6

Conclusions and Future Work

The thesis introduced several variants of adaptive/bootstrap AMG in an attempt to improve

performance of the AMG solvers that these methods produce. The two variants who showed the

most success in the sense are what we called indirect BAMG (iBAMG) and relaxation-corrected

BAMG (rBAMG).

The premise behind iBAMG is to insulate the construction of an effective interpolation

operator from poor approximation of algebraically smooth components by using interpolation only

to collapse F-F connections in an operator interpolation scheme. This approach is more in the

spirit of classical AMG and we show here that it is almost always substantially more effective than

the direct approach to interpolation that has typically been used in BAMG.

We developed rBAMG by simply adding scaled residuals of the target vectors to the least-

squares principles for the direct BAMG approach. We show an equivalence between iBAMG and

rBAMG, which is important because it gives insight into the effectiveness of rBAMG and it allows

for all of the existing BAMG machinery (especially coarsening by compatible relaxation) to be used

with these improved methods. Our numerical experiments then focus on rBAMG because of its

simplicity and wider applicability. In particular, while iBAMG relies on the notion of operator

interpolation, rBAMG does not. For example, iBAMG interpolation to an F point rests on a

stencil there with a nonzero (diagonal) entry associated with the point itself, but this is not at all

a requirement for rBAMG. Indeed, the general rBAMG principle is simply to correct each target

vector in the direct least-squares principle by an expression that amounts to applying the relevant

74

relaxation scheme to that vector. Stating the principle in this way shows that rBAMG can be

applied in cases where the stencil at an F point does not even involve the point itself. Future plans

include the study of the general applicability of rBAMG to problems of this type, starting with

conventional discretizations of Stokes and Navier-Stokes equations with zeros on the diagonal of

the matrix associated with the incompressibility condition.

The numerical experiments described in this thesis concentrated on two basic goals. The

first was to investigate the effectiveness of the initial rBAMG and BAMG least-squares setup

process and how it depends on the number of test vectors, the number of relaxations applied to

them, and the dimension of the model problem. We showed that the required amount of work to

obtain small convergence factors of the resulting solver increased at a modest rate with problem

dimension. The second goals was to study the performance of the full setup process that included

subsequent adaptive cycles of the current solver that were used to enhance the initial set of test

vectors and thereby improve subsequent least-squares fit of interpolation. An important ingredient

of this adaptive approach is the convergence estimation model that we derived. It provided an

effective means for judging the convergence quality of the current solver without carrying out

the large number of cycles that conventional estimates require. The estimates that this model

provided, together with an accurate work estimate we developed, allowed the adaptive scheme

to make effective decisions along the way. The numerical results we presented documented the

overall performance of the full setup and solver, showing almost optimal complexity for the Poisson

case. The results also showed more than linear increase with respect to problem size for the gauge

Laplacian. We should note that true optimality (i. e., complexity proportional to problem size)

is not to be expected for the overall setup and solution process because the required accuracy of

interpolation tends to increase as the problem size increases. Thus, the observed near optimality

for the Poisson case is probably a result of studying fairly small problems. Our plan is to extend

this study to much more complicated and much larger problems, where we expect the complexity

trends to be more apparent.

Another aspect we plan to study is how rBAMG compares with adaptive smooth aggregation.

75

It is especially important to study comparative performance on problems that arise from systems

of partial differential equations. Our main target in this direction are the full two- and four-

dimensional systems of quantum chromodynamics.

Bibliography

[1] A. Brandt. Multi-level adaptive solutions to boundary value problems. Math. Comp., 31:333–
390, 1977.

[2] A. Brandt. Algebraic multigrid theory: the symmetric case. Applied Mathematics and
Computation, 9:23–26, 1986.

[3] A. Brandt. General highly accurate algebraic coarsening. Electronic Transactions on Numerical
Analysis, 63:521–539, 1992.

[4] A. Brandt. Multiscale scientific computation: review 2001. In Barth, T.J., Chan, T.F. and
Haimes, R. (eds.): Multiscale and Multiresolution Methods: Theory and Application, pages
1–96, 2001.

[5] A. Brandt, J. Brannick, K. Kahl, and I. Livshits. A least squares based algebraic multigrid
solver for Hermitian and positive definite systems. 2009. Unpublished manuscript.

[6] A. Brandt, J. Brannick, K. Kahl, and I. Livshits. Bootstrap AMG. 2010. Unpublished
manuscript.

[7] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for automatic multi-
grid solution with application to geodetic computations. Technical report, Colorado State
University, Fort Collins, Colorado, 1983.

[8] A. Brandt, S. McCormick, and J. Ruge. Algebraic multigrid (AMG) for sparse matrix equa-
tions. in sparsity and its applications, D.J, Evans (ed.). 1984.

[9] J. Brannick, D. Brezina, M. Keyes, O. Livine, I. Livshits, S. MacLachlan, T. Manteuffel,
S. McCormick, J. Ruge, and L. Zikatanov. Adaptive smoothed aggregation in lattice QCD. In
Proceedings of DD16, The 16th International Conference on Domain Decomposition Methods.
Springer (to appear).

[10] J. Brannick and R. Falgout. Compatible relaxation and coarsening in algebraic multigrid.
SIAM J. Sci. Comp, 32:1393–1416, 2010.

[11] J. Brannick, A. Frommer, K. Kahl, S. MacLachlan, and L. Zikatanov. Adaptive reduction-
based multigrid for nearly singular and highly disordered physical systems. Electronic
Transactions on Numerical Analysis, 37:276–295, 2010.

77

[12] M. Brezina, A. Cleary, R. Falgout, V. Henson, J. Jones, T. Manteuffel, S. McCormick, and
J. Ruge. Algebraic multigrid based on element interplation(AMGe). SIAM J. Sci. Comp,
22:1570–1592, 2000.

[13] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. Adaptive
smoothed aggregation (αSA). SIAM J. Sci. Comp., 25(6):1896–1920, 2004.

[14] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. Adaptive
smoothed aggregation (αSA) multigrid. SIAM Rev., 47(2):317–346, 2005.

[15] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge. Adaptive
algebraic multigrid. SIAM J. Sci. Comp., 27(4):1261–1286, 2006.

[16] W. Briggs, V. Henson, and S. McCormick. Multigrid Tutorial. SIAM, 2000.

[17] A. Cleary, R. Falgout, V. Henson, J. Jones, T. Manteuffel, S. McCormick, G. Miranda, and
J. Ruge. Robustness and algorithmic scalability of algebraic multigrid (AMG). SIAM J. Sci.
Comp, 21:1886–1908, 2000.

[18] G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins University Press, 1996.

[19] A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, 1997.

[20] W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, 1985.

[21] V. Henson and P. Vassilevski. Element-free AMGe: General algorithm for compution interpo-
lation weights in amg. SIAM J. Sci. Comp, 23(2):629–650, 2001.

[22] S. MacLachlan. Improving Robustness in Multiscale Methods. PhD thesis, University of
Colorad at Boulder, 2004.

[23] S. MacLachlan, T. Manteuffel, and S. McCormick. Adaptive reduction-based AMG. Num.
Lin. Alg. Appl, 13(8):599–620, 2005.

[24] S. MacLachlan and C. Oosterlee. Algebraic multigrid solvers for complex-valued matrices.
SIAM J. Sci. Comput., 30(3):1548–1571, 2008.

[25] J. Ruge and K. Stüben. Algebraic multigrid (AMG). InMultigrid Methods, vol. 5, McCormick
SF (ed.). SIAM: Philadelphia, PA., 1986.

[26] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.

[27] P. Vanĕk, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based on smoothed
aggregation. Numer. Math., 88:559–579, 2001.

[28] P. Vanĕk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation for second
and fourth order elliptic problems. Computing, 56:179–196, 1996.

