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Abstract

Beyond being a curiosity in describing programs, phase research has been incorporated
into compiler optimization, CPU power usage, memory management and program per-
formance simulation [1, 2]. Recently wavelets have garnered interest as a tool for phase
detection and analysis. This paper introduces the wavelet perspective of time-frequency
analysis and presents an algorithm that incorporates the Discrete Wavelet Transform for
detecting phases in L1 cache-miss performance traces.

1 Introduction

The goals of this paper are:

1. Provide a general introduction for the wavelet approach to time-frequency analysis.

2. Present a simple algorithm for phase detection that merits further investigation.

3. Discuss future directions in applying wavelets to computer performance traces.

Although the theoretical side of computation has a solid foundation and is a good starting
point to analyze the performance of an algorithm, the analysis of real programs running on real
machines is in many ways a black art. Due to advancements in computer architecture such as
instruction level parallelism, cache memory design and multi-core processors, at a certain point
the theoretical description of an algorithm does not offer any further insight to the program’s
lower-level run-time behavior [3].

Another issue in systems work is that the principles of a good experimental setup such as
limited perturbation of the item being measured and repeatable starting states are not possible
when monitoring computer programs. To measure a computer program, we employ another
program on the same machine that monitors the machine’s performance. The performance
monitor uses the same system resources as the program being monitored and thus actively
changes the state of the computer during the experiment. Also, two different instances of the
same experiment will not have the same initial system state. Thus, each experiment becomes a
unique interaction of the program and the state of the system. Recent research that discusses
these issues can be found in [4].

Although these issues are present, a computer program does exhibit common behavior across
multiple experiments on the same machine. If you are careful not to perturb the system too
much, the behavior of the performance data can be considered an accurate reflection of the
program.

With these issues in mind, phase detection and analysis of performance data is a tool that
picks-up where the theoretical description leaves off. Beyond being a curiosity in describing
programs, phase research has been incorporated into compiler optimization, CPU power usage,
memory management and program performance simulation [1, 2]. Thus the analysis of perfor-
mance time-series of a program, such as the L1 cache-miss behavior, becomes an essential tool
to analyzing real programs.
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2 Motivation

Wavelet theory is a powerful time-frequency analysis technique that has been applied to a wide
range of signal processing problems including image processing and the analysis of seismic sig-
nals [5, 6]. Wavelets are natural choice for analyzing time-series data because of their ability
to describe a signal whose frequency content changes with time. Because computer programs
have different regions of code that consume system resources in different ways and rates, the
effect of the program on a system is not constant throughout its execution. A performance
trace such as the L1 cache-miss time-series of a program will reflect this fact with cache-miss
frequencies that change in time. Thus wavelets are very applicable in examining computer per-
formance time-series. This paper presents an algorithm that incorporates the Discrete Wavelet
Transform to detect phases in L1 cache-miss data.

Various non-wavelet methods for phase detection and analysis have been examined in [7, 8,
9, 10, 11]. Recently though, wavelets have garnered the interest of researchers. Huffmire and
Sherwood used a 2-dimensional Haar wavelet transform to predict program memory access [1].
Cho and Li used fixed width portions of cache-memory address accesses and analyzed these
“phases” with a complexity metric based on a multi-resolution wavelet analysis [12]. Casas,
Badia and Labarta used wavelets to detect phases in MPI applications to identify program
regions that aren’t scaling well [13]. Shen, Zhong and Ding used wavelets to predict locality
phases based on the notion of how many data access are performed before reusing a memory
location [14].

This paper takes a more humble approach in its application of wavelets. First, the time-series
performance trace is not as complicated as in the previous papers, but simply L1 cache-miss
counts sampled every 100,000 cycles. This is attractive because the instrumentation to capture
this trace is very minimal. Second, this paper develops a simple threshold algorithm to detect
phases based on the persistence of peaks that appear in the Discrete Wavelet Transform. The
effectiveness of this approach to phase detection is tested by three simple loop kernel programs
and two real-world programs (bzip2 and gzip).
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3 Signal Processing

This section presents the necessary background to understand the aspects of signal processing
leveraged by the phase detection algorithm in this paper. The reader can skip this section if
they are comfortable with the Fourier Transform and wavelets. The presentation of the phase
detection algorithm in Section 4 will identify the wavelet details that are especially pertinent
and references to this section will be made clear.

3.1 The Fourier Transform

Before discussing the properties of wavelets, it will be useful to introduce frequency analysis
with the Fourier Transform. Conceptually signal processing is simply about finding appropriate
ways to measure aspects of a signal. The standard measuring tool for signal processing has its
conceptual roots in the vector dot product:

a · b =
n∑
i=0

aibi (1)

The dot product between two vectors a and b will measure the similarity of vector a in terms
of b or vice-versa. When we replace vectors a and b by functions defined over a continuous
variable such as time t the discrete sum in equation (1) is replaced with an integral:

〈f(t), g(t)〉 =

∫ +∞

−∞
f(t)g(t) dt (2)

Signal processing makes heavy use of this integral dot product. Letting f(t) be the signal
whose frequency content we are interested in analyzing and setting g(t) equal to a function
that we know oscillates at a specific frequency w will let us describe f(t)’s oscillatory behavior
in terms of g(t)’s oscillatory behavior. Again this is the same concept as using a vector dot
product to describe vector a in terms of vector b.

The Fourier Transform is then defined by setting g(t) equal to the complex exponential
e−j2πωt [15]:

f̂(ω) = 〈f(t), e−j2πωt〉 =

∫ +∞

−∞
f(t)e−j2πωt dt (3)

where the complex exponential e−j2πωt = cos(2πωt)− j sin(2πωt) and j =
√
−1.

Two reasons for describing f(t) in terms of the complex exponential is that 1) Sines and
Cosines are simple and well understood oscillatory functions. 2) Given the Fourier Transform
of a function the original function can be reconstructed with the Inverse Fourier Transform [15]:

f(t) =
1

2π

∫ +∞

−∞
f̂(ω)ej2πωt dω (4)

Before ending this brief introduction to frequency analysis, the following plot shows the
Fourier Transform of the function f(t) = cos(2πt) + .5 sin(2π2t). The cosine term is oscillating
at ω = 1Hz and the sine term is oscillating at ω = 2Hz. The first plot is the time-series of this
function and the second plot is a graphical representation of the Fourier Transform called the
Periodogram. The Periodogram plot has frequency ω for the horizontal axis and the vertical
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axis is the complex norm of equation (3). The Fourier Transform/Periodogram plot clearly
shows the frequencies that are present in the signal (the spikes at ω = 1 and ω = 2), but it
does not give any indication of what times these frequencies occur. This is the fundamental
difference between the Fourier Transform and the Wavelet Transform.
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Figure 1: The time-series and Fourier transform of f(t) = cos(2πt) + .5 sin(2π2t). The plot
clearly shows the frequencies ω = 1Hz for the cosine term and ω = 2Hz for the sine term.
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3.2 The Wavelet Function

In the next few subsections, the wavelet function and the properties needed to understand the
technique that this paper uses to detect phases will be presented. The wavelet transform will
be mentioned, but its equation will be introduced following the discussion in this section. It is
enough for now to know that the wavelet transform is another integral measurement method
similar to that of the Fourier Transform. What sets it apart from the Fourier Transform is its
ability to handle functions/signals whose frequency content changes with time1.

Wavelet theory is an incredibly deep subject and thus this section is merely scratching the
surface. For a good introduction to wavelets and time-frequency methods see [16, 17] and for
deeper results see [15].

3.2.1 What is a Wavelet?

Instead of using a complex exponential as the basis to compare a signal against, the wavelet
transform replaces g(t) in equation (2) with the wavelet function denoted as ψ(t). To make
this more concrete, the following figure taken from [18] is an example of what a wavelet looks
like. The x-axis is time and the y-axis is the wavelet function’s value. Notice how the wavelet is
non-zero for only a limited time interval. This property, called localization in time, is common
to all wavelet functions. Time localization is one reason why wavelets can handle signals whose
frequency varies. Contrast this property with the Fourier Transform that uses sines and cosines
as the comparison functions. Sines and cosines oscillate indefinitely over time and thus are not
localized to a specific time interval.

Figure 2: The quadratic spline wavelet function. Picture taken from [18].

1Other time-frequency tools exist such as the Short-time Fourier Transform and the Wigner-Ville
distribution[16]. The current work will only discuss the Wavelet Transform.
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3.2.2 The Wavelet Admissibility Condition

Not every function can be called a wavelet. Wavelet functions are defined so that the wavelet
transform can be inverted and the original signal can be recovered (recall the Inverse Fourier
Transform from Section 3.1).

Let ψ̂(w) be the Fourier Transform of the function ψ(t). If

Cψ =

∫ +∞

0

ψ̂u,s(w)

w
dw <∞ (5)

This condition, called the admissibility condition, guarantees that a signal f(t) can be
reconstructed from its wavelet transform. For details of the proof, see theorem 4.4 of [15].

A property that will be exploited by the phase detection algorithm and is necessary for the
admissibility condition to hold is: A wavelet has a zero time-average [15], i.e.∫ +∞

−∞
ψ(t) dt = 0 (6)

This property will be identified during the discussion of the phase detection algorithm.

3.2.3 The Mother Wavelet

In the wavelet transform we actually use several versions of the wavelet function ψ(t) to ana-
lyze a signal. These “wavelet measurement sticks” are called “wavelet-atoms” and are simply
dilated2 and time-shifted versions of ψ(t). The following equation shows shows how ψ(t) is
dilated and time-shifted to produce the wavelet-atoms ψs,u(t) [15].

ψs,u(t) =
1√
s
ψ

(
t− u
s

)
(7)

The wavelet-atom consists of three parameters where t is time, u shifts the wavelet along
the time axis and s is the time-scale/dilation parameter. Time-shifting the wavelet gives us the
ability to measure a signal at a specific time intervals. Dilating time with s either shrinks or
expands the wavelet’s width allowing us to zoom in on the finer details of the signal or zoom out
to get an overall view. The factor 1√

s
ensures that total energy of the wavelet-atom equals the

total energy of the mother wavelet. Section 3.2.4 takes a deeper look into the ramifications of
changing the parameters s and u. As a final note, because ψ(t) “produces” the wavelet-atoms,
it is affectionately called the “mother wavelet.”

3.2.4 The Heisenberg Uncertainty Principle

Although the Heisenberg Uncertainty Principle is most often associated with Quantum Mechan-
ics, it also applies to any time-frequency analysis technique [15]. Understanding this property
is critical to understanding time-frequency analysis. This principle shows that there is a limit
to how much we can know simultaneously about the frequency and time behavior of a signal.

2Mathematicians define dilation to mean both contraction and expansion.
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The equation describing this relationship is constructed in terms of the time-variance of a signal
σt and the frequency-variance of a signal σω.

Lets take a look at what is meant by time-variance σt of a signal. When you pinpoint an
exact time for which to evaluate a signal, you know the exact value of the signal. In this case
the variance in your knowledge of the signal’s value with respect to time is zero, i.e. σt = 0.
This is precisely the case for a time-series representation of the signal. The exact values of the
signal in each moment in time are known but the consequence is that you have no idea what
frequencies are present in the signal.

On the other hand, applying the Fourier Transform to a signal will reveal the frequencies
that are present. Hence you know how the function behaves with respect to frequency, i.e
σω = 0, but now you have no knowledge of the signal in time.

Recall how figure 1 showed the time-series representation and Fourier Transform of a signal.
In this light, we can view the time-series and frequency representations as the two extremes
about our knowledge of a signal. The Heisenberg Uncertainty Principle shows the trade-off
between time and frequency knowledge when we are somewhere between these two extremes
[15]:

σtσω ≥
1

2

In this equation notice how the greater-than sign forces one variance to become larger when
the other becomes smaller.

The following figures are presented to further elucidate this concept and how it manifests
itself in the context of wavelets. The first picture shows a how a wavelet’s “Heisenberg box”
defined by σtσw, changes in relation to the wavelet’s width. The horizontal axis represents time
and the vertical access is frequency. The waveforms along the time axis show the wavelet and
how its width affects σt. The wider the wavelet, the larger the time variance. The waveforms
along the vertical axis represent is the magnitude of the Fourier Transform of the wavelet.
Notice the inverse relationship between the wavelet width and frequency variance.
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Fig. 1.5. A Wavelet Tour of Signal Processing, 3rd ed. Heisenberg time-frequency boxes of two wavelets ψu,s and ψu0,s0 . When the scale s
decreases, the time support is reduced but the frequency spread increases and covers an interval that is shifted towards high frequencies.Figure 3: The effect of the Heisenberg Uncertainty principle. These Heisenberg boxes show how

the wavelet’s time and frequency variance responds with respect to the wavelet width. Picture
taken from [15].
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The next picture shows how the Heisenberg boxes tile the time-frequency plane as the scale
increases. At small scales, the resolution of high frequencies is sacrificed to gain better infor-
mation on where these frequencies occur in time. At large scales, time resolution is sacrificed
to gain better frequency resolution in the lower frequencies.

(t)

ω

t

t

ψ ψ (t)j+1,pj,n

Fig. 1.6. A Wavelet Tour of Signal Processing, 3rd ed. The time-frequency boxes of a wavelet basis define a tiling of the time-frequency
plane.Figure 4: The Heisenberg box tiling of the time-frequency plane for wavelets. Picture taken

from [15].
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3.3 The Wavelet Transform

This section introduces the equations for the Continuous Wavelet Transform and the Discrete
Wavelet Transform. Like the Fourier Transform the concept of these equations are also rooted
in the vector dot product discussed in Section 3.1.

3.3.1 The Continuous Wavelet Transform

Given a mother wavelet, the Continuous Wavelet Transform (CWT) of a signal f(t) is defined
by

ds,u =

∫ +∞

−∞
f(t)ψ∗s,u(t) dt (8)

where the wavelet coefficient ds,u is the projection of the function f(t) onto the complex
conjugate3 of the wavelet-atom ψs,u(t) [15]. This equation is known as the analysis equation.

Because of the admissibility condition given by equation (5), a signal can be reconstructed
from its CWT. In the following equation Cψ is the wavelet admissibility constant defined by
equation (5) and it plays the role that 2π plays in the Inverse Fourier Transfrom from equa-
tion (4) [15]:

f(t) =
1

Cψ

∫ +∞

−∞

∫ +∞

−∞
ds,uψs,u(t) ds du (9)

This equation is known as the synthesis equation. For a proof of this result see [15].

3.3.2 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) is a modification of the Continuous Wavelet Transform
given in equation (8), where the wavelet is scaled and shifted by powers of two. The “discrete”
aspect of the DWT reflects the fact that the wavelet is not shifted and scaled continuously.

The DWT also introduces a new concept called the “scaling function” denoted as φ(t).
Conceptually the scaling function is employed as a course description of the signal, while the
wavelet function represents the fine detail of a signal. A deeper look at why the scaling function
is necessary won’t be covered here, but can be found in [16]. For now, it is enough to think
of the scaling function as the “overall” perspective on a signal and the wavelet function as the
detailed perspective. These concepts will become clearer with the introduction of equation (12)
and figure 5.

The equations defining the scaling coefficients and wavelet coefficients are [16]:

ck,n =

∫ +∞

−∞
f(t)

1√
2k
φ

(
t− n

2k

)
dt (10)

3The conjugate of a complex number z = x + j ∗ y is z∗ = x − j ∗ y. When z is a Real number, i.e. y = 0,
then z = z∗. This paper uses a real Wavelet function and hence ψ(t)∗ = ψ(t).
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dk,n =

∫ +∞

−∞
f(t)

1√
2k
ψ

(
t− n

2k

)
dt (11)

Take special notice in the introduction of parameters 2k and n that take the place of pa-
rameters s and u from the CWT. This is done to emphasize the fact that parameters k and n
are integer numbers, whereas in the definition of the CWT s and u are real valued numbers.

To reconstruct the signal, the synthesis equation becomes a combination of the course level
information given by the scaling coefficients and the detail information given by the wavelet
coefficients [16]:

f(t) =
∑
n

cm,nφ

(
t− n
2m

)
+

m∑
k=m0

∑
n

dk,nψk,n(t) (12)

The first summation term is the course level approximation to the signal where cm0,n and
φm0,n(t) are the scaling coefficients and scaling function respectively. The inner sum of the term
is the detail of the signal encoded by the wavelet coefficients dk,n and wavelet-atoms ψk,n(t) at
the scale 2k.

Notice that the double summation term of the wavelet-atoms and coefficients is essentially
the discrete version of the continuous synthesis function given in equation (9) with one key
difference: The number of scales in the discrete equation ranges from m0 to m as opposed
to −∞ to ∞ for the continuous equation. This perspective in the context of equation (12)
indicates that when we employ only a finite set of wavelet-atom scales, the scaling function is
necessary to add the information that is lost from the wavelet scales that aren’t being used.

3.3.3 A Multi-resolution Analysis Example

To reinforce the concepts of the scaling and wavelet functions the following figure shows an
example of a multi-resolution analysis of a program trace using the quadratic b-spline wavelet4

from figure 2. The plot labeled Scaling Details is the result of the first summation term of
equation (12). Each plot labeled Wavelet Details at scales 23, 22 and 21 is computed by the
inner sum of the second summation term of equation (12).

A few properties about this figure should be noted. First, because wavelets have a zero
time average as a consequence of the admissibility condition, the Wavelet Detail plots always
oscillate around zero. Second, as the scale increases peaks become more defined and indicate
a border between different signal regions. This is not by accident. It’s related to the way the
wavelet’s Heisenberg Boxes tile the time-frequency plane. The zero-average and peak-emergence
properties will be exploited for phase detection.

4Section 4 will briefly discuss wavelet selection and why this wavelet is being used.
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Figure 5: Multi-resolution Analysis. The top plot is the original signal.
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4 Phase Detection Algorithm

As mentioned in the previous discussion of figure 5 this approach to phase detection will exploit
the emergence peaks in the Wavelet Details. Also, because the Wavelet Detail data oscillates
around zero, a very simple threshold can be utilized to identify peak locations.

This method is called the Persistent Peak Algorithm:

1: Perform the DWT with the Quadratic B-Spline Wavelet5 on the time series
2: Discover the “best” resolution for identifying peaks
3: Find the “best” threshold to identify peak locations from this resolution.
4: Peak locations mark the program phases.

In step 1 the mechanics of the DWT were briefly defined in Section 3.3.2.

Defining the “best” resolution for peak identification is the heart of the algorithm and will
be the focus of this section. In order to devise a scoring function for the quality of the peaks in
a signal, we first need to define what is meant by peak. A peak is defined as a local maximum
of the signal f(t) in a neighborhood n about t

Peaksn = {f(tp) : f(ti) ≤ f(tp) for tp−n < tp−n+1 < · · · < tp < tp+1 < · · · tp+n}

The set of thresholded peaks is simply the peaks that are above a certain threshold

ThresholdPeaksn,threshold = {tp : |f(tp)| > threshold for f(tp) ∈ Peaksn}

Using these definitions, a threshold score is computed as the number of thresholded peaks,
i.e. the number of elements in the set ThresholdPeaksn,threshold. The Persistent Peak Score
is then the count of the largest sequence of contiguous thresholds where the threshold score is
constant or close to constant. The intuition behind this score can be seen in figure 5. Notice
as the scale increases peaks start becoming more and more definable. The persistence of a set
of peaks in a given scale through a variety of thresholds is an indication that the phases are
well defined. Again justification for this statement lies in the interaction of a wavelet’s width
and the time-frequency plane.

5Choosing the right wavelet function is an art guided by some deeper mathematical results that are beyond
the scope of this paper and the current knowledge of the author. Instead, the choice of the Quadratic B-
Spline Wavelet is based on visual inspection of the WaveletDetail plots. During the investigation of various
wavelet functions, the Quadratic B-Spline Wavelet produced peaks that were better defined than other wavelet
functions. Currently this is thought to result from the wavelet’s symmetry [19].
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The procedure for computing the Persistent Peak Score is:

procedure Persistent Peak Score(n, standard deviations, iterations)

1: Compute the set Peaksn
2: Set sd to the standard deviation of the data

3: threshold increment =
standard deviations ∗ sd

iterations
4: for i = 1 to iterations do
5: threshold = i ∗ threshold increment
6: Compute the set ThresholdPeaksn,threshold
7: Set score(threshold) = |ThresholdPeaksn,threshold| , i.e. the number of thresholded peaks
8: end for
9: return The count of the largest sequence of contiguous thresholds where the threshold

score is constant or close to constant.

The following plot shows the best and worst Persistent Peak Scores for the wavelet details
of figure 5. The horizontal axis is the threshold increment, i.e. 1 = 1 threshold increment,
2 = 2 threshold increments, etc... The the vertical axis is the threshold score. Notice that
the threshold score by definition is a decreasing function. Also notice that the Persistent Peak
Score is defined as the largest region in this plot that is close to flat.
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Figure 6: Threshold scores computed from the Wavelet Detail plots in figure 5.
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Once a scale has been selected we must choose the peaks that will act as the phase markers.
The Persistent Peak Score routine identifies a set of thresholds over which the peaks in the
signal are stable. Any of these thresholds is a likely candidates to use. The results generated
by this paper are based on choosing the largest threshold from the largest sequence of constant
Persistent Peak Scores. The following figure shows the thresholds that were chosen for the
wavelet scales from figure 5:
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Figure 7: A look at the threshold that was chosen at each scale. The threshold lines appear in
red. Note that scale 23 and its threshold line would be used to identify the phase markers.
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5 Experiments

The experiments examined in this paper are based on sampling an L1 cache-miss hardware
performance counter every 100,000 cycles. The reason for choosing to monitor cache memory is
that over the past 30 years the performance gap between processors and memory has widened.
In fact, the bulk of architecture advancements during this period has been to hide the latency of
memory accesses [3]. Thus memory is seen as the most pressing bottleneck in improving overall
system performance. These facts are also reflected in the amount of research being published
in the phase detection/analysis of memory performance.

There are a variety of ways to capture a memory performance trace. Several papers use
traces of detailed memory address pattern access [1]. The reason for choosing a cache-miss
count time-series is that the instrumentation to capture this trace is very minimal. This data
was collected from hardware performance counters through the Performance API (PAPI). For
more information on PAPI see http://icl.cs.utk.edu/papi.

Five programs were tested. The first three are simple baseline tests that any good phase
detection algorithm should pass. The source code for these tests is listed in Section 8. In a
sense the phases of these programs are known, so they are a good first set of tests to run.
The second two programs that are tested are bzip2 and gzip. They represent a first round
of investigating real world programs as a way to determine if the Persistent Peak Algorithm
merits further investigation.

Finally it should it should be noted that in this paper the validation of the results is by
visual inspection. In visually assessing the phase detection two properties are looked for: First,
phases should be regions in the signal that exhibit different behavior as indicated by the average
cache-misses, the deviation about this average and frequency behavior in the region. Second
the algorithm should be consistent in that if two regions satisfy the first requirement, they both
will be detected as phases. This visual metric certainly lacks mathematical rigor, but serves as
a first step in the assessment of this method. The Future Work section will discuss applying
other metrics for validation.

In figures that follow, the horizontal axis is time increment in terms of 100,000 cycles. The
vertical axis is the L1 cache-miss count. Also, phases are designated as the regions that fall
between two adjacent red vertical lines.

5.1 Baseline Tests

The following three tests initialized two matrices, one in a row-major fashion and one in a
column-major fashion. The difference between the three programs is in how they alternate
between row-major and col-major initialization. The size of the matrices was chosen to be
larger than the L1 cache size.

5.1.1 Simple Phase Program

The first test called the “Simple Phase” initializes one matrix in row-major fashion 10 times
and then another matrix in col-major fashion 10 times. See the “Simple Phase” code listing
for details. This will create two distinct phases in the cache-miss time-series. The row-major
initialization phase will perform better than the col-major phase.

This fact can be seen in the first figure. The row-major phase occurs between times t = 200
and t = 1500. Note that the program initialization is occurring from t = 0 to around t = 200.
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The column-major phase runs from t = 1500 to t = 4000. The second figure shows that the
Persistent Peak algorithm is able to recognize these phases. Again, the region between adjacent
red lines denotes a phase (note that no red line is plotted at t = 0 this is automatically a
beginning of a phase). The figure clearly shows that row-major out performs col-major in its
L1 cache use. The signature of the row-major and col-major phases appears in the next two
experiments as well.
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Figure 8: Simple Phase performance and phases discovered by the algorithm.
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5.1.2 Alternating Phase Program

The “Alternating Phase” program repeatedly alternates between a row-major and column-
major initialization of two matrices. See the “Alternating Phase” code listing for details.

This experiment represents a higher level of complexity than the previous experiment as
several phases are now present. The phases are readily identifiable in the first plot where the
alternating choice of row-major and column-major initializations is reflected in the alternating
behavior of the time-series. As was the case in the first experiment the row-major phase is the
lower average and less volatile portions of the figure.

The second figure shows that the Persistent Peak Algorithm is able to detect these phases:
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Figure 9: Phases discovered by the algorithm.
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5.1.3 Random Phase Program

The “Random Phase” program randomly chooses either to do a row-major or column major
initialization. See the “Random Phase” code listing for details. This experiment is slightly
more complex than the “Alternating Phase” due to the introduction of a varying frequency in
choice of row-major or column-major initializations.

Following the discussion of the previous two experiments, the row-major phases are the
regimes of lower average and less volatility in the cache-miss behavior. The variable time
length present in both phase types is a result of the random selection process.

The second figure shows that the Persistent Peak Algorithm is able to discover the phases:
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Figure 10: Phases discovered by the algorithm.
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5.2 Real Program Tests

The following two experiments were conducted to test the validity of the Persistent Peak Algo-
rithm on real-world applications. Bzip2 and gzip were chosen because they are often employed
in other performance studies. The results show that the phases detected in bzip2 look reason-
able according to the visual assessment of average cache performance, the spread about this
average and the frequency content. The phases are also consistent. On the other hand the
method fails on gzip due to a lack of definable phases in the signal.

5.2.1 bzip2

Because bzip2 works by repeatedly compressing a file until some stopping criteria is met, the
program repeatedly executes code that accesses the cache in a common way. Thus phases are
likely to be present in the cache-miss time-series. The first figure lends evidence to this view of
bzip2. Notice the repeated structure that occurs six times throughout the signal. The second
figure shows the results of the Persistent Peak Algorithm. The striking feature of this figure is
the consistency of the detected phases across each of the six structures in the signal.
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Figure 11: Phases discovered by the algorithm.
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5.3 gzip

The following figures show the L1 cache-miss behavior of gzip. The cache behavior of gzip is
distinctly different from the previous four experiments. Notice that there aren’t any regions that
differentiate behavior. Instead this signal looks simply like one region. Because the Persistent
Peak Algorithm was designed to key in on the peaks/transitions that emerge in the DWT, this
data series poses a huge problem. This is reflected in the second figure where the algorithm
reports an unwieldy number of phases.
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Figure 12: Phases discovered by the algorithm.

20



6 Conclusions and Future Work

This paper has provided a foundation to understand the wavelet perspective of time-frequency
analysis. An application of the Discrete Wavelet Transform (DWT) to program phase detection
was presented to solidify the concepts.

Evidence was provided to indicate that the Persistent Peak Algorithm is successful at identi-
fying phases in signals that possess regions that display common behavior. Common behavior is
defined by average cache-misses, the deviation about this average and frequency behavior. Fur-
thermore the evidence suggests that when a signal satisfies these phase definition requirements,
the algorithm is consistent in its choice of phases.

As shown by the gzip experiment though, this technique is not a solution for all time-series
data. The failure is due to the definition of a phase taken in this paper. This is particularly
interesting because it might lead to a category system whereby programs are described according
to the phase-definitions they exhibit. As a result of this work, there are at least two categories
of programs: bzip2 and the baseline kernels are in the category of the phase definition used in
this paper, whereas gzip is not. A natural question is: Can the DWT be utilized to identify
other notions of phases? Examining the DWT of more programs and designing new definitions
of phases will be investigated in future work.

The most pressing question left unresolved in the current work is whether the phases dis-
covered by the Persistent Peak Algorithm are correct. A metric needs to be identified to
quantitatively answer this question. In [11], the Coefficient of Variation for several fixed sized
intervals within a phase were used identify the internal consistency of the phase. The complex-
ity metric defined by Cho and Li in [12] examines the phases at different wavelet scales. Another
avenue that deserves investigation is a chaotic dynamical systems perspective discussed in [20].
Applying these metrics will also be investigated in future work.
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7 Implementation of the Persistent Peak Algorithm

The Persistent Peak Algorithm was implemented using Matlab. The Matlab library Wavelab
was used for wavelet processing. Wavelab can be found at http://www-stat.stanford.edu/

~wavelab.
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8 Code Listing

Listing 1: Simple Phases Program
int i , j , k ;
const int s i z e = 1000 ;

int a [ s i z e ] [ s i z e ] ;
int b [ s i z e ] [ s i z e ] ;

for ( k=0; k<20; k++)
{

i f ( k < 10)
{

for ( i =0; i<s i z e ; i++)
{

for ( j =0; j<s i z e ; j++)
{

a [ i ] [ j ] = 0 ;
}

}
}
else
{

for ( i =0; i<s i z e ; i++)
{

for ( j =0; j<s i z e ; j++)
{

b [ j ] [ i ] = 0 ;
}

}
}

}

Listing 2: Alternating Phases Program
for ( k=0; k<100; k++)
{

int r=k % 2 ;

i f ( r==0)
{

// i n i t i a l i z e matrix a = 0 in row−major fa sh ion
}
else
{

// i n i t i a l i z e matrix b = 0 in col−major fa sh ion
}

}

Listing 3: Alternating Phases Program
srand ( time (NULL) ) ;

for ( k=0; k<100; k++)
{

int r=rand ( ) % 2 ;

i f ( r==0)
{

// i n i t i a l i z e matrix a = 0 in row−major fa sh ion
}
else
{

// i n i t i a l i z e matrix b = 0 in col−major fa sh ion
}

}
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