PORTING THE QUASI-NONHYDROSTATIC
METEOROLOGICAL MODEL TO THE KENDALL
SQUARE RESEARCH KSR1

C. F. Baillie and A.E. MacDonald, S. Sun

CU-CS-687-93

%University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

PORTING THE QUASI-NONHYDROSTATIC METEOROLOGICAL
MODEL TO THE KENDALL SQUARE RESEARCH KSR1

CU-CS-687-93 November 1993

C.F. Baillie and A.E. MacDonald, S. Sun

Department of Computer Science
University of Colorado at Boulder
Campus Box 430
Boulder, Colorado 80309-0430 USA

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Porting the Quasi-Nonhydrostatic Meteorological Model to the
Kendall Square Research KSR1 *

C. F. BAILLIE
Computer Science
University of Colorado
Boulder CO 80309

and

A. E. MACDONALD, S. SUN
-NOAA Forecast Systems Laboratory
Boulder CO 80303

ABSTRACT. The Forecast Systems Laboratory is currently developing and testing weather
models on various parallel computers with a view toward ultimate production use. As
part of that effort we have ported a “Quasi-Nonhydrostatic” Meteorological Model to the
Kendall Square Research KSR1 parallel supercomputer. The porting was done in three
stages: first the original sequential code was made efficient on one processor, then the code
was parallelized using “tiling” directives, and lastly the parallel code was optimized. We
describe this process in some detail and report the resulting performances.

1. Introduction

The “Quasi-Nonhydrostatic” (QNH) model is a non-hydrostatic, compress-
ible meteorological model whose dynamics is based on the “approximate sys-
tem” of Browning and Kreiss [1] plus the incorporation of topography as de-
scribed in Browning and MacDonald [2]. QNH is a “full physics” model with
packages for moist physics, radiation and turbulence. The dynamics part of
QNH, known simply as the “well-posed” topographical model (WPT), was
ported to the KSR1 by us previously [3]. We have built on the lessons learned
there in doing this port of the complete QNH model. In addition, over the
last year, we have substantially improved our understanding of the KSR1 ar-
chitecture and its influence on performance. Therefore we shall begin with a
detailed description of the KSR1 hardware as background so we can explain
how one optimizes sequential codes on one processor. Next we shall briefly

* Talk given at Les Houches, 21-25 June 1993; to appear in “Proc. High Performance
Computing in the Geosciences”, ed. F.-X. Le Dimet (Kluwer Academic, Amsterdam, 1993)

2

outline the QNH model and code. Then the “tiling” method of paralleliza-
tion will be described. Finally we give some details on how the resulting
parallel code is optimized. Throughout we shall illustrate these steps with
performance results for QNH.

2. The KSR1 and single processor code optimization

The Kendall Square Research KSR1 MPP (massively parallel processor)
is the lastest shared-memory multiple-instruction, multiple-data (MIMD)
computer [4]. It is built as a hierarchical machine, with a “fat-tree” type
architecture, consisting of up to 34 rings of 32 processors. The memory is
logically shared as there is one global address space, however it is physically
distributed among the processors, each one having 32 MBytes. Most impor-
tantly the whole memory is treated as a cache, that is, whenever a processor
gets data from another processor’s memory or cache, a copy of this data
is made in its own cache thereby significantly speeding up subsequent ac-
cesses to it. The rings are essentially hardware “search engines” resolving
references to addresses that are not found in the processor’s local cache by
fetching the data automatically — hence all data movement is transparent
to the user.

Unfortunately this wonderful feature for ease of programmability leads
to some difficulties in obtaining high performance. The main problem is the
actual hardware implementation of the cache. As is common in all mirco-
processors today, the KSR1 custom processor chip contains a cache, called
the “subcache” in order to distinguish it from the 32 MByte local cache.
This subcache is physically 2-way associative. This means that addresses
separated by certain “magic numbers” get mapped into the same area of
the subcache which can hold at most only two of them. Thus if several
of these addresses are accessed by the program one after another, it gives
rise to the problem known as “subcache thrashing” which seriously degrades
performance. This pattern of address reference is in fact exactly what occurs
in a Fortran program stepping through the second (or higher) dimension of
an array (since Fortran arrays are stored in column-major order). The trivial
fix for this problem is, of course, not to have arrays whose first dimension size
leads to a magic number. This is most easily done by picking odd numbers
which are not a power of two. Therefore in porting a code to the KSR1
the very first step is to change array declarations like a(128,128,32) to
a(129,129,32) or equivalently a(0 : 128,0 : 128, 32). Coincidentally this is
precisely what is done in codes designed for vector computers like the Cray
but for a different reason, namely in order to avoid memory bank conflicts.

There is another single processor optimization which is crucial for cer-
tain codes like QNH on cache-based machines. This comes about because
in caches, what is cached is not an individual variable of the program but

3

a “cache line” which contains several variables. Therefore optimum use of
the cache is obtained when the program accesses all of the variables on a
cache line one after another before moving to the next cache line. This ne-
cessitates re-structuring conventionally written sequential scientific Fortran
programs which typically update one variable or array element, then move

onto another, then another, etc, as in the following example (taken from
QNH) :

do k = 1,nz
do j = 1,ny
doi=1,nx
ffu = ffu + mu * (u(i+,j,k) + u(i-1,j,k)
+ u(d,j+1,k) + u(i,j-1,k) - 4*u(i,j,k))
ffv = ffv + mu * (v(i+1,j,k) + v(i-1,j,k)
+ v(i,j+1,k) + v(i,j-1,k) - 4*v(i,j,k))
ffw = ffw + mu * (w(i+1,j,k) + w(i-1,j,k)
+ w(i,j+1,k) + w(i,j-1,k) - 4*w(i,j,k))
+ muz * (w(i,j,k+1) + w(i,j,k-1) - 2*w(i,j,k))
end do
end do
end do

We see that first a cluster of elements of u is modified, then similar clusters
for v and w are modified. However, v(%, j, k) and w(%, j, k) are stored a long
way from u(%, 7, k) in memory so there is not much data locality for the cache
to take advantage of.

Instead the array elements should be “aggregated” or “coallesced” by
declaring another array, say, Q(3,0 : nz,0 : ny,nz) and copying u(0 :
nz,0 : ny,nz) into Q(1,0 : nz,0 : ny,nz), v(...) into Q(2,...) and w(...)
into Q(3,...). For readability one can also declare parameters U = 1,V =
2, W = 3 so that u(...) in the original code is now referred to as Q(U,...). In
order to do this aggregation simply without making mistakes some kind of
program transformation tool is very helpful. We have been using the Sage+-+
tool from Gannon’s group at Indiana [5]. To this we added the “user anno-
tation” ‘C$ann[Aggregate(u,v,w)]’ which accomplishes the transformation
just described, producing the following code :

do k = 1,nz
do j = 1,ny
do i = 1,nx

ffu = ffu + mu * (Q(U,i+1,j,k) + Q(U,i-1,j,k)
. + Q(Usisj*lsk) + Q(Uiiij—iik) - 4*Q(U,i,j,k>)
£fv = £fv + mu * (Q(V,i+1,j,k) + Q(V,i-1,3,k)
+ Q(V,i,j+1,k) + Q(v:i:j-i’k) - 4*Q(V,i,j,k))
ffw = ffw + mu * (Q(W,i+1,j,k) + Q(W,i-1,j,k)
+ Q(w’isj+i:k) + Q(w9i»j'1:k) = 4*Q(w’i:j,k))
+ muz * (Q (W,1,3,k+1) + Q(W,i,j,k-1) - 2*Q(W,1,3,k))
end do
end do
end do

Now when the cluster of addresses around Q(U,1,j,k) is fetched, similar
addresses for Q(V,1,j,k) and Q(W, 1,7, k) are pulled in on the same cache
line (which on the KSR1 contains 16 64-bit variables) ready to be used
next. In our codes this rearrangement of data yields up to a factor of two
improvement in performance on the KSR1. We shall return to the actual
performance numbers after outlining the QNH model and code.

3. The QNH Model and Code

The Quasi-Nonhydrostatic (QNH) meteorological model, like all regional
forecast models, consists of two main parts: dynamics and physics. We al-
ready discussed the dynamics part of QNH in [3] so will not repeat it here;
instead we just list the basic equations:

du 109p 2

dt_—poax+fv+z/Vu ‘ (1)

dv 10p 9

-;l—-t—_—poay—fu+VVv (2)

dw 1 0p gp

i (—252 +99- 5) + vV (3)

dp ou Ov Ow 2

% = PG, t g, T ;) e TV (4)

dé 196 2

dt = —ga—zw-l- vV 0 (5)
where

Az

o = Z—;)z (6)

5

is the “speed reduction” constant, which mathematically makes the equa-
tions symmetric and physically slows vertical sound waves down, so that
the speed of scund in vertical and horizontal grid space is similar. u, v, w
are the winds in the three dimensions, p is pressure, 6 is temperature, pg is
mean density in the vertical, v is horizontal diffusion coefficient, f is Coriolis
parameter, g is gravity constant, and v is adiabatic exponent.

Recently, however, the dynamics part was modified to include well-posed
boundaries which make the code somewhat harder to parallelize so we shall
describe this new section of the dynamics. The theory of boundary condi-
tions for the open boundary problem for symmetric hyperbolic systems was
developed by Browning and Kreiss [6]. The so-called well-posed boundary
conditions are based on the characteristics of the partial differential equa-
tions on each boundary. Consider a simple hyperbolic system describing
sound wave propagation in a fluid moving at speed Up. Let the speed of
sound, ¢ >> Up > 0. On the western boundary, two characteristics, Uy + ¢
going from west to east, and Uy —c going from east from west, bring in the in-
formation from the exterior (either an outer coarse-mesh model or data) and
from the interior, respectively. The combination of these two characteristics
yields the final boundary values of u and p. If superscript ¢ represents values
obtained from the coarse mesh or data, n values from the inner numerical
model, and * the final boundary values, we have

u +ptfle=u+p°fc 5 uw—p*le=u" —p/c (7)

Thus the well-posed boundary values u* and p* are obtained by solving these
equations.

The physics package in QNH currently includes moist physics, radiation
and turbulence. The moist physics package is based on Schultz [7]. It contains
six “moist variables”: water vapor, cloud liquid, cloud ice, rain, snow and
precipitated ice. The limited radiation package currently calculates heating
associated with radiation. The Mellor-Yamada [8] Level 2.0 turbulence pa-
rameterization is used here for the turbulence in the boundary layer of a few
kilometers thick.

The structure of the QNH code is as follows:

Loop over time

Loop over space to calculate forcing functions
from dynamics including advection, topography,
horizontal diffusion, and physics

Loop over space for dynamics time differencing

Loops over horizontal boundaries to make them well-posed
Loop over top vertical boundary to make it well-posed
Loop over space for moist physics advection

Loop over space for moist physics time differencing

Loop over space for moist physics phase change

Loop over space for radiation

Loop over space for turbulence

End loop over time

All of the loops over space go over the whole horizontal plane nz X ny but
they have different extents in the vertical. For dynamics the vertical loop
goes all the way to the top of the atmosphere nz; for moist physics and
radiation it goes approximately half-way; and for turbulence it is confined
to a few layers near the ground. Hence when we come to parallelize the
code we shall divide the three-dimensional space up into vertical columns,
keeping all the various vertical loops local to each processor.

The original code was developed on a Sun Sparc 2 workstation which
does not have any complicated caching so no care was taken in array size
declaration (to avoid subcache thrashing) and no array aggregation was
done (to improve use of the subcache), as explained above in Section 2.
Therefore the original code ran badly on one processor of the KSR1, it
also ran badly on the DEC 3000/400 workstation which is based on the
DECchip 21064 or “Alpha” chip, as can be seen from the times labeled
original in Table I. However, when the code was optimized by adding an
extra row to the z and y dimensions of all the arrays and by aggregating the
arrays for the primary variables, the speed on the KSR1 and on the DEC
workstation increased by almost a factor of 2 — see the last column of Table
I. We present the times for the DEC workstation to make the point that
todays high performance workstations can benefit from simple code changes
which improve data locality in their caches in ezactly the same way as the
KSR1 does. In fact the DEC Alpha chip is what Cray Research has chosen
as processor in their first MPP product, the T3D. Thus the programming
methodology we are developing for the KSR1 has wider applicability. We
would also like to note that the clock speed of the KSR1 is only 20 MHz
whereas that of the DEC 3000/400 is 133 MHz. Taking this into account
we see that the KSR1 is actually performing better relatively, or putting it
another way, speeding up the clock on the KSR1 will significantly improve
its single processor performance relative to high end workstations.

TABLE I
Times in seconds for a short run of the original and the optimized versions of QNH
with only dynamics and well-posed boundaries using a 32x32x21 grid on three
different processors; the KSR1 is for a single processor.

Processor original | optimized
Sun Sparc 2 31.1 30.4
KSR1 28.6 15.7
DEC 3000/400 7.9 4.5

We instrumented the code (again using the Sage++ tool) in order to
discover that 15.7 seconds on the KSR1 corresponds to 7.7 Mflops. Here
we have timed only the dynamics and well-posed boundaries to verify that
the performance is about the same as what we obtained for the WPT code
which is essentially just the dynamics part of QNH. In fact, for WPT [3]
after array aggregation we obtained 7.8 Mflops. We actually went further
with WPT and rearranged the code to bring updates to the same variables
closer together thereby improving the performance to 8.6 Mflops. We could
do the same here for QNH, but we elected to investigate parallel performance
first.

4. Parallel Implementation on the KSR1

KSR provides several compiler directives in Fortran to aid parallelization of
programs, the main one being “tiling” [9]. Essentially, tiling means splitting

up a series of nested loops into blocks, each one of which can be executed

independently of the others. In order to do this, all the user need do is add a

few compiler directives. In our previous work on WPT [3] we explained tiling

in some detail and tested various strategies to discover the best for our code.

We shall not repeat all that here, suffice it to say that the conclusions for

WPT apply to QNH. Namely that it is most efficient to tile the horizontal
loops over nz and ny, with the vertical loop over nz in-processor. This

horizontal tiling should be done using the so-called “slice” strategy which

makes one tile per processor, and these tiles should be rectangular — long in
the first dimension and thin in the second dimension (again due to Fortran
array storage order). In fact highest performance is obtained when the tiles

are nz X (ny/N), where N is the number of processors.

Of course in order to tile our loops over nz and ny we require a loop
nest containing at least these two loops (and possibly also a loop over nz).
Therefore we immediately have a problem with the well-posed horizontal
boundary loops which go over only nz or ny but not both. The code for

8

the ‘Loop over space for dynamics time differencing’, the ‘Loops over hori-
zontal boundaries to make them well-posed’ and the ‘Loop over top vertical
boundary to make it well-posed’ looks as follows :

do k = 1,nz

TILE(4,j)
do j =1,ny
do i=1,nx
Dynamics time differencing

enddo
enddo
do j = 1,ny
Well-posed horizontal i = 1 bdy ! west
enddo
do j =1,ny
Well-posed horizontal i = nx bdy ! east
enddo
do i = 2,nx-1
Well-posed horizontal j = 1 bdy ! south
enddo
do i = 2,nx-1
Well-posed horizontal j = ny bdy ! north
enddo
enddo
TILE(4,j)
do j = 2,ny-1
do i = 2,nx-1 .
Well-posed vertical k = nz bdy ! top
enddo
enddo

We have indicated where the KSR tile directives would go with TILE(3, j).
Notice that the range of the second tile statement is two less than that of
the first (2 to ny — 1 and 2 to ne — 1 rather than 1 to ny and 1 to nz). This
could lead to unnecessary data movement between processors whose tiles
change size unless both loops were included in an AFFINITY REGION
statement. This statement tells the compiler to keep the data fixed in the
processors at the expense of having different tile sizes. Another way around

9

this is to change the second set of loops to go over the whole nz X ny plane
with an if statement inside to skip the edges; this is what we shall use. The

reader may be wondering why we do not simply have one dimensional tile
statements for the well-posed horizontal loops (i.e. TILE(¢) or TILE(j)).
The problem with this is that it would cause a great deal of data to be
moved around between processors since the two dimensional loops require
rectangular tiles whereas the one dimensional loops require strips. Moreover
for the i-loop these strips would be in one direction and for the j-loop in the
other direction so effectively a data transpose would be happening between
the i-loops and j-loops, in addition to the data movement between these
loops and the two dimensional loops. The best solution is to obtain two-
dimensional loops nested appropriately for tiling by rearranging the code as
follows :

do k = 1,nz
TILE(i,j)
do j = 1,ny

do i =1,nx
Dynamics time differencing
enddo
enddo

TILE(i, j)
do j = 1,ny
do i=1,nx
if (i .eq. 1) then

Well-posed horizontal i = 1 bdy ! west
endif
if (i .eq. nx) then

Well-posed horizontal i = nx bdy ! east

endif
if (i .ne. 1 .and. i .ne. nx) then
if (j .eq. 1) then

Well-posed horizontal j = 1 bdy ! south
endif
if (j .eq. ny) then

Well-posed horizontal j = ny bdy ! north

endif

10

if (j .ne. 1 .and. j .ne. ny) then

if (k .eq. nz) then
Well-posed vertical k = nz bdy ! top

endif

endif

endif
enddo
enddo

enddo

All we have done is change the one dimensional loops into two dimensional
loops plus if statements to select only the one dimensional parts we wanted
in the first place. However this minor change is essential in order to be
able to tile the loops with no data movement and achieve decent parallel
performance. This is obvious from the times for the dynamics and well-
posed boundaries part of the code listed in Table II. On, for example, 8
processors the two dimensional loop version obtains a speedup of 5.0 whereas
the one dimensional loop version manages only 2.6. Notice that in addition
to combining all four well-posed horizontal loops we also combined the well-
posed vertical loop with them. This saves a tile statement with its associated
overhead. We could go further and eliminate one more tile statement by
combining our new loop over all the well-posed boundaries with the previous
loop over the ‘dynamics time differencing’. However this would change the
order in which the boundaries are updated and therefore change the results
of the code slightly. Nevertheless we tried doing this but as it only sped the
code up by a few percent we decided it was not worth it after all. One last
thing we tried was getting rid of the if statements to see how much time they
were taking up — again it was only on the order of a percent. Incidentally,
this rewrite of one-dimensional loops as two-dimensional loops will also help
in porting the code to distributed memory message passing MPPs.

Now that we have the code rewritten entirely in the form of two dimen-
sional loops we can go ahead and tile them all the same way to obtain good
parallel performance. We show times for all seven loops, plus the total time,
in Table IIT for a small run of the complete (dynamics and physics) QNH
code on various numbers of KSR1 processors. In order to better see how effi-
ciently the loops are being parallelized we calculate the speedups from these
times, as shown in Table IV. It is clear that despite the overall speedups
being fairly good (this is after all a rather small grid so there is not much
parallelism left by the time we reach 16 processors) a large fraction of the
loops are not yielding satisfactory speedups in themselves. Fortunately these

11

TABLE 11
Times in seconds for a short run of the one dimensional loop (1D) and two dimen-
sional loop {2D) versions of QNH with only dynamics and well-posed boundaries

using a 32x32x21 grid on different numbers of processors of the KSR1.

Processors | 1D 2D

1 15.6 | 15.7

2 11.8 | 8.4

4 7.4 | 44

8 5.0 | 2.6

16 4.1 1.5
TABLE III

Times in seconds for a short run of the complete QNH code using a 32x32x21 grid
on different numbers of processors of the KSR1.

Loop 1 proc | 2 procs | 4 procs | 8 procs | 16 procs
Dynamics 12.7960 | 6.6405 | 3.4505 | 1.9175 1.0738
Dynamics time diff | 3.1174 | 1.8070 | 1.1498 | 0.7429 | 0.4272
Moist physics adv 0.2422 | 0.1572 | 0.1146 | 0.0578 | 0.0466

Moist time diff 0.0589 | 0.0394 | 0.0202 | 0.0134 | 0.0116
Moist phase change | 1.8627 | 0.9997 | 0.5149 | 0.2571 | 0.1370
Radiation 0.0192 | 0.0165 | 0.0099 | 0.0059 | 0.0045
Turbulence 0.0374 | 0.0243 | 0.0154 | 0.0073 | 0.0074
Total 18.15 9.73 5.33 3.06 1.77

loops consume only about 2% of the sequential run time. Most of the time
(70%) is spent in the ‘Dynamics’ loop which shows the second best speedup.
Next comes the ‘Dynamics time difference’ loop (which includes the two-
dimensionalized well-posed boundary loop as described above) with 17% of
the run time showing third best speedup. And last with 10% is the ‘Moist
physics phase change’ loop which surprisingly shows the best speedup. We
say surprisingly because this loop contains a great many if statements to
implement all the possible phase changes between the six forms of mois-
ture present. Therefore this part of code has the potential for the most load
imbalance since areas of the sky with clouds will require more computing
than blue sky. In tests with cloud covering one third of the sky this load
imbalance was found to be less than 10% of the time spent in this loop.
Despite the remaining loops using such a small fraction of the run time
we will discuss each of them in turn to explain why they show such poor
speedups and indicate how to improve them. Firstly, the ‘Radiation’ loop

12

TABLE IV
Speedups from times in Table IIIL.

Loop 1 proc | 2 procs | 4 procs | 8 procs | 16 procs
Dynamics 1.00 1.93 3.71 6.67 11.92
Dynamics time diff 1.00 1.73 2.71 4.20 7.30
Moist physics adv 1.00 1.54 2.11 4.19 5.20
Moist time diff 1.00 1.49 2.92 4.40 5.08
Moist phase change | 1.00 1.86 3.62 7.25 13.60
Radiation 1.00 1.16 1.94 3.25 4.27
Turbulence 1.00 1.54 2.43 5.12 5.05
Total 1.00 1.87 3.41 5.93 10.25

TABLE V

Speedups for a short run of the complete QNH code using a 32x32x41 grid on
different numbers of processors of the KSR1.

Loop 1 proc | 2 procs | 4 procs | 8 procs | 16 procs
Dynamics 1.00 2.24 4.50 8.45 14.50
Dynamics time diff 1.00 1.86 3.46 5.51 8.48
Moist physics adv 1.00 2.21 4.56 6.26 10.53
Moist time diff 1.00 1.95 3.90 7.62 9.05
Moist phase change | 1.00 2.06 4.16 8.24 16.07
Radiation 1.00 1.76 3.75 5.28 7.24
Turbulence 1.00 1.47 3.88 7.30 11.22
Total 1.00 2.07 3.90 6.36 12.54

contains only a couple of statements so the overhead in tiling this loop
is a large fraction of its run time. Moreover this overhead increases as the
number of processors increases thereby limiting the speedup. The solution to
this problem is to combine this loop with other loops in order to reduce the
number of tile statements. Similarly the ‘Moist physics advection’ and ‘Moist
physics time difference’ loops contain only a handful of statements, each one
updating a different variable, so not enough work and little data reuse limits
their speedup. In addition the vertical extent for these loops is less than
half-way to the top of the atmosphere and this is the dimension which is
in-processor so again there is not so much work to do for each tile creation
and destruction. Lastly, the ‘Turbulence’ loop has two problems: it is the
only loop in the code which has the vertical loop inside the horizontal loops,
and this vertical loop runs over only two layers. Having the vertical loop
inside the horizontal loops means that large strides are taken in the variables

13

TABLE VI
Times in seconds for a short run of the complete QNH using various sizes of grids
on different numbers of processors of the KSR1.

Processors | 32x32x21 | 64x64x21 | 128x128x21
1 18.15 100.3 706.9
2 9.73 47.3 319.9
4 5.33 23.4 133.9
8 3.06 12.4 60.2
16 1.77 6.9 29.3
32 - 4.8 18.8
64 - - 12.1
TABLE VII

Speedups from times in Table VI

Processors | 32x32x21 | 64x64x21 | 128x128x21
1 1.00 1.0 1.0
2 1.87 2.1 2.2
4 3.41 4.3 5.3
8 5.93 8.1 11.7
16 10.25 14.5 24.1
32 - 20.9 37.6
64 - - 58.4

(since the vertical index is the last one) which is bad for the subcache. And
again with only two iterations of the vertical loop there is not enough work
to ameliorate the overheads. To verify that the speedups would be better if
there were more work in the loops we ran a grid of 32x32x41 with four layers
for the turbulence. With this Table IV becomes Table V with much better
speedups. In fact the two loops which exhibited the best speedups with
21 points in vertical now display superlinear speedups with 41 points. The
‘Moist physics advection’ loop shows the most dramatic improvement. The
‘Radiation’ is still the worst but is by far the smallest part of the code. Thus
for maximum parallel performance it is important to have as many points
in the vertical as possible. This corresponds physically to a high resolution
in the vertical which is precisely what models like QNH are aiming for.
Finally we investigate how well the complete QNH code using various
sizes of grids scales on different numbers of KSR1 processors. In Tables
VI and VII we list the total run times and the speedups, respectively, for
32x32x21, 64x64x21 and 128x128x21 grids on up to 64 processors of the

14

TABLE VIII
Total Mflops from times in Table VII.

Processors | 32x32x21 | 64x64x21 | 128x128x21
1 7.0 5.2 3.0
2 13.3 10.9 6.6
4 23.8 22.4 15.9
8 42.7 42.1 35.1
16 70.7 75.4 72.3
32 - 108.7 112.8
64 - - 175.2
TABLE IX
Mflops per processor from times in Table VIII.
Processors | 32x32x21 | 64x64x21 | 128x128x21
1 7.0 5.2 3.0
2 6.7 5.5 3.3
4 6.0 5.6 4.0
8 5.3 5.3 4.4
16 4.4 4.7 4.5
32 - 3.4 3.5
64 - - 2.7

KSR1. We also convert run times to Mflops, the standard unit of perfor-
mance, in Table VIII. With our instrumented version of the code we find
that 18.2 seconds run time on one processor for the 32x32x21 grid corre-
sponds to 7.0 Mflops. This is less than the 7.7 Mflops we obtained above for
the dynamics only because the physics has more logical operations. There-
fore a 64x64x21 grid, which requires four times as many flops, running in
100.3 seconds on one processor yields 5.2 Mflops. Similarly a 128x128x21
grid taking 706.9 seconds gives 3.0 Mflops. These performances for the larger
sizes of grid are poor because the data does not fit in one processor’s mem-
ory. However since the KSR1 is a shared memory machine the code still
runs with the data being swapped to the memory of other processors. When
the number of processors is such that the data just fits in their combined
memory we obtain a peak in the Mflops per processor, which is shown in
Table IX. For the three problem sizes this peak is for 1,4 and 16 proces-
sors respectively. We also obtain super-linear speedups (see Table VII) until
we reach this number of processors. Unfortunately the Mflops per processor
falls off significantly on large numbers of processors. This is true even when

15

the amount of work per processor is kept constant: comparing 32x32x21 on
1 processor, 64x64x21 on 4 processors and 128x128x21 on 16 processors in
Table IX reveals that the Mflops per processor falls from 7.0 to 5.6 to 4.5.
We are still not entirely sure why this happens (similar behavior was seen
for WPT [3]) - but it is probably due to increased contention in the rings. Of
course, the most important (some would say the only important) measure
of performance, run time, decreases by about 60 on 64 processors. Therefore
the KSR1 is very effective for running weather forecast codes in parallel.

The basic lesson we have learned in parallelizing code for the KSR1 is to
minimize the number of tiled loops. Unfortunately this is just the opposite
of what one does when vectorizing a code for the Cray. There the goal is to
make every loop a vector loop over a few variables. However, as we discussed
in Section 2, at least optimizing sequential codes for the two machines is
similar.

5. Conclusions and Further Work

We have shown that it is fairly easy to port the QNH model to the KSR1
parallel supercomputer, obtaining reasonable sequential and parallel perfor-
mance by making minor rearrangements of the data and code. We found a
program transformation tool (such as Sage++) very useful in making these
rearrangements. Our porting strategy is a three step process: first the origi-
nal sequential code is made efficient on one processor, then the code is paral-
lelized using “tiling” directives, and lastly the parallel code is optimized. The
first step consists of three parts. Firstly an extra row and column is added
to all the array dimensions to avoid subcache thrashing. Secondly arrays are
aggregated (using solely directives to the program transformation tool) to
help with data locality. Thirdly the code is rearranged to bring updates to
the same variables closer together (we did not so this here but will do it
before beginning production runs of QNH on the KSR1). The second step,
namely adding tile statements, turns out to be the most straightforward.
The last step is actually the most time consuming one as it involves rewrit-
ing one-dimensional boundary loops in two-dimensional form. As we pointed
out the sequential optimization part of this strategy renders the sequential
code efficient on other cache-based processor chips like the DECchip 21064
and on vector computers like the Cray; and the parallel optimization part
helps with parallelization for other MPPs.

Our immediate future plans are to port the QNH model to the Intel
Paragon distributed memory MPP. This involves a significant rewrite of the
code but fortunately our colleagues have already done this for WPT (see
[10] in these proceedings). Moreover they produced the so-called “nearest
neighbor tool” which makes it much easier to do this rewrite by hiding a

16

great deal of the message passing. Over the longer term, we are also involved
in a project to port the National Meterological Center forecast model, called
Eta [11], to MPPs. Based on our experience with WPT and QNH, we have
decided to first port Eta to the KSR1 and then to the Intel Paragon, using
our three part strategy.

Acknowledgements

CFB is supported by NSF Grand Challenge Applications Group Grant ASC-
9217394 and by NASA HPCC Group Grant NAG5-2218. This work was
funded in part by the NOAA Forecast Systems Laboratory.

References

(1] G. L. Browning and H.-O. Kreiss, ‘Scaling and computation of smooth atmospheric
motions’, Tellus 38A (1986) 295-313. ‘

(2] G. L. Browning and A. E. MacDonald, ‘Incorporating topography into the multiscale
systems for the atmosphere and oceans’, Dynamics of Atmosphere and Oceans 18 (1993)
119-149.

(3] C.F. Baillie and A. E. Macdonald, ‘Porting the well-posed topographical meteorolog-
ical model to the KSR parallel supercomputer’, in: Proc. Fifth ECMWF Workshop on
the Use of Parallel Processors in Meteorology: Parallel Supercomputing in Atmospheric
Science, eds. G.-R. Hoffmann and T. Kauranne {World Scientific, London, 1993).

[4] ‘KSR Parallel Programming’ manual, Kendall Square Research, 170 Tracer Lane,
Waltham, MA 02154 (October 1991).

(5] D. Gannon, F. Bodin, S. Srinivas, N. Sundaresan, S. Narayana and J. Gotwals,
‘Sage-++, An Object Oriented Toolkit for Program Transformations’, Technical Report,
Dept. of Computer Science, Indiana University (1993).

[6] G. L. Browning and H.-O. Kreiss, ‘Initialization of the shallow water equations with
open boundaries by the bounded derivative method’, Tellus 84 (1982) 334-351; and
‘Scaling and computation of smooth atmospheric motions’, Tellus 38A (1986) 295-313.

[7] P. Schultz, ‘Development and tests of a cloud physics parameterization for real-time
aviation and public numerical weather forecasting’, NOAA Technical Memorandum
ERL-FSL 6, U.S. GPO: 1993-774-025/89026 (1993).

[8] G. L. Mellor and T. Yamada, ‘A hierarchy of turbulence closure models for planetary
boundary layers’, J. Atmos. Sci. 81 (1974) 1791-1806; and ‘Development of a turbulence
closure model for geophysical problems’, Rev. Geophys. 20 (1974) 851-875.

[9] ‘KSR Fortran Programming’ manual, Kendall Square Research, 170 Tracer Lane,
Waltham, MA 0215/ (October 1991).

[10] B. Rodriguez, L. Hart and T. Henderson, ‘Performance and Portability in Parallel
Computing: A Weather Forecast View’, these proceedings.

{11] Z. L. Janjic, ‘The step-mountain coordinate: Physical package’, Mon. Wea. Rev. 118
(1990) 1429-1443.

