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Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct and powerful

probes for studying the physics of solids. ARPES takes a “snapshot” of electrons in momentum

space (k-space) to reveal details of the dispersion relation E(k), as well as information about the

lifetimes of interacting quasiparticles. From this we learn not only where the electrons live, but

also, if we are crafty, what they are doing. Beginning with work by our group in 2006 using a 6-eV

laser, ARPES experiments have begun to make use of a new, low photon energy regime (roughly

hν = 6–9 eV). These low photon energies give drastic improvements in momentum resolution,

photoelectron escape depths, and overall spectral sharpness. This has led to several important new

findings in the intensively-studied problem of high-temperature superconductivity.

This thesis will focus on two of the latest results from our group using low-energy ARPES

(LE-ARPES) to study the cuprate high-Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212). The first

of these is an investigation into the nature of many-body interactions at a well-known energy

scale (∼ 60–70 meV) where the dispersion shows a large bend, or “kink”. Using LE-ARPES

measurements, the k-dependence of this kink is investigated in unprecedented detail. An attempt

is then made to map the feature’s k evolution into the scattering q-space of boson dispersions. In

our analysis, the q-dispersion of the kink bears more resemblance to dispersive spin excitations

than phonons — a surprising finding in light of previous evidence that the the kink originates from

interactions with phonons. However, phonons cannot be ruled out, and the results may hint that

both types of interactions contribute to the main nodal kink.

A second result is the discovery of a new ultralow (< 10 meV) energy scale for electron

interactions, corresponding to a distinct, smaller kink in the electron dispersion. The temperature
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and doping dependence of this feature show not only that it turns on near Tc — signalling a

possible relation to the mechanism of high-Tc superconductivity — but also that it leads to a

subtle breakdown of the so-called “universal” Fermi velocity vF along nodes of the anisotropic

superconducting gap. Moreover, vF is found to depend quite strongly on temperature, which may

be an important factor in the physics of cuprates.
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Chapter 1

Introduction

Angle-resolved photoemission (ARPES) is a technique that exploits the photoelectric effect

in order to gain information about the electronic structures of materials. By mapping the kinetic

energies and emission angles of the photoemitted electrons, the electron dispersion (energy-vs.-

momentum) relations can be obtained. The features of the dispersions contain information about

all the complicated many-body interactions of the system.

The energy and momentum resolution of ARPES has recently been substantially improved

thanks to the development of systems using low-energy photons (6–9 eV). This low-energy ARPES

(LE-ARPES) was first performed using lasers [Koralek et al., 2006], and it is rapidly growing in

popularity and now employs a variety of additional lightsources. Along with ultrahigh resolution,

the low photon energy regime reduces spectral background and markedly improves the bulk material

sensitivity of the probe. As a result, LE-ARPES is capable of obtaining spectra that are close to

intrinsic and which reveal new, ultrafine details of the interacting electrons in solids.

In this thesis we will explore the use of LE-ARPES at low photon energies to study

Bi2Sr2CaCu2O8+δ (Bi2212), which, as a member of the cuprate family of high-temperature (high-

Tc) superconductors, is a system of enormous theoretical and practical importance. An understand-

ing of the high-Tc mechanism could foreseeably pave the way to engineering room-temperature

superconductors, as well as give new insights into other related systems of interest. The unique

ability of ARPES to probe the interactions experienced by electrons as a function of both energy

and momentum makes it an ideal tool to uncover the origins of high-Tc superconductivity. In par-
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ticular, ARPES reveals electron dispersion anomalies (“kinks”) which signal specific energy scales

where interactions are happening. Presumably certain kinks are related to the forces that drive —

or perhaps compete with — superconductivity.

ARPES has already extensively studied many aspects of the electronic structure of Bi2212 and

of cuprates in general. Over the last 20 years or so, conventional ARPES has acquired a vast amount

of information about these materials. Still, the advent of LE-ARPES has in many respects leap-

frogged higher-energy ARPES and quickly made many discoveries that were virtually unattainable

by previous experiments. The work presented here will detail some of the new insights into the

physics of high-Tc cuprates made possible by LE-ARPES — results which highlight the tremendous

power of the technique, and which will hopefully be of some use in the quest to understand high-

temperature superconductivity.

Chapter 2 presents a broad overview of ARPES covering the theory and technology behind

the experiment. The meaning of the ARPES spectral function will be discussed, as well as how

the data can be analyzed to extract signatures of many-body interactions. LE-ARPES will be

introduced, and we will describe its many technical advantages and the reasons for them.

Chapter 3 begins with a very brief introduction to conventional and high-Tc superconductivity

and overviews relevant aspects of cuprates that will be of importance in this thesis — e.g., the Fermi

surface, the phase diagram, and the d-wave superconducting gap. Particular attention is paid to

various interaction energy scales that have been identified by the existence of ARPES dispersion

kinks. The detailed investigation of these anomalies makes up the bulk of the remainder of this

thesis.

Chapter 4 investigates the detailed momentum dependence of a large and well-known dis-

persion anomaly along the “nodal” (0, 0)–(π, π) line. Nominally located about 60–70 meV below

EF , we reveal that this feature’s energy location smoothly evolves in momentum space while its

strength intensifies dramatically in certain regions. These observations are interpreted in the con-

text of some simple assumptions about the scattering of electrons due to interactions with bosons.

In certain respects the results of the analysis are qualitatively consistent with interactions due to
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dispersive spin excitations. However, the role of phonons cannot be ruled out. The findings suggest

the possibility that both phonons and spin fluctuations contribute to the main nodal kink, yet they

also highlight the difficulties inherent to inferring the underlying interactions from ARPES data in

cuprates.

Chapter 5 describes the recent discovery of a very low-energy electronic dispersion feature,

just 10 meV or so below the Fermi energy. The observation of this low-energy kink would have

been virtually impossible without the resolution of LE-ARPES. Studying different dopings, we find

that the kink has an onset that appears to be related to Tc. The resulting strong temperature

dependence of the Fermi velocity has implications for previous notions about the insensitivity of

the nodal dispersion to changes in doping. Some theories of the kink’s origin will be discussed.

Finally, the findings of chapters 4 and 5 will be summarized in chapter 6.



Chapter 2

The Technique of Angle-Resolved Photoemission Spectroscopy

2.1 Introduction

Neglecting interactions, non-core-level electrons in a solid can be completely characterized by

just three parameters: energy, momentum, and spin. As will be discussed later, in an interacting

picture, the electrons can be cast in terms of “dressed” composite particles which acquire an ad-

ditional property: lifetime. Angle-resolved photoemission spectroscopy (ARPES) is unique among

materials science probes in that it is in principle capable of measuring all1 of these properties

directly and simultaneously. This makes ARPES one of the most powerful experimental techniques

available to condensed matter physicists.

The bulk of this chapter attempts to draw a broad overview of ARPES, covering the basic

physics and technology behind the technique, as well as the theory, meaning, and interpretation

of the acquired spectra. We will conclude with a discussion of the emerging and powerful sub-

technique of low photon energy ARPES (LE-ARPES), where “low” means roughly 6–9 eV. LE-

ARPES is the central experimental probe employed in this thesis. Compared with more traditional

photon energies (∼ 20–100 eV), vast improvements in momentum and energy resolution and overall

spectral sharpness are possible in the low-energy regime. Moreover, LE-ARPES ejects electronic

states from deeper within the sample than conventional ARPES, which is typically regarded as a

1 While an ARPES system can be configured with a spin detector (e.g., a so-called Mott detector), spin resolution
comes at the expense of a huge fraction of the signal (almost all of it, in fact), which, naturally, is disadvantageous for
high-resolution studies of the remaining parameters that characterize the electrons. Hence spin-resolved ARPES is not
used in the work presented here. For the curious, a review of spin-ARPES has been written by P. D. Johnson [Johnson,
1997].



5

surface probe.

While discussing ARPES, there will be a number of opportunities to point out that while the

technique is useful for the study of materials ranging from the simple to the complex, it is especially

suited to the study of high-Tc cuprates. Or, rather, it might be better to say that the cuprates are

especially suited to ARPES. As we shall discuss shortly, the quasi-2D nature of layered cuprates

greatly simplifies their analysis. Additionally, these materials can be cleaved in vacuum (certainly

some more easily than others) to reveal clean, smooth surfaces, and this property greatly improves

the overall quality of the spectra that can be obtained.

Photoemission in primitive forms has existed for roughly a century, and ARPES specifically

has been around since at least the 1970s [Smith and Kevan, 1992]. Inevitably, it is impossible, to

cover the full breadth of such a mature experimental technique. Further reading can be found in a

number of excellent books, reviews, and articles [Inglesfield and Plummer, 1992,Louie, 1992,Hüfner

et al., 1999,Hüfner, 2003,Damascelli et al., 2003,Damascelli, 2004,Reinert and Hüfner, 2005,Reinert

and Hüfner, 2007].

2.2 Energetics of the photoemission process

When short-wavelength light (beginning in the ultraviolet) strikes a metal, electrons are

ejected. If the wavelength of the light is too long, however, nothing happens. Albert Einstein’s

explanation of this phenomenon was largely responsible for his 1921 Nobel Prize in Physics. The

success of his theory marked a major milestone in the history of quantum mechanics. By now,

however, quantum mechanics is so foundational to modern physics that the essence of the photo-

electric effect seems downright trivial to contemporary physicists: (i) The light is quantized into

photons whose energies depend on the wavelength; (ii) an electron can absorb a photon and acquire

its energy; (iii) if the combined energy of the electron and photon is high enough, the electron can

escape from the material. The kinetic energy of the ejected electron is simply

Ekin = Ei + hν − (EF + Φ) (2.1)
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where Ei is the initial energy of the electron in the solid, EF is the Fermi level, hν is the photon

energy, and Φ is the work function of the material — the energy required to remove the electron

with Ei = EF infinitely far from the sample. The quantity EF +Φ is referred to as the vacuum level

Evac. Photoemission will occur for electrons excited above this energy. Values of Φ are material-

dependent but for the most part fall within a small range, about 4–5 eV [Kittel, 1996], setting a

lower limit on the photon energies capable of inducing photoemission. EF and Φ are determined

empirically from ARPES. The kinetic energy corresponding to EF is established by observing the

kinetic energy of the Fermi edge from, e.g., a polycrystalline gold sample. Φ, meanwhile, can be

found by optimizing its value to give the correct periodicity of dispersion features — e.g., the

periodicity of multiple Brillouin zones.

The spectrum of Ei corresponds to the density of states arising from the band structure and

core levels of the material. Electrons fill these states obeying the Pauli exclusion principle, with the

highest occupied state at T = 0 being EF .2 A schematic energy diagram of the photoexcitation

process is shown in Fig. 2.1. The measurement of the number of emitted electrons as a function of

kinetic energy, I(E), depicted in the upper-right set of axes, constitutes photoemission spectroscopy

(PES), sans the “angle-resolved” part.

2.3 Angle-resolved photoemission

The addition of angular resolution to PES allows the emission angles of an electron to be

mapped to its crystal momentum states k. As an electron leaves the sample, its momentum parallel

to the surface, k‖, is conserved, while a portion of its perpendicular momentum component, k⊥, is

lost to overcoming the sample work function. The total momentum of the emitted electron outside

the sample is

|p| =
√

2mEkin (2.2)

2 In the limit Ei → EF , Emax
kin = hν −Φ. This is, strictly speaking, what Einstein described [Reinert and Hüfner,

2005].
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Figure 2.1: Energy schematic of the photoemission process. Electrons with binding energies Ei
are excited by monochromatic photons with energy hν. If Ei + hν > EF + Φ, then they are
emitted from the sample with kinetic energy given by (2.1). The example of a core level state with
Ei = EB is highlighted. Measuring the spectrum of emitted electrons I(E) constitutes (non-angle-
resolved) photoemission spectroscopy (PES). I(E) is intimately related to the intrinsic electron
density spectrum N(E), though it is in general not an exact image of N(E) due to broadening and
matrix element effects, which will be discussed. From [Reinert and Hüfner, 2005].

and its momentum parallel to the surface is

|p‖| = |k‖| =
√

2mEkin/~2 sinα (2.3)

where α is the angle between the surface normal and ejected photoelectron. The emission angle

and conservation of k‖ are depicted in Fig. 2.2(a).

As it stands, Eq. (2.2) is not very practical; it is necessary to know the components of k‖ in
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the sample coordinates system. In a typical ARPES experimental setup, the sample can be tilted

in two dimensions by coupled orthogonal rotational stages θ and φ, allowing the experimenter to

choose the particular k‖ pointing into the analyzer. (Some setups include a third angle, η, allowing

in-plane rotation of the sample, which merely spins the orientation of the Brillouin zone and does

not otherwise affect the calculation of momentum components in units of Å−1.) To compute the

components of k‖, it is easiest to consider an equivalent problem, where instead of rotating the

sample by (θ, φ), the momentum vector p of the detected electron — which by definition always

points to the analyzer entrance — is rotated by (−θ,−φ). Suppose that the geometry is defined

such that for θ = φ = 0, the sample surface is normal to the analyzer along the z axis (i.e., p = pẑ).

θ is defined as the polar angle from the z axis, and φ is the azimuthal angle in the y− z plane. The

geometry is illustrated in Fig. 2.2(b). p is transformed to p′ under rotation via

p′ = Rx(−φ)Ry(−θ)p (2.4)

where

Rx(φ) =


1 0 0

0 cosφ sinφ

0 − sinφ cosφ

 , Ry(θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 ,

and p =
√

2mEkin
~


0

0

1


(2.5)

Keeping in mind p‖ = k‖, the surface parallel momentum components of p are thus:

kx =
√

2mEkin/~2 cos θ sinφ,

ky = −
√

2mEkin/~2 sin θ.

(2.6)

While k‖ is obtained directly by ARPES in “one shot” as a result of the conservation of paral-

lel momentum, the determination of k⊥ is far less straightforward. The problem is essentially that

k⊥ depends on the details of the band structure at the final state energy Ef of the photoexcited elec-

tron, which is not known a priori. Some techniques have been developed for absolute determination
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Figure 2.2: Momentum components of the photoelectron. (a) Conservation of parallel momentum
as the photoelectron leaves the sample. k and p are the momenta of the photoexcited electron
inside and outside the sample, respectively. α is the angle with the surface normal. (b) Geometry
for computing the components of k‖ as described in the text. Rotating the sample by polar angle
θ and azimuthal φ corresponds to rotating the vector pointing to the analyzer by −θ and −φ. At
θ = φ = 0 the sample is set to be normal to the analyzer along the z axis. The components kx and
ky of the total surface-parallel momentum k‖ are found from Eq. 2.6.

of k⊥ (e.g., [Strocov et al., 1997]). Still, the workhorse equation for studying k⊥ is based on the as-

sumption that the final states are free-electron-like (i.e., have parabolic dispersion). The kinetic en-

ergy of the excited electron inside the sample is Esample
kin = Ef−E0, where E0 is the bottom of the va-

lence band. Assuming free-electron final states, Ef (k) = ~2k2/(2m)+E0 = ~2(k2
‖+k2

⊥)/(2m)+E0.

By noting EF = Ekin + Φ and combining with Eq. 2.3, the perpendicular momentum is

k⊥ =
√

2m(Ef − E0)/~2 − k‖ =
√

2m (Ekin cos2 α+ V0) /~2 (2.7)

where V0 = EF + Φ − E0 is referred to as the “inner potential”. A common trick for determining

V0, and hence k⊥, is to scan through hν to probe the periodicity of E(k) over multiple Brillouin
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zones. V0 can then be determined by a fit to this periodicity.

Though it has been included here for completeness, k⊥ will not factor into this thesis in any

significant way. The reason is that the Brillouin zone of cuprate superconductors, whose unifying

structural components are layered CuO2 sheets, may essentially be regarded as two-dimensional.

This greatly simplifies the study of cuprates by ARPES, since it more-or-less eliminates the k⊥

parameter space from the experiments. Cuprates, it turns out, are uncommonly suited to probing

via ARPES.

As a final parting point on the topic of angle-to-k mapping in ARPES, notice that the photon

momentum has been left out of the above equations. This is intentional; Photon momentum is

negligible in the present work, and indeed in most ARPES experiments. For example, for a fairly

conventional photon energy of hν = 20 eV, photon momentum is just 0.01 Å−1. In cuprates,

where the tetragonal lattice constant in the a-b plane is around a = 3.8 Å, this photon momentum

amounts to merely 0.01 π/a (0.5% of the full 2π/a-wide Brillouin zone). For the low photon energies

typically used in this thesis, the photon momentum is obviously even smaller – e.g., just 0.2% of the

cuprate Brillouin zone for hν = 7 eV. Photon momentum eventually becomes non-negligible for very

high photon energies. This is the case in soft X-ray ARPES performed at specialized synchrotron

beamlines whose photon energies extend well into the keV range [Saitoh et al., 2000,Strocov et al.,

2010].

2.4 Modern ARPES spectrometers

From a technology standpoint, ARPES today bears little resemblance to photoemission

spectroscopy’s earliest implementations. Various crude means of angular resolution have long

existed [Smith and Kevan, 1992], but the term ARPES nowadays connotes something far more

powerful — a multiplexing probe that can truly “see” in two dimensions (E and k) simultaneously,

on a video monitor, right before our very eyes. This section overviews the instrumentation that

makes it possible.
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2.4.1 Hemispherical analyzer

Modern ARPES experiments typically employ one of two types of analyzers: hemispherical

or time-of-flight (TOF). The two analyzer configurations use essentially the same electron lens

technology to obtain angular resolution. However, hemispherical analyzers achieve energy resolution

via curved capacitor plates, whereas TOFs determine the electrons’ kinetic energies by discerning

the time it takes for an electron to travel from the sample to the detector (requiring a pulsed light

source). This section will focus on hemispherical analyzers, which are sometimes referred to as

hemispherical deflector analyzers (HDAs). Currently HDAs are far more common than TOFs, and

state-of-the-art instruments have claimed energy resolution in the sub-meV range [Kiss et al., 2005],

as well as angular resolution on the order of 0.1◦ [VG Scienta AB, 2009]. All of the data presented

in this thesis was collected with hemispherical analyzers [Scienta SES-2002 and R4000 models (VG

Scienta)].

A cross section of a generic HDA is shown in Fig. 2.3. The analyzer consists of two concentric

metal hemispheres, the space between them forming a channel for the traveling photoelectrons. A

narrow slit aligned out of the page is positioned at the entrance to this channel, and a 2D electron

detector is at the exit. The incoming photoelectrons are (ideally) collimated and normal to the

entrance plane. A net positive voltage applied to the inner hemisphere sets up a 1/r potential

(neglecting fringe fields), and hence photoelectrons entering through the slit travel along Keplerian

(i.e., elliptical) orbits [Zouros and Benis, 2002]. There is a particular electron kinetic energy,

called the pass energy Ep, at which the orbit will actually be circular along the central radius

r0. This energy is set by the hemisphere voltages according to Ep = (r1V1 − r2V2)/[2(r2 − r1)],

where r1 and r2 are the radii of the inner and outer hemispheres, respectively, and V1 and V2 are

the corresponding voltages on the hemispheres. Electrons will arrive at the detector at radii r

according to r = r0[1 + 2∆E/Ep + 4(∆E/Ep)
2 + . . .] [Wannberg, 2009]. Here ∆E = E′kin−Ep, and

E′kin is the photoelectron kinetic energy inside the analyzer.3

3 A distinction is made between E′
kin and Ekin. The latter, recall, is the photoelectron kinetic energy prior

to entering the analyzer. These typically differ, because quite often a retarding/accelerating voltage is applied to
the electron in the lens system prior to entering the analyzer. This will be addressed in the next section (2.4.2).
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Figure 2.3: Schematic of a hemispherical ARPES analyzer. Details of the electrons’ paths through
the lens are not shown. See Fig. 2.4 and discussion.

We see from this that electrons with identical kinetic energy, but which enter the analyzer at

various positions along the entrance slit, will land at the detector forming an arc of radius r. To

decouple the energy and angle axes of the detector, the arc must be transformed to a straight line.

This is actually simple to accomplish: Either make the the entrance slit curved with radius r0, or

correct the curvature on the detector with software. Having done this, a photoelectron’s arrival

position at the detector — measured along the axis perpendicular to the slit — signals its kinetic

energy. Meanwhile, the arrival position in terms of the slit axis indicates from where along the slit

the photoelectron originated.

Thus the hemispherical analyzer equipped with an entrance slit and a 2D detector can si-

multaneously map kinetic energy and entrance position. ARPES, however, seeks a method of

Additionally, and at the risk of going into too much detail, there is the subtle and less-often considered fact that the
analyzer possesses its own work function Φa, which affects E′

kin — even with no applied retardation or acceleration
voltage. Fortunately, Φa is a constant of the system, and there are only rare instances where it needs to be taken
into account.
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angular resolution, not spatial resolution. It is therefore necessary to map the emission angles of

the photoelectrons to positions along the slit, prior to their entrance into the hemisphere. This is

accomplished by the use of an electron lens system operating in so-called angular mode.

2.4.2 Electron lens

The electron lens system used in ARPES is comprised of a set of axially symmetric elec-

trostatic elements. It serves two key purposes: (i) Retarding/accelerating the electrons so that a

certain range of Ekin can be studied at a given Ep, and (ii) mapping the electrons’ emission angles

to positions along the entrance slit (at a specified magnification). The angle-to-position mapping

operational mode is often referred to as “angular mode” to distinguish it from “transmission mode”

in which the photoelectrons undergo a position-to-position mapping. The angular mapping is (ide-

ally) irrespective of the particular position on the sample from which each electron is emitted.

Fig. 2.4 illustrates electron trajectories through an electron lens in angular mode. The paths are

ray tracing simulations by Wannberg [Wannberg, 2009] for electrons emitted from the sample at

regular intervals of the emission angle.

In general, the design and operation of the lens is quite complicated [Kevan, 1983,Wannberg,

2009]. The lens element voltages must be adjusted depending on the voltages of the hemispheres,

necessitating a software table that specifies the lens settings appropriate to the choice of retarding

ratio Ekin/Ep. Lens tables are calculated by the analyzer manufacturer using ray-tracing software.

In the very low kinetic energy range, some manual refinements to these tables might be necessary.

These adjustments can be made with the use of a calibration device inserted into the path of the

electrons, casting a shadow of regularly-spaced stripes onto the detector [Koralek, 2006, Koralek

et al., 2007].

The VG Scienta analyzers have popularized a “swept” data collection mode where Ep is held

constant, and the retarding voltage is smoothly varied so that a wide range of Ekin passes over the

detector. As this happens, the counts are integrated into Ekin bins. This acquisition mode has

the advantage of being able to scan over an arbitrary range of Ekin while maintaining a constant
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Figure 2.4: Electron trajectories through an electron lens system operating in angular mode. The
vertical axis is the position along the slit, measured from the center line. The horizontal position
is the distance traveled down the length of the lens, starting from the sample surface. The traces
are calculated at regular intervals of the emission angle: 0◦,±2◦,±4◦, . . . ,±22◦. From [Wannberg,
2009]. Reprinted with permission from Elsevier, copyright 2009.

energy resolution (which can be shown to be proportional to Ep). Additionally, the counts at each

Ekin are integrated over the whole detector, which eliminates any complications due to a possibly

inhomogeneous response of the detector along the E axis. The swept acquisition mode only became

possible after many advances in lens technology and the implementation of software lens voltage

tables. One noteworthy disadvantage of swept mode is that the Ekin-vs-angle imaging of the lens

at each retarding ratio inevitably features some subtle image “warping” due to abberations and

some energy dependence of the lens magnification. By constantly varying the retarding ratio, the

warping evolves as the image is swept over Ekin, which worsens the angular resolution when the

counts are binned. Recently analyzers made by SPECS GmbH are using de-warping algorithms to

correct this effect at each value of the retarding ratio, and VG Scienta is moving in this direction
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as well [Wannberg, 2009].

2.4.3 Detector

The past several years have witnessed key refinements in hemisphere and electron lens design

that have greatly improved the angle and energy resolution of ARPES spectrometers. On the

other hand, the final element of the spectrometer — the detector — has at least managed to

keep up with the pace of improvements in CCD technology, but otherwise has changed very little.

Recently, as our group’s research has tested the performance boundaries of state-of-the-art ARPES

systems, we have encountered unexpected hindrances due to some detector systems. In many

cases the difficulties are inconsequential, but when attempting certain highly detailed analyses,

complications can certainly arise. For this reason, an unusual amount of time will be devoted to

describing the detector. Hopefully the near future will see improvements to these systems.

A three-element detection system is used to capture the 2D image of photoelectrons arriving

at the output of the analyzer. First, the electrons are accelerated by high voltage through a

microchannel plate (MCP). The MCP consists of many small pores (µm-scale “microchannels”)

that pass through the plate at an angle. When an electron strikes the wall of a microchannel,

the collision knocks several other electrons free. These electrons, in turn, accelerate through the

microchannel, striking the walls, and leading to an exponential cascade of electrons, thus greatly

amplifying the signal of just a single electron. In other words, an MCP operates somewhat like

a standard photomultiplier tube, but with 2D spatial resolution. In most ARPES detectors, two

MCPs are stacked in series with the microchannels at an angle to each other, and the combined

gain is often something like 106.

Once the electrons leave the MCP stack, they are accelerated again by high voltage toward

the second element of the detector, a phosphor-coated screen. The impact of the electrons on the

phosphor causes a fluorescent flash that is detected by the final detector element, a CCD camera.

The design of the detector system is one of the most crucial aspects of a high-resolution

spectrometer, as the detector is a source of signal noise, resolution, and potential nonlinearity.
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Detectors can suffer from readout and thermal noise in the CCD. Additionally, the MCP has a

large spread in signal gain (perhaps a factor of 102), due to the range of distances an electron

may travel down a microchannel before triggering an electron cascade. Meanwhile “blooming” of

the fluorescence on the phosphor screen and repulsion between the electrons while traveling in the

space between the MCP and the phosphor can broaden the signal and worsen the overall resolution.

(Generally the CCD pixel size is smaller than the spot size of a single event on the phosphor screen,

and thus the CCD contributes little to the resolution.) Concerning this resolution broadening, it can

be mitigated to some degree by careful selection of MCP and screen voltages, and by minimizing

the distance between the screen and MCP (which ultimately is limited by the voltage between

these elements). As for the noise, the vast majority of it can be removed by the use of a high-

quality (possibly cooled) camera combined with a background removal algorithm. Another issue

is that MCPs deteriorate over time from being bombarded with electrons, and this can result in

an inhomogeneous response across the detector. Fortunately, spectrometer manufactures are lately

more attention to this ageing and are attempting to slow it. Also VG Scienta’s “swept” acquisition

mode (which smoothly scans Ekin over the detector) essentially makes detector inhomogeneity a

non-issue along the E axis, although the angle axis remains a concern.

Unfortunately, nonlinearity of the signal response is a persistent and potentially sinister

problem. Under certain measurement conditions, this is a matter of great concern. While the

nonlinearity of ARPES detectors has been known for some time at high count rates due to saturation

[Seah and Tosa, 1992, Seah et al., 1999], researchers have more recently come to realize that a

positive-inflection response in measured vs. real counts (i.e., an increasing detector gain) can exist

at low count rates [Mannella et al., 2004]. The very detailed analysis of some very recent and

high-quality data — particularly near EF where counts diminish rapidly — has prompted a return

to this problem. For a full treatment of nonlinearity issues in the context of the most modern

ARPES experiments, the reader should refer to forthcoming work to be published by T. J. Reber

et al. [Reber et al., 2010a]. Wherever applicable in this thesis, the raw ARPES data has been

corrected to account for nonlinearity, or — at the very least — analysis results have been verified
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to be robust against a “worst case” assumption for the detector response.

It is worth noting that virtually all complications due to broadening, noise, and nonlinearity

can in principle be (nearly) eliminated by switching to a signal processing method that counts indi-

vidual electrons (pulse-counting mode), rather than the light intensity at the CCD (ADC mode).4

The key drawback of pulse-counting is that the photoelectron flux at the detector must be reduced

such that there is very low probability that two events will fall within the detector’s spatial reso-

lution of each other within the time of a single camera exposure. If such a flux rate is exceeded,

multiple events can be lumped together by the counting algorithm, thus introducing a (potentially

huge) nonlinearity. Given the spatial resolution of the MCP/phosphor system coupled with present

frame rates of high-resolution CCD cameras, pulse-counting currently demands a significant sacri-

fice in terms of photoelectron flux, which is a major impediment to its usage in most experiments.

As a result, at the moment it is rarely employed in ARPES, and all the data presented in this thesis

was collected in ADC mode.

Presently there is increasing interest in applying advances in high-speed cameras and data

processing to the task of high-flux 2D pulse-counting [Vos et al., 2009]. As technology advances to

the point where pulse-counting systems can compete with the flux rates of ADC systems, pulse-

counting will become widely viable, and this should represent one of next great leaps in the technique

of ARPES.

2.4.4 Light source

A variety of light sources have been developed for ARPES: gas discharge lamps, synchrotron

beamlines, and, recently, lasers. Each light source possesses a unique combination of advantages

and disadvantages in terms of size, cost, and photon energy and polarization tunability. Of these,

synchrotron beamlines are clearly the most versatile, and also the largest and most costly. De-

pending on design, they can in principle achieve fully tunable polarization and also an enormous

range of tunable photon energies (∼ 101–104 eV). One key drawback in terms of performance is

4 The name comes from the common acronym for analog-to-digital conversion.
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the presence of higher-order background light from the monochromator. Another problem is the

instability of the photon flux due to the time-decay of the particle current in the storage ring.

Increasingly, synchrotrons are being built (or upgraded) to operate in “top-off mode” to virtually

eliminate this instability.

Lasers, by contrast, have the advantage of highly stable photon energy and output power,

fully and easily tunable polarization, and high photon flux in an extremely narrow bandwidth.

Moreover, they are obviously far less costly than synchrotrons. Lasers suitable for ARPES have

only recently been developed by making use of advances in nonlinear optics. These systems are not

broadly tunable in energy, and so far only exist at a small number of discrete, low photon energies

– e.g., 6 eV [Koralek et al., 2007] and 7 eV [Kiss et al., 2005].

Gas discharge lamps are the simplest and cheapest light sources. They emit discrete, stable

photon energies at various transition lines, and they can reach Doppler-limited resolution. The

light is generally unpolarized. One disadvantage of lamps is that the light can contain unwanted

background from ancillary transition lines. Furthermore, the photon flux tends to be low relative

to other light sources. Nevertheless, gas discharge lamps perform quite well for many ARPES

applications, and they have been used to obtain very high energy resolution from angle-integrated

PES [Chainani et al., 2000,Yokoya et al., 2000,Yokoya et al., 2001]. Helium lamps using the 21.2-eV

He-Iα line have been especially popular for ARPES.

Prompted by the success of laser-based photoemission [Kiss et al., 2005,Koralek et al., 2006],

there has recently been a push to develop more light sources in the sub-10-eV range. These photon

energies offer several advantages which will be detailed in section 2.7. A small number of ARPES

synchrotron beamlines are now configured to operate in this energy range (e.g., SSRL BL5-4 and

HiSOR BL-9A). Also, a xenon lamp with emission down to hν = 8.437 eV has recently been

developed [Souma et al., 2007].
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2.4.5 Vacuum chamber, surface preparation, and cryostat manipulator

ARPES experiments are typically carried out in an ultrahigh vacuum (UHV) chamber with

pressure on the order of 10−11 Torr — i.e., about 10−13 (one ten-thousandth of one billionth)

of atmospheric pressure. The low pressure prevents contamination of the sample surface by gas

molecules. This is critical, because the escape depth of the photoelectrons is rather shallow (as will

be discussed shortly), and hence the quality and chemical composition of the surface greatly affects

the measured spectra. Clean, smooth sample surfaces are typically achieved by some sort of in vacuo

surface preparation. For the studies done here on bismuth-based cuprate superconductors, the

surfaces are prepared by cleaving off the top layers of the samples after they have been transferred

into the UHV environment. Bi-based cuprates in general cleave fairly nicely, and the compound

Bi2Sr2CaCu2O8+δ (Bi2212) is widely considered the best-cleaving cuprate superconductor. This is

the key reason why Bi2212 is the focus of this thesis.

It is crucial that the vacuum chamber provide good shielding from stray magnetic fields, as

they will deflect the photoelectrons and hurt the accuracy of the measurements. This becomes

an especially strong concern for electrons with low kinetic energies. To combat stray fields, the

chamber is typically lined with µ-metal shielding. µ-metal is a nickel-based alloy with very high

magnetic permeability, making it an ideal magnetic shield. In the laser-ARPES system at Colorado,

the chamber actually has two layers of this shielding which tie into µ-metal that lines the electron

lens. At the sample position, stray magnetic fields are reduced to only about 1 mG [Koralek et al.,

2007].

For study, a sample is affixed to the end of a cryostat manipulator. A typical manipulator

nowadays has at least five degrees of freedom: the Cartesian x, y, and z coordinate axes, as well as

polar and azimuthal angles θ and φ, respectively. This allows the sample to be positioned at the

focus of the electron lens and scanned over the k‖ momentum space.

Cryostat temperature control is typically accomplished by flowing a liquid cryogen (almost

always liquid He) to a heat-sink that is thermally coupled to the sample stage. A heater and
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temperature-sensing diode connected near the stage allow an arbitrary temperature to be main-

tained at the sample — usually by a “PID” temperature controller. Well-designed cryostat ma-

nipulators used in ARPES can typically achieve sample temperatures near or below 10 K and can

maintain sub-K stability.

2.5 Theory of the spectral function

The discussion up to this point has focused on how ARPES measures the energy and momenta

of photoelectrons, but there has been no attempt so far to decipher what this information actually

means or what to do with it. To get a handle on the understanding and analysis of photoemission

data, a three-step model is typically employed. This model is discussed in many sources. A

particularly clean and modern treatment of the theory is presented by Damascelli [Damascelli et al.,

2003, Damascelli, 2004], and the discussion here follows especially along the lines of these works.

The steps are simply: (i) the electron absorbs a photon, exciting it to a bulk final state; (ii) the

electron travels to the sample surface; and (iii) it is transmitted through the surface to the vacuum.

The aim of the model is to condense all the “real physics” into the excitation process of step (i).

Any interactions that might occur post-excitation between the photoelectron and the remaining

(N−1) system in (ii) will (ideally) manifest as only a minor and easily-dealt-with background, while

the transmission rate at the surface will (ideally) only negligibly modulate over the momentum and

energy range of interest. A great simplification of the physics in step (i) is typically made by

invoking the “sudden approximation”, which treats the excitation step as instantaneous. This

allows the N -electron wavefunction to be factorized into a single-electron wavefunction |φkf 〉 and

the remaining (N − 1)-electron state |ΨN−1
f 〉:

|ΨN
α 〉 = |φkα〉|ΨN−1

α 〉 = |φkα〉ĉk|ΨN
α 〉. (2.8)

Here α = i or f signifies the initial or final state. The rightmost side optionally rewrites |ΨN−1
f 〉 in

terms of the particle annihilation operator ĉk acting on |ΨN
f 〉. It is understood that the states in

the above equation are properly antisymmetrized for fermions.
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In the lowest-order t-dependent perturbation theory, the transition rate wfi for |ΨN
i 〉 → |ΨN

f 〉

is

wfi ∝ |〈ΨN
f |Ĥ1|ΨN

i 〉|2δ(ENf − ENi − hν) (2.9)

where Ĥ1 = e
2mc(A · p̂+ p̂ ·A+ e

cA
2) is the radiation interaction term of the total Hamiltonian. A

and p̂ are the usual vector potential and momentum operator, respectively. ENi and ENf are the

respective energies of the |ΨN
i 〉 and |ΨN

f 〉 states. In the dipole approximation, which is frequently

invoked, Ĥ1 = e
2mc(A · p̂). Using Eq. 2.8 and decomposing |ΨN−1

f 〉 into its eigenstates (labeled by

m), the transition rate can be written as

wfi ∝ |〈φkf |Ĥ1|φki 〉|2
∑
m

|〈ΨN−1
m |ĉk|ΨN

i 〉|2δ(E
sample
kin + EN−1

m − ENi − hν) (2.10)

with total photocurrent proportional to the sum over all wfi’s. The first squared term is familiar:

It is the famous Fermi Golden Rule matrix element Mfi = 〈φkf |Ĥ1|φki 〉 for the probability of the

single-electron i → f transition. The δ-function is also familiar as satisfying the requirement of

energy conservation. But what, then, is the remaining summation term?

An understanding of this term is obtained from the Green’s function formalism of many-

body quantum theory [Fetter and Walecka, 1971,Mahan, 2000]. The Green’s function G(k, t′ − t)

represents the probability of a particle remaining in state k after time t′−t. The Fourier-transformed

Green’s function G(k, E) for the problem of removing an electron from the N -electron system is

G(k, E) =
∑
m

∣∣〈ΨN−1
m |ĉk|ΨN

i

〉∣∣2
E − EN−1

m + ENi − iη
(2.11)

η is a convergence factor to be evaluated as η → 0+. One of the great advantages of the Green’s

function formalism is that once G(k, E) has been written down, it is a simple matter to compute

the corresponding spectral function (i.e., the probability distribution of states as a function of k

and E). It turns out to be just

A(k, E) = − 1

π
ImG(k, E). (2.12)

This quantity, A(k, E), is equivalent to the summation term of Eq. (2.10). To see this, one uses

the identity that (x − iη)−1 = P
∫
xdx + iπδ(x) in the limit η → 0+, where P signifies principal
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value integration.

A(k, E), the single-particle removal spectral function, contains a veritable wealth of informa-

tion — indeed the complete information of all the interactions of the many-body system. In fact,

the Green’s function can be formally rewritten as

G(k, E) =
1

E − ε(k)− Σ(k, E)
, (2.13)

where Σ(k, E) = Σ′(k, E) + iΣ′′(k, E) is known as the “self-energy”. It is a many-body quantity

that contains all of the interactions of the electron with the system as a whole (electron-electron,

electron-phonon, etc.). The self-energy is reflected in the spectral function as

A(k, E) =
1

π

Σ′′(k, E)

[E − ε(k)− Σ′(k, E)]2 + [Σ′′(k, E)]2
(2.14)

where ε(k) is the electron dispersion (the “bare band”) of the noninteracting system.

Figure 2.5: The ARPES spectral function in an interacting system. The lefthand figures show the
electronic dispersion ε(k) and spectral function A(k, E) = δ[E − ε(k)], as well as the distribution
function n(k), of an idealized noninteracting system. The righthand figures illustrate that the
presence of interations (i.e., Σ 6= 0), as in a Fermi liquid, leads to A(k, ω) with finite width (i.e., finite
lifetime of the excitations) and a possible redistribution of spectral weight away from the “coherent”
peak due to energy loss features excited in the photoemission process. Additionally, the dispersion
is altered and the spectral peaks shift away from the noninteracting ε(k). From [Damascelli et al.,
2003]. Reprinted with permission. Copyright 2003 by the American Physical Society.
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Recalling that A(k, E) is identified with the summation term of Eq. 2.10, the photoemission

intensity measured at a given (k, E) is thus

I(k, E) ∝ |Mfi|2A(k, E)f(E, T ) (2.15)

where the final term, f(E, T ) = 1/exp[(E − EF )/(kBT )] + 1, is the Fermi-Dirac distribution func-

tion at temperature T , representing the filling of the Fermi sea.

From Eq. 2.14 it is already evident that Σ′(k, E) is manifested as a shift of the peak of

A(k, E) away from ε(k), while Σ′′(k, E) broadens A(k, E). Moreover, finite Σ′′(k, E) broadens

A(k, E), which would otherwise be a δ-function, meaning that the excitations have finite lifetimes.

The evolution of A(k, E) from a noninteracting to interacting system is sketched in Fig. 2.5. We

will investigate in the next section the deeper meaning of Σ′(k, E) and Σ′′(k, E) and how they can

be extracted from ARPES data.

We should note here that I(k, E) is the idealized measured spectrum neglecting instrument

resolution R(k, E), background B(k, E) from extrinsic (i.e., post-excitation) scattering processes,

statistical Poisson noise P (I), and a very small amount of isotropic noise Inoise from the detector.

The “real-life” spectral function is more like as follows:

Ireal-life(k, E) = P
{[
|Mfi|2A(k, E)f(E, T )

]
⊕B(k, E)

}
⊗R(k, E) + Inoise. (2.16)

Here ⊗ denotes convolution while ⊕ represents the more complicated process of the redistribution

of spectral weight from I(k, E) to B(k, E) due to extrinsic scattering. Section 2.7 will discuss how

the use of low photon energies can minimize B(k, E) and R(k, E), leading to measurements which

approach the ideal, intrinsic I(k, E). Thus, we will largely be able to overlook background and

resolution in this thesis, with one notable exception to be encountered in Ch. 5.

2.6 Interpretation and analysis of ARPES data

2.6.1 Momentum and energy distribution curves

In order to extract meaningful quantities from the measured photoelectron intensity I(k, E),

it is common practice to slice up the E-vs.-k spectrum along lines of constant k (called energy
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distribution curves, or EDCs) and/or lines of constant E (called momentum distribution curves,

or MDCs). The two types of slices are illustrated in Fig. 2.6. While it may prove rewarding to

analyze EDCs in the context of testing particular theoretical models [Casey et al., 2008], MDCs

have emerged as the preferred analysis tool for modern ARPES.5 This is a consequence of the fact

that if Σ is nearly constant over the momentum width of a band (i.e., ∂Σ/∂k ≈ 0), then Eq. 2.14

— evaluated at a fixed E — reduces to a Lorentzian in k:

AE(k) =
1

π

Σ′′(E)

[E − ε(k)− Σ′(E)]2 + [Σ′′(E)]2
. (2.17)

(Vector boldface has been dropped in this context, because k is now one-dimensional along the

direction of the analyzer’s entrance slit.) There is generally no analogous simplification for EDCs;

Σ(k, E) tends to evolve with E and/or inelastically scattered background complicates the spectrum,

leading to a sort of “bastardized” Lorentzian lineshape (multiplied by the Fermi-Dirac distribution).

As a result, proper EDC lineshape fitting requires one to assume some particular model for the

form of Σ(E).

As long as the matrix elements |Mfi|2 do not vary too severely, the Lorentzian lineshape

of AE(k) will be be reflected in the measured MDC, IE(k). Empirically, these conditions on the

self-energy and matrix elements are frequently met. In cuprates, no convincing evidence (that the

author is aware of) has yet emerged to suggest that the MDC lineshape substantively differs from

Lorentzian.

2.6.2 Many-body self-energy

Owing to their simple lineshape, the MDCs are ideal for least-squares fitting. Valuable

information about the dispersion and the nature of the many-body Σ(k, E) over the full range of

energy and momentum space can, in principle, be extracted from MDC analysis.

For a concrete example of how Σ(k, E) can be extracted from I(k, E) ∝ A(k, E), assume, for

the moment, that ε(k) can be well-represented by a linear function ε(k) = v0
F (k − kF ) along some

5 Valla et al. [Valla et al., 2000] may have been the first to employ Lorentzian MDC fitting in analyzing cuprate
spectra, and this especially seemed to have set off interest in the technique.
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Figure 2.6: Momentum and energy distribution curves (MDCs and EDCs, respectively). The image
is ARPES data showing a portion of a band dispersion from Bi2212. The color scale indicates count
rate intensity. The locations of two different MDC slices are indicated by horizontal lines, with
the corresponding curves plotted on the top set of axes. Likewise, EDC slices are designated by
vertical lines, and the corresponding curves are plotted on the righthand set of axes. Lorentzian
fits (black) are overlaid on the MDCs, illustrating their simple form. In general, no such simple
lineshape exists for the EDCs.

region of E and k studied by ARPES. Based on the Lorentzian form of an MDC slice of A(k,E),

the components of the self-energy are

Σ′(E) = E − v0
F (k0 − kF ) (2.18)
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and

Σ′′(E) = v0
FW (E) (2.19)

where k0 is the peak location of the Lorentzian, and W (E) is the HWHM of the MDC. The

significance of equations 2.18 and 2.19 in terms of the measured ARPES data is illustrated in

Fig. 2.7.

It is now clear from the above equations how Σ(k, E) alters the dynamics that would otherwise

exist in the noninteracting system. Σ′(k, E) shifts (“renormalizes”) the dispersion, reflecting a

change in effective mass m∗ = ~2(∇2
kE)−1. Meanwhile Σ′′(k, E) broadens the spectrum, which

is related to the inverse lifetime (scattering rate) of the interacting state via 1/τ = 2Σ′′(E)/~.

Without self-energy, the spectrum would simply be infinitely sharp and follow along ε(k) — in

other words, A(k, E) = δ[E − ε(k)].

The noninteracting ε(k) is required for an exact determination of the self-energy from the

data. Unfortunately, in complex systems such as the cuprates, it is not clear that valid calculations

of ε(k) can reliably be obtained under all circumstances from first principles. Thus, the bare

dispersion is not known to the experimenter a priori. Various techniques attempting to circumvent

this difficulty exist [Ingle et al., 2005,Kordyuk et al., 2005,Meevasana et al., 2008,Veenstra et al.,

2010].

One such technique is based on Kramers-Kronig analysis of the self-energy. Since the self-

energy is a type of response function, it must obey causality. It follows, then, that its real and

imaginary parts can be transformed into each other by the Kramers-Kronig relations. These are

Σ′(E) =
1

π
P

∫ ∞
−∞

Σ′′(E)

E′ − E
dE′

Σ′′(E) = − 1

π
P

∫ ∞
−∞

Σ′(E)

E′ − E
dE′

(2.20)

where P again indicates principal value integration. In principle the Kramers-Kronig relations

can be used together to determine ε(k) experimentally, and this has been attempted in some

cases [Kordyuk et al., 2005]. Unfortunately, the relations are based on integration from −∞ to
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Figure 2.7: Self-energy in ARPES spectra. Σ′(E) corresponds to the deflection of the measured
MDC dispersion away from the bare dispersion. Σ′′(E), meanwhile, relates to the width of the
spectrum. This figure shows, in particular, a linear bare dispersion with Lorentzian MDC line-
shapes, in which case the self-energy is given by equations 2.18 and 2.19. Note the km corresponds
to the measured location of the MDC peak, and k1 and k2 are the momenta at half-maximum.
ω = E − EF . From [Kordyuk and Borisenko, 2005]. Reprinted with the authors’ permission.
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+∞, while obviously the experimental range of E must be finite. It turns out this would actually

not be a problem were Σ′′(E) to at least flatten out approaching the endpoints of the dataset,

but, alas, this is typically not the case. Additionally, useful data cannot be obtained for energies

much higher than EF , due to low thermal occupation of these states. As a result, one typically

assumes electron-hole symmetry of Σ(E) with respect to EF , but recently there is some question

as to whether cuprates obey this symmetry [Hashimoto et al., 2010].

An alternative approach, used extensively in this thesis, is to simply assume ε(k) is smooth

(e.g., linear in the region being studied) and to choose it so as to connect two points on the measured

dispersion that contain some feature of interest between them. The result is not claimed to be the

true self-energy, but rather an effective self-energy Σeff that captures the most interesting physics

of the system. One key advantage of this approach is that it tends to filter out any smoothly vary-

ing contribution to Σ(E) (e.g., presumably electron-electron interactions and impurity scattering)

while highlighting those that are sharper in energy (e.g., as electron-phonon interactions might be

expected to be) [Ingle et al., 2005]. For this reason, as well as its simplicity, the effective bare band

method has been employed in several recent studies [Johnson et al., 2001, Shi et al., 2004, Zhou

et al., 2005, Iwasawa et al., 2008,Zhang et al., 2008b,Plumb et al., 2010,Vishik et al., 2010].

Supposing that a straight line with slope veff
F is chosen as the effective bare band, then the

calculation of Σ′eff(E) follows straightforwardly by replacing v0
F with veff

F in Eq. 2.18. Σ′′eff(E) is

sometimes found in an analogous manner using Eq. 2.19. While this can provide a useful estimate

of Σ′′eff(E) in certain circumstances, it is important to note that Σ′′eff(E) computed in this manner

is not consistent with the definition of Σ′eff(E). This is due to the fact that veff
F was chosen so as to

remove most of the slow-moving contributions from Σ′(E) in order to isolate just Σ′eff(E). However,

no such subtraction has been applied to the MDC widths, which still contain the contributions of all

the interactions that had been removed from the real part of the self-energy. Fortunately, all is not

lost. The freedom to choose the effective bare band means that Σ′eff(E) may be constructed to go

to zero at deep energy. In this case, the spectrum is well-behaved at its endpoints, and with high-

quality data it becomes possible to compute Σ′′eff(E) by numerical Kramers-Kronig transformation
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of Σ′eff(E) (Eq. 2.20).

2.6.3 Matrix elements

Photoexcitation matrix elements |Mfi|2 have so far been left out of most of the discussion,

but they can play an important role in ARPES. In theory, strong transitions in the behavior of

|Mfi|2 as a function of k and E may severely alter the measured spectra, making the interpretation

of the data quite difficult. A recent famous example is the observation by ARPES of a large

dispersion anomaly at high binding energy in cuprates [Graf et al., 2007,Valla et al., 2007], which

is thought to be greatly complicated by matrix element effects [Basak et al., 2009,Moritz et al., 2010]

(perhaps in concert with non-negligible background scattering) — possibly to the extent that the

supposed dispersion feature is completely artificial [Inosov et al., 2007b, Inosov et al., 2008,Zhang

et al., 2008a,Wang et al., 2009]. In this thesis, which focuses on energies closer to EF , we will not

encounter any matrix element effects in cuprates that distort the spectra nearly as dramatically as

is seen at deeper binding energy. Still, the experimenter must keep the possibility of such effects

in mind, and to that end, it is certainly worth having at least a very elementary understanding of

matrix element behavior.

While the matrix elements depend on the details of the radiation field A and the overlap of

the single-electron initial and final states, there is nevertheless at least one universal behavior of the

matrix elements that arises from symmetry and bears mentioning: If the final state 〈φkf | has odd

symmetry about the mirror plane of the analyzer (perpendicular to the slit), it cannot be detected,

since it will be zero everywhere in the plane where the detector lies. Hence any final state that is

actually detected is necessarily even with respect to the mirror plane. A consequence of this is that

the photocurrent at the detector will be zero if the righthand side of the dipole matrix element,

A · p|φki 〉, is odd. Since A · p ∝ ε̂ · r, where ε̂ is the polarization vector, the dipole operator has

even or odd parity if ε̂ lies in the plane (p-polarized) or out of the plane (s-polarized), respectively.

This leads to matrix elements which are zero for odd |φki 〉 studied with s-polarized light, and for

even |φki 〉 studied with p-polarized light. These conditions under which Mfi = 0 can be expressed
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Figure 2.8: Symmetry considerations of the matrix elements. In this example, a sample is oriented
so that the dx2−y2 orbital along its surface is even with respect to the mirror plane. In this
configuration, photoemission from s-polarized light is disallowed by symmetry (see Eq. (2.21)).
From [Damascelli et al., 2003]. Reprinted with permission. Copyright 2003 by the American
Physical Society.

as

〈φkf |ε̂|φki 〉 = 0 for

 〈+|+ |−〉〈+| − |+〉
(2.21)

where “+” and “−” stand for even and odd symmetry about the mirror plane, respectively. The

geometry of this problem is illustrated in Fig. 2.8. The example of a dx2−y2 orbital parallel to the

sample surface is shown, with the sample oriented such that the orbital is even with respect to the

mirror plane. Under these circumstances, Eq. (2.21) shows that if the incoming light is s-polarized,

then Mfi = 0.
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2.7 ARPES in the low photon energy regime

Aside from some early PES work [Feuerbacher and Fitton, 1972], researchers in photoemission

largely abandoned the low photon energy range below 10 eV in favor of higher energies — typically

20–100 eV or so. This was probably driven in large part by the substantial difficulty of studying

slow-moving photoelectrons (which can very easily be deflected by stray magnetic fields) and con-

cerns about the validity of the sudden approximation at low energies, as well as by other practical

considerations such as the design of beamline monochromators. However, over the past decade or

so, lasers with low photon energies began to be adopted for high-resolution time-resolved [Wolf,

1997] and direct photoemission [Kiss et al., 2005,Shimojima et al., 2005], but, like previous low-hν

work, the experiments were not angle-resolved, which perhaps reflected lingering concerns about the

extreme difficulty of measuring the emission angles of such slow-moving photoelectrons. Whatever

the reasons, these experiments were still lacking one of the key benefits of ARPES with low-energy

photons: ultrahigh momentum resolution.

Currently there has been growing enthusiasm for low photon energy ARPES (LE-ARPES).

Much of the excitement was sparked by Koralek et al.’s work using laser-based ARPES at 6-

eV photon energy, which studied Bi2Sr2CaCu2O8+δ (Bi2212) and found that even at such low

energy, the sudden approximation did not suffer any catastrophic breakdown [Koralek et al., 2006].

Moreover, the data obtained in those experiments, shown in Fig. 2.9, was absolutely unparalleled,

and it revealed that the spectral peaks in cuprates are intrinsically much sharper than many had

previously thought — sharp enough, in fact, to open the possibility they can be described in terms

of Fermi-liquid-type quasiparticles.6 As we will see, LE-ARPES has certain advantages over

conventional ARPES, and there is good reason to believe the spectra from cuprates studied by LE-

ARPES represent something approaching the unadulterated, intrinsic properties of these systems.

6 The term quasiparticle is somewhat open to interpretation, and its meaning is often a matter of context. However,
in Landau’s Fermi liquid theory — a generic model of electron-electron interactions in an uncorrelated system — the
interaction-dressed electron states near EF must satisfy |Σ′′(E)| ≤ |E−EF |. The result from Koralek finds that this
condition is satisfied in Bi2212.
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Figure 2.9: Comparison of ARPES from Bi2212 at (a) hν = 6 eV, (b) 28 eV, and (c) 52 eV.
The data are taken along the (0, 0) − (π, π) direction of the Brillouin zone. The 6-eV photons
were produced from a laser source [Koralek et al., 2007], while synchrotron radiation was used
for the 28- and 52-eV spectra. The dispersions obtained from Lorentzian MDC fits (section 2.6)
to the 6-eV data (red circles) agree well with the same dispersions extracted from the 28- and
52-eV data (blue squares and black triangles, respectively). Hence, there is little evidence of any
catastrophic breakdown of the sudden approximation for photon energies down to at least 6 eV.
While the sudden approximation thus appears to remain valid, the spectrum at 6 eV is dramatically
sharper than for the other photon energies. This is due to a combination of advantages in the low
photon energy regime: improved momentum resolution, increased bulk sensitivity, and reduced
background scattering. From [Koralek et al., 2006]. Reprinted with permission. Copyright 2006 by
the American Physical Society.

2.7.1 Momentum and energy resolution

From Eq. 2.3, it is clear that the momentum resolution dk‖/dα at fixed α behaves like
√
Ekin.

Thus momentum resolution improves (dk‖ gets smaller) as hν is lowered. This corresponds to the

slower photoelectrons being refracted more as they cross the sample surface, thereby spreading a

smaller amount of k-space over a larger solid angle of the detector. The improvement in resolution

can be dramatic: For the case of ARPES with 6-eV photons versus 52-eV photons, the momentum
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resolution is better by about a factor of seven. This improvement can account for much of the

increase in spectral sharpness seen in the 6-eV data in Figs. 2.9 and 2.10.

In addition to the parallel momentum resolution advantage of LE-ARPES, there is also an

advantage in perpendicular momentum resolution. This arises from the increased photoelectron

escape depth of the low kinetic energy electrons, which will be discussed in the the next section.

Based on the position-momentum uncertainty relation, the deeper escape depth implies that LE-

ARPES samples a smaller range of perpendicular momenta ∆k⊥, and it is believed that even in the

quasi-2D cuprates, this effect may lead to a noticeable improvement in the spectral sharpness [Smith

et al., 1993,Sahrakorpi et al., 2005].

An additional advantage of LE-ARPES is that better energy resolution is a typical side-

benefit of lowering the photon energy. For instance, the use of photon energies from about 6 to 7

eV opens up the possibility of using lasers as light sources, and lasers, of course, can have extremely

narrow bandwidths. A 7-eV KBBF-based laser, for example, has demonstrated sub-meV resolution

in ARPES [Kiss et al., 2005]. Meanwhile, in the case of monochromated light sources such as

synchrotron beamlines, low photon energy photon energy goes hand-in-hand with improved energy

resolution, since for a grating monochromator dν ∝ ν. Recently it has been possible to achieve total

energy resolution of the combined analyzer and light source (while retaining reasonable photon flux)

down to about 3–4 meV at the best low-energy synchrotron beamlines (SSRL BL5-4, HiSOR BL-

9A), which is a notable improvement over the resolutions typical of experiments in the conventional

photon energy range (usually 10 meV, if not much larger).

2.7.2 Improved bulk material sensitivity

ARPES at conventional synchrotron photon energies of roughly 20–100 eV is predominantly

a surface probe. This is due to the fact that electrons in this kinetic energy range have very short

inelastic mean free paths λ0 in the sample. In a broad range of materials, in fact, λ0 is at a minimum

for kinetic energies expected for hν ≈ 20–100 eV. This is illustrated in Fig. 2.11, which shows data

from the “universal curve” of electron inelastic mean free paths from Seah and Dench [Seah and
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Figure 2.10: Comparison of (a) EDCs and (b) MDCs from Bi2212 at hν = 6 eV, 28 eV, and 52
eV. The curves come from the 2D ARPES spectra in Fig. 2.9. The EDCs are taken at kF , and
the MDCs are at EF . From [Koralek et al., 2007]. Reprinted with permission. Copyright 2007,
American Institute of Physics.

Dench, 1979]. The data were compiled from experiments on many different materials (elements,

as well as organic and inorganic compounds) over an electron kinetic energy range of 0–10,000

eV, using a variety of experimental methods variously based on x-ray photoemission spectroscopy

(XPS), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES) [Powell,

1974].

From Fig. 2.11, it is clear that in typical materials, λ0 is expected to be roughly one order

of magnitude larger than in the conventional photon energy range. Whether electron mean free

paths in cuprates follow the universal curve behavior is not strictly known. However, the sharp

spectra obtained in the low-hν regime (Figs. 2.9 and 2.10) are consistent with the notion that λ0

follows a universal-curve-like behavior in cuprates, which allows LE-ARPES to probe bulk states

with greater sensitivity compared to conventional ARPES.
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Figure 2.11: “Universal curve” of mean free paths of electrons in solids. For photoemission in
the low photon energy regime (hν = 6–7 eV), electrons are expected to have nearly one order
of magnitude greater inelastic mean free paths than for conventional photoemission in the range
of hν = 20–100 eV. (20–50 eV is highlighted in here, because this range in particular has been
employed frequently in ARPES studies of cuprates.) Thus LE-ARPES should be somewhat more
sensitive to the bulk electronic states than conventional ARPES, which is primarily a surface probe.
From the Ph.D. thesis of J. D. Koralek [Koralek, 2006], based on data from Seah and Dench [Seah
and Dench, 1979]. Reprinted with the author’s permission.

2.7.3 The sudden approximation and the validity of LE-ARPES

The drastically increased sharpness of LE-ARPES spectra from cuprates compared to con-

ventional ARPES seems almost too good to be true and merits some discussion as to the validity of

the spectra in the low photon energy regime. The gravest concern for LE-ARPES is whether or not
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the sudden approximation (section 2.5) remains valid down to very low kinetic energies. The data

shown in Fig. 2.9 strongly supports the conclusion that a breakdown of the sudden approximation is

not a major concern in cuprates. The measured band dispersion at hν = 6 eV is almost unchanged

from measurements at 28 and 52 eV. Moreoever, the overall trend in the progression of the MDC

widths as a function of energy is qualitatively reproduced. The only noteworthy difference is simply

that the 6-eV data is much sharper than its higher-energy counterparts. Additionally, this result

is consistent with — and indeed expected from — the known behavior of the universal curve of

electron inelastic mean free paths (Fig. 2.11). This curve suggests that although a slow-moving

photoelectron spends longer in the sample bulk prior to escape, below a kinetic energy of about

10 eV, it is nevertheless less likely to experience a scattering event. Ostensibly, this is telling us

that on kinematic and quantum mechanical grounds, the likelihood that a photoelectron will excite

some loss mode such as a phonon or plasmon is diminished at very low Ekin.

One final consideration is whether the spectra from LE-ARPES might somehow be artificially

sharp. There are at least three reasons that artificial sharpening might occur. Based on our studies

using LE-ARPES, these possible complications can all be ruled out.

• Detector nonlinearity. Artificially sharp spectra could arise from nonlinearity in the detec-

tor response. Our own detailed investigations into detector nonlinearity have repeatedly

found that while the response of the detector can be a concern for certain types of quanti-

tative analysis, any such effect is not actually significant enough to account for the acute

sharpness of LE-ARPES data from cuprates [Reber et al., 2010a].

• Kinematic compression. There is an effect known as “kinematic compression” that arises

from the kinematic constraints in ARPES combined with the details of the band structure

[Smith et al., 1993]. Under some unusual circumstances, the effect can actually lead to the

counterintuitive observation of linewidths that are sharper than the inverse lifetimes of the

states [Hansen et al., 1998]. This effect can be ruled out as a cause of the sharp cuprate

spectra from LE-ARPES. A compression factor C relates the observed linewidth to the
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intrinsic one (Γobs = CΓi). In a 2D system such as the cuprates, the expression for the

compression factor reduces to C = 1/|1−mvi‖ sin2 α/(~k‖)|, where vi‖ = ~−1∂Ei/∂k‖ is the

group velocity parallel to the surface. Based on experimental values from nodal Bi2212,

C ≈ 1.4 at EF (the sharpest point on the dispersion) for hν = 6 eV. Thus kinematic

compression can be excluded as a cause of the sharp spectra seen in this material via

LE-ARPES.

• Sudden approximation violation. Finally, it has been argued that a breakdown of the

sudden approximation could conceivably redistribute the spectral weight of a peak in a

manner such that the some of the counts at deeper energy shift farther up the peak, closer

to EF [Sawatzky, 2005]. This type of process could sharpen the peaks, but it would do so

asymmetrically, thus shifting the peak of the band dispersion. As can be seen in Fig. 2.9,

this does not appear to be happening to any significant degree. Band dispersions measured

at 6, 28, and 52 eV all quite similar.

There is so far no strong evidence to suggest that ARPES data from cuprates obtained by

photon energies as low as 6 eV are in any way invalid or grossly misrepresentative of the physics

of the electrons — neither on the grounds of a breakdown of the sudden approximation, nor based

on some mechanism of artificial spectral sharpening. To the contrary, the data support the notion

that the low photon energy regime has led to spectra that approach the intrinsic lineshapes in these

materials. We must conclude, then, that LE-ARPES is a remarkable probe for studying cuprates

and other complex materials, providing a pathway to new insights and new discoveries.



Chapter 3

High-Temperature Superconductivity in Layered Cuprates

3.1 Introduction

Superconductivity — the total lack of resistance to the flow of electricity — is nearly ubiq-

uitous in simple metals, but it requires very cold temperatures. It is unsurprising then that it was

the first person to liquify helium (with a boiling point of about 4 K), Heike Kamerlingh Onnes,

who also became the first to witness superconductivity (in mercury, which superconducts below a

critical temperature, Tc, of 4.15 K) [van Delft and Kes, 2010]. Amazing as it must have been for

Kamerlingh Onnes to see liquid helium in 1908, it is still harder to fathom what must have been

his utter astonishment in 1911 upon finding that the resistivity of mercury was zero below Tc.

And for all intents and purposes, the resistivity is, in fact, zero. So zero that in 1932

Kamerlingh Onnes’s assistant flew from Leiden to London transporting a dewar containing a lead

ring submersed in liquid helium and carrying a persistent current of 200 A.1 [van Delft and

Kes, 2010] So zero that the modern experimental lower bound on the lifetime of a current in a

superconductor is 105 years, and theoretical predictions expect 10100 years [≈(age of the universe)10,

otherwise known as “forever”] [Tinkham, 1996].

Superconductivity presented an immense challenge to theoretical physics that stood for nearly

50 years. The same physical models that could explain so much about the basic properties of

simple materials (e.g., why some are metals, others semiconductors, and others insulators) were

completely insufficient to explain why electricity should ever flow without resistance. The difficulty,

1 Clearly these were the days before airport security screening.
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in essence, arose from the fact that the electrons in a superconductor no longer act independently

of each other, and they can no longer be regarded as merely single particles awash in a bath of

averaged interactions. This was finally explained in 1957 by Bardeen, Cooper, and Schrieffer (BCS)

whose enormously successful, Nobel-winning theory posited that superconductivity is the result of

interacting pairs of electrons that form bound states (now called Cooper pairs) [Bardeen et al.,

1957]. Beyond accounting for zero resistivity, many other unique phenomenological aspects of

superconductors — e.g., the expulsion of magnetic fields from the superconductor (diamagnetism)

known as the Meissner effect,2 the breakdown of superconductivity above a critical magnetic field

Hc, the existence and temperature dependence of a gap in the single-particle excitation spectrum,

and even why Tc itself is typically so low — can ultimately be explained by the BCS theory or

extensions thereof.

Given the success of the BCS theory, it came as a shock when in 1986 Bednorz and Müller

discovered that a rather bizarre compound (composed of La, Ba, Cu, and O) went superconducting

at a surprisingly high temperature around 30 K [Bednorz and Müller, 1986]. Within about a year,

other new, related copper oxides (collectively called cuprates) achieved Tc’s around 100 K [Müller

and Bednorz, 1987, Bednorz and Müller, 1988] (see Fig. 3.1). At first glance, these unusual new

materials would not appear to be good candidates for metals, let alone superconductors. Black,

brittle ceramics made of sandwiched CuO2 planes, they are actually insulators until electrons are

chemically added or removed. BCS was at a loss to explain such high transition temperatures in the

cuprates, and thus arguably the most active subfield of contemporary physics was born. Despite

intense investigation over the last 25 years, including the discovery of a second family of high-Tc

superconductors based on iron [Kamihara et al., 2006, Kamihara et al., 2008], today there is still

no accepted theory of high-temperature superconductivity.

2 In “type I” superconductors, the diamagnetism is perfect, but in “type II”, fields penetrate into the sample.
Both behaviors are now well-understood, with the latter due the formation discrete localized flux vortices [Tinkham,
1996]. Cuprate high temperature superconductors are “type II”.
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Figure 3.1: Timeline of the progression of Tc. From [Müller and Bednorz, 1987].

3.2 Conventional superconductivity: The BCS theory

The BCS theory is discussed in countless references, so only a skeleton of the theory will be

outlined here. It begins by considering interactions between pairs of electrons. This is modeled by

a reduced Hamiltonian of the form

H =
∑
k,σ

εknk,σ +
∑
k,k′

Vk,k′b†k′bk. (3.1)

The first term just describes the filling of the band εk where nk,σ = c†k,σck,σ is the number operator

composed of conventional fermion creation (annihilation) operators c†k,σ (ck,σ) for an electron with
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momentum k and spin σ. The operator b†k = c†k,↑c
†
−k,↓ creates a spin-singlet electron pair scattered

into opposite momentum states. Naturally, the complex conjugate bk destroys such a pair. Vk,k′ is

the potential through which these pairs interact.

Following some careful reasoning, BCS searched for a variational ground state wavefunction

for Eq. 3.1 of the form

|Ψ0〉 =
∏
k

uk + vkb
†
k |0〉 (3.2)

where |0〉 is the vacuum state and uk and vk are “coherence factors” satisfying |uk|2 + |vk|2 = 1.

From this a set of equations are then found that describe the values of the coherence factors that

minimize the energy of this wavefunction. It turns out that the solution involves a function

Ek =
√

(εk − EF )2 + ∆2
k (3.3)

where ∆k satisfies

∆k =
∑
k′

Vk,k′
∆k′

2Ek′
. (3.4)

BCS superconductivity merely requires that Vk,k′ < 0. Considering, for instance, Vk,k′ = −V

in some window of Ek centered about EF (set, say, by the Debye energy) and V = 0 otherwise,

then the BCS theory finds that the ground state energy of the system with interacting pairs is

lower than that of the normal state Fermi sea. The pairs are evidently bound.

The normal state dispersion εk is then replaced by the gapped dispersion relation Ek =

±
√

(εk − EF )2 + ∆2
k (Eq. 3.3) with separation 2∆ between branches. The appearance of this gap

in the spectrum A(k, E) is illustrated in Fig. 3.2. The gapping is the result of Cooper pair formation,

with ∆k corresponding to the minimum energy required to break a pair. It is this binding energy

which shields the paired electrons from (non-pair) scattering and which effectively sets the energy

scale for Tc. This is the essence of superconductivity.

It is very reasonable to ask why Vk,k′ should ever be attractive, given that the electrons

will mutually repel each other. In the conventional BCS superconductors, the answer comes from

considering the vibrations of the ion lattice (phonons): An electron can scatter off an ion, exciting

a phonon in the lattice. Somewhere else in the material, another electron can be weakly attracted
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Figure 3.2: BCS superconducting gap in the single-particle excitation spectrum. From [Balatsky
et al., 2009]. Reprinted with permission. Copyright 2009 by the American Physical Society.

by the charge modulation due to the phonon. Energetically, then, the first electron is emitting

a phonon, and the second electron is absorbing it in a scattering process that conserves energy

and momentum. The electrons are thus bound in a sort of spatially-delocalized dance of phonon

exchange.

The phonon-mediated pairing has been rigorously experimentally verified for conventional

superconductors, but there is nothing to exclude the possibility that other types of interactions

could in principle lead to superconductivity. In fact, in systems where the superconducting gap

is anisotropic (as in cuprates, see section 3.3.4) the pairing interactions are not even necessarily

required to be attractive [Bulut and Scalapino, 1996,Tsuei and Kirtley, 2008]. Hence there is much

ongoing debate over what type(s) of interactions act as the pairing “glue” in high-Tc superconduc-

tors. ARPES gives us the ability to probe the signatures of these interactions as they are manifested

in the electronic dispersion. We will return to this in section 3.3.5, and chapters 4 and 5 will be

devoted to the detailed analysis of two interaction energy scales seen in ARPES.
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3.3 The cuprate high-Tc superconductors

3.3.1 Structure

The high-Tc cuprates encompass a broad range of materials with a key unifying feature: planes

of CuO2. These planes dominate the electronic properties of cuprates, which exhibit strong quasi-

two-dimensionality as a result. This 2D nature is evidenced not only by the Fermi surfaces measured

by ARPES, but also by the anisotropy of transport measurements. Resistance is substantially larger

in the c-axis than in the a-b plane of CuO2 layers. This anisotropy can be as large as four orders

of magnitude [Iye, 1992].

The bismuth-based family of cuprates have composition Bi2Sr2Can−1CunO2n+4 with n =

1, 2, 3 being the number of CuO2 planes per unit cell. These structures are shown in Fig. 3.3.

The single-, bi-, and tri-layer systems are called Bi2201, Bi2212, and Bi2223, respectively. Holes

are doped into the samples by non-stoichiometric addition of oxygen, usually denoted by δ (e.g.,

Bi2Sr2CaCu2O8+δ). Bi2201 and Bi2212 are widely studied in ARPES, because high-quality single

crystals can be readily produced, and because the samples cleave exceptionally well (between the Bi-

O planes). Bi2212, in particular, is generally considered to be the best-cleaving cuprate. As such,

it is probably the single most-studied material within ARPES, and it has yielded the sharpest

spectra of any cuprate to date. Since the aim of this thesis is to explore the fine details of the

electronic structure of cuprates using ultrahigh-resolution LE-ARPES, it makes sense to study the

most spectroscopically clean material, Bi2212. This spectral cleanliness comes at the cost of some

complexity in the Fermi surface, as we will see in section 3.3.3. Fortunately, the experiments here

will largely dodge and/or mitigate these complications.

A more challenging issue is that Bi2212, while easily obtained in single crystal sizes large

enough for ARPES, does not tend to yield crystals large enough for study by inelastic neutron

scattering (INS), which can give direct information about the dispersions of phonons and spin

fluctuations. INS instead prefers more robust samples — precisely those that cleave terribly and

are thus ill-suited for ARPES. The lack of material overlap between these two experiments will
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Figure 3.3: Primitive unit cells of the Bi-based family of cuprates. The tetragonal lattice structures
have a = b = 3.814 Å and c-axis lengths 24.6, 30.6, and 37.1 Å for the single-, bi-, and tri-layer
systems, respectively. From [Kovaleva et al., 2004]. Reprinted with permission. Copyright 2004 by
the American Physical Society.

show up in Ch. 4, where some attempts at direct comparisons between ARPES and INS data will

be made. Still, even relatively dissimilar cuprates generally are not so different from each other

in terms of many key properties (e.g., their in-plane phonon dispersions), and the comparisons are

presumably valid on a qualitative level.

3.3.2 Phase diagram

The undoped parent compounds of the superconducting cuprates are antiferromagnetic in-

sulators. In particular, they are so-called Mott insulators, which means that they are expected to

be (half-filled) metals based on a simple single-electron band structure calculation. However, due
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to electron-electron correlations (i.e., on-site Coulomb repulsion of the electrons), these materials

are instead insulators.

By doping holes into the cuprates, they leave the antiferromagnetic insulator phase and

transition through a number of other phases which are shown schematically in Fig. 3.4. The line

T ∗ is the onset of what is called the pseudogap. This is a poorly-understood state of matter

characterized by diminished spectral weight at EF , somewhat similar to a superconducting gap,

yet lacking superconductivity [Loeser et al., 1996, Ding et al., 1996b, Loeser et al., 1997, Fedorov

et al., 1999]. At present there is much debate as to whether the pseudogap represents phase-

incoherent pre-pairing of the electrons [Ding et al., 1996b,Yang et al., 2008,Nakayama et al., 2009],

or whether it is in fact a second gap due to some order (such as a charge or spin density wave)

which competes with superconductivity [Le Tacon et al., 2006,Tanaka et al., 2006,Li et al., 2006,Lee

et al., 2007,Kondo et al., 2007,Boyer et al., 2007,Ma et al., 2008].

Below Tc is of course the superconducting state. The illustration notes that this is “d-wave”

superconductivity, which refers to the symmetry of the gap function in k-space (section 3.3.4). The

hole doping corresponding to the highest Tc (the top of the superconducting “dome”) is called opti-

mal doping, while to the left and right of that level are termed under- and overdoping, respectively.

Tc at optimal doping in Bi2212, the material studied in this thesis, is typically slightly over 90 K.

Toward the heavily overdoped side of the phase diagram, the cuprates exhibit Fermi liquid3

behavior, which is to say that they act like normal metals with resistivity that scales like T 2 [Iye,

1992]. Above Tc (and/or T ∗) but to the left of the Fermi liquid regime is considered a “strange

metal” with T -linear resistivity [Iye, 1992].

There are a number of subtleties to the phase diagram: The dip in Tc near 1/8 hole doping

is seen in many cuprates [Adachi et al., 2001] and is generally attributed to a phase of alternating

“stripes” of holes and antiferromagnetically aligned spins on the Cu sites [Tranquada et al., 1995,

Ando et al., 2002]; “QCP” refers to a hypothesized quantum critical point (quantum fluctuation-

driven T = 0 phase transitions) [Broun, 2008]; The dashed line of T ∗ is meant to signify that the

3 Fermi liquid theory will be addressed (very cursorily) in later chapters on an as-needed basis.
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Figure 3.4: Generic phase diagram of the high-Tc cuprates. AFM = antiferromagnetic (Mott)
insulator. QCP = possible quantum critical point. d-wave S/C = d-wave superconductivity (sec-
tion 3.3.4). From [Broun, 2008]. Reprinted by permission from Macmillan Publishers Ltd., copy-
right 2008.

exact onset of the pseudogap is not precisely known, nor is the point where the T ∗ line intersects

(or doesn’t intersect) with Tc, nor is it clear that the pseudogap regime even constitutes a phase in

the proper sense.

Finally, while the studies here will not deal with electron-doped cuprates, they do exist. The

electron-doped side of the phase diagram (very) loosely resembles a mirror image of the hole-doped

side, except with a larger antiferromagnetic Mott insulator phase, a smaller superconducting dome,

and possibly no pseudogap [Orenstein and Vishwanath, 2010].
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3.3.3 Fermi surface

The generic 2D Fermi surface of the cuprates is four-fold symmetric and comprised of four

corner-centered hole pockets, as sketched in Fig. 3.5. This is a somewhat idealized picture of the

Fermi surface, and complications appear in many materials. These are illustrated in Fig. 3.6. The

first panel depicts a (π, π)-replica “shadow” Fermi surface commonly observed by ARPES [Aebi

et al., 1994, Osterwalder et al., 1995]. It has been argued that the shadow reflects Brillouin zone

folding due to antiferromagnetic order [Kampf and Schrieffer, 1990,Langer et al., 1995,Chubukov,

1995,Borisenko et al., 2000], but much evidence has accumulated to suggest that it has a structural

origin due to a small orthorhombic distortion of the tetragonal unit cell [Schabel et al., 1998,Koitzsch

et al., 2004b,Nakayama et al., 2006,Nakayama et al., 2007,Mans et al., 2006].

(π,π)

(0,0) (π,0)

(0,π)

Γ

Figure 3.5: Sketch of the generic cuprate Fermi surface.

Another modification to the generic Fermi surface is the appearance of so-called superstruc-

ture bands. These bands, shown in the middle panel of Fig. 3.6 are unique to the Bi-based cuprates
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and are generally attributed to a superlattice formation due to mismatch between the bismuth- and

copper-oxygen planes [Withers et al., 1988,Yamamoto et al., 1990]. In Bi2212 the diffracted Fermi

surfaces of the superstructure are found at spacings of ≈ 0.2(π, π) and along only one of the diag-

onals. In bilayer cuprates such as Bi2212 there is yet another added feature: bonding-antibonding

splitting of the band structure due to the close proximity of the bilayer CuO2 planes [Chuang et al.,

2001, Feng et al., 2001, Gromko et al., 2003, Kordyuk et al., 2004, Borisenko et al., 2006, Yamasaki

et al., 2007]. This is illustrated in the righthand panel, which is adapted from [Iwasawa et al.,

2008].

Fortunately, in the work in chapters 4 and 5, the complications of the shadow and super-

structure bands will not come into play due to the region of k-space that will be studied (along the

superstructure axis and in the vicinity of the node). Furthermore, a truly fortuitous advantage of

performing LE-ARPES on Bi2212 with photon energies in the range of 6–7 eV is that the matrix

elements are such that only the antibonding band is visible [Iwasawa et al., 2008], making the data

much simpler to analyze.4 In the nodal region, recent work has indicated that the bonding and

antibonding bands behave qualitatively similarly in terms of their dispersion features [Yamasaki

et al., 2007, Anzai et al., 2010], and therefore it appears that results obtained from studying the

antibonding band alone should largely be applicable to the antibonding as well. We would not be

so lucky if we were studying the antinodal k-space region, where bonding and antibonding band

dispersions exhibit markedly different behavior [Gromko et al., 2003], or if the photon energy were

only slightly (∼ 0.5 eV) higher, at which point both bands appear [Yamasaki et al., 2007].

One could be forgiven for assuming that after more than a decade of rigorous study by

ARPES, the Fermi surface of the cuprates would be fully and confidently established across the full

phase diagram. However, this is not the case. Lately some controversy has surrounded the makeup

of the Fermi surface in the underdoped portion of the phase diagram. The dispute stems in large part

from quantum oscillation experiments which use very high magnetic fields to observe the Landau

levels of electrons orbiting the Fermi surface. From this, in principle, highly precise measurements

4 Unfortunately, we are so far not aware of any photon energy range capable of isolating just the bonding band.
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Figure 3.6: Fermi surface complications in cuprates. Left: The (π, π)-replica “shadow” Fermi sur-
face. Middle: Superstructure in Bi-based cuprates. The main (zeroth-order) Fermi surface is shown
as solid black curves. The dotted red and blue curves are first- and second-order superstructure-
induced Fermi surface replicas, respectively. In Bi2212 the superstructure orders are spaced by
approximately 0.2(π, π). Right: Bilayer splitting seen in the first quadrant of the Brillouin zone of
Bi2212. The splitting corresponds to bonding (BB) and antibonding (AB) bands of the coupled
CuO2 planes. The righthand panel comes from [Iwasawa et al., 2008]. Reprinted with permission.
Copyright 2008 by the American Physical Society.

of the Fermi surface can be made. In underdoped samples, these experiments claim that the hole

pockets are much smaller than observed by ARPES [Doiron-Leyraud et al., 2007, LeBoeuf et al.,

2007]. At relatively heavy underdoping, ARPES sees a large Fermi surface, or arguably even open,

disconnected “Fermi arcs” [Norman et al., 1998, Shen et al., 2005, Kanigel et al., 2006], not small

Fermi pockets.5 While the possibility of a reconstruction of the Fermi surface into small pockets

has drawn some theoretical attention [Norman, 2010], a common refrain in the ARPES community

is that the quantum oscillation technique is a high-field (101–102 T) probe that might substantially

alter the system under study. In any event, the arc/pocket controversy is a debate still playing out

in high-Tc research.

5 There are some experimental exceptions to this, which have claimed to see evidence for Fermi pockets [Yang
et al., 2008, Chang et al., 2008]. One paper in particular made the claim that there are coexisting Fermi arcs and
pockets in heavily underdoped La-Bi2201 [Meng et al., 2009]. However, this conclusion has been disputed by King
et al., who strongly argue that the supposed pockets have a structural origin [King et al., 2011,Zhou et al., 2010].
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3.3.4 d-wave gap

The superconducting gap in high-Tc cuprates is anisotropic in k-space. The gap follows a

dx2−y2 symmetry ∆(k) = ∆0
2 | cos kx − cos ky| [Wells et al., 1992, Shen et al., 1993, Ding et al.,

1996a]. Data illustrating this symmetry is shown in Fig. 3.7. Conventional BCS superconductors,

by contrast, have isotropic gap functions. The d-wave function is zero along diagonals of the

Brillouin zone and maximal at midpoints of the zone edges. The locations of these zero points and

maxima are referred to as nodes and antinodes, respectively.

Figure 3.7: d-wave symmetry of the superconducting gap. The inset labels the locations of the data
points along the Fermi surface. From [Ding et al., 1996a]. Reprinted with permission. Copyright
1996 by the American Physical Society.

The d-wave form of the gap reflects an underlying superconducting order parameter of the
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same symmetry. This order parameter is the Ginsburg-Landau (pseudo-)wavefunction Ψ(r) which

describes the local superfluid density ns(r) = |Ψ(r)|2. Various phase-sensitive probes have con-

firmed the order parameter obeys the cos kx − cos ky form [Tsuei and Kirtley, 2008].

The d-wave gap symmetry has profound implications for the electron pairing mechanism

in cuprates. This can be seen from Eq. 3.4, which intimately connects the form of the pairing

potential to that of ∆(k). A counterintuitive result is that when the gap has d-wave form, pairing

does not even require that the interaction be attractive. In essence, a fully-repulsive potential can

offset the interaction V (k,k′) without affecting the conditions for superconductivity in the dx2−y2

channel [Bulut and Scalapino, 1996, Tsuei and Kirtley, 2008]. By contrast, conventional s-wave

superconductivity must be mediated by a attractive interaction.

3.3.5 Energy scales and kinks

A small number of interaction energy scales signalled by ARPES dispersion kinks have been

established in the cuprates. Generally these kinks, or mass enhancements/renormalizations, are

interpreted as indicators of electrons coupled to bosonic modes — particularly either phonons or

spin fluctuations. However, it has also been suggested that kinks could arise due to purely electronic

mechanisms in strongly-correlated systems [Byczuk et al., 2007], although presently this does not

seem to be a widely-held view. In any regard, as it currently stands, there is not a single kink

seen in cuprates whose claimed origin is broadly accepted. Disputes surrounding these dispersion

features — including even whether some of them are “real” or mere experimental artifacts — lie at

the center of much of the controversy over the theory of superconductivity in cuprates. Presumably

if the causes of various dispersion anomalies can be pinned down, we will have advanced a great

deal of the way toward finding the interactions behind d-wave pairing and high-Tc superconduc-

tivity. Accordingly, chapters 4 and 5 are devoted to analyzing fine details of the dispersion and

corresponding self-energy in Bi2212.

Perhaps the most famous of the kinks seen in cuprates is a sizeable dispersion anomaly

about 60–70 meV below EF along the nodal (0, 0)–(π, π) line [Bogdanov et al., 2000, Lanzara
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et al., 2001, Kaminski et al., 2001, Johnson et al., 2001, Gromko et al., 2003]. This kink is shown

in Fig. 3.8. By now it is well established that this feature strengthens with decreasing T and

decreasing hole doping [Bogdanov et al., 2000,Johnson et al., 2001,Gromko et al., 2003,Borisenko

et al., 2006]. Notably, there is some question as to whether this is actually a distinct energy scale

of a single interacting mode, or whether it may be comprised of multiple modes (e.g., from separate

phonon branches) [Zhou et al., 2005,Meevasana et al., 2006,Lee et al., 2008]. From the ultrahigh-

resolution, bulk-sensitive LE-ARPES data presented in this thesis — particularly in Ch. 5 where

we investigate the T dependence of the nodal self-energy — there so far is no clear evidence to

support the multimode hypothesis. A detailed study of the evolution of this kink around the nodal

region of momentum space will be presented in Ch. 4 where some of the analysis regards the kink

as a single-mode energy scale.

The kink at 60–70 meV has been explained in terms of either phonon [Devereaux et al.,

2004,Ruiz and Bad́ıa-Majós, 2009] or spin fluctuation interactions [Manske et al., 2001,Chubukov

and Norman, 2004, Inosov et al., 2007a, Dahm et al., 2009]. Experiments have not fared much

better than theory in discerning the cause of the kink. For example, a careful LE-ARPES study

has noted a small isotope shift of the kink’s location [Iwasawa et al., 2008], which supports the

phonon explanation. However, as will be discussed in Ch. 4, the k-space evolution of the kink

energy and strength is more consistent with spin fluctuations. The cause of this dispersion feature

is therefore still strongly debated despite much work.

A much newer discovery of a nodal dispersion anomaly near or below the 10-meV scale

is the focus of Ch. 5. This very low-energy kink was first reported by us (in an arXiv eprint

and later published as [Plumb et al., 2010]) and rapidly independently confirmed by three other

groups [Rameau et al., 2009,Vishik et al., 2010,Anzai et al., 2010]. For reasons that will be discussed

in that chapter, the observation of this kink required the kind of ultrahigh resolution only recently

obtained by the use of LE-ARPES.

Another well-established energy scale at roughly 30–40 meV is seen in ARPES spectra taken

near the antinodal (π, 0) region [Gromko et al., 2003, Kim et al., 2003]. This kink is shown in
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Figure 3.8: Large nodal kink near 60–70 meV as seen in Bi2212 by LE-ARPES. The black curve is
the MDC dispersion. The red dashed line is an assumed “bare” band dispersion to highlight the
kink. The sample shown is near optimal doping. The data was collected along the (0, 0)–(π, π)
direction with hν = 7 eV at T = 10 K.

Fig. 3.9. As with the 70-meV nodal kink, the antinodal renormalization strengthens below Tc and

also appears to intensify with underdoping. Likewise, theories are divided as to whether it results

from the coupling of phonons [Devereaux et al., 2004,Cuk et al., 2004] or spin fluctuations [Inosov

et al., 2007a,Dahm et al., 2009].

Finally, some other energy scales are suggested by ARPES data but are less clearly estab-

lished. As alluded to in section 2.6.3, a very large dispersion anomaly is seen at deep binding energy

roughly 400 meV below EF [Graf et al., 2007,Valla et al., 2007], but whether this is a true kink or

merely an artifact of complicated ARPES matrix element effects is hotly contested [Inosov et al.,

2007b, Inosov et al., 2008, Zhang et al., 2008a, Wang et al., 2009, Basak et al., 2009, Moritz et al.,
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Figure 3.9: Antinodal kink at the 30–40 meV energy scale. (a) ARPES dispersion data from an
overdoped (Tc = 58 K) Bi2212 sample studied above Tc. (b) The same spectrum below Tc. (c) A
less-overdoped sample (Tc = 71 K) studied below Tc. (d) An optimally-doped (Tc = 91 K) sample
studied below Tc and slightly away from (π, 0). (e) Antinodal EDC’s from panels (a) and (b). (f)
Locations of the ARPES image cuts. In all images, “SS” labels superstructure bands and “A” and
“B” are bonding and antibonding bands (see section 3.3.3). From [Gromko et al., 2003]. Reprinted
with permission. Copyright 2003 by the American Physical Society.

2010]. More recently it has been suggested that there are features in the nodal dispersion located

at about 115 meV and 150 meV [Zhang et al., 2008b]. There is some possible confirmation of the

150-meV scale [Anzai et al., 2010], but not of the one at 115 meV.



Chapter 4

Momentum Dependence of the Main Nodal Kink

4.1 Introduction

This chapter presents a detailed study of the momentum dependence of the kink found

roughly 60–70 meV below EF along the nodes of the d-wave superconducting gap in cuprates

(section 3.3.5) [Bogdanov et al., 2000, Lanzara et al., 2001, Johnson et al., 2001, Kaminski et al.,

2001]. This kink is a large, well-known mass enhancement that is distinct from the smaller, newly-

discovered kink near 10 meV (which will be the subject of Ch. 5), and it represents a sizeable

feature in the self-energy spectrum Σ(k, ω) of the electrons due to many-body interactions.1 As

a result, there is significant speculation within the high-Tc community that this kink may be a key

clue regarding the interactions leading to superconductivity in cuprates, and detailed studies of the

kink may shed light on the high-Tc mechanism. While several prior studies of this “main” kink

have investigated its evolution in k-space [Kaminski et al., 2001, Ino et al., 2002, Kordyuk et al.,

2002, Bogdanov et al., 2002, Kaminski et al., 2005, Graf et al., 2008, Bok et al., 2010, Garcia et al.,

2010], none has offered the same combination of detail, resolution, and precision as the data here,

nor has previous data been analyzed in quite this same manner.

Using LE-ARPES, we hone our attention on Bi2212 near optimal doping in the supercon-

ducting state. Thanks to the ultrahigh-resolution spectra obtainable by the low-energy photons,

the energy location of the kink can be precisely traced as a function of momentum in the Brillouin

zone. After extracting an effective self-energy Σeff(k, ω), LE-ARPES is able to reveal that the peak

1 For convenience, this chapter will adopt the common convention ω = E − EF .
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in Σ′eff(k, ω), which corresponds to the location of the kink, smoothly shifts closer to EF as the

spectra progress from the node toward the antinode.

Prompted by our ability to so clearly resolve the kink and its evolution in k-space, we attempt

to infer the scattering q-space (q = k′−k) dispersion of a boson that might couple to the electrons.

This involves considering a variety of simple scattering scenarios while taking care to account for q-

dependent shifts in the location of the kink that occur in the presence of the d-wave superconducting

gap. The extracted q-space dispersions are in relatively poor agreement with most known boson

dispersions, with only two notable exceptions: (i) a limited q-space region of overlap with a Cu-O

bond-stretching phonon mode and (ii) a resemblance to a high-energy branch of spin fluctuations.

The data is analyzed in further detail by studying the intensity and sharpness of the self-

energy of the main kink as a function of momentum. The height and width of the peak in Σ′eff is

roughly a constant over much of the near-nodal region but begins to rise sharply for momenta more

than about 10◦ from the node [measured about (π, π)]. In terms of the energy of an assumed bosonic

mode, this rise occurs somewhat close to a magnetic “resonance” peak seen in inelastic neutron

scattering experiments. However, the energy scale of the resonance does not overlap perfectly with

the intensification of Σ′eff, signalling that if spin fluctuations are at play, they may not be the only

contribution to the kink.

As will be discussed, these findings are somewhat surprising in light of previous experimental

and theoretical work that strongly suggested it might be phonons, not spin fluctuations, that are

responsible for the nodal main kink. The new results cloud this picture and may be considered

somewhat paradoxical in the sense that they do not clearly point toward a sole mechanism behind

the kink. Thus our study opens the possibility that both types of coupling may be relevant to the

kink and the physics of the nodal electrons.
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4.2 The effective self-energy in the nodal region

4.2.1 Experimental

The data presented here come from near-optimally-doped Bi2212 with Tc = 89 K. The

experiments were conducted at HiSOR BL-9A at the Hiroshima Synchrotron Radiation Center,

which is equipped with a VG Scienta R4000 analyzer. Data was collected in the superconducting

state at T = 10 K using 7-eV photons. The total instrumental energy resolution (light source plus

analyzer) was determined to be about 7 meV based on fits to the Fermi edge of a polycrystalline

gold sample. Due to matrix element effects, the 7-eV photon energy isolates the antibonding band

in Bi2212 (section 3.3.3) [Iwasawa et al., 2008], greatly simplifying the analysis of the spectra.

Data was collected along the nodal (0, 0)–(π, π) sample orientation, which was determined by Laue

diffraction. Excellent rotational alignment of the sample was later confirmed by analysis of the

momentum-space symmetry of various parameters such as the Fermi momenta kF , band velocities,

and gap values.

4.2.2 k-space evolution of the self-energy

The k-space region of study is illustrated in Fig. 4.1(a), which shows the data collected in

the first quadrant of the Brillouin zone.2 The thicker black lines are sketches of the antibonding

(AB) and bonding (BB) bands in Bi2212 based on a tight-binding model [Markiewicz, 2004]. As

already discussed, the 7-eV photons observe only the antibonding band. The angle θ with respect

to the node and measured about (π, π) will serve as a convenient index of the position along the

Fermi surface. Two representative slices of the data labeled i and ii (corresponding to θ = 0.9◦ and

θ = 16.3◦, respectively) are indicated by the red curves.

The data from each cut is analyzed as shown in Fig. 4.1(b). The black curves show the

dispersions, which are the peak positions found from Lorentzian MDC fitting (section 2.6.1). The

red dashed lines, meanwhile, are effective bare bands that will be used to extract the effective

2 Some interpolated points have been added to the Fermi surface plot, especially since the cuts become slightly
canted in momentum as a result of the k-space transformation (section 2.3).
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AB 

BB 

Figure 4.1: Momentum evolution of the nodal dispersion in Bi2212. (a) First quadrant of the
Brillouin zone in Bi2212, showing the region of study. The color scale is the measured spectral
intensity 10 meV below EF . Two representative cuts (i and ii) are indicated by red curves. The
black curves are sketches of the antibonding (AB) and bonding (BB) Fermi surfaces. The use of
7-eV photons isolates the antibonding band. Cuts are indexed by the angle θ relative to the node.
(b) Raw ARPES data from cuts i and ii. The solid black curves are the dispersions determined
by the peak positions from MDC fitting, while the dashed red lines are the effective noninteracting
bands used to extract the self-energy Σeff. (c) The spectra of MDC widths (red) at cuts progressing
away from the node. (d) Real and imaginary components of the effective electronic self-energy [Σ′eff

(black, right axis) and Σ′′eff (red, left axis), respectively] for cuts i and ii.

self-energy Σeff as described in section 2.6.2. Each effective bare band is determined by performing

a linear fit to a deep-energy portion of the dispersion (-230 to -200 meV). The fit is constrained to

pass through the Fermi momentum kF .

The momentum dependence of the kink is reflected in multiple aspects of the data self-

consistently. Fig. 4.1(c) shows MDC width spectra for each slice progressing from cut i to ii. Each
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spectrum has a prominent step-like rise, and these steps move toward EF and sharpen as the cuts

move from node to antinode. To first-order in the fully non-interacting bare dispersion, the MDC

widths are proportional to the total imaginary self-energy Σ′′(k, ω), which itself is proportional to

the scattering rates (inverse lifetimes) of the states (section 2.6.2). Hence, these spectra indicate an

acute onset of scattering which coincides with the kink. We should therefore see similar behavior

in the effective self-energy, and this is in fact what is observed.

Figure 4.2: Momentum dependence of Σeff(ω) in the nodal region of Bi2212. In each panel the
horizontal axis θ is the Fermi surface angle illustrated in Fig. 4.1(a). The markers specify the
energy of the kink Ωkink determined by the location of the peak in Σ′eff(ω) for each θ. Panel (a) is
the spectrum of Σ′eff(θ, ω), while (b) shows ∂Σ′′eff(θ, ω)/∂ω. A small offset of the peak in (b) relative
to Ωkink(θ) arises due to smoothing used to analyze the derivative.

Extracted curves for Σ′eff(k, ω) from cuts i and ii are displayed as black curves (right axis)

in Fig. 4.1(d). The corresponding Σ′′eff(k, ω) are computed from these curves by Kramers-Kronig

transformation.3 These are plotted in red (left axis). Consistent with the behavior of the MDC

3 The transformation in this case assumes that the spectrum is symmetric about EF (particle-hole symmetry). The
results were checked against a different algorithm which simply extrapolates the endpoints as constants, rather than
assuming any symmetry, and the spectra were found to be qualitatively very similar. To improve the results, “bad”
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widths in panel (c), the peaks (steps) of Σ′eff(ω) [Σ′′eff(ω)] shift closer to EF and sharpen. The

Σ′′eff(ω) spectra are essentially flat-topped steps, indicating that we have succeeded in removing

the large sloping background of slow-moving contributions to the full Σ′′(ω) inferred from the

MDC widths. This signifies that the analysis has done a good job of isolating just the portion of

the self-energy that is due to some sharp mode. We note that the maximum height of Σ′′eff(k, ω)

is roughly independent of k, even though the step behavior sharpens approaching the antinodal

region. Meanwhile, Σ′eff(k, ω) likewise sharpens, and the height of the peak increases away from

the node. This is (by construction) Kramers-Kronig-consistent with the behavior of Σ′′eff(k, ω).

Figure 4.2(a) shows the full behavior of Σ′eff(ω) as a function of the Fermi surface angle θ.

The locations of the effective Σ′eff(ω) peaks, Ωkink, are indicated by the black markers. These peak

positions are determined by fitting a quadratic curve to points ±15 meV around the highest point

in each spectrum. Notably, the height of the self-energy peak is roughly constant in the immediate

vicinity of the node, but begins to rise significantly for θ & 10◦. This corresponds with a sudden

sharpening of the step in Σ′′eff(k, ω), illustrated in Fig. 4.2(b), which shows ∂Σ′′eff/∂ω as a function

of θ and ω.4

Before concluding this section, it is worth pointing out that the quantity ∂Σ′′eff/∂ω is — under

normal circumstances, at least — closely related to the Eliashberg electron-boson coupling spectrum

α2F (k, ν), where ν is the bosonic energy parameter. Strictly speaking, F (ν) is the phonon density

of states, and α2(k, ν) contains the electron-phonon interaction matrix elements. However, these

are often regarded as a single parameter. It is defined as

α2F (k, ν) =
1

(2π)3

∫
dq

vF
|g(k, q)|2δ[ν − Ωη(q)] (4.1)

where vF is the Fermi velocity, Ωη(q) is the boson dispersion of a branch indexed by η, and g(k, q)

is the screened electron-boson matrix element [Mahan, 2000].

In a gapless system at T = 0, α2F (k, ν) is related to the self-energy contribution due to

data points in Σ′
eff(ω) from energies inside the gap (|ω| < ∆(k)) are set to zero before calculating the Kramers-Kronig

transform. The calculated Σ′′
eff spectra were checked for consistency by transforming them back into Σ′

eff.
4 To reduce noise in the derivative, the Σ′′

eff(ω) spectrum at each θ was first smoothed by multiplying its FFT by
a squared Hann window and then applying the inverse Fourier transform.
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electron-boson coupling by

Σ′′(k, ω) = π

∫ |ω|
0

dνα2F (k, ν) (4.2)

[Allen, 1971, Mahan, 2000]. Hence ∂Σ′′eff/∂ω (measured at low T ) is usually very similar to

α2F (k, ν).

An experimental determination of α2F from ARPES would be of substantial value, because

it neatly encodes the bosonic interactions into a quantity that can be readily applied to the strong

coupling theory of superconductivity. Some papers have attempted to extract this quantity in

cuprates [Schachinger and Carbotte, 2008, Bok et al., 2010]. It is critical to note, though, that

the presence of a single-particle gap ∆ renders the electronic and bosonic energy scales — ω

and ν, respectively — inequivalent. This will be discussed in subsequent sections and especially in

appendix A. For the situation of an anisotropic gap ∆(k), as encountered in cuprates, the situation

is even more complicated, and the correct calculation of α2F from the data becomes quite difficult.

Thus, while ∂Σ′′eff/∂ω in Fig. 4.2(b) is in some respect an α2F -like quantity, we will not attempt to

pursue this line of quantitative analysis.

4.3 Electron-boson interactions

4.3.1 Mapping the interactions in q-space

In this section we hope to exploit the high resolution of LE-ARPES in order to infer the

q-space dispersion of a mode coupled to the electrons. A crucial yet easily overlooked aspect of the

analysis is the correct assignment of boson energies Ωboson(q) from kink energies Ωkink(k). In the

present case, this is not straightforward — i.e., generally it cannot be assumed that Ωboson(q) 6=

−Ωkink(k). In appendix A it is argued that due to the d-wave gap, a boson Ωboson(q) that scatters

electrons within the region around the node by q = k′−k leads to a self-energy feature in ARPES

roughly located at

Ωkink(k) = −Ωboson(q)−∆(k′). (4.3)
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This can be understood by considering the lifetime of a photohole injected into the sample at k, ω.

We are interested in the electrons which can decay to this state via emitting a boson Ωboson(q).

If the photohole’s energy is ω(k) > −Ωboson(q) − ∆(k′), then there is no suitable electron state

available for decay, and the hole will have infinite lifetime, meaning Σ′′ = 0 for this hole excitation.

On the other hand, for ω(k) < −Ωboson(q)−∆(k′), electrons can make the transition to the hole,

meaning the holes in this energy range have finite lifetimes (i.e., Σ′′ > 0). This leads to a step in

Σ′′(ω) located at the energy given by Eq. 4.3, as well as a corresponding feature in Σ′(ω). Again,

a more in-depth discussion of this phenomenon is presented in appendix A. Recently it has been

argued that the true value of Ωkink(k) may differ slightly from Eq. 4.3 for realistic boson modes

with finite energy width [Schachinger and Carbotte, 2009], but this effect is expected to be small

and should not alter our results at the qualitative level.

In order to properly correct the gap-shifting of the kinks observed by ARPES, the weighted q’s

of all the boson scattering channels would have to be known a priori. In lieu of this information, we

can proceed by assuming some reasonable form for the q-dependence of electron-phonon coupling.

In particular, we will consider simple scattering scenarios along symmetries of the Brillouin zone [

q = (ξ, 0, 0)/(0, ξ, 0) and (ξ, ξ, 0)], as depicted by the arrows in the inset of Fig. 4.3(a).5 Under

these assumptions, ∆(k′) = ∆(k), and thus the boson energy is simply

Ω∗boson(θ) = −Ωkink(θ)−∆(θ) (4.4)

where the asterisk (∗) denotes that the value is only applicable under these special circumstances.

This quantity is plotted in Fig. 4.3(a) along with the original values of Ωkink(θ) obtained from the

peak positions of Σ′eff(θ, ω). The inset shows the assumed scattering directions connecting like-

valued regions of the d-wave gap. Measurements of the gap amplitude used to compute Ω∗boson(θ)

are shown in panel (b).

It is fair to ask whether the classes of scattering vectors shown in the inset of Fig. 4.3 are

indeed reasonable guesses for the dominant electron-boson couplings, or whether there is even any

5 In the notation for q vectors, ξ has reciprocal lattice units in terms of 2π/a such that −0.5 ≤ ξ ≤ 0.5 in the
reduced zone scheme. We will assume two-dimensionality and set the z-axis to zero by convention.
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Figure 4.3: Boson energies under assumed scattering scenarios. (a) For scattering directions de-
picted in the inset, Ω∗boson(θ) reduces to Eq. 4.4. (b) Measurements of the d-wave gap.

dominant scattering channel in the first place. In response to this, we first note that the nodal kink

is a reasonably sharp feature of the dispersion, with no substantive evidence from LE-ARPES to

suggest that the peak in Σ′eff is somehow comprised of closely-spaced subpeaks that would indicate

coupling to multiple modes with comparable weights (see, e.g., Ch. 5 and Fig. 5.3).6 7 Thus, the

assumption that there is a single dominant electron-boson interaction in the nodal region seems

reasonable.

As for the natural criticism that the scattering may not occur predominantly along one of

the directions we have assumed, we note that calculations of the electron-phonon matrix elements

for various phonon modes find that the scattering is often quite anisotropic over the Fermi surface

and frequently exhibits a preference along one of the simple directionalities that were assumed for

6 There is an additional feature at the 10-meV scale (Ch. 5), and possibly others at deeper energy [Zhang et al.,
2008b], but these are too far removed from the main kink energy scale to figure into the present analysis.

7 As noted in section 3.3.5, some studies using conventional ARPES have claimed that the main nodal kink
contains contributions from multiple modes [Zhou et al., 2005, Meevasana et al., 2006, Lee et al., 2008], but these
supposed features are extremely subtle, and they have not been convincingly observed so far by LE-ARPES, which
has superior resolution.
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calculating Ω∗boson(θ) (i.e., horizontal/vertical or diagonal in the Brillouin zone). Some examples of

these matrix element calculations are shown in Fig. 4.4. There is also some experimental evidence

to suggest highly directional phonon scattering by a particular phonon of interest, which will be

discussed later and is featured in Fig. 4.6. Furthermore, for the case of spin fluctuations, the

scattering should be strongly concentrated along diagonal directions, since the dispersion of the

magnetic excitations is confined around the antiferromagnetic wavevector q = (0.5, 0.5) [Tranquada

et al., 2004,Hayden et al., 2004,Pailhès et al., 2004,Reznik et al., 2004]. One final argument boils

down to “There is no harm in trying”. That is to say, if analysis of a particular assumed scattering

direction obtains results that are consistent with other experiments and/or theoretical expectations,

then there is a case to be made a posteriori that perhaps the assumption, for whatever reason, was

not so bad after all.

Having obtained Ω∗boson in the previous section under some simplifying assumptions, we can

now map this quantity into q-space along the various horizontal/vertical and diagonal scattering

directions that we have already explicitly assumed. This is shown in Fig. 4.5. In addition to hor-

izontal/vertical scattering, there are two forms of diagonal scattering that are considered: inter-

and intra-hole-pocket q’s that have long and short wavevectors, respectively. These four scenar-

ios are depicted in panel (a). Panels (b)-(d) show the dispersions of Ω∗boson(q) for each of the

assumed coupling directionalities. For comparison, −Ωkink(q) is shown as well. The extracted

boson dispersion is directly compared to phonons observed by inelastic neutron scattering (INS)

on YBa2Cu3O6+x (YBCO) where x = 0 (down triangles) and x = 1 (up triangles) [Reichardt,

1996], as well as phonons measured by inelastic x-ray scattering (IXS) on Bi2212 (diamonds) [Graf

et al., 2008]. Panel (d) additionally features a portion of the high-energy branch of incommensu-

rate spin fluctuations (SF) observed in Bi2212 by INS [Xu et al., 2009]. This dispersion, as well as

the Bi2212 Cu-O bond-stretching (BS) phonon dispersion in (b), are highlighted (green and pink

shading, respectively) and will be discussed in depth shortly.

For interpreting Fig. 4.5(b), the extracted dispersions for Horiz and Vert should be viewed as

”limiting cases” in the sense that each represents a pure scattering directionality. Since (ξ, 0, 0) and
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Figure 4.4: Calculations of electron-phonon matrix elements. The lefthand panels are the scattering
matrix elements for a Cu-O bond “buckling” mode, while the righthand panels show the calculations
for a Cu-O “breathing” (bond-stretching) mode. Top (bottom) sets of panels show the scattering
for an electron beginning at the antinode (node). The key point in the context of the present
analysis is that even for relatively complicated scattering matrix elements such as these, often there
is still a tendency toward a preferred, simple scattering directionality (e.g., roughly horizontally
or diagonally for a nodal electron scattered by the buckling or breathing mode, respectively).
From [Devereaux et al., 2004]. Reprinted with permission. Copyright 2004 by the American
Physical Society.

(0, ξ, 0) are equivalent, these types of scattering should happen simultaneously, perhaps with some

complicated q dependence of the ratio of the relative contributions to the kink from each scattering

direction. However, based on the pure Horiz and Vert dispersions of Ω∗boson(q), it is difficult to

imagine how the behavior of the nodal kink could be explained in terms of most of the various

phonon branches in Fig. 4.5(b).

In fact, in general very little qualitative agreement is found between Ω∗boson(q) and most of

the boson dispersions in Fig. 4.5. We can point to only two areas of reasonable correspondence.

The first of these is the q ≈ (0.3, 0, 0) portion of the Cu-O BS phonon in Fig. 4.5(b) which overlaps
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with Ω∗boson(q). The other is the strongly dispersing character of Ω∗boson(q) in the inter-hole-pocket

scattering scenario, which qualitatively resembles that of the the spin fluctuation branch.

We now turn our focus to a discussion of the two highlighted dispersions in Fig. 4.5(b) and

(d). The phonon dispersion emphasized by pink shading in Fig. 4.5(b) is noteworthy for a number of

reasons. This is a Cu-O bond-stretching phonon that is observed to anomalously “soften” in many

materials [Pintschovius, 2005, Reznik, 2010], which refers to the fact that its dispersion features

a sharp energy drop (and corresponding broadening) in an analogy with kinks seen in ARPES.

Hence this is a signature of strong electron-phonon coupling.8 Additionally, a LE-ARPES study

of oxygen-isotope substituted Bi2212 found an isotope shift in the energy location of the nodal

main kink, with the size of the shift suggesting that the Cu-O bond-stretching mode was most

likely to be responsible [Iwasawa et al., 2008]. It was furthermore recently noted that this phonon

branch crosses (or possibly anti-crosses) with a longitudinal optical phonon in Bi2201 [Graf et al.,

2008], which is also shown in Fig. 4.5(b). This crossing point is roughly q = (0, 0.22–0.25, 0) and

at an energy of ∼ 60 meV. The authors state that the q vector where the phonon branches cross

connects points on the Fermi surface where a sudden “crossover” jump occurs in the the location

of the main ARPES kink [Graf et al., 2008,Garcia et al., 2010] — a claim that is contradicted by

the data here, which shows a smooth evolution of Ωkink around the Fermi surface. Finally, INS has

observed that the bond-stretching phonon dispersion is substantially broader at optimal doping

than at overdoping at points along the horizontal and vertical q-space directions [Reznik, 2010]

(Fig. 4.6). This suggests that at optimal doping the mode couples electrons relatively strongly

along (ξ, 0, 0)/(0, ξ, 0) and perhaps is associated in some way with superconductivity.

For all the reasons just mentioned, it seemed especially likely at the outset of our analysis

that we might uncover a particularly strong correspondence between the dispersions of Ω∗boson(q)

and the Cu-O bond-stretching phonon along (ξ, 0, 0)/(0, ξ, 0). As it turns out, the findings paint

a more complicated and nuanced picture. There is some limited region of near-agreement between

8 Such softening can in fact be seen in the data from the same phonon branch in YBa2Cu3O7, which runs alongside
the highlighted curve.
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Figure 4.6: Evidence for horizontal/vertical scattering by the Cu-O bond-stretching phonon. The
map is a qualitative schematic of the observed change in phonon dispersion linewidths between the
optimal and overdoped phase in La2−xSrxCuO4. From [Reznik, 2010]. Reprinted with the author’s
permission.

the two dispersions in the vicinity of (≈ 0.3, 0, 0), but they overall exhibit qualitatively disparate

characters. Crucially, had we not attempted to account for the gap-shifting of Ω∗boson relative to

Ωkink, we would have been deceived into thinking that there was more similarity between the two

dispersions over the region (0.3–0.5, 0, 0) than actually exists. Meanwhile, considering inter-hole-

pocket scattering along (1, 1, 0), there is notable qualitative similarity between the dispersion of

Ω∗boson(q) and that of incommensurate spin fluctuations highlighted by green shading in Fig. 4.5(d).

The dispersions move nearly parallel to each other from 65 meV down to about 45 meV. However,

as noted by the green hatched region, the SF dispersion is possibly not sharp, and in many data it
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appears that the region around (0.5, 0.5, 0) is “filled in” by the neutron scattering signal.

The SF dispersion plotted in Fig. 4.5(d) is actually a high-energy branch of magnetic excita-

tions which merges with a low-energy branch [Tranquada et al., 2004, Hayden et al., 2004, Pailhès

et al., 2004,Reznik et al., 2004], as shown in Fig. 4.7. The spin fluctuation branches converge near

30–50 meV at the antiferromagnetic wavevector q = (0.5, 0.5), which corresponds in momentum

and energy with a magnetic resonance where INS scattering is strongly peaked [Rossat-Mignod

et al., 1991, Mook et al., 1993]. The hourglass shape of the combined dispersions is illustrated in

Fig. 4.7 (which emphasizes the shape of the dispersions in 2D q-space and energy) and in Fig. 4.8

(which emphasizes the peaked magnetic response at the resonance point).

By plotting the peak height of Σ′eff as a function of Ω∗boson we observe that the self-energy

intensity varies relatively little at high energies but increases dramatically below about 45 meV. This

behavior bears a qualitative resemblance to the observed INS response of the magnetic resonance

— e.g. the measurements on Bi2212 by Fong et al. [Fong et al., 1999], which are compared to the

LE-ARPES data in Fig. 4.9. Additionally, within our simple scattering model, the kink feature in

Σboson sharpens for Ω∗boson near the resonance, which could conceivably be connected to the fact

that the SF dispersion flattens as it approaches the resonance peak. This finding supports the

notion that the dispersion of Ω∗boson in terms of the inter-hole-pocket coupling direction q = (ξ, ξ, 0)

may be related to the high-energy incommensurate spin fluctuations. Notably, this is consistent

with the findings of some other recent work [Inosov et al., 2007a,Dahm et al., 2009] which arrived

at their conclusions by different means.

4.4 Discussion

The data presented in section 4.2 make some valuable observations that are of general interest

to the study of the interactions of the nodal electrons, independent of the model-based analysis

presented in section 4.3. In particular, we clearly observe that the main kink energy disperses

smoothly toward EF (by ∼ 10 meV) as a function of k as we move away from the nodal region of

the Fermi surface. This is in contrast to a previous line of thinking that the energy scales seen at
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Figure 4.7: INS measurements of the “hourglass” dispersion of spin fluctuations in Bi2212. The
data come from Xu et al. [Xu et al., 2009]. Left: Spin fluctuation dispersion branches in optimally-
doped Bi2212 (Tc = 91 K). The horizontal axis is q with respect to the antiferromagnetic wavevector
(0.5, 0.5, 0). The data are averaged over cuts in the (ξ, 0, 0) and (0, ξ, 0) directions, but the authors
state that the findings are virtually identical for cuts in the (ξ, ξ, 0) direction. Points from incident
neutron energies of 120 and 200 meV are indicated by circles and diamonds, respectively. Black
and red symbols are T = 10 K and T = 100 K, respectively. The results are compared with
dispersions from YBa2Cu3O6.5 (gray shaded curve) [Stock et al., 2005] and YBa2Cu3O6.95 (thin
blue curve) [Reznik et al., 2004]. Righthand panels: q-space maps of the neutron scattering signal
at fixed energy transfers. The energies are, from bottom to top, 36, 42, 54, and 66 meV. Taken
together, these maps form a 3D perspective of the dispersion in the lefthand panel. The colorscale
is the intensity of the imaginary part of the magnetic susceptibility χ′′(q), the extraction of which
is described in that text. The data were collected at 10 K. Reprinted by permission from Macmillan
Publishers Ltd., copyright 2009.
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Figure 4.8: Momentum-resolved view of the magnetic resonance in YBCO. The z-axis/color scale
represent the neutron scattering intensity. The momentum axis is (H,−1.5,−1.7) in reciprocal
lattice units — i.e., the scan is a horizontal cut through the antiferromagnetic wavevector in a
higher-order Brillouin zone. The sample, underdoped YBCO, is studied below Tc at 5 K. Above Tc
the resonance peak vanishes. From [Hinkov et al., 2007]. Reprinted by permission from Macmillan
Publishers Ltd., copyright 2007.

the node and antinode are more-or-less static within their respective neighborhoods of the Fermi

surface, possibly to the extent that the energy of the main kink makes a sudden jump at a distinct

crossover point in k-space [Graf et al., 2007,Garcia et al., 2010].

However, based on our data, the paradigm of nodal-antinodal crossover is not dead, per se;

It perhaps just needs to be characterized in terms of a different set of parameters. As the data

shows, the peak in Σ′eff(k, ω) sharpens and intensifies rather quickly for points along the Fermi
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Figure 4.9: Comparison between Σ′eff and the magnetic resonance peak in Bi2212. The peak height
of Σ′eff (left axis) is plotted as a function of Ω∗boson. The difference in neutron scattering intensity
between 10 K and 100 K in Bi2212 shows the magnetic resonance peak (from [Fong et al., 1999]).
This is plotted on the right axis and along the same energy coordinates. The dashed line is a guide
to the eye for the INS data.

surface where θ & 10◦, consistent with a sudden sharpening of the steps in Σ′′eff(k, ω). Whether this

behavior constitutes a crossover is maybe a matter of semantics, but it is probably a useful finding

nonetheless.

The analysis of the q-space dispersion of the mode energy in sections 4.3 and 4.3.1 relied

on two key assumptions: (i) the kink is primarily due to a single interacting boson; and (ii) this

interaction scatters electrons predominantly along one of the symmetry axes of the Brillouin zone.

An attempt was made to justify these assumptions on various experimental and theoretical grounds.

Still, some potentially valid criticisms could be leveled against our approach. For instance, one could

propose that phonons should scatter the electrons primarily to the antinodes, since these points are

van Hove singularities. In this case, Ωboson(θ) = −Ωkink(θ) −∆0, where ∆0 ≈ 30 meV. The kink

would then correspond to bosons in the range of roughly 20–30 meV. In cuprates, this energy range

is home to a tangled spaghetti of phonon modes [Falter, 2005], and, moreover, the q vectors in this

scenario would not fall on a straight line, making the analysis of the problem and comparison to
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INS/IXS data a daunting challenge. Therefore there is not much our analysis can say about this

type of problem, except that it is a call to theorists to attempt to explain the dispersion of Ωkink

and the momentum dependence of Σeff from phonon theory.

Despite the partial overlap of Ω∗boson and the Cu-O bond-stretching phonon branch, it is not

clear that there is a satisfactory explanation of the kink’s k-space evolution in terms of phonons. For

instance, Fig. 4.10 shows calculations of the electron-phonon coupling parameter λ(k) [Devereaux

et al., 2004]. This quantity for a given phonon is related to α2F (k, ν) by λ(k) = 2
∫ ωD

0
dν
ν α

2F (k, ν)

[Mahan, 2000]. The calculations find that the Cu-O bond-stretching mode (labeled “breathing”

in the figure)has λ(k) that is peaked at the node — essentially the opposite of the behavior of

the effective self-energy found here, which intensifies toward the antinodes. This is surprising if

we recall that the bond-stretching mode is often thought to be responsible for the nodal kink (see

discussion in 4.3.1). Meanwhile, the buckling mode (out-of-phase c-axis O vibrations) calculation

in the top panel of Fig. 4.10 shows λ(k) peaked at the antinodes, but this mode has an energy

of nominally ∼ 40 meV and is believed to couple nodal states primarily across the “necks” of the

Fermi surface (see left panels of Fig. 4.4).

In the context of spin fluctuations, the assumptions behind our analysis are quite reasonable,

because it is known from experiment that there is only a single dispersion branch at a given

energy, and also the scattering is centered about q = (π, π). The observations in Figs. 4.5 and

4.9 that Ω∗boson(q) and α2F (Ω∗boson) find some qualitative agreement with the characteristics of the

incommensurate spin fluctuations are therefore quite interesting and possibly valid, especially in

light of previous work [Inosov et al., 2007a,Dahm et al., 2009].

Finally, our findings are somewhat surprising in light of various prior results suggesting

that the main nodal kink originates from electron-phonon interactions. These include, for ex-

ample, LE-ARPES isotope experiments [Iwasawa et al., 2008], “softened” INS phonon disper-

sions [Pintschovius, 2005, Reznik, 2010], and theoretical simulations [Devereaux et al., 2004, Ruiz

and Bad́ıa-Majós, 2009]. In particular, these previous results tend to point toward the Cu-O bond-

stretching phonon as the most relevant to the nodal kink. The analysis here paints a picture that
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Figure 4.10: Calculations of electron-phonon coupling around the Fermi surface. “Breathing” refers
to the Cu-O bond-stretching mode discussed in this chapter. From [Devereaux et al., 2004].

is potentially more complicate and nuanced, finding some possible evidence that both phonons

and spin fluctuations contribute to the main kink. Perhaps the discrepancies in these results can

be reconciled by the notion that one interaction dominates over the other. For instance, recently

Schachinger and Carbotte have argued that the results from the ARPES isotope experiment are ac-

tually consistent with phonons being only a small contribution to the overall self-energy [Schachinger

et al., 2009]. However, the presence of so much conflicting theory and data may instead hint that

the physics of the main nodal kink, and of cuprates in general, is not truly dominated by a single

class of interactions but rather arises from phonons and spin fluctuations acting in concert. The-

ories along these lines [Normand et al., 1996, Nazarenko and Dagotto, 1996, Nunner et al., 1999]

eventually may be able to explain the apparent conflicts amongst various results so far.



Chapter 5

A New Energy Scale for Interactions: ∼ 10 meV

5.1 Introduction

This chapter describes the discovery of a dispersion kink located roughly 10 meV below

EF along the nodal direction in Bi2212, thus defining a new energy scale for interactions in this

material [Plumb et al., 2010]. This energy scale is distinct from others previously seen at the node

— in particular the well-established and much larger kink at 60–70 meV which was the subject

of Ch. 4 [Bogdanov et al., 2000, Lanzara et al., 2001, Johnson et al., 2001, Kaminski et al., 2001].

The observation of this new dispersion feature and the fine details of its behavior rests heavily on

the ultrahigh-resolution, near-intrinsic spectra obtainable by LE-ARPES, and in many ways the

results presented here exemplify the enormous potential of this experimental probe.

In optimal and overdoped samples, it is found that the kink abruptly strengthens at a tem-

perature close to Tc, indicating that the interactions causing this dispersion feature may be linked

to superconductivity. Moreover, being located so close to EF , the temperature-dependent behavior

of the 10-meV kink has a profound effect on the Fermi velocity, which is the group velocity of the

electrons evaluated at the Fermi energy,1 vF = ~−1∇kE(k)
∣∣∣
EF

. In fact, as the temperature is

raised, the Fermi velocity is seen to rapidly increase by almost 30% in the vicinity of Tc. Since the

onset of this behavior depends on Tc (and hence doping), it defies a previously-held notion that vF

along the nodes of the d-wave superconducting gap is somehow “universal” as a function of doping.

1 Throughout this work, ~ will be set to one in the context of velocities, and hence these quantities will be reported
in units of energy per momentum (eV · Å).
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The observation of the 10-meV kink is far from straightforward, because it turns out that

under certain circumstances the MDC fitting results very near EF can suffer complicated and

surprising systematic errors arising from the resolution of the experiment. The resolution effects

most strongly influence the very low-T spectra, and they tend to counter the bend of the kink, thus

obscuring our view of the physics of this low-lying dispersion feature. This possibly explains why

another ARPES group did not manage to clearly identify the kink in 2008, even though they noted

a “possible feature” in Σ′′ at roughly the same energy scale [Zhang et al., 2008b]. The resolution

effects and how to deconvolve them will be discussed at some length, but it will also be shown that

LE-ARPES permits direct observation of the kink, in spite of said difficulties, thanks to the probe’s

exceptional resolution.

Finally, a small number of plausible theories have been proposed to explain the kink’s physical

origins, while certain other mechanisms can conclusively be ruled out. We will discuss these theories,

as well as future directions of study which will hopefully elucidate the physics leading to the kink

and any relation it may have to superconductivity.

5.2 Observing the nodal kink near 10 meV

5.2.1 Experimental

The first investigations into the temperature dependence of the low-lying nodal dispersion

and the Fermi velocity vF were performed using the 6-eV laser-ARPES system at the University

of Colorado. This system was2 based on a frequency-quadrupled femtosecond-pulsed Ti:Sapphire

laser and used a VG Scienta SES2002 spectrometer [Koralek et al., 2007]. Due to the pulsed nature

of this light source, the photon bandwidth was about 5 meV, and total experimental resolution

including the analyzer was around 10 meV. Spectra were collected as a function of T along the

nodal (0, 0)–(π, π) direction in Bi2212 at various doping levels. These measurements were able to

establish an unusual, nearly-linear temperature dependence of the band velocity near the Fermi

2 The past tense is emphasized here, because the system has since been altered in several respects. This includes
the addition of two (soon to be three) new laser systems, replacement of the main chamber, construction of a new
sample manipulator, and an upgrade of the analyzer.
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level, and they gave the first hints of a possible low-energy dispersion anomaly.

Later data which more fully revealed the 10-meV kink was collected at SSRL BL5-4 using 7-

eV synchrotron light. The endstation is equipped with a VG Scienta R4000 analyzer. The beamline

monochromator and the analyzer settings were configured to have total energy resolution ∆E = 3.2

meV (FWHM). Fits to the Fermi edge of polycrystalline gold determined an energy resolution of

about 4 meV, in close agreement with the expectation based on the instrument settings.3 The

samples studied were optimally-doped (Tc = 91–92 K) and overdoped (Tc ≈ 62 K) Bi2212.

In all these experiments, data was collected in the nodal (0, 0)–(π, π) orientation, which was

determined to within about 1◦ by Laue diffraction. The matrix elements of the 7-eV photons isolate

just the antibonding band of the bilayer system (section 3.3.3), which simplifies the dispersion anal-

ysis, allowing us to obtain highly trustworthy results. The dispersions were analyzed by standard

Lorentzian MDC fitting (section 2.6.1). In the attempts to establish the existence of the 10-meV

kink, we were afraid that the presence of even a small gap in the spectra could lead to a false iden-

tification of a dispersion anomaly. Hence, we went to great lengths to ensure that the spectra were

aligned precisely at the node. The node was determined by verifying the momentum dependence

of various parameters such as the Fermi momentum kF , the deep-energy band velocities, and the

leading edges of the k-integrated spectra, which were all in good agreement. This last parameter,

the leading edge, is determined by fitting a Fermi-Dirac distribution to the k-integrated weight

for each spectrum. As a stand-in for a true gap value measurement (which is substantially more

involved when done properly [Reber et al., 2010b]), it does a good job of locating the minimum of

the gap, and hence the node. It should be noted that in our investigations of Bi2212, it appears

that the gap along (π, π) is extremely small (< 1 meV) [Reber et al., 2010b], if not identically zero,

which is consistent with other experimental probes and theoretical expectations [Tsuei and Kirtley,

2008]. Thus, we can confidently state that the observed kink near 10 meV is not in any way an

3 Minor differences between the expected resolution and its measured value frequently occur, with the measured
value typically found to be slightly larger than the expected one. The exact cause of the discrepancies is not known,
but they probably arise from a combination of factors such as uncertainty about the precise temperature of the gold
sample, small additional electronic noise, and/or surface contaminants that scatter the photoelectrons and broaden
the Fermi edge.



78

artifact of a gap being present in the spectrum.

The raw 2D ARPES data, MDC analysis, and node determination are illustrated in Fig. 5.1.

Panel (a) shows the spectrum from an optimally-doped Bi2212 sample studied with photon energy

hν = 7 eV at T = 10 K. Nodal determination (in this case by leading edge analysis) is shown in

(b).

Figure 5.1: LE-ARPES data at the node in Bi2212. (a) Raw data from an optimally-doped sample
at T = 10 K. The red curve shows the dispersion determined from Lorentzian MDC fitting, which
is illustrated in the top axes for the MDC at EF . The inset shows the positions of the cuts in
the Fermi surface. (b) The leading edge of the k-integrated spectral weight is determined for the
ARPES cut at each point on the Fermi surface at angles ϕ from the node (see inset), allowing
precise determination of the nodal cut to within better than 1◦ of the true node. From [Plumb
et al., 2010].

5.2.2 Direct observation of the 10-meV kink

As mentioned in the introduction to this chapter, there are complications arising from the

experimental resolution which tend to distort the MDC fitting results in such a way that the 10-
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meV kink can be hidden. These effects will be discussed in the next section. In the meantime, here

we will demonstrate that LE-ARPES can actually directly observe the kink despite these effects,

thanks to its ultrahigh resolution.

Figure 5.2 shows data from an optimally-doped sample at T = 50 K. In addition to vF , we

note the slightly deeper-energy band velocity v20. Formally, vF is determined by linear fit to the

MDC dispersion over the region EF ± 5 meV. Meanwhile v20 is determined by fitting from 30 meV

to 10 meV below EF . These definitions will be used throughout this chapter, since, as can be seen

in the figure, they provide a convenient means of identifying the 10-meV kink. Based on the change

in slope from v20 to vF , the kink can be identified at a low energy that is nominally referred to

throughout this thesis as “10 meV” (although in actuality it is probably slightly lower).

Figure 5.2: Direct observation of the nodal 10-meV kink at T = 50 K. The images show raw data
from optimally-doped Bi2212. The right panel highlights the region indicated by the dashed box
on the left. In each panel, the MDC dispersion is indicated by black markers. The extended lines
show the slopes corresponding to vF (red) and v20 (black). The Fermi velocity vF is determined by
performing a linear fit to the MDC peak locations over the range EF ± 5 meV. At slightly deeper
energy, v20 is found by fitting a line to the peak locations from 30 meV to 10 meV below EF . The
intersection of these slopes shows a kink at low energy, nominally referred to as “10 meV”.

Studies of the temperature dependence of the nodal dispersion further illustrate the existence
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of a low-energy kink. Figure 5.3 illustrates some key aspects of the T -dependent behavior. In

order to analyze this data in terms of an effective self-energy (section 2.6.2), a linear effective

bare band is chosen so as to connect portions of the dispersion which are roughly temperature-

independent [panel (a)]. While this band — which is quite similar to the one adopted in Ch. 4 —

is obviously not the fully noninteracting dispersion, it is at least bare with respect to any strongly

temperature-dependent interactions. Using this band, the effective Σ′(E) can be extracted for

various temperatures shown in panel (b). It is clear from these data that the behavior of the large

“70-meV” kink dominates the self-energy. However, looking at the difference in Σ′(E) above and

below Tc (at 130 K and 70 K, respectively) shown on the upper axis, it is clear that there is a

smaller temperature-dependent feature near 10 meV (arrow). As one expects, a corresponding

temperature dependence at both the 70- and 10-meV energy scales can be seen in the effective

Σ′′(E) [panel (c)].4

Before moving on, it should be noted that Fig. 5.6 and Fig. 5.3(a)–(b) only present data

for T ≥ 70 K. As we shall see in the next section, this range, unlike colder temperatures, does

not suffer to any significant degree from resolution-induced errors in the MDC peak locations. As

for Fig. 5.3(c), simulations such as those in appendix B find that the difference in MDC width

spectra as a function of temperature should not be significantly affected by the resolution, so the

key finding of panel (c) is unchanged. Subsequent sections will deal with resolution complications.

It turns out that for the experimental resolution of this study, these issues ought to be taken into

account for dispersion measurements at T . 50 K.

5.2.3 Dispersion measurement distortions due to resolution

While Lorentzian MDC fitting is a powerful technique for the analysis of dispersions in

ARPES, there is a set of circumstances in which the reliability of the results breaks down. Recently

the ARPES community is gaining appreciation of the fact that MDC (and EDC) peaks can deflect

4 The effective Σ′′(E) here is simply the MDC half-widths multiplied by the effective bare band velocity. As noted
in section 2.6.2, this is not as proper as performing a Kramers-Kronig transformation of the effective Σ′(E) as was
done in Ch. 4. However, since we are really interested in just the change in Σ′′(E), this minor simplification presents
no problem.
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Figure 5.3: 10-meV kink seen in the temperature dependence of the nodal dispersion. (a) Nodal
dispersions in optimally-doped Bi2212 below and above Tc. The assumed “bare” dispersion is used
to extract an effective self-energy (section 2.6.2) of the sharp energy scale feature. The location of
the new kink is indicated by the arrow. (b) Effective Σ′(E) as a function of temperature. A bump
corresponding to the 10-meV can be seen in the change from 130 K to 70 K (arrow). (c) Change in
effective Σ′′(E) between 130 K and 10 K, calculated from multiplying the MDC half-widths by the
slope of the bare band. A feature can again be seen near the 10-meV scale. From [Plumb et al.,
2010].
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away from the true dispersion when fits are being attempted in the vicinity of a sharp transition in

spectral weight [Ingle et al., 2005]. Such a situation routinely occurs at very low temperatures and

very near EF . The problem stems from the experimental resolution. To illustrate how this happens,

consider the extreme limiting case shown in Fig. 5.4. The straight black line in the left panel shows

a perfectly sharp (i.e., Σ = 0) linear band at T = 0. By convolving this ideal dispersion with an

energy resolution (red curves), it is transformed into the image on the right. (For smoothness of

the results, a small amount of k resolution has been simulated as well.) Looking at the righthand

panel, there are now counts above EF where previously there had been none. The above-EF counts

are asymmetrically distributed, because there is is no contribution coming from k > kF . The result

is that the MDC peaks (red) are deflected to lower |k| in the vicinity of EF .

Figure 5.4: Understanding the resolution effect in MDC fitting. The left panel shows an ideal,
infinitely sharp, linear dispersion at T = 0. Convolving it with an energy resolution, shown in red,
(plus a small small amount of momentum resolution for smoothness) produces the image in the
right panel. The resolution causes the MDC peaks (red curve on right) to deflect to lower |k|.

From this illustration, it is hopefully clear that the deflection will become more dramatic as

the energy resolution is broadened, since this will more severely spread counts up above EF . On

the other hand, raising the temperature will counter the effect of the resolution, since this will
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introduce counts beyond kF which will tend to pull the peaks back toward the true dispersion.

Another way to picture this is to imagine the T →∞ limit, in which case the dispersion crosses EF

with no cutoff, and hence the resolution effects vanish. The net result is that resolution effects are

really only a concern for roughly T . ∆E/kB, where ∆E is the energy resolution in terms of full-

width at half-maximum (FWHM). Moreover, the dispersion is generally only affected at energies

approaching or above the onset of the Fermi transition, loosely characterized as E−EF & −2kBT .

(This final point was not really accurately illustrated by the thought experiment of Fig. 5.4 due to

setting T = 0.)

LE-ARPES, with its excellent energy and momentum resolution, is therefore an ideal tool for

studying the near-EF dispersion at very low temperatures. However, resolution can never be fully

banished from the experiment, and even many of the best LE-ARPES measurements typically have

3–5 meV of total energy broadening (light source plus analyzer) and angular resolution of about 0.2◦.

Even under these high-resolution conditions, one finds that vF measurements below ∼ 50 K remain

somewhat afflicted by the artificial deflection of the MDCs, although the problem is far less severe

than for conventional ARPES. For LE-ARPES, the small resolution broadening can be substantially

and reliably removed by deconvolution techniques, as we will show in subsequent sections. This is

less likely to be the case for conventional ARPES, since any deconvolution technique will naturally

have “farther to go” to reduce the resolution and uncover the underlying spectrum. This presumably

increases the likelihood that the output of the algorithm will contain errors. Moreover, compared

to LE-ARPES, data from ARPES at conventional photon energies contains more background from

extrinsically scattered electrons (Ch. 2.7). Like resolution, this background could potentially affect

the measured near-EF dispersion in complicated ways, but it obviously will not be removed merely

by attempting to deconvolve the resolution.

5.2.4 Deconvolution and the Richardson-Lucy Technique

Experimental resolution is a so-called point-spread function which convolves with the un-

derlying spectrum and smears it. Once noise is added to this smeared spectrum, the problem
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of deconvolution is said to be ill-posed, meaning that there are multiple underlying spectra that

could reasonably be proposed as solutions. Many flavors of deconvolution exist, and the differences

between them largely boil down to how one defines the criteria for the most reasonable solution.

For removing the resolution from ARPES spectra, it is necessary to use a 2D image deconvo-

lution on the raw E-vs.-angle data. In the results shown here, we employed the Richardson-Lucy

(RL) algorithm [Richardson, 1972,Lucy, 1974]. This technique historically has been popular in the

astronomy and medical imagining communities but was recently adopted for ARPES analysis [Yang

et al., 2008]. The method is rooted in Bayesian probability analysis, a discussion of which lies well

outside of the intended scope of this thesis. Let it suffice to say that the algorithm tries to iteratively

determine the underlying image Mi,j that is most likely to have led to the measured image M̃i,j

given the resolution Ri,j and assuming Poisson-distributed noise (which is appropriate for counting

experiments such as ARPES). The RL algorithm reduces to an amazingly concise routine:

M
(k+1)
i,j =

{[
M̃i,j

M
(k)
i,j ⊗Ri,j

]
⊗Rj,i

}
M

(k)
i,j (5.1)

where k = 0, 1, 2 . . . is the iteration number, and ⊗ signifies convolution.

In the RL implementation used to analyze our data, the initial guess M
(0)
i,j was set to a

constant, and the stopping criterion was signalled by the convergence
〈
|M (k)

i,j −M
(k−1)
i,j |/M (k−1)

i,j

〉
<

0.01, where the angle brackets represent the mean. The resolution was treated as a 2D Gaussian

in energy and angle. For the input to the deconvolution algorithm, we actually used the calculated

value of the energy resolution (3.2 meV), rather than the slightly higher measured value (4 meV,

see section 5.2). This was precautionary, since the lower value will alter the measured data the

least, thus assuring that any observed kink is in fact real. By contrast, “over-deconvolving” the

data via a too-large value of ∆E could result in an artificial near-EF kink. Similarly, the input for

the angular resolution was 0.2◦, which is roughly a best-case resolution claimed by the instrument

manufacturer [VG Scienta AB, 2009].
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Figure 5.5: Richardson-Lucy deconvolution applied to ARPES data. The raw data on the left was
collected at the node of optimally-doped Bi2212. The output of the RL routine is shown at right.
The deconvolution was performed prior to transforming the image to k-space with energy resolution
of 3.2 meV and angular resolution of 0.2◦.

5.2.5 Full temperature dependence of the kink behavior

After applying the RL deconvolution, the artificial deflection of the MDC peaks is largely

removed from the spectra, and it becomes possible to quantitatively analyze the dispersion at all

energies and temperatures. Figure 5.6 illustrates this by showing the values of vF and v20 in the

optimal (OP) and overdoped (OD) samples before and after the RL routine. (v20 was defined in

section 5.2.2.) As expected, the raw measurements of v20 are essentially unchanged after removing

the resolution, but the values of vF get revised downward for T . 50 K (section 5.2.3). This corrects

a small upturn in vF at low T that would otherwise make vF (T ) inexplicably non-monotonic,

potentially calling the results into question.

vF and v20 exhibit similar linear temperature dependence above Tc that diverges at low T .

The ratio v20/vF can be regarded as an indicator of the strength of the 10-meV kink. This quantity
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(a) (b)

Figure 5.6: Temperature and doping dependence of low-energy band velocities and kink strength.
(a) The upper data points are raw and RL-deconvolved values of v20 for the optimal (OP) and
overdoped (OD) samples. The lower data points are corresponding values for vF . (b) The ratio
v20/vF can be taken as an indicator of the strength of the 10-meV kink. Raw and RL-deconvolved
values of the kink strength in the OP sample are shown. The kink appears to have an onset related
to Tc. From [Plumb et al., 2010].

is plotted in Fig. 5.6(b) for the optimally-doped sample, where it becomes clear that the kink

suddenly turns on close to Tc. It is trivial to infer from panel (a) that the kink in the overdoped

sample has an onset at a lower temperature, roughly consistent with its Tc of about 62 K.

Likewise, as in Fig. 5.3, the kink can be observed in the temperature dependence of Σ′(E).

This is shown in Fig. 5.7, which looks at the change in Σ′(E) relative to the spectrum at 130 K for

the optimally-doped sample. In addition to the obvious feature of the 70-meV peak, a bump near

10-meV (indicated by the arrow) begins to form at about 90 K (roughly Tc), grows to full-scale by

about 70 K, and persists at all lower temperatures.5

To wind down this discussion of the data, we note that based on the results in this section,

it appears that the RL deconvolution has rectified the low-T , near-EF data in a manner that is

clarifying, consistent with expectations, and not too dramatic. These aspects of the analysis are all

very reassuring. In addition, corrections of vF based on simulations of the data qualitatively agree

5 Some small ripple can been seen in this plot, which was introduced by the deconvolution but does not qualitatively
alter the results.
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Figure 5.7: Temperature dependence of Σ′(E) of the 10-meV kink. Effective Σ′(E) spectra are
extracted as in section 5.2.2 and plotted as the change in Σ′(E) relative to 130 K. The feature due
to the 10-meV kink is highlighted by the arrow. From [Plumb et al., 2010].

with the findings in Fig. 5.6 (see appendix B). Thus the results here appear to be highly robust.

5.3 Possible origins

Having established the existence of a nodal self-energy feature near the 10-meV scale, we are

left to wonder about its physical origin. Given the success of the BCS theory of phonon-mediated

conventional superconductivity, in the high-Tc cuprates there is a justifiable tendency to attempt to

view any observed dispersion kink through the prism of electron-boson coupling. In the case of 10-

meV kink, however, the low energy scale of the dispersion anomaly places strict constraints on any

electron-boson interactions which might explain the kink. As discussed in Ch. 4, dispersion kinks

observed by ARPES are shifted to deeper energy by the gap energy ∆(k′) at the location of the

scattered state k′. The d-wave gap, though zero-valued at the node, quickly rises to a maximum at

the antinode. In optimally-doped Bi2212, the antinodal gap value (∆0 ≈ 30 meV) is clearly much

larger than the observed kink. Thus, if bosons are at work, they are evidently scattering the nodal
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electrons in very particular directions — namely, to other near-nodal points. Fig. 5.8 illustrates

this point.

Figure 5.8: Examples of allowed electron-boson scattering vectors for the 10-meV kink. (a) Diagram
of the lowest-order electron-boson interaction term in the Migdal approximation. In the context
of the nodal states, an electron starting from knode is scattered to k′. The nodal dispersion kink
observed by ARPES will appear at an energy scale equal to the boson mode energy plus the gap
value ∆(k′). (b) Examples of allowed scattering vectors q for explaining the 10-meV kink. These
vectors couple nodal regions of the gap function where ∆(k′) ≈ 0. Another such vector is obviously
q = 0. From [Plumb et al., 2010].

Taking into account the energetic constraints, it has been argued that the kink results from

the electrons coupling to acoustic phonons [Johnston et al., 2011] or c-axis optical phonons [Rameau

et al., 2009,Anzai et al., 2010] with small momentum transfers q ≈ 0. Additionally, an alternative

theory related to 2D Fermi liquid behavior has been proposed to explain the temperature depen-

dence of velocity of the band dispersion [Chubukov and Eremin, 2008], and it may also be relevant

to the kink itself.

5.3.1 Acoustic phonon mode coupling

It has been suggested that the nodal 10-meV kink arises due to forward (i.e., q ≈ 0) scattering

of the low-energy electrons by acoustic phonons [Johnston et al., 2011]. The model is described by
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a standard Hamiltonian for the screened electron-phonon interaction:

Hel-ph =
1√
N

∑
q,k,σ,ν

|g(k, q)|2d†k−q,σdk,σ(b†q,ν + b−q,ν) (5.2)

where d†k,σ (dk) is the creation (annihilation) operator for an electron with momentum k and spin

σ, and b†q,ν (bq,ν) creates (annihilates) a phonon with momentum q on the branch indexed by ν.

The quantity g(k, q) is the matrix element for the coupling between an electron at k and a phonon

with momentum q. It is argued that for acoustic phonons, g(k, q) → g(q) — i.e., the interaction

is independent of the details of the electronic dispersion.

The terms |g(q)|2 weight the contributions of the phonon Green’s function to the self-energy

[Mahan, 2000] and are given by

g(q) =
1

Vcell

√
~

2MΩ(q)
êq · q

V (q)

ε(q)
(5.3)

where Vcell is the unit cell volume, M is the combined Cu-O ion mass, Ω(q) is the phonon dispersion,

êq is the phonon polarization, and V (q) is the Fourier-transformed Coulomb potential. The final

term, ε(q), is the dielectric function.

A Thomas-Fermi model of the dielectric function is thought to be relevant for the acoustic

modes. This takes the form ε(q) = 1 + q2
TF /q

2, where qTF parameterizes the damping of the

dielectric response due to screening. In this model, |g(q)|2 is peaked in the vicinity of |q| ∼ qTF

and goes to zero at q = 0. Johnston et al. argue that qTF is small in cuprates. As a result, the

coupling is peaked for small q momentum transfers.

In light of the screening effects, it is expected that qTF should further decrease in the less-

metallic underdoped regime. This, in turn, would intensify the peak in |g(q)|2. Thus, the theory

predicts that the kink should strengthen in the underdoped side of the phase diagram and weaken

for overdoping. This prediction is consistent with the observations presented here. From Fig. 5.6

one can see that vF is slightly higher in the overdoped state than at optimal doping, whereas v20

is essentially independent of the doping. Hence, judging the kink’s strength by the ratio v20/vF , it

is found to be slightly weaker in the case of overdoping. Furthermore, the 10-meV kink has been

found to strengthen substantially with underdoping [Vishik et al., 2010,Anzai et al., 2010].
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Calculations of the self-energy contributions due to acoustic mode coupling have been com-

pared to data collected from underdoped Bi2212, which appear to agree well with the theoretical

predictions. These results are shown in Fig. 5.9. Based on all available evidence, acoustic mode

scattering currently seems to be a credible theory to explain the 10-meV kink. Still, other theories

have not been as rigorously tested and cannot be conclusively ruled out.

θ (°)

Figure 5.9: Evidence for acoustic phonon coupling as a possible origin of the 10-meV kink. Left: A
measure of the effective Σ′(E) obtained from ARPES on underdoped Bi2212 (Tc = 55 K). The self-
energy extraction assumes a linear bare band connecting the dispersion at EF and -40 meV. The
data are obtained from ARPES cuts in small increments around the Fermi surface [≈ 2◦ spacing
in terms of the angle about (π, π), see bottom axis of right panel]. The extracted curves have not
been multiplied by a band velocity and therefore are reported in units of Å−1. A vertical offset
is added for clarity. Middle: Comparison to calculated effective self-energies based on electron-
phonon coupling due to acoustic modes. Right: Measured momentum dependence of the gap and
low-energy kink location. The kink appears to be located at a constant offset of about 10 meV from
the gap, which is consistent with the gap-referencing expected for acoustic phonons that scatter
the electrons only locally in k-space. From [Johnston et al., 2011]. Reprinted with the authors’
permission.

5.3.2 c-axis optical phonons

Prior to the theory of acoustic mode electron-phonon coupling, low-energy c-axis optical

phonons were proposed as the cause of the 10-meV kink [Rameau et al., 2009]. Theory [Kovaleva
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et al., 2004, Falter and Schnetgöke, 2003, Falter, 2005] and experiment [Liu et al., 1992, Tsvetkov

et al., 1999, Misochko and Sherman, 2000] confirm the existence of optical phonons with suitably

low energies in various cuprates, but again, it is critical that these electron-phonon interactions

involve scattering q vectors connecting near-nodal points on the Fermi surface.

Presently there is serious disagreement regarding the nature of the scattering by these c-axis

phonons. In particular, an A1g mode (Fig. 5.10) has been proposed as the most likely candidate

[Rameau et al., 2009] with some claiming that this mode should strongly favor the necessary q ≈ 0

transfers [Rameau et al., 2009, Giustino et al., 2008] and others arguing that it should instead

primarily scatter nodal electrons away from the node [Johnston et al., 2010,Johnston et al., 2011],

which would violate the energetic constraints of the observed kink. So far no theoretical work has

tried to simulate the ARPES dispersion kink based on a model of coupling to a c-axis optical mode.

Such simulations could be an important topic for future investigation.

5.3.3 Backscattering in a 2D Fermi liquid

The Landau Fermi liquid theory is a generic picture of interacting electrons, neglecting cor-

relation effects. Based on phase space arguments following from the Pauli exclusion principle, the

allowed channels of electron-electron scattering grow with energy and temperature in such a way

that Σ has the following dependence on E and T :

ΣFL(E) = αE + iβ[E2 + (πkBT )2] (5.4)

[Fetter and Walecka, 1971, Ashcroft and Mermin, 1976, Mahan, 2000]. The quadratic behavior

of Σ′′FL, in particular, is one of the hallmarks of the Fermi liquid theory. However, a number of

nonanalytic corrections to the theory exist, which lie outside the conventional phase space argu-

ments [Chubukov and Maslov, 2003]. One such correction arises from singular 2kF backscattering

processes in 2D and exhibits low-energy behavior of logarithmic form Σ′′(E) ∼ E2 lnE. This is a

generic feature of a 2D Fermi liquid, though the size of the correction will depend on the details

of the system in question. Chubukov and Eremin have analyzed the numerics of this correction in
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Figure 5.10: Low-energy A1g mode in Bi2212. This mode has been proposed as the origin of the
10-meV kink seen in ARPES. Rameau et al. [Rameau et al., 2009] state the observed energy of
this mode as 58–65 cm−1 (= 7.2–8.1 meV). Falter and Schnetgöke [Falter and Schnetgöke, 2003],
from whom the figure is adapted, calculate it to be 2.944 THz (= 12.18 meV). Reprinted with
permission. Copyright 2003 by IOP Publishing, Ltd.

cuprates and have found that it may account for the linear temperature dependence of the low-

energy band velocity (which we may regard as v20) [Chubukov and Eremin, 2008]. Additionally,

some T -dependent bending behavior can be seen in the calculated Σ′(E) which could presumably

be related to the kink itself, although this is not made explicit in their work.

While the explanation of the linearity of v20(T ) — and possibly the more dramatic T depen-

dence of the 10-meV kink — in terms of this 2D Fermi liquid correction exhibits some qualitative

consistency with the data, it must be noted that there is a substantial and ongoing debate as to

whether cuprate physics can even be described by the Fermi liquid model. Above Tc, in the pseudo-

gap regime, cuprates exhibit transport properties, for example, that are anomalous and in conflict

with Fermi liquid theory [Iye, 1992] (although the transport regains Fermi-liquid-like characteristics
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— e.g., ρ ∼ T 2 — when the sample is strongly overdoped). It has been proposed, in fact, that the

cuprates are better described by a “marginal” Fermi liquid (MFL) model [Varma et al., 1989] with

a self-energy characterized by

Σ′′MFL(E) ∝ max(|E|, kBT ) (5.5)

There is evidence from optical conductivity that the momentum-integrated Σ′′(E, T ) follows the

linear MFL behavior [Hwang et al., 2004], but ARPES has not arrived at a consensus on this

issue [Valla et al., 2000,Koitzsch et al., 2004a,Koralek et al., 2006,Casey et al., 2008]. If it is true

that the Fermi liquid model is insufficient as a description of the basic electron-electron interactions

in cuprates, then presumably this could undermine the argument that the 10-meV kink originates

from a 2kF interaction in the 2D Fermi liquid.

5.3.4 Ruled out

A few mechanisms can be ruled out as the cause of the nodal 10-meV kink:

• Reduced phase space for electron-electron scattering in the superconducting state. As the

sample temperature is lowered into the superconducting state, the opening of the d-wave

gap will eliminate the allowed phase space for electron-electron scattering within the d-

wave gap energy scale ∆(k). At first glance, it would seem that this could largely explain

the observed kink: The sudden reduction in scattering at an energy scale on the order

of ∆0 ∼ 30 meV could lead to a sharp drop in Σ′′(E) and a corresponding feature Σ′(E),

which, averaging over the Fermi surface, might actually be located somewhere near 10 meV.

This turns out to be an oversimplified picture. The lowest-order electron-electron term

is the process depicted by the Feynman diagram in Fig. 5.11 [Norman and Ding, 1998].

The diagram shows that the electron-electron scattering event leads to the creation (and

recombination) of a polarized electron-hole pair. In the superconducting state, each of the

three internal particle lines — the scattered electron plus the electron-hole pair — acquires

a ∆(k′) due to the local value of the gap at each scattered momentum state. As a result,
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Figure 5.11: Lowest-order Feynman diagram for electron-electron scattering. One electron scatters
off another, creating an electron-hole polarization “bubble”, which then recombines. In the d-
wave superconducting state, each of the three internal particle lines is gapped by the value of ∆
appropriate for each scattered momentum state.

assuming that the scattering is basically isotropic, any drop in Σ′′(E) should be spread

over a broad energy range up to 3∆0 (≈ 90 meV) [Littlewood and Varma, 1992, Norman

and Ding, 1998]. Clearly this energy scale is incompatible with the relatively sharp, low

energy scale of the 10-meV kink. Thus, it is virtually impossible for the kink to result from

a suppression of low-energy electron-electron scattering due to the opening of the d-wave

superconducting gap.

• Almost all electron-boson interactions with in-plane momentum transfers. As already dis-

cussed, electron-boson interactions lead to kinks in ARPES at energies that are gap-shifted

according to Ωkink = −Ωboson −∆(k′). Since the observed kink at the node is already at

a lower energy scale than the gap maximum, this demands at least that ∆(k′) < 10 meV,

if not ∆(k′) ≈ 0. In the d-wave superconductor, only a small subset of scattering vectors

q = k′ − k satisfy this requirement (Fig. 5.8). Thus a large class of in-plane momentum

transfers can be ruled out.

• Marginal Fermi liquid behavior. As touched upon in section 5.3.3, over much of the doping

phase diagram, cuprates do not behave as expected from Fermi liquid theory, which is

the generic model of electron-electron interactions in a standard, uncorrelated metal. As
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an alternative, so-called marginal Fermi liquid theory has been proposed to describe the

electronic self-energy in cuprates [Varma et al., 1989]. In this theory, the Σ′′(E) linearly

approaches EF , until suddenly flattening out at |E| < kBT (Eq. 5.5). The sharp crossover

behavior should presumably lead to some kind of low-energy feature in Σ′(E) via the

Kramers-Kronig relation.6 However, the theory implies that the location of this kink or

bend should be temperature-dependent. Contrary to this, our data show no clear evidence

of any such temperature shift (see Fig. 5.7). Therefore, barring any future refinements

to the data that might reveal some small temperature dependence of the kink’s location,

marginal Fermi liquid behavior can be ruled out as a possible cause of the 10-meV kink.

5.4 Breaking the universal Fermi velocity

Zhou et al. studied several cuprate systems and noted that, over a large doping range, the

nodal dispersion between the 70-meV kink and EF tends to converge toward a common slope [Zhou

et al., 2003]. They called this slope “vF ”, although it was determined by fitting over the range from

-50 meV to EF . Hence it is more comparable to our v20. The results from Zhou et al. are shown in

Fig. 5.12. The low-energy band velocities fall within about 20% of each other, while those of the

deeper dispersions well below the 70-meV kink vary by a factor of about 2–3. Supposing (incorrectly,

it turns out) that this “universal” nodal Fermi velocity is a robust feature of the dispersion, the

mechanism underlying this phenomenon is not clear, but philosophically-inclined physicists might

be tempted to invoke the notion of a “quantum protectorate” — a state of matter “whose generic

low-energy properties are determined by a higher organizing principle and nothing else” [Laughlin

and Pines, 2000]. Presumably, if we were witnessing some signpost of quantum protection, then

the Fermi velocity should exhibit universality not only against variations in material and doping,

but also temperature.

6 Technically speaking, Varma et al. have written the real part of the marginal Fermi liquid self-energy as
Σ′

MFL(E) = E ln[max(|E|, kBT )/Ec], where Ec is an ultraviolet cutoff [Varma et al., 1989]. However, the theory
seems more firmly rooted in Σ′′

MFL(E) as a starting point than Σ′
MFL(E), so we have quoted just the imaginary part

in the main text. In any event, the theory undoubtedly features a crossover behavior in Σ′(E) related to T , so this
technical point does not affect the conclusions here.
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(b)

(c)

(a)

Figure 5.12: Earlier claim of a universal nodal Fermi velocity. Between EF and the kink at about
70 meV, the band velocity is roughly independent of doping. This supposed universality is broken
by the doping and temperature dependence of vF due to the 10-meV kink (Fig. 5.6). In the panels
at right, values of “vF ” are determined by linear fits from -50 meV to EF . “vHE” are obtained
by fitting from -200 to -100 meV. From [Zhou et al., 2003] and supplementary material therein.
Reprinted by permission from Macmillan Publishers Ltd., copyright 2003.

The behavior of the 10-meV kink, however, breaks the paradigm of the universal Fermi

velocity. Figure 5.6 clearly illustrates that vF depends on both temperature and doping. The

behavior of v20, on the other hand, helps explain the earlier observation of the supposed universality:

Although v20 varies approximately linearly with T , it appears to be largely independent of doping.

This is consistent with previous work (which was fixed at T = 20 K) to the extent that those

experiments lacked the resolution to distinguish vF and v20. Notably, although the temperature

dependence of vF depends on doping, our results show that the behavior of v20 does not. Thus there

is, in some sense, a doping-independent universality of the dispersion intermediate to the 10-meV
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kink and the one at 70 meV. However, the relevance of framing the discussion of the low-lying

electronic features in terms of universal behavior has been seriously called into question by the

results shown here.

5.5 Recent developments and future directions of study

The results presented in this chapter have established the existence of a kink roughly 10 meV

below EF along the gap node of Bi2212. Furthermore the kink first appears below a temperature

close to Tc, and it seems that its strength depends on doping. Namely, we find that the kink

strengthens going from overdoping to optimal doping. These results are largely consistent with

those of three other groups who have independently confirmed the existence of this dispersion

feature [Rameau et al., 2009,Vishik et al., 2010,Anzai et al., 2010, Johnston et al., 2011]. Despite

so many concurrent or nearly-concurrent studies, each has managed to take a somewhat unique tack

(though all have relied on LE-ARPES), and as a result, a significant amount of the experimental

parameter space concerning the kink has rapidly been explored: temperature [Plumb et al., 2010],

doping [Plumb et al., 2010, Vishik et al., 2010, Anzai et al., 2010], and momentum dependence

[Rameau et al., 2009, Johnston et al., 2011]. Though obtained and analyzed in various ways, the

results are largely consistent with each other. For the most part the experiments seem to be rapidly

converging toward a unified picture of the existence and behavior of the 10-meV kink (though there

is decidedly less convergence on the theoretical side). In addition to our findings, it appears that the

feature persists over the region around the node where it shifts to deeper binding energy according

to the local gap value ∆(k) [Rameau et al., 2009,Johnston et al., 2011]. Also, it seems that the kink

strengthens substantially in the underdoped region of the phase diagram [Vishik et al., 2010,Anzai

et al., 2010].

One of the only points of conflict so far is whether the kink weakens or intensifies in the case

of overdoping. Anzai et al. report that the kink is weakest at optimal doping, and in their data it

appears to strengthen again as the sample is overdoped. Clearly this is in conflict with our own

observations. One obvious point for future study, then, is to further investigate the behavior of the



98

kink on the overdoped side of the phase diagram in order to pin down its behavior. The results of

such a study could prove to be very useful. For instance, if it were discovered that the kink is in fact

weakest at optimal doping, then this might signal that the interactions oppose superconductivity

and break d-wave Cooper pairs.

Expanded studies of the momentum-dependence of the 10-meV kink will also be of great

importance. In particular, it would be interesting to know how the kink evolves going from the

near-nodal region to the antinode. It could turn out that this nodal kink is related to a well-

known antinodal dispersion kink at about 40 meV (which is roughly what one expects based on

gap-referencing and an antinodal gap ∆0 ≈ 30 meV). If it were discovered that these two dispersion

features are connected, this could throw a wrench into current theories of the antinodal kink, which

is typically thought to arise from either entirely different phonon interactions [Devereaux et al.,

2004] or from coupling to spin fluctuations [Manske et al., 2001].

Experiments are also needed to test for the presence of the 10-meV kink in other cuprates

besides Bi2212. Like the 70-meV kink [Lanzara et al., 2001], if it is found to be an ubiquitous,

universal feature of the nodal dispersion in cuprates, then this would provide one more indication

of the 10-meV kink’s possible relevance for high-Tc superconductivity. A good starting point in

testing the ubiquity of the low-energy kink may be La2−xSrxCuO4 (LSCO), since one ARPES

group has claimed to see a low-energy kink in this material at momentum intermediate to the

node and antinode [Sato et al., 2007, Xiao et al., 2007]. Those studies, however, did not use

ultrahigh resolution and/or low-energy photons, and the quality of the data merits some skepticism

in light of the resolution effects discussed here (section 5.2.3). Thus, the possibility of a low-energy

dispersion kink in LSCO should be revisited using LE-ARPES, and other cuprate systems should

be investigated as well.

Concerning the debate over the origin of the kink, simulations of ARPES spectra akin to

what was done in [Johnston et al., 2011] but instead using a model of the c-axis optical phonon

coupling would be very valuable. Additionally, it may be productive to investigate whether the

2D Fermi liquid backscattering theory of section 5.3.3 can be more quantitatively connected to the
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10-meV kink and its behavior.

The behavior of the kink and the strong temperature and doping dependence it induces in the

Fermi velocity suggest that it may be possible to gain new insights into the transport properties

of cuprates, since vF is a key parameter of the Boltzmann transport equation. For instance,

Vishik et al. [Vishik et al., 2010] showed that previous discrepancies between thermal conductivity

experiments and the expected transport properties based on ARPES measurements [Sun et al.,

2006] may now be resolved in light of the breakdown of the supposed universal nodal Fermi velocity

(section 5.4). Beyond this, it is quite possible that the details of the temperature and doping

dependence of vF above Tc may eventually give new insights into the “strange metal” behavior in

and around the pseudogap regime, so experiments in this part of the phase diagram may be quite

valuable.

Clearly, despite so much early progress in studying the 10-meV kink, more work remains

to be done. LE-ARPES will be crucial in these future experiments, as the advantages unique to

low-energy photons are necessary to reveal the fine details of the dispersion near EF .



Chapter 6

Summary and discussion

This thesis presented new findings from studies of the high-Tc cuprate superconductor Bi2212

using low photon energy ARPES. In particular, the work focused on the detailed analysis of “kink”

dispersion anomalies in the k-space region around the node of the superconducting gap. These kinks

are of great interest, because they signal the energy- and momentum-dependent characteristics

of strong, sharp many-body interactions experienced by the electrons. In principle, then, such

dispersion features may be gateways to valuable information about the interactions behind high-

temperature superconductivity.

In chapter 4, LE-ARPES was able to reveal the detailed momentum evolution of a well-

known, prominent feature of the electronic dispersion. At optimal doping and below Tc, a large

kink normally found at about 65 meV shifts smoothly toward EF by about 10 meV. This happens

somewhat quickly over a k-space distance corresponding to about one-third of the way from node

to antinode. Extracted self-energy components Σ′eff and Σ′′eff tell the same story: Over most of the

near-nodal range, the width and intensity of the kink does not change much, even as its location is

smoothly varying. However, for θ & 10◦ [where θ is the angle from the node, measured about (π, π)],

Σ′′eff(ω) sharpens and Σ′eff(ω) correspondingly sharpens and intensifies. These new observations

represent the clearest, most detailed study yet of the nature of the transition of the main kink’s

self-energy from node to antinode, answering some lingering questions about “crossover” behavior

between these two regions.

Motivated by several factors, we attempted to calculate the momentum-dependent energy
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of a supposed bosonic coupling mode based on a model of various assumed, simple scattering q

vectors of the interactions. Plotting the results as function of q along different symmetries of

the Brillouin zone, we found that the ARPES-extracted boson dispersion was in rough agreement

with a Cu-O bond-stretching phonon over a short range of q-space. Otherwise, however, the

extracted dispersion was in conflict with measured values for phonons. Instead, the dispersion was

more similar in character to that of high-energy incommensurate spin excitations. Moreover, the

intensification and sharpening seen in Σ′eff(ω) and Σ′′eff(ω), respectively, as a function of the boson

energy and the location on the Fermi surface are in qualitative agreement with the expectations

for the electrons being coupled to spin excitations. By contrast, the phonon most widely suspected

to be responsible for the main nodal kink is expected to have substantially different behavior as a

function of momentum around the Fermi surface.

In these respects, overall the results of Ch. 4 seem to point to incommensurate spin fluc-

tuations as the cause of the well-known nodal “70-meV” kink. This finding agrees with certain

ARPES studies that arrived at similar conclusions by different methods, but it nevertheless comes

as a surprise in light of other studies that have carefully presented significant evidence that the kink

is instead due to phonons. It seems quite possible then that both classes of interaction make a mea-

surable contribution to the nodal kink. The question then becomes, Does one type of interaction

dominate, or are they both critical to the physics of the nodal electrons? We clearly cannot answer

this question now, but hopefully future investigations using LE-ARPES in combination with more

theory work will resolve the conflict.

Chapter 5 presented an analysis of a new, fine-scale, near-EF kink in the nodal dispersion.

Whereas complications due to resolution effects rendered this feature virtually invisible to previous

ARPES experiments, the use of low-energy photons allowed accurate measurements of the band

dispersion down to temperatures low enough that the kink was visible in the raw data. Just 10-meV

or so below the Fermi level, LE-ARPES found that the kink turns on near Tc in both optimal and

overdoped samples. This dispersion anomaly, though small, has a profound effect on the nodal

Fermi velocity, and as a result, it disobeys a previous notion that vF was supposedly a constant
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with respect to doping.

The extremely low energy of this kink puts useful constraints on the types of phenomena

from which it might originate. Namely, it is argued that the responsible coupling must somehow

scatter electrons between near-nodal points on the Fermi surface. A leading theory proposed so far

for the origin of the kink is forward-scattering (q ≈ 0) interactions with acoustic phonons, though

other theories have been proposed. The discovery of the 10-meV kink has drawn the attention of a

handful of groups who are all necessarily and exclusively using LE-ARPES to study it. As a result,

we are rapidly learning much about its behavior. The progress so far suggests some promising

experiments for the future: e.g., probing the k-dependence of the feature to momenta close to the

antinode, testing for the 10-meV kink in other cuprates besides Bi2212, and verifying the behavior

of the kink’s strength in the overdoped regime.

Beyond the results of the studies in chapters 4 and 5, there is one overarching and clear

finding. LE-ARPES extends the power of more conventional ARPES by substantial improvements

in resolution, material bulk sensitivity, and overall spectral sharpness. These advantages have

already uncovered significant new physics in cuprates, with the promise of more to come in these

materials and others.
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[Hüfner et al., 1999] Hüfner, S., Claessen, R., Reinert, F., Straub, T., Strocov, V. N., and Steiner,
P. (1999). Photoemission spectroscopy in metals: band structure — Fermi surface — spectral
function. Journal of Electron Spectroscopy and Related Phenomena, 100(1-3):191–213.

[Hwang et al., 2004] Hwang, J., Timusk, T., and Gu, G. D. (2004). High-transition-temperature
superconductivity in the absence of the magnetic-resonance mode. Nature, 427(6976):714–717.

[Ingle et al., 2005] Ingle, N. J. C., Shen, K. M., Baumberger, F., Meevasana, W., Lu, D. H., Shen,
Z.-X., Damascelli, A., Nakatsuji, S., Mao, Z. Q., Maeno, Y., Kimura, T., and Tokura, Y. (2005).
Quantitative analysis of Sr2RuO4 angle-resolved photoemission spectra: Many-body interactions
in a model Fermi liquid. Physical Review B: Solid State, 72:205114.

[Inglesfield and Plummer, 1992] Inglesfield, J. and Plummer, E. (1992). The physics of photoemis-
sion. In Kevan, S., editor, Angle-Resolved Photoemission — Theory and Current Applications,
volume 74 of Studies in Surface Science and Catalysis, chapter 2, pages 15–61. Elsevier, Amster-
dam.

[Ino et al., 2002] Ino, A., Kim, C., Nakamura, M., Yoshida, T., Mizokawa, T., Fujimori, A., Shen,
Z.-X., Kakeshita, T., Eisaki, H., and Uchida, S. (2002). Doping-dependent evolution of the
electronic structure of La2−xSrxCuO4 in the superconducting and metallic phases. Physical
Review B: Solid State, 65(9):094504.

[Inosov et al., 2007a] Inosov, D. S., Borisenko, S. V., Eremin, I., Kordyuk, A. A., Zabolotnyy,
V. B., Geck, J., Koitzsch, A., Fink, J., Knupfer, M., Büchner, B., Berger, H., and Follath, R.
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nyy, V. B., Evtushinsky, D. V., Knupfer, M., Büchner, B., Follath, R., and Berger, H. (2008).
Excitation energy map of high-energy dispersion anomalies in cuprates. Physical Review B: Solid
State, 77(21):212504.

[Iwasawa et al., 2008] Iwasawa, H., Douglas, J. F., Sato, K., Masui, T., Yoshida, Y., Sun, Z.,
Eisaki, H., Bando, H., Ino, A., Arita, M., Shimada, K., Namatame, H., Taniguchi, M., Tajima,
S., Uchida, S., Saitoh, T., Dessau, D. S., and Aiura, Y. (2008). Isotopic fingerprint of electron-
phonon coupling in high-Tc cuprates. Physical Review Letters, 101(15):157005.

[Iye, 1992] Iye, Y. (1992). Transport properties of high Tc cuprates. In Ginsberg, D. M., editor,
Physical Properties of High Temperature Superconductors, volume III, chapter 4, pages 285–361.
World Scientific, Singapore.

[Johnson, 1997] Johnson, P. D. (1997). Spin-polarized photoemission. Reports on Progress in
Physics, 60(11):1217.

[Johnson et al., 2001] Johnson, P. D., Valla, T., Fedorov, A. V., Yusof, Z., Wells, B. O., Li, Q.,
Moodenbaugh, A. R., Gu, G. D., Koshizuka, N., Kendziora, C., Jian, S., and Hinks, D. G.
(2001). Doping and temperature dependence of the mass enhancement observed in the cuprate
Bi2Sr2CaCu2O8+δ. Physical Review Letters, 87(17):177007.

[Johnston et al., 2010] Johnston, S., Vernay, F., Moritz, B., Shen, Z.-X., Nagaosa, N., Zaanen, J.,
and Devereaux, T. P. (2010). Systematic study of electron-phonon coupling to oxygen modes
across the cuprates. Physical Review B: Solid State, 82(6):064513.

[Johnston et al., 2011] Johnston, S., Vishik, I. M., Lee, W. S., Schmitt, F., Uchida, S., Fujita, K.,
Ishida, S., Nagaosa, N., Shen, Z. X., and Devereaux, T. P. (2011). Evidence for forward scattering
and coupling to acoustic phonon modes in high-Tc cuprate superconductors. arXiv:1101.1302.

[Kamihara et al., 2006] Kamihara, Y., Hiramatsu, H., Hirano, M., Kawamura, R., Yanagi, H.,
Kamiya, T., and Hosono, H. (2006). Iron-based layered superconductor: LaOFeP. Journal of the
American Chemical Society, 128(31):10012–10013.

[Kamihara et al., 2008] Kamihara, Y., Watanabe, T., Hirano, M., and Hosono, H. (2008). Iron-
based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. Journal of the
American Chemical Society, 130(11):3296–3297.

[Kaminski et al., 2005] Kaminski, A., Fretwell, H. M., Norman, M. R., Randeria, M., Rosenkranz,
S., Chatterjee, U., Campuzano, J. C., Mesot, J., Sato, T., Takahashi, T., Terashima, T., Takano,
M., Kadowaki, K., Li, Z. Z., and Raffy, H. (2005). Momentum anisotropy of the scattering rate
in cuprate superconductors. Physical Review B: Solid State, 71(1):014517.

[Kaminski et al., 2001] Kaminski, A., Randeria, M., Campuzano, J. C., Norman, M. R., Fretwell,
H., Mesot, J., Sato, T., Takahashi, T., and Kadowaki, K. (2001). Renormalization of spectral line
shape and dispersion below Tc in Bi2Sr2CaCu2O8+δ. Physical Review Letters, 86(6):1070–1073.



109

[Kampf and Schrieffer, 1990] Kampf, A. P. and Schrieffer, J. R. (1990). Spectral function and
photoemission spectra in antiferromagnetically correlated metals. Physical Review B: Solid State,
42(13):7967–7974.

[Kanigel et al., 2006] Kanigel, A., Norman, M. R., Randeria, M., Chatterjee, U., Souma, S.,
Kaminski, A., Fretwell, H. M., Rosenkranz, S., Shi, M., Sato, T., Takahashi, T., Li, Z. Z.,
Raffy, H., Kadowaki, K., Hinks, D., Ozyuzer, L., and Campuzano, J. C. (2006). Evolution of the
pseudogap from Fermi arcs to the nodal liquid. Nature Physics, 2(7):447–451.

[Kevan, 1983] Kevan, S. D. (1983). Design of a high-resolution angle-resolving electron energy
analyzer. Review of Scientific Instruments, 54(11):1441–1445.

[Kim et al., 2003] Kim, T. K., Kordyuk, A. A., Borisenko, S. V., Koitzsch, A., Knupfer, M., Berger,
H., and Fink, J. (2003). Doping dependence of the mass enhancement in (Pb,Bi)2Sr2CaCu2O8

at the antinodal point in the superconducting and normal states. Physical Review Letters,
91(16):167002.

[King et al., 2011] King, P. D. C., Rosen, J. A., Meevasana, W., Tamai, A., Rozbicki, E., Comin,
R., Levy, G., Fournier, D., Yoshida, Y., Eisaki, H., Shen, K. M., Ingle, N. J. C., Damascelli, A.,
and Baumberger, F. (2011). Structural origin of apparent Fermi surface pockets in angle-resolved
photoemission of Bi2Sr2−xLaxCuO6+δ. Physical Review Letters, 106(12):127005.

[Kiss et al., 2005] Kiss, T., Kanetaka, F., Yokoya, T., Shimojima, T., Kanai, K., Shin, S., Onuki,
Y., Togashi, T., Zhang, C., Chen, C. T., and Watanabe, S. (2005). Photoemission spectro-
scopic evidence of gap anisotropy in an f -electron superconductor. Physical Review Letters,
94(5):057001.

[Kittel, 1996] Kittel, C. (1996). Introduction to Solid State Physics. John Wiley & Sons, Inc., New
York, 7th edition.

[Koitzsch et al., 2004a] Koitzsch, A., Borisenko, S. V., Kordyuk, A. A., Kim, T. K., Knupfer, M.,
Fink, J., Berger, H., and Follath, R. (2004a). Doping dependence of many-body effects along
the nodal direction in the high-Tc cuprate (Bi,Pb)2Sr2CaCu2O8. Physical Review B: Solid State,
69(14):140507.

[Koitzsch et al., 2004b] Koitzsch, A., Borisenko, S. V., Kordyuk, A. A., Kim, T. K., Knupfer, M.,
Fink, J., Golden, M. S., Koops, W., Berger, H., Keimer, B., Lin, C. T., Ono, S., Ando, Y., and
Follath, R. (2004b). Origin of the shadow Fermi surface in Bi-based cuprates. Physical Review
B: Solid State, 69(22):220505.

[Kondo et al., 2007] Kondo, T., Takeuchi, T., Kaminski, A., Tsuda, S., and Shin, S.
(2007). Evidence for two energy scales in the superconducting state of optimally doped
(Bi,Pb)2(Sr,La)2CuO6+δ. Physical Review Letters, 98(26):267004.

[Koralek, 2006] Koralek, J. D. (2006). Laser Based Angle-Resolved Photoemission Spectroscopy
and High Tc Superconductivity. PhD thesis, University of Colorado at Boulder.

[Koralek et al., 2007] Koralek, J. D., Douglas, J. F., Plumb, N. C., Griffith, J. D., Cundiff, S. T.,
Kapteyn, H. C., Murnane, M. M., and Dessau, D. S. (2007). Experimental setup for low-
energy laser-based angle resolved photoemission spectroscopy. Review of Scientific Instruments,
78(5):053905.



110

[Koralek et al., 2006] Koralek, J. D., Douglas, J. F., Plumb, N. C., Sun, Z., Fedorov, A. V., Mur-
nane, M. M., Kapteyn, H. C., Cundiff, S. T., Aiura, Y., Oka, K., Eisaki, H., and Dessau, D. S.
(2006). Laser based angle-resolved photoemission, the sudden approximation, and quasiparticle-
like spectral peaks in Bi2Sr2CaCu2O8+δ. Physical Review Letters, 96(1):017005.

[Kordyuk and Borisenko, 2005] Kordyuk, A. A. and Borisenko, S. V. (2005). Details of the pho-
toemission spectra analysis. ArXiv Condensed Matter e-prints. http://arxiv.org/abs/cond-
mat/0510421.

[Kordyuk et al., 2002] Kordyuk, A. A., Borisenko, S. V., Golden, M. S., Legner, S., Nenkov, K. A.,
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Appendix A

Electron-boson interactions: Kink energy location in the presence of an

anisotropic gap

So far, we have been discussing the quantities A(k, ω) and Σ(k, ω) in the context of the

electrons. However, at this point, it becomes necessary to make a distinction: A(k, ω), as the single-

electron removal spectrum, really is the spectrum of the excitations in the electronic dispersion

generated from removing an electron. These excitations are actually holes, not electrons, since

the electrons are frozen by the Pauli exclusion principle until a hole is injected into the band. At

first this can be a somewhat difficult pill to swallow. After all, it is the electrons that are actually

detected. We must go back to section 2.5 and remind ourselves that A(k, ω) = − 1
π ImG(k, ω) and

that G(k, ω) comes from the overlap of the hole-injected state ĉk|ΨN
i 〉 with the superposition of

excited states of the (N − 1)-electron system 〈ΨN−1
m |.

In terms of what ARPES sees, this difference between electrons and holes is subtle and does

not reveal itself most of the time. Indeed, it is most probable to create a photohole from a state

where there is a high likelihood of finding an electron — hence why A(k, ω) reveals the dispersion

of the electrons. This dispersion, in turn, relates to the effective mass, and therefore Σ′(ω), and by

Kramers-Kronig relation, also Σ′′(ω). All these properties of the holes, then, are also properties of

the electrons and vice versa. So we were not really being too imprecise previously in talking about

A(k, ω) and Σ(ω) with respect to the electrons.

This issue about the holes is only brought up to help illustrate the reasoning behind a crucial

aspect in the analysis of the self-energy. Consider, in particular, a boson mode Ωboson coupled to
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the electrons at T = 0. In the Migdal approximation [Fetter and Walecka, 1971,Mahan, 2000], the

leading term of the electron-boson coupling is just a single interaction that scatters electrons from

k1 to k2 = k1 + q. In a typical system with no gap at EF , the coupling of this mode will lead

to a step in Σ′′(ω) at ω = −Ωboson. (By Kramers-Kronig relation, there will be a feature in Σ′(ω)

peaked at the same energy.) The reason for the step can be understood in terms of the lifetimes of

the (photo)holes: If ω > −Ωboson, then there are no electron states which can decay by emitting a

phonon with energy Ωboson. (This would require an electron to decay from above EF , which doesn’t

exist at zero Kelvin.) As a result, holes in this energy range have infinite lifetimes (i.e., Σ′′ = 0).1

You can see where this is going: For ω > −Ωboson, electrons are available below EF to annihilate

the holes, leading to finite hole lifetimes (i.e., Σ′′ 6= 0). The situation is illustrated in Fig. A.1.

If an isotropic gap ∆ is introduced centered at EF , then clearly the step is simply located

at ω = −Ωboson − ∆. In cuprates, however, the gap is k-dependent. It is therefore necessary to

consider that electrons must decay by exciting a boson Ωboson(q) at a particular momentum transfer

q = k2 − k1. ARPES data collected at k1 therefore sees the kink at ω = −Ωboson(q) − ∆(k2)

(c.f. Eq. 4.3). See Fig. A.2.

The band structure has been left out of the discussion up to this point. It would at first seem

that including the band structure would place new constraints on the decay processes depicted in

Fig. A.2, and the problem would become vastly more complex. However, in cuprates the phonon

dispersion linewidths, though often sharp in energy, tend to be broad in momentum (which can be

deduced from their energy widths by dividing by the dispersion slope) in comparison to the momen-

tum ranges spanned by the electronic dispersion (in the nodal region) over the energy window of

interest to phonon interactions. This seems to be true even over portions of the phonon dispersions

where there is no significant “softening” [Reznik, 2010]. As a result, to a good approximation,

the electronic band structure can be neglected in the problem at hand, and Fig. A.2 and Eq. 4.3

should do a good job of modeling the gap-shifting of the ARPES kink energy in the nodal region

1 We are only talking about the boson excitation decay channel. Other interactions will of course give these states
a finite lifetime.
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Figure A.1: Simple picture for the location of the ARPES kink. ARPES normally observes a
kink due to an electron-boson interaction at an energy Ωkink = −Ωboson. (a) This occurs because
photoholes at energy ω > −Ωboson cannot be annihilated by an electron decaying via emitting
Ωboson. However, this process can occur for ω < −Ωboson. (b) As a result, Σ′′(ω) has a step at
Ωkink = −Ωboson.

of cuprates. On the downside, this line of reasoning implies that the inferred values of Ω∗boson(q)

in Ch. 4 perhaps have rather large error bars along the q axis. Fortunately, in Ch. 4 we are only

interested in the overall qualitative character of Ω∗boson(q), so this should not harm the analysis in

too badly.
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Figure A.2: ARPES kink location in the presence of an anisotropic gap. (a) The lowest-energy
electron that can possibly decay to a hole at Ωkink(k1) via boson emission Ωboson(q) is located at
ω = −∆(k2 = k1 + q). (b) Other allowed and disallowed transitions. (c) Corresponding step in
Σ′′(k1, ω) at ω = −Ωboson(q)−∆(k2).



Appendix B

Simulating the effects of energy resolution on the measured vF

Prior to use of the the Richardson-Lucy image deconvolution technique in section 5.2.4, we

attempted to account for the effects of resolution on the MDC-derived near-EF dispersion by direct

simulations of the spectra. Later on, when the RL technique was applied, these simulations provided

an immediate indication that the results of the deconvolution were quite reasonable.

For the simulations in Fig. B.1, a Fermi liquid model of the underlying spectrum was used:

ΣFL = αE + i[γ + β(E2 + π2k2
BT

2)]. This differs from the usual Fermi liquid equation only in that

it includes an “impurity” scattering term γ to allow the possibility of finite broadening at EF in the

intrinsic spectrum. This form for the self-energy can be re-written in terms of the E-vs.-k spectral

function as

AFL(k, E) = Z
γ′ + β′(ω2 + π2k2

BT
2)

[ω − E′(k)]2 + [γ′ + β′(E2 + π2k2
BT

2)]2
(B.1)

where Z = 1/(α− 1), E′(k) = ZE(k), β′ = Zβ, and γ′ = Zγ [Koralek, 2006].1 For the simulation

results shown here, the parameters are β′ = 5, γ′ = 0.015, and angular resolution (FWHM) of 0.2◦.

However, it was found the results were not particularly sensitive to these parameters, nor to the

specific model of the self-energy — e.g., E vs. E2 dependence of Σ′′(E).

1 The quantity Z turns out to be the Fermi liquid “quasiparticle residue”, which is related to the height of the
step discontinuity at kF in the energy-integrated density of states n(k).
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Figure B.1: Simulations of energy resolution effects on vF . A two-dimensional intrinsic ARPES
spectrum is simulated, then convolved with an energy and momentum resolution function, and
finally analyzed with Lorentzian MDC fitting analysis. The model used for the simulations of the
ARPES spectra is described in the text. The artificial deflection of the MDC peaks to low |k|
becomes more drastic as (a) the energy resolution is worsened or as (b) the temperature of the
simulation is lowered. A correction factor C = (v′F −vF )/vF can be extracted from the simulations,
where v′F is the measured Fermi velocity, and vF is the intrinsic value. The measured values of the
Fermi velocity can then be corrected via vF = v′F /[C(T ) + 1]. The “true” vF (T ) values obtained
from this type of correction agree well with the data in Fig. 5.6. Namely, vF drops suddenly for
temperatures below Tc.


