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Abstract

To investigate the interactions of extensibility and parallelism in database query processing, we have developed a
new dataflow query execution system called Volcano. The Volcano effort also provides an environment for
rescarch and education in database systems design, heuristics for query optimization, and resource allocation. At
the current time, Volcano is operational on a variety of hardware platforms, currently on single-processor and
shared-memory machines, and soon also on distributed-memory parallel machines.

Following a design principle well-established in operating systems research but not exploited in most database sys-
tem designs, Volcano provides mechanisms to support policies. Policies can be set by a human experimenter or by a
query optimizer. The separation of mechanisms and policies has contributed to the extensibility and modularity of
modern operating systems, and may make the same contribution to extensible database systems.

Volcano uses a standard interface between algebra operators, allowing easy addition of new operators and operator
implementations. Operations on individual items, e.g., predicates, are imported into the query processing operators
using support functions. The interface to support functions allows both compiled and interpreted query execution.
The semantics of support functions is not prescribed; any data type including complex objects and any operation can
be realized. Thus, Volcano is extensible with new operators, algorithms, data types, and type-specific methods.

For efficiency in single-process query execution, transfer of data and control between operators is based on the
iterator paradigm, also called lazy evaluation, demand-driven dataflow, or synchronous pipelines. In addition to an
operator set comparable to the query processing engines of most database systems, Volcano includes two novel
meta-operators. Meta-operators do not perform semantic data transformations but provide query processing con-
trol. The choose-plan meta-operator supports dynamic query evaluation plans that allow delaying selected optimi-
zation decisions until run-time, e.g., for embedded queries with free variables. The exchange meta-operator sup-
ports intra-operator parallelism on partitioned datasets and both vertical and horizontal inter-operator parallelism,
translating between demand-driven dataflow within processes and data-driven dataflow between processes.

All operators, with the exception of the exchange operator, have been designed, implemented, debugged, and tuned
in a single-process environment, and parallelized using the exchange operator. Even operators not yet designed can
be parallelized using this new operator if they use and provide the iterator interface. Thus, the issues of data mani-
pulation and parallelism have become orthogonal, making Volcano the first implemented query execution engine
that effectively combines extensibility and parallelism.

1. Introduction

In order to investigate the interactions of extensibility, efficiency, and parallelism in database query process-
ing, and to provide a testbed for database systems research and education, we have designed and implemented a new
query evaluation system called Volcano. It is intended to provide an experimental vehicle for research into query
execution techniques and query optimization heuristics rather than a database system ready to support applications.
It is not a complete database system as it lacks features such as a user-friendly query language, a type system for
instances (record definitions), a query optimizer, or catalogs. Because of this focus, Volcano is able to serve as

experimental vehicle for a multitude of purposes, all of them open-ended, which results in a combination of require-



ments that have not been integrated in a single system before. First, it is modular and extensible to enable future
research, e.g., on algorithms, data models, resource allocation, parallel execution, load balancing, and query optimi-
zation heuristics. Thus, Volcano provides an infrastructure for experimental research rather than a final research
prototype in itself. Second, it is simple in its design to allow student use and research. Modularity and simplicity
are very important for this purpose because they allow student working on projects without understanding of the
entire design and all its details, as well as several concurrent student projects. Third, Volcano’s design does not
presume any particular data model; the only assumption is that query processing is based on transforming sets of
items using parameterized operators. To achieve data model independence, the design very consistently separates
set processing control (which is provided and inherent in the Volcano operators) from interpretation and manipula-
tion of data items (which is imported into the operators, as described later). Fourth, to free algorithm development,
tuning, and initial experimentation from the intricacies of parallelism but also to allow experimentation with parallel
query processing, Volcano can be used as a single-process or as a parallel system. Single-process query evaluation
plans can already be parallelized easily on shared-memory machines and soon also on distributed-memory
machines. Fifth, Volcano is realistic in its query execution paradigm to ensure that students learn how query pro-
cessing is really done in commercial database products. For example, using temporary files to transfer data from
one operation to the next as suggested in most text books has a substantial performance penalty, and is therefore
used neither in real database systems nor in Volcano. Finally, Volcano’s means for parallel query processing could
not be based on existing models since all methods explored to-date have been designed with a particular data model
and operator set in mind. Instead, our design goal was to make parallelism and data manipulation orthogonal,
which means that the mechanisms for parallel query processing are independent of the operator set and semantics,
and that all operators, including new ones, could be designed and implemented independently of future parallel exe-

cution.

Since its very purpose is to allow future extensions and research, Volcano is continuously being modified and

extended!. Among the most important recent extensions were the design and implementation of two meta-
operators. Both of them are not only new operators but also embody and encapsulate new concepts for query pro-

cessing. They are meta-operators since they don’t contribute to data manipulation, selection, derivation, etc., but

! In fact, it is currently being used in five academic institutions, three industrial firms, and one non-profit or-
ganization.



instead provide additional control over query processing that cannot be provided by conventional operators. The
choose-plan operator implements dynamic query evaluation plans, a concept developed for queries that must be
optimized with incomplete information [50]. For example, it is not possible to reliably optimize an embedded query
if one of the constants in the query predicate is actually a program variable and therefore unknown during compila-
tion and optimization. Dynamic plans allow preparation of multiple equivalent plans, each one optimal for a certain
range of actual parameter values. The choose-plan operator selects among these plans at run-time while all other
operators in Volcano’s operator set (present or future) are entirely oblivious to the presence and function of the
choose-plan operator. The second meta-operator, the exchange operator, implements and controls parallel query
evaluation in Volcano. While operators can exchange data without the exchange operator, in fact within processes
as easily as a single procedure call, this new operator exchanges data across process and processor boundaries. All
other operators are implemented and execute without regard to parallelism; all parallelism issues like partitioning
and flow control are encapsulated in and provided by the exchange operator. Thus, data manipulation and parallel-
ism are indeed orthogonal in Volcano [53]. Beyond the cleanliness from a software engineering point of view, it
was also very encouraging to see that this method of parallelizing a query processing engine did indeed allow linear

or near-linear speedup [55].

This article is a general overview describing the overall goals and design principles. Other articles on Vol-
cano were written on special aspects of the system, e.g. [48-50, 53, 55, 56, 69]. These articles also include experi-

mental performance evaluations of Volcano’s techniques and algorithms, in particular [55].

The present article is organized as follows. In the following section, we briefly review previous work that
influenced Volcano’s design. A detailed description of Volcano follows in Section 3. Section 4 contains a discus-
sion of extensibility in the system. Dynamic query evaluation plans and their implementation are described in Sec-
tion 5. Parallel processing encapsulated in the exchange module is described in Section 6. Section 7 contains a

summary and our conclusions from this effort.
2. Related Work

Since so many different systems have been developed to process large datasets efficiently, we only survey the
systems that have significantly influenced the design of Volcano. Our work has been influenced most strongly by
WiSS, GAMMA, and EXODUS. The Wisconsin Storage System (WiSS) [27] is a record-oriented file system pro-

viding heap files, B-tree and hash indices, buffering, and scans with predicates. GAMMA [31, 34] is a software



database machine running on a number of general-purpose computers as a backend to a UNIX host machine. It was
developed on 17 VAX 11/750’s connected with each other and the VAX 11/750 host via a 80 Mb/s token ring.
Eight GAMMA processors had a local disk device, accessed using WiSS. The disks were accessible only locally,
and update and selection operators used only these eight processors. The other, diskless processors were used for
join processing [41]. Recently, the GAMMA software has been ported to an Intel iPSC/2 hypercube with 32 nodes,
each with a local disk drive [34]. GAMMA uses hash-based algorithms extensively, implemented in such a way
that each operator is executed on several (usually all) processors and the input stream for each operator is parti-
tioned into disjoint sets according to a hash function [30, 31, 41]. A detailed description of GAMMA can be found

in [31, 41], more information on its performance in [32, 34, 42].

The limited data model and extensibility of the GAMMA machine led to the search for a more flexible but
equally powerful query processing model. The operator design used in the GAMMA database machine software
gives each operator control within its own process, leaving it to the networking and operating system software to
synchronize multiple operators in producer-consumer relationships using flow-control mechanisms. This design,
while working extremely well in GAMMA, does not lend itself to single-process query evaluation since multiple
loci of control, i.e., multiple operators, cannot be realized inside a single process without special pseudo-multi-
process mechanisms such as threads. Therefore, GAMMA's operator and data transfer concepts are not suitable for

an efficient query processing engine intended for both sequential and parallel query execution.

EXODUS [18, 20, 22] is an extensible database system with some components following the "tool-kit"
approach, e.g., the optimizer generator [44-46] and the E database implementation language [98-100], and other
components built as powerful but fixed components, e.g., the storage manager [19]. Originally, EXODUS was con-
ceived to be data-model-independent, i.e., it was supposed to support a wide variety of data models, but later a
novel, powerful structurally object-oriented data model called Extra was developed [21, 130]. The concept of data
model independence as first explored in EXODUS has been retained in the Volcano project and the design and
implementation of its software. During the design of the EXODUS storage manager, many storage and access
issues explored in WiSS and GAMMA were revisited. Lessons learned and tradeoffs explored in these discussions
certainly helped in forming the ideas behind Volcano. The design and development of E influenced the strong
emphasis on iterators for query processing. Part of the original motivation for developing Volcano was the desire

for a data-model-independent query execution engine as complement to the EXODUS optimizer generator.



A number of further conventional (relational) and extensible systems have influenced our design. Ingres [114,
115} and System R [2, 24] have probably influenced most database systems, in particular their extensible follow-on
projects Starburst [61, 105] and Postgres [116, 119]. It is interesting to note that independently of our work the
Starburst group has also identified the demand-driven iterator paradigm as a suitable basis for an extensible single-
process query evaluation architecture [60] after using it successfully in the System R relational system. GENESIS

[S, 6] early on stressed the importance of uniform operator interfaces for extensibility and software reusability.

XPRS [117, 118] was the first project aiming to combine extensibility and parallelism, Its basic premise is to
implement Postgres on top of RAID disk arrays [92] and the Sprite operating system [90, 91]. XPRS and GAMMA
differ basically in four ways. First, GAMMA supports a purely relational data model while XPRS supports an
extensible relational model, Postgres. Second, GAMMA'’s main form of parallelism is intra-operator parallelism
based on partitioned data sets. XPRS, on the other hand, will rely on bushy parallelism, i.e., concurrent execution of
different subtrees in a complex query evaluvation plan. Third, GAMMA relies heavily on hashing for joins and
aggregations whereas XPRS will have a mainly sort-based query processing engine [118]. Fourth, GAMMA is built
on the premise that distributed memory is required to achieve linear speed-up [15] while XPRS is being imple-

mented on a shared-memory machine.

Both XPRS and Volcano combine parallelism and extensibility, but XPRS is a far more comprehensive pro-
ject than Volcano. In particular, XPRS includes a data model and a query optimizer. On the other hand, Volcano is
more extensible precisely because it does not presume a data model. Therefore, Volcano could be used as the query
processing engine in a parallel extensible-relational system such as XPRS. Moreover, it will eventually include a

data-model-independent optimizer generator to form a complete query processing research environment.
3. Volcano System Design

In this section, we provide an overview of the design of Volcano. At the current time, Volcano is a library of
about two dozen modules with a total of about 15,000 lines of C code. These modules include a file system, buffer
management, sorting, B*-trees, and two algorithms each (sort- and hash-based) for natural join, semi-join, all three
outer joins, anti-join, aggregation, duplicate elimination, union, intersection, difference, anti-difference, and rela-
tional division. Moreover, two modules implement dynamic query evaluation plans and allow parallel processing of

all algorithms listed above.



All operations on individual records are deliberately left open for later definition. Instead of inventing a
language in which to specify selection predicates, hash functions, etc., functions are passed to the query processing
operators to be called when necessary with the appropriate arguments. These support functions are described later
in more detail. One common and repeating theme in the design of Volcano is that it provides mechanisms for query
evaluation to allow selection of and experimentation with policies. The separation of mechanisms and policies is a
very well-known and well-established principle in the design and implementation of operating systems [76], but it
has not been used as extensively and consistently in the implementation of database systems. It has contributed
significantly to the extensibility and modularity of modern operating systems, and may make the same contribution

to extensible database systems.

Currently, Volcano consists of two layers, the file system layer and the query processing layer. The former
provides record, file, and index operations including scans with optional predicates, and buffering; the latter is a set
of query processing modules that can be nested to build complex query evaluation trees. This separation can be
found in most query evaluation systems, e.g., RSS and RDS in System R [2, 24] and Core and Corona in Starburst
[61, 105]. System catalogs or a data dictionary are not included in Volcano since the system was designed to be
extensible and independent from any particular data model. We start our description at the bottom, the file system,

and then discuss the query processing modules.
3.1. The File System

Within our discussion of the Volcano file system, we also proceed bottom-up, from devices through buffer
management to data files and indices. The existing facilitics are meant to provide a backbone of a query processing

system, and are designed such that modifications and additions can easily be accomplished as the need arises.

Volcano stores data on disk devices. Devices are viewed as arrays of fixed-sized pages. The page size is a
compile-time constant, e.g., 1 KB. UNIX files are used to simulate devices, similar to WiSS. It is quite straightfor-
ward to port Volcano to using raw devices or other primitive operating system services and has been done success-
fully for performance evaluations. It is assumed that a contiguous array of pages can be read or written with a sin-

gle read or write system call.

The buffer manager is the most interesting part of the file system. Because buffer management is
performance-critical in any database system, the Volcano buffer manager was designed to include fnechanisms that

can be used most effectively and efficiently in a large variety of contexts and with a wide array of policies. In



consequence, its features include multiple buffer pools, variable-length units of buffering which are called clusters

in Volcano, and replacement hints from the next higher software level.

Buffer pools can be created and destroyed dynamically, and multiple buffer pools can exist concurrently.
When a device is mounted, i.e., created or opened, the device is assigned to a buffer pool. When a pool is created, it
is created with a norm size, e.g., 512 KB, and an actual size of 0. The buffer pool grows with each new request that
cannot be satisfied with the resident clusters until the actual size reaches the norm size and page replacement com-
mences. In the case of a buffer fault, it first is checked whether the cluster at the bottom of the LRU stack is of the
same size as the requested cluster. If so, it is replaced. If not, or if there is no free cluster in the stack because the
buffer is overcommitted, space for the new cluster is allocated. For this purpose, there are more cluster descriptors
in the buffer pool than the norm size of the pool, and the buffer pool can grow beyond its norm size. After the
requested cluster is loaded into the buffer, the buffer deallocates clusters from the bottom of the LRU stack until the

actual size is below or equal to the norm size, or until the LRU stack is empty.

A number of investigations concerned database buffer replacement strategies, as surveyed in [36]. Buffer
replacement in systems with variable-size pages was recently investigated by Sikeler [109]. To comment only on
one investigation, Chou perforrﬁed an extensive comparison of replacement algorithms using simulations driven by
real database system reference traces [25, 26]. However, a close examination of Chou’s work reveals that most of
the benefits of Chou’s algorithm DBMIN could be realized by using hints from higher level software, e.g., the query
processing routines, for each cluster when a cluster is pinned or released?. Thus, when pinning or unpinning a clus-
ter in the buffer, a hint can be given to Volcano’s buffer manager whether to keep or to toss this cluster. This hint is
used by the buffer manager to decide whether to insert the cluster at the top or at the bottom of the LRU replace-
ment list. In effect, the replacement policy is a switched LRU/MRU policy. The LRU policy is implemented in

such a way that dirty clusters are paged out slower than clean ones since their replacement cost is higher.

Incidentally, this hint facility is similar to the LOVE/HATE hint used in Starburst’s buffer manager [61].
However, while the default in Starburst is LOVE (LRU), the default in Volcano is toss (MRU). The MINIX operat-

ing system [122] also inserts pages either at the top or the bottom of a LRU stack for data and indirect pages,

2 Chou’s algorithm requires a hint when a scan is opened about which of a set of access patterns can be expect-
ed. Chou’s algorithm also includes load control by detecting an overcommitted buffer and the danger of thrashing.
However, we believe that load control can easily be added to Volcano simply by estimating hot set sizes [101] and
keeping track of their sum, or, even simpler, by observing and limiting disk utilization [25].



respectively. The decision is static, however, and does not accept hints from the user level.

The buffer manager’s hint facility is an excellent example of Volcano’s design principle to implement
mechanisms to support multiple policies. The buffer manager only provides the mechanisms, i.e., pinning, page
replacement, and reading and writing disk pages, while the higher-level software determines the policies depending
on data semantics, importance, and access patterns. It is surprising that database buffer managers derive replace-
ment decisions from observed reference behavior in spite of the fact that this behavior is generated by higher-level
database software and thus known and foreseeable in advance within the same system, albeit different subcom-

ponents.

Hints to a shared resource manager like a buffer manager always carry two dangers. First, in accepting a hint,
the resource manager must frust the hinting entity. While this may be a problem for an operating system that has to
serve a wide user community, a database buffer manager only serves database modules which are designed and
written by the same people as the buffer manager code. Therefore, in the case of a database buffer manager, even in
an extensible database system, trust should not be an issue. The second danger is that hints may be generated
locally while the buffer manager should improve I/O performance globally. This can result in a buffer client, e.g., a
scan, being too "shy" about asking for more resources in times of low contention, and too "demanding” during high
contention. In other words, the local decision which hint to generate is typically oblivious to the global situation.
This is the reason why the replacement hints are hints rather than directives or absolutes: the buffer manager is free
to ignore any hint if the global situation requires it to do so. Another issue is that local decisions are made without
knowledge of the global reference behavior. For example, if each database transaction touches a certain catalog
page once, but only once, no transaction will issue a keep hint. However, it is clearly worthwhile to keep this page
in the buffer. Therefore, the buffer manager must make some decisions independent of the hint facilities, and these
decisions do indeed rely on observing reference behavior. In the Volcano buffer manager, a page is automatically

switched to keep if it is reclaimed from the free list.

Files are composed of records, clusters, and extents. Since file operations are invoked very frequently in any
database system, all design decisions in the file module have been made to provide basic functionality with the
highest attainable performance. A cluster, consisting of one or more pages, is the unit of I/O and of buffering, as
discussed above. The cluster size is fixed for each file individually. Thus, different files on the same device can

have different cluster sizes. Records must fit into clusters to avoid the difficulties and inefficiencies of spanning



records, i.e., records that are divided over multiple clusters. Since clusters can be very large, however, this is not a
restriction for most applications. Disk space for files is allocated in physically contiguous extents, because extents

allow very fast scanning without seeks and large-chunk read-ahead and write-behind.

Records are identified by a record identifier (RID), and can be accessed directly using the RID®. There are
two modes of record insertion. If a near-RID is provided as a hint with the insertion request, the new record is
inserted into the old record’s cluster if possible. This hint facility allows user-level clustering of records and
objects. By default, the record is inserted into an arbitrary cluster of the file. For this purpose the file descriptor
includes a hint pointing to a cluster that has some free space. If no such cluster can be found, a new cluster is

appended to the file.

For fast access to a large sets of records, Volcano supports not only individual file and record operations but
also scans that support read-next and append operations. There are two interfaces to file scans; one is part of the file
system and is described momentarily; the other is part of the query processing level and is described later. The first
one has the standard procedures for file scans, namely open, next, close, and rewind. The next procedure returns the
main memory address of the next record. This address is guaranteed (pinned) until the next operation is invoked on
the scan. A file scan supports the notion of a current record and current cluster, the cluster which contains the
current record. The current record is the record returned by the last next call. The current cluster is fixed in the
buffer while the scan is open. Thus, getting the next record within the same cluster does not require calling the

buffer manager and can be performed very efficiently in about 100 instructions.

For fast creation of files, scans support an append operation. It allocates a new record slot, either in the
current cluster or in a new cluster appended to the end of the file, and returns the new slot’s main memory address.
It is the caller’s responsibility to fill the provided record space with useful information, i.e., the append routine is
entirely oblivious to the data and their representation. Since append can use the current cluster in most cases
(without invoking the buffer manager) and since it does not perform any copying, it is about as fast as the next

operation.

3 A RID contains device, page, and record numbers plus the cluster size. The cluster size allows direct access
to the cluster without any additional information, e.g., about an open file.



Scans also support optional predicates. Predicates are passed to the scan by means of a function entry point
and a typeless pointer which serves as a predicate argument. The predicate function is called by the next procedure
with the argument and a record address. Selective scans are the first exarhple of support functions mentioned briefly
in the introduction. Instead of determining a qualification itself, the scan mechanism relies on a function imported

from a higher level.

Arguments to support functions can be used in two ways, namely in compiled and interpreted query execu-
tion. While Katz has shown that compiled query plans result in better execution performance [68], interpretation
provides easier portability and allows startup with less overhead. In compiled scans, i.e., when the predicate evalua-
tion function is available in machine code, the argument can be used to pass a constant or a pointer to several con-
stants to the predicate function. For example, if the predicate consists of comparing a record field with a string, the
comparison function is passed as predicate function while the search string is passed as predicate argument. In
interpreted scans, i.e., when a general interpreter is used to evaluate all predicates in a query, they can be used to
pass appropriate code to the interpreter. The interpreter’s entry point is given as predicate function. Thus, both
interpreted and compiled scans are supported with a single simple and efficient mechanism. Volcano's use of sup-
port functions and their arguments is another example for a mechanism that leaves a policy decision, in this case

whether to use compiled or interpreted scans, open to be decided by higher-level software.

Indices are implemented currently only in the form of top-down B*-trees [58]. Hash indices will be added
shortly since they provide superior performance for exact-match lookup. Multi-dimensional indices may be added
at a later date. In B*-trees, the sizes of internal index nodes and leaf clusters can be different multiples of a page.
We expect that larger nodes and leaves will provide better performance for large keys, even without key compres-
sion. A leaf entry consists of a key and information. The information part typically is a RID, but it could include
more or different information. The key and the information can be of any type; a comparison function must be pro-
vided to compare keys. The comparison function uses an argument equivalent to the one described for scan predi-
cates. Permitting any information in the leaves gives more choices in physical database design. It is another exam-

ple of Volcano providing a mechanism to allow a multitude of designs and usage policies.

BT-trees support scans similar to files, including predicates. In addition, B*-tree scans allow seeking to a par-
ticular key, and setting lower and upper bounds. Finally, B*-trees also support an append operation for fast loading.

Its design assumes that entries are appended in ascending key order. Root-to-leaf traversals are necessary only

10



when appending a new leaf to the B*-tree. The append operation includes parameters for free space in B*-tree

nodes and leaves.

For intermediate results in query processing (later called streams), Volcano uses special devices called virtual
devices. The difference between virtual and disk devices is that data pages of virtual devices only exist in the
buffer. As soon as such data pages are unpinned, they disappear and their contents are lost. Thus, Volcano uses the
same mechanisms and function calls for permanent and intermediate data sets, easing implementation of new opera-

tors significantly.

In summary, much of Volcano’s file system is conventional in its goals but implemented in a flexible,
efficient, and compact way. The file system supports basic abstractions and operations, namely devices, files,
records, B*-trees, and scans. It provides mechanisms to access these objects, leaving many policy decisions to
higher-level software. High performance was a very important goal in the design and implementation of these
mechanisms since future performance studies and parallelization only make sense if the underlying mechanisms are
efficient. Furthermore, research into implementation and performance tradeoffs for extensible database systems and

new data models is only relevant if an efficient evaluation platform is used.
3.2. Query Processing

The file system routines described above are utilized by the query processing routines to evaluate complex
queries. Queries are expressed as query plans or algebra expressions; the operators of this algebra are query pro-
cessing algorithms and we call the algebra an executable algebra as opposed to logical algebras, e.g., relational
algebra. We will describe the operations using relational terminology hoping that this will assist the reader. We
must point out, however, that the operations can be viewed and are implemented as operations on sets of objects,
and that Volcano does not depend on assumptions about the internal structure of such objects. In fact, we intend to
use Volcano for query processing in an object-oriented database system [47, 54]. The key to this use of Volcano is

that set processing and interpretation of data items are separated.

At the present time, Volcano does not include mechanisms to create query plans. In a complete database sys-
tem, plans are created in a sequence of steps illustrated in Figure 1. The output of the optimization step is called
query evaluation plan, access plan, or simply plan. It can be expressed in many languages, e.g., in ASL used in

System R [77] or as complex algebra expression as in Volcano.
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Figure 1. Query Preparation.

In Volcano, all algebra operators are implemented as iterators, i.e., they support a simple open-next-close pro-
tocol. Basically, iterators provide the iteration component of a loop, i.e., initialization, increment, loop termination
condition, and final housckeeping. These functions allows "iteration" over the results of any operation similar to the
iteration over the result of a conventional file scan. Associated with each iterator is a state record type. A state
record contains arguments, €.g., the size of a hash table to be allocated in the open procedure, and state, e.g., the
location of a hash table. All state information of an iterator is kept in its state record and there are no "static” vari-
ables; thus, an algorithm may be used multiple times in a query by including more than one state record in the
query.

All manipulation and interpretation of data objects, e.g., comparisons and hashing, is passed to the iterators by
means of pointers to the entry points of appropriate support functions. Each of these support functions uses an argu-
ment allowing interpreted or compiled query evaluation, as described earlier for file scan predicates. Without the
support functions, Volcano’s iterators are empty algorithm shells that cannot perform any useful work. In effect,
the split into algorithm shells and support functions separates control and iteration over sets from interpretation of
records or objects. This separation is one of the cornerstones of Volcano’s data model independence and extensibil-

ity which will be discussed Section 4.

Iterators can be nested and then operate similar to coroutines [28]. In queries involving more than one opera-
tor (i.e., almost all queries), state records are linked together by means of input pointers. The input pointers are also
kept in the state records. They are pointers to structures that represent the input- or subplans. Such a structure,
called QEP structure for query evaluation plan, includes four pointers. These point to the input operator’s state

record and to the entry points of the three procedures implementing the operator (open, next, and close). Figure 2
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Figure 2. QEP Structures and State Record.
shows one operator in a complex tree. Purpose and capabilities of the filter operator will be discussed shortly; one
of its possible functions is to print items of a stream using a function passed to the filter operator. The QEP struc-
ture at the top gives access to the functions as well as to the state record. With a pointer to this QFEP structure, the
functions can be called and their local state can be passed to them as a procedure argument. The functions them-
selves, e.g., open-filter, can use the input pointer contained in the state record to invoke the input operator’s func-

tions.

Using Volcano’s standard form of iterators, an operator does not need to know what kind of operator pro-
duces its input, or whether its input comes from a complex query tree or from a simple file scan. We call this con-
cept anonymous inputs or Streams. Streams are a simple but powerful abstraction that allows combining any
number and any kind of operators to evaluate a complex query, a second cornerstone to Volcano’s extensibility.
Together with the iterator control paradigm, streams represent the most efficient execution model in terms of time
(overhead for synchronizing operators) and space (number of records that must reside in memory concurrently) for

single-process query evaluation.

Calling open for the top-most operator results in instantiations for the associated state record’s state, e.g., allo-

cation of a hash table, and in open calls for all inputs. In this way, all iterators in a query are initiated recursively.
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In order to process the query, next for the top-most operator is called repeatedly until it fails with an end-of-stream
indicator. The top-most operator calls the next procedure of its input if it needs more input data to produce an out-
putrecord. Finally, the close call recursively "shuts down" all iterators in the query. This model of query execution
matches very closely the one being included in the E database implementation language [98] and the query executor

of the Starburst relational database system [60].

A number of query and environment parameters may influence policy decisions during opening a query
evaluation plan, e.g., query predicate constants and system load information. Such parameters are passed between
all open procedures in Volcano with a parameter called bindings. This is a typeless pointer that can be used to pass
information for policy decisions. Such policy decisions are implemented using support functions again. For exam-
ple, the module implementing hash join allows dynamic determination of the size of a hash table — another exam-
ple of the separation of mechanism and policy. This bindings parameter is particularly useful in dynamic query

evaluation plans, which will be discussed later in Section 5.

The tree-structured query evaluation plan is used to execute queries by demand-driven dataflow. The return
value of a next operation is, besides an status indicator, a structure called NEXT RECORD which consists of a RID
and a record address in the buffer pool. This record is pinned in the buffer. The protocol about fixing and unfixing
records is as follows. Each record pinned in the buffer is owned by exactly one operator at any point in time. After
receiving a record, the operator can hold on to it for a while, e.g., in a hash table, unfix it, e.g., when a predicate
fails, or pass it on to the next operator. Complex operations that create new records, e.g., join, have to fix their out-
put records in the buffer before passing them on, and have to unfix their input records. Since this could result in a
large number of buffer calls (one per record in each operator in the query), the interface to the buffer manager was
recently redesigned such that it will require a total of two buffer calls per cluster on the producer side (e.g., a file
scan) independently of how many records a cluster contains, and only one buffer call per cluster on the consumer

side [55].

A NEXT RECORD structure can point to one record only. All currently implemented query processing algo-
rithms pass complete records between operators, €.g., join creates new, complete records by copying fields from two
input records. It can be argued that creating complete new records and passing them between operators is prohibi-
tively expensive. An alternative is to leave original records in the buffer as they were retrieved from the stored data,

and compose NEXT REC pairs, triples, etc., as intermediate results. Although this alternative results in less
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memory-to-memory copying, it is not implemented explicitly because Volcano already provides the necessary
mechanisms, namely the filter iterator (see next subsection) that can replace each record in a stream by a RID-

pointer pair or vice versa.

In summary, demand-driven dataflow is implemented by encoding operators as iterators, i.e., with open, next,
and close procedures, since this scheme promises generality, extensibility, efficiency, and low overhead. The next
few subsections describe some of Volcano’s existing iterators in more detail. In very few modules, the described
operators provide much of the functionality of other query evaluation systems through generality and separation of
mechanisms and policies. Furthermore, the separation of set processing control (iteration) from item interpretation

and manipulation provides this functionality independently from any data model.
3.2.1. Scans, Functional Join, and Filter

The first scan interface was discussed with the file system. The second interface to scans, both file scans and
B*-tree scans, provides an iterator interface suitable for query processing. The open procedures open the file or
B*-tree and initiate a scan using the scan procedures of the file system level. The file name or closed file descriptor
are given in the state record as are an optional predicate and bounds for B*-tree scans. Thus, the two scan interfaces
are functionally equivalent. Their difference is that the file system scan interface is used by various internal
modules, e.g., by the device module for the device table of contents, while the iterator interface is used to provide

leaf operators for query evaluation plans.

Typically, B*-tree indices hold keys and RIDs in their leaves. In order to use B*-tree indices, the records in
the data file must be retrieved. In Volcano, this look-up operation is split from the B*-tree scan iterator and is per-
formed by the functional join operator. This operator requires a stream of records containing RIDs as input and
either outputs the records retrieved using the RIDs or it composes new records from the input records and the

retrieved records, thus "joining" the B*-tree entries and their corresponding data records [74].

B*-tree scan and functional join are separated for a number of reasons. First, it is not clear that storing data in
B-tree leaves never is a good idea. At times, it may be desirable to experiment with having other types of informa-
tion associated with look-up keys, e.g., primary keys in secondary indices in ARBRE [78]. The original Ingres
design [114], for example, allowed B*-tree as primary file organization, but this was abandoned in the commercial
version of Ingres because secondary indices must associate primary keys (not RIDs) with secondary index keys, and

the lookup procedure for a secondary key must effectively traverse two B-trees to retrieve a record. Second, this
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separation allows experimentation with manipulation of RID-lists for complex queries. While Blasgen and Eswaran
[13] found nested loops join and merge join always preferable over RID-list joins, their conclusion may not hold for
other operations and database systems, e.g., bibliographic search and retrieval systems, or for more recent system
environments with large memories [106]. Third, while functional join is currently implemented rather naively, this
operation can be made more intelligent. If the functional join operator considers a window of RIDs at a time instead
of only a single RID, it may be possible to avoid some buffer faults and to save on disk seek operations if the
records are retrieved according to physical location. Fourth, we have generalized functional join to intelligently
assemble complex objects consisting of many records in multiple nesting levels. A number of object identifiers
(OIDs) or RIDs will be used, selectively based on field values of the input record or of retrieved component objects
[49, 54]. In summary, separating index search and record retrieval is another example for providing mechanisms in
Volcano to allow for experiments with policies, a design principle employed to ensure that the Volcano software

would be flexible and extensible.

In general, selection predicates are applied by the file or B*-tree scan operators. Selections that cannot be
applied within scans, are performed by the filter operator. For example, bit vector filtering [3] can be realized as a
selection using the filter operator. The filter operator can actually perform three functions, depending on presence
or absence of corresponding support functions in the state record. The predicate function applies a selection predi-
cate. The transform function creates a new record, typically of a new type, from each old record. An example
would be a relational projection (without duplicate elimination). More complex examples include compression and
decompression, reducing a stream of records to RID-pointer pairs, changes in codes and representations, and arith-
metic. Finally, the apply function is invoked once on each record for the benefit of its side effects. Typical exam-
ples are updates and printing*. Another example is creating a filter for bit vector filtering. In other words, the filter
operator is a very versatile single-input single-output operator that can be used for a variety of purposes. Bit vector
filtering is an example for a special version of separation of policy and mechanism, namely the rule not to provide

an operation that can be composed easily and efficiently using two or more existing operations.

4 Notice that updates are done within streams and query evaluation plans. Thus, Volcano plans are not only re-
trieval but also update plans. The filter operator is also called the "side-effect operator."
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3.2.2. One-to-One Match

Together with the filter operator, the one-to-one match operator will probably be among the most frequently
used query processing operators in Volcano as it implements a variety of set-matching functions. In a single opera-
tor, it realizes join, semi-join, outer join, anti-join, intersection, union, difference, anti-difference, aggregation, and
duplicate elimination. The one-to-one match operator is a physical operator like sort, i.e., part of the executable

algebra, not a logical operator like the operators of relational algebra. It is the operator that implements all opera-

tions in which an item is included in the output depending on the result of a comparisons between a pair of items®.

Figure 3 shows the basic principle underlying the one-to-one match operator for binary operations, namely
separation the matching and non-matching components of two sets, called R and S in the Figure 3, and producing
appropriate subsets, possibly after some transformation and combination as in the case of a join. Since all these
operations require basically the same steps, it was logical to implement them in one general and efficient module.

The main difference between the unary and binary operations, e.g., aggregate functions and equi-join, is that the

former require comparing items of the same input while the latter require comparing items of two different inputs.
R S
Output  Full Match Attribute match
A Difference Anti-semi-join
B Intersection Join, semi-join
C Difference Anti-semi-join
A B Left outer join
A,C Anti-difference  Anti-join
B.C Right outer join
A,B,C  Union Symmetric outer join

Figure 3. Binary One-to-One Matching.

> Other kinds of restrictive operators are selection (an item is part of the output depending on its own proper-
ties and values) relational division (an item is included in the output depending on a set of matches with the items of
the divisor relation), and projection / transformation.
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Since the implementation of Volcano’s one-to-one match is data-model-independent and all operations on
data items are imported via support functions, the module is not restricted to the relational model but can perform
set matching functions for arbitrary data types. Furthermore, the hash-based version provides recursive hash table
overflow avoidance [39, 72] and resolution similar to hybrid hash join [29, 30, 106] and can therefore handle very
large input sizes. The sort-based version of one-to-one match is based on an external sort operator and can also

operate on arbitrarily sized inputs.

While there seems to be an abundance of join algorithms, e.g. [4, 12, 13, 16, 29, 30, 35, 39, 43,52, 70,71, 74,
80, 82, 84, 85, 87-89, 95-97, 106-108, 110, 112, 124-126, 128, 129], our design goals of extensibility and limited
system size led to the choice of only two algorithms (at the current time) to be implemented in Volcano, namely the
conventional merge join [12, 13] and hybrid hash join [29, 30, 106]. This choice will also allow experimental

research into the duality and tradeoffs between sort- and hash-based query processing algorithms.

The classic hash join algorithm (which is the in-memory component of hybrid hash join, as described in [29,
30, 106]) proceeds in two phases. In the first phase, a hash table is built from one input; it is therefore called the
build phase. In the second phase, the hash table is probed using tuples from the other input to determine matches
and to compose output tuples; it is called the probe phase. After the probe phase, the hash table and its entries are
discarded. Instead, our one-to-one match operator uses a third phase called the flush phase, which is needed for

aggregate functions and some other operations.

Since the one-to-one match operator is an iterator like all Volcano operators, the three phases are assigned to
the open, next, and close functions. Open includes the build phase, while the other two phases are included in the
next function. Successive invocations of the next function automatically switch from the probe phase to the flush
phase when the second input is exhausted. Closing the build and probe inputs is delayed until one-to-one match is
closed because the file system does not allow closing a file on a virtual device until all its records are unpinned. The
state to be saved between invocations of next includes indicators for probe or flush phase, the current build record,
and the current probe record. The current build record is required to locate further build records in the same bucket

chain which must also matched against the current probe record.

If the one-to-one match operator is used to implement relational join, it proceeds exactly like the classical
hash join. The build phase requests input tuples from the build input and builds hash bucket chains. The probe

phase determines matches by looping over members of a bucket and produces output tuples where appropriate. The
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flush phase unfixes the tuples in the hash table in the buffer and deallocates the hash table without producing any
output. Support functions are used to calculate an item’s hash value, to compare two items, and to compose an out-

put item from two input items.

A semi-join is a join in which items of one input are selected depending on matches with items of the other
input. In order to implement semi-join efficiently, the one-to-one match operator preserves rather than copies items
of the first input. When performing a semi-join that preserves the probe input, a probe input tuple is matched only
until a match is found. The probe tuple is then passed on as output. Thus, memory;to-memory copying is avoided.

The module performs a semi-join instead of a join if the support function to compose output tuples is omitted.

The opposite semi-join (which preserves build input tuples) requires a more sophisticated implementation. In
our implementation, a bit is initialized to FALSE for each tuple in the hash table. When a match is found, this bit is

set to TRUE. The flush phase scans through all buckets and outputs the tuples for which a match was found.

Finally, all three forms of outer join as well as anti-join can be implemented using Volcano’s one-to-one
match module. Two additional support functions compose result tuples from build or probe input tuples respec-
tively. Input tuples that do not participate in the natural join (and hence have to be augmented with NULLs) are

identified using the same mechanisms used for semi-joins.

The build phase can be used to eliminate duplicates or to perform an aggregate function in the build input.
The one-to-one match module does not require a probe input; if only an aggregation is required without subsequent
join, the absence of the probe input in the state record signals to the module that the probe phase should be skipped.
For aggregation, instead of inserting a new tuple into the hash table as in the classic hash join, an input tuple is first
matched with the tuples in its prospective hash bucket. If a match is found, the new tuple is discarded or its values

are aggregated into the existing tuple.

It is possible to improve the operator’s dataflow behavior for duplicate elimination by producing output items
immediately when encountered. However, a copy would have to be held back to enable duplicate detection. We
felt that permitting operators further up in the tree to proceed while keeping the records pinned in the buffer for
duplicate detection would increase buffer contention without significant benefits. Therefore, Volcano does not

include this variant.
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While hash tables in main memory are usually quite fast, a severe problem occurs if the build input does not

fit in main memory®. This situation is called hash table overflow. There are two ways to deal with hash table
overflow. First, if a query optimizer is used and can anticipate overflow, it can be avoided by partitioning the
input(s). This overflow avoidance technique is the basis for the hash join algorithm used in the Grace database
machine [39]. Second, overflow files can be used to resolve the problem after it occurs. Several overflow resolution
schemes have been designed and compared for relational join [29, 30, 33, 40, 106]. Among those, hybrid hash has

been considered the most efficient one as it requires the least I/O to temporary files.

For Volcano’s one-to-one match, we have adopted hybrid hash join. Compared to the hybrid hash algorithm
used in the GAMMA database machine [31], our overflow resolution scheme has several improvements. Items can
be inserted into the hash table without copying, i.e., the hash table points directly to records in the buffer as pro-
duced by one-to-one match’s build input. If input items are not densely packed, however, the available buffer
memory can fill up very quickly. Therefore, Volcano one-to-one match has an argument called the packing thres-
hold. When the number of items in the hash table reaches this threshold, items are packed densely into overflow
files. However, the clusters (pages) of these overflow files are not yet unfixed in the buffer, i.e., no I/O is performed
as yet. Only when the number of items in the hash table reaches a second threshold called spilling threshold is the
first of the partition files unfixed. The clusters of this file are written to disk and the count of items in the hash table
accordingly reduced. When this number reaches the spilling threshold again, the next partition is unfixed, etc. If
necessary, partitioning is performed recursively as suggested by DeWitt and Gerber [30], with automatically

adjusted packing and spilling thresholds.

The initial packing and spilling thresholds can be set to zero; in that case, Volcano’s one-to-one match per-
forms overflow avoidance very similar to the join algorithm used in the Grace database machine. Beyond this
parameterization of overflow avoidance and resolution, Volcano’s one-to-one match also includes optimizations of
cluster size and recursion depth similar to the ones used for sorting [16, 56] and for non-uniform hash value distri-

butions, and it can operate on inputs with variable-length records.

6 Notice that if an aggregate function or duplicate elimination is performed on the build input, only the output
of this operation must fit in main memory. In particular when memory is scarce, aggregating into a new, temporary
file pays off since it avoids internal fragmentation in the buffer, i.e., the output records are packed densely into clus-
ters.
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The extension of the module described so far to set operations started with the observation that the intersec-
tion of two union-compatible relations is the same as the natural join of these relations, and can be best implemented
as semi-join. The union is the (double-sided) outer join of union-compatible relations. Difference and anti-
difference of two sets can be computed using special settings of the algorithm’s bells and whistles. Finally, Carte-

sian product can be implemented by matching successfully all possible pairs of items from the two inputs.

A second version of one-to-one match is based on sorting. Its two modules are a disk-based merge-sort and
the actual merge-join. Merge-join has been generalized similarly to hash-join to support semi-join, outer join, anti-
join, and set operations. The sort operator has been implemented in such a way that it uses and provides the iterator
interface. Opening the sort iterator prepares sorted runs for merging. If the number of runs is larger than the maxi-
mal fan-in, runs are merged into larger runs until the remaining runs can be merged in a single step. The final merge
is performed on demand by the next function. If the entire input fits into the sort buffer, it is kept there until
demanded by the next function. The sort operator also supports aggregation and duplicate elimination. It can per-
form these operations early, i.e., while writing temporary files [10, 73]. The sort algorithm is described and

evaluated in detail in [56].

In summary, Volcano’s one-to-one match operators are very powerful parts of Volcano’s query execution
algebra. By separating the control required to operate on sets of items and the interpretation and manipulation of
individual items it can perform a variety of set matching tasks commonly found in database query processing for
arbitrary data types and data models. The separation of mechanisms and policies for overflow management supports
both overflow avoidance or hybrid hash overflow resolution. Implementing sort- and hash-based algorithms in a
comparable fashion will allow meaningful experimental research into the duality and tradeoffs between sort- and
hash-based query processing algorithms. The iterator interface guarantees that the one-to-one match operator can

easily be combined with other operations, including new iterators yet to be designed.
3.2.3. One-to-Many Match

While the one-to-one match operator includes an item in its output depending on a comparison of two items
with one another, the one-to-many match operator compares each item with a number of other items to determine
whether a new item is to be produced. A typical example is relational division, the relational algebra operator
corresponding to universal quantification in relational calculus. There are two versions of relational division in Vol-

cano. The first version, called naive division, is based on sorting. The second version, called hash-division, utilizes
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two hash tables, one on the divisor and one on the quotient. An exact description of the two algorithms and alterna-
tive algorithms based on aggregate functions can be found in [48] along with analytical and experimental perfor-
mance comparisons and detailed discussions of two partitioning strategies, hash-table overflow, and multi-processor
implementations. We are currently studying how to generalize these algorithms in a way comparable with the gen-

eralizations of aggregation and join, ¢.g., for a majority function {23, 131].
4. Extensibility

A number of database research efforts strive for extensibility, e.g., EXODUS, GENESIS, Postgres, Starburst,
DASDBS [93, 104], Cactis [64], and others. Volcano is a very open query evaluation architecture that provides
easy extensibility. Let us consider a number of frequently proposed database extensions and how they can be

accommodated in Volcano.

First, when extending the object type system, e.g., with a new abstract data type (ADT) like date or box, the
Volcano software is not affected at all because it does not provide a type system for objects. All manipulation of
and calculation based on individual objects is performed by support functions. In some regards, Volcano is incom-
plete (it is not a database system), but by separating set processing and instance interpretation and providing a well-

defined interface between them, Volcano is inherently extensible on the level of instance types and semantics.

As a rule, data items that are transferred between operators using some next iterator procedure are records.
For an extensible or object-oriented database system, this would be an unacceptable problem and limitation. The
solution to be used in Volcano is to pass only the root component (record) between operators after loading and
fixing necessary component records in the buffer and suitably swizzling inter-record pointers [86]. Very simple
objects can be assembled in Volcano with the functional join operator. Generalizations of this operator are neces-
sary for object-oriented or non-first-normal-form database systems, but can be included in Volcano without
difficulty. In fact, a prototype for such an assembly operator is currently being evaluated [49] for use in the REVELA-

TION object-oriented database systems project [47, 54].

Second, in order to add new functions on individual objects or aggregate functions, ¢.g., geometric mean, to
the database and query processing system, the appropriate support function is required and passed to a query pro-
cessing routine. In other words, the query processing routines are not affected by the semantics of the support func-
tions as long as interface and return values are correct. The reason why Volcano software is not affected by exten-

sions of the functionality on individual objects is that Volcano’s software only provides abstractions and
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implementations for dealing with and sequencing sets of objects using streams, whereas the capabilities for inter-

preting and manipulating individual objects are imported in the form of support functions.

Third, in order to incorporate a new access method, e.g., multi-dimensional indices in form of R-trees [59],
appropriate iterators have to be defined. Notice that it makes sense to perform not only retrieval but also mainte-
nance of storage structures in the form of iterators. For example, if a set of items defined via a predicate (selection)
needs to be updated, the iterator or query tree implementing the selection can "feed” its data into a maintenance
iterator. The items fed into the maintenance operator should include a reference to the part of the storage structure
to be updated, e.g., a RID or a key, and appropriate new values if they have been computed in the selection, e.g.,
new salaries from old salaries. Updating multiple structures (multiple indices) can be organized and executed very
efficiently using nested iterators, i.e., a query evaluation plan. Furthermore, if ordering makes maintenance more
efficient as for B-trees [111], an ordering or sort iterator can easily be included in the plan. In other words, it makes
sense to think of plans not only as query plans used in retrieval but also as "update plans" or combinations of
retrieval and update plans. The stream concept is very open; in particular, anonymous inputs shield existing query

processing modules and the new iterators from one another.

Fourth, to include a new query processing algorithm in Volcano, e.g., an algorithm for transitive closure or
nest and unnest operations for nested relations, the algorithm needs to be coded in the iterator paradigm. In other
words, the algorithm implementation must provide open, next, and close procedures, and must use these procedures
for its input stream or streams. After an algorithm has been brought into this form, its integration with Volcano is
trivial. In fact, as the Volcano query processing software became more complex and complete, this was done a

number of times.

Extensibility can also be considered in a different context. In the long run, it clearly is desirable to provide an
interactive front-end to make using Volcano easier. We are currently working on two front-ends, a non-optimized
command interpreter based on Volcano’s executable algebra and an optimized one based on a logical algebra or cal-
culus language including query optimization implemented with a new optimizer generator. The translation between
pléns as produced by an optimizer and Volcano will be accomplished using a module that "walks" query evaluation
plans produced by the optimizer and Volcano plans, i.e., state records, support functions, etc. We will also use the
optimizing front-end as a vehicle for experimentation with dynamic query evaluation plans which are outlined in the

next section.
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In summary, since Volcano is very modular in its design, extensibility is provided naturally. In could be
argued that this is the case only because Volcano does not address the hard problems in extensibility. However, this
argument does not hold. Rather, Volcano is only one component of a database system, namely the query execution
engine. Therefore, it addresses only a subset of the extensibility problems and ignores a different subset. As a
query processing engine, it provides extensibility of its set of query processing algorithms, and it does so in a way
that matches well with the extensibility as provided by query optimizer generators. It does not provide other data-
base services and abstractions like a type system and type checking for the support functions since it is not an exten-
sible database system. The Volcano routines assume that query evaluation plans and their support functions are
correct. Their correctness has to be ensured before Volcano is invoked, which is entirely consistent with the general
database systems concept to ensure correctness at the highest possible level, i.e., as soon as possible after a user
query is parsed. The significance of Volcano as an extensible query evaluation system is that it provides a simple
but very useful and powerful set of mechanisms for efficient query processing and that it can and has been used as a
flexible research tool. Its power comes not only from the fact that it has been implemented following a few, con-

sistent design principles but also from its two meta-operators that will be described in the next two sections.
5. Dynamic Query Evaluation Plans

In most database systems, a query embedded in a program written in a conventional programming language is
optimized when the program is compiled. The query optimizer must make assumptions about the values of the pro-
gram variables that appear as constants in the query and the data in the database. These assumptions include that the
query can be optimized realistically using guessed "typical" values for the program variables and that the database
will not change significantly between query optimization and query evaluation. The optimizer must also anticipate
the resources that can be committed to query evaluation, e.g., the size of the buffer or the number of processors.
The optimality of the resulting query evaluation plan depends on the validity of these assumptions. If a query
evaluation plan is used repeatedly over an extended period of time, it is important to determine when reoptimization
is necessary. We are working on a scheme in which reoptimization can be avoided by using a new technique called

dynamic query evaluation plans [50].

Volcano includes a choose-plan operator that allows realization of both multi-plan access modules and
dynamic plans. In some sense, it is not an operator as it does not perform any data manipulations. Since it provides

control for query execution it is a meta-operator. This operator provides the same open-next-close protocol as the
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other operators and can therefore be inserted into a query plan at any location. The open operation decides which of
several equivalent query plans to use and invokes the open operation for this input. Open calls upon a support func-
tion for this policy decision, passing it the bindings parameter described above. The next and close operations sim-

ply call the appropriate operation for the input chosen during open.

Figure 4 shows a very simple dynamic plan. Imagine a selection predicate controlled by a program variable.
The index scan and functional join can be much faster than the file scan, but not when the index is non-clustering
and a large number of items must be retrieved [81]. Using the plan of Figure 4, however, the optimizer can prepare
effectively for both cases, and the application program using this dynamic plan will perform well for any predicate

value.

The choose-plan operator allows considerable flexibility. If only one choose-plan operator is used as top of a
query evaluation plan, it implements a multi-plan access module. If multiple choose-plan operators are included in
a plan, they implement a dynamic query evaluation plan. Thus, all forms of dynamic plans identified in [S0] can be
realized with one simple and effective mechanism. Note that the choose-plan operator does not make the policy
decision which of several plans to execute; it only provides the mechanism. The policy is imported using yet
another support function. Thus, the decision can be made depending on bindings for query variables (¢.g., program
variables used as constants in a query predicate), on the resource and contention situation (e.g., the availability of

processors and memory), other considerations such as user priority, or all of the above.

The choose-plan operator provides significant new freedom in query optimization and evaluation with an
extremely small amount of code. Since it is compatible with the query processing paradigm, its presence does not
affect the other operators at all, and it can be used in a very flexible way. The operator is another example for

Volcano’s design principle to provide mechanisms to implement a multitude of policies. We used the same
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Choose-Plan
Functional Join File Scan

Index Scan

Figure 4. A Dynamic Query Evaluation Plan.
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philosophy when designing and implementing a scheme for parallel query evaluation.
6. Multi-Processor Query Evaluation

A large number of research and development projects have shown over the last decade that query processing
in relational database systems can benefit significantly from parallel algorithms, e.g. [1,4, 7-9, 11, 17, 31-34, 37, 39,
51, 53, 62, 65, 66, 75, 78, 79, 83, 85, 87,94, 97, 103, 113, 117, 120, 121, 132, 133]. The main reasons why parallel-
ism is relatively easy to exploit in relational query processing systems are that (1) query processing is performed
using a tree of operators which can be executed in separate processes and processors connected with pipelines
(inter-operator parallelism), and (2) each operator consumes and produces sets which can be partitioned or frag-
mented into disjoint subsets to be processed in parallel (intra-operator parallelism). Fortunately, the reasons why
parallelism is easy to exploit in relational systems does not require the relational data model per se, only that queries
be processed as sets of data items in a tree of operators. These are exactly the assumptions made in the design of

Volcano, and it was therefore logical to parallelize extensible query processing in Volcano.

When Volcano was ported to a multi-processor machine, it was desirable to use all single-process query pro-
cessing code existing at that point without any change. The result is very clean, self-scheduling parallel processing.
We call this novel approach the operator model of parallelizing a query evaluation engine [53]. In this model, all
parallelism issues are localized in one operator that uses and provides the standard iterator interface to the operators

above and below in a query tree.

Print
Exchlange
Jolin
Join Exchange
N N
Exchange Exchange File Scan
File |Scan File IScan

Figure 5a. Operator Model of Parallelization.
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The module responsible for parallel execution and synchronization is called the exchange iterator in Volcano.
Notice that it is an iterator with open, next, and close procedures; therefore, it can be inserted at any one place or at
multiple places in a complex query tree. Figure 5a shows a complex query execution plan that includes data pro-
cessing operators, i.e., file scans and joins, and exchange operators. Figures 5b and S5c will show the processes

created when this plan is executed.

This section describes how the exchange iterator implements vertical and horizontal parallelism followed by
discussions of alternative modes of operation of Volcano’s exchange operator and modifications to the file system
required for multi-process query evaluation. The description goes into a fair amount of detail since the exchange
operator adds significantly to the power of Volcano. In fact, it represents a new concept in parallel query execution
that is likely to prove useful in parallelizing both existing commercial database products and extensible single-
process systems. It is described here for shared-memory systems only; considerations for the distributed-memory

version are outlined as future work in the last section of this article.
6.1. Vertical Parallelism

The first function of exchange is to provide vertical parallelism or pipelining between processes. The open
procedure creates a new process after creating a data structure in shared memory called a port for synchronization
and data exchange. The child process is an exact duplicate of the parent process. The exchange operator then takes

different paths in the parent and child processes.

The parent process serves as the consumer and the child process as the producer in Volcano. The exchange
operator in the consumer process acts as a normal iterator, the only difference from other iterators is that it receives
its input via inter-process communication rather than iterator (procedure) calls. After creating the child process,
open_exchange in the consumer is done. Next_exchange waits for data to arrive via the port and returns them a

record at a time. Close_exchange informs the producer that it can close, waits for an acknowledgement, and returns.

Figure 5b shows the processes created for vertical parallelism or pipelining by the exchange operators in the
query plan of Figure 5a. The exchange operators have created the processes, and are executing on both sides of the
process boundaries, hiding the existence of process boundaries from the "work" operators. The fact that the join
operators are executing within the same process, i.e., the placement of the exchange operators in the query tree, was
arbitrary. The exchange operator provides only the mechanisms for parallel query evaluation, and many other

choices (policies) would have been possible. In fact, the mechanisms provided in the operator model tend to be
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Figurc 5b. Vertical Parallelism.

more¢ flexible and amenable to more different policies than in the alternative bracket model [53].

In the producer process, the exchange operator becomes the driver for the query tree below the exchange
operator using open, next, and close on its input. The output of next is collected in packets, which are arrays of
NEXT RECORD structures. The packet size is an argument in the exchange iterator’s state record, and can be set

between 1 and 215

records. When a packet is filled, it is inserted into a linked list originating in the port and a
semaphore is used to inform the consumer about the new packet. Records in packets are fixed in the shared buffer

and must be unfixed by a consuming operator.

When its input is exhausted, the exchange operator in the producer process marks the last packet with an
end-of-stream tag, passes it to the consumer, and waits until the consumer allows closing all open files. This delay
is necessary in Volcano because files on virtual devices must not be closed before all their records are unpinned in
the buffer. In other words, it is a peculiarity due to other design decisions in Volcano rather than inherent in the

exchange iterator or the operator model of parallelization.

The alert reader has noticed that the exchange module uses a different dataflow paradigm than all other opera-
tors. While all other modules are based on demand-driven dataflow (iterators, lazy evaluation), the producer-
consumer relationship of exchange uses data-driven dataflow (eager evaluation). There are two reasons for this
change in paradigms. First, we intend to use the exchange operator also for horizontal parallelism, 1o be described

below, which is easier to implement with data-driven dataflow. Second, this scheme removes the need for request
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messages. Even though a scheme with request messages, ¢.g., using a semaphore, would probably perform accept-
ably on a shared-memory machine, it would create unnecessary control overhead and delays. Since very high
degrees of parallelism and very high-performance query evaluation require a closely tied network, e.g., a hypercube,
of shared-memory machines, we decided to use a paradigm for data exchange that has has been proven to perform

well in a "shared-nothing” database machine [31, 34].

A run-time switch of exchange enables flow control or back pressure using an additional semaphore. If the
producer is significantly faster than the consumer, the producer may pin a significant portion of the buffer, thus
impeding overall system performance. If flow control is enabled, after a producer has inserted a new packet into the
port, it must request the flow control semaphore. After a consumer has removed a packet from the port, it releases
the flow control semaphore. The initial value of the flow control semaphore determines how many packets the pro-

ducers may get ahead of the consumers.

Notice that flow control and demand-driven dataflow are not the same. One significant difference is that flow
control allows some "slack" in the synchronization of producer and consumer and therefore truly overlapped execu-
tion, while demand-driven dataflow is a rather rigid structure of request and delivery in which the consumer waits
while the producer works on its next output. The second significant difference is that data-driven dataflow is easier

to combine efficiently with horizontal parallelism and partitioning.
6.2. Horizontal Parallelism

There are two forms of horizontal parallelism which we call bushy parallelism and intra-operator parallelism.
In bushy parallelism, different CPUs execute different subtrees of a complex query tree. Bushy parallelism and

vertical parallelism are forms of inter-operator parallelism. Intra-operator parallelism means that several CPUs per-
form the same operator on different subsets of a stored dataset or an intermediate result’.
Bushy parallelism can easily be implemented by inserting one or two exchange operators into a query tree.

For example, in order to sort two inputs into a merge-join in parallel, the first or both inputs are separated from the

merge-join by an exchange operation. The parent process turns to the second sort immediately after forking the

7 A fourth form of parallelism is inter-query parallelism, i.e., the ability of a database management system to
work on several queries concurrently. In its current version, Volcano does not support inter-query parallelism. A
fifth and sixth form of parallelism that can be used for database operations involve hardware vector processing [127]
and pipelining in the instruction execution. Since Volcano is a software architecture, and following Boral and
DeWitt’s analysis in [15], we do not consider hardware parallelism further.
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child process that will produce the first input in sorted order. Thus, the two sort operations are working in parallel.

Intra-operator parallelism requires data partitioning. Partitioning of stored datasets is achieved by using mul-
tiple files, preferably on different devices [92, 102]. Partitioning of intermediate results is implemented by includ-
ing multiple qucues in a port. If there are multiple consumer processes, each uses its own input queue. The produc-
ers use a support function to decide into which of the queues (or actually, into which of the packets being filled by
the producer) an output record must go. Using a support function allows implementing round-robin-, key-range-, or

hash-partitioning.

Figure 5¢ shows the processes created for horizontal parallelism or partitioning by the exchange operators in
the query plan of Figure Sa. The join operators are executed by three processes while the file scan operators are
executed by one or two processes each, typically scanning file partitions on different devices. To obtain this group-
ing of processes, the only difference to the query plan used for Figure 5b is that the "degree of parallelism" argu-
ments in the exchange state records have to be set to 2 or 3, respectively, and that partitioning support functions
must be provided for the exchange operators that transfer file scan output to the join processes. All file scan
processes can transfer data to all join processes; however, data transfer between the join operators occurs only
within each of the join processes. Unfortunately, this restriction renders this parallelization infeasible if the two
joins ére on different attributes and partitioning-based parallel join methods are used (rather than a fragment-and-

replicate method [4, 38, 112]). For this case, a variant of exchange is supported in Volcano exchange operator

Figure 5c. Horizontal Parallelism.
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called interchange which is described in the next section,

If an operator or an operator subtree is executed in parallel by a group of processes, one of them is designated
the master. When a query tree is opened, only one process is running, which is naturally the master. When a master
forks a child process in a producer-consumer relationship, the child process becomes the master within its group.
The first action of the master producer is to determine how many slaves are needed by calling an appropriate sup-

port function. If the producer operation is to run in parallel, the master producer forks the other producer processes.

After all producer processes are forked, they run without further synchronization among themselves, with two
exceptions. First, when accessing a shared data structure, e.g., the port to the consumers or a buffer table, short-
term locks must be acquired for the duration of one linked-list insertion. Second, when a producer group is also a
consumer group, i.e., there are at least two exchange operators and three process groups involved in a vertical pipe-
line, the processes that are both consumers and producers synchronize twice. During the (very short) interval

between synchronizations, the master of this group creates a port which serves all processes in its group.

When a close request is propagated down the tree and reaches the first exchange operator, the master
consumer’s close_exchange procedure informs all producer processes that they are allowed to close down using the
semaphore mentioned above in the discussion on vertical parallelism. If the producer processes are also consumers,
the master of the process group informs its producers, etc. In this way, all operators are shut down in an orderly

fashion, and the entire query evaluation is self-scheduling.
6.3. Variants of the Exchange Operator

There are a number of situations for which the exchange operator described so far required some
modifications or extensions. In this section, we outline additional capabilities implemented in Volcano’s exchange
operator. All of these variants have been implemented in the exchange operator and are controlled by arguments in

the state record.

For some operations, it is desirable to replicate or broadcast a stream to all consumers. For example, one of
the two partitioning methods for hash-division [48] requires that the divisor be replicated and used with each parti-
tion of the dividend. Another example are fragment-and-replicate parallel join algorithms in which one of the two
input relations is not moved at all while the other relation is sent to all processors [4, 38, 112]. To support these

algorithms, the exchange operator can be directed to send all records to all consumers, after pinning them appropri-

31



ately multiple times in the buffer pool. Notice that it is not necessary to copy the records since they reside in a
shared buffer pool; it is sufficient to pin them such that each consumer can unpin them as if it were the only process

using them.

During implementation and benchmarking of parallel sorting [55, 56], we added two more features to
exchange. First, we wanted to implement a merge network in which some processors produce sorted streams merge
concurrently by other processors. Volcano’s sort iterator can be used to generate a sorted stream. A merge iterator
was easily derived from the sort module. It uses a single level merge, instead of the cascaded merge of runs used in
sort. The input of a merge iterator is an exchange. Differently from other operators, the merge iterator requires to
distinguish the input records by their producer. As an example, for a join operation it does not matter where the
input records were created, and all inputs can be accumulated in a single input stream. For a merge operation, it is

crucial to distinguish the input records by their producer in order to merge multiple sorted streams correctly.

We modified the exchange module such that it can keep the input records separated according to their produc-
ers. A third argument to next exchange is used to communicate the required producer from the merge to the
exchange iterator. Further modifications included increasing the number of input buffers used by exchange, the
number of semaphores (including for flow control) used between producer and consumer part of exchange, and the
logic for end-of-stream. All these modifications were implemented in such a way that they support multi-level
merge trees, €.g., a parallel binary merge tree as used in [9]. The merging paths are selected automatically such that

the load is distributed as evenly as possible in each level.

Second, we implemented a sort algorithm that sorts data randomly partitioned (or "striped” [102]) over multi-
ple disks into a range-partitioned file with sorted partitions, i.e., a sorted file distributed over multiple disks. When
using the same number of processors and disks, required two processes per CPU, one to perform the file scan and
partition the records and another one to sort them. Creating and running more processes than processors can inflict
a significant cost since these processes compete for the CPUs and therefore require operating system scheduling.
While the scheduling overhead may not be too significant, in our current environment with a central run queue
allowing processes to migrate freely and a large cache associated with each CPU, the frequent cache migration adds

a significant cost [123].

In order to make better use of the available processing power, we decided to reduce the number of processes

by half, effectively moving to one process per CPU. This required modifications to the exchange operator. Until
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then, the exchange operator could "live” only at the top or the bottom of the operator tree in a process. Since the
modification, the exchange operator can also be in the middle of a process’ operator tree. When the exchange
operator is opened, it does not fork any processes but establishes a communication port for data exchange. The next
operation requests records from its input tree, possibly sending them off to other processes in the group, until a
record for its own partition is found. This mode of operation was termed interchange, and was referred to earlier in

the discussion of Figure 5c.

This mode of operation also makes flow control obsolete. A process runs a producer (and produces input for
the other processes) only if it does not have input for the consumer. Therefore, if the producers are in danger of
overrunning the consumers, none of the producer operators gets scheduled, and the consumers consume the avail-

able records.
6.4. File System Modifications

The file system required some modifications to serve several processes concurrently. In order to restrict the
extent of such modifications, Volcano currently does not include protection of files and records other than each
disk’s volume table of contents. Furthermore, typically non-repetitive actions like mounting a device must be

invoked by the query root process before or after a query is evaluated by multiple processes.

The most intricate changes were required for the buffer module. In fact, making sure the buffer manager
would not be a bottleneck in a shared-memory machine was an interesting sub-project independently of database
query processing [55]. Concurrency control in the buffer manager was designed to provide a testbed for future

research with effective and efficient mechanisms, and not to destroy the separation of policies and mechanisms.

Using one exclusive lock is the simplest way to protect a buffer pool and its internal data structures. How-
ever, decreased concurrency would have removed most or all advantages of parallel query processing. Therefore,
the buffer uses a two-level scheme. There is a lock for each buffer pool and one for each descriptor (page or cluster
resident in the buffer). The buffer pool lock must be held while searching or updating the hash tables and bucket
chains. It is never held while doing I/O; thus, it is never held for a long period of time. A descriptor or cluster lock

must be held while doing I/O or while updating a descriptor in the buffer, e.g., to decrease its fix count.

Other buffer managers do not use a pool lock but lock each search bucket and the free chain individually, e.g.,

the buffer manager of Starburst. The advantage is increased concurrency, while the disadvantage is increased
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number of locks and lock operations. However, it is much more advantageous to reduce the number of buffer calls
than to develop a sophisticated scheme for increased concurrency. Using sixteen 4-MIPS CPUs and two buffer

pools, we observed virtually no contention for the pool locks [55].

If a process finds a requested cluster in the buffer, it uses an atomic test-and-lock operation to lock the
descriptor. If this operation fails, the pool lock is released, the operation delayed and restarted. It is necessary to
restart the buffer operation including the hash table lookup because the process which holds the lock might be
replacing the requested cluster. Therefore, the requesting process must wait to determine the outcome of the prior
operation. Using this restart-scheme for descriptor locks has the additional benefit of avoiding deadlocks. The four
conditions for deadlock are mutual exclusion, hold-and-wait, no preemption, and circular wait [63, 67]; Volcano’s

restart scheme does not satisfy the second condition.

While the locking scheme avoids deadlocks, it does not avoid convoys [14]. If a process exhausts its CPU
time-slice while holding a "popular” exclusive lock, e.g., on a buffer pool, probably all other processes will block in
a convoy until the lock-holding process is re-scheduled and releases the lock. However, since Volcano does not use
a "fair" scheduling policy that does not allow reacquiring a lock before all waiting processes held and released the
lock, we expect that convoys will quickly evaporate [14]. We intend to investigate the special problem of convoys
in shared-memory multi-processors further. A recent investigation of various spin-lock implementations in shared-
memory parallel systems showed that the best performance and the least bus traffic was achieved by a queue-lock
with a built-in fair scheduler [57]; however, this fair scheduling strategy was exactly the problem identified in [14]
that prevented convoys from evaporating. Convoys in shared-memory parallel systems have not been investigated,

and we plan on using Volcano for this purpose.

In summary, the exchange module encapsulates parallel query processing in Volcano. It provides a large set
of mechanisms useful in parallel query evaluation. Only very few changes had to be made in the buffer manager
and the other file system modules to accommodate parallel execution. The most important properties of the
exchange module are that it implements three forms of parallel processing within a single module, that it makes
parallel query processing entirely self-scheduling, supports a variety of policies, e.g., partitioning schemes or packet
sizes, and that it did not require any changes in the existing query processing modules, thus leveraging significantly
the time and effort spent on them and allowing easy parallel implementation of new algorithms. It entirely separates

data selection, manipulation, derivation, etc. from all parallelism issues, and may therefore prove useful in
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parallelizing other systems, both relational commercial and extensible research system.
7. Summary and Conclusions

We have described Volcano, a new query evaluation system that combines compactness, efficiency, extensi-
bility, and parallelism in a dataflow query evaluation system. Compactness is achieved by focusing on few general
algorithms. For example, the one-to-one match operator implements join, semi-join, outer join, anti-join, duplica-
tion elimination, aggregation, intersection, union, difference, and anti-difference. Extensibility is achieved by
implementing only one essential abstraction, streams, and by relying on imported support functions for object
interpretation and manipulation. The details of streams, e.g., type and structure of their elements, are not part of the
stream definition and its implementation, and can be determined at will, making Volcano a data-model-independent
set processor. The separation of set processing control in iferators and object interpretation and manipulation

through support functions contributes significantly to Volcano’s extensibility.

The Volcano design and implementation was guided by a few simple but generally useful principles. First,
Volcano implements mechanisms to support policies to be determined by a human experimenter or a query optim-
izer. Second, operators are implemented as iterators to allow efficient transfer of data and control within a single
process. Third, a uniform operator interface allows for integration of new query processing operators and algo-
rithms. Fourth, the interpretation and manipulation of stream elements in consistently left open to allow supporting
any data model and processing items of any type, shape, and representation. Finally, the encapsulated implementa-
tion of parallelism allows developing query processing algorithms in a single-process environment but executing

them in parallel. These principles have led to a very flexible, extensible, and powerful query processing engine.

Volcano introduces two novel meta-operators. Dynamic query evaluation plans are a new concept introduced
in [50] that allow efficient evaluation of queries with free variables. The choose-plan meta-operator at the top of a
plan or a subplan makes an efficient decision which alternative plan to use when the plan is invoked. Dynamic

plans have the potential of increasing the performance of embedded and repetitive queries significantly.

Dataflow techniques are used within processes as well as between processes. Within a process, demand-
driven dataflow is implemented by means of streams and iterators. Streams and iterators represent the most efficient
execution model in terms of time and space for single-process query evaluation. Between processes, data-driven
dataflow is used to pass data between producers and consumers efficiently. If necessary, Volcano’s data-driven

dataflow can be augmented with flow control or back pressure. Horizontal partitioning can be used both on stored
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and intermediate datasets to allow intra-operator parallelism. The design of the exchange meta-operator encapsu-
lates the parallel execution mechanism for vertical, bushy, and intra-operator parallelism, and it performs the trans-

lations from demand-driven to data-driven dataflow and back [53].

Encapsulating all issues of parallelism control in one operator and thus orthogonalizing data manipulation and
parallelism offers an important portability advantage. All data manipulation operators are shielded from parallelism
issues, and could be designed, debugged, tuned, and preliminarily evaluated in a single-process environment. To
port all Volcano operators to a new parallel machine, only the exchange operator requires appropriate modifications.
At the current time, the exchange operator supports parallelism only on shared-memory machines. We are currently
working on extending this operator to support query processing on distributed-memory machines while maintaining
its encapsulation properties. However, we do not want to give up the advantages of shared memory, namely fast
communication and synchronization. A recent investigation demonstrated that shared-memory architectures can
deliver near-linear speed-up for limited degrees of parallelism; we observed a speed-up of 14.9 with 16 CPUs for
parallel sorting in Volcano [55]. To combine the best of both worlds, we are building our software such that it runs
on a closely-tied group, e.g., a hypercube or mesh architecture, of shared-memory parallel machines. Once this ver-
sion of Volcano’s exchange operator and therefore Volcano runs on such machines, we can investigate query pro-
cessing on hierarchical architectures and heuristics of how CPU and IfO power as well as memory can best be

placed and exploited in such machines.

Most of today’s parallel machines are built as one of the two the extreme cases of this hierarchical design: a
distributed-memory machine uses single-CPU nodes, while a shared-memory machine consists of a single node.
Software designed for this hierarchical architecture will run on either conventional design as well as a genuinely
hierarchical machine, and will allow exploring tradeoffs in the range of alternatives in between. Thus, the operator
model of parallelization also offers the advantage of architecture- and topology-independent parallel query evalua-

tion.

A number of features make Volcano an interesting object for further performance studies. First, the
LRU/MRU buffer replacement strategy switched by a keep-or-toss hint needs to be evaluated. Second, using clus-
ters of different sizes on a single device and avoiding buffer shuffling by allocating buffer space dynamically
instead of statically require careful evaluation. Third, the duality and tradeoffs between sort- and hash-based query

processing algorithms and their implementations will be explored further. Fourth, Volcano allows measuring the
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performance of parallel algorithms and identifying bottlenecks on a shared-memory architecture, as demonstrated
for instance in [55]. We intend to perform similar studies on distributed-memory and, as they become available,
hierarchical architectures. Fifth, the advantages and disadvantages of a separate scheduler process in distributed-
memory query processing (as used in GAMMA) will be evaluated. Finally, after data-driven dataflow has been
shown to work well on a shared-nothing database machine [31, 34], the combination of demand- and data-driven

dataflow should be explored on a network on shared-memory computers.

While Volcano is a working system in its current form, we are considering several extensions and improve-
ments. First, while Volcano currently does very extensive error detection, it does not encapsulate errors in fail-fast
modules. It would be desirable to modify all modules such that they have all-or-nothing semantics for all requests.
This might prove particularly tricky for the exchange module, even more so in a distributed-memory environment.
Second, for a more complete performance evaluation, Volcano should be enhanced to a multi-user system that
allows inter-query parallelism. Third, to make it a complete data manager and query processor, transactions seman-

tics including recovery should be added.

Volcano is the first operational query evaluation system that combines extensibility and parallelism. We
believe that Volcano is a powerful tool for database systems research and education. We are making it available for
student use, e.g., for implementation and performance studies, and have given copies to selected outside organiza-
tions. We intend to use it in a number of further research projects, including research on the optimization and
evaluation of dynamic query evaluation plans [50] and the REVELATION project on query optimization and execution

in object-oriented database systems with encapsulated behavior [47, 54].
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