Parallel Quasi-Newton Methods For Unconstrained Optimization *

Richard H. Byrd
Robert B. Schnabel
Gerald A. Shultz

CU-CS-396-88

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* Research supported by AFOSR grant AFOSR-85-0251, ARO contract DAAG 29-84-K-0140, NSF grants DCR-8403483 and CCR-
8702403, and NSF cooperative agreement DCR-8420944.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE NATIONAL SCIENCE
FOUNDATION.

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFI-
CIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY
OTHER AUTHORIZED DOCUMENTS.

Abstract

We discuss methods for solving the unconstrained optimization problem on parallel computers,
when the number of variables is sufficiently small that quasi-Newton methods can be used. We concen-
trate mainly, but not exclusively, on problems where function evaluation is expensive. First we discuss
ways to parallelize both the function evaluation costs and the linear algebra calculations in the standard
sequential secant method, the BFGS method. Then we discuss new methods that are appropriate when
there are enough processors to evaluate the function, gradient, and part but not all of the Hessian at cach
iteration. We develop new algorithms that utilize this information and analyze their convergence proper-
ties. We present computational experiments showing that they are superior to parallelization of either the
BFGS method or Newton’s method under our assumptions on the number of precessors and cost of func-
tion evaluation. Finally we discuss ways to effectively utilize the gradient values at unsuccessful trial

points that are available in our parallel methods and also in some sequential software packages.

1. Introduction

This paper discusses parallel quasi-Newton methods for solving the unconstrained optimization prob-

lem,

mineir{lgze f:R* SR . (1.1
Our main emphasis is on new methods that effectively utilize multiple processors to perform multiple func-
tion and derivative evaluations simultaneously. We predominantly use these multiple function evaluations
to calculate or approximate derivative values; this results in new methods that have different derivative
information available than in standard sequential algorithms. Both the theoretical properties and the com-

putational performance of these new methods are discussed. In addition, we consider the parallelization of

the main linear algebra costs of such methods.

The unconstrained optimization problem (1.1) arises in many applications in science, engineering,
and other areas, and is often very expensive to solve. Frequently this because the evaluation of f (x) itself
is expensive, often requiring many seconds or minutes on modern computers. Problems with expensive
function evaluations are our main concern in this paper. It is commonly the case in such problems that ana-

lytic derivatives are not available; we concern ourselves mainly, but not exclusively with this case.

Due to the expense of many unconstrained optimization problems, there is ample incentive for trying
to solve them on parallel computers. If the leading expense is the evaluation of f (x) and its derivatives,
then one possibility is simply to parallelize each of these evaluations. The effectiveness of this approach
depends on how readily a parallel routine for f (x) (and its derivatives) is available, and how fully it paral-
lelizes the evaluation. In any case, this approach usually is outside the domain of the optimization algo-
rithm designer. In this paper, we concentrate on the opposing case when the evaluation of f (x) is assumed
to be sequential, and parallelism is introduced in the optimization algorithm itself. This approach will be
appropriate whenever a good parallel implementation of f (x) is not available, or when the remaining costs
of the optimization algorithm (such as linear algebra) are significant. In addition, on a massively parallel
machine our approach might effectively be combined with parallel evaluation f (x) in a multilevel parallel

scheme.

Since we are interested in performing multiple evaluations of an arbitrary function f(x), or its
derivatives, concurrently, our parallel methods require a MIMD computer. This is a computer which can
perform different calculations on different data at the same time. By contrast, an SIMD computer, which
performs the same calculation on different data at the same time, will not be appropriate in general, since

each evaluation of a complex function will in general require a different sequence of arithmetic operations.

Almost any kind of MIMD computer is likely to appropriate for the algorithms discussed herein.
This includes both shared memory multiprocessors, or distributed memory multiprocessors such as hyper-
cubes or networks of computers. The reason is that the granularity of the parallel operations, one or more
evaluations of f(x), will overwhelm any communication or synchronization overhead cost once f (x)
requires even a moderate number of floating point operations. This issue is discussed in more detail in Sec-
tion 2.2. When # is not very large, the parallclization of the lincar algebra that we discuss may be more
appropriate for shared-memory multiprocessor than for distributed memory multiprocessors; this is dis-

cussed further in Section 2.3.

The methods discussed in this paper are all in the general class of quasi-Newton methods. These
include secant methods, and finite difference Newton methods. On sequential computers, secant methods
are generally used to solve (1.1) when function evaluation is expensive, the analytic Hessian V2f (x) is
unavailable, and » is not too large. They use an approximation to the Hessian matrix that is formed from
the gradient values of the iterates, and require n?2 storage and O (n?) arithmetic operations per iteration (see
e.g. Fletcher [1980], Gill, Murray, Wright [1981], Dennis & Schnabel [19831). They have been tradition-
ally used for problems with up to about 100 variables, although with the greater storage and speed of paral-
lel computers, they may become useful for larger dimensional problems. The finite difference Newton’s
method instead forms a finite difference approximation to the Hessian from function or gradient values, and
requires n? storage and O (n?) arithmetic operations per iteration. It is generally used when the analytic

Hessian is unavailable and function evaluation is inexpensive, for problems of up to 50 to 100 variables.

The remainder of this paper is concerned with constructing quasi-Newton methods that are appropri-
ate for parallel computers. In Section 2 we discuss the parallelization of the standard sequential secant
method for unconstrained optimization, the BFGS method. This topic could be considered somewhat

unexciting since no new optimization algorithm is involved. But it leads to effective use of parallel

processors, and may be all that is needed in many situations. Furthermore, it leads to the consideration of
two important techniques. The first is the speculative evaluation of function values introduced by Schnabel
[1987], which is also the basis for the new optimization algorithms discussed in Sections 3 and 4. The
second is the effective parallelization of linear algebra calculations. We compare various methods for
organizing these calculations, including the method of Han [1986] (derived in a different way) and discuss
which method is best in which MIMD environments. In this section we also summarize the results of some

simple experiments with our parallel BFGS algorithm on a Sequent shared memory multiprocessor.

The main contributions of this paper are contained in Section 3. There we further develop a class of
new methods, introduced in Byrd, Schnabel, and Shultz [1987], that evaluate the function, gradient, and
part of the finite difference Hessian at each iteration. These are appropriate in two situations, both of prac-
tical interest: when the function and analytic gradient are naturally computed together on one processor and
the number of processors, p, is between 2 and n, or when the gradient is approximated by finite differences
and 2n+1<p<(n2+3n)/2. We extend the development of the methods presented in Byrd, Schnabel, and

Shultz [1987], and present both convergence analysis and computational results for what appears to the

best of our new methods.

The methods discussed in Section 3 fall in between the BFGS method and a finite difference
Newton’s method. An important aspect of these methods is that, as we explain in Section 3, they are not
generally expected to result in a speedup of p over the BFGS method on p processors. This implies that on
a sequential computer, the new methods will generally be inferior to the BFGS in terms of total function
and derivative evaluations required. For this reason, this class of methods has apparently not been con-
sidered prior to the start of our work on this subject. But in many practical situations on parallel comput-
ers, the new methods will be shown to be superior, in terms of time required, to either the parallelization of
the BFGS discussed in Section 2 or a similar parallelization of a finite difference Newton’s method. So
these new methods are relevant as long as overall speed, and not just throughput measured in problems

solved per processor, is of interest.

In Section 4 we discuss how a different, more minor improvement can be made to the parallel BFGS
method of Section 2. It involves utilizing gradient values at failed trial points, which are available in the

parallel algorithm, to reduce the total number of iterations required by the algorithm. Computational

results show that some savings are possible. In some sequential codes, this gradient information is also
available and the same savings are possible. Finally, Section 5 summarizes our results and discusses

interesting directions for future research.

2. Parallelizing the Standard BFGS Method

2.1. The Sequential BFGS Method

Perhaps the most commonly used method for solving multivariate unconstrained optimization prob-
lems is the BFGS method. It is intended for problems where the number of variables is small enough that
the cost of storing an nxn matrix, and performing O (n2) arithmetic operations per iteration, is acceptable;
otherwise conjugate direction methods (see e.g. Gill, Murray, and Wright [1981] or Dennis and Schnabel
[1987]) are used. Generally the largest n for which the BFGS method is applied has been around 100, but
this limit may rise with the availability of faster (sequential or parallel) computers with larger memories.
The BFGS method is most appropriate when, in addition, f (x) is expensive and second derivatives are
unavailable. Otherwise Newton’s method or a finite difference Newton’s method may be faster, although

the BFGS is still often used in practice.

A high level description of a BFGS algorithm is given in Algorithm 2.1. This description hides many
details of the method, for example the calculations in the line search. But it is sufficient to indicate the
important characteristics and costs of the method, which in turn motivate the parallel methods discussed in
the remainder of this paper. For a more detailed description of the BFGS algorithm, see for example

Dennis and Schnabel [1983].

There are two main categories of expense in the BFGS algorithm : function and derivative evalua-
tion, and linear algebra calculations. The function evaluations occur in the line search, where f is
evaluated at one or more trial points x;+A;d; (with different values of At), culminating in a successful
point that becomes x¢+;. Computational experience has shown that hardly more should be required of the

successful point than that it decrease the value of . In this case, the first trial point is often successful, and

Algorithm 2.1 -- BFGS Method for Unconstrained Optimization

Given xo, f(x0), go= Vf(x¢) (or finite difference approximation), Boe R™" positive definite (e.g.
By=1I)

At iteration k :

{ calculate search direction }
solve By dy = —g; for d, { di is search direction }

{ line search }
repeat
choose value of steplength A
evaluate f (xe +Axdy) (and possibly V£ (xx + Aede))
until x; + Aedy is satisfactory next iterate

X1 2= Xg + A
evaluate gr = Vf (xx + M di) (or finite difference approximation) if not already evaluated during
line search

decide whether to stop ; if not :

{ update Hessian approximation }
Sk 2= Xk+1 — Xk 5 Vi i= Skl — Lk

— B, - BxsusiBe yiyk
Bk+1 = Bk STBkSk SkTyk { BFGS update }

rarely are more than two or three needed; an average of 1.2 - 1.5 trial points per iteration is typical for
many problems. Either during or after the line search, the gradient at the successful next iterate Xg+1 also is

calculated. (Very rarely, a gradient value may be calculated at an unsuccessful trial point during the line

search.)

Thus each iteration of the BFGS method generally consists of one or more function evaluations fol-
lowed by one gradient calculation at the last point where the function was evaluated. Often when f (x) is
expensive to evaluate, no procedure is available to calculate the gradient analytically. In this case, the gra-

dient at any point ¥ is approximated by the finite difference formula

VF®E) = & f(””‘,i‘) f&) @.1)

where ¢; is the i* unit vector and p; usually is set to macheps™ |%; 1. This approximation requires n

evaluations of f (x) in addition to f (¥). So when finite difference gradients are used, each iteration of the

BFGS method usually requires n+1 or n+2 evaluations of f (x).

Now we return to the linear algebra costs of the BEGS method. There are two main linear algebra
calculations in Algorithm 2.1, the calculation of the step direction d;, and the calculation of the new Hes-
sian approximation By,;. The calculation of By, involves a rank two update to B, that clearly requires a
small multiple of n2 operations. The calculation of d; appears to require the solution of a system of linear
equations, and hence O (n®) operations, at each iteration, but by either updating a factorization of By or by
directly updating the inverses of By, this cost can be reduced to a small multiple of n? operations. These
techniques as well as their consequences for parallel computation are discussed in Section 2.3. It will be
seen that the entire linear algebra cost of the BFGS method can be limited to 242 + O (n) multiplications,
and the same number of additions and subtractions, per iteration. An important feature of the BFGS
method is that each Hessian approximation B, is symmetric and positive definite, so that each direction d,,

is guaranteed to be a descent direction.

Since the linear algebra costs of the BFGS method are so small, it is easy for function and derivative
evaluation (o be the dominant cost. For example, if gradients are bein g approximated by finite differences
and if each function evaluation requires at least 20n multiplications and additions, then function and
derivative evaluation will account for at least 90% of the total cost of the method on a sequential computer.
(We are disregarding some other overhead costs, such as operating system costs, but for even moderate »
our estimates are accurate.) In fact many real problems we have encountered have function evaluations that
are far more expensive than this. Therefore in this paper we concentrate on parallel approaches that reduce
the cost of function and derivative evaluation by calculating multiple function or derivative values con-
currently. Section 2.2 discusses concurrent function and derivative evaluation in the context of the stan-
dard BFGS method, while Sections 3 and 4 discuss new optimization methods that utilize concurrent func-

tion and derivative evaluation.

It is still necessary to consider parallelization of the linear algebra calculations in the BFGS method,
for several reasons. First, if these calculation are performed sequentially, they may become a bottleneck on
a parallel computer. Second, there are some problems where n is rather large and function evaluation
rather cheap so that the linear algebra costs may be significant. We consider the parallelization of the

linear algebra calculations of the BFGS method in Section 2.3. While we don’t explicitly consider the

parallelization of the linear algebra calculations of our new methods of Sections 3 and 4, the techniques

discussed in Section 2.2 are directly applicable to these new methods as well.

2.2 Concurrent Function Evaluation in the Standard BFGS Method

In most problems where f (x) is expensive to evaluate, the gradient is not available analytically.
Instead it is calculated by the finite difference approximation (2.1). We restrict ourselves to this case in this
section. The new approaches of Section 3 will be seen to apply both to problems where Vf (x) is calcu-

lated analytically and where it is approximated by finite differences.

The most obvious source of parallelism in an algorithm that uses finite difference gradients is to per-
form the n extra evaluations of f (x) required by (2.1) concurrently. If p processors are available, this
requires [n/p| concurrent function evaluation steps, steps where each processor performs at most one
function evaluation. The drawback to this approach is that during the evaluation of f (x) in the line search,
the remaining p—1 processors are idle. If p <n, this is unimportant since each finite difference gradient
requires many concurrent function evaluation steps while each function evaluation requires just one or two,
so this simple approach gives good speedups for expensive f. If p=n, however, then the maximum
speedup that can be obtained on problems with expensive function evaluation from parallelizing only the
finite difference gradient calculation is about # /2, or at most half of optimal. This is because both function
and gradient evaluations require one concurrent function evaluation step, n—1 processors are idle during
each function evaluation, and there are at least as many function evaluations as gradient evaluations. A

more precise analysis is given below. If p >n, p—n processors are not utilized by this approach.

An improvement on the above strategy was suggested by Schnabel [1987]. It simply is, while one
processor is evaluating f (xx+Ardy) during the line search, to utilize the remaining p—1 processors to
evaluate max{p—1,n} components of Vf (xx+hedi). We refer to this as a speculative evaluation of (part
of) the finite difference gradient. If xz+Ad, is accepted as the next iterate, as it is most of the time, then
this gradient information is required by Algorithm 2.1 and only n+1-p function evaluations remain for the

finite difference gradient, none if p2n+1. If x;+Agdy is not accepted, then this gradient information is not

used by Algorithm 2.1, but nothing has been lost in comparison to the approach described in the previous
paragraph. Furthermore we show in Section 4 how to make some good use of the gradient information at

failed trial points by changing the optimization algorithm.

If the average number of trial points per iteration in the line search is ¢, then the strategy of con-

current, speculative finite difference gradient evaluation requires

n+l

— +d 2.2
B @2
concurrent function evaluation steps per iteration, as opposed to n+1+8 steps for the sequential method,

and

{ -z-} +1+38 (2.3)
for the first parallel method that parallelizes the finite difference gradient evaluation only. Thus when func-
tion evaluation is the dominant cost, the new method will make nearly optimal utilization of n+1 or fewer
processors as long as 8 << 1. (Recall that this is usually the case in practice.) The main cases which are not
addressed satisfactorily by this approach are situations when p is greater than n+1, or when the gradient is

calculated analytically. These are addressed in Section 3.

We have run experiments on a Sequent shared memory multiprocessor to show that the speedups
predicated by the above discussion are achieved in practice. We compared a parallel BFGS method utiliz-
ing speculative, concurrent finite difference gradient evaluations and the parallel linear algebra discussed in
Section 2.3 to a sequential BFGS algorithm. We chose 4 standard test problems with n=40, the extended
versions of Rosenbrock’s function, Powell’s singular function, Broyden’s tridiagonal function, and the
variably dimensioned function (see Moré, Garbow, and Hillstrom [1981]), with one modification : we
introduced a meaningless loop into each function evaluation so that the total cost of the function evaluation
would be about 20n flops, meaning that function evaluation would account for about 90% of the cost of the
entire optimization algorithm. On the 6 processors available to us, the timed speedups ranged from 5.7 to
6.0. These numbers were in close agreement to those predicted by equation (2.2), and underscore the point
that if p <n, function evaluation is expensive, and finite difference gradients are used, then it is easy to

parallelize the BFGS algorithm almost fully.

Finally, we note a different, related approach that has been suggested by several authors (Dixon
[1981], Dixon and Patel [1982], Patel [1982], Lootsma [1984], van Laarhoven [1985]) for utilizing multi-
ple processors during the line search in the BEGS (or Newton’s) method. It is to utilize the additional p—1
processors that are available while f (xx+Ardy) is being evaluated to evaluate f (x) at other trial points, in
the direction d; from x; and perhaps in other directions as well. As opposed to the strategies discussed
above, this strategy changes the optimization algorithm and, hopefully, sometimes results in a better next

iterate and thus a smaller total number of iterations being needed to solve the optimization problem.

An interesting question is whether this approach is superior to the approach discussed above, namely
using the extra processors to perform a speculative evaluation of part of the gradient during the line search.
Note that the cost per iteration of the "extra line search points" (ELSP) approach, assuming that finite dif-
ferent gradients are evaluated concurrently, is given by (2.3). Thus from (2.2), we see for example that if
p2n+1andif 8 = 8prgs =0 for the BEGS method and 8=0 (the best case) for the ELSP approach, then the
ELSP approach is superior to the speculative gradient method if and only if it requires no more than
(1+83rGs)/2 times as many iterations as the BFGS method. Thus, if dpres is close to 0, the ELSP method
would have to reduce the iteration count of the BFGS by almost 50% to be superior to it. We doubt that this
reduction is likely in general, but would be interested in computational results that address this issue. We
note finally that if a method using the ELSP approach could reduce the iteration count of the BFGS by a
factor of 2 by always considering n points in the line search, then this would in fact be a better sequential

algorithm than the standard BFGS as well.

2.3 Parallelizing the Linear Algebra Calculations in the BFGS Method

Aside from function and derivative evaluations, the dominant costs in the BEGS method are the rank
two update of B, and the calculation of the search direction dy that are performed at each iteration. As
mentioned before, these require at least O (n2) arithmetic operations. All the other calculations in the algo-

rithm require at most O () operations.

10

It is most convenient to think of the update and search direction calculation as being a pair performed
in that order, i.e. update By to By, then calculate di+1. There are several different ways to organize these
calculations. First, either the sequence of matrices (B} or the sequence of inverses of these matrices
{Bi'} may be kept. Sequencing B;! is reasonable because, from the Sherman-Morrison-Woodbury for-
mula, if By, is a rank two update of By, then BiZ} is a rank two update of Bi”!. An advantage of sequenc-

ing the inverses is that the calculation of the search directions dj becomes simple and cheap.

In addition, no matter whether By or its inverse is kept, the approximation can be kept either as the
symmetric and positive definite matrix B, or Bi™!, or as a factorization of this matrix. If the factorization is
kept then it can be updated directly into the factorization of the next approximation. The general approach
of updating factorizations was introduced by Gill, Golub, Murray, and Saunders [1974], while the special

form used for the BFGS was introduced by Goldfarb [1976].

These approaches to the linear algebra calculations of the BFGS method are summarized in Table
2.1. For each approach, Table 2.1 shows the basic operations that are involved, and their cost in multipli-
cations. (The number of additions and subtractions is the same as the number of multiplications, or nearly
so, in each case.) The upper-left variant is the most straightforward and includes a Cholesky factorization
at each iteration; it is the only variant that requires O (n3) operations. The upper-right variant is the
sequencing of Cholesky factorizations as derived by Goldfarb [1976]. It involves a rank one update to the
Cholesky factor Li of By followed by a sequence of Given’s rotations that reduce this updated matrix Ji4
to a new lower triangular matrix Ly, that is the Cholesky factor of By, (see Dennis and Schnabel [1983]
for details). A straightforward implementation requires 612 operations but Goldfarb showed that this can

be reduced to 2.5n2 by storing some additional vectors.

The lower-left variant results from the application of the inverse form of the BEGS update,

By = Bty SemBEY) S+ s (k-Be'y)" (se=Bitye) e ses
* s Ose)?

followed by the multiplication of BiZy by g4 to calculate di.q. If the calculations are organized as fol-

2.4)

lows

t = B grn

z =Sg—t+d

11

Table 2.1 -- Four Possible Implementations of the Linear Algebra Calculations :

By = By + rank-two-matrix
solve Biyi dis1 = —grar for diyy

Matrix Stored Unfactored Matrix Stored Factored
(B stored, updated to Byy1) (L lower triangular stored, for which B, = L; L7,
updated to L1 lower triangular for which By, = Ly 41 L)
Direct
(Bi) By =B, + rank-two Ji+1 =Ly + rank-one
Update Cholesky factor By Je+1 = Qi41 Les1 by Givens rotations
2 triangular solves to find dj.; 2 triangular solves to find di.;
3
%— + 2n2 6n2 (2.5n2)
(B! stored, updated to B¢y) (M stored for which B! = M, MY,
updated to My, for which B =M eniMEa)
Inverse
(BeY Bl = B¢ + rank-two Mpy1 = My + rank-one
Update Matrix-vector multiply to find dj.; 2 Matrix-vector multiples to find diy;
2n? 4n2

Y=y, 8=2Ty

=2+ % 5 2.5)
Bk—-gl = Bk—l + ZSZw + 5 2T
’Y=SkTgk+1 s 8=2T8k+1

dk+1 =r+vz +5Sk

then only one matrix vector multiplication, and a rank-two update of a symmetric matrix, are required, each

needing n* multiplications as long as only the lower (or upper) triangle of each Bj~! is stored.

The lower-right variant is o keep a factorization My M of Bi!, and update My by the rank-one for-

mula for the BFGS update of the factorization of the inverse to the M., for which MM, =B . In

12

this case there is no advantage in keeping the factors triangular since the cost of doing this would outweigh
the advantage in calculating d,;. This implementation of the BEGS has received less attention than the
others, although it has been discussed by several authors including Brodlie, Gourlay, and Greenstadt
[1973], Davidon [1975], and Powell [1987]. Recently Han [1986] derived the same implementation of the

BFGS linear algebra from a rather different viewpoint.

In exact arithmetic, these four variants of the BFGS method produce identical iterates, and differ
only in the number of operations required. In finite precision arithmetic, however, they may produce dif-
ferent iterates. Optimization folklore has long held that the unfactored inverse update may be less stable
than the factored direct update. Since the inverse updates appears more attractive for parallel computation
(see below), we decided to test this belief experimentally. We inserted each of the four variants of the
BFGS update described in Table 2.1 into the line search BFGS method in the UNCMIN package of Schna-
bel, Koontz, and Weiss [1985], and tested each on the test set of Moré, Garbow, and Hillstrom [1981]. The
differences in performance were negligible, averaging no more than 1-2% overall with little variation on
specific problems. J. Nocedal [1987, private communication] has obtained similar results on a broader set
of test problems that included some specifically designed to give the inverse variant difficulties. L. Grandi-

netti [1978] reports similar results.

Thus we consider any of the variants in Table 2.1 as valid points of departure for the construction of
parallel BFGS methods. It is possible that the difficulty with the inverse updates may be greater for the
DFP update, where there may be a larger tendency to produce numerically indefinite inverse approxima-
tions, and that this may have been the basis of the folklore about inverse updates that was then extended to

include the BFGS. This possibility was pointed out to us by J. Moré [1987].

Now we consider the implementation of the linear algebra of the BFGS method on parallel comput-
ers. The unfactored direct method remains least attractive alternative on parallel computers because of its
high operation count, coupled with the fact that we will see that some of the cheaper methods parallelize
excellently. The factored direct method also appears to be less atiractive than the two inverse methods.
This is because any straightforward implementation of this approach requires a sequence of O (n) vector-
vector operations, such as Given’s rotations. This leads to a considerably higher amount of synchroniza-

tion and communication than in the inverse methods, and also does not lead directly to matrix-vector

13

operations, which often lead to more efficient utilization of parallel computers.

On the other hand, both of the inverse approaches seem to lend themselves excellently to implemen-
tation on either shared or local memory multiprocessors. Both consist only of matrix-vector multiplications
and rank-one updates, which parallelize fully and can be implemented as block operations. On a shared
memory multiprocessor with p<n processors, we would expect the unfactored direct approach to require
time proportional to 2n%p , and the factored inverse approach to require time proportional to 4n%/p. Other
considerations, such as caching, seem similar for the two approaches. It is possible that the rank one
update of a triangular matrix, required by the unfactored inverse approach, would not parallelize quite as

well as the other operations in conjunction with some caching policies.

On a local memory multiprocessor, it appears that, in order to avoid excessive communication, the
unfactored inverse approach would need to store and update the full matrix Bg! (partitioned by rows)
rather than just the upper or lower triangle. This raises the total cost of the method to 352 operations which
narrows the gap between it and the factored inverse approach. Again the arithmetic operations should
parallelize fully for both approaches. In addition, both approaches appear to require the same amount of
information to be communicated per iteration, although the factored method seems to only require one syn-

chronization point whereas the unfactored method seems to require two.

From the above discussion, we would expect the unfactored inverse approach to be the best way to
implement the linear algebra operations of the BFGS method on a shared memory multiprocessor, It would
also appear to be the best approach for a local memory multiprocessor, but it should be tested against the
factored inverse approach. On a shared memory multiprocessor, the synchronization costs are small and
the parallel BFGS should be efficient for almost any values of # and p. For the parallelization of the
BFGS to be efficient on a Iocal memory multiprocessor, the number of floating point operations per proces-
sor per iteration, about 3n%/p , must significantly exceed the cost of sending either one or two messages that

contain a total of about 3» floating point numbers.

The parallel BFGS code mentioned at the end of Section 2.2 uses a parallel version of the unfactored
inverse approach. To test how well all the linear algebra calculations are parallelized, we ran this code on
a Sequent shared memory multiprocessor on the cheapest possible objective function, f (x) = xTx. Thus

the linear algebra calculations are the dominant cost. We also parallelized most of the O (n) computations,

14

although inner products were left sequential. We found that the speedup on 6 processors was only about
3.7for n =40, and 4.3 for n = 100. These results plus our results using fewer processors indicated that
approximately 12% of the code remained sequential for n = 40, while approximately 8% remained sequen-
tial when n = 100. This indicates the importance of parallelizing all the O (n) calculations, as well as the

O (n?) calculations, in a parallel implementation of the BEGS method.

3. Parallel Methods That Use Part Of The Finite Difference Hessian

3.1 Approaches to Using Partial Hessian Information

We now consider a class of methods that use parallel processors to evaluate part, but not all, of the
finite difference Hessian matrix V2f (x) along with the function and gradient at each trial point. Our orien-
tation is towards problems where function and derivative evaluation is the dominant cost. As discussed

previously, this is the case for many practical problems.

The approaches that we discuss fall in between the BEGS method, which uses only the function and
gradient at each trial point, and Newton’s method, which uses the function, gradient, and Hessian. Implicit
in this statement are two assumptions. First, that if we have enough processors to evaluate the function,
gradient, and Hessian in one concurrent function evaluation step, then we will do this and use a modern
Newton’s method based algorithm (see e.g. Moré and Sorensen [1983]). Second, that if we do not have
enough processors to do this, then we will probably not want to use extra concurrent function evaluation
steps to evaluate the full Hessian at each iteration. This second assumption is motivated by considerable
computational experience (see e.g. Schnabel, Koontz, and Weiss [1985]) that shows that the iterations
saved by using a finite difference Newton’s method algorithm rather than the BEGS method usually do not
offset the extra cost per iteration in function evaluations. The results of Section 3.3 will validate this

assumption.

Thus we consider the approach of partial Hessian evaluation whenever there are not enough proces-
sors to evaluate the function, gradient, and Hessian in one concurrent function evaluation step, but more

than enough to evaluate just the function and gradient. This occurs in two distinct situations, both of

15

practical interest. The firstis when the gradient is evaluated by finite differences and the number of proces-
sors is greater than n+1 but less than (n2+3n+2)/2. In this case, there are more than enough processors to
evaluate the function and finite difference gradient concurrently at each trial point, but not enough to evalu-
ate the function, finite difference gradient, and full finite difference Hessian. For example, on a 64 node
hypercube, this is the case whenever n € [10,63]. The second scenario we consider is when the analytic
gradient is readily computed along with the function value, so that it is most convenient to computer both
on one processor, but the analytic Hessian is not available. This is the case in a reasonable number of prac-
tical problems, for instance many optimal control problems. In this case, if the number of processors is
between 2 and n, we again have more processors than are needed for just the function and gradient, but not

enough for the full finite difference Hessian (which requires n additional gradient values) as well.

In either of these cases, the methods of this section use the excess processors to compute as large a
portion of the finite difference Hessian as possible at each iteration. An interesting aspect of these algo-
rithms is that while they will be seen to be worthwhile on parallel computers whenever the partial Hessian
evaluation uses otherwise unutilized processors, or if the goal is absolute speed (rather than speed per pro-
cessor), they are not in general the most efficient methods on sequential computers. Probably for this rea-

son, they have apparently not been considered prior to our investigations.

Byrd, Schnabel, and Shultz [1987] proposed a variety of approaches for utilizing partial Hessian
information, and examined some of their computational and theoretical properties. The general approach
that they found to be best is outlined in Algorithm 3.1. The remainder of Section 3.1 continues the

development of this approach. In Sections 3.2 and 3.3 we present new theoretical and computational

results about this type of method.

Algorithm 3.1 differs from the standard BFGS method, Algorithm 2.1, in several ways. First, the
speculative gradient evaluation discussed in Section 2.2 is performed at each trial point in the line search.
Second, speculative evaluation of some portion of the Hessian also is performed at each trial point in the
line search. Third, this partial Hessian information is incorporated into the Hessian approximation at each
iteration, following the standard BFGS update. We now briefly discuss the motivation for these steps and
some of the alternatives considered in Byrd, Schnabel, and Shultz [1987]. We also introduce some new

aspects of these steps.

16

Algorithm 3.1 -- Quasi-Newton Method for Unconstrained Optimization
Using Speculative Partial Hessian Evaluation

Given xo, f(x0), go= Vf(xq) (or finite difference approximation), Boe R™*" positive definite (e.g.
Bo=1I), g € [1,n-1]

At iteration k :

{ calculate search direction }
solve By dy, =—gi for dy { dy is search direction }

{ line search }
choose set of ¢ linearly independent vectors uy, - - -, Uy

repeat
choose value of steplength A,
evaluate f (x +Aedi), Vf (xx +Md) (or finite difference approximation), and finite
difference approximation to V2f (xx + Axdy) u; for eachie[1, ¢]
until x; + A d is satisfactory next iterate

Xi+1 = X + 7&15 dk

decide whether to stop ; if not :

{ update Hessian approximation }
Sk =X+l — Xk s Y = 8k+1 — Gk

5 o pn _ BrsesiBe | yiyF

Biy1 = By STBkSk + SkTyk [BFGS update }

Bp.1 = update of By, based on the finite difference information V2f (ery wi, i=1, -+, q
The partial Hessian information that is approximated in Algorithm 3.1 is V2f (x) u;, i=1,-- -, q.

Byrd, Schnabel, and Shultz considered two choices of the vectors #; that are selected at each iteration : a
set of ¢ unit directions, or a set of ¢ conjugate directions. They found that using conjugate directions led
to no significant advantage in the context of Algorithm 3.1, and that it caused a considerable extra linear
algebra cost. Therefore, we only consider the use of unit directions below. That is, at each iteration we

select {u; } by

choose a set T, of distinct integers between 1 and n

u; =ey, wherey; is the i member of T, . (3.1)

This means that our algorithm approximates ¢ columns of V2f (x), whose indices are given by Iy, at each

iteration. In our computational implementation, we choose the sequence of sets T, to cycle through the

17

indices 1ton.

If the function and gradient are evaluated analytically together on one processor, then column i of
the Hessian at X = xx +Mcdi can be approximated by calculating Vf (X +;e;) where W; =

macheps21x; |, and then setting

sz()?)e; =k = Vf(f*'uiif')“vf(f) (3.2)

Thus if pe[2, n] processors are available, then ¢ will be set to p—1 and q columns of the Hessian will be

evaluated using ¢ additional gradient evaluations.

If the gradient is not available analytically, then the only way to approximate the gradient or Hessian
is from finite differences involving function values. Let Iy = { Jje{1.2,---.n}, jéIt}. A new,

efficient way to approximate the gradient and ¢ columns of the Hessian at ¥ is to use the formulas

sz(f)ij = (hj);‘ - f(f'*‘uiei +aj€j)“f(f+uiei)—f(f+(1j€j)+f(f)

oy (3.3a)
VFGE): £ Iy = f(f+”f:f)_f(f) (3.3b)
forief‘k,jef‘k, where ; = macheps?1x; | and o = machepsV*1x; 1,
V2 (B); = () = f G +Biei +Bje)—f(x t&iei)_f(k—'*'ﬁjej)‘l'f(f) (3.30)
V2 (@) = ()i = f(ﬂB"e")"zﬁf)Jrf(’?_B"e‘) (3.3d)
fori, jeTy,i=j, where B; = macheps'31x; |,
Vi@ = = LEHhe) S & pie) (3:3¢)

for ieTy, with the same B;. Using these formulas, we can approximate the function, gradient and ¢

columns of the Hessian using (n +1—(%)) (¢+1) function evaluations. Thus if p processors are available,.

we will choose ¢ to the the largest integer for which (n +1—(%)) (g+1) <p. A side benefit of the above

formulas is that for each i eI, the i* component of the gradient is approximated by central differences
and hence is more accurate than the value given by the standard forward difference approximation (2.1), at

no additional cost in function evaluations.

18

The partial Hessian information is incorporated into the new Hessian approximation after the new
iterate xi. is selected. At this point Algorithm 3.1 potentially has g+1 new pieces of information to incor-
porate into the Hessian approximation : the standard secant equation

Bivi e =y (34
and the ¢ finite difference values

Bk+1 u = z;, i=1,...,q (3.5)
where u; = ey, and z; is the finite difference approximation to column ; of V2f (xx+1). We incorporate the
standard secant equation (3.4) first, and then the finite difference information (3.5). This order seems rea-
sonable because the standard secant equation gives, in some sense, information about the Hessian value in
between x; and x¢+1, while the finite difference information is at x;,; and hence is the most current infor-
mation. Updating in this order means that the standard secant equation may not hold at the ultimate value
of Bi+1, but in Section 3.2 we show that q-superlinear convergence still is retained. Byrd, Schnabel, and
Shultz [1987] also considered omitting, or only temporarily using, the standard secant equation (3.4), but

their computational results indicated that it is preferable to include it. This is the only possibility con-

sidered in this paper.

First we incorporate the standard secant equation (3.4) using the standard BFGS update. Then there
are various ways to incorporate the finite difference information (3.5). Byrd, Schnabel, and Shultz [1987]
show that using the PSB update is simply equivalent to overwriting the corresponding row and column with
the finite difference information. However their computational results show that using the BFGS update
may lead to a slightly more efficient algorithm, and it has the advantage of generating positive definite Hes-
sian approximations. So we will use BFGS updates to incorporate the finite difference Hessian informa-
tion. Byrd, Schnabel, and Shuliz [1987] only consider in detail the case q = 1, now we consider how to

incorporate (3.5) when ¢ >1.

We have considered two ways (o incorporate the partial finite difference Hessian information (3.5)

by BFGS updates. The first is to perform a sequence of ¢ standard BFGS updates, i.e.

19

Biy1i wi uf Bew; | zizf

Bisii — it ulz >0
k1 ul By, u; ul z; P
— (3.6)
Brsriv1 = | _
By, otherwise
fori=1,---,q, where B_kﬂ,l =By and Byyy = Ekﬂ,qﬂ‘ This procedure has the advantage of simplicity,

but the possible disadvantage that Bi,; will, in general, only obey the last finite difference equation of (3.5)

exactly.

The second alternative is to use multiple secant updates (Schnabel [1983]). Let U € R"*¢ have as
its columns u;, i=1,..., ¢, and let Z € R* have as its columns z;, i=1,...,q. If UTZ = UTV2f (xpe1) is
positive definite, we use the multiple (rank 2¢) BFGS update

Bis = Bint — Bin Ux (UEBLaUp)™ UFBrsy + Zi (UFZ) 1 ZF (3.7a)
This update causes By4; to satisfy all ¢ equations in (3.5), and to be positive definite given that By, is posi-
tive definite. If Vi = V2f (x341)U, exactly then the matrix U}Z; is symmetric. However, if we use finite
difference approximations for V; the discretization error can cause that matrix to not be symmetric. There-

fore, when using finite differences, we replace U¥V, with Y (UFVy + VIU,) in (3.7a).

If UTZ is not positive definite, we use a sequence of smaller multiple secant updates to partially
enforce (3.5). First we select the subset PD of I, consisting of indices i for which the equations of (3.5)
are consistent with positive definiteness, i.e.

PD ={i lie[l, q]and ufz;>0} .

Then we use a heuristic to select a maximal subset PD; of PD for which U 1z, is positive definite, where
U, has as its columns u; for all ie PDy, and Z, has as its columns z; for all i €PD;. Then we similarly
select a subset PD, containing some or all of the remaining members of PD , for which U%Z, is positive
definite, where U, and Z, are defined similarly. If any columns remain, we then select similar subsets
PD3, ..., PDy, until each i€ PD is in exactly one subset, and each UJZ; is positive definite. Then we use
the multiple BFGS formula (3.7a) to incorporate, in order, each of the equations By,; U ; = Z;,for j going
from m down to 1, choosing the backward order so that the maximal subset is incorporated last. That is,
we perform the updates,

Bistio1 = Biaty — Bisry Us (UFBpar; U) Ul By + Zi (UFZ)ZF , i=m downto1 (3.7b)

where §k+1,m = By and By = Ekﬂ,o. In the computational implementation, we replace the criterion

20

ulz;>0, which we have used above for simplicity of exposition, with the criterion ufz; >

macheps” 1u; 115 1z 1 |y,

We have tested algorithms both the first alternative (3.6) and the second alternative (3.7), and noticed
a slight advantage for the second, multiple secant approach. Therefore only this approach is considered in
the computational results presented in Section 3.3. In performing the convergence analysis of Section 3.2,
however, it turns out that the techniques we use to prove the convergence of the method using the multiple
secant approach (3.7) build upon the convergence analysis of the sequential update approach (3.6). There-
fore in Section 3.2 superlinear convergence of both of these methods of incorporating the partial finite

difference Hessian information is proved.

3.2 Convergence Properties of Partial Hessian Methods

We now consider the question of convergence of the new methods discussed in the previous section,
We are able to show that Algorithm 3.1 has the same properties of g-superlinear convergence and global
convergence on uniformly convex functions that the BFGS method has. In particular we are able to estab-
lish results similar to some of those of Powell [1976] and Dennis and Moré [1974], although we will make
use of machinery for analyzing secant methods developed by Byrd and Nocedal [1987]. The convergence

results in this section will be proved under the following assumptions.

Assumptions 3.1.

(1) The objective function f has a Lipschitz continuous second derivative on the level set

Q= {x:f (x)f (x0)}. Denote the Lipschitz constant by L .

(2) There are positive constants y; and [, such that forallz ¢ R* and all x £ Q

Mz H12<2TV2F (x)z Sppllz 112

Note that this implies that f has a unique minimizer x« in Q.

(3) The line search used with Algorithm 3.1 has the property that there exist positive constants 1; and

M2 such that at each iteration either

21

T
f Coetheds) < F Gy) e o G8)
or
J Gethiede) < f Qoo (o) di (3.9
is satisfied.

1 (Be—V2f Goe s 11
I |S)C I

(4) The line search has the property that if and Ilxg—x« |l are sufficiently small

then the steplength A, = 1 will be used.

(5) The Hessian information used for the extra updates is exact. That is, z; = V2f (xe+1)w; in (3.6), and

Z = V2f (x¢4+1)U in (3.7 a)

The line search assumption (3) is meant to be as general as possible. It can be shown that it is
satisfied for some My, M if A is chosen by any standard procedure such as the Wolfe conditions (3.17-18),
the Goldstein conditions, or any reasonable backtracking strategy. This condition is discussed in more
detail by Byrd and Nocedal [1987]. Assumption (4) was shown to be satisfied by the Wolfe conditions by

Dennis and Mor¢ [1976], and similar arguments show that the Goldstein conditions and backtracking also

satisfy Assumption (4).

Theorem 3.1. Consider Algorithm 3.1 with the finite difference updates made sequentially by (3.6), and
suppose that Assumptions 3.1 are satisfied. Then the sequence {x;} that is produced converges super-

lincarly to the solution xx.

Proof. In the sequential updating algorithm, the quasi-Newton approximation, B, is updated successively
by BFGS along step directions s, and finite difference directions u;,i = 1,...,g. For the moment we will
number the sequence of quasi-Newton matrices over the entire algorithm in order of computation without
regard to the type of update made. Therefore we denote By by B 41y and Bryy; by B (g +1y%-1y4iy. Like-
wise we denote the directions s, and u; by a sequence {r;} where s; =r+ne and, at iteration k,
U; = r+1yk+i - Bach update then has the form

Byiri™Bgy , wiw;"
N T g
it Byj Wit T

By=By-

where for each update

22

wj =G,r;. (3.10)
For the finite difference based update 5, = V2f (xx41), and for the step update

G; = ttsz (XT3) S d T.
In either case by the uniform convexity in Assumption (3.1.2)
w;Tr, _ r,TG;r;
r{ r./ = Ir' rl../ 2”15 (3.11)
i T it
and

i T2
Wi TWJ _ Gy
Wit r;

v <

TG S Ha. (3.12)
Now by Theorem 2.1 of Byrd and Nocedal [1987], if a sequence of BFGS updates is performed with (3.11)
and (3.12) satisfied for each update, then for any fraction p € (0,1) there exist constants B; and B, such that

for any positive integer m the bounds

ri" By
7, TTTTB oy T = B (3.13)
and
| IB(j)rj |
2 <Pz (3.14)

are satisfied for at least pm values of j in [1,m]. (Note that the quantity in (3.13) is the cosine of the angle
between r; and B ;yr;.) Now if (3.13) is true for 7; a step direction then that implies that it is a strong des-

cent direction. To ensure that many step directions are strong descent directions we take p to satisfy

+%

P20
Then by the quoted result on the BFGS, in k outer iterations (¢+1)k updates are made, of which
plg+1)k 2 (g+'2)k satisfy (3.13) and (3.14). Of these at least (q+%)k updates, at most gk are finite

difference updates so that at least Y5k of the step directions satisfy (3.13) and (3.14).

Now by Theorem 3.1 of Byrd and Nocedal [1987], if {x; } is generated by

X = Xe+Sk = X~ B IVF (xi)

where, for each k, at least some fixed fraction of the directions satisfy

st Bise
>
||sk||||B(,~)sk1|—BI

and

23

[Bgsg 11 <
“SkH -—-BZ

and the line search satisfies Assumption 3.1.3, then {x; } converges to x« r-linearly so that
26|ka—x* [l < oo, (3.15)

To show that the convergence is superlinear, note that since the quasi-Newton matrix B is updated

g+1 times at each point (3.15) implics that the matrices G; in (3.10) satisfy

Z‘bllG_;—Vl‘f(x*)ll s(q+1)L§6max[o= 11, U= 117 < oo,
Therefore by Theorem 3.2 of Byrd and Nocedal [1987], or alternatively by Theorem 3.4 of Dennis and
Moré [1974], it follows that

I I(Bk—V2f (X*))Sk I
s T

— 0.
>From this fact, superlinear convergence of the sequence {x;} follows by Theorem 2.2 of Dennis and

Moré [1974] and Assumption 3.1.4. (O

Now we consider the multiple secant update (3.7). It turns out that doing the multiple update using an

nxq matrix U is equivalent to a sequence of ¢ simple updates along a set of conjugate directions spanning

the column space of U .

Lemma 3.1. Consider a sequence of ¢ standard BFGS updates (3.6) to the positive definite matrix By
using directions uy, . . ., u, that are conjugate with respect to V2f (x441). Suppose that Assumption 3.1.5 is
satisfied. Then the resulting matrix §k+1,q+1 is the same matrix as results from a multiple update of the
form (3.7a) where the column space of the matrix U, is equal to the span of {uy,...,u,} as long as the

matrix UT V2f (x;4+1)U is positive definite.

Proof. First we note that the multiple update depends only on the column space of U. This is true since an
nxq matrix having the same column space as U must have the form UT, where T is a nonsingular gxgq

matrix. If we then replace U by UT and Z by ZT in (3.7a) it is easy to see that the result is unchanged.

Therefore for the rest of the proof we assume without loss of generality that the columns of U are

conjugate vectors uy, . .., ig. Since Z = V2f (xp41)U , conjugacy with respect to V2f (xg;) implies that

24

UTZ = diag (u,-Tz;)
so that the last term in the multiple update formula (3.7a) is
ZUTZY1ZT = 3 A0 aal (3.16)
B ;g Utz ’

If we consider sequential updating we see that the final matrix is

Biiiget = Brarp ?;Bkﬂ,iuiuiTBkH,i +§ ziz; T
+l,g+1 — +1,0 .
! 2w Braiti w1z

Note that the last sum is equal to the last term in (3.7a). Now consider the ¢ BFGS updates one at a time.
For a given i, if§k+1,,~ u; = z;forj <i then

B jwiuTz; ziziTuy

B_k i +14 =§k+1iu"‘ T
T U wTBraguw ozt

=Byiilhi,

since by conjugacy u;7z; =u;Tz =u;TV?f (x4)u; =0. Therefore, since each update causes
By, thio1 = ziy, after ¢ updates Bi1,g414; =2z; for i = 1,...,, so that the q secant equations are satisfied

just as for the multiple update.

Now consider the matrices

D= Bttt ' By ;
1= TB
= Ui” D1 Ui

and

D= By U (UBnUYUT By,
We have that
DU =BaU + ZUTZY'ZTU — Biyy 11U

=§k+1U + Zy—2y =Ek+1U =DyU.

Therefore since the matrix §k+1U has rank ¢ and D; and D, are rank ¢ matrices, it follows that both
matrices have the same range, the column space of Bi, U. Since they are symmetric they also have the
same null space. Together with the fact that DU = D,U this implies that D1 = D,. Therefore by (3.16) it

follows that the resulting matrices are equal. [

Note that for this result we have not used any of the Assumptions 3.1 except the last one. Although

we have stated this lemma for a complete multiple update of the form (3.7a), it is clear that the proof

25

applies to each of the partial multiple updates (3.7b) as long as each of the matrices UFV2f (x41)U; = UZZ;
in (3.7b) are positive definite. Thus the sequence of multiple updates (3.7b) is equivalent to a sequence of

single BFGS updates using conjugate directions in the same order.

Given the equivalence result of Lemma 3.1 the convergence of the multiple update version of our
algorithm follows immediately. Since the convergence analysis assumes positive definiteness of V2f (x),a

complete multiple update will always be possible in Algorithm 3.1, and we need only consider the form

(3.7a).

Theorem 3.2. Consider Algorithm 3.1 with the finite difference information incorporated using the multi-
ple update (3.7a) with the matrix U having full rank at each iteration, and suppose that Assumptions 3.1

are satisfied. Then the sequence {x; } produced converges superlinearly to the solution x« .

Proof. By Lemma 3.1, Algorithm 3.1 using a multiple update is equivalent to Algorithm 3.1 with a sequen-
tial update along a set of directions conjugate with respect V2f (xx+1) and spanning the column space of U.

By Theorem 3.1 that version of Algorithm generates a sequence which converges to x+ superlinearly. [

We have thus shown that both versions of Algorithm preserve the convergence properties of the
BFGS method. It is interesting to note that Theorems 3.1 and 3.2 put absolutely no conditions on the
choice of U except that it have full rank at each step. Of course this is true because we are only trying to
show that the extra updates do not interfere with the good properties of the BFGS. One might hope that
there is some theoretical result showing that the finite difference updates actually improve the convergence
behavior of the algorithm in some way, but we have not been able to find one. It is interesting to note that

Byrd, Schnabel and Shultz [1987] prove that if the step update is omitted (or removed after step computa-
tion) the resulting algorithm is {g—] -step quadratically convergent, and this result depends very strongly

on how the finite difference directions are chosen. However, as mentioned in Section 3.1 that method per-

forms more poorly in numerical experiments than the method analyzed here.

26

3.3 Computational Performance of Partial Finite Difference Hessian Methods

We have tested the partial Hessian Algorithm 3.1 on a variety of test problems. Byrd, Schnabel, and
Shultz [1987] report the results of tests for the case g=1 only, on a set of problems from Moré, Garbow,
and Hillstrom [1981] with small values of n. Here, we report on tests of Algorithm 3.1 for the full range g
=1to n. When ¢>1, we incorporate the partial finite difference Hessian information by the multiple
secant procedure (3.7). The test problems considered are a combination of problems from Mor, Garbow,
and Hillstrom [1981] and Conn, Gould, and Toint [1986], run with the values n = 20 and n = 40. They are
listed in Table Al in the appendix. The standard starting point was used for all problems except #15,
where (-0.5,0.5, - - - 0.5, 0.5) was used because our BFGS algorithm overflowed from the standard start

point (-1, 1,--- ~1, 1).

The implementation of Algorithm 3.1 that we tested was obtained by modifying the BFGS, line
search algorithm in the UNCMIN unconstrained optimization software package (Schnabel, Koontz, and
Weiss [1975]) in two ways. First, at each iteration the finite difference information update (3.7) was added
after the standard BFGS step update, as explained in Section 3.1. Second, the backtracking line search in

UNCMIN, in which each iterate satisfies the condition

J (1) < f o) + oV ()T dye (3.17)
for a=10"*, was augmented so that each iterate also satisfies

Vf Ges) die 2 BVS ()T d (3.18)
where $=0.9 (using Algorithm A6.3.1mod in Dennis and Schnabel [1983]). With condition (3.18), a posi-
tive definite step update is always possible. The BFGS algorithm used for comparison was the same algo-
rithm without any finite difference information. The Newton’s method algorithm used for comparison was
the line search, Newton’s method algorithm in UNCMIN: if the Hessian is indefinite, it uses a modified
Cholesky decomposition strategy described in Dennis and Schnabel [1983] to perturb the Hessian and cal-
culate the line search direction. The standard UNCMIN stopping conditions, described in Schnabel,

Koontz, and Weiss [1985], were used. The tests were run in double precision on a VAX 780.

We are primarily interested in the performance of this method on parallel computers when function

cevaluation is expensive. As discussed in Section 2.1, function evaluation does not have to be very expen-

27

sive before it swamps all other costs of the BFGS method on sequential computers. Even on a local
memory multiprocessor, once each function evaluation requires several thousand floating point operations,

the cost of function evaluations is likely to swamp all costs including synchronization and communication,

Thus we will evaluate Algorithm 3.1 for each value of ¢ by simply counting the number of trial point
function evaluations it requires to solve each problem, (i.c. the total number of points tried in the line
searches and all the iterations, plus the starting point). If there are enough processors to evaluate the func-
tion, gradient, and g columns of the finite difference Hessian in one concurrent function evaluation step,
then the number of trial point function evaluations is equivalent to the number of concurrent function
evaluation steps and is indicative of the cost of Algorithm 3.1 on a parallel computer, for expensive func-
tions. The speed of Algorithm 3.1 is then compared to the speed of the parallel BEGS method, imple-
mented as discussed in Section 2.2. This parallel BFGS method is assumed to use speculative gradient
evaluations so that the function and gradient are evaluated in one concurrent function evaluation step, but

any additional processors are unused.

The raw computational results for our method for various values of q, as well as for the BFGS
method and Newton’s method, are given in Tables A2 and A3 in the appendix for n = 20 and 40 respec-
tively. This data is summarized in Tables 3.1-3.3. Tables 3.1 and 3.2 give the simulated average speedups,
over the parallel BFGS method, that we obtained for each value of # and several values of q. These aver-
age speedups were computed by taking all the problems solved correctly by both methods for a given value
of ¢ and n, and dividing the total number of trial points required by the BFGS method on all these prob-
lems by the total number of trial points required by the new method on all these problems. This is a rea-
sonable measure of speedup under the assumptions that function evaluation is expensive and there are
enough processors to evaluate the function, gradient, and ¢ columns of the Hessian simultaneously. Prob-
lems not solved successfully for one or both methods are excluded when computing the speedups in Tables

3.1-3.3; we noticed no significant difference in the success rates of the various methods.

If the function and gradient are evaluated together, analytically, by one processor, then Tables 3.1-
3.2 reflect the use that Algorithm 3.1 could make of from 2 to n+1 processors. If the gradient is evaluated
by finite differences, then the "standard" BFGS method that is used as the comparison itself requires n+1

processors, and Tables 3.1-3.2 reflect the use that Algorithm 3.1 could make of from 2n+1 to (n%+3n+2)/2

28

Table 3.1 -- Average Speedup of Algorithm 3.1 over Parallel BFGS Method, n=20

q 1 2 3 4 5 10 20
Average Speedup 1.86 2.03 2.55 2.51 2.67 3.17 3.97
Ratio of Processors Needed
by Alg 3.1 vs. BFGS, both 2 3 4 5 6 11 21
with Analytic Gradients

Ratio of Processors Needed

by Alg 3.1 vs. BEGS, both 1.95 2.86 3.71 4.52 5.29 8.38 11.00
with Finite Diff, Gradients

Table 3.2--Average Speedup of Algorithm 3.1 over Parallel BFGS Method, n=40

q 1 2 3 4 5 10 20 40
Average Speedup 1.54 1.95 2.16 2.18 2.31 2.46 292 244
without problem 16 1.88 2.07 2.23 2.39 2.50 3.12 3.76 5.37

Ratio of Processors Needed
by Alg 3.1 vs. BEGS, both 2 3 4 5 6 11 21 41
with Analytic Gradients

Ratio of Processors Needed

by Alg 3.1 vs. BEGS, both 1.98 2.93 3.85 4.76 5.63 9.66 15.88 21.00
with Finite Diff. Gradients

Table 3.3 -- Average Speedup of Algorithm 3.1 over Parallel Newton’s Method

q 1 2 3 4 5 10 20 40

Average Speedup, n=20 1.98 1.52 1.42 143 1.55 1.23 0.87 -

Average Speedup, n=40 2.27 2.03 1.70 1.87 1.55 1.08 0.91 0.37
without problem 16 2.70 2.23 1.71 2.02 1.63 1.37 1.33 0.94

29

processors. The ratios of the number of processors required by Algorithm 3.1 to the number required by
BFGS are given in Tables 3.1-3.2 for both scenarios. It should be kept in mind that in the finite difference
case, the BFGS method which is the baseline is already a parallel algorithm that uses the speculative gra-
dient evaluation discussed in Section 2.2. It achieves an average speedup of 17.5 and 34.3 over the sequen-
tial, one processor BFGS algorithm in the cases n = 20 and n = 40, respectively. (This indicates that the
average number of trial points evaluated per iteration in the line search is about 1.2.) Thus Algorithm 3.1
actually achieves average speedups over the sequential BFGS method of 32.6 to 69.5 for g ranging from 1

to n when n =20, and 52.8 to0 83.7 (64.5 to 184.2 without problem 16) for ¢ ranging from 1 to n when n
=40,

There are two important conclusions from Tables 3.1-3.2. First, the new methods clearly derive a
considerable gain in speed from the extra Hessian information that they use. Second, this gain is not usu-
ally proportional to the ratio of processors (or equivalently, pieces of derivative information per iteration)
that they use. However, this was to be expected since we know that Newton’s method, which uses roughly
n/2 times as much information (and n or n/2 times as many processors) as the BEGS method, is not usu-
ally n/2 times as fast in terms of the number of trial points, or iterations, required. In fact on these test sets,
(finite difference) Newton’s method is, on the average, 4.7 and 7.1 times as fast as the BEGS method in the
cases n = 20 and n = 40, respectively. The new method does a reasonable job of obtaining an increasing
speedup as g changes from 1 to n. What is most satisfying is that the speedups are quite substantial for

small values of ¢ before leveling off; they are at least 50% of optimal for ¢ up to about 4.

There is one test problem, #16 (Variably Dimensioned Problem), where the performance of Algo-
rithm 3.1 is considerably worse than in any other case, especially when n = 40. This is the only problem
where the performance of Algorithm 3.1 with g=n is substantially worse than Newton’s method, and the
case g=1 has by far the worst performance of any test problem relative to the BEGS. We are continuing to
study our algorithm to attempt to understand this behavior and see if it can be avoided. Since this one
problem so strongly influences our average statistics in the case n = 40, Tables 3.2 and 3.3 also show what

the averages would be without problem 16.

Table 3.3 compares the performance of Algorithm 3.1, with various values of q, to the performance

of a parallel implementation of the finite difference Newton’s method, under the assumption that the

30

gradient is evaluated by finite differences and that there are just enough processors to evaluate the function,

finite difference gradient, and g columns of the finite difference Hessian simultaneously. This means p=
(n +1—~%) (g+1). The parallel finite difference Newton’s method is assumed to use the most efficient

parallel strategy. That is, at each trial point it computes the function, gradient, and as many elements of the
Hessian as the remaining processors allow. Then if the trial point is accepted as the next iterate, it uses

Ng—1 concurrent function evaluation steps to evaluate the remainder of the Hessian, where N, =

2
{ @ +(§1~?q3/n2‘§)22£1 24_1)} . Thus the total number of concurrent function evaluation steps required by the

parallel finite difference Newton’s method to solve a particular problem is
(Ng x (1 + number of iterations) + (number of unsuccessful trial points) , (3.19)
while for Algorithm 3.1 it is the total number of trial points for that problem. (Recall that the total number

of trial points for a problem is 1+ number of iterations + number of unsuccessful trial points.)

For each value of ¢ and n, the speedup shown in Table 3.3 is the total number of concurrent function
evaluations required by Newton’s method, measured by (3.19), divided by the total number of concurrent
function evaluation steps required by Algorithm 3.1, where the totals are taken over all the problems suc-
cessfully solved by both methods. Table 3.3 shows that for all values of ¢ <n/2, Algorithm 3.1 is more
efficient than a parallel finite difference Newton’s method, under the above assumptions. (If problem 16 is
included for n = 40 then the g=n/2 case is slightly worse than Newton’s method on the average, but
without it it is considerably better.) Thus for ¢ < n/2, it appears to be better to evaluate just as much of the
{inite difference Hessian per iteration as the processors allow in one concurrent function evaluation step,

rather than using extra concurrent function evaluation steps to evaluate the remainder of the Hessian.

Table 3.3 also shows that when ¢ = n, Algorithm 3.1 is slightly inferior to Newton’s method. The
two methods are very similar in this case, since each computes the full finite difference Hessian at each
iteration. The only difference is that Algorithm 3.1 does not use all this information if the approximation is
indefinite, while the finite difference Newton’s method uses the entire Hessian and employs the perturbed
Cholesky decomposition given in Gill, Murray, and Wright [1981] to compute the search direction when
the Hessian is indefinite. As might be expected, often there is no difference between the two methods but

occasionally discarding some Hessian information is somewhat detrimental to the performance of the

31

Algorithm 3.1. It might be advantageous to incorporate a scheme for using indefinite finite difference Hes-
sian information (perhaps the PSB or SR1 update) into Algorithm 3.1, but this would need to be done in a
way that doesn’t hurt the performance of the method for small ¢. We consider this a topic for further

research.

Finally, we also tested in detail the version of Algorithm 3.1 that uses the sequential scheme (3.6),
rather than the multiple update scheme (3.7), to incorporate the finite difference Hessian information. In
general, the multiple update approach required from 5% to 25% fewer iterations and function evaluations
to solve the same problems with the same value of ¢. For this reason, we recommend the multiple updat-

ing scheme.

4. Using Gradient Values at Unsuccessful Trial Points

In this section we discuss a relatively minor improvement that can be made to the parallel BFGS
algorithm discussed in Section 2 as well as to some sequential BFGS algorithms. It is to use the gradient
values that are computed at the unsuccessful trial points in the line search to reduce the total amount of
work required to solve the optimization problem. If the gradient is evaluated by finite differences, then we
assume that we are using the parallel BFGS algorithm of Section 2 with p2n+1 so that the entire finite
difference gradient is evaluated at each trial point. If the analytic gradient is a by-product of the function
evaluation on one processor, then the information we consider is available in a standard sequential BFGS
method. It is also available in any sequential unconstrained optimization code that requires the gradient to
be returned along with the function value; some unconstrained optimization software packages, for exam-
ple CONMIN (Shanno and Phua [1978]) and MINOS (Murtaugh and Saunders [1983]) are organized in

this way. The strategies discussed in this section are applicable to all these situations.

In all the above cases, even though the gradient is available at unsuccessful trial points, it is only
used in the line search. Schnabel [1987] proposed several further uses that might be made of this informa-
tion. Here we pursue the suggestion from Schnabel [1987] that we consider most promising. To facilitate
our discussion, let us use the simplified notation that the current iterate is x,, the current gradient is g, , the

current Hessian approximation is B, the current search direction is d, = —B;1d,, the current trial point is

32

X = Xx.+Ad, , and the gradient at x, is g;. We assume that x; is an unsatisfactory choice for the next iterate.

We will attempt to use the gradient at the unsuccessful trial point x, to immediately update the Hes-
sian approximation and compute a new search direction, even though we have not successfully concluded
the current line search. To motivate this strategy, consider the case when f is a positive definite quadratic.
It is still possible that x, is unsatisfactory because the Hessian approximation B, is inadequate. The stan-
dard BFGS algorithm would continue the line search until it calculates a satisfactory next iterate x, =
X.+Ad, , where A = o) for some o#1. Let g+ be the gradient at x4, and let B, be the BFGS update to B,
using the step from x, to x,. Also consider the matrix B, that would be generated as the BFGS update to

B, using the step from x, o x;.

The first key point is that B, = B,, that is the updates obtained from using x, and g, or using x, and
g:, are the same. This is because any two points along a line will generate the same secant equation, and
hence the same update, for a quadratic function. (Algebraically, x4—x, = o (x;~x.) and g,~g. =
0 (g:~g.).) The other key point is that since

X+=Bil gy =x.—Bi' g = x. =B lg. = x - Bl

with the first and third equalities coming from the secant equation and the second from B, = B,, we do not
have to compute x., or adopt x; as the new current iterate, to undertake the next iteration. Rather we can
replace B, with B, and continue iterating from x,, in the new direction —B,! 8. If a steplength of one is
used at the new iteration, then the same point x,, will be generated as if we had iterated from either x,

using the direction —B ;! g, or from x; using the direction -Blg,.
g g

For quadratic f, this strategy allows a BFGS algorithm to use only one trial point per update, while
likely requiring no more iterations than the standard BFGS method. If one is using the standard sequential
BFGS method, Algorithm 2.1, and the gradient is being evaluated by finite differences, then the saving is
small because the number of function evaluations per iteration is simply reduced from a maximum of 7-+2
to n+1. If, however, one is in any of the parallel or sequential scenarios mentioned at the start of this sec-
tion, where the gradient is computed along with the function value at each trial point, then this strategy has
the potential to cut the cost of some iterations in half (from two function-gradient pairs to one) which is a
more significant savings. The strategy also has the appealing property that it never selects an unsatisfac-

tory point x; as an iterate; rather it incorporates gradient information from x, that is equivalent to the

33

information we would have gotten at x.., and then continues iterating from x, which is the best point we

have so far.

When f is not quadratic, B, will not generally equal B, and the strategy of updating B, to B, and
replacing the search direction from x,, ~B: g, , with —B; ™ g, may not be a good one. Ideally, replacing
B with B, would seem to be a good idea if B, is closer to V2f (x.) than B, is in the direction d,, i.e. if

HW(V2f (xe)=B)d, 11 < U(V2f (x,)-B.)d, Il . 4.1
Since we don’t know V2f (x.), however, we try to determine whether B, is a better approximation to
V2f (x,) than B, is by seeing whether the quadratic model around x, using B, predicts f (x,) better than the
quadratic model around x, using B, does, i.e. if

If o)+ gXde +dIBid, — f(x)l < If(x.)+gld, +d'B. d, — Fxol. 4.2)
(Note that it is not necessary to form B, to check (4.2) since we know B, d, = 81—8:.) If (4.2) is satisfied,
then it seems advantageous to calculate B, and d; = —B,! g, and change the line search direction from X
to d;. Otherwise it seems better to continue the line search from x, in the direction d. in the normal

fashion.

We have tested this approach on the same problem set as was used in Section 3.3 (see Appendix Al).
We compared the normal BFGS algorithm, Alg, 2.1, to an algorithm that differs in that it updates the Hes-
sian approximation and switches line search directions as described above if the line search finds an unsa-
tisfactory point x, which fails (3.17) and satisfies (4.2). (In addition x; must satisfy (g,—g.)'d, >0 to
assure that the update will retain positive definiteness.) In this case the new strategy makes one other
alteration so that a satisfactory next iterate will eventually be found : rather than starting the line search in
the new direction d, with a steplength of one, it chooses the initial steplength in the new direction so that
the length of the next trial step is the same as if the line search had been continued in the old direction d;.
That is, if the next steplength in the direction d, would have been X, it chooses the initial steplength A in
the direction d; to be A I1d, |1/ 11d, I1. If the next iterate again fails (3.17) but satisfies (4.2) and the
positive curvature condition, then the Hessian and search direction is changed again with the steplength
again being reduced by this mechanism; otherwise the line search is continued with the new line search
direction. This approach is continued until a satisfactory next iterate is found. As soon as a satisfactory

next iterate is found, the next line scarch starts with steplength one, as usual.

34

On our test set, we found that this strategy reduced the average number of trial point function evalua-
tions needed to solve the problems by about 3% in the case n = 20, and by about 12% in the case n = 40.
This reduction is indicative of the reduction in computational cost in any situation where the gradient is
computed at each trail point, and function evaluation is the overriding cost. Recall from Section 3.3. that
for these test problems, only about 20% of the total iterations have unsuccessful trial points, so that at least
for n = 40 the observed savings are fairly satisfactory. If we use the ideal (and impossible in practice) test
(4.1) instead of (4.2) to decide when to use our new strategy, the average saving rises to 15% in the case n
= 20 but drops to 8% in the case n = 40. This indicates that there may be room for improvement in our
results if we can find a better heuristic than (4.2) to decide when to invoke our strategy of switching line

search directions.

While these savings are not dramatic, they point to a small improvement that can be made to the
BEFGS algorithm whenever the gradient is available at each trial point, i.e. both in the parallel BFGS
method discussed in Section 2 and in some sequential BFGS codes. It also leads us to be interested in

some related ideas that we mention in the next section.

5. Summary and Directions for Future Research

In Section 2 we have shown that it is fairly easy to efficiently utilize up to n+1 processors in the
standard BFGS algorithm for unconstrained optimization, in two different situations. First, if function
evaluation is expensive and gradients are evaluated by finite differences, then by evaluating the gradient
along with the function at every trial point one can generally realize at least 70-80% efficiencies with up to
n+1 processors. Secondly, if # is large enough that the linear algebra costs of the method are significant,
then it is also fairly easy to parallelize the linear algebra efficiently for up to n processors. This causes us
to reexamine the various implementations of the BFGS update, and to chose the unfactored update of the
inverse matrix which appears to be the cheapest sequential and parallel approach and to have no noticeable

finite precision difficulties in comparison to the other possible approaches.

Several variations on the approaches of Section 2 merit investigation. One is whether it would be

better to use extra processors to evaluate multiple points simultaneously during the line search, as proposed

35

by several authors including Dixon [1981], Dixon and Patel [1982], Patel [1982], Lootsma [1984], and van
Laarhoven [1985], rather than performing speculative finite difference gradient evaluations. A second
issue is whether the modification of the BFGS method recently proposed by Powell [1987] has a significant

advantage in practice, and if so, how it (different) linear algebra is best implemented on a parallel com-

puter.

In Section 3 we have examined the situation when function evaluation is expensive and there are
more processors than are needed to evaluate the function and gradient simultaneously. This occurs if the
gradient is evaluated by finite differences and the number of processors, p, is greater than n+1, or if the
gradient is evaluated analytically along with the function on one processor and p>1. If there are enough
processors so that we can evaluate the function, gradient, and (finite difference) Hessian concurrently, then
we would use a p»arallel implementation of Newton’s method. If not, then we have proposed using new
optimization algorithmé that use the function, gradient, and g <n columns of the finite difference Hessian at
cach iteration. These can be thought of as falling in between the BFGS method and Newton’s method. We
have shown that the performance of these methods for different values of q varies between the perfor-
mance of the BFGS method and Newton’s method as might be expected. We have also shown that if there
are just enough processors to evaluate the function, gradient, and g columns of the finite difference Hes-
sian, and our new method is more efficient than either the parallel BEGS method or a parallel implementa-

tion of the finite difference Newton’s method.

There are several interesting research questions regarding these new methods that use part of the
Hessian at each iteration. One is whether it would be better to use an update that allows indefiniteness,
such as the SR1, to incorporate the finite difference information, rather than using the BFGS as we have
done. This question is especially intriguing in light of the recent results of Conn, Gould, and Toint [1986]
that report very good computational performance for a trust region method using the SR1. A second issuc
is whether some different procedure for choosing the finite difference directions {u;} that are used at each
iteration would be preferable. An example would be choosing these directions based upon the recent step
directions. Another more general issue is whether there are better ways to utilize additional processors
than evaluating part of the Hessian, for example using the extra evaluations to form a higher order model

such as the tensor model introduced by Schnabel and Frank [1984].

36

.

In Section 4 we have considered the use of gradient information at unsuccessful trial points in the
line search. Such information is available in our parallel methods that evaluate function and gradient infor-
mation simultaneously, and also in several well-known sequential unconstrained optimization packages.

We have shown that we can modify the BFGS algorithm to utilize this information in a way that leads to

small gains in efficiency.

This work on using derivative information from unsuccessful trial points might be extended in a
number of directions. In the parallel methods that use partial Hessian information, one could also consider
whether the Hessian information from unsuccessful trial points could be utilized. In this connection one
might want to consider evaluating the partial Hessian information at the current iterate x, rather than at the
trial point x,. We also have not yet considered the case when p<n where only part, rather than all, of the

finite difference gradient is evaluated at the unsuccessful trial point.

37
6. References

K. W. Brodlie, A. R. Gourlay, and J. Greenstadt [1973], "Rank-one and rank-two corrections to positive
definite matrices expressed in product form," Journal of the Institute of Mathematics and its Applications
11, pp. 73-82.

R. H. Byrd and J. Nocedal [1987], "A tool for the analysis of quasi-Newton methods with application to
unconstrained minimization," Technical Report ANL/MCS-TM-103, Mathematics and Computer Science
Division, Argonne National Laboratory.

R. H. Byrd, R. B. Schnabel, and G. A. Shultz [1987], "Using parallel function evaluations to improve Hes-
sian approximations for unconstrained optimization," Technical Report CU-CS-361-87, Department of
Computer Science, University of Colorado at Boulder.

A.R. Conn, N. I. M. Gould, and Ph. L. Toint [1986], "Testing a class of methods for solving minimization
problems with simple bounds on the variables,” Research Report CS-86-45, Faculty of Mathematics,
University of Waterloo, Waterloo, Canada.

W. C. Davidon [1975], "Optimally conditioned optimization algorithms without line searches", Mathemati-
cal Programming 9, pp. 1-30.

J. E. Dennis Jr. and J. J. Moré [1974], "A characterization of superlinear convergence and its application to
quasi-Newton methods", Mathematics of Computation 28, pp. 549-560.

J. E. Dennis Jr. and R. B, Schnabel [1983], Numerical Methods for Nonlinear Equations and Uncon-
strained Optimization, Prentice-Hall, Englewood Cliffs, New Jersey.

J. E. Dennis Jr. and R. B, Schnabel [1987], "A view of unconstrained optimization,” Technical Report CU-
CS-376-87, Department of Computer Science, University of Colorado at Boulder, to appear in Handbooks
in Operations Research and Management Science, Vol. 1, Optimization, G. L. Nemhauser, A. H. J. Rin-
nooy Kan, and M. J. Todd, eds., North-Holland, Amsterdam.

L. C. W. Dixon [1981], "The place of parallel computation in numerical optimisation I, the local problem",
Technical Report No. 118, Numerical Optimisation Centre, The Hatfield Polytechnic.

L. C. W. Dixon and K. D. Patel [1982], "The place of parallel computation in numerical optimisation IV,

parallel algorithms for nonlinear optimisation”, Technical Report No. 125, Numerical Optimisation Centre,
The Hatfield Polytechnic.

R. Fletcher [19801, Practical Method of Optimization, Vol 1, Unconstrained Optimization, John Wiley and
Sons, New York.

P. E. Gill, G. H. Golub, W. Murray, and M. A. Saunders [1974], "Methods for modifying matrix factoriza-
tions," Mathematics of Computation 28, pp. 505-535.

P. E. Gill, W. Murray, and M. H. Wright [1981], Practical Optimization, Academic Press, London.

D. Goldfarb [1976], "Factorized variable metric methods for unconstrained optimization", Mathematics of
Computation 30, pp. 796-811.

L. Grandinetti [1978], "Factorization versus nonfactorization in quasi-Newtonian methods for differenti-
able optimization,” Report N5, Dipartimento di Sistemi, Universita della Calabria.

38

S. P. Han [1986], "Optimization by updated conjugate subspaces," in Numerical Analysis: Pitman
Research Notes in Mathematics Series 140, D.F. Griffiths and G.A. Watson, eds., Longman Scientific and
Technical, Burnt Mill, England, pp. 82-97.

F. A. Lootsma [1984], "Parallel unconstrained optimization methods,” Report No. 84-30, Department of
Mathematics and Informatics, Technische Hogeschool Delft.

J.J. Moré¢, B. S. Garbow, and K. E. Hillstrom [1981], "Testing unconstrained optimization software", ACM
Transactions on Mathematical Software 7, pp. 17-41.

J.J. Mor¢ and D. C. Sorensen [1983], "Computing a trust region step", SIAM Journal on Scientific and Sta-
tistical Computing 4, pp. 553-572.

B. A. Murtagh and M. A. Saunders [1983], "MINOS 5.0 User’s Guide," Technical Report SOL 83-20,
Department of Operations Research, Stanford University.

K. D. Patel [1982], "Implementation of a parallel (SIMD) modified Newton method on the ICL DAP",
Technical Report No. 131, Numerical Optimisation Centre, The Hatfield Polytechnic.

M. J. D. Powell [1976], "Some global convergence properties of a variable metric method without exact
line searches", in Nonlinear Programming, R. Cottle and C. Lemke, eds. AMS, Providence, R.L., pp. 53-
72.

M. J. D. Powell [1987], "Updating conjugate directions by the BFGS formula,” Mathematical Program-
ming 38, pp. 29-46.

R. B. Schnabel [1983], "Quasi-Newton methods using multiple secant equations,” Technical Report CU-
CS-247-83, Department of Computer Science, University of Colorado at Boulder.

R. B. Schnabel [1987], "Concurrent function evaluations in local and global optimization," Computer
Methods in Applied Mechanics and Engineering 64, pp. 537-552.

R. B. Schnabel and P. Frank [1984], "Tensor methods for nonlinear equations", SIAM Journal on Numeri-
cal Analysis 21, pp. 815-843.

R. B. Schnabel, J. E. Koontz, and B. E. Weiss [1985], "A modular system of algorithms of unconstrained
minimization", ACM Transactions on Mathematical Software 11, pp. 419-440.

D. F. Shanno and K. H. Phua [1978a], "Matrix conditioning and nonlinear optimization," Mathematical
Programming 14, pp. 145-160.

P. J. M. van Laarhoven [1985], "Parallel variable metric methods for wunconstrained optimization,"
Mathematical Programming 33, pp. 68-81.

Table A1 -- Test Problem Set

Problem Problem Source of
Number Name Problem

1 Trigonometric MGH26

2 Extended Rosenbrock MGH21

3 Extended Powell Singular MGH?22

4 Chebyquad MGH35

5 Chained Singular CGT5

6 Generalized Wood CGT7

7 Chained Wood CGT8

8 Generalized Broyden Tridiagonal (a) CGT10

9 Generalized Broyden Tridiagonal (b) CGT11
10 Generalized Broyden Banded (a) CGT12
11 Generalized Broyden Banded (b) CGT13
12 Toint-Broyden 7 Diagonal CGT14
13 Toint Trigonometric CGT16
14 Generalized Cragg and Levy CGT17
15 Generalized Brown CGT21
16 Variably Dimensioned MGH25
17 Penalty Function I MGH23
18 Penalty Function II MGH24

CGT = Conn, Gould, Toint [1986]
MGH = Mor€, Garbow, Hillstrom

[1981]

39

Table A2 -- Test Results, n=20

Problem Iterations
Number Unsuccessful Trial Points
BFGS Algorithm 3.1 Newton’s
q=1 g=2 gq=3 gq=4 gq=5 ¢=10 g=20 Method
1 47 28 27 23 23 16 12 12 12
6 5 9 13 15 12 4 6 6
2 46 94 80 84 72 68 45 24 24
21 19 26 38 55 44 16 8 8
3 48 75 47 41 36 26 24 15 15
19 1 2 4 6 0 4 0 0
4 54 49 47 -- 32 34 -- -- -
15 8 13 -- 12 19 -- - -
5 308 57 41 37 31 29 27 20 20
21 4 2 3 1 0 0 0 0
6 164 133 134 103 107 101 86 54 51
32 23 56 48 49 77 50 38 28
7 271 50 118 66 58 51 69 48 49
33 10 45 37 21 14 59 27 27
8 56 34 24 20 16 16 14 10 10
4 0 0 0 0 0 0 0 0
9 21 20 14 13 11 10 7 5 5
3 0 0 0 0 0 0 0 0
10 125 32 25 20 18 17 15 12 12
6 0 0 0 0 1 0 0 0
11 107 22 15 13 12 10 9 7 7
5 0 0 0 0 0 0 0 0
12 58 27 18 15 12 12 9 6 6
S 0 0 0 0 0 0 0 0
13 42 36 18 19 25 19 18 11 8
113 98 19 17 32 25 17 13 3
14 141 43 - - - - - -- 19
13 14 - -- - - - - 0
15 6 8 8 8 7 6 5 4 4
1 0 0 0 0 0 0 0 0
16 21 117 72 38 42 39 30 50 18
7 4 2 3 0 5 8 15 0
17 140 91 72 51 56 51 45 33 33
52 12 1 4 1 2 0 5 4
18 226 89 90 72 77 75 58 60 62
42 13 14 6 11 5 7 23 25

-- = overflow

Table A3 -- Test Results, n=40

Problem Iterations
Number Unsuccessful Trial Points
BFGS Algorithm 3.1 Newton’s
g=l ¢g=2 g¢g= g=4 g=5 q=10 ¢=20 g=40 Method
1 84 46 68 62 53 48 17 17 15 --
1 12 22 36 26 13 4 18 29 --
2 47 129 102 108 90 97 83 46 24 24
22 36 39 84 77 69 70 30 8 8
3 48 95 70 56 49 45 25 24 15 15
19 0 1 3 9 37 0 2 0 0
4 -- 248 240 130 180 164 -- -- -- -
-- 34 36 31 51 40 -- -- - -
5 300 95 56 50 39 33 32 28 20 20
22 7 0 0 0 1 5 5 0 0
6 194 217 203 155 152 140 108 122 58 --
32 55 69 99 147 120 112 86 35 --
7 ok 97 146 152 42 36 77 77 51 49
Hk 23 97 93 14 11 45 53 36 32
8 59 48 35 28 24 22 19 14 10 10
4 0 0 0 0 0 5 0 0 0
9 41 27 21 17 15 13 10 7 5 5
22 0 0 0 0 0 0 0 0 0
10 172 47 33 28 25 22 18 15 12 12
8 0 0 0 0 0 0 0 0 0
11 74 27 24 18 15 13 11 9 7 7
5 0 0 0 0 0 0 0 0 0
12 116 36 26 22 19 17 12 9 6 6
6 0 0 0 0 1 0 0 0 0
13 68 23 22 20 24 26 26 25 24 -
229 22 19 14 23 24 38 39 58 --
14 149 61 - -- 34 34 - - 22 19
14 12 -- -- 27 30 - -~ 11 0
15 6 8 8 9 9 9 6 5 4 4
1 0 0 0 0 0 0 0 0 0
16 27 292 170 74 101 86 130 120 259 22
7 6 1 11 9 6 74 60 287 0
17 142 144 90 70 64 69 55 46 34 36
41 3 4 6 1 5 2 0 7 7
18 419 87 49 46 45 38 33 27 23 23
21 14 7 10 13 10 5 1 1 1

** = jteration limit (500), -- = overflow

Unclassified
GECURAITY CLASSIFICATION OF TS PAGE

AN
REPORT DOCUMENTATION PAGE
1a. REPOAT SECURITY CLASSIFICATION . 1. RESTRICTIVE MARKINGS
Unclassified .
2a SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY QF REPORT
Approved for public release;
P ! \ X . .
5. CECLASSH)CATION/OCWNGR&DINQ SCHEDULE dlStrlbUthﬂ unllmlted
4 PEAFQAMING QRGANIZATION REPORT NUMBERIS) S, MONITORING QRGANIZATION REPOART NUMBERI(S)
CU-CS~396-88
68 NAME OF PERFQRMING QRGANIZATION B, QFFICE SYM8QLWL 7a NAME OF MONITORING CRGANIZATION
. . (1! applicadlie)
University of Colorado U.S. Army Research Office
6¢e. AQORESS (City. State and ZIP Code) Th. AOQORESS (City, State ana ZIP Cade!
Computer Science Department i :
Campus Box 430 Post Office Box 12211
: Research Triangle Park, NC
Boulder, CO 80309-0430 8 ’ 27709
Sa. NAME QF FUNOING/SPONSQORING ’ Bb. OFFICE SYMEO0L 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBEAR
CAGANIZATION (It appiicabie) :
DAAG-29-84-K-0140
8c. ADODRESS (City, State and ZIP Code) 10. SOURCE QF FUNDING NOS.
’ ‘ PROGRAM PROJECT TASK WOAK UNIT
ELEMENT NQ. NG, NQ. NQ.
11, TITUE ({nciude Security Classification)
Parallel Quasi-Newton Methods for Unconstrdined
12, PERSONAL AUTHOR(S) Optimization
Richard H. Byrd, Robert B. Schnabel, Gerald A. Shultz
13a. TYPE QF REPORT 13b. TIME COVERED 14. DATE OF REPQRT (Yr., Mo.. Day/ 15. PAGE COUNT
Technical FROM To 88/04/01 - 41

18, SUPPLEMENTARY NOTATION

17. COSATI CODES 18, SUBJECT TERMS (Continue on reverse if necessary and idently dy dlock numder)
FIELD GROUP Su8. GAR. Parallel computation, unconstrained optimization,
quasi-Newton methods

19. ASBSTRACT (Continue on reverse if necessary and identify by block numoer)

ﬂ We discuss methods for solving the unconstrained optimization problem on parallel computers, when the
number of variables is sufficiently small that quasi-Newton methods can be used. We concentrate mainly,
but not exclusively, on problems where function evaluation is expensive. First we discuss ways to parallel-
ize both the function evaluation costs and the linear algebra calculations in the standard sequential secant
method, the BFGS method. Then we discuss new methods that are appropriate when there are enough pro-
cessors to evaluate the function, gradient, and part but not all of the Hessian at each iteration. We develop
new algorithms that utilize this information and analyze their convergence properties. We present compu-
tational experiments showing that they are superior to parallelization of either the BFGS method or
Newton’s method under our assumptions on the number of processors and cost of function evaluation.
Finally we discuss ways to effectively utilize the gradient values at unsuccessful trial points that are avail-
able in our parallel methods and also in some sequential software packages.

20, OISTRIBUTION/AVAILABILITY OF A8STRACT 21. ABSTRACT SECURITY CLASSIFICATION
uncrassiFigo/unuimiTED K same as rRer. (J otic useas O Unclassified
22a. NAME QF RESPONSIBLE INDIVIOUAL . 22b. TELEPHONE NUMBER 22¢. QFFICE SYMBQ L
. {inciude Area Code)
Dr. Jagdish Chandra 619/549-0641
DD FCRM 1473, 83 APR EDITION QF 1 JAN 73 iS OBSOLETE. Unclassified

19 SECURITY CLASSIFICATION OF TH!S PAGE

