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Urban areas consume two-thirds of the world's energy and account for 71% of global greenhouse 

gas emissions. In the U.S., residential and commercial buildings consume 22% and 19% of the total energy 

use, respectively. In response to current energy and environmental issues, policymakers have been actively 

engaged in the establishment of regulations and incentives to promote strategies for energy and greenhouse 

gas reduction in urban areas. To assist such decision makings requires an accurate and dynamic prediction 

and analysis of urban energy needs and developing trends, especially for building stocks.  

Five primary challenges exist in modeling urban level building energy uses: (a) lack of building 

details for massive infrastructures (e.g., building envelope, floor area, age); (b) lack of knowledge of 

occupant related parameters (e.g., human behaviors, equipment power density, heating and cooling 

temperature set points); (c) uncertainties in building energy models; (d) unavailability of energy use data 

for validation; (e) computational effort. To address such challenges, a stochastic-deterministic-coupled 

modeling approach was developed. In this method, the energy uses of probability-based representative 

buildings were calculated with a deterministic engineering-based tool (e.g., EnergyPlus) with probabilistic 

inputs (e.g., building materials, human behaviors). 

Detailed analyses were performed considering the accuracy of estimation and computational time 

for each step of the process. The analysis of building stock information and the impact of its uncertainty 

were also examined. The proposed stochastic-deterministic-coupled approach was demonstrated on the 

campus scale. The proposed model has the following advantages over the existing building stock models: 

(a) Applicable to various building types; (b) Fast computational time; (c) predictability by energy end-use 

type; (d) Availability of various temporal and spatial; (e) Availability for retrofit analysis of building stock. 

The proposed model enables cost-effective energy estimation at large scale considering uncertainties.  
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CHAPTER 1: INTRODUCTION 

1.1 Background 

More than 50% of the world’s population lives in the urban area in 2015 (WHO & UN Habitat, 

2016), and the world urban population is expected to rise to 72% by 2050 (Department of Economic and 

Social Affairs, 2012). Urban areas consume two-thirds of the world's energy and account for 71% of global 

greenhouse gas emissions (Birol, 2008). In the U.S., residential and commercial buildings consume 22% 

and 19% of the total energy use, respectively (EIA, 2016). Policymakers have been actively engaged in the 

establishment of regulations and incentives in an effort to promote strategies for energy and greenhouse gas 

reduction in urban areas. To assist such decision makings requires an accurate and dynamic prediction and 

analysis of urban energy needs and developing trends, especially for building stocks. However, extensive 

survey and auditing of urban building energy use are not only costly but also inadequate for predicting the 

dynamic characteristics of the energy demands. Simulation tools, based on reasonable inputs from public 

databases, are thus necessary for this purpose. Validated modeling tools can also be used to predict and 

analyze the implications of new technologies, products, and policies on the current and future energy use 

of a city.  

 

Figure 1-1 Total energy consumption by end-use sector (EIA, 2016) 
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Figure 1-2 Total energy consumption by end-use sector, 1981–2013 (EIA, 2016) 

1.2 Definition of Challenges and Objectives 

The overall methodology of the research consists of two parts: developing a methodology and 

evaluating the methodology through a field test. Most of the existing building energy simulation tools such 

as EnergyPlus, eQUEST and TRNSYS can only predict energy load and thermal performance of individual 

buildings. To estimate the building energy use at large scale with many buildings of different sizes, types, 

ages, functions, and operating conditions, simply adding up all energy usages of individual buildings is not 

accurate as buildings operate on different schedules and intensities. One straight example is that commercial 

buildings operate mostly in the daytime, residential ones run in nighttime while industrial facilities may 

operate on a 24-7 schedule.   

Five primary challenges exist in modeling urban level building energy uses: (a) lack of building 

details for massive infrastructures (e.g., building envelope, floor area, age); (b) lack of knowledge of 

occupant related parameters (e.g., human behaviors, equipment power density, heating and cooling 

temperature set points); (c) uncertainties in building energy models.; (d) unavailability of energy use data 

for validation; (e) computational effort. 
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Whole building simulation tool requires a large number of input variables. It is hard to know all 

input variables to represent the building exactly. This lack of building details could yield a different 

outcome according to the assumption and judgment of simulation user. In terms of large-scale, energy 

modeling for all buildings in the city is inefficient. To address this problem, some models utilize the 

archetype models that represent the building stock classified by properties such as building function and 

age. The single archetype model, however, cannot reasonably represent the distribution of actual buildings. 

Furthermore, it is challenging to gather necessary building stock information such as total floor 

area, floor numbers, built year, building function, contractions, and HVAC systems. Such information is 

often inaccessible in the city-level. The building energy usage data also occasionally is not available 

because of privacy issue or legal concerns. 

 To address such challenges, a stochastic-deterministic-coupled modeling approach is developed. 

In this method, the energy uses of probability-based representative buildings are calculated with a 

deterministic engineering-based tool (e.g., EnergyPlus) with probabilistic inputs (e.g., building materials, 

human behaviors). One important criterion to judge the value of this model is that how closely the simulated 

results can match actual building stock energy use. Stochastic methods are employed to calibrate the model 

using collected field energy data. The energy consumption of the target district can be obtained by 

aggregating the energy distribution of such representative building. 

 

1.3 Organization of the thesis 

The thesis is outlined as follows; 

Chapter 1 presented an overview and motivations for a stochastic building stock energy model. 

Chapter 2 introduces the pros and cons of existing building stock energy model via a literature 

review. The limitations and issues of current stochastic building energy models are discussed. 

Chapter 3 proposes a framework that can estimate building stock energy considering uncertainties 

and compares the stochastic methods to calibrate building stock energy consumption. The computational 

benefits of the meta-models are also examined. 
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Chapter 4 performs detailed analyses to enhance the proposed framework at an individual building. 

The accuracy of the meta-model and the effect of informative energy use data on the calibration are 

examined. 

Chapter 5 determines the proposed framework along with detailed step-by-step methodologies. The 

possibility of ECM analysis of the proposed stochastic building stock energy model in a virtual building 

stock is investigated. 

Chapter 6 deals with the uncertainty of building stock information. In the proposed model, the 

necessary information is classified according to the accessibility and the accuracy of the model is analyzed 

regarding uncertainty.  

Chapter 7 describes the application of the proposed stochastic-deterministic-coupled model at 

campus-scale. Total building energy consumption is estimated through a detailed process. The proposed 

method is validated against the measured energy consumption data. Energy conservation measures are 

examined to the campus. 

Chapter 8 summarized the thesis with conclusions and suggestions for future research. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Overview of Methods 

Building energy model has been utilized to predict building energy demands such as electricity, 

gas use since the 1970s. All current building energy models including physical models (e.g., eQUEST, 

EnergyPlus and TRNSYS) and data-driven models (Black-box models such as Regression models, 

Artificial Neural Networks - ANN, and Support Vector Machine - SVM) can only predict energy and 

thermal performance of individual buildings. To predict the energy consumption of building stocks over 

time, researchers have developed a number of modeling methodologies. Swan and Ugursal (L. G. Swan & 

Ugursal, 2009) and Kavgic et al. (Kavgic et al., 2010) provided reviews on existing building stock models 

for residential sectors. 

According to the principles and techniques for modeling energy consumption, building stock 

energy modeling methods can be broadly divided into two categories: the top-down method and the bottom-

up method. The top-down methods start with the aggregated energy consumption for a given region and 

time. These methods typically factor into the interrelationships between the energy sector and other 

variables such as econometric and technological factors. The aggregated energy use can then be divided 

into sections according to building function or spatial proximity. The bottom-up methods work at an 

individual level. It calculates the energy consumption of individual end-uses or buildings and then sums 

them up to represent the required region. The bottom-up methods can be further divided into two categories: 

the statistical and engineering approaches as shown in Figure 2-1. In this review, we suggest two sub-groups 

of the bottom-up engineering method: namely the deterministic and stochastic approaches.  

The following sections will detail the definitions and comparisons of all these methods and models, 

as well as discuss the opportunities and challenges for improving these methods. Section 2.2 to 2.4 review 

remarkable and recent top-down and bottom-up building stock models, respectively. Section 2.5.1 discusses 

the uncertainty issue in the deterministic bottom-up engineering methods. The stochastic approaches to 
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overcoming the uncertainty issue are then introduced and reviewed (Section 0 and 2.5.3) and challenges on 

the stochastic bottom-up engineering building stock models are discussed in Section 2.6. 

Building energy stock 

model

Top-Down Bottom-up

Statistical Engineering

Deterministic Stochastic

 

Figure 2-1 Top-down and bottom-up methodologies for building stock energy model 

 

2.2 Top-down Methods 

Top-down methods are primarily based on the statistical relationships between historical 

aggregated energy use and socio-economic factors such as population, fuel prices, climate conditions, and 

gross domestic product to show the connections between the energy sector and economic output. Most of 

these top-down models can predict the macroeconomic performance of building stock and the impacts of 

various “what-if” scenarios over time. 

The demand module of the National Energy Modeling System (NEMS) (Energy Information 

Administration, 2009) is the most well-known top-down prediction tool. The purpose of NEMS is to 

forecast the energy, economic, environmental, and security impacts of the alternative energy policies and 

different assumptions in the United States. Examples of top-down models include demand modules for 

residential and commercial sectors in other integrated energy system models: MARKAL(Fishbone & 

Abilock, 1981), TIMES(Loulou et al., 2005), AIM(Matsuoka et al., 1995) and GCAM(Edmonds et al., 1994; 

Kyle et al., 2010). The resolution of such energy demands in the integrated energy system models roughly 

accounts for temporal (e.g. annual), spatial (e.g. region or national) and end-use level (e.g. total commercial, 

total heating energy) rather than individual buildings. Sartori et al. (Sartori et al., 2009) developed an energy 
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demand model for Norwegian residential and service sectors. The model utilized the activity levels of the 

building stock (new construction, renovation, and demolition) and energy intensities for archetypes. 

Norwegian dwelling stock model was further refined by Sandberg et al. (Sandberg et al., 2011; Sandberg 

& Brattebø, 2012) regarding historical development in energy flows since 1960 and future trends towards 

2050.  Vasquez et al. (Vásquez et al., 2016) proposed a dynamic Type-Cohort-Time (TCT) stock-driven 

modelling approach that considers demographic aspects, lifestyle-related issues, and building-specific 

characteristics to evaluate policies. Summerfield et al. (Summerfield et al., 2010) employed a top-down 

approach, based on multiple regressions, to model the annual delivered energy, price, and temperature 

(ADEPT) and the seasonal temperature, energy and price (STEP) for the UK households domestic sector. 

These models allow policymakers and the public to interpret trends in delivered energy and provide 

benchmarks for comparison. Since the ADEPT and STEP rely only on the energy price and the average 

external temperature to predict the energy use, the ability of models to identify the effectiveness of specific 

policy measures is limited. Like other top-down models, in these studies, there is no disaggregation for 

energy consumption into finer regions or individual building levels. 

As an example of an effort to obtain finer scales in a top-down approach, Sailor and Lu (Sailor & 

Lu, 2004) disaggregated U.S. monthly state-level energy use data into hourly city-level based on the diurnal 

variability of the urban population. Furthermore, representative diurnal energy use profiles for summer and 

winter are constructed using fractional hourly load profiles. The weakness of the method includes large 

uncertainties and limited capabilities of predicting the application of new technologies since it is based on 

a population density and diurnal profiles from historical data. 

These top-down methods utilize an interaction between energy sectors and other economic 

indicators so that it can reflect the impact of social-economic policies. Since the top-down models are 

dependent on historical data, it is unable to examine the consequences of specific technological advances 

and policies. Furthermore, they give a coarse analysis on individual end-uses and do not explicitly consider 

individual physical factors specific to each type of building. Therefore, top-down building stock models are 

not suitable to analyze the relationships among the building energy use, and the building design and 
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operational specifications. Most of top-down models performed a scenario analysis based on assumptions 

about socio-economic factors to predict future energy (Comodi et al., 2012; Kainuma et al., 1998; Sartori 

et al., 2009). However, top-down approach is deterministic and does not take into account the uncertainty 

of the energy model. 

 

2.3 Bottom-up Statistical Methods 

Bottom-up methods calculate the energy consumption of individual end-uses, individual buildings, 

or groups of buildings and then use these representative models to predict the regional or national energy 

consumption by different weighting approaches (L. G. Swan & Ugursal, 2009). Bottom-up methods can be 

further divided into two sub-categories based on its modeling mechanisms: statistical and engineering-

based (physical) methods. 

Statistical methods use historical data and analyze the relationships between available building 

information and energy use data. These methods rely on energy utility billing data (e.g., electricity, gas) 

from energy providers and survey data that includes human behaviors and building characteristics. 

Researchers have studied diverse approaches to analyzing the building stock energy consumption utilizing 

this information. 

The Princeton scorekeeping method (PRISM) (Fels, 1986) is one of the early regression models. 

PRISM correlates the building energy use per billing period with the local heating or cooling degree-days.  

PRISM has been used broadly in the U.S. by governments, utilities, and research organizations to analyze 

energy conservation measures in large aggregates of houses due to its simplicity in calculation (Kavgic et 

al., 2010). Like other statistical modeling methods, however, it does not provide the details and flexibility 

for energy conservation measures.  Ruch and Claridge (Ruch & Claridge, 1992) indicated that PRISM 

model does not estimate the energy savings for most commercial buildings, although the simple linear 

regression model is suitable for estimating energy use for residential buildings. The conditional demand 

analysis (CDA) method is another statistical technique.  Turiel et al. (Turiel et al., 1987) adopted the CDA 

method to estimate the energy intensities of end-uses in commercial buildings in northern California, USA.  
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The CDA utilizes the regressions based on the presence of building characteristics and end-use appliances.  

One of the advantages of CDA is the convenience in the identification of the required input data using a 

survey of the occupant and energy billing data from the energy provider.  CDA requires extensive and 

diverse information about appliances and building characteristics, increasing the likelihood of significant 

uncertainties from incorrect input data from surveys. 

Recent bottom-up statistical models have used geographic information system (GIS) for data 

acquisition to build a model and visualize results. Girardin et al. (Girardin et al., 2010) developed EnerGIS 

based on GIS to model the energy requirement for Geneva, Switzerland.  The linear regression model was 

utilized to obtain the annual consumption for heating, cooling, electricity, and hot water production and 

then these predictions were used to compute the required temperatures for the district heating system.  The 

visualization of the energy consumption on the map facilitates a better understanding of energy planning 

and for analyzing the large-scale integration of renewable energy. Kolter and Ferreira (Kolter & Ferreira, 

2011) presented a statistical approach to model energy consumption in residential and commercial buildings 

in Cambridge, MA, USA.  They used utility data with some features from publicly available tax assessors 

and GIS data such as building value, square footage, building type. To develop a model, two statistic 

techniques were examined: linear regression and Gaussian process (GP) regression. While the GP method 

showed the best overall performance, the linear regression model was chosen due to its better succinctness 

and computational efficiency. Using the linear models, the authors developed a tool, EnergyView, which 

provides a visual map and compares energy use to similar buildings. Howard et al. (Howard et al., 2012) 

also used linear regressions to derive an annual energy use intensity (EUI) for several building functions in 

New Your City. The estimated EUIs were apportioned into several of end uses by ratios derived from the 

Residential Energy Consumption Survey (RECS) (Energy Information Administration, 2005) and the 

Commercial Building Energy Consumption Survey (CBECS) (Energy Information Administration, 2003) 

for end-use estimation. The interactive map for spatial distribution of building energy use was produced 

based on GIS data (http://sel.columbia.edu). The model is unable to consider the construction type and 
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building vintage for the energy conservation measures, although they play a major role in energy saving 

potential identification. 

Most of the bottom-up statistical models are based on the regression techniques. The advantage of 

the statistical models is relatively easy to build a model once it has enough information to attribute building 

energy consumption to relevant building characteristic and data. Another benefit is that the statistical 

models are capable of considering demographics and the behaviors of occupants that have a significant 

influence on the energy consumption. On the other hand, the statistical methods have limitations when 

exploring the combined impact of several energy efficiency measures. Moreover, statistical models are 

unable to model hourly energy use. Some information needed for statistical models is not always possible 

to access because of the privacy and insufficient data. 

 

2.4 Bottom-up Deterministic Engineering Methods 

Bottom-up engineering models (also called physics models) explicitly account for the energy 

consumption of individual end-uses based on the equipment use, heat transfer and thermodynamic 

relationships.  It predicts the energy consumption according to building properties such as geometry, 

envelope, climate, occupancy schedule, and equipment. 

The conventional engineering building energy simulations are deterministic.  The deterministic 

approach does not take into account the inherent uncertainties in the building and its subsystems.  It always 

produces the same single output from given inputs.  Bottom-up engineering building stock models using 

the deterministic approach are discussed in this section.  The uncertainty issues in the deterministic 

methods, and the stochastic methods will be examined in the next section. 

The most commonly used deterministic engineering approach is the bottom-up archetype (also 

called representative building or prototypical building) engineering model.  This approach uses the 

following typical procedure:  

(1) Classify building stock into several categories based on building geometry and non-geometry 

(e.g., function) properties, and microclimate conditions;  
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(2) Develop archetype buildings that present specific building stocks of each type;  

(3) Predict the unit energy consumptions (energy use of one building or energy use intensity) for 

each archetype by using a building energy simulation tool;  

(4) Obtain the total energy consumption by aggregating the calculated unit energy consumptions 

with proper weighting factors (e.g., number of units or floor area in each type of building sector). 

Most research efforts for the bottom-up engineering methods have focused on the residential 

buildings.  In the UK, several residential building stock models used BREDEM (building research 

establishment domestic energy model) (Anderson et al., 1985) as a core calculation engine for single houses 

to calculate energy use for each archetype (B Boardman et al., 2005; Brenda Boardman, 2007; Firth et al., 

2010; Johnston, 2003; Jones et al., 2007, 2000, Natarajan & Levermore, 2007a, 2007b; Shorrock & Dunster, 

1997).  More detailed comparisons of UK models were discussed in Kavgic’s review (Kavgic et al., 2010) 

and Oladokun’s review (Oladokun & Odesola, 2015).  In Canada, Canadian Residential Energy End-use 

Model (CREEM), developed by Farahbakhsh et al. (Farahbakhsh et al., 1998), based on 16 house archetypes 

that were derived from 8,767 actual houses’ data.  In Japan, the residential energy model developed by 

Shimoda et al. (Shimoda et al., 2003) used 20 archetypes and 23 household types for Osaka City’s 

residential sector.  The occupants’ schedule determined by the national time use survey was utilized to 

obtain hourly energy use for hot water supply and dynamic cooling and heating load.  Total energy 

consumption for the residential stock is estimated by multiplying the simulated energy use and the number 

of households and then summing them up.  This concept of modeling has been developed and utilized in 

a series of researches (Shimoda, Okamura, et al., 2010; Shimoda et al., 2007, 2004; Shimoda, Yamaguchi, 

et al., 2010; Yukio Yamaguchi et al., 2008).  These residential building stock models have core calculation 

engines tailored for residential buildings and specific regions.   

The bottom-up engineering building stock models have been expanded to the commercial sector 

and integrated with GIS platform for acquisition and expression of data thanks to the advances in the 

mapping technologies.  Yamaguchi et al. (Y. Yamaguchi et al., 2007a) developed 612 archetypes for the 

commercial sector in Osaka city and proposed a district clustering approach that develops several 
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representative districts based on dominant building types.  The district level energy system simulation 

model was used applied to estimate the annual energy use intensity of each representative district 

(Hashimoto et al., 2007; Y. Yamaguchi et al., 2007b; Y Yamaguchi et al., 2005, 2003; Yohei Yamaguchi 

& Shimoda, 2010).  The model can quantify the energy use intensity for each representative district, not 

for specific individual building. Heiple and Sailor (Shem Heiple & Sailor, 2008) created 30 archetypes in 

the commercial and residential sectors of Houston, U.S using the national survey data (RECS, CBECS).  

The energy intensities calculated by eQuest (Hirsch, 2006) were aggregated into the city scale, providing 

hourly and seasonal energy uses, which were visualized and compared with the top-down approach results 

in a GIS platform.  The method has a time-intensive process of creating a set of representative building 

simulations.  Caputo et al. (Caputo et al., 2013) developed 56 detailed archetypes considering form factor 

of buildings for the city of Milan, Italy.  The potential energy consumption reduction derived from 

EnergyPlus was visualized in the GIS framework at the urban scale. 

As the energy policy decisions require more detailed information to address future planning 

interventions, recent building stock models were developed for a finer temporal and spatial resolution.  

CitySim (J. J. H. Kämpf, 2009; Darren Robinson et al., 2009) is a software developed at EPFL to predict 

the energy demands from small neighborhoods to an entire city.  It can calculate the on-site energy use for 

heating, cooling and lighting based on multiple physical models such as RC (resistor-capacitor network) 

models, Radiation models, Plant and Equipment models, and Behavioral models.  One interesting feature 

of CitySim is that it can take into account heat gain from direct and diffuse solar radiation as well as long-

wave exchanges between the walls of each building.  Therefore, CitySim requires a field survey to check 

the glazing ratio and façade state for a 3D modeling information.  CitiSim model has been used for 

optimization(J. Kämpf & Robinson, 2009; Vermeulen et al., 2013), analysis of the impact of occupants' 

stochastic behaviors (Haldi & Robinson, 2011), and combination with other platforms (Dorer et al., 2013; 

Perez et al., 2012).  The model developed by Fonseca and Schlueter (Fonseca & Schlueter, 2015) can 

provide spatial (building location) and temporal (hourly) dimensions of analysis using GIS framework.  

The statistical and analytical methods were integrated to calculate the hourly energy use and temperature 
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requirements of energy services in 172 building archetypes.  Statistical clustering algorithms were also 

integrated to classify buildings in the area.  The model result was validated against measured and 

simulated data.  However, calibration was not considered for more accurate prediction.  Davila et al. 

(Davila et al., 2016) developed an urban building energy model that can estimate hourly demand load at 

individual building level for Boston, U.S.A.  In the process, all 92,000 buildings in Boston were assigned 

into 76 archetypes that were simulated using multicore computer clusters for three days.  The bottom-up 

engineering methods need an immense effort of processing data, creating archetypes and running 

simulations.  However, it provides an hourly energy use resolution from a specific location to city-wide 

with detailed energy classifications such as building general use type and fuel type. 

Since bottom-up engineering models are built on the details of individual buildings, it is possible 

to consider the energy variables to the physical and behavior characteristics of these buildings.  In these 

models, the building stock is divided into several types based on the physical and functional characteristics.  

Energy use for each type is quantified using the archetype buildings that are representing the same building 

stock type.  As a result, the most outstanding advantage of the bottom-up engineering models is the 

capability of examining new technologies and no need for historical energy use data. The use of 

fundamental thermodynamics and heat transfer models enables the assessment of various energy 

conservation measures and new technologies in the absence of historical energy data (L. Swan, 2010).  

However, the bottom-up engineering models require more detailed building information to calculate the 

energy consumption.  Various model assumptions due to lack of accurate data can cause significant 

uncertainties on the building energy models.  Furthermore, no single archetype model can reasonably 

represent the entire building sector of the same type.  More detailed classification of archetype models is 

often needed to avoid this shortcoming, but this can be a massive computational burden in the simulation 

process.  Another shortcoming of the engineering models is the assumption of occupant behaviors that can 

significantly alter energy consumptions.  Moreover, these models do not include market interactions and 

tend to neglect the correlations between energy use and macroeconomic activity.  To address some of 

these shortcomings of the engineering models, Kavgic (Kavgic et al., 2010) suggested the use of survey 
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data that represents the building stock including energy consumption data.  Statistical survey data allows 

for the incorporating the effects of occupant behaviors, technological and social trends.  However, the 

deterministic approach of engineering models has inherent constraints to accommodate various buildings’ 

profile distributions. Table 2-1 summaries the advantages and disadvantages of each method based on 

(Kavgic et al., 2010; L. G. Swan & Ugursal, 2009). 
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Table 2-1 Pros and cons of various methods 

 Top-down Bottom-up statistical Bottom-up deterministic 

engineering 

Pros.  Capable of modeling the 

relationships between eco

nomic variables and ener

gy demand 

 Enable to model the imp

act of different social cos

t-benefit energy and emis

sion policies and scenari

os 

 Use aggregated data 

 Avoid detailed technology

 descriptions 

 Enable to determine a ty

pical end-use energy con

sumption 

 Encompass occupant beh

aviors 

 Include macroeconomic a

nd socioeconomic effects 

 Not require detailed data 

(only billing data and sim

ple survey information) 

 Easy to develop and use 

 

 Enable to model current 

and prospective technolo

gies in detail 

 Assess and quantify the i

mpacts of different combi

nations of technologies 

 Enable to determine eac

h end-use energy consu

mption 

 Use physically measurabl

e data 

 

Cons.  Depend on past energy 

economy interactions to 

project future trends 

 Lack the level of technol

ogical details  

 Coarse results 

 No explicit representation 

of end-uses 

 Lack of disaggregation in

to individual levels 

 Unable to consider uncer

tainties 

 Rely on historical consu

mption data 

 Limited capacity to asses

s the impact of retrofit or

 new technologies 

 Provide fewer data and fl

exibility 

 Require large survey sa

mple 

 Multicollinearity 

 Unable to consider uncer

tainties 

 

 Require detailed input inf

ormation 

 Computationally intensive 

 No economic factor 

 Require a significant amo

unt of technical data 

 Behavioral assumptions f

or occupants 

 Unable to consider uncer

tainties 
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2.5 Bottom-up Stochastic Engineering Methods 

2.5.1 Uncertainty issues in existing building stock models 

Deterministic bottom-up engineering building stock energy models overcome some limitations of 

top-down and bottom-up statistical models in terms of flexibility.  They can evaluate various energy 

conservation measures for building stock without end-use energy billing information in a region.  

However, they are not still able to address the uncertainty issues during the modeling.   

Even for a single building, the engineering-based energy model encounters significant uncertainty 

challenges.  Building energy simulation models are complex, requiring comprehensive inputs.  Some of 

these inputs may be difficult to collect so that assumptions must be made to operate the models.  The 

problem becomes more significant when expanding the simulation model from an individual building to 

the building stock, as only a limited number of archetype buildings are built with the aim to represent the 

entire building stock.  Although sharing some of the main features (e.g., function, or age) within the same 

archetype, the representative building cannot, by all means, represent the wide actual building distributions 

in various building features such as building geometric properties (height, total floor area, window-wall-

ratio), and materials.  Finer classification is desired but under the penalty of additional computational cost.  

Reinhart and Davila (Reinhart & Cerezo Davila, 2016) indicated that the building energy prediction 

might be largely different from measured data due to the uncertainties associated with the definition of 

archetypes.  In the bottom-up engineering building stock model, the errors at the individual building level 

are higher than at the aggregate level since the inaccuracies at individual levels tend to average out at the 

aggregate level. 

Moreover, most of the bottom-up engineering methods employ the deterministic building energy 

models such as EnergyPlus, eQUEST, and ESP-r.  These energy models provide only one deterministic 

output for one building with given inputs.  Hence, the deterministic bottom-up engineering methods are 

unable to predict the energy use of a city with many buildings of different sizes, types, ages, functions, and 

operating conditions.  
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2.5.2 Stochastic building energy models for Individual buildings  

The stochastic approach was proposed to incorporate and handle the uncertainty factors of a 

building model.  The concept of the stochastic approach is implemented by performing an uncertainty 

analysis and sensitivity analysis using the Monte Carlo method (Corrado & Mechri, 2009; Eisenhower, 

O’Neill, Fonoberov, et al., 2012; C. Hopfe, 2009; Lomas & Eppel, 1992; Macdonald, 2002; T. Reddy et al., 

2007; Wit & Augenbroe, 2002).   In this approach, the values of input parameters are sampled randomly 

from a given range and then feed into the energy model.  The uncertainty and sensitivity are analyzed by 

the correlations between the variations of the input and output parameters. 

Some studies attributed the building model uncertainty to occupants’ behaviors and have developed 

the models that can explain the presence and behaviors of occupants (Haldi & Robinson, 2011; Page et al., 

2007; D. Robinson et al., 2007; Darren Robinson et al., 2009, 2011). Findings from these studies suggest 

that building occupants’ behaviors have a significant impact on the building energy performance.  

Others more focused on the uncertainty emanating from the distributions of various building 

parameters. The Monte Carlo method has been used to represent the distribution of various buildings in a 

building stock (Korolija et al., 2013; Nishio & Asano, 2006; Smith, 2009). The variety of physical 

characteristics of buildings is considered to establish probable distributions. In these studies, however, 

validation and calibration with the measured data were not performed.  

The calibration is to tune the inputs in a building energy model in order to match the observed data 

with the model outputs. A detailed review of the calibration techniques for building simulation can be found 

elsewhere (Coakley et al., 2014; Fabrizio & Monetti, 2015). The calibration can be done with either 

deterministic or probabilistic methods. The deterministic method can obtain input parameters by a manual 

trial-and-error method that is very time-consuming, and the result is more dependent on the user.  

By contrast, the probabilistic approach can deal with this problem in an efficient manner by handling the 

unknown inputs as random parameters with probability density functions (Tian, Wang, et al., 2014). 

For the probabilistic calibration, Kennedy and O’Hagan (Kennedy & O’Hagan, 2001) proposed a 

generic approach for the Bayesian calibration of computer models. The authors noted the Bayesian 
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calibration improved traditional approaches in two ways: First, the predictions can consider all sources of 

uncertainties, including the remaining uncertainty over the fitted parameters. Second, the Bayesian 

calibration method attempts to correct any inadequacy of the model that is revealed by a discrepancy 

between the model predictions and the measured data from even the best-fitting parameters. 

Bayesian inference is a statistical method that utilizes Bayes’ theorem in Equation (1) to obtain a 

posterior distribution for unknown parameters (θ) given the observed data (y). The model parameters are 

considered to be uncertain and have a probabilistic distribution based on their plausible values. The 

uncertain parameters of the energy model are updated to match the model prediction with the observed data. 

As a result, Bayesian calibration provides the posterior distribution 𝑝(𝜃|𝑦)  in a form of plausible 

distribution of calibration parameters. 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝜃) × 𝑝(𝑦|𝜃) (1) 

Where 𝑝(𝜃)  is prior distributions assigned for uncertain parameters; 𝑝(𝑦|𝜃)  is a likelihood 

function that measures how closely model predictions match observed data. 

A Markov Chain Monte Carlo (MCMC) (Gilks, 2005) method has been used to draw the posterior 

probability distribution in the Bayesian calibration. Bayesian calibration has been widely employed for the 

model predictions in other areas (e.g., ecological models (Oijen et al., 2005), hydrologic models (Liu et al., 

2008; Qian et al., 2005), atmospheric model (Guillas et al., 2009), geochemistry (Tierney & Tingley, 2014), 

geological models (Rahn et al., 2011; W. Zhang & Arhonditsis, 2008), molecular dynamic model 

(Angelikopoulos et al., 2012), and biological model (Blangiardo & Richardson, 2008)).  

Heo (Y. Heo, 2011; Y. Heo et al., 2012) applied a Bayesian calibration to the domain of building 

energy simulation. A normative energy model (base on CEN-ISO standard (ISO, 2004)) and Bayesian 

calibration were used to account uncertainties for retrofit analysis of existing individual buildings. 

Normative models approximately represent energy performance of building systems with a small number 

of macro-level inputs based on a simplified description of a building and its system. Therefore, it can 

drastically reduce the computational cost of modeling and calibration process although it has a limitation 

to execute fine adjustment for building’s subsystems and components. Figure 2-2 illustrates the calibration 
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process. The first step involves the quantification of uncertain parameters in the energy model based on 

expert knowledge collected from surveys, standards, and technical reports. The second step is a parameter 

screening to select dominant parameters for calibration. In the third step, selected parameters are calibrated 

with given prior distributions for the parameters, utility data, and the normative building energy model. 

Then, the calibrated model with resulting posterior distribution is validated with the utility data. Last, the 

validated model propagates uncertainty to compare energy conservation measures (ECMs). From the results, 

the accuracy of calibrated normative model is comparable to the calibrated transient model (EnergyPlus) 

but requires much less computational time.  
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Bayesian 
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Model Predictions
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Figure 2-2 Procedure of Bayesian calibration for retrofit analysis by Heo (Y. Heo, 2011) 

The Bayesian calibration procedure suggested by Heo has been used to calibrate the unknown input 

parameters in the individual building simulation model (Yeonsook Heo, Augenbroe, et al., 2015; Yeonsook 

Heo, Graziano, et al., 2015; Y.-J. Kim, Yoon, et al., 2013; Pavlak et al., 2013; Tian, Wang, et al., 2014). 

2.5.3 Stochastic building energy models for building stock 

There were a few attempts to apply the probabilistic calibration to the building stock. Booth et al. 

(Booth et al., 2012) discussed three sources that can cause uncertainties in building stock models: the first 

is uncertainty from the accuracy of the model, that is, how adequately the model represents the true process 
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of energy in a building. Second, it arises from different buildings characteristics within the same type of 

buildings. Finally, within a homogeneous building group, the uncertainty stems from two factors: 

differences in outcome due to random variation and a lack of knowledge on certain input parameters.  

To consider the uncertainty of building stock models, Booth et al. (Booth et al., 2012) suggested 

the Stochastic Urban Scale Domestic Energy Model (SUSDEM). The SUSDEM is also based on Kennedy 

and O’Hagan (Kennedy & O’Hagan, 2001) Bayesian calibration process. It used the Energy Performance 

Standard Calculation Toolkit (EPSCT) developed in Georgia Institute of Technology (Lee et al., 2011) as 

an energy simulation tool because of the speed of the calculation and ability to assess the impact of 

technological interventions. The overall process is similar to Heo’s method (Y. Heo, 2011; Y. Heo et al., 

2012) for individual buildings. However, the calibration was performed to the average value of building 

stock and added the bias function into the model to reduce the difference between observed data and 

computer model outputs. The equation below expresses the relationship between the observed data and the 

computer model output:  

 𝑧𝑖 =  𝜌𝜂(x𝑖, 𝜽) + 𝛿(x𝑖) + 𝑒𝑖 (2) 

 

𝑧𝑖 is observed data, 𝜌𝜂(x𝑖, 𝜽), represents the emulator for the computer model. 𝑒𝑖 indicates the 

observation error. In this model, the bias function, 𝛿(x𝑖), is dependent on the average daily external 

temperature and it is used to account for the inability of the model to fully represent the true process. 

The case study of 35 flats1 in the UK was performed to demonstrate the method. There are five 

steps in the Bayesian calibration. Step 1 is a selection of the calibration parameters. The Factorial Sampling 

Analysis (FSA, or the Morris method) was used to select dominant parameters. The authors indicated that 

calibrating too few parameters means that the uncertainty in other (un-calibrated) parameters is subsumed 

into the chosen (calibrated) parameters. Therefore, it derives distorting the physical meaning of the resultant 

posterior distributions. Calibrating too many parameters reduces the effectiveness and accuracy of the 

Bayesian inference. Step 2 is a quantification of prior uncertainty. The initial distributions for calibration 

                                                      
1 An apartment on one floor forming a residence in the U.K. 
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parameters were estimated based on any prior knowledge or assumption. Step 3 is a formulation of 

calibration framework. They used a statistical model (known as an emulator or meta-model) to replace the 

building energy simulation model. Step 4 is a Bayesian calibration process. The posterior distribution for 

each unknown parameter was derived. The model calibrated to the average daily value of measured energy 

consumption, not for each energy consumption of 35 flats. The last step is the validation. The calibrated 

output is compared against the observation data. The results showed that the Bayesian calibration has almost 

eliminated any discrepancy between the observation data and the normative model output. However, since 

the calibration was performed to estimate the average energy usage for all the flats, the posterior distribution 

for parameters could not represent the distribution of parameters of all flats. The proposed SUSDEM was 

further refined and extended to large-scale by applying approximately 15,000 houses in the UK (Booth & 

Choudhary, 2013). Energy savings from retrofit measures were predicted considering the installation costs, 

the future prices of energy, the lifetime carbon savings, and increased thermal comfort. 

Three primary challenges exist in the current stochastic modeling for building stock energy use:  

(a) lack of building details for massive infrastructures (e.g. thermal properties such as insulations, 

glazing); (b) uncertainty caused from human behaviors (e.g., occupant schedule, equipment power density); 

and (c) lack of actual building energy use data for validation or calibration to reduce errors. 

Obtaining energy usage data is one of the main challenges for the calibration. In most cases, the 

public data is only available at the macro-level (i.e., at the district, urban, or national level). In another 

research by Booth et al. (Booth et al., 2013), they suggested a method to calibrate micro-level models using 

macro-level data. A hierarchical framework was proposed to utilize a combination of regression analysis 

and Bayesian inference. The top-down stochastic method was employed to infer average energy 

consumption for different dwelling types using aggregated macro-level energy statistics. The top-down 

analysis at the macro-level provided the data for calibrating the input parameters of the bottom-up 

probabilistic engineering models at the micro-level (i.e., at an individual building level). 

Zhao (Fei Zhao, 2012; Fei Zhao et al., 2016) proposed an approach to replicate an office building 

stock energy use in Chicago, U.S. from the survey data. This method used a linear inverse problem to derive 
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design parameters of buildings. At first, the authors set 30 unknown parameters and examined to quantify 

the prior uncertainty. Only 12 parameters out of 30 were chosen for calibration parameters after a sensitivity 

analysis. The multiple linear regression model using the selected 12 parameters was built to represent the 

normative building energy model for reducing computational effort. If the inverse problem is 

overdetermined, a set of values for the unknown parameter can be sampled by approximately satisfying the 

linear equation using Markov Chain Monte Carlo. In the validation, the predicted EUI distribution from the 

inverse problem was approximately identical with the EUI distribution of CBECS 2003 office buildings 

(765 samples, adjusted for Chicago’s climate). The estimated parameter distributions were significantly 

different from the actual parameter distributions in CBECS 2003. The author indicated that the predicted 

building parameter distributions should not be considered as the real values, but the “best guess” of the real 

distributions that will produce the similar outcome of the real world. This “best guess” can be further 

improved using more measurement data to quantify the measurement errors between the data and the model. 

Tian and Choudhary (Tian & Choudhary, 2012) applied the process to the school buildings in 

London, U.K. In the parameter estimation step, the authors considered two approaches for implementing 

the calibration: linear inverse problem and Bayesian inference. The main difference between two 

approaches is in the assumption of prior distributions. Linear inverse problem is represented as uniform 

distribution so that it is unbiased. Bayesian inference allows the user to specify the shape and spread on the 

prior distributions. The advantage of Bayesian calibration relative to the linear inverse problem is that one 

can utilize existing knowledge of building stock from previous survey, research, and reports. The 

distributions of input parameters were inferred to the observed energy consumption data. The inferred 

distributions of input parameters were used to quantify the benefits of energy conservation measures (ECMs) 

for the building stock. The calibration procedure for the individual building is similar to Heo (Y. Heo, 2011; 

Y. Heo et al., 2012)’s procedure. However, in this study, the calibration procedure was repeated to represent 

the building stock of secondary schools in London. They derived 2,000 sample from energy consumption 

data in the technical report. Then, the calibration with 5,000 of MCMC iterations was performed for every 

sample value of 2,000 energy data. Since the resulting total number of samples is extremely large (5,000 ×
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2,000), the authors resampled 10,000 sets from the large set. This method could reduce the simulation run-

time using the simple surrogate model (linear regression model) although they need to run a large number 

of calibrations. 

A. Collate building stock information

B. Generate energy model with 

statistical averages of parameters

Representational 

Energy model

A. Specify ranges for mode inputs

B. Sample from input distributions

C. Run representational energy model

D. Derive dominant input parameters

Sensitive Analysis

A. Sample from dominant input 

distributions

B. Run representational energy model

C. Generate statistical models

Surrogate Model

A. Linear inverse problem

B. Bayesian inference

Parameter 

Estimation

A. Modify relevant parameters

B. Sample from modified distribution

C. Re-run surrogate model

Analysis & 

Prediction

Generate 2,000 samples of gas use intensity (i = 2,000)

Obtain one sample from sample set

For a given gas use intensity, get parameter values

Run Inverse problem and Bayesian inference

Iterations complete for whole samples ?

(i=2,000)

Combine all the inferred distributions (5,000*2,000)

Resample to get 10,000 sample

Yes

No

Start

End

Obtain the inferred distributions for the given gas use intensity

(sample size: 5,000)

 

Figure 2-3 Procedure of probabilistic building stock energy model proposed by Tian et al. (Tian & 

Choudhary, 2012) 

 

In the study of Yamaguchi et al. (Yohei Yamaguchi, Suzuki, et al., 2013) to quantify the energy 

use for supermarket at the city scale, the authors also used the Bayesian calibration framework based on 

Kennedy & O’Hagan (Kennedy & O’Hagan, 2001), and the process of building simulation and calibration 

by Heo et al. (Y. Heo et al., 2012) and Booth et al. (Booth et al., 2012). They stated that the previous 

application of a probabilistic approach was only limited to calibrate the model parameters to a single 

resolution of simulation output (e.g., monthly energy consumption). The authors also mentioned that the 

uncertainty of the input parameters might be changed at different time resolutions. Their studies revealed 

that the building insulation performance might have a considerable impact on seasonal and weekly energy 

consumption while its effect on annual energy use might be modest. The authors proposed a hierarchical 

calibration that considers annual and weekly parameter variations. In the calibration method, they selected 



24 

parameters for annual and weekly variations to calibrate the developed archetype energy model. Then, the 

input parameters were calibrated based on weekly energy consumptions and annual energy consumption. 

The proposed calibration method can consider the overall characteristics of the building stock and the 

influences of meteorological conditions caused by seasonal variations in energy consumption. 

Parameter screening (Factorial Sampling Analysis)

1. Annual energy use intensity [MJ/(m2· year)]

2. Weekly variation of energy consumption

Bayesian calibration using 5 food supermarkets 

with time series energy consumption

Bayesian calibration using 35 food supermarkets 

with annual energy consumption

Estimation of energy consumption of whole food 

supermarket stock in the region

List of calibration parameters

A) Dominant parameters on Annual energy use

B) Dominant parameters on Weekly energy use

Posterior distribution of annual dominant 

parameters for 5 supermarkets1. Calibration of annual dominant parameters

2. Calibration of weekly dominant parameters

Posterior distribution of weekly dominant 

parameters

Posterior distribution of annual dominant 

parameters 

 

Figure 2-4 Proposed calibration process by Yamaguchi et al. (Yohei Yamaguchi, Suzuki, et al., 2013) 

Kim et al. (J.-H. Kim et al., 2015) introduced "lifestyle factor" in the optimization method to 

consider the combined effect of occupancy variabilities such as presence, an operation of set-point 

temperatures, lighting schedules, and equipment use. The "lifestyle factor" is treated as a stochastic variable 

with four other variables: cooling coefficient of performance (COP), set-point temperature, internal gain, 

and infiltration. By considering the occupant factor, they reproduce more realistic EUI distribution for 2,182 

apartment units in Korea than a deterministic method. 

Zhao (Fei Zhao et al., 2016) proposed an approach to replicate an office building stock energy use 

in Chicago, U.S. from the survey data. This method used a linear inverse problem to derive design 

parameters of buildings. At first, the authors set 30 unknown parameters and examined to quantify the prior 
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uncertainty. Only 12 parameters out of 30 were chosen for calibration parameters after a sensitivity analysis. 

The multiple linear regression models using the selected 12 parameters was built to represent the normative 

building energy model for reducing computational effort. If the inverse problem is overdetermined, a set of 

values for the unknown parameter can be sampled by approximately satisfying the linear equation using 

Markov Chain Monte Carlo. In the validation, the predicted EUI distribution from the inverse problem was 

approximately identical with the EUI distribution of CBECS 2003 office buildings (765 samples, adjusted 

for Chicago’s climate). The estimated parameter distributions were significantly different from the actual 

parameter distributions in CBECS 2003. The author indicated that the predicted building parameter 

distributions should not be considered as the real values, but the “best guess” of the real distributions that 

will produce the similar outcome of the real world. This “best guess” can be further improved using more 

measurement data to quantify the measurement errors between the data and the model. 

Sokol et al. (Sokol et al., 2017) compared stochastic building stock energy modeling based on 

Bayesian calibration to deterministic simulation using literature, building data, adjusted variables using 

energy data. The deterministic archetype method is unable to represent the measured EUI distribution. In 

the Bayesian calibration, the calibration using monthly energy data is more accurate for predicting seasonal 

trends than the calibration using annual energy data.   
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Table 2-2 Stochastic building energy models 

Author Year Spatial Scale Temporal 

resolution 

Building 

simulation 

tool 

Meta-

model 

Calibration 

method 

Heo et al. (Y. 

Heo, 2011; Y. 

Heo et al., 2012) 

2011, 

2012 

Individual 

building 

Monthly Engineering 

model 

(EnergyPlus, 

EPSCT) 

GPE Bayesian 

Booth et al. 

(Booth et al., 

2012) 

2012 District scale 

(35 flats) 

Daily 

(61 days) 

Engineering 

model (EPSCT) 

GPE Bayesian 

Tian et al. (Tian 

& Choudhary, 

2012) 

2012 Urban scale Annual Engineering 

model 

(EnergyPlus) 

MLR Bayesian/ 

Inverse 

problem 

Choudhary and 

Tian (R. 

Choudhary & 

Tian, 2013) 

2012 Urban scale Annual Statistic model - Bayesian 

Booth and 

Choudhary 

(Booth & 

Choudhary, 

2013) 

2013 District scale 

(15,000 

houses) 

Annual Engineering 

model (EPSCT) 

- Bayesian 

Booth et al 

(Booth et al., 

2013) 

2013 Urban scale Annual Engineering 

model (EPSCT) 

- Bayesian 

Kim et al. (Y.-J. 

Kim, Yoon, et 

al., 2013) 

2013 Individual 

building 

Monthly Engineering 

model 

(EnergyPlus, 

EPSCT) 

- Bayesian 

Yamaguchi et 

al. (Yohei 

Yamaguchi, 

Choudhary, et 

al., 2013) 

2013 District scale 

(35 

supermarkets) 

Annual Engineering 

model (In-

house model ) 

- Bayesian 
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Li et al. (Qi Li et 

al., 2015) 

2015 Individual 

building 

Monthly Engineering 

model 

(EnergyPlus) 

MLR Bayesian 

Kim et al. (J.-H. 

Kim et al., 2015) 

2015 District scale 

(2,182 

apartment 

units) 

Monthly (4 

months) 

Engineering 

model (EPSCT) 

- Optimization 

Heo et al. 

(Yeonsook Heo, 

Graziano, et al., 

2015) 

2015 Individual 

building 

Monthly Engineering 

model (EPSCT) 

GPE Bayesian 

Tian (Tian, 

Wang, et al., 

2014) 

2016 Individual 

building 

Monthly Engineering 

model 

(EnergyPlus) 

MLR Bayesian 

Zhao (Fei Zhao 

et al., 2016) 

2016 Urban scale Annual Engineering 

model (EPSCT) 

MLR Inverse 

problem 

Kang and Krarti 

(Kang & Krarti, 

2016) 

2016 Individual 

building 

Monthly Engineering 

model 

(eQUEST) 

GPE Bayesian 

Li et al. (Qi Li et 

al., 2016) 

2016 Individual 

building 

Monthly Engineering 

model 

(EnergyPlus) 

MLR, 

GPE 

Bayesian 

Sokol et al. 

(Sokol et al., 

2017) 

2017 Urban scale Annual, 

Monthly 

Engineering 

model 

(EnergyPlus) 

PR Bayesian 

GPE: Gaussian Process regression Emulator, MLR: Multiple Linear Regression model, PR: polynomial 

regression model 

 

2.6 Issues on existing stochastic building stock energy models 

 

The probabilistic methods were used in building energy simulation to address the uncertainty 

challenge of deterministic building energy stock model. Monte Carlo method enables the deterministic 

building energy model to assess the probabilistic distribution of building energy consumption. Particularly, 
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the use of calibration method will improve the predictability of the building stock model. Stochastic 

calibration methods using engineering-based model allow users to take into account the uncertainties of 

unknown input information in representative building models. Moreover, it can analyze the impacts of new 

energy conservation measures taking advantage of the features of the engineering-based models. However, 

there are still remaining issues in the existing stochastic building stock energy models. Therefore, in this 

section, we discuss the limitations of the current stochastic building stock energy model and suggest 

possibilities for improvement. 

2.6.1 Computational time 

Stochastic calibration methods such as Bayesian inference and inverse problem incur a high 

computational cost. They use an MCMC to draw the posterior distributions for unknown parameters. The 

number of iterations for MCMC varies by model characteristics such as the number of unknown parameters, 

the range of prior distribution, etc. For one MCMC process for an individual building, it requires a number 

of iterations ranging from thousands to tens of thousands: 4,000 (Y.-J. Kim, Yoon, et al., 2013), 5,000 (Tian 

& Choudhary, 2012), 20,000 (Tian, Wang, et al., 2014), 25,000 (Fei Zhao, 2012), 30,000 (Qi Li et al., 2015), 

and 100,000 (Tian et al., 2016). When the MCMC process is applied to building stock, it will require 

additional iterations. 

In an attempt to reduce computational time for dynamic building energy simulation, the following 

approaches have been proposed: simplified energy models, parameter screening, and meta-models.  

Simplified models use the simple description of a building and its systems. It can drastically reduce 

simulation time as relative to the time required for the dynamic building energy simulation such as 

EnergyPlus, eQUEST, and TRNSYS. Normative model (e.g. EPSCT (Lee et al., 2011)) was employed in 

several studies (Booth et al., 2012; Y. Heo, 2011; Y. Heo et al., 2012; Y.-J. Kim, Yoon, et al., 2013; Fei 

Zhao, 2012). Simple hourly method” based on RC network used in CEN-ISO 13790 was employed to 

calibrate and optimize the unknown parameters (Henze et al., 2014; Jacob et al., 2010; Pavlak et al., 2013). 

However, those simplified models have limitations to forecast the impact of new technologies. 
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Parameter screening performs a sensitivity analysis and identifies the dominant parameters (input) 

affecting building energy use (output) for energy simulation models and observation study. By selecting 

only key variables as calibration parameters, one can reduce the number of iterations in the MCMC process. 

For a detailed review of sensitivity analysis, please refer to (Pianosi et al., 2016; Saltelli et al., 2000; Tian, 

2013). Menberg et al. (Menberg et al., 2016) compared three sensitivity analysis methods in terms of 

computational costs and extractable information. However, the importance of the parameters can vary 

depending on the sensitivity analysis method and the target output (e.g. total, electricity, or gas energy). 

There is a need for a method that can determine the importance of parameters while considering various 

sensitivity methods and outputs. Moreover, there is insufficient research on how many parameters should 

be used for the calibration. Booth et al. (Booth et al., 2012) pointed out that selecting the number of 

calibration parameters is a “balancing act.” By reducing calibration number of parameters, uncertainty in 

uncalibrated parameters is subsumed into the calibrated parameters. On the other hand, increasing the 

number of calibration parameters can lead to a reduction of accuracy and effectiveness of the Bayesian 

calibration (Booth et al., 2012). It is necessary to study the effects of the calculation time and the accuracy 

of the model depending on the number of parameters selected. 

A meta-model (also called surrogate model) can be defined as a “model of model” (Eisenhower, 

O’Neill, Narayanan, et al., 2012), which is simpler and computationally faster than the original model. 

Different meta-models were applied to reduce simulation time in many studies: Multiple linear regression 

model (Manfren et al., 2013; Tian & Choudhary, 2012; Tian, Wang, et al., 2014; Fei Zhao, 2012), Gaussian 

process emulator (Booth et al., 2012; Y. Heo, 2011; Y. Heo et al., 2012; Manfren et al., 2013) and Support  

Vector  Machines (Eisenhower, O’Neill, Narayanan, et al., 2012). Wei et al. (Wei et al., 2015) investigated 

the predictive performance of six meta-models (full linear, Lasso, MARS, SVM, bagging MARS, and 

boosting) developed based on measured data. Tian et al. (Tian et al., 2015) compared the accuracy of eight 

meta-models for the 114 campus buildings. Kim (Y. J. Kim, 2016) compared a prediction capability of 

Gaussian process emulator and polynomial chaos expansion for an uncertainty quantification. However, 

there are few studies on the effect of meta-model accuracy on the calibration. Further research is required 
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to determine which meta-models are available for the calibration. It is necessary to compare the advantages 

and disadvantages of each meta-model and the effect of the meta-model accuracy on the calibration results. 

2.6.2 Building stock information for representative building 

Building stock models require a wide range of information including geometric and non-geometric 

factors to develop representative buildings (archetypes). In practice, such building stock information is 

rarely available to classify and develop the representative building models. Most of existing stochastic 

building stock models are limited to one building type and developed with sufficient building stock 

information. If information is sufficient, buildings are classified into archetypes based on building 

properties such as building function and age. Ballarini et al. (Ballarini et al., 2014) classified residential 

archetypes at European level by location, age, building size, and shape. Ö sterbring et al. (Ö sterbring et al., 

2016) integrated measured energy use and envelope area from a 2.5D GIS model to building characteristics 

for age-type building stock classification. Although the classification is based on such sufficient building 

stock information, there is a possibility of being influenced by the analyst’s subjective decision. More 

research is required to provide appropriate and robust criteria for classifying archetypes. Classification and 

clustering methods using machine learning may be considered. On the other hand, if there is missing data 

in the building stock information, further study is required how to obtain the alternative information to 

substitute the required data. It is also necessary to explore how such insufficient information affects the 

accuracy of the building stock model. 

2.6.3 Uncertainty in human behavior  

Human behavior in building energy modeling remains the greatest uncertainty yet. Input parameters 

such as schedules of occupant presence, operation of appliance, equipment power density, lighting power 

density, and heating and cooling set point temperature are related to human behavior. In particular, an 

occupant schedule is the most important factors to classify building type. Such parameters related to human 

behavior have a significant impact on energy use in individual buildings (Clevenger et al., 2014; Hong & 

Lin, 2013; Silva & Ghisi, 2014). However, in building energy modeling, it has traditionally been calculated 
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using deterministic simplified hourly schedules and peak load. Much research is underway to identify the 

uncertainty of human behavior in buildings. Most of the research has been based on surveys, but in recent 

years, there has been an attempt to develop stochastic occupancy profiles for individual building using 

occupancy sensor (Diraco et al., 2015; Duarte et al., 2013; Wang et al., 2016), Bluetooth positioning (J. 

Zhao et al., 2014), and random process (Chen et al., 2015; O’Neill & Niu, 2017). The identification of 

actual occupancy schedule may contribute to accurate building energy forecasting and occupancy-based 

control. 

For the building stock, Evins et al. (Evins et al., 2015) confirmed that physical variables such as 

fabric properties and geometries have a greater impact on energy use than behavioral variables such as 

occupancy and lighting. However, they found that stochastic schedules provide much smoother hourly 

energy use profile due to interactions of different occupant, appliance profiles. They also recommended 

using stochastic profiles rather than deterministic profiles when temporal behavior is important, such as 

finding peak loads. He et al. (He et al., 2015) emphasized the need for stochastic occupancy profiles for 

high-resolution temporal (e.g. hourly) energy analysis, showing that deterministic profiles have unrealistic 

peak loads. Comparing thermal demands from deterministic and stochastic schedules, there was substantial 

differences in hourly demand profiles but relatively small differences in total daily demands. As pointed 

out by He et al. (He et al., 2015), for energy analysis with low temporal resolution (e.g. annual) or large-

scale regions, the effect of human behavior may not be significant due to an averaging effect. In addition 

to studying appropriate occupant behavior models, it is necessary to grasp more precisely the impact of 

human behavior on building stock energy use at various temporal and spatial resolutions.  

2.6.4 Energy use data for calibration 

The calibration process requires quality energy use data. Most building stock models perform 

calibration with sufficient energy use data. However, most of the modeler have difficulties in accessing the 

energy utility data for individual buildings due to privacy issues and absence of monitoring systems. It is 

necessary to study whether the model can be calibrated with insufficient energy use data. Tian et al. (Tian 

et al., 2016) investigated how to determine informative energy data in Bayesian calibration using correlation 
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analysis and a hierarchical clustering method. This method can improve understanding of the amount and 

quality of energy usage data required for Bayesian calibration. 

2.6.5 Calibration process and results 

Another challenge arises from the calibration process. Most of the building stock energy models 

include complicated Bayesian calibration process requiring specialized knowledge.  The lack of 

transparency in existing models to date in the calibration process may pose challenges in accessing the 

models and interpreting results. Careful technical and systematic details in Bayesian calibration are required 

for policymakers and public.   

There is also an issue of whether the calibrated building parameter distributions can accurately 

represent the real distribution. Zhao (Fei Zhao et al., 2016) argued in his research that the calibrated building 

parameter distributions should be considered as “best guess” of the real world. Future research should 

investigate the relationship between the estimated parameter distribution and the actual distribution, which 

will improve an understanding the energy conservation measures of building stock. 

2.6.6 Aggregation 

Aggregation is one of the most distinctive aspects of stochastic building stock modeling compare 

to the individual building modeling. There are two types of aggregation. One is the aggregation from the 

representative building to one type of building stock. Another is collecting different building stock types.  

The most straightforward method is that the energy use of building stocks is calculated by multiplying the 

EUI distribution of representative building models by total floor area. Tian (Tian & Choudhary, 2012) used 

the number of students per school to estimate gas consumption by all schools in London when the total 

floor area of schools is not available. More research is required to combine the diverse building stock types 

in the target district and to explore how to aggregate on different temporal and spatial scales. 

2.7 Summary 

Many researchers have made considerable efforts to advance the estimation of building energy 

consumption at large-scale. These models can be broadly divided into two methods: top-down and bottom-
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up. The bottom-up models can be further classified into two types of approaches: statistical and engineering 

models. Top-down approaches are often used for supply analysis based on the energy demand by taking 

account of historical data and macroeconomic indicators. The top-down models lack the comprehension of 

building characteristics and transparency in the correlations between the indicators. Moreover, the top-

down models have limitations to disaggregate the total energy consumption into the each sector or building 

stocks. 

The bottom-up statistic models work at a disaggregated level, but it needs numerous databases of 

empirical data to investigate the relationships between each component and energy use. The statistical 

models have a limited capacity to assess the impact of energy conservation measures or new technologies. 

The bottom-up deterministic engineering building stock models can consider the impact of new 

technologies to reduce energy consumption in the building stock without historical data. However, these 

models have disadvantages of computational efficiency and capability of covering the uncertainties.  

To overcome the uncertainty issue, some stochastic building stock models were proposed. 

Currently, there have been only a few studies that take into account the uncertainty associated with the 

large-scale building stock. However, these stochastic building stock energy models have considerable 

limitations, including high computational cost, low accessibility to the detailed building stock information 

and lack of transparency in the calibration process. Further research should be conducted to predict and 

evaluate the building stock energy consumption in order to cope with these challenges. 
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CHAPTER 3: STOCHASTIC-DETERMINISTIC-COUPLED APPROACH 

FOR BUILDING ENERGY PREDICTION 

3.1 Introduction 

To address the uncertainty issues, some authors proposed probabilistic methods to represent the 

uncertainty of input parameter, by defining the input parameters as distributions. Moreover, the building 

stock energy models were calibrated based on the statistical methods. For the calibration, an linear inverse 

problem (Tian & Choudhary, 2012; Fei Zhao et al., 2016) and Bayesian inference (Booth et al., 2012; Tian 

& Choudhary, 2012) were used (See Table 3-1).  

The main purpose of this chapter to compare two approaches (linear inverse problem and Bayesian 

inference) for model calibration. Moreover, the effect of using meta-models for calibration is examined.  

The accuracy and computational cost are examined to select a proper method for estimation of building 

stock energy. This paper is structured as follows. First, the calibration processes of each literature were 

reviewed and compared at each step. Base on the compared methodologies, the combination of progress 

are established to examine the methodologies with theoretical backgrounds. Then, the suggested 

combinations are applied to predict the building energy use at the campus level. Finally, the estimated 

energy consumption data are compared to each other to find a proper methodology for the building stock. 

 

Table 3-1 Comparison of methodologies 

Author Building 

energy model 

Parameter 

screening 

Meta-

model 

Calibration 

method 

Aggregation 

Tian and 

Choudhary 

(Tian & 

Choudhary, 

2012) 

EnergyPlus Standardized 

Regression  

Coefficient 

Multiple 

Linear 

Model 

Linear 

inverse 

problem 

EUI*pupil 

number*assumed 

pupil density*factor of 

school size Multivariate 

Adaptive 

Regression 

Splines 

Bayesian 

Inference 
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Booth et al. 

(Booth et al., 

2012) 

EPSCT 

(Energy 

Performance 

Standard 

Calculation 

Toolkit) 

Morris 

method 

Gaussian 

Process 

Emulator 

Bayesian 

Inference 

Energy consumption 

*Number of buildings 

Zhao (Fei 

Zhao, 2012) 

EPSCT Stepwise 

regression 

analysis 

Multiple 

Linear 

Model 

Linear 

inverse 

problem 

Weighting factor 

3.2 Methodology 

 

Figure 3-1 Flowchart of progress 

3.2.1 Representative model 

3.2.1.1 Development of representative building  

The first step is to develop representative building models. After analyzing the building stock 

information such as building type, number of floors, building floor area and so forth, representative building 

models are developed to represent one building stock. It is necessary to choose proper number of 
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representative building models since it affects both accuracy of result and analysis time. For example, if 

one selected only two representative buildings such as residential and commercial building, the 

computational cost will be not expensive. On the other hand, if more detailed archetypes are developed 

considering the building’s age or functions, the computation cost will be expensive, however, more accurate 

building energy prediction is avaiable. 

 

3.2.1.2 Building energy simulation tools 

For the building stock energy model, diverse building energy models have been adopted to estimate 

the building energy use of representative building. In the study of Tian and Choudhary (Tian & Choudhary, 

2012), EnergyPlus was employed as an energy simulation model. Transient simulation models such as 

EnergyPlus, eQUEST can be used to model a building and systems at a high level of detail. The transient 

simulation models has an advantage when detailed design and sizing of specific systems need to be 

evaluated in terms of the overall energy consumption in the building (Y. Heo, 2011). However, this level 

of detail tends to place burden to the modeling process for large-scale simulations. 

Since computational intensive energy simulation is necessary for stochastic modeling, Booth 

(Booth et al., 2012) and Zhao (Fei Zhao, 2012) used a quasi-steady-state model based on the Energy 

Performance Standard Calculation Toolkit (EPSCT) as an energy model. This model is based on a set of 

normative calculations outlined in the international standards set by the European Committee for 

Standardization (CEN) and the International Organization for Standardization (ISO). The CEN-ISO based 

model is possible to generate deterministic energy use estimations for thousands of houses in a few minutes. 

However, such simple models have limitation to apply and estimate new technologies. 

3.2.1.3 Selecting uncertain input parameter 

In the individual building simulation model, there are numerous input variables. It is impossible to 

the user to know all of the input values correctly. Although the user identifies some design values, there 

might be differences between the design values and actual values due to other influences such as external 
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temperature fluctuations or occupancy’s use pattern. Therefore, the building simulation has inherent 

uncertainty.  

In the terms of building stock scale, it is also impossible to utilize one deterministic representative 

building model to represent the all buildings in the district. Since each building has a different function, 

envelope, schedule, and HVAC system, the representative building model also has many uncertainties. 

Therefore, the uncertain input parameters should be chosen to represent the probability of all buildings in 

the building stock.  

3.2.1.4 Input range 

To make a deterministic model to a probabilistic model, they specified a range of input parameters. 

Tian and Choudhary (Tian & Choudhary, 2012) adopted two categories of sufficient statistical data 

for the representative building model: (a) Building information such as floor area, height of buildings, 

construction characteristics. (b) Operational characteristics including the HVAC system, internal heat gains, 

detailed schedules for inputs. These data were collected from diverse sources such as published literature, 

the national survey (such as RECS, CBECS), and geographic information system (GIS) database. In 

addition, the sufficient actual energy use data are required to calibrate for the representative buildings.  

3.2.1.5 Monte Carlo simulation 

Once input parameter ranges are chosen, it is needed to propagate the uncertainty of the 

representative building model. Monte Carlo method has chosen to derive the stochastic results for each 

representative building in many studies (Booth et al., 2012; Y. Heo et al., 2012; Y.-J. Kim, Yoon, et al., 

2013; Tian & Choudhary, 2012; Yohei Yamaguchi, Suzuki, et al., 2013). Monte Carlo method is a 

computational method to obtain numerical results rely on repeated random sampling. It runs a number of 

deterministic dynamic energy simulation by sampling a set of input parameters from the input parameter 

ranges. The probabilistic outcomes could be obtained by Monte Carlo method. 
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3.2.2 Parameter screening (sensitivity analysis) 

The parameter screening is process to select the calibration parameters. The dominant input 

parameters on the simulation output can be identified by sensitivity analysis. Then, we can determine the 

number of parameters to be calibrated. 

Selection of the calibration parameter is important to the calibration progress. Booth et al. (Booth 

et al., 2012) viewed that selecting the number of parameters to calibrate is a “balancing act”. For a given 

amount of the observed data, if the number of parameters is too few, the uncertainty in un-calibrated 

parameters could be contained within the calibrated parameters, thus the physical meaning of the estimated 

posterior distribution can cause a distortion. On the contrary to this, when there are too many parameters to 

calibrate, the accuracy and effectiveness of the calibration methodology will be reduced for a given amount 

of measured data. Increasing in the number of calibration parameters entails the need for numerous runs for 

the calibration algorithm, resulting in a more computational effort for the calibration progress. A balance 

must be reached, therefore, between the accuracy of the calibration and the effort put into data collection. 

In Tian and Choudhary’s study (Tian & Choudhary, 2012), they performed the sensitivity analysis 

using SRC (Standardized Regression Coefficient) and MARS (Multivariate Adaptive Regression Splines). 

First four significant parameters out of the 16 parameters on heating energy consumption were selected as 

calibration parameters: the heating setpoint temperature, ventilation, infiltration rate and U-value of the 

roof. 

The factorial sampling method (FSA or Morris method) was utilized in Booth et al. (Booth et al., 

2012). FSA assesses the interactions between different parameters and can show the mean and standard 

deviation of the effect of varying an individual parameter visually. A large mean and large standard 

deviation indicates that the parameter is dominant to the result. Four parameters were selected for 

calibration: internal setpoint temperature, fraction of space heated, heating system COP and air leakage at 

50 Pa. 

Zhao performed a stepwise regression analysis to find the best subset and obtained 24 of 30 

candidate variables. Then, 24 variables were ranked by their absolute t-statistic values using multiple linear 



39 

regression. As a result, the first 12 variables were selected the calibration parameters (Fei Zhao, 2012). Tian 

also reviewed the sensitivity analysis methods in building energy analysis in his study (Tian, 2013).  

 

3.2.3 Meta-models (Surrogate models) 

As stated above, physical whole building model can be computationally expensive since it requires 

much computing time to process enormous parameters. The meta-model (surrogate model) can be 

introduced to overcome expensive computational cost. Meta-model is a statistic model that correlates the 

input and output of simulations. It can mimic the whole building energy model. The main reason for using 

meta-model is that it requires much less simulation time than running detailed building energy simulation 

models such as EnergyPlus, eQUEST. 

Tian (Tian & Choudhary, 2012) and Zhao (Fei Zhao, 2012) used multiple linear regression model 

(MLR) using OLS (ordinary least squares) that is most commonly used statistical method for estimation of 

building energy consumption. Booth (Booth et al., 2012) accepted the Gaussian Process Emulator (GPE). 

It is also a well-known technique for data analysis as it allows for dealing with problems associated with 

multiple time and space variables such as real-time building energy simulation and model predictive control 

since it can work with highly multivariate input/output (Manfren et al., 2013). The selection of meta-model 

should be conducted based on the consideration of the accuracy of the detailed energy model and the 

reduction of computational effort. 
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3.2.4 Calibration method 
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Figure 3-2 Concept of Bayesian calibration 

 

There is a discrepancy between the simulated result and observation data due to unknown input 

data and the uncertainty associated with a simulation. The calibration is a process to minimize the difference. 

It is also a method about how we can derive the input distribution by a statistical model having the output 

of model. Zhao (Fei Zhao, 2012) used the linear inverse problem, and Booth (Booth et al., 2012) utilized 

the Bayesian inference for calibration. Tian (Tian & Choudhary, 2012) calibrated using both methods and 

compared the results. In the linear inverse problem, the problem is considered as a linear inverse problem 

constrained by linear equality and inequality conditions (upper and lower bound of input parameters). On 

the contrary, we can specify our prior belief about the parameters in the Bayesian inference, and the 

posterior value are derived based on Bayesian theorem.  

The main difference between the two methods is the method of assuming the prior distribution of 

a parameter. Linear inverse problem can only specify uniform distribution with upper and lower bounds. In 

the Bayesian inference, it can define the shape of a distribution and range of input parameters. It enables to 
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use our existing knowledge from previous literature such as research, report, survey (Tian & Choudhary, 

2012). 

3.2.5 Combination of methodologies 

Based on the detailed review of three papers, we examined each progress in detail and selected four 

options for the possible combination. Table 3-2 contains the combination of method at each progress. In 

this study, the options were performed and compared considering accuracy and computational time.  

 

Table 3-2 Combination options of the process 
 

Representative 

model 

Parameter 

screening 

Meta-model Calibration method 

Opt.1 EnergyPlus Stepwise regression 

analysis 

- Bayesian Inference 

Opt.2 EnergyPlus Stepwise regression 

analysis 

Multiple Linear 

Model 

Linear inverse problem 

Opt.3 EnergyPlus Stepwise regression 

analysis 

Multiple Linear 

Model 

Bayesian Inference 

Opt.4 EnergyPlus Stepwise regression 

analysis 

Gaussian 

Process Emulator 

Bayesian Inference 

 

3.3 Demonstration of Principles  

3.3.1 Representative model 

EnergyPlus has been widely used in the individual building energy simulation filed and has been 

tested extensively. As mentioned above, the transient simulation models such as EnergyPlus tend to be a 

burden in the large-scale simulation due to its high level of detail. However, since we need to consider the 

expandability for application of new technologies, EnergyPlus was selected as an energy model. 

The buildings in University of Michigan at Ann Arbor (from now on UM) were chosen as a subject 

of the case study due to the detailed building and energy information available for 75 buildings on UM 
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campus. Energy Management team in UM has monitored the energy consumption of all UM buildings 

(“Energy Management Michigan,” n.d.). Other building information such as built year, renovation year, 

number of floors, building primary function can be gathered from another campus website (University of 

Michigan, n.d.). Out of 75 buildings, 30 buildings were chosen as a ‘campus building’ type according to 

building main function, energy use data. The campus building type includes office buildings, classroom 

buildings, halls, libraries. The campus building type in UM was utilized to compare the detail in the 

methodology. We will compare eight different methodologies through the campus building stock in UM. 

Then, we developed a representative building energy model for campus-type in UM. The base 

EnergyPlus model was created by the EnergyPlus Example File Generator (EEFG) (U.S. Department of 

Energy, n.d.). In the EEFG, building type was specified as an ‘Office’. The average number of floors and 

average total floor area of 30 campus type buildings in UM were used as a building geometry; average 

number of floor is four, and average total floor area is 10,337m2. The Building internal zone were simplified 

by four perimeter zones and one core zone. The Schedules were also generated by EEFG. The TMY3 

weather data of Ann Arbor, MI was utilized for the simulation model. This input values created by the 

EEGF was modified to apply the input parameter ranges.  

 

Figure 3-3 Representative building model for Campus-type 

There are much input parameters for a dynamic building energy simulation model. In this study, 

we consider 12 parameters as input variables based on existing literature. (Booth et al., 2012; Tian & 
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Choudhary, 2012; Fei Zhao, 2012): Roof Insulation Thickness [m], Wall Insulation Thickness [m], Window 

U-Factor [W/m2K], Window Solar Heat Gain Coefficient [-], Equipment power density [W/m2], Lighting 

power density [W/m2], Heating setpoint [◦C], Cooling setpoint [◦C], Occupancy [m2/person], infiltration 

[ACH], Boiler efficiency [-], Cooling COP [-]. These input variables are listed in Table 3-3. The distribution 

of input parameters was assumed as a triangular distribution to consider the maximum, minimum range, as 

well as the most plausible value for each parameter. The values indicate a triangular distribution: Minimum 

- Mode - Maximum. These ranges are derived from the extant literature, standards, and report, then applied 

30% of the safety factor to represent the plausible values for existing building parameters. 
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Table 3-3 Variable list and input range 
 

Model Parameters 

[Unit] 

Values  

(Campus Type)* 

Source 

P1 Roof Insulation 

Thickness (ROOF) 

[m] 

0.01 - 0.116 - 0.25 (ASHRAE, 2004; Deru et al., 2011; Griffith et al., 

2008; Huang & Franconi, 1999; Tian & 

Choudhary, 2012; Fei Zhao, 2012) 

P2 Wall Insulation 

Thickness (WALL) 

[m] 

0.01 - 0.046 - 0.25 (ASHRAE, 2004; Deru et al., 2011; Griffith et al., 

2008; Huang & Franconi, 1999; Tian & 

Choudhary, 2012) 

P3 Window U-Factor 

(WIN) [W/m2K] 

1 - 3.35 - 5 (ASHRAE, 2004; Deru et al., 2011; Huang & 

Franconi, 1999; Tian & Choudhary, 2012) 

P4 Window SHGC 

(SHGC) [-] 

0.1 - 0.39 - 0.9 (ASHRAE, 2004; Deru et al., 2011; Tian & 

Choudhary, 2012) 

P5 Equipment power 

density (EPD)  

[W/m2] 

1 - 11.67 - 60 (S Heiple, 2007; Huang & Franconi, 1999; 

Thornton et al., 2011; Tian & Choudhary, 2012; 

Fei Zhao, 2012) 

P6 Lighting power 

density (LPD) 

[W/m2] 

1 - 12.43 -40 (ASHRAE, 2004; S Heiple, 2007; Huang & 

Franconi, 1999; Tian & Choudhary, 2012; Fei 

Zhao, 2012) 

P7 Heating setpoint 

(HSP) [◦C] 

17 -21 - 25 (Bonnema et al., 2013; Deru et al., 2011; Tian & 

Choudhary, 2012) 

P8 Cooling setpoint 

(CSP) [◦C] 

20 - 24 - 28 (Deru et al., 2011; Tian & Choudhary, 2012) 

P9 Occupancy (OCC) 

[m2/person] 

2 - 14.37 - 56.7 (Bonnema et al., 2013; Deru et al., 2011; Huang 

& Franconi, 1999; Fei Zhao, 2012) 

P10 Infiltration rate (INF) 

[ACH] 

0.1 - 0.56 - 1.3 (Griffith et al., 2008; Y. Heo, 2011; C. J. Hopfe & 

Hensen, 2011; Tian & Choudhary, 2012) 

P11 Boiler efficiency 

(BOILER) [-] 

0.5 - 0.72 - 0.95 (Deru et al., 2011; Griffith et al., 2008; Huang & 

Franconi, 1999; Tian & Choudhary, 2012) 

P12 Cooling COP (COP) 

[-] 

2 - 2.65 - 4 (Deru et al., 2011; Yu & Chan, 2004) 

* Values indicate a triangular distribution: Min. - Mode – Max. 
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3.3.1.1 Propagation of uncertainty 

The Monte Carlo (MC) method was used to derive the probabilistic results. The MC simulation 

generates a random number from the given range of the input parameter and iterates the energy simulation. 

Latin Hypercube Sampling (LHS) (McKay et al., 1979) is one of the most used sampling methods in the 

studies that deal with a stochastic building simulation. It was applied and validated in a number of previous 

studies. (Eisenhower, O’Neill, Fonoberov, et al., 2012; Y. Heo et al., 2012; C. J. Hopfe & Hensen, 2011; 

Y.-J. Kim, Yoon, et al., 2013; Tian, Wang, et al., 2014; Fei Zhao, 2012) The  Monte Carlo simulation was 

performed using jEPlus tool (Y. Zhang & Korolija, 2010) to sample the random number and iterate 

EnergyPlus. 

3.3.1.2 Sampling size 

To find proper LHS sample size, the convergence diagnostic was conducted. The number of LHS 

increases from 10 to 1,500, gradually. The LHS is run ten times for each sample size. The Root Mean 

Square Error (RMSE) is used to evaluate the accuracy of the LHS size. 

 

 RMSE = (
1

N
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑁

𝑖=1

)

1
2

 (3.1) 

 

Figure 3-4 LHS sampling size 
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As seen in Figure 3-4, the RMSE does not change substantially where the sample sizes are greater 

than 500. In order to minimize the effect of uncertainty from the random sampling, therefore, a sample size 

of 1,000 was selected for this simulation. 

3.3.1.3 Monte Carlo method result 

 

 

Figure 3-5 Results of MC simulation  

The results of MC simulation using EnergyPlus are shown in Figure 3-5. The electricity and gas 

consumptions calculated in EnergyPlus were combined as a unit of GJ (Gigajoule) and then divided by the 

total floor area of the representative building to present the energy use intensity (GJ/m2). There is a 

significant difference between MC simulation results and the measured data. The calibration will be 

conducted by modifying the input parameters to reflect the actual energy consumption distribution. 

3.3.2 Parameter screening (sensitivity analysis) 

Regression method is one of the most frequently used methods for sensitivity analysis in building 

energy analysis (Tian, 2013). It identifies the variables that have a significant impact on the simulation 

output to determine the number of parameters for calibration. A lower number of parameters reduces the 

computational cost. The 1,000 samples from MC simulation are used to perform a stepwise regression 

analysis. Table 3-4 presents the list of the t-values, p-values, change of R2 and adjusted R2 of each regression 
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step. 12 parameters are ranked by the descending order of t-values. The higher absolute t-values means that 

it is more significantly correlated to the EUI. The EPD is most dominant, and the CSP is the least dominant 

on the annual total EUI. 

For the parameter screening, the R function “regsubsets()” in the “leaps”  package (Thomas 

Lumley based on Fortran code by Alan Miller, 2017) can find the best subsets using Bayesian information 

criterion (BIC) (Schwarz, 1978). Figure 3-6 shows the best subset of a particular size and Figure 3-7 

indicates the change of BIC according to variable size. The change of BIC is reduced dramatically after 

eight variables. Therefore, eight parameters are selected for meta-model and calibration parameters. The 

adjusted R-squared of selected eight parameters is 0.9229 while that of all parameters (12) is 0.9262. There 

are no significant differences in adjust R-squared between models with 12 variables and 8 variables. 

However, as results of convergence diagnostic (Gelman & Rubin, 1992), the Bayesian calibration for 12 

parameters required 4,000 iterations, and the Bayesian calibration for 8 parameters required 3,000 iterations. 

By reducing the calibration variables, it is possible to reduce the iteration of simulation required for the 

Bayesian calibration. In this way, parameter screening should be performed taking into account the balance 

between model accuracy and computational cost. 

 

Table 3-4 Sensitivity analysis of 12 parameters for Campus type buildings 

Ranking Parameters t value p-value R2 R2(adj) 

1 EPD 81.52 < 0.001 0.5229 0.5224 

2 LPD 44.77 < 0.001 0.6825 0.6818 

3 INF 44.60 < 0.001 0.8377 0.8372 

4 BOILER -21.98 < 0.001 0.8775 0.8770 

5 HSP 21.28 < 0.001 0.9090 0.9086 

6 WIN 9.47 < 0.001 0.9161 0.9156 

7 COP -7.39 < 0.001 0.9204 0.9198 

8 ROOF -6.45 < 0.001 0.9236 0.9229 

9 SHGC 4.92 < 0.001 0.9254 0.9247 

10 WALL -4.03 < 0.001 0.9266 0.9258 

11 OCC 2.06 < 0.001 0.9269 0.9260 

12 CSP 1.60 < 0.001 0.9270 0.9262 
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Figure 3-6 Best subset of a particular size  

from one to 12 variables 

 

Figure 3-7 BIC tracking according to variable si

ze 

 

Figure 3-8 Required iterations number depending on the number of parameters 

 

3.3.3 Meta-models 

Monte Carlo simulation method is performed to present stochastic uncertainty in building 

simulation. It is a way to iterate the simulation using sampling from uncertain input parameter range. A 

number of samples are necessary to ensure the quality of simulation. It derives massive computation power 

and efforts. It demands significantly time-consuming to use the dynamic building energy model like 

EnergyPlus for Monte Carlo simulation. Therefore, two types of meta-models replacing the EnergyPlus 

were considered to reduce the computational time. 1,000 of input-output sets were obtained using 
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EnergyPlus. Among 1,000 of data, 700 of data are used for training data to make model and then 300 of 

data are used for testing. Three options could be considered in this step: None meta-model (using 

EnergyPlus for calibration), multiple linear regression model (MLR), and Gaussian process emulator (GPE). 

 

3.3.3.1 Multiple linear regression model 

The simplest model of regression is a multiple linear regression model (MLR). This model can be 

formed as the following expression: 

 yi = 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 휀𝑖 = 𝑥𝑖
𝑇𝛽 + 휀𝑖   , i = 1, … , n (3.2) 

Where yi  is the output, x  denotes inputs, β  is regression coefficients and ε  is error. The 

multiple linear regression model was developed using ‘lm’ function in R-package ‘stats’ (R Core Team, 

2016). 

3.3.3.2 Gaussian Process Emulator 

Gaussian processes (GPs) are commonly utilized as surrogate statistical models for predicting 

output of computer experiments (Santner et al., 2003). A Gaussian process defines a probability distribution 

of 𝑓(𝑥) which is composed of input 𝑥 and target 𝑦. Then distribution of 𝑓(𝑥) is used to predict the 

value of y∗ . The basic idea of the GP is that the corresponding output are modeled as a multivariate 

Gaussian distribution. The multivariate Gaussian is defined as: 

 
p(𝑥; μ, Σ) =

1

(2𝜋)𝑛/2|Σ|1/2
exp (−

1

2
(𝑥 − 𝑢)𝑇𝛴−1(𝑥 − 𝜇)) 

(3.3) 

where, 𝑥  is a vector valued random variable; μ  is the mean of the distribution;  Σ  is the 

covariance matrix;  𝑛 is the number of input variables; |Σ| is the determinant of covariance matrix 

There are several useful characteristics of the multivariate Gaussian: normalization, 

marginalization, conditioning and summation (Rasmussen, 2006). GP model is defined by a mean function 

𝑚(∙)  and a covariance function k(∙,∙) , with 𝑥1, … , 𝑥𝑛 ∈ 𝑋  and the corresponding value 

𝑓(𝑥1), … , 𝑓(𝑥𝑚) :  

 
[

𝑓(𝑥1)
⋮

𝑓(𝑥𝑚)
] = 𝑁 ([

𝑚(𝑥1)
⋮

𝑚(𝑥𝑚)
] , [

𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑚)
⋮ ⋱ ⋮

𝑘(𝑥𝑚, 𝑥1) ⋯ 𝑘(𝑥𝑚, 𝑥𝑚)
]) 

(3.4) 
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We can denote this using notation, 

 𝑓(∙)~𝐺𝑃(𝑚(∙), 𝑘(∙,∙)) (3.5) 

 𝑚(𝑥) = 𝐸[𝑥] (3.6) 

 𝑘(𝑥, 𝑥′) = 𝐸[(𝑥 − 𝑚(𝑥))(𝑥′ − 𝑚(𝑥′))] (3.7) 

Now, GP can be regarded as finding the mean function and covariance function. It is hard to find 

the covariance so that we assume that the covariance function has some particular parameter and it is called 

as kernel function 𝑘(𝑥, 𝑥′). Therefore, Gaussian processes are kernel based probability distributions and 

any valid kernel function can be used as a covariance function. Common covariance functions are discussed 

by Rasmussen (Rasmussen, 2006). A popular choice is the squared exponential (Ebden, 2008; Rasmussen, 

2006), scaling parameter σ𝑓 and length scale 𝑙 are hyperparameters which are identified from the training 

data using a maximum likelihood optimization. 

 
k(x, x′) = σ𝑓

2 exp (−
(𝑥 − 𝑥′)2

2𝑙2 ) 
(3.8) 

Once the mean and covariance functions are defined, GPs follows the basic rules of the multivariate 

Gaussians.  

Gaussian processes provide probability distributions over functions. Gaussian Process emulator 

(GPE) means making Gaussian process regression model using Gaussian process based on Bayesian 

theorem and training data.  

Consider observing a data set 𝐷 = {(𝑥𝑖, 𝑦𝑖)𝑖=1
𝑛 } = (𝑋, 𝑦). The GPE is developed with Gaussian 

noise error.  

 𝑦𝑖 = 𝑓(𝑥𝑖) + 휀𝑖 (3.9) 

Where the 휀𝑖 are i.i.d (independent identically distribute) noise variables 휀~𝑁(0, 𝜎2). The prior 

distribution over function f(∙)  is assumed as zero-mean Gaussian process and this simplifies the 

calculation without loss of generality. 

 𝑓(∙)~𝐺𝑃(0, 𝑘(∙,∙)) (3.10) 
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The posterior on 𝑓 is a GP since the prior on 𝑓 is a GP and likelihood is Gaussian. We can make 

predictions using this characteristic. 

 
𝑝(𝑦∗|𝑥∗, 𝐷) = ∫ 𝑝(𝑦∗|𝑥∗, 𝑓, 𝐷)𝑝(𝑓|𝐷)𝑑𝑓 

(3.11) 

we can use the marginal likelihood to compare and tune covariance functions 

 
𝑝(𝑦|𝑋) = ∫ 𝑝(𝑦|𝑓, 𝑋)𝑝(𝑓)𝑑𝑓 

(3.12) 

Assume that we want to predict the value y∗ at new input point X∗. The marginal distribution over 

any set of input points belonging to X should have a joint multivariate Gaussian distribution. 

 
[

𝑓
𝑓∗

] |𝑋, 𝑋∗ ∼ 𝑁 (0, [
𝐾(𝑋, 𝑋) 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗)
])  

(3.13) 

From the i.i.d. noise, 

 
[

휀
휀∗

] ~𝑁 (0, [𝜎2𝐼 0
0𝑇 𝜎2𝐼

])  
(3.14) 

Now, we can present GPE 

 

 
[

𝑦
𝑦∗

] |𝑋, 𝑋∗ = [
𝑓
𝑓∗

] + [
휀
휀∗

] ∼ 𝑁 (0, [
𝐾(𝑋, 𝑋) + 𝜎2𝐼 𝐾(𝑋, 𝑋∗)

𝐾(𝑋∗, 𝑋) 𝐾(𝑋∗, 𝑋∗) + 𝜎2𝐼
])  

(3.15) 

 

The predictive distribution of 𝑦∗ given 𝑦 is  

 y∗|𝑦, 𝑋, 𝑋∗ ~ 𝑁(𝜇∗, Σ∗) (3.16) 

Where  

mean function  μ∗ = 𝐾(𝑋∗, 𝑋)(𝐾(𝑋, 𝑋) + 𝜎2𝐼)−1𝑦 

covariance Σ∗ = 𝐾(𝑋∗, 𝑋∗) + 𝜎2𝐼 − 𝐾(𝑋∗, 𝑋)(𝐾(𝑋, 𝑋) + 𝜎2𝐼)−1𝐾(𝑋, 𝑋∗) 

The marginal likelihood which is a function of hyperparameters can be expressed as 

 𝑝(𝑦|𝑋) = 𝑁(0, 𝑘(𝑥, 𝑥′) + 𝜎2𝐼) (3.17) 

Where its log is: 
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ln 𝑝(𝑦|𝑋, 𝜃) = −
1

2
ln det(𝑘(𝑥, 𝑥′) + 𝜎2𝐼) −

1

2
𝑦𝑇(𝑘(𝑥, 𝑥′) + 𝜎2𝐼)−1𝑦

+ 𝑐𝑜𝑛𝑠𝑡 

(3.18) 

This equation can be optimized as a function σ𝑓, 𝑙 and 𝜎. 

Above analytical method is utilized to find the maximum likelihood estimates (MLE) of all 

unknown parameter (hyperparameters). Other methods to estimate the conditional posterior and predictive 

distributions are discussed by Rassmussen (Rasmussen, 2006) and Vanhatalo (Vanhatalo & Riihimäki, 

2012). In this study, GPE of given data set (the results of EnergyPlus Monte Carlo simulation) was 

developed using mlegp function in R-package ‘mlegp’. (Dancik, 2013) 

Table 3-5 shows the comparison between multiple regression linear model and Gaussian process 

emulator. GPE takes more time to build the model using given dataset while it is more accurate. GPE can 

emulate the result of EnergyPlus more correctly than Multiple Linear regression model. 

 

Table 3-5 Comparison between MLR and GPE 

 Multiple Linear Regression Gaussian Process Emulator 
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Pearson's 

product-

moment 

correlation 

0.962 0.985 

 

3.3.4 Calibration methods 

3.3.4.1 Linear inverse problem 

The solving inverse problem can be defined as deriving the input from the given (known) output of 

the model. A linear inverse problem is a special inverse problem using linear function. A linear model can 

be written in matrix notation as 𝑨𝒙 = 𝒃 +  𝜖, where 𝒙 is a vector of variables, and ϵ is an error vector. 

Given parameter matrix 𝑨, calculating value of 𝒃 for 𝒙 is a forward problem. On the contrary, estimating 

the parameter vector 𝒙 is an linear inverse problem using data of 𝒃 and 𝑨. 

A general formulation considering equality and inequality constraints can be expressed as: 

 
{

linear model: Ax = b + ε

equality constraints: Ex = f

inequality constraints: Gx  ≥ h

 
(3.19) 

There are two types of problems: over-determined and under-determined. Over-determined linear 

system contains more independent equation than the unknown variable. In this case, there is only on the 

solution in the least squares sense. An over-determined linear system can be solved by minimizing a norm 

of the error term, ε=Ax- b.  

Under-determined linear systems contain more unknown variables than independent equations, 

meaning that it usually has an infinite amount of solutions. This model can be solved by sampling the 

feasible region of an underdetermined linear problem in a uniform way.  

In this study, the R function xsample() in ‘limSolve’ pakage was utilized (Van den Meersche et al., 

2009) to produce a sample set of vector x which corresponding the equality constraints and inequality 

constraints to solve the under-determined linear linear inverse problem from multiple linear regression 

model which is developed in 3.3.3.1. The sample set of vectors is either uniformly distributed over their 

feasible range. This algorithm are performed in two steps:  
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(1) The equality constraints Ex = f are eliminated: 

The elements x(i) in the exact equality Ex = f are not first linearly transformed to a vector 𝐪 to 

make all elements linearly independent. If the solutions exist for the system Ex = f, Gx  ≥ h, all solutions x 

can be written as: 

 x = x0 + 𝒁𝒒 (3.20) 

𝐙 is an orthonomal matrix that serces as a basis for the null space of 𝐄: 𝐙𝐓𝐙 = 𝐈 and 𝐄𝐙 = 𝟎. 

There are no equality constraints for the elements in 𝐪. Therefore, the problem is reduced to: 

 
{
𝑨′𝒒 − 𝒃′ = 휀

𝑮′𝒒 − 𝒉′ ≥ 0
 

(3.21) 

With 𝐀′ = 𝐀𝐙, 𝐁′ = 𝐀𝐩 − 𝐛, 𝐆′ = 𝐆𝐙 and 𝐡′ = 𝐆𝐱𝟎 − 𝒉. 𝐪 can be sampled without meeting 

any exact equality constraints. 

 (2) The distribution of q is sampled numerically using a random walk (based on the Metropolis 

algorithm (Roberts, 1996)). In the random walk step, the Markov chain Monte Carlo (MCMC) sampling 

method has been used. The new samples 𝐪𝟐 are drawn randomly from a jump distribution with a PDF 𝑗(∙

|q1) that only depends on the previous accepted point 𝐪𝟏. In this study, the “mirror algorithm” is used for 

the random walk. The new sample point 𝐪𝟐  is either accepted or rejected based on the following 

satisfaction criterion. (Van den Meersche et al., 2009) 

 
if r ≤

𝑝(𝐪𝟐)

𝑝(𝐪𝟏)
 𝑎𝑐𝑐𝑒𝑜𝑝𝑡 𝐪𝟐, 𝑒𝑙𝑠𝑒 𝑘𝑒𝑒𝑝 𝐪𝟏 

(3.22) 

with 0 < r ≤ 1 the satisfaction ratio and p(∙) the PDF of the target distribution. Therefore, the MCMC 

can derive the posterior density functions after adequate number of iterations. 

The sample set of vector q and the acquired sample set of vector 𝐱, has a distribution that is 

bounded by the inequality constraints. In this study, the range of input variables in Table 3-3 were set as 

inequality constraints.  
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3.3.4.2 Bayesian inference (Bayesian calibration) 

Bayesian calibration (Kennedy & O’Hagan, 2001) is a statistic inference method that tune unknown 

parameters to match the model output and observation. Bayesian calibration is based on Bayes’ theorem 

and provides a posterior distribution for unknown parameters 𝜃 given the observed data 𝑦. 

 

 
𝑝(𝜃|𝑦) =  

𝑝(𝑦|𝜃) ∙ 𝑝(𝜃)

𝑝(𝑦)
 ∝ 𝑝(𝑦|𝜃) ∙ 𝑝(𝜃) 

(3.23) 

𝑝(𝜃)  is the prior probability, 𝑝(𝑦|𝜃) is the likelihood, 𝑝(𝜃|𝑦) is posterior probability. The 

posterior distribution is calculated by product of a likelihood function and a prior distribution. 

The observation data 𝑦 can be expressed by the simulation model results having known parameter 

𝑥, unknown parameter 𝜃, and observation errors 휀. 

 𝑦𝑖 = 𝜂(𝑥𝑖, 𝜃) + 휀𝑖 (3.24) 

 휀𝑖~𝑁(0, 𝜎2) (3.25) 

 

For the likelihood function, the most frequently used assumption for the 휀𝑖  is that they are 

independent and identically distributed (i.i.d.) normal distribution with 0 mean and 𝜎2 variance. 

 
𝑓(𝑦|𝜃) = ∏

1

√2𝜋𝜎2
exp [−

(휀𝑖)2  

2𝜎2
]

𝑛

𝑖=1

 
(3.26) 

The 휀𝑖 term can be substituted by Eq. (3.24) as the following: 

 
𝑓(𝑦|𝜃) = ∏

1

√2𝜋𝜎2
exp [−

(𝑦𝑖 − 𝜂(𝑥𝑖, 𝜃))
2

2𝜎2
]

𝑛

𝑖=1

 
(3.27) 

Therefore, the likelihood can be regarded as the normal distribution function which has model 

output mean and  𝜎2 variance. To handle easier, the prior and posterior function can be represented as a 

log-function. Now, the posterior distribution function is the sum of log-prior function and log-likelihood 

function. 
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When the posterior distribution cannot be calculated analytically, it is possible to utilize sampling 

techniques (Bolstad, 2011). We employed Markov Chain Monte Carlo (MCMC) method. MCMC produces 

independent draws from the posterior distribution. It is a class of algorithms that produce a chain of 

simulated draws from a distribution where each draw is dependent on the previous draw. Metropolis-

Hastings algorithm (HASTINGS, 1970; Metropolis et al., 1953) is one of the frequently used sampling 

techniques to derive a sequence of random sample set.  

To use MCMC for Bayesian inference, it is important to determine the number of iterations to 

represent the posterior distributions of interest adequately. In this study, the number of iterations was chosen 

as 3,000 after performing Gelman and Rubin diagnostic (Brooks & Gelman, 1998). The initial 10% of total 

iterations (300 samples) were discarded as “burn-in” samples to eliminate the initial random samples since 

they have not stabilized.  

The most different characteristic of Bayesian inference as compared with the linear inverse problem 

is that we can employ our previous knowledge to derive the prior distribution. However, specification of 

the prior distribution is significantly important since this affects the final inferred (posterior) distributions. 

In this study, the prior distribution is assumed as a triangular distribution as shown in Table 3-3. 

To summarize, the Linear inverse problem considers all values of input parameters within specified 

lower and upper limits to be equally plausible. The Bayesian inference allows more informative prior 

distribution of the inputs that helps constrain the model better. Therefore, Bayesian inference is more 

appropriate when there is good and reliable information about the building stock. 

 

3.3.4.3 Observation data 

Calibration is the process of using a building simulation for an existing building. The various inputs 

are tuned or calibrated to achieve a close match between the predictions and the observed energy use.  

In the stochastic calibration for individual building, the calibration target is only one building (Y. 

Heo et al., 2012; Y.-J. Kim, Yoon, et al., 2013; Manfren et al., 2013; Tian, Wang, et al., 2014). However, 

when we consider a calibration for building stock, the calibration should perform to replicate the distribution 
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of building energy consumption for building stock. In several studies that execute the stochastic calibration 

for building stock, they sampled several target value from the actual energy consumption distribution. Then, 

the calibration is iterated to the different sampled target values and re-sampled from the calibrated result. 

(Tian & Choudhary, 2012; Yohei Yamaguchi, Suzuki, et al., 2013; Fei Zhao, 2012)  

3.4 Results 

3.4.1 Distribution 

From Figure 3-9 to Figure 3-12 represent the prior and the posterior distributions of eight input 

parameters of each option. A dotted gray line represents the prior density distribution, and an orange solid 

line indicates the posterior density distribution. It shoud be noted that the prior density distribution does not 

exist in the linear inverse problem (Figure 3-10) since solving linear inverse problem cannot use our prior 

knowledge for the parameters.  

In the all cases, there were significant changes in the posterior density distributions of EPD, LPD 

and INF. The posterior distributions of these three parameters shifted to the upper bound to make the higher 

energy use intensity. These three parameters were the most influence parameters to the energy consumption 

as a result of sensitivity parameters. 

The posterior distributions for other parameters have only small changes, and these posterior 

distributions are greatly influenced by the prior distribution. This is because only annual total energy usage 

data was used for the calibration. If there is a small data sample, the posterior distribution tends to be 

affected by the prior distribution. Using different prior distribution shape and range significantly affects to 

the posterior distribution. It is the most distinguished feature of Bayesian inference and the reason we should 

consider a proper prior estimation in the case of small data sample based on expert knowledge and literature.  

Comparing the posterior distribution using different energy models (Figure 3-9, Figure 3-11, and 

Figure 3-12), those have similar posterior distributions. It means that the performance of the original model 

can be expressed by using the metamodel under the given conditions. In the Heo’s study (Y. Heo, 2011), 
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the author utilized the normative model and EnergyPlus as a tool for calibration, and demonstrated that the 

similar results can be derived with the normative model compared to the EnergyPlus.   

One thing to be noted is that the estimated posterior distribution for building parameter should not 

be considered as the actual distribution of building parameter for the target area. Since a representative 

building covers diverse size and shape of buildings in the building stock, it is more plausible that the 

estimated posterior distribution is regarded as “best guess” that can produce the similar energy consumption 

result of the actual building stock. The “best guess” can be refined by reducing the error between the model 

and actual building using more measurement data. (Fei Zhao, 2012)  
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Figure 3-9 Prior and Posterior distributions of 

parameters: EP-Bayesian method (Opt.1) 

 

Figure 3-10 Estimated distribution of parameters: 

MLR-Linear inverse (Opt.2) 
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Figure 3-11 Prior and Posterior distributions of 

parameters: MLR-Bayesian method (Opt.3) 

 

Figure 3-12 Prior and Posterior distributions of 

parameters: GPE-Bayesian (Opt.4) 
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In the results of the linear inverse problem (Figure 3-10), like the results of the Bayesian inference, 

the expected distribution of EPD, LPD, and INF parameters are largely biased to the upper bound to make 

the EUI larger. The estimated distribution of BOILER is slightly biased to the lower bound for such a reason. 

The predicted distribution for less dominant parameters appears to be close to a uniform distribution. This 

is because linear inverse problem only assumes the prior distribution as a uniform distribution. From Figure 

3-13 to Figure 3-16 show the energy use intensity (EUI) distribution of prior, posterior and measured data. 

In the all cases, the posterior EUI distributions approximated the measured EUI distributions.  

 

 

Figure 3-13 Distributions of EUI: EP-Bayesian 

method (Opt.1) 

 

Figure 3-14 Distributions of EUI: MLR-Linear 

inverse method (Opt.2) 
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Figure 3-15 Distributions of EUI: MLR-Bayesian 

method (Opt.3) 

 

Figure 3-16 Distributions of EUI: GPE-Bayesian 

method (Opt.4) 

 

3.4.2 Computational cost 

Monte Carlo simulation and calibration using MCMC are extremely time-consuming progress. In 

the Table 3-6, simulation run time for each option was compared sequentially. 1,000 of Monte Carlo 

EnergyPlus simulations took about 5.5 hours to derive a data set for the sensitivity analysis and making 

meta-model. The multiple linear regression model (MLR) (Opt. 2 and Opt. 3) is fast to build, whereas the 

Gaussian Process Emulator (GPE) takes about 30 minutes. In the calibration step, estimation through the 

linear inverse problem using the MLR (Opt. 2) is the fastest. The Bayesian calibration using the MLR (Opt. 

3) and the GPE (Opt. 4) took about 1 min and 10 min, respectively. The Bayesian calibration without meta-

model (using the EnergyPlus, Opt 1) took a considerably long time, about 1,500 hours. These simulation 

run times were performed on a personal computer with an Intel Core i7-4790@ 3.6GHz and assumed that 

all simulations were conducted using only one processor. If multiple thread process can be used, the runtime 

will be reduced. Computing time will be one of the criteria to select most practical option with the accuracy 

of the calibration.  
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Table 3-6 Simulation times 
 

Opt.1 Opt.2 Opt.3 Opt.4 

Time for 

each step 

(s) 

Monte Carlo 19,800 19,800 19,800 19,800 

Making meta-model - 0.02 0.02 1,965 

Conducting calibration 5,512,653 11 62 625 

Total time Hours: Minutes: 

Seconds 

1,536:47:33 5:30:11 5:31:02 6:13:10 

 

3.4.3 Accuracy 

The calibrated EUI distributions were compared with three criteria. The first and second are for 

evaluating accuracy of the estimated EUI distribution by root mean square error (RMSE) of the mean and 

standard deviation. The third one is two samples K-S (Kolmogorov–Smirnov) test. The K-S test can be 

used to compare two samples in statistics, the p-value as a result of the test is from 0.0 to 1.0, and the higher 

value means two distributions are more similar. The p-value of less than 0.05 means that the two samples 

were drawn from different distributions while a p-value exceeding 0.05 provides no such evidence. The K-

S test compared the posterior EUI distribution and the measured EUI distribution.  

Figure 3-17 and Figure 3-18 present the RMSE of the mean and standard deviation of each EUI 

distribution. A low value is accurate to the observed EUI distribution. The calibration using MLR-Linear 

inverse problem (Opt. 2) was the most accurate in terms of mean and standard deviation. It is because there 

are fewer restriction to sample the parameters to fit the observation in the calibration progress than Bayesian 

inference. The p-value of two sample K-S test result is shown in Figure 3-19. The P-values of all cases are 

very high (Opt. 1, 2, 3 and 4). The results suggest that all methods are reliable to estimate EUI distribution 

regardless of meta-model or calibration method.  
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Figure 3-17 RMSE of mean 

 

Figure 3-18 RMSE of standard deviation 

 

 

Figure 3-19 Two sample K-S test 

3.5 Discussion and Conclusion 

Calibration methods were compared to make a stochastic-deterministic-coupled building energy 

model, and the effects of meta-models were examined in this chapter. The detailed methodologies of 

literature were reviewed and compared. Then, four alternatives were suggested using a combination of 

different methods at each progress step. Case study was conducted for 30 buildings in the university campus. 

The representative building energy model was developed for campus buildings. The developed model was 

calibrated to the actual building energy consumption data. The accuracy and computational cost are 

examined to compare the four alternatives. In summary, some conclusions are drawn as follows: 

 Using the meta-models to calibrate has similar performance to calibration with the original dynamic 

building energy model, while greatly reducing computation time. 
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 When calibrating for annual energy use, both calibration approached showed good agreement with 

measured energy use.  

 Calibration using the linear inverse problem can match well with the actual distribution than 

Bayesian inference. However, the availability of existing knowledge on building stock information 

is limited in the linear inverse problem. 

 Bayesian calibration can specify the shape and range on the prior distribution of input parameters. 

Bayesian calibration is more appropriate when there is reliable information about building stock.  

 The calibration results confirm that the posterior distribution is significantly affected by the prior 

distribution for the less dominant parameters when using only annual total energy use. These 

findings suggest three points. First, when the measurement data is small, the prior distribution 

should be more careful. Second, when there is a large amount of measured data, further study is 

required to examine whether the accuracy of the calibration differs according to the type of meta-

model. Third, it is necessary to analyze the effect of the amount of measurement data on the 

accuracy of calibration. 

  



66 

CHAPTER 4: PREDICT SINGLE BUILDING ENERGY USE WITH 

STOCHASTIC-DETERMINISTIC-COUPLED APPROACH 

 

In this chapter, the proposed stochastic method is analyzed in detail in individual building to solve 

the questions raised in previous chapter. In chapter 4.1, the effect of meta-model accuracy on Bayesian 

calibration is examined. In chapter 4.2, one of the most important factors in the calibration, the measured 

energy use data, is studied. The effect of the quality and quantity of the measured data on the calibration 

results are investigated with a method of determining the informative energy use data.  

4.1 The effect of meta-model accuracy on the Bayesian calibration 

4.1.1 Introduction 

Building energy simulation tools and techniques have been widely applied to the evaluation of 

building performance for several decades. Simulation models emulate physical relationships that result 

from various internal and external actions in a building. These tools and techniques enable users to 

determine the appropriate size of HVAC systems and estimate energy performance at a relatively low cost. 

However, due to the complexity and uncertainty of building simulations, it is difficult to match predicted 

values with measured values. Therefore, a calibration is required to achieve more accurate prediction by 

manipulating variables in the simulation. The calibration is to tune the input parameters in a simulation 

model to minimize discrepancies between prediction and observed data. Detailed reviews of the calibration 

technique for building simulation can be found elsewhere (Coakley et al., 2014; Fabrizio & Monetti, 2015; 

Fumo, 2014; T. A. Reddy, 2006). 

The approaches of building model calibration can be classified into four (Clarke et al., 1993; T. A. 

Reddy, 2006): (1) Calibration based on manual, iterative, and pragmatic intervention; (2) Graphical-based 

calibration methods; (3) Calibration based on special tests and analysis procedures; (4) Analytical and 

mathematical approaches. 
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Coakley et al. (Coakley et al., 2014) classified the approaches into two broad categories: manual 

and automated methods. Manual methods mainly rely on the experience of the user. The user repeatedly 

manipulates the model inputs to tune the simulation result in the manual methods. The automated methods 

have an automated process to help model calibration. 

Bayesian calibration is the automated calibration using mathematical techniques. It is a statistical 

method that utilizes Bayes’ theorem to obtain posterior distributions for unknown parameters given 

observed data. Kennedy and O’Hagan (Kennedy & O’Hagan, 2001) proposed a generic approach for the 

Bayesian calibration of computer models. The Bayesian calibration is more effective than the traditional 

approach in two ways: First, the prediction can consider all sources of uncertainty through the use of prior 

input distribution. Second, Bayesian calibration method corrects model inadequacy due to discrepancies 

between model predictions and observed data. The Bayesian calibration has been widely employed for 

model predictions in many areas (ecological models (Oijen et al., 2005), hydrologic models (Liu et al., 

2008), atmospheric model (Guillas et al., 2009), geochemistry (Tierney & Tingley, 2014), geological 

models (Rahn et al., 2011), molecular dynamic model (Angelikopoulos et al., 2012), and biological model 

(Blangiardo & Richardson, 2008)). 

Heo (Y. Heo et al., 2012; Yeonsook Heo et al., 2011) applied the Bayesian calibration to the 

building energy simulation area to account uncertainties during retrofit of existing buildings. The Bayesian 

calibration procedure has been used in the building analysis for calibration of unknown input (Berger et al., 

2016; Yeonsook Heo et al., 2013; Yeonsook Heo, Augenbroe, et al., 2015; Kang & Krarti, 2016; Qi Li et 

al., 2016, 2015), retrofit analysis (Yeonsook Heo et al., 2013; Yeonsook Heo, Augenbroe, et al., 2015), 

comparison with traditional calibration method (Pavlak et al., 2013), use of simplified model (Y.-J. Kim, 

Yoon, et al., 2013; Pavlak et al., 2013), influence of uncertainties in the input data (Yeonsook Heo, Graziano, 

et al., 2015), determination of informative energy data (Tian et al., 2016), calibration of sensor error (Yoon 

& Yu, 2017), and prediction of building stock energy use (Booth & Choudhary, 2013; Booth et al., 2012, 

2013; Ruchi Choudhary, 2012; Tian & Choudhary, 2012; Yohei Yamaguchi, Suzuki, et al., 2013).   



68 

Table 4-1 Bayesian calibration for building energy model 

Author Year Building 

energy 

model 

Parameter 

screening 

Meta-model Calibration 

method 

Heo et al. (Y. Heo et al., 

2012; Yeonsook Heo et 

al., 2011) 

2011, 

2012 

EPSCT 

(Energy 

Performance 

Standard 

Calculation 

Toolkit) 

Morris method GPE Bayesian 

Tian and Choudhary 

(Tian & Choudhary, 

2012) 

2012 EnergyPlus SRC 

(Standardized 

Regression  

Coefficient) / 

MARS(Multivariate 

Adaptive 

Regression 

Splines) 

MLR Inverse 

problem/ 

Bayesian 

Booth et al. (Booth et 

al., 2012) 

2012 EPSCT Morris method GPE Bayesian 

Zhao et al. (Fei Zhao, 

2012; Fei Zhao et al., 

2016) 

2012,  

2016 

EPSCT Stepwise 

regression 

analysis 

MLR Inverse 

problem 

Manfren et al. (Manfren 

et al., 2013) 

2013 Simplified 

(Energy 

signature 

mode)/ 

Detailed 

(unspecified) 

Pearson’s 

coefficient/ 

information 

theoretic ranking 

criterion 

GPE Bayesian 

Li et al. (Qi Li et al., 

2015) 

2015 EnergyPlus Lasso method MLR Bayesian 

Heo et al. (Yeonsook 

Heo, Graziano, et al., 

2015) 

2015 EPSCT Morris method GPE Bayesian 



69 

Tian et al. (Tian et al., 

2016) 

2016 EnergyPlus SRC / Random 

Forest 

MLR Bayesian 

Li et al. (Qi Li et al., 

2016) 

2016 EnergyPlus Lasso method MLR, GPE Bayesian 

Kang and Krarti (Kang 

& Krarti, 2016) 

2016 eQUEST Local sensitivity 

analysis 

GPE Bayesian 

Sokol et al. (Sokol et al., 

2017) 

2017 EnergyPlus - GPE Bayesian 

 

The main advantage of the Bayesian calibration is that it naturally accounts for the uncertainty in 

models using a prior distribution of the input parameters. However, stochastic calibration methods such as 

the Bayesian inference incur a high computational cost. A Markov Chain Monte Carlo (MCMC) (Gilks, 

2005) method is used to draw posterior probability distributions in Bayesian calibrations. The MCMC 

requires numerous iterations of the building energy simulation from thousands to tens of thousands resulting 

in a massive computational burden.  

To reduce the MCMC computational time, the following methods have been proposed: a simplified 

energy model, and a meta-model. Simplified models use simple descriptions of a building and its systems. 

It can drastically reduce simulation time compared to dynamic building energy simulation such as 

EnergyPlus, eQUEST, and TRNSYS. However, the simplified models have a limitation to analyze details 

in the building and diverse energy conservation methods.  

A meta-model (also called surrogate model) can be defined as a “model of model” (Eisenhower, 

O’Neill, Narayanan, et al., 2012), which is simpler and computationally faster than an original model. Table 

4-1 shows diverse meta-models applied to reduce simulation time in many studies: Multiple linear 

regression model (Manfren et al., 2013; Tian & Choudhary, 2012; Tian, Wang, et al., 2014; Fei Zhao, 2012), 

Gaussian process emulator (Booth et al., 2012; Y. Heo, 2011; Y. Heo et al., 2012; Manfren et al., 2013) 

and Support  Vector  Machines (Eisenhower, O’Neill, Narayanan, et al., 2012).   

Such meta-models differ in prediction accuracy and computational cost to build due to differences 

in algorithm and fundamentals. Therefore, the appropriate meta-model should be chosen considering the 
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accuracy and computational cost. Wei et al. (Wei et al., 2015) investigated the predictive performance of 

six meta-models developed using measured data. Tian et al. (Tian et al., 2015) compared the accuracy of 

eight meta-models for the 114 campus buildings. Kim (Y. J. Kim, 2016) compared the prediction capability 

of Gaussian process emulator and polynomial chaos expansion for an uncertainty quantification. In these 

studies, however, there was no consideration regarding the computational time of meta-models. 

If the meta-model is used for the Bayesian calibration, the meta-model accuracy may affect the 

accuracy and computational time of the Bayesian calibration. Li et al. (Qi Li et al., 2016) confirmed that 

linear model including main and interaction effect terms has comparable results with the Bayesian 

calibration using Gaussian process emulator. However, further research is required to provide guidance in 

selecting the proper meta-model for the Bayesian calibration.  

There is a need to find out if a more accurate meta-model leads to more accurate calibration. The 

accuracy of the Bayesian calibration can be divided into two: how accurately the true input parameter is 

estimated and how well the building energy usage is predicted. In addition to parameter estimation and 

prediction performance, the computational cost of the Bayesian calibration is used as criteria. These 

analyses help to select the appropriate meta-model according to the calibration goals. 

The study aims to examine the effect of meta-model accuracy on the accuracy of Bayesian 

calibration. In the methodology section, Bayesian calibration method and selected meta-models are 

described in detail followed by a description of the case study. The third section compares calibration results 

and analyzes the accuracy of Bayesian calibration. The final section summarizes the overall findings and 

implications of the study.  

  

4.1.2 Methodology 

The calibration analysis in this study was based on the procedure shown in Figure 4-1. The first 

step is to establish a building energy model based on building information. In the second step, a degree of 

uncertainty is determined by selecting unknown parameters and those variations. The combinations of 

inputs are constructed using a sampling method. The combinations are fed into the building energy 
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simulation program to obtain an input-output set. A large number of the input-output sets are required to 

supply sufficient data for the next step. Next step uses a sensitivity analysis to identify dominant inputs 

(parameters) affecting the output (energy consumption in this study). By selecting only important variables 

as calibration parameters, the time and effort required during the calibration process can be reduced. 

However, the parameter screening was omitted in this study due to only six unknown parameters were 

selected as input parameters. The third step is to develop meta-models using the input-output set from the 

step two. The Bayesian calibration will use the meta-models rather than the original detailed energy 

simulation model to reduce simulation time significantly. The next step is to estimate the unknown 

parameters from the Bayesian calibration and compare posterior distributions to the observed values. All 

the statistical analyses were performed using R program, software for statistical computing and graphics (R 

Core Team, 2016). 

a) Collecting building information including 

energy data

b) Generating building energy model

a) Specification for ranges and distributions 

for unknown parameters

b) Monte Carlo simulation

c) Parameter screening based on sensitivity 

analysis

a) Selecting dominant parameters on output

b) Development of meta-model

a) Setting of measured energy data from the 

distribution

b) Bayesian calibration using observed data

Building energy model

Parameter screening

(Sensitivity analysis)

Meta-model 

Bayesian calibration

Main process Detailed work

a) Comparison with observed data

b) Additional analysis such as ECM
Validation & Analysis

1

2

3

4

5

EnergyPlus

EnergyPlus, 

Sensitivity

Value

Index (SVI)

Multiple 

Linear 

Regression 

(MLR)

Bayesian 

Inference 

(MCMC)

Tools

MLR, 

EnergyPlus

 

Figure 4-1 Procedure of Bayesian calibration 
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4.1.2.1 Building energy model 

 

Figure 4-2 DOE reference medium office building 

A medium office building from the U.S. Department of Energy (DOE) reference building, shown 

in Figure 4-2, was used for the case study in this analysis. The office building is a three-story rectangular 

building with a total floor area of 4,982 m2. The key features of the office building are shown in Table 4-2.  

In this study, it is assumed that all buildings in the virtual building stock have same geometry and 

schedule. The goal of this study is to verify the methodology. Therefore, the uncertainty of the parameters 

that are easy to interpret is considered first, and the difficult parameters that had large uncertainties were 

eliminated to minimize uncertainty in inputs. The stochastic occupancy schedule and the effect of building 

geometry will be considered in future work.   

 

Table 4-2 Main features of the office building 

Component  Item Parameters Unit 

Envelope Floor area 4982 m2 

Floor levels 3 - 

Window-wall ratio 0.33 - 

Thermal Zoning core zone with four perimeter zones 

on each floor 

- 

Wall U-value 0.48 W/m2K 

Roof U-value 0.35 W/m2K 

Window U-value 3.24 W/m2K 

SHGC (solar heat gain coefficient) 0.39 - 

Infiltration rate (Air changes per 

hours) 

See Table 4-3 W/m2 

Lighting power density See Table 4-3 W/m2 
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Internal heat 

gains 

Equipment power density See Table 4-3 W/m2 

Hourly schedules for set-point for 

heating and cooling, occupants, 

lights, 

and equipment 

DOE Reference building - 

HVAC systems System Type MZ-VAV - 

Heating Type Gas furnace and electric reheat - 

Cooling Type PACU - 

 

The building was assumed to be located in Boulder, Colorado, US and the weather data was 

downloaded from the EnergyPlus weather file database. Table 4-3 lists the range of unknown input 

parameters. Unknown parameters are six, and the range of unknown parameters could be obtained from the 

literature, field survey and prior knowledge of experts. However, in this analysis, the ranges of unknown 

parameters were determined arbitrarily based on the default value of the reference building.  

The simulation was performed using EnergyPlus, developed by the United States Department of 

Energy (DOE) (Crawley et al., 2001). The EnergyPlus is a whole building energy simulation and widely 

used in the field of building energy simulation and has also been tested extensively. The advantage of using 

EnergyPlus is that input data file is text format. Therefore, the model definitions can be easily edited for 

parametric studies (Tian et al., 2016). Moreover, the EnergyPlus provides detailed energy use results and 

process loads by calculating heating, cooling, ventilating, and other energy flows as well as water use in 

buildings that define heat and mass transfer flow in the building. It also includes many advanced systems 

and is regularly updated. Therefore, the EnergyPlus allows users to take account of various energy 

conservation measures and novel systems compared with other simplified simulations.  
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Table 4-3  Input parameters and ranges 

Parameters Short names 
Range 

Unit 
Case 1. Base Case 2. Wide 

Equipment Power 

Density 
EPD 11-15 7.7-19.5 W/m2 

Lighting Power 

Density 
LPD 12.5-17.5 8.75-22.75 W/m2 

Heating Set-point HPS 19.5-22.5 15.5-26.5 oC 

Cooling Set-point CSP 22.5-25.5 18.5-29.5 oC 

Occupancy OCC 15-25 10.5-32.5 m2/person 

Infiltration INF 0.6-0.8 0.42-1.04 ACH 

Six input parameters and prior distributions are defined in Table 4-3. All prior distributions are 

assumed as a uniform distribution. The study varies the ranges of input parameters to explore the associated 

accuracy of the meta-models: base and wide range. The wide ranges were extended 30 percentage from the 

base range. The 100 training combinations of inputs are created by the quasi-random sampling (Sobol’ 

sequence, (Sobol, 1998)). Sobol’s sequence generates uniform sample points, resulting in fast convergence 

and robust results (Burhenne et al., 2011; Kucherenko et al., 2011). Additional 100 testing samples were 

constructed by the Latin Hypercube Sampling (Mckay et al., 2000).  A total of 200 input sets were then 

fed into the EnergyPlus to obtain the input-output matrix. This process is called ‘uncertainty propagation.’ 

The obtained input-output matrix is utilized to build meta-models in next step. The uncertainty propagation 

was performed by jEPlus software (Y. Zhang, 2009). 

 

 

Figure 4-3 Average energy consumption 



75 

Figure 4-3 shows monthly average energy use intensity for 100 training set. The energy use 

intensity (EUI, MJ/m2) for electricity and gas were used for energy performance indicators.  In the office 

building used in this analysis, the electricity is dominant on the energy use because the DOE office medium 

reference building has a packaged air-conditioning unit for cooling and a gas furnace with electric reheat 

for heating. The gas usages from April to October have only base loads for domestic hot water. Therefore, 

the gas data for only five months (January, February, March, November, and December) were used for the 

calibration considering the accuracy of the meta-model. All 12-month data was used for the electricity.  

4.1.2.2 Suggestion of sensitivity value index (SVI) 

As stated above, the parameter screening was omitted. However, the sensitivity analysis was 

performed to identify which parameter is more important among six parameters to the building energy use. 

It helps to better understand the results of Bayesian calibration. Various sensitivity analysis methods have 

been applied in building energy area (Tian, 2013).  In this study, we utilized three different approaches to 

offer robust analysis results: SRC (standardized regression coefficient), random forest variable importance 

and T-value. For detailed information, please refer to (Tian, 2013). In this analysis, the annual electricity 

and gas use data were used for the sensitivity analysis. Importance ranking of parameters may vary 

according to the fundamentals of sensitivity method and the target output. To consider different values from 

the three sensitivity analyses (SRC, Random forest variable importance,and T-value) and two target outputs 

(annual electricity and gas use), the sensitivity value index (SVI) was suggested as shown in the equation 

(4.1). The values from the sensitivity analysis were normalized and then aggregated so that the importance 

of parameters can be compared considering the difference of sensitivity methods and target output. 

 ∑

∑ (
𝑉𝑖,𝑗

∑ |𝑉𝑖,𝑗|𝑛
𝑖=1

)𝑘
𝑗=1

𝑘
𝑚 ∙ 𝑘

× 100

𝑚

𝑙=1

= 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑆𝑉𝐼)(%) 
(4.1) 

Where 𝑖 is the parameter, 𝑛 is the number of parameters (𝑛 = 6), 𝑗 is the sensitivity method, 𝑘 

is the number of sensitivity methods (𝑘 = 3, (SRC, Random forest variable importance, and T-value)), 𝑙 

is the target output, 𝑚 is the number of target output (𝑚 = 2 (annual electricity and gas)) 
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4.1.2.3 Meta-models 

Computer modeling is a simulator that aims to replicate actual phenomenon. A meta-model (also 

called surrogate model) is a simplified representation or approximation of the simulator. It is built using a 

training set of simulator runs. The purpose of meta-model is to run faster than the original simulator itself.  

The following five meta-models are investigated and compare: multiple linear regression model 

(MLR), neural network (NN), support vector machine (SVM), multivariate adaptive regression splines 

(MARS), and Gaussian process emulator (GPE). Those meta-models are used in building energy and 

building system analysis: MLR (Qi Li et al., 2015; Manfren et al., 2013; Tian, Song, et al., 2014; Fei Zhao 

et al., 2016), NN (Aydinalp et al., 2004; Kalogirou, 2000; Yang et al., 2005), SVM (Eisenhower, O’Neill, 

Narayanan, et al., 2012), MARS (Tian, Song, et al., 2014), and GPE (Y.-J. Kim, Ahn, et al., 2013; Manfren 

et al., 2013; Riddle & Muehleisen, 2014; Tian, Song, et al., 2014; Fei Zhao et al., 2016).  

The brief descriptions and R packages for meta-models are listed in Table 4-4. Tian et al. (Tian et 

al., 2015) developed eight statistical energy models (meta-models) using observational data and compared 

their performance.  More comprehensive descriptions and theoretical fundamentals for meta-models and 

machine learning methods can be found in (Foucquier et al., 2013; J. Friedman et al., 2001; Rasmussen, 

2006). 

4.1.2.3.1 Multiple linear regression model 

If more than one regression variable is known to affect the output, the multivariate model explains 

more of the variation and provide better predictions than single-variable models. The multiple linear 

regression model is; 

 yi = 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 휀𝑖 = 𝑥𝑖
𝑇𝛽 + 휀𝑖   , i = 1, … , n (4.2) 

Where yi  is the output, x denotes inputs, β is regression coefficients, and ε is an error or 

unexplained variation in 𝑦. The multiple linear regression model was developed using ‘lm’ function in R-

package ‘stats’ (R Core Team, 2016). 
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Table 4-4 Descriptions of meta-models 
 

Meta-

models 

Characteristics R package 

(function) 

Reference 

Parametric 

models: 

Linear 

models 

MLR 
The simplest form. Model the relationship 

between several independent or predictor 

variables and a dependent or criterion variable. 

stats (lm) (Faraway, 

2014) 

Non-

parametric 

models 

NN Inspired by the learning process of a human 

brain. ANNs are a system made up of some 

simple, highly interconnected processing 

elements 

neuralnet 

(neuralnet) 

(McCulloch 

& Pitts, 

1943) 

SVM Based on the concept of decision planes that 

define decision boundaries. Produce nonlinear 

boundaries by linear learning machine 

mapping into high-dimensional kernel induced 

feature space. 

kernlab 

(ksvm) 

(C.~Cortes 

et al., 1995) 

MARS a generalization of stepwise linear 

regression by modeling non-linearities and 

interactions between variables 

earth (earth) (J. H. 

Friedman, 

1991) 

GPE Gaussian processes (GP) generalize 

multivariate Gaussian distributions over finite 

dimensional vectors to infinite dimensionality. 

Gaussian processes emulator (GPE) 

represents the posterior of true function as a 

GP using the observed data. 

Gpfit(GP_fit) (Quadrianto 

et al., 2010; 

Rasmussen

, 2006) 

 

4.1.2.3.2 Neural network 

The neural network (NN) is a model based on the human brain. In neural networks, nodes that 

mimic neurons can be divided into as input, hidden, and output layers. The neural network is known to have 

excellent prediction performance. In particular, since the input values are combined in the hidden layer, 

nonlinear problems can be solved. 
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When inputs are given to a neural network, those values are transmitted and reaches the hidden 

layer. The nodes of the hidden layer are activated in response to a given input. The activated hidden node 

calculates the output value and passes the result to the output layer. Each transmission is weighted. Let 𝑤𝑗𝑖 

be the weight given to the connection between node 𝑖 of the input layer and node 𝑗 of the hidden layer, 

and let 𝑥1, ⋯ , 𝑥𝑛 be the input to the input layer. The values given to the input layer then converge to the 

hidden layer node 𝑗 as follows. 

 
netj = ∑ 𝑥𝑖𝑤𝑗𝑖 + 𝑤𝑗0 

(4.3) 

This value, which is passed to node 𝑗, is called net activation, and such a formula is called a 

integration function. 

The output of the hidden layer is calculated by carrying the net activation over the activation 

function. If the activation function is a sigmoid function, then the output can be calculated as follows (Ekici 

& Aksoy, 2009): 

 
f(netj) =

1

1 + 𝑒−(𝑛𝑒𝑡𝑗)
 

(4.4) 

The learning of the neural network model is the adjustment work of the weight 𝑤. The sum of 

squared error (SSE) between expected and predicted outputs for inputs is minimized though iteration. If 

there is a difference, the weights are adjusted from the output node to the connected hidden node, from the 

hidden node to the input node. This is called a back propagation algorithm. R package, neuralnet (Fritsch 

& Guenther, 2016) was used for training. The number of hidden layer was set to five for each monthly 

model.  

4.1.2.3.3 Support Vector Machine 

The Support Vector Machine (SVM) is a model that find a line (or a plane) that maximizes the 

difference between data belonging to different categories and classifies the data based on the line. The 

method of SVM can be extended to solve regression problems. This is called support vector regression 

(SVR). The basic idea for regression is to use kernel function, map the input space into a high-dimensional 

feature space via a non-linear mapping and to perform a linear regression in this feature space (Qiong Li et 
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al., 2009). When supposing that all normalized input parameters 𝑋, and 𝑌 is the normalized output. The 

SVR approximates the relationship between the input and output as following (Qiong Li et al., 2009; Smola 

& Schölkopf, 2004): 

 Y = 𝑓(X) = ∑(𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑋𝑖 , 𝑋) + 𝑏

𝑁

𝑖=1

 (4.5) 

where αi, αi
∗ are Lagrange multipliers, 𝐾(𝑋𝑖, 𝑋) is kernel function. 

R package, kernlab (Karatzoglou et al., 2004) was used for training. The ANOVA radial basis 

kernel anovadot was selected as a kernel function due to it performs well in multidimensional regression 

problems. 

 
k(𝑋𝑖 , 𝑋𝑗) = (∑ exp (−𝜎(𝑋𝑖

𝑘 − 𝑋𝑗
𝑘)

2
)

𝑑
𝑛

𝑘=1

 
(4.6) 

where Xk is the 𝑘th component of 𝑋. 

4.1.2.3.4 Multivariate adaptive regression splines 

Multivariate adaptive regression splines (MARS) was proposed by Friedman (J. H. Friedman, 

1991). MARS is a nonparametric regression technique including stepwise linear regression, spline 

regression, and recursive partitioning (de Wilde & Tian, 2010). MARS extends the linear model to model 

nonlinearity, making it suitable for higher dimensional inputs.  

MARS use piecewise linear basis functions to distinct independent variable intervals. In general, 

splines have pieces, and the interface points between pieces are called knots, denoted as 𝑡. 
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Figure 4-4 Basis function 

 

 
[−(xν − 𝑡)]+

𝑞
= {

(𝑡 − 𝑥𝜈)𝑞           𝑖𝑓 𝑥𝜈 < 𝑡
 0                         otherwise

 
(4.7) 

 
[+(xν − 𝑡)]+

𝑞
= {

(𝑡 − 𝑥𝜈)𝑞           𝑖𝑓 𝑥𝜈 ≥ 𝑡
 0                         otherwise

 
(4.8) 

Where (q ≥ 0) is the power to which splines are raised and determines the degree of smoothness 

of the resultant function estimate; q = 1 in Figure 4-4. 

MARS uses collection of functions comprised of reflected pairs for each input Xj with knots at 

each observed value xij of input 

 
Bm(X) = ∏[𝑠𝑚,𝑗 × (𝑋𝜈(𝑚,𝑗) − 𝑡𝑚,𝑗)]

+

𝐾𝑚

𝑗=1

 
(4.9) 

If all input values are distinct, then set Bm(X) contains 2Np functions where, N is a number of 

observations, and p is a number of input variables. MARS model has the general form: 

 𝑓(𝑋) = c0 + ∑ 𝑐𝑚𝐵𝑚(𝑋)

𝑀

𝑚=1

 (4.10) 

Where 𝑘𝑚 is the number of truncated linear functions multiplied in the 𝑚th basis function. 𝐾𝑚 

should not be larger than the maximum interaction among variables 𝐼max. 

𝑋𝜈(𝑚,𝑗)  is the input variable corresponding to the 𝑗 th truncated linear function in the 𝑚 th 

term; 𝑡𝑚,𝑗 is the knot value corresponding to variable the 𝑋𝜈(𝑚,𝑗);  𝑠𝑚,𝑗 is the selected sign +1 or −1; 
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𝑓(𝑋) is the dependent variable predicted by the MARS model; c0is a constant; Bm(X) us the 𝑚th basis 

function, which may be a single basis function; and cm is the coefficients estimated by minimizing the 

residual sum of squares for the 𝑚th basis function. 

In the model building procedure, forward pass, backward pass, and generalized cross validation are 

required. The forward pass is a step in testing a new function products and determining which product 

decreases training errors. To improve model predictive ability, the backward pass deletes the redundant 

basis function to fix the overfitting. Generalized cross-validation (GCV) is to estimate the optimal number 

of terms in the model (Cheng & Cao, 2014). R package, earth (Milborrow, 2017) was used for training. 

4.1.2.3.5 Gaussian process emulator 

The Gaussian process is suitable for implementing a stochastic non-parametric model using mean 

function and covariance function. The uncertainty of the prediction error can be considered for a time series 

model. The Gaussian process emulator (or Gaussian process regression model) is a linear regression model 

with Gaussian noise. The following description is referenced in these papers: (MacDonald et al., 2015; 

Ranjan et al., 2011).  Let the 𝑖-th input and the corresponding output of the model be denoted by a 𝑑-

dimensional vector, 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑑)⊤ and yi = 𝑦(𝑥𝑖) respectively. For the experimental design, D0 =

{𝑥1, … , 𝑥𝑛} is the set of 𝑛 input trails stored in an 𝑛 × 𝑑 matrix 𝑋. The outputs are held in the 𝑥 × 1 

vector 𝑌 = 𝑦(𝑋) = (𝑦1, … , 𝑦𝑛)⊤. The model output, y(xi), is modeled as 

 𝑦(𝑥𝑖) = 𝜇 + 𝑧(𝑥𝑖);          𝑖 = 1, … , 𝑛, (4.11) 

Where 𝜇  is the overall mean, and 𝑧(𝑥𝑖)  is a GP (Gaussian Process) with E(z(xi)) = 0 , 

𝑉𝑎𝑟(𝑧(𝑥𝑖)) = 𝜎2 , and 𝐶𝑜𝑣 (𝑧(𝑥𝑖), 𝑧(𝑥𝑗)) = 𝜎2𝑅𝑖𝑗 . In general, 𝑦(𝑋)  has a multivariate normal 

distribution, Nn(1𝑛𝜇, Σ), where Σ = σ2𝑅 is formed with correlation matrix 𝑅 having elements 𝑅𝑖𝑗, and 

1n  is a n × 1 vector of all ones. For the correlation structure (kernel function), Gaussian correlation 

function was used in this process given by 

 𝑅𝑖𝑗 = ∏ exp {−𝜃𝑘|𝑥𝑖𝑘 − 𝑥𝑗𝑘|
2

}

𝑑

𝑘=1

,        for all i, j (4.12) 
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Where 𝜃 = (𝜃1, … , 𝜃𝑑) ∈ [0, ∞)𝑑 is a vector of hyper-parameters. The closed form estimators of 

μ and σ2 given by 

 �̂�(𝜃) = (1𝑛
⊤ R−1 1𝑛)−1(1𝑛

⊤ R−1 𝑌) (4.13) 

 �̂�2(𝜃) =
(𝑌 − 1𝑛�̂�(𝜃))

⊤
𝑅−1(𝑌 − 1𝑛�̂�(𝜃))

𝑛
, (4.14) 

are used to obtain the negative profile log-likelihood 

 
−2 log(𝐿𝜃) ∝ log(|R|) + 𝑛 log [(Y − 1n�̂�(𝜃))

⊤
𝑅−1(𝑌 − 1𝑛�̂�(𝜃))], 

(4.15) 

for estimating the hyper-parameters 𝜃, where |R| denotes the determinant of 𝑅. 

Following the maximum likelihood approach (MAP: Maximum A Posteriori), the best linear 

unbiased predictor at 𝑥∗ is 

 
�̂�(𝑥∗) = �̂� + 𝑟⊤𝑅−1(𝑌 − 1𝑛�̂�) = [

(1 − 𝑟⊤𝑅−11𝑛)

1𝑛
⊤𝑅−11𝑛

1𝑛
⊤ + 𝑟⊤] 𝑅−1𝑌 = 𝐶⊤𝑌, 

(4.16) 

with mean squared error 

 

𝑠2(𝑥∗) = E [(�̂�(𝑥∗) − 𝑦(𝑥∗))
2

] = 𝜎2(1 − 2𝐶⊤𝑟 + 𝐶⊤𝑅𝐶)

= 𝜎2 (1 − 𝑟⊤𝑅−1𝑟 +
(1 − 1𝑛

⊤𝑅−1𝑟)2

1𝑛𝑅−11𝑛
), 

(4.17) 

where r = (r1(𝑥∗), … , 𝑟𝑛(𝑥∗))
⊤

, and ri(𝑥∗) = 𝐶𝑜𝑟(𝑧(𝑥∗), 𝑧(𝑥𝑖)) . In practice, the parameters 

μ, σ2 and 𝜃 are replaced with their respective estimates.  

The stability of GP estimation algorithm can be highly dependent on the design point used to build 

the GP model and its corresponding simulator outputs. If any pair of design points in the input space are 

close to each other, the spatial correlation matrix 𝑅 can be near-singular and hence the GP model fitting 

process computationally unstable. A popular approach to overcome this numerical instability is to introduce 

a small nugget or jitter parameter by replacing R with 𝑅𝛿 = 𝑅 + 𝛿𝐼. However, replacing R with 𝑅𝛿 = 𝑅 +

𝛿𝐼 requires additional smoothing of the simulator data that is undesirable for emulating a deterministic 

simulator. Ranjan et al. (Ranjan et al., 2011) proposed a lower bound on 𝛿 to minimize the unnecessary 

over-smoothing. 
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𝛿𝑙𝑏 = max {

𝜆𝑛(𝜅(𝑅) − 𝑒𝑎)

𝜅(𝑅)(𝑒𝑎 − 1)
, 0} 

(4.18) 

where 𝜆𝑛 is the largest eigenvalue of 𝑅 and ea is the threshold of condition number 𝜅(𝑅) that 

ensures a well-conditioned 𝑅. Ranjan et al. suggest a = 25 for space-filling Latin hypercube designs. R 

package, GPfit (MacDonald et al., 2015) was used for fitting a GPE in this study. GPfit uses the GP model 

with 𝑅𝛿 = 𝑅 + 𝛿𝐼. The estimate of correlation hyper-parameters is obtained by minimizing the deviance 

using a multi-start gradient based search (L-BFGS-B) algorithm. See (MacDonald et al., 2015) for further 

details. 

 

4.1.2.4 Bayesian analysis 

Bayesian analysis is a statistical method that utilized Bayes’ theorem in Equation (4.19) to obtain 

a posterior distribution for unknown parameters (𝜃) given the observed data (𝑦). All the uncertainty in 

building energy models are expressed in probabilities. The input parameters are considered to be uncertain 

and have a probabilistic distribution based on their plausible values. The uncertain parameters of the 

building energy model are updated to match the model prediction and the observed data. As a result, 

Bayesian calibration provides the posterior distribution 𝑝(𝜃|𝑦) in a form of plausible distribution of 

calibration parameters. 

 
𝑝(𝜃|𝑦) =  

𝑝(𝑦|𝜃) ∙ 𝑝(𝜃)

𝑝(𝑦)
 ∝ 𝑝(𝑦|𝜃) ∙ 𝑝(𝜃) 

(4.19) 

Where 𝑝(𝜃)  is prior distributions assigned for uncertain parameters; 𝑝(𝑦|𝜃)  is a likelihood 

function that measures how closely model predictions match the observed data.  

A Markov Chain Monte Carlo (MCMC) (Gilks, 2005) method is used to draw the posterior 

probability distribution in the Bayesian calibrations. Estimation of the probabilistic model distribution 

involves complex integrals. Yet, these integrals are not calculable because of high dimensionality or cannot 

be evaluated using calculus in most of the cases. The MCMC allows approximations using stochastic 

sampling routines. Metropolis-Hastings sampling (Gelman et al., 2014) methods were used to solve the 

MCMC. The Bayesian calibration framework was conducted in R. 
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In an MCMC process, a sufficient number of iterations is required to explore the entire feasible 

range. In the previous chapter, 3,000 iterations were sufficient because only the annual total energy data 

was used for the calibration, but this study calibrates for 12 monthly energy data for electricity and gas 

energy use, requiring a 100,000 of iterations. A preliminary study using the Gelman and Rubin diagnostic 

(Gelman & Rubin, 1992) showed that the potential scale reduction factor (PSRF) for each parameter was 

lower than 1.1 which means the Markov Chain has converged when the iteration number is larger than 

100,000.  

Table 4-5 lists all the ten cases used in this study to compare the accuracy of the result from the 

Bayesian calibration. We expressed each case as case i-j, where 𝑖  represents the range of the input 

parameters and 𝑗 represents the type of meta-models. 

 

Table 4-5 Cases of Bayesian analysis 

Meta-models Short names 
Range 

Case 1 (Base) Case 2 (Wide) 

Multiple Linear 

Regression 
MLR Case 1-1 Case 2-1 

Neural Network NN Case 1-2 Case 2-2 

Support Vector Machines SVM Case 1-3 Case 2-3 

Multivariate Adaptive 

Regression Splines 
MARS Case 1-4 Case 2-4 

Gaussian Process 

Regression Emulator 
GPE Case 1-5 Case 2-5 

In this study, we randomly chose one data point from the 100 extra data set (testing set), and the 

selected data point was used as a target building. The accuracy of the meta-model was evaluated using two 

criteria: R2 (R-squared) and the coefficient of variation with root mean square error (CVRMSE). 

R2 calculates the proportion of total variation explained by the fitted regression model from the 

equation (4.20). The accurate regression models have higher R2 value. 

 

 
R2 = 1 −

∑ (𝑦𝑖 − 𝑦�̂�)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦�̅�)
2𝑛

𝑖=1

 
(4.20) 
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The Root Mean Square Error (RMSE) is calculated from equation (4.21).  

 RMSE = √
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1

𝑛
 (4.21) 

CVRMSE (Coefficient of Variation of the Root Mean Square Error) is a non-dimensional form of 

the RMSE. It relatively measures normalization of the magnitude by the mean of observations. The model 

with lower CVRMSE is a more accurate model. The extra 100 simulation runs were regarded as a testing 

data set. Then, R2 and CVRMSE were calculated to compare the performance of the meta-models 

developed from the first 100 simulation runs.  

 
CVRMSE =

RMSE

�̅�
 

(4.22) 

Where, �̂�𝑖 denotes a predicted variable value for period 𝑖, 𝑦𝑖 is an observed value for period 𝑖, 

and �̅� is the mean of all observed variable values. The accuracy of Bayesian calibration results was 

evaluated by the CVRMSE to the observed data of the target building. The CVRMSE values to the input 

parameters and total EUI values for monthly and annul were compared at each case.   

4.1.3 Results 

4.1.3.1 Results of sensitivity analysis  

Table 4-6 compares the results obtained from the sensitivity analysis using the annual electricity 

and the gas energy use. The results are only for the base case. As described in section 2.2, the SVI considers  

different results from three sensitivity analysis methods (SRC, Random forest, T-value) and two energy 

outputs (annual electricity and annual gas EUI). A higher absolute value indicates a more important 

parameter affecting the energy use. The most dominant parameter in the base case is the cooling set point 

temperature (CSP), while the most important parameter for the wide case is the occupant density (OCC) in 

the given office building. As the range of input parameters changes, the importance of parameters changed. 
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Table 4-6 Results of sensitivity analysis (SVI) 

Case 
Param

eter 

Annual Elec EUI Annual Gas EUI 

SVI Rank 
SRC 

Rando

m forest 
T-value SRC 

Rando

m forest 
T-value 

Base 

(Case 1) 

EPD 0.44 103.81 56.49 -0.11 17.96 -7.75 14.2% 4 

LPD 0.38 72.18 48.22 -0.12 22.04 -8.29 12.3% 5 

HSP 0.49 140.89 63.05 -0.19 32.62 -13.05 18.6% 3 

CSP -0.53 130.97 -68.30 0.55 155.01 36.98 30.5% 1 

OCC -0.02 -1.08 -2.45 -0.74 188.80 -50.38 22.0% 2 

INF 0.09 4.13 11.85 0.04 0.86 2.62 2.5% 6 

Wide 

(Case 2) 

EPD 0.61 55.15 18.19 -0.11 1.37 -2.01 16.3% 3 

LPD 0.54 58.17 16.10 -0.06 0.09 -1.10 14.5% 5 

HSP 0.88 17.03 14.25 -0.28 7.99 -2.68 15.5% 4 

CSP -0.83 13.49 -13.41 0.63 39.00 5.96 24.0% 2 

OCC 0.05 -6.05 1.43 -0.73 76.06 -12.85 26.4% 1 

INF 0.17 -2.75 4.97 -0.02 -2.87 -0.37 3.2% 6 

 

4.1.3.2 Meta-models 

Table 4-7 shows the time to develop each meta-model using 100 of training samples. Each meta-

model has 17 monthly energy models (12 electricity and 5 gas model). The multiple linear regression model 

has the least time to build while the Gaussian process emulator took about 20 minutes.  

 

Table 4-7 Meta-model making time 

Meta-models Seconds 

MLR 0.05 

NN 1.58 

SVM 2.93 

MARS 4.03 

GPE 1223.29 
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Cross-validation is the most frequently used method of creating a model. The cross-validation is a 

process of modeling and evaluating data divided by training data and validation data.  Repeating the 

process k times is called k-fold cross validation. The performance of different models can be compared 

with the cross-validation. The following is the phase of 10-fold cross-validation: 

1. Divide the data into 10 pieces, D1, D2,…,D10. 

2. Initialize the value of K to 1. 

3. Set Dk as a validation data and create a model using other data. 

4. Evaluate the model performance using the validation data, Dk. Let Pk be the performance of 

the evaluated model. 

5. If K is lower than 9, K = K + 1 and go step 3. If K = 10, it ends. 

6. This process determines the performance of the model, P1,P2,…,P10, and the final performance 

can be determined by their average.  

In this study, R package, cvTools (Alfons, 2012) was used for the cross validation. The performance 

of models was compared with RMSE. Figure 4-5 shows the monthly RMSE of each meta-model obtained 

through the cross-validation. These results show the GPE is the most accurate, and the MLR is the least 

accurate. As the range of input parameters increases (Case 2), the error increase of MLR is higher than 

other meta-models. Since the MLR is a linear model, there is a limitation to replicate non-linear complex 

building energy model. Non-linear meta-models (NN, SVM, MARS, and GPE) showed a better accuracy 

compared to the MLR. Especially, the GPE had the best accuracy in both base and wide cases. 
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Figure 4-5 RMSE of meta-models 

 

4.1.3.3 Bayesian calibration 

 

Figure 4-6 Computing time for MCMC 

4.1.3.3.1 Computational cost 

Figure 4-6 shows the computing time of MCMC when each meta-model is used. The calibration 

using the MLR was the fastest (2.2 minutes) to sample 100,000 of chains, while the calibration using the 

GPE took about 48.2 hours. The MCMC simulation time is anticipated more than 70 days without meta-

models (using EnergyPlus model). Using the meta-model reduces the simulation time in the MCMC process. 

However, the simulation time differs depending on the type of meta-model.  
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(a) Base case 

 

(b) Wide case 

Figure 4-7 Posterior distributions for each parameter 

4.1.3.3.2 Parameter estimation 

Figure 4-7 compared posterior distributions of the calibration using each meta-model in the base 

case and the wide case. The vertical black lines are true input values for each parameter. The gray dotted 

lines are prior distributions which are uniform distributions, and the solid colored lines are posterior 

distributions. In all cases, the posterior distributions were calibrated to be closer to the true values as 

compared to the prior distributions. Despite the high computing costs, calibration using the GPE was the 

most accurate in the both the base case and the wide case. 
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Figure 4-8 CVRMSE results to the true parameter and EUI 

Figure 4-8-a and b provide the CVRMSE of posterior distributions for parameters in the case 1 

(base range) and the case 2 (wide range). The more accurate meta-model has found the true value of 

unknown parameter accurately. Like the accuracy of the model itself, the calibration accuracy decreases as 

the range of input parameter increases. In particular, the CVRMSE of the linear model showed a larger 

increase than other models. Linear models have limitations in the wide range to express the complexity of 

building energy models extensively. Using non-linear meta-models such as NN, SVM, MARS, and GPE is 

better to estimate the true input values than using the linear regression model. Especially, the calibration 

results using GPE are remarkably accurate than using other meta-models, while it requires the longest 
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computing time (Figure 4-6). As the range of input parameter increased (From Case 1-5 to Case 2-5), the 

increase in CVRMSE of calibration using the GPE was relatively small compared to other results. This is 

because the GPE has excellent predictive accuracy as shown in Figure 4-5. 

Looking at the relationship between the parameter sensitivity and the parameter estimation, the 

calibration of the dominant variables tends to be more accurate in general. However, in both cases, the 

importance ranking does not match the accuracy rankings of parameter estimation. These discrepancies are 

potentially caused by differences in energy data. The sensitivity analysis was conducted using annual 

electricity and gas energy use, and the calibration was performed with monthly energy use. Another possible 

reason is that the effects of electricity energy use and gas energy use are assumed the same in the calculation 

of the SVI. However, the electricity is dominant in the given office building. To account for energy use 

characteristics in the sensitivity analysis, a weighting factor may be applied to variables related to electricity 

use. Further research is also needed to examine the relationship between dominant parameters and 

parameter estimation accuracy.  

4.1.3.3.3 Prediction performance 

Figure 4-8 (c) to (f) show the CVRMSE for 12 monthly total EUI and annual total EUI, respectively. 

The average CVRMSEs of 12 monthly EUI are compared in Table 4-8. Similar trends with the parameter 

estimation have been confirmed in energy use prediction. The accuracy of the calibration result tends to be 

accurate when using more accurate meta-models. The calibration using the GPE had the lowest CVRMSE 

of EUI. The GPE was robust to change of input parameter range. Other non-linear meta-models showed a 

few better results than MLR in the base case. Interestingly, in the wide case, the prediction performance of 

the MLR (Case 2-1) was comparable with NN (Case 2-2) and SVM (Case 2-3) while the MLR had the 

worst accuracy for the parameters estimation. A possible reason is that the Bayesian calibration using the 

MLR can find more output combinations closer to the measured EUI data due to the simplicity of the MLR. 

However, in the wide range case, the accuracy of the parameter is lower because of the large model error 

of the MLR. 
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4.1.3.3.4 Discussion 

The calibration using the GPE can significantly reduce the simulation time compared to using the 

EnergyPlus, but it takes longer than calibration using other meta-models. Even though there were some 

discrepancies between the true input parameters and the estimated posterior distributions, all calibrated 

models can predict the observations well. In the base case, the CVRMSE for monthly and annual total 

monthly EUI were less than 1.2 % and 0.3%, respectively. In the wide case, the CVRMSE for monthly and 

annual total monthly EUI were less than 2 % and 0.4 %, respectively. These results improve the applicability 

of the MLR in cases where energy prediction is the main purpose and where the rapid calculation is required 

such as real-time building assessment and large-scale calibration. However, the accuracy of parameter 

estimation will be lower than using other more accurate meta-models. Adding an interaction and 

transformation can increase the predictive capability of the linear model (Faraway, 2014; Tian et al., 2016). 

Further research is required to improve the accuracy of the MLR with comparable computational cost.  

Selecting proper meta-models is a balancing process between the computational cost and the 

accuracy of parameter estimation and energy prediction. The methodology and findings presented in this 

paper can help to select the meta-model in the Bayesian calibration. 

 

Table 4-8 Average CVRMSE 

Base 
Case 1-1. 

MLR 

Case 1-2.  

NN 

Case 1-3. 

SVM 

Case 1-4. 

 MARS 

Case 1-5. 

 GPE 

Aver. CVRMSE 

for 6 parameters 
0.059 0.050 0.049 0.055 0.004 

Aver. CVRMSE 

for 12 monthly total EUI 
0.008 0.005 0.007 0.005 0.000 

Wide 
Case 2-1. 

 MLR 

Case 2-2.  

NN 

Case 2-3.  

SVM 

Case 2-4. 

 MARS 

Case 2-5. 

 GPE 

Aver. CVRMSE 

for 6 parameters 
0.127 0.096 0.078 0.074 0.021 

Aver. CVRMSE 

for 12 Monthly Total EUI 
0.007 0.012 0.008 0.003 0.001 
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4.1.4 Conclusion 

The analysis presented in this paper evaluates the accuracy of the Bayesian calibration for building 

energy models associated with the accuracy of meta-models. Due to the Bayesian calibration requires the 

massive interaction of building energy model, a meta-model is used to reduce the computing time. The 

main goal of the analysis is to assess the effect of meta-model’s accuracy on the accuracy of estimated 

values in the Bayesian calibration.  

The main findings from the analysis of the impact of meta-models’ accuracy to Bayesian calibration 

include 

(1) The SVI (Sensitivity Value Index) was suggested to consider different sensitivity analysis methods 

and outputs. The SVI can determine a comprehensive importance ranking of parameters taking into account 

the various sensitivity methods and outputs.  

(2) Five meta-models (MLR, NN, SVM, MARS, and GPE) were compared to replace the EnergyPlus 

model in the Bayesian calibration process. The GPE had the best prediction performance, and the MLR was 

the least accurate. In particular, as the range of input parameter increased, the prediction performance of 

MLR was substantially decreased than other non-linear meta-models since the MLR has limitation to 

present the non-linear nature of building energy model. 

(3) Using meta-models reduces computing time in the Bayesian calibration process. To sample 100,000 

of chains, calibration using the MLR took 2 minutes, and calibration using the GPE took 2,892 minutes. 

The accurate tends to take longer simulation time. However, these are considerable reductions compared to 

the anticipated computing time of 70 days without the meta-models.  

(4) The accuracy of Bayesian calibration was improved when using more accurate meta-model. The 

calibration with the GPE showed the best accuracy in both parameter estimation and EUI prediction 

performance. This is because the GPE can replicate relatively accurately the complicated original building 

energy model than other meta-models while it requires the longest computing time. In terms of parameter 

estimation, using the MLR showed comparable accuracy with other non-linear meta-models such as NN, 
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SVM, and MARS in the base input range. In the wide input range case, the accuracy of parameter estimation 

using the MLR was greatly reduced. 

(5) Although there were some disagreements in the parameter estimation, all the calibrated models can 

predict well the energy use for the observations. In the base case, the CVRMSE were less than 1.2% for 

monthly EUI and 0.3% for annual EUI. In the wide case, the CVRMSE were within 2% for monthly EUI 

and 0.4% for annual EUI. 

(6) Selecting proper meta-models is a balancing process between the computational cost and the 

accuracy of parameter estimation and energy prediction. The findings found through the proposed method 

and analysis will help to select the meta-model in the Bayesian calibration.  

In summary, the Bayesian calibration requires considerable iterations of building energy model. To 

reduce the simulation time, we can substitute the complex building energy model for a meta-model. This 

study has confirmed that the computing time and the accuracy of calibration varied according to the type 

of meta-model. Therefore, it is important to select a proper meta-model regarding the degree of simulation 

time and the accuracy. Using the GPE showed the best accuracy while it took a long time than others. 

Focusing only on simulation time and energy usage prediction, the availability of Bayesian calibration using 

MLR has been confirmed. Adding an interaction and transformation can increase the predictive capability 

of the linear model (Faraway, 2014; Tian et al., 2016). More research is needed to improve the accuracy of 

the Bayesian calibration using the MLR.  
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4.2 Determination of informative energy data for Bayesian calibration 

4.2.1 Introduction 

Building energy simulation tools have been widely used for optimal design and control, and retrofit 

analysis for a building. In existing buildings, the difference between measured data and predicted output is 

inescapable due to uncertainty issues. The uncertainties in building models are due to insufficient building 

information, simplification of modeling processes, and behavior of occupants. Model calibration techniques 

have been used to reduce the difference between the measured and the predicted energy data. Calibration 

tunes the input parameters in a simulation model to minimize the discrepancy. Calibration techniques 

estimate the probability distributions of unknown inputs and provide posterior distributions given the 

observed data. Among various calibration techniques, Bayesian calibration has received increasing 

attention in the calibration of building energy model because of its expandability and accuracy.  

Heo et al. (Yeonsook Heo et al., 2011) first applied the Bayesian calibration to account for 

uncertainties during the retrofitting of existing buildings. Bayesian calibration technique has been used for 

a variety of purposes: to estimate input parameters (Y. Heo et al., 2012; Kang & Krarti, 2016; Y.-J. Kim, 

Yoon, et al., 2013; Manfren et al., 2013; Tian et al., 2016), to clarify uncertainty of climate (Tian & de 

Wilde, 2011), and to predict building stock energy use (Booth & Choudhary, 2013; Booth et al., 2012, 2013; 

Ruchi Choudhary, 2012; Tian & Choudhary, 2012; Yohei Yamaguchi, Suzuki, et al., 2013).  

As shown in Table 4-9, previous studies utilized as much energy use data as possible to calibrate 

in the given situation. However, there was a lack of discussion on the type and amount of energy data 

affecting the accuracy of Bayesian calibration.  
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Table 4-9 Building energy data used in Bayesian calibration 

Author Year Calibration 

method 

Calibration 

target 

Data type Note 

Heo (Y. Heo et 

al., 2012; 

Yeonsook Heo et 

al., 2011)  

2011, 

2012 

Bayesian individual 

building 

12 monthly 

gas data 

heating only 

building 

Tian and 

Choudhary (Tian 

& Choudhary, 

2012) 

2012 Inverse 

problem/ 

Bayesian 

building stock annual gas 

use data 

heating only 

building 

Booth et al. 

(Booth et al., 

2012)  

2012 Bayesian building stock 61 days of 

electricity use 

data 

electricity only 

building 

Zhao et al. (Fei 

Zhao, 2012; Fei 

Zhao et al., 2016)  

2012,  

2016 

Inverse problem building stock annual total 

energy use 

data 

- 

Kim et al.  (Y.-J. 

Kim, Yoon, et al., 

2013)  

2013 Bayesian individual 

building 

annual 

heating and 

cooling 

energy use 

data 

- 

Manfren et al. 

(Manfren et al., 

2013)  

2013 Bayesian individual 

building 

12 monthly 

electricity and 

12 monthly 

gas use data 

- 

Heo et al. 

(Yeonsook Heo, 

Graziano, et al., 

2015) 

2015 Bayesian individual 

building 

12 monthly 

total energy 

use 

- 

Yoonsuk Kang 

and Moncef 

Krarti (Kang & 

Krarti, 2016) 

2016 Bayesian individual 

building 

12 monthly 

electricity and 

12 monthly 

gas use data 

- 
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Tian et al. (Tian et al., 2016) indicated this issue and identified informative data in Bayesian 

calibration using correlation analysis and a hierarchical clustering method. This study aims to determine 

and choose informative energy data for accurate Bayesian calibration via correlation analysis and 

hierarchical clustering methods.   

4.2.2 Methodology 

The overall process is similar to the method described in Chapter 4.1. The first step is to establish 

the building energy model using the EnergyPlus. Then, a degree of uncertainty of the building model is 

determined by the selection of unknown parameters and variations of the selected parameters. The 

combinations of inputs are constructed using a sampling method. The combinations are fed into the building 

energy simulation program to obtain an input-output set. A large number of the input-output sets are 

required to supply sufficient data for the next step. The second step is to use a sensitivity analysis to screen 

parameters. This step identifies the dominant input (parameters) affecting the output (energy consumption). 

By selecting only important parameters as calibration parameters, we can exclusively focus on the important 

parameters and reduce the simulation runs in the calibration process. In this study, the parameter screening 

was omitted because only six unknown parameters were selected as input parameters. The third step is 

implementation of correlation and cluster analysis to examine the features of energy consumption data. We 

can classify the energy use data into several groups that have a similar trend. Based on the classification, 

we can determine which energy data are informative or uninformative. The fourth step is to create a meta-

model using the input-output set from step one. Bayesian calibration will use the meta-model rather than 

the actual energy simulation programs to reduce the simulation time significantly. The last step is to obtain 

the unknown parameters from the Bayesian calibration and compare the accuracy of these posterior 

distributions to the target values.  

4.2.2.1 Building energy model 

A medium office building from the U.S. Department of Energy (DOE) reference building, shown 

in Figure 4-9, was used for the case study in this analysis. The office building is a three-story rectangular 

building with a floor area of 4,982 m2. The main features of the office building are shown in Table 4-10.  
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Figure 4-9 DOE reference medium office building (Medium Office Reference Building new construction 

90.1-2004) 

 

Table 4-10 Main features of the office building 

Component  Item Parameters Unit 

Envelope Floor area 4982 m2 

Floor levels 3 - 

Window-wall ratio 0.33 - 

Thermal Zoning core zone with four perimeter zones 

on each floor 

- 

Wall U-value 0.48 W/m2K 

Roof U-value 0.35 W/m2K 

Window U-value 3.24 W/m2K 

SHGC (solar heat gain coefficient) 0.39 - 

Infiltration rate (Air changes per 

hours) 

See Table 4-11 W/m2 

Internal heat 

gains 

Lighting power density See Table 4-11 W/m2 

Equipment power density See Table 4-11 W/m2 

Hourly schedules for set-point for 

heating and cooling, occupants, 

lights, 

and equipment 

DOE Reference building - 

HVAC systems System Type MZ-VAV - 

Heating Type Gas furnace and electric reheat - 

Cooling Type PACU - 
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The building was assumed to be located in Boulder, Colorado, US and the weather data was 

obtained from the EnergyPlus weather file database (“Weather Data | EnergyPlus,” n.d.). Table 4-11 lists 

the selected unknown input parameters and the range of them. Specifically, the chosen parameters are 

equipment power density, lighting power density, heating set-point, cooling set-point, occupancy, and 

infiltration. The ranges of unknown parameters were determined arbitrarily based on the default value of 

the reference building. 

Table 4-11 Input parameters and ranges 

Parameters Short names Range Unit 

Equipment power density EPD 11 - 15 W/m2 

Lighting power density LPD 12.5 - 17.5 W/m2 

Heating set-point HPS 19.5 - 22.5 oC 

Cooling set-point CSP 22.5 - 25.5 oC 

Occupancy OCC 15 - 25 m2/person 

Infiltration INF 0.6 - 0.8 ACH 

 

The prior distributions for six input parameters were assumed as a uniform distribution. The 300 

training samples and 100 testing samples of inputs were created by the Latin Hypercube Sampling (Mckay 

et al., 2000).  Total 400 of input set were then fed into the EnergyPlus to obtain the input-output matrix. 

This process is called ‘uncertainty propagation.’ The obtained input-output matrix is utilized to build the 

meta-models in next step. The uncertainty propagation was performed by jEPlus software (Y. Zhang, 2009). 

Figure 4-10 shows monthly average energy use intensity for 300 training set. The energy use 

intensity (EUI, MJ/m2) for electricity and gas were used for energy performance indicators.  For the office 

building, the electricity is dominant on the energy use because the DOE office medium reference building 

has a packaged air-conditioning unit for cooling and a gas furnace with electric reheat for heating. The gas 

usages from April to October have only base loads for domestic hot water. Therefore, the gas data for only 

five months (January, February, March, November, and December) were used for the calibration 

considering the accuracy of the meta-models. All 12-month energy data was used for the electricity.  

 



100 

 

Figure 4-10 Average monthly energy use 

4.2.2.2 Sensitivity analysis 

As stated above, the parameter screening was omitted. However, the sensitivity analysis was 

performed to identify which parameter is more important among six parameters to the building energy use. 

It helps to explain the degree of uncertainty in the estimated parameters as results of Bayesian calibration. 

The sensitivity value index (SVI) was suggested in Chapter 4.1. Using the SVI, we considered different 

ranking from diverse sensitivity analysis methods and different outputs. In this study, we performed three 

sensitivity analysis methods for both electricity use and gas use: SRC (standardized regression coefficient), 

random forest variable importance and T-value. For detailed information about three sensitivity analysis 

methods, please refer to (Tian, 2013).  

The SRC is the most popular method of the building energy analysis due to its availability and 

simplicity. It removes the original unit of measurement for variables in a regression equation by 

normalization. These coefficients are converted to a scale from -1 to 1. Therefore, we can more easily 

compare the effect sizes of parameters measured on different scales. The SRC is more suitable for linear 

relationships between inputs and outputs (Tian et al., 2016). The random forest method (Breiman, 2001) is 

an ensemble learning for classification and regression that construct a number of decision trees. The random 

forest can assess the relative importance of variables based on the decrease of classification accuracy when 
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values of a variable in a node of a tree are permuted randomly (Diaz-Uriarte & Alvarez de Andres, 2005). 

A larger decrease in accuracy indicates that the variable is more important than others. T-value can also be 

used to determine the important variable in regression analysis. The T-value is a statistic value for testing 

whether the corresponding regression coefficient is different from zero. The high absolute value of t means 

that the factor is more important than others. 

The sensitivity value index (SVI) was suggested as shown in the equation (1). The values from the 

sensitivity analysis were normalized and then aggregated so that the importance of parameters can be 

compared considering the difference of sensitivity methods and target output. 

 ∑

∑ (
𝑉𝑖,𝑗

∑ |𝑉𝑖,𝑗|𝑛
𝑖=1

)𝑘
𝑗=1

𝑘
𝑚 ∙ 𝑘

× 100

𝑚

𝑙=1

= 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑆𝑉𝐼)(%) 
(4.23) 

Where 𝑖 is the parameter, 𝑛 is the number of parameters (𝑛 = 6), 𝑗 is the sensitivity method, 𝑘 

is the number of sensitivity methods (𝑘 = 3, (SRC, Random forest variable importance, and T-value)), 𝑙 

is the target output, 𝑚 is the number of target output (𝑚 = 1 (total, electricity or gas)) 

4.2.2.3 Correlation and Cluster Analysis 

The correlation and clustering analysis were used in this research to examine the features of 

building energy use data. The correlogram (or corrgram) is a graph of the correlation matrix. It is useful to 

highlight the most correlated variables in a data table. The correlation coefficients are colored according to 

the value. The Pearson Product-Moment Correlation measures the strength of a linear association between 

two variables and is denoted by 𝑟. 

 
𝑟 =

1

𝑛
∑ (

𝑥𝑖 − 𝜇𝑥

𝜎𝑥
) (

𝑦𝑖 − 𝜇𝑦

𝜎𝑦
)

𝑛

𝑖=1

 
(4.24) 

Where 𝑟 is the Pearson correlation coefficient between two variables(𝑥 and 𝑦), n is the number 

of observations, 𝜇𝑥 is the mean of the variable 𝑥, 𝜇𝑦 is the mean of the variable 𝑦, 𝜎𝑥 the standard 

deviation of the variable 𝑥, and 𝜎𝑦 is the standard deviation of the variable 𝑦. 
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The Pearson correlation coefficient, 𝑟, ranges from -1.0 to +1.0. A value of 0 indicates that there 

is no association between the two variables. The closer 𝑟 is to +1 or -1, the more closely the two variables 

are related. If 𝑟 is positive, it means that as one variable gets larger the other gets larger. If 𝑟 is negative 

it means that as one gets larger, the other gets smaller. 

The purpose of cluster analysis is to allocate a set of observation sets into groups that are similar or 

close to one another regarding certain characteristics. There are broadly two types of clustering methods 

based on distance-algorithms where objects are clustered into groups according to their relative closeness 

to each other (T. A. Reddy, 2011): partitional clustering and hierarchical clustering. Partitional clustering 

determines the optimal number of groups by performing the analysis with a different pre-selected number 

of clusters. Compared to the partitional clustering method, the hierarchical clustering method does not need 

to select the number of clusters, and it is more appropriate for example when the data set has naturally-

occurring or physically-based nested relationships (Dunham, 2006). The hierarchical clustering allows one 

to identify closeness of diverse objects at different levels of aggregation. It starts with individual objects 

and then gradually merging these in a sequential method according to their relative closeness. As a result, 

there is only a single cluster including all objects at the highest level. In this research, each monthly end-

use energy data were considered as the object. Therefore, the energy use data in different groups can be 

considered as having different characteristics of energy use, while the objects with similar characteristics 

of energy use were grouped together. The diagram from the hierarchical clustering is called tree diagram 

or dendrogram that allows one to identify objects which are close to each other at different levels. If two 

groups are significantly different, the energy data in two groups can be considered as informative energy 

data. After the correlation and cluster analysis, the cases were decided to determine whether the informative 

and uninformative energy data affect the accuracy of Bayesian calibration. 

4.2.2.4 Meta-models 

A meta-model is a simplified representation of the building energy model. The biggest drawback 

of the Bayesian calibration is that it requires a massive number of simulation runs. This may result in an 

enormous amount of time to complete the simulation runs. To reduce the computational time, a meta-model 
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is used instead of EnergyPlus. In the previous chapter, we confirm that the calibration using the multiple 

linear regression (MLR) models could obtain reasonable calibration result in the prediction of energy 

consumption. Tian et al. (Tian et al., 2016) indicated the advantages of using the MLR models: robustness, 

intuitive relationship between input and output, and expandability using transformation such as interaction 

and second-order terms. 

The accuracy of meta-model is evaluated by using two criteria: R2 and RMSE (root mean square 

error). The higher R2 value means that the model is more accurate and a lower RMSE value indicates a 

better model. The MLRs were developed from the training data (200 samples) and then evaluated using the 

test data (extra 100 samples). 

 

4.2.2.5 Bayesian analysis 

In the Bayesian analysis, all the uncertainty in the building energy model can be regarded as 

probabilities. The six input parameters listed in Table 4-11 are estimated based on monthly energy data for 

electricity and gas. Bayesian inference was applied to calibrate uncertain parameters in a building energy 

model. The prior belief in the actual values of uncertain parameters is updated by given observed data on 

building in the Bayes' theorem. As a result, Bayesian calibration provides the posterior distribution 𝑝(𝜃|𝑦) 

in a form of plausible distribution of calibration parameters. 

 
𝑝(𝜃|𝑦) =  

𝑝(𝑦|𝜃) ∙ 𝑝(𝜃)

𝑝(𝑦)
 ∝ 𝑝(𝑦|𝜃) ∙ 𝑝(𝜃) 

(4.25) 

Where, 𝑝(𝜃) is prior distributions assigned for uncertain parameters; 𝑝(𝑦|𝜃) is a likelihood 

function that measures how closely model predictions match the observed data.  

A Markov Chain Monte Carlo (MCMC) (Gilks, 2005) method is used to depict the posterior 

probability distribution in the Bayesian calibrations. Estimation of the probabilistic model distribution 

involves complex integrals. However, these integrals are not calculable because of high dimensionality or 

cannot be evaluated using calculus in most of the cases. The MCMC allows approximations using stochastic 

sampling routines. Metropolis-Hastings sampling (Gelman et al., 2014) methods were used to solve the 

MCMC. The Bayesian calibration framework was conducted in R, software for statistical analysis. 
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In an MCMC process, a sufficient number of iterations is required to explore the entire feasible 

range. 100,000 of iteration number was used in this study. A preliminary study using the Gelman and Rubin 

diagnostic (Gelman & Rubin, 1992) showed that the potential scale reduction factor (PSRF) for each 

parameter was lower than 1.1 which means the Markov Chain has converged when the iteration number is 

larger than 100,000.  

To evaluate the accuracy of the Bayesian calibration, one data point was selected as a target 

building among the 100 testing data set. The input parameters and the energy use simulated from 

EnergyPlus model were considered as true values for the calibration.  

The accuracy of the Bayesian calibration results was evaluated by the coefficient of variation with 

root mean square error (CVRMSE) to the true values of the target building. CVRMSE is a non-dimensional 

form of the RMSE. It relatively measures normalization of the magnitude by the mean of observations. The 

model with lower CVRMSE is a more accurate model. The CVRMSE values to the input parameters, and 

total EUI values for monthly and annual were compared to each case.  

4.2.3 Results 

4.2.3.1 Results from sensitivity analysis 

Figure 4-11 to Figure 4-13 show the sensitivity analysis results for monthly total energy, electricity, 

and gas. The analysis is based on the SVI considering three sensitivity analysis methods:  SRC 

(standardized regression coefficient), random forest variable importance and T-value. As described in 

Chapter 4.1.2.2, each of the sensitivity methods provide sensitivity values, and a higher absolute value 

means a more influential parameter. Using the SVI, the values from the sensitivity analysis were normalized 

to identify the important parameters considering the difference of sensitivity analysis methods. 

Figure 4-11 presents the ranking of importance influencing monthly total energy use in the building. 

The important parameters were significantly different by month. In the cold season, the heating set point 

temperature (HSP) is the most important factor, while the equipment power density (EPD) becomes more 

important in the hot season. In the ranking of importance for monthly electricity use (Figure 4-12), it shows 

a similar trend. It is because the electricity usage is dominant on the total energy use in the office building 
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section 0. The main end-use energy for electricity would change from the heating energy to the equipment 

since this DOE office building uses a gas furnace with electric reheat for heating. Figure 4-13 provides the 

important factors affecting monthly gas energy use. They are not much different by month because the gas 

energy use data in the summer were not included in this analysis. The occupant density is the most important 

parameter in the all the months. The next important factors are the cooling set point temperature (CSP) and 

heating set point temperature (HSP). 

In the previous chapter, the sensitivity analysis was performed using the annual energy 

consumption data. It presented an overall trend of relative importance for input parameters. More detailed 

information can be obtained by conducting a sensitivity analysis with monthly energy use data. As shown 

in Figure 4-11, the most dominant parameter in the summer is different from that in the winter. It helps to 

understand the features of energy consumption in buildings. For the purpose of energy model calibration, 

this suggests that getting information on HSP is more important for the better match between simulation 

and observed data in winter, while the equipment power density data can greatly improve the accuracy of 

calibration in summer.  

 

Figure 4-11 Sensitivity Value Index (SVI) using monthly total energy use 
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Figure 4-12 Sensitivity Value Index (SVI) using monthly electricity energy use 

 

Figure 4-13 Sensitivity Value Index (SVI) using monthly gas energy use 

4.2.3.2 Results from correlation and cluster analysis 

Figure 4-14 to Figure 4-16 show the correlograms and dendrograms for monthly total energy use, 

electricity use, and gas use. The color in the correlogram shows the correlation coefficient as results from 

the correlation analysis. The color change from blue to red means an increase of correlation coefficient. We 

found an obvious seasonal pattern in the correlograms. The left side of correlogram is the dendrogram as 

results from the hierarchical cluster analysis. In the analysis using total energy use (Figure 4-14) and 

electricity (Figure 4-15), there is one cluster including all energy data at the highest level. At the second 

level, the total energy use and electricity use data are divided into three groups. According to the correlation 

and cluster analysis, monthly energy data was classified into three groups: winter, summer, and transition 

months. The winter season includes January, February, March, November, and December. The summer 
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months are June, July, August, and September. The transition months are April, May, and October. For the 

gas energy use (Figure 4-16), two clusters were identified from the analyses: winter and transition months. 

The winter months of gas data are January, February, and December. The transition months of gas data are 

March and November. 

Regarding the findings from above analyses, the combinations of different energy consumption 

data can be used to determine the informative data for the Bayesian calibration. In this study, the informative 

data refer to the monthly energy use data from different clusters that have a large difference in the 

correlation and cluster analysis. The uninformative data are the monthly energy use data with high similarity 

(Tian et al., 2016).  

 

Figure 4-14 Correlogram and dendrogram for total energy use 
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Figure 4-15 Correlogram and dendrogram for electricity energy use 
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Figure 4-16 Correlogram and dendrogram for gas energy use 

 

4.2.3.2.1 Case selection 

Table 4-13 presents all the cases used in this study. Table 4-12 describe the name of the case. The 

first letter is the type of energy consumption data. For instance, 'T' indicates total energy use, and 'EG' 

indicates electricity and gas. The first number before a hyphen is the number of energy use data.  The 

second number after a hyphen shows whether the case is informative or not.  For example, case EG4-2 is 

informative energy data using four monthly energy use data: electricity data for January and July, and gas 

data for January and March.  

The least number of energy use data are Case T1-1, Case E1-1, and Case G1-1 that are all 

uninformative data. On the other hand, the maximum number of energy data is 17 (Case EG17-2) which is 
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12 monthly electricity and 5 monthly gas energy data. Note that Case T8-1 and Case E8-1 are predicted to 

be informative enough although they are classified as uninformative. This is because those cases have eight 

monthly energy data from different clusters. By comparing the cases, the effect of informative and 

uninformative energy data on the Bayesian calibration can be analyzed.  

 

Table 4-12 Example of case 

e.g.) Case T1-1   

Energy use data type # of monthly energy data Informative 

EG: Elec. & Gas, 

T: Total, 

E: Electricity, 

G: Gas 

1, 2, 4, 8, 12, 17 
1: Uninformative data , 

2: Informative data 

 

 

Table 4-13 Summary of cases 

Elec. & 

Gas 

Uninformative Case EG2-1 Case EG4-1 Case EG8-1  

Energy data AE, AG 
E01, E02,  

G01, G02 

E01, E02, E03, 

E11, E12, 

G01, G02, G12 

 

Informative  Case EG4-2 Case EG8-2 Case EG17-2 

Energy data  
E01, E07,  

G01, G03 

E01, E04, E07, 

E08, E12, 

G01, G03, G12 

E01 - E12, 

G01, G02, G03, 

G11, G12 

      

Total 

Uninformative Case T1-1 Case T4-1 Case T8-1 Case T12-1 

Energy data AT 
T01, T02, T11, 

T12 
T01 - T08  

Informative  Case T4-2 Case T8-2 Case T12-2 

Energy data  
T01, T04, T07, 

T08 

T01, T02, T04, 

T07,  

T08, T09, T10, 

T12 

T01 - T12 
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Elec. 

Uninformative Case E1-1 Case E4-1 Case E8-1  

Energy data AE 
E01, E02, E11, 

E12 
E01 - E08  

Informative  Case E4-2 Case E8-2 Case E12-2 

Energy data  
E01, E04, E07, 

E08 

E01, E02, E04, 

E07,  

E08, E09, E10, 

E12 

E01 - E12 

      

Gas 

Uninformative Case G1-1    

Energy data AG    

Informative  Case G3-2 Case G5-2  

Energy data  G01, G02, G03 
G01, G02, G03, 

G11, G12 

 

 

4.2.3.3 Results from regression analysis 

Figure 4-17 shows the results of regression analysis for total, electricity, and gas energy use. As a 

result, the accuracy of the model using training data set is higher than that using testing data set regarding 

R2 and RMSE. However, the results using testing data were not significantly different with the training 

data regarding R2 and RMSE. The results confirm that the multiple linear regression models are accurate 

enough for Bayesian calibration in the given case.  
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Figure 4-17 Results of regression analysis 

4.2.3.4 Results from Bayesian analysis 

Figure 4-18 (a) and (b) compares six parameter's distributions between case EG2-1 and case EG17-

2. The dotted gray lines are the prior distribution, and the solid orange lines are the posterior distribution. 

The black vertical lines are the true values in the target building. If the posterior distributions are closer to 

the corresponding vertical lines, the results of Bayesian calibration are more accurate. The input parameters 

estimated from case EG2-1 have larger variations compared to case EG17-2. 

Figure 4-18 (c) and (d) illustrates the distributions of EUI (energy use intensity) for case EG2-1 

and case EG17-2. The red distributions are prior EUI distribution, and the green distributions are the 

posterior distribution. The solid black lines are the true energy consumption values. The posterior EUI 

distributions became closer to the true EUI value and the range of distribution narrowed. For the remaining 

results refer to Appendix A. CVRMSE values were compared for quantitative analysis.  
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(a) Parameter distribution for Case EG2-1 

 

(b) Parameter distribution for Case EG17-2 

 

(c) EUI distribution for Case EG2-1 

 

(d) EUI distribution for Case EG17-2 

Figure 4-18 Distributions of input parameters and annual EUI 
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4.2.3.4.1 Case EG 

Case EG used both electricity and gas consumption data. Figure 4-19 shows CVRMSE results for 

each input parameters, monthly total EUI and annual total EUI. In the CVRMSE analysis for the parameter, 

the more the number of energy data, the more accurate results were obtained. Furthermore, accuracy can 

be improved when we use informative energy data rather than uninformative energy data. This indicates 

that the estimated posterior distributions are more reliable from the informative data when we use the same 

number of energy use data. In the CVRMSE analysis for monthly total EUI and annual EUI, as with the 

results for parameters, the higher the number of energy data, the more accurate results were obtained. The 

calibration results using four informative energy data (case EG4-2) were more accurate than results using 

eight uninformative energy data (case EG8-1). 

In the closer inspection of CVRMSE results of monthly energy for case EG 4-1, the case EG4-1 

has been correctly calibrated in all winter groups (January, February, December, November, and March), 

even though only energy data for January and February were used. However, the transition and summer 

groups were less accurate. The CVRMSE values were the largest for the summer group which is the least 

related to the winter group. This trend can also be seen in EG 8-1. However, because we used more energy 

data here, more accurate calibration results were obtained. 

In particular, case EG2-1 showed poor accuracy for parameter and monthly total EUI while 

predicting performance for annual total EUI was comparable to the result of informative energy data. Since 

the calibration is made for the annual electricity and gas energy data, the accuracy for annual data is high. 

Meanwhile, as shown in Figure 4-20, using only two annual energy data (case EG2-1) can reduce the 

simulation time by about 51% compared to using 17 monthly energy data. Therefore, these results suggest 

that different energy data can be used depending on the purpose of calibration. For example, if detailed 

monthly forecasts are required, monthly energy measured data will be needed. On the other hand, if only 

annual energy consumption forecasts are taken into consideration, the annual energy can be selected for the 

calibration with low computational cost. 
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(a) CVRMSE for each parameter 

 

(b) CVRMSE for monthly total EUI 

 

 

(c) CVRMSE for annual total EUI 

Figure 4-19 CVRMSE for case EG 

 

 

 

Figure 4-20 Computation time for Bayesian calibration 
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4.2.3.4.2 Case T 

Figure 4-21 shows CVRMSE results of Bayesian calibration using only total energy use data. Case 

EG17-2, the most accurate result, was also compared together. The difference between case T4-2 result 

from informative data and case T4-1 result from uninformative data is significant, while case T8-1 and case 

T8-2 show similar results. As expected, using eight of the monthly data from January to August is already 

informative enough since eight consecutive monthly total energy data covers all three different groups 

(winter, summer, and transition).  

In case T4-1, similarly to case EG4-1, since energy data for January and February were used to 

calibrate, the months belonging to the winter group were corrected most accurately. Then, the transition 

group was the second most accurate, and the summer group was the least accurate. The difference in the 

accuracy of the calibration according to the cluster group was clearly shown.  

CVRMSE results using 12 monthly total energy data (case T12-2) were similar to those using 17 

energy data (case EG17-2) in terms of estimating energy use. This can be explained by the reason that total 

energy use is used as a calibration criteria. However, using a different type of energy data (case EG17-2) is 

more accurate than total energy usage data (case T12-2) when estimating the input parameters. 
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(a) CVRMSE for each parameter 

 

(b) CVRMSE for monthly total EUI 

 

 

(c) CVRMSE for annual total EUI 

Figure 4-21 CVRMSE for case T 
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4.2.3.4.3 Case E 

Figure 4-22 compares the calibration result using only electricity energy data. The most accurate 

results, case EG17-2, were compared together. Case E8-1 and case E8-2 have similar CVRMSE values 

since case E8-1 is already sufficiently informative data as in case T8-1. When using only electrical energy 

data, the accuracy of calibration is much lower than when using only total energy or when using both 

electric energy and gas energy together. It can be interpreted that the OCC, which is the most dominant 

factor in the use of gas energy (see Figure 4-13), cannot be properly calibrated when the calibration only 

uses electricity energy data. Indeed, in all cases, the CVRMSE values of the OCC were very large. 

 

 

(a) CVRMSE for each parameter 

 

(b) CVRMSE for monthly total EUI 

 

 

(c) CVRMSE for annual total EUI 

Figure 4-22 CVRMSE for case E 
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4.2.3.4.4 Case G 

Figure 4-23 presents the CVRMSE results when the calibration uses only gas energy use data. It 

has a very large error in all cases. Since there were only five months of gas use data, the number of data 

was insufficient. Another possible explanation for large error is that the ratio of gas to the total building 

energy consumption is small. In terms of informative data, there was not much difference between 

informative and uninformative data when using three monthly gas energy data. It has been found that the 

accuracy is reduced when calibrating using only gas data in the target building. 

 

 

(a) CVRMSE for each parameter 

 

(b) CVRMSE for monthly total EUI 

 

 

(c) CVRMSE for annual total EUI 

Figure 4-23 CVRMSE for case G 

In summary, this study compared the effect of informative and uninformative data on the Bayesian 

calibration. Generally, using more energy data showed more accurate calibration results. However, as more 

energy data is used, the number of meta-models increases, so it took longer to calibrate. Through the 

proposed method based on correlation and clustering analysis, the characteristics of energy data can be 
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comprehended and classified into several groups. The use of informative energy data pulled from different 

groups had more accurate calibration results. When there are different energy end-use types, using different 

types of energy data together showed better results than using one energy type data. In this case, if we only 

focus on calibrating the energy usage, it is recommended to use informative energy data with total energy 

data. If we are concerned about the estimation of the input parameters, using informative electricity and gas 

data can lead to accurate model calibration. By using this process, it can be judged whether sufficient 

accurate calibration can be acquired even if there is missing energy data.  

4.2.4 Conclusion 

The aim of the study is to determine informative energy data and to examine those effect on the 

Bayesian calibration of building energy models. In the given case study, the obtained energy use data was 

classified into three groups using correlation analysis and hierarchical clustering method. The energy data 

from the same group can be treated uninformative data. By contrast, the energy data from different groups 

are considered informative data because they present various energy usage patterns. 

It was found that different combinations of energy data have a significant impact on the accuracy 

and computational time for Bayesian calibration. The informative energy data from different groups leads 

to reliable result with low computational cost.  

Even though there is insufficient energy data in the Bayesian calibration, one can obtain reliable 

results if the informative data was selected using the proposed method. Furthermore, computational cost 

can be reduced by using only informative energy data for Bayesian calibration. The selection of informative 

energy data should be chosen considering the purpose of the calibration.  
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CHAPTER 5: PREDICT BUILDING STOCK ENERGY USE WITH 

STOCHASTIC-DETERMINISTIC-COUPLED APPROACH 

 

5.1 Introduction 

In the previous chapter, the proposed stochastic methodology was applied and analyzed for a single 

building to understand the features of Bayesian calibration comprehensively. The effect of accuracy of 

meta-model and informative energy data were studied in the process of Bayesian calibration. As the meta-

models are accurate and the building energy data is informative, the accurate Bayesian calibration can be 

achieved.  

In this chapter, the proposed stochastic methodology is applied to a building stock. The method of 

expanding to building stock is examined. The issues to be considered in the process and the differences 

from the Bayesian calibration for an individual building are examined. A commercial virtual building stock 

is developed to determine whether the suggested stochastic-deterministic-coupled building stock energy 

model can estimate the input target distribution of building stock. Then, we examine whether the inferred 

posterior distribution of input parameters can be used for an energy conservation measure analysis. 

The residential virtual building stock is also developed to figure out how to calculate the integrated 

EUI for different building stocks. Then, the daily energy use pattern from the two virtual building stocks 

are estimated to figure out the peak energy load. The stochastic building stock energy model is established 

through this process. 
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5.2 Process of stochastic building stock energy model 

a) Collecting building stock information 

including energy data

b) Classifying building archetypes

c) Developing representative building energy 

model 

a) Specification for ranges and distributions 

for parameters

b) Monte Carlo simulation

c) Parameter screening based on sensitivity 

analysis

a) Selection of calibration parameters for 

representative model

b) Development of meta-model

a) Setting of measured energy data from the 

distribution

b) Bayesian calibration using measured data

c) Repeat for other energy data point

d) Re-sampling (Thinning)

Representative 

building models

Parameter screening

(Sensitivity analysis)

Meta-model 

Bayesian calibration

Main process Detailed work

a) Repeat the procedure for each type 

representative building

b) Calculation of energy use by multiplying 

EUI distribution and total floor area

c) Aggregation of different building type

d) Additional analysis such as ECM

Aggregation & 

Analysis

1

2

3

4

5

 

Figure 5-1 Main process of stochastic building stock energy model 

Figure 5-1 presents the main process of stochastic-deterministic-coupled building stock energy 

model. The first step involves the development of representative building energy models using building 

energy simulation programs. Based on data analysis using collected building stock information, the 

buildings in the target district can be classified into several groups. The classification considers building 

features such as shape typology, building geometry such as building height and WWR, building function, 

age of construction, and material. For each group, representative building energy models are developed. A 
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degree of uncertainty is determined by selecting unknown parameters and those variations. The next step 

is uncertainty propagation. The combinations of inputs are constructed using a sampling method (Monte 

Carlo simulation). These combinations are fed into the building energy simulation program (e.g. 

EnergyPlus) to obtain input-output sets. This process is called “uncertainty propagation.” A large number 

of the input-output sets are required to supply sufficient data for the next step. Then, a sensitivity analysis 

uses the input-output sets to select dominant parameters. This step identifies the dominant input parameters 

affecting the output (energy consumption). By selecting only important variables as calibration parameters, 

we can exclusively focus on the important parameters and reduce the simulation runs in the calibration 

process. The third step is to create meta-models using the input-output set from the step two. Bayesian 

calibration will use the meta-models rather than the dynamic energy simulation program to reduce the 

simulation time significantly. The fourth step is to estimate the unknown parameters using the Bayesian 

calibration.  

From step 1 to step 3-(b) are similar to the process for individual building. The subsequent steps 

are for expanding the application of Bayesian calibration to the building stock. Another energy use data 

point (target building) is extracted from the energy use distribution, and the Bayesian calibration is 

performed on the energy data for new target building. Sufficient point should be sampled to represent the 

population, and the Bayesian calibration is repeated for each energy data. After the iteration of Bayesian 

calibration, the posterior distributions for each building are combined and then re-sampled to reduce sample 

size for simplicity of calculation (thinning). The next step is aggregation and analysis. Step 2 to step 4 are 

iterated for each representative building type. Then, total energy use for each building type is calculated by 

multiplying EUI distribution and total floor area. Finally, the distributions of total energy use for each 

building type are summed to obtain the energy consumption distribution for the overall building stock.  

5.2.1 Differences in stochastic models for individual building and building stock  

There are several differences in stochastic models for individual building and building stock: 
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5.2.1.1 Development of representative building model 

In the Bayesian calibration for an individual building, the purpose of building energy modeling is 

to construct the energy models as similar as possible to the actual target building. In the building stock, the 

buildings in the target district are classified into several sub-groups. The representative building model 

(archetype) for the sub-group should cover all buildings for the type of building. The most common 

characteristics such as an average value of building geometry and the most used type of HVAC systems 

can be used to model the representative building energy model.   

5.2.1.2 Uncertainty for input parameters 

In the Bayesian calibration for the individual building, the prior distribution for an input parameter 

is treated as an uncertainty of the input parameter. In other words, such uncertainty is caused by insufficient 

building information, construction error, or human behaviors. On the other hand, in the building stock 

model, the uncertainty of the input variables can be considered as the distribution of each parameter in the 

building stock. For example, in the case of R-value of wall insulation, the uncertainty of the single building 

indicates the probability of R-value, while the uncertainty of the building stock can be treated as a spatial 

distribution of R-values. 

5.2.1.3 Iteration of Bayesian calibration 

Bayesian calibration process for the individual building uses one set of energy data for the target 

building to calibrate. Therefore, if the building energy model is robust, the estimated posterior distribution 

for input parameter can be regarded as the actual target value. In the building stock, the Bayesian calibration 

is repeated for the several sets, which represent energy data points from the building energy distribution. 

Each distribution as a result of Bayesian calibration is combined. This is similar to the kernel density 

estimation procedure as shown in Figure 5-2 (Shawe-Taylor & Cristianini, 2004). Therefore, Bayesian 

calibration for building stock requires more computational time as the Bayesian calibration is iterated using 

each building energy data set of 30 buildings in the virtual building stock. 
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5.2.1.4 Aggregation 

Bayesian calibration for the building stock requires the aggregation process. There are two concepts 

of the term of aggregation. The first is the process from the representative building to the building stock. 

Each posterior distribution from the iterated Bayesian calibration are combined to represent one type 

building stock. Another aggregation is for the different building types. If there are several building 

classifications, each result for building types is combined to represent the all building stock. 

Individual building Building stock

 

Figure 5-2 A conceptual illustration of an individual building and a building stock in Bayesian calibration. 

 

5.3 Development of commercial Virtual Building Stock 

In the actual building district, the building information such as thermal properties, specifications of 

HVAC systems for each building is rarely available for the level of detail required in the building energy 

modeling. Even if the detailed information could be acquired from drawings and specifications, the actual 

values of properties would be different due to construction and measurement errors. Therefore, the 

commercial virtual building stock (VBS) was developed in this chapter. By identifying the detailed input 

variables for each building in the building stock, the accuracy of the proposed stochastic-deterministic-

coupled building stock energy model can be evaluated quantitatively.  

The commercial VBS is based on the DOE commercial reference building - medium office. The 

office building has three stories, and the total floor area is 4,982 m2. For the HVAC systems, it has a gas 
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furnace and electric reheat for heating and packaged air condition unit for cooling. The main features of the 

DOE reference medium office building are shown in Table 5-1. 

 

Table 5-1 Main features of the DOE reference office building 

Component  Item Parameters Unit 

Envelope Floor area 4982 m2 

Floor levels 3 - 

Window-wall ratio 0.33 - 

Thermal Zoning core zone with four perimeter 

zones on each floor 

- 

Wall U-value See Table 5-2 W/m2K 

Roof U-value See Table 5-2 W/m2K 

Window U-value See Table 5-2 W/m2K 

SHGC (solar heat gain 

coefficient) 

See Table 5-2 - 

Infiltration rate (Air changes per 

hours) 

See Table 5-2 W/m2 

Internal heat 

gains 

Lighting power density See Table 5-2 W/m2 

Equipment power density See Table 5-2 W/m2 

Occupancy See Table 5-2 m2/person 

Hourly schedules for set-point 

for heating and cooling, 

occupants, lights, and equipment 

DOE Reference building - 

HVAC 

systems 

System Type MZ-VAV - 

Heating Type Gas furnace and electric 

reheat 

- 

Heating efficiency See Table 5-2 - 

Heating set-point See Table 5-2 oC 

Cooling Type PACU - 

Cooling COP See Table 5-2 - 

Cooling set-point See Table 5-2 oC 
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All buildings were assumed to have the same geometry and HVAC systems. The variation was 

applied only for 12 parameters: roof U-value, wall U-value, windows U-value, windows SHGC, equipment 

power density, lighting power density, heating set-point, cooling set-point, occupancy, infiltration, heating 

efficiency, the coefficient of performance for cooling. Table 5-2 lists the range of 12 input parameters. All 

distributions of parameters were assumed to be a triangular distribution. Using the quasi-random sampling 

(Sobol' sequence), 30 combinations of samples were generated and fed into the EnergyPlus to obtain energy 

use data. Therefore, 30 buildings were developed in the virtual building stock. Figure 5-4 presents the 

average monthly EUI of total, electricity, and gas energy for the commercial VBS. Figure 5-5 shows the 

distribution of annual EUI as a result of EnergyPlus. The developed commercial virtual building stock was 

utilized as a target for the calibration. 

 

 

Figure 5-3 DOE reference medium office building 

 

 

Table 5-2 Input parameters and distributions 

Parameters [Unit] Triangular distribution 

min mode max 

ROOF U-value [W/m2K] 0.4 0.5 0.6 

WALL U-value [W/m2K] 0.5 0.6 0.7 

Window U-value [W/m2K] 3.2 3.4 3.6 

Window SHGC [-] 0.37 0.38 0.39 

EPD [W/m2] 11 13 15 

LPD [W/m2] 12.5 15 17.5 

HSP [oC] 19.5 21 22.5 

CSP [oC] 22.5 24 25.5 
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OCC [m2/per] 15 20 25 

INF [ACH] 0.6 0.7 0.8 

HEATEFF [-] 0.75 0.8 0.85 

COP [-] 2.7 2.9 3.1 

 

 

Figure 5-4 Average monthly EUI 

 

 

Figure 5-5 Annual EUI distribution 

 

 

5.4 Identification of unknown parameters for building stock 

5.4.1 Methodology 

The stochastic-deterministic-coupled building stock energy model proposed in chapter 5.2 is 

applied in this section. For the first step, the same medium office building model (DOE reference office 

building - medium) was used for representative energy model. The error from the discrepancy of building 

geometry can be reduced by selecting the same building model. In the second step, a sensitivity analysis 

was conducted using the same range of each parameter in the VBS, but uniform distribution is assumed for 

the distribution of each parameter (Table 5-3). The sensitivity value index (SVI) proposed in Chapter 4 was 

adopted to screen dominant parameters on the annual electricity and gas energy use.  
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Table 5-3 Range for sensitivity analysis 

Parameters [Unit] 
Uniform distribution 

Min Max 

ROOF [W/m2K] 0.4 0.6 

WALL [W/m2K] 0.5 0.7 

WIN [W/m2K] 3.2 3.6 

SHGC [-] 0.37 0.39 

EPD [W/m2] 11 15 

LPD [W/m2] 12.5 17.5 

HSP [oC] 19.5 22.5 

CSP [oC] 22.5 25.5 

OCC [m2/per] 15 25 

INF [ACH] 0.6 0.8 

HEATEFF [-] 0.75 0.85 

COP [-] 2.7 3.1 

Table 5-4 shows the ranking from sensitivity analysis using the SVI. Only six parameters were 

selected as calibration parameters: EPD, LPD, HSP, CSP, OCC, and INF. The uncertainty propagation was 

performed again only using dominant six parameters to remove the error from the non-dominant parameters. 

The newly generated input-output sets using six parameters were employed to build meta-models in the 

next step.  

Table 5-4 Result of sensitivity analysis using the SVI 

Parameter SVI Rank 

ROOF 1.9% 7 

WALL 1.5% 8 

WIN 0.7% 11 

SHGC 0.5% 12 

EPD 23.6% 2 

LPD 12.6% 5 

HSP 14.1% 4 

CSP 24.0% 1 

OCC 16.8% 3 

INF 2.0% 6 

HEATEFF 1.0% 10 

COP 1.3% 9 
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Three meta-models were utilized to compare the effect of meta-model's accuracy: Multiple linear 

regression models (MLR), Gaussian process emulator (GPE), perfect model (PM). The effect of meta-

model's accuracy of Bayesian calibration for an individual building has been examined in chapter 4.1. This 

study investigated the effect of accuracy of meta-models on the building stock. The perfect model indicates 

an exact meta-model to predict the energy use output of EnergyPlus model. The artificial energy output 

data sets were generated using the MLR and the identical input variables. In the condition of the generated 

artificial input-output sets, the R-squared value of MLR is one without error. That is the reason it is 

designated the "perfect model."  The perfect model can be regarded as calibration using an EnergyPlus 

without meta-models.   

In the Bayesian calibration process, two types of prior distributions were considered: base and wide 

range. The base range case is based on the assumption that we know the range of input variable in the target 

building stock, but the distributions were assumed as a uniform distribution. The wide range case is 

expanded about 30 percent for each input range of base case. These two types of prior distribution were to 

examine the effect of prior range on the building stock calibration (Table 5-5). The cases considering the 

meta-models and the range of input variables are listed in Table 5-6. In the wide range case, the meta-

models were developed using the input-output sets from the wide range of parameters. 12-month electricity 

and 5-month gas energy use data were used to calibrate the model.  

The Bayesian calibration was iterated for each building energy data among 30 office buildings. 

After the iteration of Bayesian calibration, the posterior distributions for each building were combined and 

then re-sampled to reduce sample size for simplicity of calculation (thinning). Aggregation and additional 

analysis will be discussed in detail in Chapter 5.5 and 5.6. 
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Table 5-5 Dominant input parameters and ranges 

Parameters Short names Range Unit 

Base Wide  

Equipment Power 

Density 

EPD 11 - 15 7.7 - 19.5 W/m2 

Lighting Power 

Density 

LPD 12.5 - 17.5 8.75 - 22.75 W/m2 

Heating Set-point HPS 19.5 - 22.5 15.5 - 26.5 oC 

Cooling Set-point CSP 22.5 - 25.5 18.5 - 29.5 oC 

Occupancy OCC 15 - 25 10.5 - 32.5 m2/person 

Infiltration INF 0.6 - 0.8 0.42 - 1.04 ACH 

 

Table 5-6 Cases 

 MLR GPE Perfect model 

Base Case 1-1 Case 2-1 Case 3-1 

Wide Case1-2 Case 2-2 Case 3-2 

 

The purpose of this study is to verify whether the posterior distribution of the parameters obtained 

through the proposed stochastic-deterministic-coupled building stock energy model matches the target 

distribution. The results of Bayesian calibration were evaluated graphically and quantitatively. The 

probability density function distributions of each parameter were compared in the figure. In addition, the 

p-values from Kolmogorov-Smirnov test (K-S test) were used to evaluate the similarity of two distributions 

quantitatively (Massey Jr, 1951).  

The Kolmogorov-Smirnov test verifies whether the two data samples come from the same 

distribution. The test hypothesizes that two samples are from the same distribution, denoted as H0. 

H0: The distributions are the same 

H1: The distributions are not the same 

Suppose we have two samples, X1 ⋯ , Xm and Y1, ⋯ , Yn drawn from continuous distributions. 

The two samples can be depicccted by their cumulative distribution function (CDF). The Kolmogorov-

Smirnov statistic, 𝐷 is  
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D = max

x
|�̂�1(𝑥) − �̂�2(𝑥)| 

(5.1) 

where F1(x) is the CDF for the distribution of the first population and F2(y) is the CDF for the 

second. �̂�1 and �̂�2 are the empirical distribution functions of the first and the second treatment. 

If both X and Y are drawn from the same distribution and their value are such that D=d, a large D 

value would appear to be inconsistent with the null hypothesis that both samples are drawn from the same 

distribution. The p-value for the K-S test is identified as following: 

 

 
p − value =  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 (𝐷 ≥ 𝑑)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠
 

(5.2) 

For typical analysis, using the 5% of significance level, the null hypothesis is rejected when p <

0.05 and not rejected when p >  0.05. Since the p-value is greater than our assumed significance level of 

0.05, we fail to reject the null hypothesis and conclude that there is no evidence in the data to suggest that 

the two CDFs are different. 

5.4.2 Results 

5.4.2.1 The influence of the meta-model accuracy 

Figure 5-6 to Figure 5-8 present the prior, target (VBS), and posterior distributions for six 

parameters. Those include the Bayesian calibration results using the MLR, GPE, and PM with the base 

range of prior input distribution. The dotted red lines are target distributions of virtual building stock, the 

gray dotted lines are prior distributions, and the solid orange lines are posterior distribution as results of 

Bayesian calibration. The accuracy of calibration can be evaluated graphically by comparing the orange 

solid line of each case. When the MLR was used in Bayesian calibration, the posterior distributions for 

parameters showed a large difference with the target distributions. As confirmed in Bayesian calibration 

for individual building (Chapter 4), the difference comes from the inaccuracy of the meta-models. As shown 

in Figure 5-7, the posterior distributions of calibration using the GPE are much closer to the target 

distribution, because the GPE is more accurate than the MLR. However, there is still a few differences 

between the target and the posterior distributions. Moreover, computational time for the Bayesian 
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calibration has increased significantly. Assuming that only one CPU process is used for the Bayesian 

calibration, the processing time using the MLR was about 180 seconds, while the calibration using the GPE 

took 1931 hours.  

 If we use a perfect meta-model (As mentioned above, this is the case where there is no error in 

the meta-model, and it can be regarded as a case where EnergyPlus model is used for Bayesian calibration 

without meta-model), no significant difference between the target and the posterior distribution was evident.  

 

 

Figure 5-6 Distributions of parameters for case 1-1. 

Base MLR 

 

Figure 5-7 Distributions of parameters for case 2-1. 

Base GPE 
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Figure 5-8 Distributions of parameters for case 3-1. 

Base PM 

 

Figure 5-9 K-S test results for base cases 

 

Table 5-7 K-S test results for base cases 

Cases EPD LPD HSP CSP OCC INF 

Prior 0.0162 0.0126 0.0126 0.0126 0.0126 0.0126 

Case 1-1. 

Base MLR 

0.0001 0.0005 0.0000 0.0000 0.0151 0.0015 

Case 2-1. 

Base GPE 

0.1273 0.0360 0.1964 0.0999 0.2444 0.0635 

Case 3-1. 

Base PM 

0.9185 0.4424 0.1805 0.5314 0.2361 0.3641 

 

Figure 5-9 and Table 5-7 show the p-values as results of K-S test for quantitative comparison. In 

all the parameters, p-values of K-S test between prior and target distributions were 0.0126 which is lower 

than the significant level (p=0.05). Therefore, we can reject that two distributions come from the same 

distribution. In the results of calibration using MLR (case 1-1), p-values for all parameters were lower than 

significant level of 0.05. Therefore, we conclude that two distributions are significantly different in the case 
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of calibration using the MLR and base range. In the case 2-1, the p-values of all the parameters except LPD 

exceeded the significant level which means we cannot reject the hypothesis that two distributions come 

from the same distribution. This is because the accuracy of the GPE is higher than the MLR. In case 3-1 

where there is no error in the meta-model, the p-values for all the parameters were over the significant level. 

It means that the target and posterior distributions are very similar.  

 

5.4.2.2 Influence of range of prior distribution  

From Figure 5-10 to Figure 5-12 show the prior, target (VBS), and posterior distribution 

distributions for six parameters when the wide range is used for input parameters. Compared to the base 

case, it can be confirmed that the overall accuracy is lowered. In the results of case 1-2 (wide MLR), the 

posterior distributions (orange solid line) are significantly different to the target distributions (red dotted 

line). This result was due to the reduced accuracy of meta-model as the prior range increased. The same 

trend was found in case 2-2 (wide GPE). The posterior distributions of case 2-2 showed a different shape 

from the target distribution as compared to case 2-1 (base GPE). The broader the range of input parameters, 

the lower the accuracy of the meta-model. However, as in the base case, the calibration results using the 

GPE yielded better results than the calibration using the MLR. In case 3-2, the target and the posterior 

distributions are very similar, as in case 3-1. Since the perfect model has no error in predicting the building 

energy use, it was confirmed that the Bayesian calibration was correct even in a wide range case.  
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Figure 5-10 Distributions of parameters for case 1-2. 

Wide MLR 

 

Figure 5-11 Distributions of parameters for case 2-2. 

Wide GPE 

 

Figure 5-12 Distributions of parameters for case 3-2. 

Wide PM 

 

Figure 5-13 K-S test results for wide cases 
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Table 5-8 K-S test results for wide cases 

Cases EPD LPD HSP CSP OCC INF 

Prior 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Case 1-2. 

Wide MLR 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Case 2-2. 

Wide GPE 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Case 3-2. 

Wide PM 

0.9531 0.4639 0.1805 0.5859 0.2909 0.3714 

Figure 5-13 and Table 5-8show the p-values of K-S test for wide range case. Only the p-values in 

case 3-2 (wide PM) exceeded the significant level. It can be concluded that only the posterior distributions 

of case 3-2 are similar to the target distributions, and the posterior distributions of the other cases are clearly 

different from the target distributions.  
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5.4.2.3 Annual and Monthly EUI distribution 

 

Figure 5-14 Annual EUI distributions for case 1-2. Wide MLR 
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Figure 5-15 Monthly EUI distributions for case 1-2. Wide MLR 

Figure 5-14 and Figure 5-15 show the Bayesian calibration results for annual and monthly EUI in 

the case 1-2 which is using the MLR and wide prior range. Figure 5-14 presents the EUI distributions for 

annual total, electricity, and gas. Figure 5-15 compares monthly total EUI distributions for prior, posterior, 

and measured data. It is confirmed that even if there are discrepancies in the parameter estimating (as shown 

in Figure 5-10), the estimation for annual usage per energy type was accurate. Moreover, the proposed 

stochastic-deterministic-coupled building stock energy model can calibrate monthly energy use as well as 

annual energy use.  

5.4.3 Conclusion 

The posterior distributions for the parameter were significantly different with the target distribution 

in both base and wide range cases when the Bayesian calibration utilized the MLR. When using the GPE 

as a meta-model, it gives more accurate posterior distribution than using the MLR in both base and wide 
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ranges. However, there is still a difference from the target distribution. Furthermore, Bayesian calibration 

using the GPE took considerable computational time than using the MLR. 

In the case of using the PM, the posterior distribution for parameters showed good agreement with 

the target distributions since there is no error in the PM. Therefore, it can be concluded that the inaccuracy 

of meta-models is one of the factors that cause the discrepancy between the target distribution and the 

posterior distribution. 

Using meta-models in the Bayesian process is indispensable to reduce the computational time. 

However, the errors of the meta-models cause the inaccurate posterior distribution to the target distribution. 

Moreover, there is another issue. The current virtual building stock has the same geometry design such as 

a number of floors, total floor area, window-wall-ratio, building orientation. If the building geometry of 

each building is different, it is hard to find the actual target distribution with the representative building 

model.  

Although there are errors to estimate the target distribution of parameters, the MLR was selected 

as a meta-model in the Bayesian calibration process due to the computational time (calibration using GPE 

took 3.5 days using four computers). The results of this study raise a new question: Can we utilize the 

distorted posterior distributions of parameters to evaluate the ECMs (energy conservation measures)? In 

the following chapter, we will conduct ECM analysis to answer the question.  
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5.5 Applicability of the proposed method in ECM analysis 

5.5.1 Methodology 

As shown in Figure 5-6, when the Bayesian calibration uses the meta-model, the proposed method 

cannot estimate the target distributions for parameters due to the error of meta-models. The posterior 

distributions were distorted to match model results with the energy use data in the representative building 

energy model. Based on the discussion above, in this section, we determine whether the posterior 

distribution from the proposed methodology can be used to evaluate the energy conservation measures.  

Figure 5-16 provides a conceptual diagram of a process in this section. The target parameter 

distribution (a in Figure 5-16) is the actual values for each parameter (red dotted line in Figure 5-6). The 

ECM applied target parameter distribution (b in Figure 5-16) indicates changed target distribution by 

applying the ECM.  The posterior parameter distribution using MLR (c in Figure 5-16) is the estimated 

distribution for parameters from the Bayesian calibration using the MLR as a meta-model. Lastly, the ECM 

applied posterior parameter distribution using MLR (d in Figure 5-16) is the distribution of ECM applied 

to the estimated posterior distribution.  

There are two objectives of the ECM analysis: the first is to confirm the applicability of the distorted 

posterior distribution in the ECM analysis by comparing the annual total EUI distributions from the ECM 

applied target parameter distribution (b in Figure 5-16) and ECM applied posterior parameter distribution 

using MLR. The second objective is to analyze the effect of applying ECM by comparing the annual total 

EUI distributions from the posterior parameter distribution using MLR (c in Figure 5-16) and the ECM 

applied posterior parameter distribution using MLR (d in Figure 5-16). 
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Figure 5-16 Conceptual diagram of ECM analysis process 

The parameter distributions for ECM analysis are summarized in Table 5-9. The base case is the 

target distribution of VBS. The ECM applied the distribution of parameters is indicated in bold in Table 

5-9. Case 1 is an energy conservation measure for the most dominant parameter, HSP (See Table 5-4). The 

distribution of heating set point is shifted to the lower side by 4% from the base case. Case 2 is the least 

dominant parameter, INF. The distribution of infiltration rate is shifted to the lower side by 10%. The third 

case is to check the combination of ECMs. In case 3, case 1 and case 2 were applied at the same time, and 

the distribution of EPD was further reduced by 10%. The changed input parameter distributions are fed into 

the EnergyPlus and the MLR. The outputs (annual total EUI) are obtained. The distributions of annual total 

EUI are compared graphically to analyze the effect of ECM. Moreover, the mean values of each distribution 

are compared for quantitative comparison. 
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Table 5-9 Summary of distribution for parameters 

 Base case ECM Case 1. 4% 

decreased HSP 

ECM Case 2. 10% 

decreased INF 

ECM Case 3. 4% 

decreased HSP + 

10% decreased INF 

+ 10% decreased 

EPD 

Triangular  Min Mode Max Min Mode Max Min Mode Max Min Mode Max 

EPD 11 13 15 11 13 15 11 13 15 9.7 11.7 13.7 

LPD 12.5 15 17.5 12.5 15 17.5 12.5 15 17.5 12.5 15 17.5 

HSP 19.5 21 22.5 18.66 20.16 21.66 19.5 21 22.5 18.66 20.16 21.66 

CSP 22.5 24 25.5 22.5 24 25.5 22.5 24 25.5 22.5 24 25.5 

OCC 15 20 25 15 20 25 15 20 25 15 20 25 

INF 0.6 0.7 0.8 0.6 0.7 0.8 0.53 0.63 0.73 0.53 0.63 0.73 

 

 

5.5.2 Results of ECM analysis 

 

Figure 5-17 Distributions for HSP 

 

 

Figure 5-18 Distribution for annual total EUI (ECM 

case 1) 
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Figure 5-17 shows the variation of HSP distribution by applying the ECM case 1. The solid black 

line is HSP distribution for the base case (‘a’ in Figure 5-16). The dotted black line represents 4% decreased 

HSP distribution (‘b’ in Figure 5-16). The solid red distribution illustrates the posterior distribution as a 

result of Bayesian calibration using the MLR (‘c’ in Figure 5-16). The dotted red line indicates 4% 

decreased from the posterior distribution of Bayesian calibration (‘d’ in Figure 5-16).  

Figure 5-18 compares the distributions of total EUI. The solid black line is total EUI distribution 

for the VBS, and this distribution is regarded as a measured energy data (‘a'’ in Figure 5-16). The solid red 

line shows total EUI distribution as a result of the Bayesian calibration using the MLR (‘c'’ in Figure 5-16).  

The dotted black line is total EUI distribution of the ECM 1 applied target (‘b'’ in Figure 5-16). Additional 

EnergyPlus simulations are necessary to obtain this distribution. The changed dataset by applying ECM 1 

are put into EnergyPlus to calculate new annual total EUI distribution. The dotted red line is the ECM 1 

applied annual EUI distribution calculated by the MLR (d' in Figure 5-16). The posterior distributions for 

parameters were modified to represent the ECM 1 and then put into the MLR. This process can be calculated 

faster than using EnergyPlus due to the simplicity of meta-model. The dotted black and red lines indicate 

the mean values of ECM applied total EUI distributions from the target distribution and calibrated 

distribution. As seen from Figure 5-18, the shapes of the posterior EUI distribution and the ECM applied 

EUI distribution are the same. This is because we utilized the multiple linear regression (MLR) models to 

predict the ECM case 1. Meanwhile, the shape of ECM applied target EUI distribution is different from the 

original target EUI distribution because EnergyPlus is a non-linear model. In case 1, ECM was applied to 

HSP, which is the most dominant factor. The EUI distribution of the ECM applied posterior was not 

significantly different from the ECM applied target EUI distribution. In the both distributions, the influence 

of applying the reduced HSP on the annual total EUI are verified. 
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Figure 5-19 Distributions for INF 

 

 

Figure 5-20 Distribution for annual total EUI (ECM 

case 2) 

 

Figure 5-19 presents the distributions of infiltration rate, which is the least dominant factor. The 

black lines are the same as the above. The solid green lines indicate the posterior distribution as results of 

Bayesian calibration and the dotted green lines are ECM 2 applied distributions. In Figure 5-20, the ECM 

applied posterior EUI distribution has almost coincided with the ECM applied target distribution 

(comparison b' and d' in Figure 5-16). Slight difference is found between two vertical lines. For the least 

dominant parameter (INF), the posterior distribution obtained by the Bayesian calibration using the MLR 

can be utilized to analyze the ECM. To evaluate the effectiveness of the ECM, there is only a few changes 

made by reducing infiltration by 10% compared to ECM case 1. This may be explained by the fact that INF 

is a less important parameter. 

The results of ECM case 3 are shown Figure 5-22. The case 3 is to check the case where ECMs are 

combined. ECM case 1 and ECM case 2 were applied together. Also, 10% reduced EPD was adopted. 

Figure 5-21 provides the distributions of EPD. The posterior distribution of EPD (solid blue line) shows a 

quite different shape compared to the target distribution (solid black line). The changed distributions for 

three parameters were put into the EnergyPlus and the MLR to calculate the annual total EUI. In Figure 
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5-22, when we compare between the ECM applied target EUI distribution and ECM applied posterior EUI 

distribution, although the difference is larger than other cases, they still have similar distributions and 

shapes. Even if the ECMs are combined, it is expected that the proposed method can simulate the actual 

effect of ECM similarly. 

 

 

Figure 5-21 Distributions for EPD 

 

 

Figure 5-22 Distribution for annual total EUI (ECM 

case 3) 
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Figure 5-23 Comparison of annual total EUI 

 

Table 5-10 Comparison of ECM cases 

Comparison Description Unit ECM case 1 ECM case 2 ECM case 3 

Comparison 1.  Difference 

between ECM 

applied EUI 

distributions (b' 

vs. d') 

MJ/m2/yr 3.37 0.81 4.36 

   Percentage 

error 

% 0.53 0.12 0.71 

Comparison 2.  Measured EUI 

reduction by ECM 

(mean) (a' vs. b') 

MJ/m2/yr 16.26 5.20 40.61 

   Reduction 

percentage 

% 2.47 0.79 6.18 

Estimated EUI 

reduction by ECM 

(mean) (c' vs d') 

MJ/m2/yr 18.88 5.26 44.22 

   Reduction 

percentage 

% 2.88 0.80 6.73 
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The results of analysis are summarized and compared quantitatively in Table 5-10. The 'comparison 

1' indicates that the difference of mean values from the ECM applied posterior EUI distribution and the 

ECM applied target EUI distribution (comparison b' and d' in Figure 5-16). The percentage errors of 

estimation using the distorted posteriors were 0.53%, 0.12%, and 0.71% for respective cases. These results 

suggest that even if the posterior distribution for parameters is distorted due to errors in the meta-model in 

the Bayesian calibration, we can analyze the ECMs using the distorted posterior distribution. The 

'comparison 2' in Table 5-10 and Figure 5-23 show the effect of each ECMs in the virtual building stock. It 

comes as no surprise that the ECM for the dominant parameter is more effective than ECM for the less 

dominant parameter. Therefore, when considering ECMs or policies on building stocks, focusing on more 

dominant parameters will have a greater effect.  

 

5.6 Aggregation of different building stock types 

5.6.1 Development of Residence Virtual Building Stock 

In this section, the aggregation of different building stock types is examined. A residential virtual 

building stock was developed to consider another building stock. 

The process of development is similar to that of commercial virtual building stock stated in chapter 

5.3. The residential virtual building stock is based on the Residential Prototype Building Models - single 

family house with crawlspace (“Residential Prototype Building Models,” n.d.). The residential building has 

two stories, and the total floor area is 445 m2. For the HVAC system, it has a natural gas furnace for heating 

and central electric air conditioning unit for cooling. The main features of the DOE prototype single family 

residential building are summarized in Table 5-11.  

As with the commercial VBS, there are 30 buildings in the residential VBS, and we assumed that 

all buildings have the same geometry, HVAC system, and occupancy schedules. The variation was applied 

only for the 12 parameters:  roof U-value, wall U-value, windows U-value, windows SHGC, equipment 

power density, lighting power density, heating set-point, cooling set-point, occupancy, infiltration, heating 
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efficiency, the coefficient of performance for cooling. Table 5-12 lists the range of 12 input parameters. All 

distribution of parameters is assumed as a triangular distribution. Using the quasi-random sampling (Sobol' 

sequence), 30 sample sets were generated and put into the EnergyPlus to calculate energy use. Therefore, 

30 houses were developed in the residential virtual building stock. Figure 5-25 presents the average monthly 

EUI of total, electricity, and gas energy for the residential VBS.  Figure 5-26 shows the distribution of 

annual energy use intensity as a result of EnergyPlus. The developed commercial and residential virtual 

building stocks will be further used in next chapter. 

 

 

Figure 5-24 DOE prototype single family residential building 

 

Table 5-11 main features of the DOE prototype single family residential building 

Component  Item Parameters Unit 

Envelope Floor area 446.1399 m2 

Conditioned Building 

Area 

220.7376 m2 

Floor levels 2 - 

Window-wall ratio 0.15 - 

Wall U-value See Table 5-12 W/m2K 

Roof U-value See Table 5-12 W/m2K 

Window U-value See Table 5-12 W/m2K 

SHGC (solar heat gain 

coefficient) 

See Table 5-12 - 

Infiltration rate (Air 

changes per hours) 

See Table 5-12 W/m2 

Internal heat gains Lighting power density See Table 5-12 W/m2 
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Equipment power 

density 

See Table 5-12 W/m2 

Hourly schedules for 

set-point for heating and 

cooling, occupants, 

lights, 

and equipment 

Residential Prototype 

Building Models 

- 

HVAC Heating Type Natural gas furnace - 

Cooling Type Central electric air 

conditioning 

- 

 

Table 5-12 Input parameters and distributions 

Parameters [Unit] 
Triangular distribution 

min mode max 

ROOF U-value [W/m2K] 0.2 0.3 0.4 

WALL U-value [W/m2K] 0.5 0.6 0.7 

Window U-value [W/m2K] 2.5 3 3.5 

Window SHGC [-] 0.37 0.38 0.39 

EPD [W/m2] 5 7 9 

LPD [W/m2] 3 4 5 

HSP [oC] 19.5 21 22.5 

CSP [oC] 22.5 24 25.5 

OCC [person] 1 3 6 

INF [ACH] 0.6 0.7 0.8 

HEATEFF [-] 0.75 0.8 0.85 

COP [-] 3.25 3.5 3.75 
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Figure 5-25 Average monthly EUI  

 

 

Figure 5-26 Distribution of annual total EUI 

 

 

 

5.6.2 Sum of EUI distributions from different building stocks 

This section examines how to aggregate different building stock.  The first is how to sum two 

energy use distributions. If two distributions are independent normal distributions, then their sum is also 

normal distribution with its mean value being the sum of the two means, and its variance being the sum of 

the two variances as shown in equation (5.3) (Eisenberg & Sullivan, 2008). There is another study about 

the sums of parametric distributions (Petrov, 2012). 

 

 

𝑋~𝑁(𝜇𝑋, 𝜎𝑋
2) 

𝑌~𝑁(𝜇𝑌, 𝜎𝑌
2) 

Z = X + Y 

Then, Z ~ N(𝜇𝑋 + 𝜇𝑌, 𝜎𝑋
2 + 𝜎𝑌

2) 

(5.3) 



152 

However, the posterior distribution, which is the result of Bayesian calibration, is mostly non-

parametric distribution. In that case, it is not possible to use the equations for parametric distribution. To 

sum two non-parametric distributions, the most preferred method is finding all combinations of two 

distributions and then summing each combination. 

In the R environment, if we have two distribution, A and B, a data frame of all combinations of A 

and B can be obtained using ‘expand.grid’ fuction, and function ‘rowSums’ will add them. 

rowSums(expand.grid(A, B)) 

 

The second is how to aggregate EUI distributions from different building stocks. The EUI (energy 

use intensity) is the normalized value calculating energy consumption divided by total floor area. When we 

compute the overall EUI for the district which includes more than one building stock type, simply 

calculating the average of EUI distributions leads to error.   

To aggregate the EUI distributions of different building stocks, the overall EUI distribution should 

be calculated by dividing the total energy usage by the total floor area as shown in equation (5.4). Figure 

5-27 shows the comparison of two approaches. The dotted purple line is the average distribution of two 

VBS distributions which is the wrong approach. The dotted blue line indicates the floor area considered 

overall EUI distribution. The overall EUI distribution considering area is biased towards the commercial 

VBS EUI distribution. This is because that the total energy of commercial VBS is larger than that of 

residential VBS. 

 

 
Total EUI =

∑ (𝐸𝑈𝐼𝑖
𝑛
𝑖=1 × 𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎𝑖)

∑ 𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎𝑖
𝑛
𝑖=1

 
(5.4) 
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Figure 5-27 Aggregation of EUI distributions 

5.6.3 Estimation of peak energy demand  

Using the method above, energy demand patterns of different temporal scales can be obtained. In 

this section, the hourly energy demand pattern was analyzed for the VBS. The hourly energy use was 

calculated using the commercial and residential virtual building stock. Figure 5-28 and Figure 5-29 show 

hourly EUI distribution on July 21st which is cooling design day for commercial and residential VBS, 

respectively. Figure 5-30 presents the hourly aggregated EUI distribution for 60 buildings of overall VBS. 

In the proposed virtual building stocks, the energy use intensity of commercial building stock is dominant 

on the overall EUI. Using this analysis, the peak energy demand can be evaluated for the target district. 

Once the energy peak load and pattern were evaluated, it will help design the distributed generation such 

as district heating and cooling or co-generation.  The hourly schedules and peak loads have a decisive 

impact on the energy use pattern. In this methodology, the hourly schedules are deterministic, while the 

peak loads are stochastic. More research is required to consider the probabilistic effect of hourly schedule 

for better analysis of hourly peaks and diversity.  
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Figure 5-28 Hourly Total EUI for commercial 

VBS 

 

Figure 5-29 Hourly Total EUI for residential VBS 

 

Figure 5-30 Hourly Total EUI for overall VBS 
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5.7 Conclusion 

The purpose of this chapter was to examine the stochastic building energy model to expand for the 

building stock. The main research tasks and findings are as follows: 

 The stochastic-deterministic-coupled building stock energy model was proposed to predict the 

building energy consumption in the large-scale. The difference between the stochastic individual 

building model and stochastic building stock model was examined by comparing both models. 

 Commercial and residential virtual building stocks were developed for quantitative comparison of the 

proposed stochastic-deterministic-coupled building stock energy model. 

 Six cases were analyzed to compare the effect of meta-models' accuracy and the range of prior 

distributions. The results indicate that the proposed method produces the distorted posterior 

distributions which differ from the target distribution for input parameters due to the error of meta-

models. However, in all cases, the estimation of energy usage was accurate. The Bayesian calibration 

using the multiple linear regression models was recommended than using the Gaussian process 

emulator because of computational time.  

 The energy conservation measure analysis was performed to determine whether the distorted posterior 

distribution for input parameters can be used to evaluate the applying the ECMs. As a result, in the 

case of the Bayesian calibration using the MLR and base range of prior distribution, the errors with 

the target values were within 0.71 %.  

 To aggregate EUI distributions of different types of building stock, the total floor area of each type of 

building stock should be considered.  

 Using the stochastic-deterministic-coupled building stock energy model and the proposed aggregation 

method, diverse temporal energy analysis is possible to identify the peak load of energy demand for 

the district. This can be a preliminary analysis for the design of the distributed generation such as 

district heating, co-generation. 
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CHAPTER 6: INFLUENCE OF UNCERTAINTY IN BUILDING STOCK 

DATA ON ENERGY PREDICTION  

6.1 Introduction 

This chapter focuses on influences of building stock information. Sufficient quantity of stock 

information is necessary to have acceptable results for proposed stochastic-deterministic-coupled building 

stock energy model. The required building stock information is organized and classified based on the degree 

of detail. Combination cases of lacking information are considered to examine the influence of insufficient 

building stock information on the accuracy of the stochastic building stock energy model. 

6.2 Definitions of required information for the proposed methodology 

6.2.1 Detailed list of available data 

The stochastic-deterministic-coupled building stock energy model was proposed and refined from 

Chapter 3 to 5. Through the previous analyses, the necessary information for the proposed methodology 

was determined. There are three data sets that are important for this study; energy use data, building features, 

and total floor area. The energy use data is required in the process of calibration. The building features 

include all geometric and non-geometric building factors. Buildings are grouped according to 

characteristics of the building. The information is used to develop the representative building. Total floor 

area for each building type is needed to aggregate from the representative building to building stock. The 

obtained EUI distribution from the proposed methodology is multiplied by the total floor area to calculate 

the energy consumption of the building stock.  

The building features, energy usage data, and total floor area are rarely available for the building 

stock energy models. In this section, the essential information for the proposed stochastic-deterministic-

coupled building stock energy model is categorized by level of detail of available data. Collecting detailed 

information will lead to accurate energy usage estimates for the target area. Even if there is no accurate 

information, the building stock model can be implemented through alternative information. The proposed 
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classification will provide guidelines for building stock information collection in the early stages of the 

building stock energy modeling. 

 

6.2.1.1 Energy use data 

The energy use data refers a measured energy consumption in the building. In the proposed 

stochastic-deterministic-coupled building stock energy model, the unit of energy use is an energy use 

intensity (EUI). The detailed analysis was performed in Chapter 4.2 to examine the influence of energy use 

data in the Bayesian calibration. Bayesian calibration’s accuracy increases with more informative energy 

use data. However, measured energy data often unavailable for modelers. The available energy use data 

sets are sorted by availability.  Each available data is described how to use the available data in the building 

stock model. The building stock information is divided into two types when it is available and when it is 

not. The degree was further divided according to the details of the information. 

● Available 

○ Detailed energy use data 

○ It is a case that can access energy usage by monthly and energy type in detail. In 

the informative energy use analysis (Chapter 4.2), 12 monthly electricity and gas 

energy use data are classified as level 1. If there are many monthly energy use data, 

more accurate calibration is possible. However, since the number of meta-models 

increases, the computational cost also increases. 

○ Partial monthly energy data 

○ For example, there is missing data in the monthly utility data, and there is only 

energy use data for several months. As shown in Chapter 4.2, even if only partial 

monthly energy data is available, accurate calibration can be achieved if the energy 

use data is informative. 
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○ Annual energy data 

○ This case indicates only the annual total energy usage data is accessible. In this 

case, the accuracy of predicting each monthly energy consumption is low while 

the prediction of annual energy use is accurate.  

● Unavailable 

○ Inaccessible energy data 

○ Energy usage data for calibration is still needed when energy data is unknown. In 

this case, the energy use data can be extracted from literature data such as national 

surveys and report. Howard et al. (Howard et al., 2012) obtained annual electricity 

and natural gas, steam, or fuel oil consumption data from municipal office. Zhou 

et al. (Zhou et al., 2012) calibrated results from an eQUEST simulation using the 

residential energy consumption survey (RECS) and commercial building energy 

consumption Survey (CBECS). Zhao (Fei Zhao et al., 2016) obtained EUI 

distribution for 765 office buildings for the target area from the CBECS using a 

data filtering.  

6.2.1.2 Building features 

In this study, the term “building features” refers to all properties that can characterize buildings in 

the stock. The building features includes building geometry factors such as floor numbers, floor area, shape 

typology, window-wall ratio and non-geometry factors such as building use type (e.g. residential, office, 

etc.), thermal properties (e.g. envelope construction, infiltration), HVAC systems, occupant factors (e.g. 

occupancy schedule, internal loads, set-points). Based on these building features, buildings in the target 

district are classified into several sub-groups. The archetypes to represent each group are developed 

according to building information.  
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● Available 

○ Detailed information 

○ This is a case that is accessible to all detailed information mentioned above. That 

information can be obtained floor plan drawing, HVAC specification, survey data, 

and energy audit data. For the representative building energy model, the average 

value and common features can be used for a building geometry. Moreover, all 

values of non-geometry factors in buildings can be regarded as a distribution. 

● Unavailable 

○ Inferring using building type and age 

○ If the detailed building information is not accessible, that information can be 

inferred from the type and age of the building. Table 6-1 shows main parameters 

in the representative building model. ROOF, WALL, WIN, SHGC, INF, 

HEATEFF, and COP are related to the building age. EPD, LPD, HSP, CSP, OCC, 

GAS, and WATERUSE can be inferred from the building type. The distribution of 

parameters can be extracted from literature data such as building code and 

standards, survey, report, and expert’s knowledge. Since there is no information 

about building geometries, the DOE reference building energy model can be used 

to build the representative building model. 

 

Table 6-1 Inference of main parameters 

Building Age Building Type 

ROOF EPD 

WALL LPD 
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WIN HSP 

SHGC CSP 

INF OCC 

HEATEFF GAS 

COP WATERUSE 

 

○ No building information 

○ When building information is unavailable, the DOE reference buildings can be 

used for the representative building model. The literature data can be utilized for 

the non-geometry parameters. However, the range of parameters is wider than level 

2, and uncertainty will increase.  

6.2.1.3 Total floor area 

The proposed stochastic-deterministic-coupled building stock energy model obtains EUI 

distributions for each representative building type. It calculates the energy usage by multiplying the total 

floor area of the type. The estimation of the floor area is essential for accurate prediction of building energy 

consumption. 

● Available 

○ Total floor area for each building type 

○ If the accurate total floor area for each building type is accessible, total energy use 

can be calculated by multiplying an EUI distribution and a total floor area. The 

floor area is available as part of GIS data or tax lot assessment database.  

 
Total EUI =

∑ (𝐸𝑈𝐼𝑖
𝑛
𝑖=1 × 𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎𝑖)

∑ 𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎𝑖
𝑛
𝑖=1

 
(1) 
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● Unavailable 

○ Inferring using map 

○ In a case of the inaccessible area by building type, the building area can be 

estimated using the map. The ground floor area of the building is inferred through 

the building footprint on the map. The building footprint can be extracted from 

high-resolution satellite imagery (Alobeid et al., 2009; Shackelford et al., 2004) 

and LIDAR data (Haithcoat et al., 2001; K. Zhang et al., 2006). 

○ Once the ground floor area is extracted, gross floor area can be computed by 

multiplying the ground floor area by the number of stories. The number of stories 

is obtained by dividing the building height by typical floor-to-floor height.  

○ The building height can be estimated using building shadow on a high-resolution 

satellite imagery (Qi et al., 2016; Shao et al., 2011), SAR images (Brunner et al., 

2010; Guillaso et al., 2005; Wegner et al., 2010), and LIDAR (Rottensteiner & 

Briese, 2002). 

○ However, when calculating the total floor area of a building through a map image, 

it is not possible to consider buildings having different floor types for each floor. 

Also, estimation of the number of floors through the building height also has a 

large uncertainty because it cannot consider buildings having various floor-to-floor 

height. 
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6.3 Influence of insufficient building stock information 

This section discusses the impact of insufficient building stock information on the accuracy of the 

building stock energy model. The information summarized in the previous chapter is difficult to compare 

directly with each other due to the differences in each data set. Therefore, specific cases are considered to 

compare the uncertainties in building stock information. 

6.3.1 Methodology 

The commercial and residential virtual building stock (VBS) developed in Chapter 5 were used for 

a case study. The procedure is the same with previous Chapters. The cases contain comparisons of three 

main building stock information: building energy use data, building features, and total floor area. The 

building features include building type and main parameters. The cases are set according to the degree of 

detail for each information. The suggested case study is summarized in Table 6-2. 

The base case assumes that the most detailed information is available. 12 monthly electricity and 

gas energy use data is used for the energy use data. The building function type can be accessible for 60 

buildings in the VBS for the building type. Two representative building energy models are developed to 

represent the commercial and residential building. The range of 12 main input parameters is available for 

the prior distribution for the main parameters. The prior distribution is assumed as a uniform distribution 

while actual distribution was a triangular distribution.  

Case 1 is for the comparison of uncertainties in energy use data. Based on the base case, only the 

detail of the energy use data is changed. There are three sub-cases depending on the detail level. In Case 1-

1, three monthly informative electricity and gas usage data are available: January, April, and July. 

According to the analysis performed in Chapter 4.2, these three monthly energy data are informative. Case 

1-2 uses three monthly uninformative electricity and gas usage data: June, July, and August. Case 1-3 is a 

case that only annual total energy is available.  

Case 2 is for the building features. Case 2-1 is based on the base case. The 20% expanded ranges 

for 12 target parameters are used as a prior distribution in both commercial and residential representative 
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buildings. This assumes that the parameter distribution for the VBS was not known and acquired from the 

literature.  

 

Figure 6-1 Concept of expanded range 

 

In Case 2-2, type of buildings assumed unavailable. 60 buildings in the VBS are classified into one 

archetype, and the Bayesian calibration is carried out. The representative building energy model is 

developed based on the DOE office reference building model. In this case, the prior distribution for 

parameters should include both ranges for commercial and residential representative building (See Figure 

6-2) 

 

Figure 6-2 Concept of overall range 

 

In case 3, inaccurate information for total floor area is examined. Case 3-1 assumes that the entire 

area is obtained through a map. To express the uncertainty of the total floor area, we assume a normal 

distribution with the mean of the actual total floor area.  The standard deviation values are set so that 95% 

of the distribution is within the range plus and minus 10% of actual total floor area. (See Figure 6-3) 
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Figure 6-3 Concept of uncertain total floor area 

 

Case 4 is combinations of diverse levels of each information. Case 4-1 is the worst case which is a 

combination of case 1-3, case 2-1, case 2-2, and case 3-1. The annual total energy use data is used for 

building energy data. 20% expanded prior distribution is used, and building type is not available. The 

proposed normal distribution is used for the total floor area. Case 4-2 is the case where the building type is 

known in case 4-1. Commercial and residential representative buildings are developed to represent each 30 

buildings. Case 4-3 is the case where energy use data is changed in case 4-2. It uses three monthly electricity 

and gas energy use data.  

The criteria for the comparison of results are CVRMSE for monthly and annual total energy use. 

The accuracy of Bayesian calibration results is evaluated by the CVRMSE to the observed data of the target 

virtual building stock. 

 

Table 6-2 Summary of cases 

Objective Case Energy data 

Building features 
Building total 

floor area Main parameters 
Building 

type 

Base case Base 
24 monthly (12 Elec 

& 12 Gas) 

Available 12 input 

parameters 

Available 

(C, R) 
Available 

Energy data 
Case 

1-1 

6 monthly (3 Elec & 3 

Gas) 

- informative 

Available 12 input 

parameters 

Available 

(C, R) 
Available 
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Case 

1-2 

6 monthly (3 Elec & 3 

Gas) 

-uninformative 

Available 12 input 

parameters 

Available 

(C, R) 
Available 

Case 

1-3 
1 annual (1 Total) 

Available 12 input 

parameters 

Available 

(C, R) 
Available 

Building 

features 

Case 

2-1 

24 monthly (12 Elec 

& 12 Gas) 

Obtained from 

codes 

(20% expanded 

12 input 

parameters) 

Available 

(C, R) 
Available 

Case 

2-2 

24 monthly (12 Elec 

& 12 Gas) 

Obtained from 

codes 

(combine range 

for office and 

residence 

parameters) 

Unavailable 

(using only 

commercial 

archetype) 

Available 

Total floor 

area 

Case 

3-1 

24 monthly (12 Elec 

& 12 Gas) 

Available 12 input 

parameters 

Available 

(C, R) 

Obtained from 

map 

(applied 10% 

uncertainty) 

Combinations 

Case 

4-1 
1 annual (1 Total) 

obtained from 

codes 

(20% expanded 

12 input 

parameters) 

Unavailable 

(using only 

commercial 

archetype) 

Obtained from 

map 

(applied 10% 

uncertainty) 

Case 

4-2 
1 annual (1 Total) 

obtained from 

codes 

(20% expanded 

12 input 

parameters) 

Available 

(C, R) 

Obtained from 

map 

(applied 10% 

uncertainty) 

Case 

4-3 

6 monthly (3 Elec & 3 

Gas) 

obtained from 

codes 

(20% expanded 

12 input 

parameters) 

Available 

(C, R) 

Obtained from 

map 

(applied 10% 

uncertainty) 
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6.3.2 Results 

 

 

Figure 6-4 CVRMSE for annual total energy use 

 

Figure 6-5 CVRMSE for monthly total energy use 

 

Figure 6-6 Enlarged view of lower part of Figure 6-5 

 

 The CVRMSE results are shown in Figure 6-4 and Figure 6-5 for annual and monthly total energy 

use. Figure 6-6 is an enlarged view of the lower part of Figure 6-5. The CVRMSE value for annual total 

energy use of base case is 0.0358 in Figure 6-4. Case 1-1, case 1-3 and case 2-1 have similar CVRMSE 
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values to the base case.  In case 1-1, it can be seen that even using only the electricity and gas energy use 

data for three months (Jan., Apr., and Jul.), it is sufficiently informative for calibration. In case 1-3, the 

accuracy of annual total energy use is high because it is calibrated only with annual total energy data. 

However, the accuracy of monthly energy usage is lower than case 1-1. 

The results in case 2-1 show that 20% expanded prior distribution does not have a significant effect 

on the prediction of annual energy. In a comparison of monthly energy accuracies for these cases (Figure 

6-6), case 2-1 does not show much difference from the base case. Case1-1 has slightly larger CVRMSE 

values that the base case. Case 1-2 has larger CVRMSE values than the base case. Since case 1-2 was 

calibrated only with annual total energy usage data, errors on monthly energy use were large. The CVRMSE 

of annual total energy use for Case 1-2 is 0.0401 which is slightly larger than case 1-1, case 1-3, and case 

2-1. This is because case 1-2 utilized uninformative monthly energy data for the calibration (electricity and 

gas energy data for Jun., Jul., and Aug.). In the monthly CVRMSE figure, the CVRMSE values for winter 

shows the larger difference with the base case while there are no significant differences with the base case 

in summer.  

The case with the worst accuracy is case 4-1. The second worst case is case 2-2. In a given case 

study, if there is no information about building type, a large error occurs because two different energy use 

distributions are calibrated with one representative building. Comparing the two cases, it can be concluded 

that large portion of errors in case 4-1 is caused by the lack of information on the building type. In addition, 

comparing cases 4-1 and 4-2, it can be seen that having information on the type of building can improve 

the prediction accuracy of annual and monthly energy consumption.  

Comparing the case 3-1 to the base case, the effect of the total floor area information on the 

accuracy of the building stock model is confirmed. Both accuracies for annual and monthly energy usage 

were significantly reduced compared to cases 1-1, case 1-2, case 1-3 and case 2-1. This result suggests that 

the total floor area information in a given case study is more influential than the information on the main 

parameters or energy use data.  
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6.3.3 Concluding Remarks 

A case study was conducted assuming various conditions considering three main information: 

building energy use data, building features, and total floor area since it is difficult to compare information 

on building stock with a single standard.  Each case was compared using the proposed stochastic-

deterministic-coupled building stock energy model and the virtual building stock the accuracy of monthly 

and annual energy use forecasts. As results, for the energy use data, if the energy use data is informative, 

even with a small amount of data, we can obtain results similar to a calibration with detailed energy 

information. Calibrating with only the annual energy use data reduced the prediction accuracy of the 

monthly energy, but the prediction of the annual energy was accurate. For the information for building 

features, in a given case study, it is important to have information on the building type to improve the 

accuracy of the building stock model. The influence on the prior distribution of the parameters in the energy 

prediction was not significant. The information on the total floor area of each type of building also has a 

significant effect on accuracy. Based on the results of the case study, the type and floor area of the building 

have a great influence on the accuracy of the energy prediction of building stock.  

6.4 Summary and Conclusion 

This chapter presents a comprehensive study of building stock information. First, the building stock 

information required for the proposed stochastic-deterministic-coupled building stock energy model is 

summarized. The model requires three main information: building energy use data, building features, and 

total floor area. For each main information, methods were classified according to the degree of detail. A 

case study was conducted to compare the impacts of insufficient building stock information. As a result, it 

was confirmed that the influence of information on building type was greatest. 
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CHAPTER 7: APPLICATION OF STOCHASTIC-DETERMINISTIC-

COUPLED APPROACH FOR CAMPUS BUILDING ENERGY 

PREDICTION 

7.1 Introduction 

The stochastic-deterministic-coupled building stock energy model was proposed and refined to 

estimate the distribution of building energy consumption at the large scale in Chapter 3. Then, several 

analyses were performed to understand the Bayesian calibration for the individual building in chapter 4. In 

Chapter 5, Bayesian calibration was applied to the virtual building stock, and we examined the availability 

of the estimated posterior distribution to estimate the energy conservation measure. In Chapter 6, we 

classified the level of required information for the stochastic-deterministic-coupled building stock energy 

model and compared the uncertainties when we have insufficient information.  

In this section, the proposed methodology was applied to actual building stock, and the prediction 

of the total building energy use was verified with the measured data. This chapter is organized as following. 

The method is applied to estimate building energy consumption at a campus scale. The advantage, 

disadvantage, and precautions using this methodology are discussed in each process in detail. The estimated 

energy consumption for each building type is aggregated and compared to the observed data. Then, the 

energy conservation measures are considered to reduce energy use in the campus. 

7.2 Methodology 

Figure 7-1 depicts the process of the proposed stochastic-deterministic-coupled building stock 

energy model. The first step involves developing representative building energy models of the campus. 

Diverse building information is collected to identify the representative buildings in the target area. The 

building information includes building function, age, floors number, total floor area, and HVAC system 

type. Furthermore, the measured energy consumption data is necessary to calibrate the model. Based on the 

collected information, the buildings are classified as several representative buildings according to criteria 

such as building function, age, and building height. The building energy models are developed using the 
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EnergyPlus. These representative building energy models should reflect the building geometry, 

construction, HVAC system type and schedule of the building stock. The second step is parameter screening 

based on the sensitivity analysis. The sensitivity value index (SVI) suggested in chapter 4 will be used to 

identify the dominant input parameters on the simulation output. 

a) Collecting building stock information 

including energy data

b) Classifying building archetypes

c) Developing representative building energy 

model 

a) Specification for ranges and distributions 

for parameters

b) Monte Carlo simulation

c) Parameter screening based on sensitivity 

analysis

a) Selection of calibration parameters for 

representative model

b) Development of meta-model

a) Setting of measured energy data from the 

distribution

b) Bayesian calibration using measured data

c) Repeat for other energy data point

d) Re-sampling (Thinning)

Representative 

building models

Parameter screening

(Sensitivity analysis)

Meta-model 

Bayesian calibration

Main process Detailed work

a) Repeat the procedure for each type 

representative building

b) Calculation of energy use by multiplying 

EUI distribution and total floor area

c) Aggregation of different building type

d) Additional analysis such as ECM

Aggregation & 

Analysis

1

2

3

4

5

Data analysis

EnergyPlus, 

Sensitivity

Value

Index (SVI)

Multiple 

Linear 

Regression 

(MLR)

Bayesian 

Inference 

(MCMC)

Selected method

MLR, 

EnergyPlus

 

Figure 7-1 Main process of proposed method 

The third step is developing the meta-model using the multiple linear regression model (MLR). The 

computational run time can be significantly reduced by using the statistical meta-model compared to the 

original EnergyPlus model. Then, Bayesian calibration is conducted using MLR based on Bayes' theorem 

to match the output of the model to the observed energy use data. Subsequently, the calibration allows for 
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the calculations of the posterior distributions for each unknown input parameters and energy use intensity 

(EUI) distribution for each building type in the campus. Finally, total building energy consumption for each 

building stock and the entire campus can be estimated by multiplying the obtained EUI distributions and 

the total floor area for representative building type. Various energy conservation measures can be evaluated 

using the calibrated posterior distributions of parameters.  

7.3 Case study 

7.3.1 Modeling of representative building 

7.3.1.1 Introduction of CU 

The proposed stochastic-deterministic-coupled building stock energy modeling method was 

applied to the campus scale. We chose a campus of the University of Colorado Boulder (from now on CU) 

located in Boulder, Colorado. Boulder has a moderate dry climate. Under the ASHRAE Climate Zone 

(ASHRAE 169-2006 standard), Boulder is 5B zone. There are 163 buildings within the CU campus (Oct. 

1, 2016), with a variety of building types, which can be thought of as a small city. Moreover, the buildings 

in the CU campus are monitored for energy usage and detailed building information such as building plans 

and specification can be obtained. Among all buildings in the campus, only 80 buildings that have detailed 

building information were selected for the case study. The building information includes building type, 

total floor area, the number of floors, built year, renovation year and energy consumption data. That 

information can be obtained from (Facilities Management, n.d.-a, n.d.-b, n.d.-c; University of Colorado 

Boulder, n.d.). 

7.3.1.2 Data analysis  

The collected building information data was analyzed to classify into several representative 

building types. Current and historical energy usage data were obtained from the utility and energy services 

department of CU who is responsible for the design, operation, maintenance, and repair of the campus's 

energy generation and distribution infrastructure for steam, chilled water, and electricity (Facilities 

Management, n.d.-d). Specifically, the EnergyCAP provides the energy consumption of electricity, steam, 
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natural gas, and chilled water (Facilities Management, n.d.-b). Each building uses different energy source. 

For the convenience of analysis, the electricity use and the chilled water use were combined and considered 

as electricity.  

 

Figure 7-2 Campus map of the University of Colorado Boulder 

The steam use and natural gas use were combined and considered as natural gas. The EUI 

normalizes the energy consumption by the total floor area of the building. The built year indicates the year 

a building construction was completed. If there is a significant renovation such as the replacement of HVAC 

systems, additional insulation, and replacement of window in the building, the latest renovation year was 

regarded as the built year. (See Appendix B) 

Figure 7-3 is a scatter plot that shows the energy use intensity (EUI) of 80 buildings as a function 

of the built year. The buildings were classified as three building ages: Pre-1980, Post-1980, and New 

buildings after 2004. The high EUI buildings are concentrated in the post-1980 age. The old buildings have 
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relatively small EUI than the newer ones. On a closer inspection between average EUI and built age on CU 

(See Figure 7-4), there were no strong correlations between the EUI and the building age. Instead, the ranges 

of EUI were significantly different regarding the building functions as shown in Figure 7-5. The EUI of 

laboratories was higher than that of others because there is much equipment in the laboratories.  

According to the analysis of the energy use and building features at the CU campus, it was 

concluded that the EUI was affected by building type rather than the building age Therefore, 80 CU 

buildings were classified into four types of representative buildings based on the building function and the 

energy use intensity as shown in Table 7-1. 

 

Figure 7-3 EUI as a function of the built year 
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Figure 7-4 EUI as a function of building type and age 

 

Figure 7-5 EUI as a function of building type 
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Table 7-1 Classification of representative buildings 

CU Primary Use 
# of 

building 

Classified 

Function 
# of building 

Average 

Floors 

Average 

Total area 

[m2] 

Classroom 7 

Education 22 
3 (plus 

basement) 

7491.43 

 

Classrooms/ 

Library 
3 

Daycare 1 

Library 1 

Offices 9 

Public Assembly 1 

Laboratory 23 Laboratory 23 
4 (plus 

basement) 
9,364 

Multifamily 

Housing 
1 

Residence 24 4 10,000 
Residence 1 

Residence Hall 19 

Residence Hall/ 

Food 
3 

Service 1 

Service 11 
3 (plus 

basement) 
9,583 

Fitness Center 1 

Food Service 2 

Medical Office 1 

Mixed Use 1 

Museum 2 

Police Station 1 

Public Assembly 2 

Total 80  80   
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7.3.1.3 Modeling of Representative buildings  

According to the data analysis of building information in CU, we developed four representative 

buildings: education type, laboratory type, residence type, and service type. Figure 7-6 exhibits the 

isometric views of EnergyPlus models for each type of representative building.  

Each representative building energy model was created based on the DOE commercial reference 

buildings (Deru et al., 2011). The building geometries were conditioned by average number of floors and 

average total floor area of building type. The TMY3 weather file of Boulder, CO was used in EnergyPlus 

simulation. Table 7-2 summarized the main features of each representative building. 

 

 

(a) Education type 

 

(b) Laboratory type 

 

(c) Residence type 

 

 

 

(d) Service type 

Figure 7-6 Representative building models for CU campus 
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Table 7-2 Main features of representative buildings 

Compone

nt  

Item Representative buildings 

Education Laboratory Residence Service 

Base building model Reference 

Building Large 

Office New 

90.1-2004 

Reference 

Building Large 

Office New 

90.1-2004 

Midrise Apartment 

Reference Building 

new construction 

90.1-2004 

Reference 

Building Large 

Office New 

90.1-2004 

Envelope Floor area 7491.43 9364.29 3134.59 9583.33 

Number of 

Floors 

3 (plus 

basement) 

4 (plus 

basement) 

4 3 (plus 

basement) 

Window-

wall ratio 

0.38 0.38 0.15 0.38 

Thermal 

Zoning 

core zone with 

four perimeter 

zones on each 

floor 

core zone with 

four perimeter 

zones on each 

floor 

8 apartments with 

central corridor on 

each floor, office on 

the first floor 

core zone with 

four perimeter 

zones on each 

floor 

Wall 

constructio

n type 

Mass wall Mass wall Steel frame Mass wall 

Wall U-

value 

See Table See Table See Table See Table 

Roof 

constructio

n type 

IEAD IEAD IEAD IEAD 

Roof U-

value 

See Table See Table See Table See Table 

Window U-

value 

See Table See Table See Table See Table 

SHGC 

(solar heat 

gain 

coefficient) 

See Table See Table See Table See Table 

Infiltration 

rate (Air 

See Table See Table See Table See Table 
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changes 

per hours) 

Internal 

heat gains 

Lighting 

power 

density 

See Table See Table See Table See Table 

Equipment 

power 

density 

See Table See Table See Table See Table 

Hourly 

schedules 

for set-

point for 

heating and 

cooling, 

occupants, 

lights, 

and 

equipment 

DOE 

Reference 

building 

DOE 

Reference 

building 

DOE Reference 

building 

DOE 

Reference 

building 

HVAC System 

Type 

MZ-VAV MZ-VAV - MZ-VAV 

Heating 

Type 

Gas boiler Gas boiler Gas furnace Gas boiler 

Cooling 

Type 

2 water cooled 

chillers 

2 water cooled 

chillers 

Split system DX 2 water cooled 

chillers 

SWH Type gas water 

heater 

gas water 

heater 

gas water heater gas water 

heater 
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7.3.2 Parameter screening 

We selected 14 parameters that have significant impacts on the building energy user based on the 

existing literature  (Booth et al., 2012; Tian & Choudhary, 2012; Fei Zhao, 2012). Table 7-3 lists the values 

of input parameters and the ranges of these parameters. The ranges of the parameters could be obtained 

from a survey report, expert's knowledge, building codes, and standards to define the possible values for 

the unknown parameters (ASHRAE, 2004; Bonnema et al., 2013; Deru et al., 2011; Eisenhower, 2011; 

Gowri et al., 2007; Griffith et al., 2008; Shem Heiple & Sailor, 2008; Y. Heo, 2011; Huang & Franconi, 

1999; Mathew et al., 2004; Pacific Gas and Electric Company, 2011; Pless et al., 2007; Schnackenberg et 

al., 2009; Thornton et al., 2011; Tian & Choudhary, 2012; Yu & Chan, 2004; J. Zhang et al., 2010; F Zhao 

et al., 2011). The prior distribution for each parameter was assumed a uniform distribution. 14 parameters 

includes roof U-value [W/m2K], wall U-value [W/m2K], window U-value [W/m2K], window solar heat 

gain coefficient (SHGC) [-], equipment power density [W/m2], lighting power density [W/m2], heating set-

point [oC], cooling set-point [oC], occupancy [m2/person], infiltration [ACH], heating efficiency [-], cooling 

COP [-], gas equipment [W/m2], and water use per floor [m3/s].  

 

Table 7-3 Input parameters and prior range 

Parameter Short  

name 

Unit EDU LAB Residence Service 

min max min max min max min max 

Roof U-value ROOF W/m2K 0.2 1.5 0.2 1.5 0.2 1.9 0.2 1.5 

Wall U-value WALL W/m2K 0.2 2 0.2 2 0.2 1.9 0.2 2 

Windows U-

value 

WIN W/m2K 1.5 6 1.5 6 1.5 6 1.5 6 

Solar Heat 

Gain 

Coefficient 

SHGC - 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6 

Equipment 

power density 

EPD W/m2 1 35 10 215 2.5 15 1 40 

Lighting power 

density 

LPD W/m2 1 25 10 35 2.5 15 1 30 
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Heating set-

point 

HSP oC 17 24 17 24 17 24 17 24 

Cooling set-

point 

CSP oC 21 28 21 28 21 28 21 28 

Occupancy OCC m2/pers

on 

3.14 46.6

6 

9 30 20 90 1 56.7 

Infiltration INF ACH 0.1 1.25 0.1 1.25 0.1 1 0.1 1.25 

Heating 

efficiency 

HEATE

FF 

- 0.5 0.95 0.5 0.95 0.5 0.95 0.5 0.95 

Cooling COP COP - 5 6.3 5 6.3 2 4 5 6.3 

Water use per 

floor 

WATER  [m3/s] 2.22

E-05 

2.50

E-04 

2.22

E-05 

2.50

E-04 

2.78

E-07 

5.56

E-05 

1.11

E-05 

2.78

E-04 

Gas equipment 

power density 

GAS   0 0 0 150 0 60 0 60 

 

The uncertainty propagation was performed using a Monte Carlo (MC) simulation. The MC 

simulation picks a random value from the given range of the input parameters. 100 of training input data 

was sampled using a Latin Hypercube Sampling (LHS) (McKay et al., 1979), and 100 of testing input data 

was sampled using the Sobol's sequence (Sobol, 1998). Then, the sampled input parameter sets were 

plugged into the energy simulation (EnergyPlus) to calculate their corresponding energy use as an output. 

The obtained input-output sets can be employed in a sensitivity analysis and the development of the meta-

models later.  

Figure 7-7 shows the box plot of EUI comparison between the prior estimation and the measured 

data on CU campus. Considerable distinctions between the two ranges indicate that the prediction of the 

actual energy consumption with the developed representative models is not feasible the given input ranges, 

thus requiring the calibration process. 
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Figure 7-7 Boxplot - EUI comparison between prior and measured 

7.3.3 Sensitivity analysis 

Before executing the Bayesian calibration, it is important to select a proper number of parameters 

for calibration due to the accuracy and the effectiveness of Bayesian inference. To figure out the dominant 

parameters for each representative model, a sensitivity analysis was conducted.  

In this study, we utilized three different approaches to offer robust analysis result: SRC 

(standardized regression coefficient), random forest variable importance and T-value. For detailed 
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information, please refer to (Tian, 2013). The sensitivity analysis was conducted using the annual electricity 

and the annual gas use data. To consider different values from the three sensitivity analyses (SRC, Random 

forest variable importance, and T-value) and two target outputs (annual electricity and gas use), the 

sensitivity value index (SVI) was suggested as shown in the equation 1. The values from the sensitivity 

analysis were normalized and then aggregated so that the importance of parameters can be compared 

considering the difference of sensitivity methods and target output. 

 ∑

∑ (
𝑉𝑖,𝑗

∑ |𝑉𝑖,𝑗|𝑛
𝑖=1

)𝑘
𝑗=1

𝑘
𝑚 ∙ 𝑘

× 100

𝑚

𝑙=1

= 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑆𝑉𝐼)(%) 
(7.1) 

 Where 𝑖 is the parameter, 𝑛 is the number of parameters (𝑛 = 6), 𝑗 is the sensitivity method, 

𝑘 is the number of sensitivity methods (𝑘 = 3, (SRC, Random forest variable importance, and T-value)), 

𝑙 is the target output, 𝑚 is the number of target output (𝑚 = 2 (annual electricity and gas)). 

Table 7-4 SVI results 

Parameter Edu Lab Res Svc 

ROOF 2.0% 1.0% 2.8% 1.1% 

WALL 1.5% 1.1% 3.3% 1.5% 

WIN 5.0% 2.2% 1.4% 3.1% 

SHGC 1.9% 1.5% 2.1% 2.1% 

EPD 32.6% 40.3% 24.6% 29.7% 

LPD 13.9% 3.3% 10.7% 15.3% 

HSP 15.3% 5.2% 2.8% 7.4% 

CSP 7.6% 4.6% 4.5% 4.3% 

OCC 5.6% 1.0% 1.3% 4.9% 

INF 2.0% 0.8% 3.0% 1.4% 

HEATEFF 7.9% 3.0% 8.4% 4.0% 

COP 1.6% 0.9% 2.5% 0.8% 

WATER 2.9% 1.4% 20.8% 2.1% 

GAS 0.0% 33.5% 11.7% 22.3% 

Total 100.0% 100.0% 100.0% 100.0% 
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Using the SVI, the 14 parameters were ranked by the SVI in order of importance in the each 

representative building type. To screen the dominant parameter, the changes in R-squared value were 

identified when adding the parameter in an important sequence.  After these processes, the first eight 

parameters were chosen for the education, residence, and service building type. The laboratory building 

type appears to have the first six parameters. Input parameters of each representative building model are 

dependent of the building function.  

 

  

Figure 7-8 R2 for electricity and gas annual use (Education type) 

 

 

Table 7-5 Parameter selection 

Ranking Edu Lab Res Svc 

1 EPD EPD EPD EPD 

2 HSP GAS WATER GAS 

3 LPD HSP GAS LPD 

4 HEATEFF CSP LPD HSP 

5 CSP LPD HEATEFF OCC 

6 OCC HEATEFF CSP CSP 

7 WIN  WALL HEATEFF 

8 WATER  INF WIN 
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7.3.4 Meta-models 

The Bayesian calibration requires massive simulation runs. The meta-models can replace the whole 

building transient simulation model with a significant reduction of simulation run time.  

In chapter 4, we already confirmed that the calibration using the multiple linear regression (MLR) 

models yields enough reasonable calibration result in the prediction of energy use. Since the purpose of this 

study is to calibrate the building energy consumption rather than to estimate the actual input parameter 

value. Further, the computational time for the Bayesian calibration can be decreased by using the MLR. 

Figure 7-9 shows R-squared and RMSE values of the MLR for each monthly energy use in the 

education building type. R-squared values for 12 monthly electricity were close to one. It means that the 

monthly electricity MLR models can represent the original EnergyPlus building energy model well. 

Although R-squared values for summer gas were lower than others, it does not reduce the accuracy of the 

overall model because RMSE of gas is also small in the summer. The developed MLR will be further used 

in the Bayesian inference to calibrate the input parameter with the measured energy consumption data. 
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Figure 7-9 R-square and RMSE of MLR (Education type) 

  

7.3.5 Bayesian calibration 

Bayesian analysis is a statistical method that utilized Bayes' theorem in Equation (2) to obtain a 

posterior distribution for unknown parameters (𝜃) given the observed data (𝑦). All the uncertainties in 

building energy models are expressed in probabilities. The input parameters are considered to be uncertain 

and have a probabilistic distribution based on their plausible values. The uncertain parameters of the 

building energy model are revised to match the model prediction and the observed data. As a result, 

Bayesian calibration provides the posterior distribution 𝑝(𝜃|𝑦) in a form of plausible distribution of 

calibration parameters. 

 
𝑝(𝜃|𝑦) =  

𝑝(𝑦|𝜃) ∙ 𝑝(𝜃)

𝑝(𝑦)
 ∝ 𝑝(𝑦|𝜃) ∙ 𝑝(𝜃) 

(7.2) 

Where 𝑝(𝜃)  is prior distributions assigned for uncertain parameters; 𝑝(𝑦|𝜃)  is a likelihood 

function that measures how closely model predictions match the observed data.  

A Markov Chain Monte Carlo (MCMC) method is commonly referred to draw the posterior 

distribution. The MCMC method generates a random walk through the parameter space such that the set of 

sample points can approximate theoretical posterior density functions. The method draws a proposed point 

based on the current position in an iterative process and accepts the proposed point when it satisfies an 

acceptance criterion (Yeonsook Heo et al., 2011). The Metropolis-Hastings algorithm defines the criterion 

by the ratio of a posterior density at the proposed point to that at the current point (Gelman et al., 2014).  
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In an MCMC process, a sufficient number of iterations are required to explore the entire feasible 

range. 100,000 of iteration number was used in this study. A preliminary study using the Gelman and Rubin 

diagnostic (Gelman et al., 2014) showed that the potential scale reduction factor (PSRF) for each parameter 

was lower than 1.1, indicating that the Markov Chain has converged when the iteration number is larger 

than 100,000. The burn-in length was 10,000 to avoid the effect of the initial value for each parameter. 

7.3.5.1 Regressed measured data 

When setting up the target distribution in the Bayesian calibration, a problem that did not exist in 

the previous chapter emerged. In chapter 5, when the virtual building stock was developed, we applied sets 

of sampled input parameters to the one representative building model. In other words, the buildings in the 

virtual building stock have the same geometry, HVAC systems, and schedule while the input parameter 

such as roof U-value, and equipment power density were different. Figure 7-10 shows the monthly total 

energy use pattern from the virtual building stock. The magnitude of the energy use is all different, while 

the patterns of each building are similar.  

On the other hand, in this CU case study, the calibration was conducted with the actual energy use 

data. As shown in Figure 7-11, although the buildings are the same building type which is the education 

type, the monthly patterns of actual energy use were substantially different. When the Bayesian calibration 

employs one representative building model to calibrate to the diverse energy use patterns, it will cause a 

significant error. To prevent large error, we suggest a method that samples a regressed energy use pattern 

from the actual energy use data.  

 

Figure 7-10 Monthly energy use patterns of VBS 

 

Figure 7-11 Monthly energy use patterns of CU 

education type 
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The first step involves fitting a distribution. To find the best-fitted distribution, graphical methods 

can be used as shown in Figure 7-12. For the quantitative comparison, the best-fitted distributions were 

found from the actual monthly energy use distribution using 'fitdist' function of 'fitdistrplus' package in R. 

The 'fitdist' function gives an AIC (Akaike information criterion) as a result. The distribution with the lowest 

AIC value is the best-fitted distribution. The AIC is a method of the relative quality of statistical models 

for a given set of data (Akaike, 2011). The best-fitted distribution was found among the normal, Weibull, 

gamma, and log-normal distribution. Table 7-6 shows the comparison of the AIC and the selected 

distribution among the alternatives we chose to explore. The second step is drawing new samples using the 

Sobol sequences from the best-fitted distribution. Figure 7-13 and Figure 7-14 present the comparison 

between the measured energy use distribution and the sampled one. Although there was a slight 

disagreement, it appeared to be entirely consistent. The third step is selecting a combination from the 

sampled monthly electricity and gas energy use. The samples were sorted and selected by energy use in 

each sampled monthly energy use.  Figure 7-15 compares the patterns of the measured energy use and the 

sampled energy use. Through the process, the patterns of the energy use became similar. Finally, by 

comparing the measured total energy use distribution and the sampled one, the validity of the sampled data 

can be checked (Figure 7-16).  
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Figure 7-12 fitting a distribution using graphical methods 

 

Table 7-6 AIC values and the best-fitted distribution 

Monthly 

Energy 
Normal Weibull Gamma Log-normal Best fitted 

E01 152.7 150.6 150.2 150.2 Gamma 

E02 162.0 159.8 159.5 159.7 Gamma 

E03 168.6 166.0 165.7 165.8 Gamma 

E04 168.9 166.5 166.6 166.9 Weibull 

E05 163.4 160.8 160.5 160.6 Gamma 

E06 178.9 175.0 174.4 174.3 Log-normal 

E07 181.6 177.8 177.0 176.9 Log-normal 

E08 180.9 177.2 176.2 176.0 Log-normal 
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E09 175.5 172.5 172.3 172.8 Gamma 

E10 176.6 174.2 174.2 174.8 Weibull 

E11 172.6 170.1 169.7 169.7 Log-normal 

E12 169.9 166.8 166.3 166.1 Log-normal 

G01 217.6 215.1 214.9 215.5 Gamma 

G02 217.7 214.6 213.9 214.5 Gamma 

G03 207.2 204.7 203.5 204.6 Gamma 

G04 197.0 195.0 194.7 196.5 Gamma 

G05 188.5 198.6 198.1 235.1 Normal 

G06 171.7 151.8 145.7 175.1 Gamma 

G07 172.1 139.0 133.6 159.7 Gamma 

G08 169.7 146.1 140.2 168.7 Gamma 

G09 175.1 146.9 141.1 168.8 Gamma 

G10 197.2 191.2 189.3 188.1 Log-normal 

G11 203.4 204.0 207.9 213.4 Normal 

G12 212.9 212.4 213.5 215.9 Weibull 

 

 

Figure 7-13 Comparison between measured data and parametric data (Electricity) 
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Figure 7-14 Comparison between measured data and parametric data (Gas) 

 

 

 

(a) Measured monthly energy data patterns 

 

 

(b) Sampled monthly energy data patterns 

Figure 7-15 Comparison of the patterns of the monthly energy use 
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Figure 7-16 Comparison of the distributions 

 

7.3.5.2 Calibration Results  

7.3.5.2.1 Input parameters and EUI distributions 

Figure 7-17 shows the prior and posterior distribution for the parameters from the Bayesian 

calibration. The gray dotted line represents the prior distribution, and the solid orange line indicates the 

posterior distribution. Since the actual distributions of each parameter are not available, the actual target 

distribution does not exist. The posterior distributions of parameters were changed to fit the measured 

energy consumption in the education building type. The estimated posterior distribution for building 

parameter should not be considered as the actual distribution of building parameter in the education 

buildings in CU campus. Since one representative building covers different sizes and shapes of the 

education buildings, the estimated posterior distribution should be regarded as "best guess" that 
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approximates energy consumptions of the actual building stock.  Figure 7-18 and Figure 7-19 present the 

prior, measured, and posterior distributions of annual and monthly energy use. Although we used the 

regressed data from the actual energy use data for calibration, the comparison of energy use distributions 

was conducted using the measures data. After the calibration, the posterior distribution became closer to 

the measured distribution. The results of other building types were shown from Figure 7-20 to Figure 7-28. 

 

 

 

Figure 7-17 Parameter distributions (Education) 

 

 

Figure 7-18 Annual energy use distributions 

(Education) 
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Figure 7-19 Monthly total energy use distributions (Education) 
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Figure 7-20 Parameter distributions (Laboratory) 

 
 

Figure 7-21 Annual energy use distributions 

(Laboratory) 
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Figure 7-22 Monthly total energy use distributions (Laboratory) 
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Figure 7-23 Parameter distributions (Residence) 

 

 

Figure 7-24 Annual energy use distributions 

(Residence) 
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Figure 7-25 Monthly total energy use distributions (Residence) 
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Figure 7-26 Parameter distributions (Service) 

 

 

Figure 7-27 Annual energy use distributions 

(Service) 
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Figure 7-28 Monthly total energy use distributions (Service) 
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7.3.5.2.2 KS Test 

Figure 7-29 shows the results of two-sample Kolmogorov–Smirnov test (KS test) for each building 

type. If the p-value is lower than 0.05, we can reject the null hypothesis that assumed two distributions are 

induced from the same distribution. The p-values from the comparison between the prior distribution and 

the target distribution were lower than 0.05, which means we can reject that the prior distribution and the 

target distribution came from the same distribution. However, after the calibration, the p-values were 

increased when comparing the posterior distribution and target distribution in almost all cases. Through the 

suggested stochastic-deterministic-coupled building stock energy model, we could calibrate not only the 

annual energy use but also the monthly energy use while taking into account different energy types. 

 

  

 

 

 

Figure 7-29 KS test results 
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7.3.6 Aggregation 

An aggregation of building energy consumption is one of the challenges in the building stock model. 

The aggregation at the national level typically employs weighting factors to scale up the energy use of 

individual prototypical buildings. It is hard to develop reasonable weighting factor at the national level and 

almost impossible at the state or local levels (Deru et al., 2011). Recent development of Geographic 

Information System (GIS) enabled the aggregation at the state or city level by scaling up energy use by the 

actual building floor area.  

Figure 7-30 presents EUI distributions for each building type and the whole CU campus. As seen 

in Chapter 5, the total floor area for each building type should be considered to calculate the EUI for the 

whole campus.  

 
Total EUI =

∑ (𝐸𝑈𝐼𝑖
𝑛
𝑖=1 × 𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎𝑖)

∑ 𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎𝑖
𝑛
𝑖=1

 
(7.3) 

The mean value of EUI for the CU campus is 1295.82 MJ/m2. The maximum value is 2580.19 

MJ/m2 and the minimum value is 652.05 MJ/m2. 

The energy consumption of an entire campus can be roughly estimated by equation (7.4). 

 
E = ∑ {∑(𝐸𝑈𝐼𝑖,𝑗 ∙ 𝐴𝑖,𝑗)

𝑁

𝑖=1

}

𝑀

𝑗=1

+ ε  
(7.4) 

Where 𝑁 is the total number of buildings in a particular building type 𝑗; 𝑀 is the number of 

building types; 𝐸𝑈𝐼𝑖,𝑗  is the energy use intensity of a building 𝑖  in a particular building type 𝑗  in 

𝑇𝐽 𝑚2⁄ /𝑦𝑟; 𝐴𝑖,𝑗 is the building floor area of a building 𝑖 in a particular building type 𝑗 in 𝑚2. The term 

ε is the measurement error term. 
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Figure 7-30 EUI distributions for each building type 

Figure 7-31 show the prior and posterior distributions of energy consumptions for each building 

type. The prior and posterior EUI distributions were multiplied by the total floor area for each building type 

to estimate the energy consumption of each building stock. The vertical dotted lines indicate the measured 

energy consumption for each building stock. In all cases, the posterior distribution moved closer to the 

actual energy use value, and the ranges of distribution became narrower than the proir distribution. 

 

 

 



203 

  

  

Figure 7-31 Total energy use distribution for each building type 

Figure 7-32 shows the energy use distributions of each building type and the entire CU campus. To 

sum the two energy use distributions, all combinations from each distribution were considered using 

'expand.grid' function in R. In this process, each building type has 10,000 samples and such a large number 

of samples may cause a computational burden. To save computing time and computer memory, we sampled 

1,000 samples and carried out the calculations. Average values of energy consumption for prior and 

posterior distribution were compared to the observed data in Table 7-7. After Bayesian calibration, the 
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mean value of the posterior distribution matched well with the measured data in each type of building stock. 

The proposed stochastic-deterministic-coupled building stock energy methodology enables the estimation 

of the building energy consumption at campus-scale for both entire buildings and each type of building 

stock. 

 

Figure 7-32 Total energy use distribution of CU campus 

 

Table 7-7 Average value of total energy consumption distribution (values in parenthesis indicate the 

percentage to the measured data) 

 Edu Lab Res Svc Campus 

Measured [TJ] 128.2 556.3 236.7 124.0 1045.2 

Aver. Prior 

[TJ] 

170.8 

(+33.3%) 

1065.8 

(+91.6%) 

526.4 

(+122.4%) 

175.2 

(+41.2%) 

1922.9 

(+84.0%) 

Aver. 

Posterior [TJ] 

122.2 

(-4.6%) 

597.9 

(-7.5%) 

226.5 

(-4.3%) 

123.9 

(-0.1%) 

1076.6 

(+3.0%) 
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7.3.7 The analysis of energy conservation measures 

Three cases of energy conservation measures (ECM) analyses are considered for quantifying their 

benefits for the CU campus: Case 1 is applying ECM to the most dominant parameter for each building 

type. Case 2 is a comparison between two ECMs. ECM for the non-dominant parameters is applied in Case 

3.  

7.3.7.1 ECM Case 1. Applying ECM to the most dominant parameter  

The first case aimed to examine the effect of ECM for the most dominant parameter. Table 7-8 

shows the ranking of the parameter from the sensitivity analysis using the prior distribution. The ranking 

was changed when the sensitivity analysis used the posterior distribution as shown in Table 7-9. However, 

the most dominant parameters were not changed in all building types. In all building types, the equipment 

power density (EPD) was determined as the most dominant parameter. Therefore, we decided to apply the 

ECM to the EPD. 10% reduction is applied to the posterior EPD distribution for all building types as shown 

in Figure 7-33.  

Table 7-8 Ranking of dominant parameters using the prior distribution 

Rank Edu Lab Res Svc 

1 EPD EPD EPD EPD 

2 HSP GAS WATER GAS 

3 LPD HSP GAS LPD 

4 HEATEFF CSP LPD HSP 

5 CSP LPD HEATEFF OCC 

6 OCC HEATEFF CSP CSP 

7 WIN  WALL HEATEFF 

8 WATER  INF WIN 

 

Table 7-9 Ranking of dominant parameters using the posterior distribution 

Rank Edu Lab Res Svc 

1 EPD EPD EPD EPD 

2 LPD GAS LPD GAS 

3 HSP HSP GAS LPD 

4 CSP LPD WATER HSP 
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5 HEATEFF CSP HEATEFF OCC 

6 OCC HEATEFF CSP LPD 

7 WIN  WALL HEATEFF 

8 WATER  INF WIN 

 

  

  

  

Figure 7-33 ECM 1 applied parameter distribution 
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The meta-model (MLR) was utilized to calculate the effect of ECMs. The availability of the meta-

model to evaluate ECM has already been identified in Chapter 5. The use of meta-model for the evaluation 

of the ECM is one of the advantages of the proposed stochastic-deterministic-coupled building stock energy 

model since it reduces computing time without running the dynamic building simulation (EnergyPlus). 

The ECM applied energy use distributions were just shifted along with the same shape because the 

meta-model was the multiple linear regression model as seen in Figure 7-34.  
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Figure 7-34 Annual total energy use distribution for ECM1  

Table 7-10 Results of ECM 1  

Building 

type 
Parameter 

EUI Energy Use 

EUI reduction 

[MJ/m2] 
Reduction % 

Energy Use 

reduction [TJ] 
Reduction % 

Edu EPD 7.56 1.05 1.29 1.05 

Lab EPD 76.16 3.23 19.03 3.23 

Res EPD 6.06 0.71 1.64 0.71 

Svc EPD 20.54 2.04 2.51 2.04 

Campus - - - 24.47 2.29 

 

Table 7-10 presents the reduction of EUI and energy consumption for each building type and 

overall CU campus as a result of ECM1. The EPD range of the laboratory building stock was larger than 

others so that the reduction of energy also use larger than other building types. As a result, the ECM 1 

(decreasing 10% of EPD for all buildings) can reduce 24.47 TJ of energy use, and it is equivalent to 2.29% 

of reduction in energy use. 

 

 

Figure 7-35 Comparison campus total energy use by ECM1 
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7.3.7.2 ECM Case 2. Comparison two ECMs  

The second case is examined to compare ECMs. When we have limited resources, we can compare 

the efficiencies of ECM in the building stock. Table 7-11 shows the measured energy use data and total 

floor area for each building stock. In the CU campus, the laboratory building stock and the residence 

building stock have similar total floor area. The energy use of the laboratory building type is about three 

times greater than the one of the residence building type. In the ranking of parameters (Table 7-9), lighting 

power density (LPD) is the fourth dominant parameter in the laboratory type and second dominant 

parameter in the residence building type. In such context, we can compare the efficiencies between the 

reduction of 10% in LPD in the laboratory building stock and that of 10% in LPD in the residence building 

stock. 

As shown in Figure 7-36, the posterior distributions of LPD were shifted to the left and fed into the 

meta-model (MLR). Figure 7-37 and Table 7-12 compare the reduction of energy use by reducing 10% of 

LPD.  

 

Table 7-11 CU energy use and total floor area data 
 

 Edu   Lab   Res   Svc   Campus  

 Energy Use [GJ]          

128,151  

        

556,324  

        

193,145  

        

124,009  

       

1,001,629  

Energy Use Ratio [%] 13% 56% 19% 12% 100% 

 Total floor area [m2]          

170,374  

        

249,889  

        

235,668  

        

122,164  

           

778,095  

Total floor area Ratio [%] 22% 32% 30% 16% 100% 
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(a) Case 2-1. LPD distribution of Laboratory 

 

(b) Case 2-2. LPD distribution of Residence 

Figure 7-36 ECM 2 applied parameter distribution 

 

 

(a) Case 2-1. Laboratory 

 

(b) Case 2-2. Residence 

Figure 7-37 Annual total energy use distribution for ECM 2 
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Table 7-12 Results of ECM 2 

Building 

type 
Parameter 

EUI Energy Use 

EUI reduction 

[MJ/m2] 
Reduction % 

Energy Use 

reduction [TJ] 
Reduction % 

Case 2-1. 

Lab 
LPD 31.04 1.32 7.76 1.32 

Case 2-2. 

Res 
LPD 2.88 0.34 0.78 0.34 

 

As a result, reducing 10% of LPD in the laboratory building stock was more effective than 10% 

reducing of LPD in the residence building. Using this method, we can determine the effectiveness of each 

ECM in the CU campus. 
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7.3.7.3 ECM Case 3. How to apply ECM for non-dominant parameter 

The third case applied the ECM to the non-dominant parameters. The meta-model (MLR) can be 

used to evaluate the ECM for the dominant parameters. However, a question remains in the evaluation of 

the ECM for the non-dominant parameters or new technologies that are not related to the dominant 

parameters. In this case, we decided to replace the poor glazing window (over 2.8 W/m2K) with the double 

glazing window (2.8 W/m2K) in the residence building stock. This ECM can be considered as a code 

enforced retrofit. 

The process is as follows. The first step is extracting samples from the posterior distribution. After 

the Bayesian calibration, there are 10,000 samples for each parameter. The developed meta-model cannot 

express the non-dominant parameters or new technology; the ECM applied samples should be fed into the 

EnergyPlus. However, 10,000 of samples are too large to run the EnergyPlus. Therefore, only 200 samples 

were extracted from the posterior distribution. The second step involves the creation of ECM applied input 

parameter. In the prior distribution, the distribution of window U-value was uniform, ranging from 1.5 to 

6.0 W/m2K. The 200 samples from the prior distribution of window U-value were the baseline for the ECM 

application. we applied the ECM to the 200 samples that were extracted from the uniform distribution. If 

the window U-value exceeds 2.8 W/m2K, the U-value was changed to 2.8 W/m2K. Figure 7-38 compares 

the baseline and ECM applied window U-value distributions. The maximum value of ECM applied window 

U-value was 2.8 W/m2K. The third step is feeding the baseline and ECM applied samples into the 

EnergyPlus.  

Figure 7-39 shows the change in the annual total energy use in the residence building stock as a 

result of ECM 3. Unlike previous results, the shape of distribution has been modified after the application 

of ECM since the shape of distribution for ECM applied window U-value was changed from the original 

uniform distribution. The vertical line presents the average value of each distribution and the energy 

reduction caused by ECM 3 is presented in Table 7-13. As a result of ECM 3, when the windows greater 

than 2.8 W/m2K of U-value were replaced with the double glazing window, approximately 3.28 TJ can be 

saved in the residence building. 
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Indeed, the ECM case 3 shows the advantage of the stochastic method. While existing deterministic 

methods only consider applying the ECM to the whole building stock, the proposed building stock energy 

model can reflect the effect of implementing the ECM to the partial building stock. 

 

 

Figure 7-38 ECM 3 applied parameter distribution 

 

 

Figure 7-39 Annual total energy use distribution for 

Residence 

 

 

Table 7-13 Results of ECM 3 

Building 

type 
Parameter 

EUI Energy Use 

EUI reduction 

[MJ/m2] 
Reduction % 

Energy Use 

reduction [TJ] 
Reduction % 

Case 3. 

Res 
WIN 12.08 1.24 3.28 1.24 

 

7.4 Discussion and Conclusion 

The purpose of this chapter was to estimate the building energy consumption at the campus-scale 

using the proposed stochastic-deterministic-coupled building stock energy model. The measured energy 
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use data and various building information such as building function, floor numbers, building age and total 

floor area were analyzed to classify the representative building type. As a result of the data analysis, we 

concluded that the building energy consumption depends on the building function rather than the building 

age on the CU campus, and then we classified 80 buildings into four types of representative buildings.  

The sensitivity analysis was performed to determine dominant variables for each representative 

building. The results of the sensitivity analysis showed that each representative building had different 

dominant parameters. These findings suggest that we need different strategies to reduce the building energy 

consumption for each type of building stock. 

The multiple linear regression meta-model and Bayesian inference were used for the calibration of 

developed building stock model. We obtained calibrated distributions of dominant parameters. These 

calibrated distributions of parameters should be considered as the best guess to match the actual energy use 

rather than an actual distribution of the parameter. After the calibration, the estimated building energy 

consumption at the CU campus was matched successfully for both entire campus and each type of building 

stock. Using the proposed method, the annual energy use as well as monthly energy use has been calibrated 

by energy type.  

Then, the estimated posterior distributions for parameters were employed to estimate the energy 

conservation measures. The probabilistic methodology can produce a more advanced analysis compare to 

deterministic methods. In this ECM analysis using the probabilistic method, for example, we compared two 

ECMs to assess which measure is more effective on the whole CU campus with limited resources given.  

It is also possible to evaluate the effect applying the energy conservation measures to only a part of building 

stock. In this chapter, the proposed stochastic-deterministic-coupled building stock energy model was 

validated at the campus-scale. The method can be further improved by employing other techniques such as 

more accurate regression model, classification using the machine learning, detailed representative building 

model, and data gathering using geographic information system (GIS) data.  
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

8.1 Summary and conclusions 

Many building stock models have been developed due to the increased interest in estimation of 

building energy consumption in existing building stock. The building stock models can be broadly divided 

into two methods: top-down and bottom-up. The bottom-up models can be further classified into two types 

of approaches: statistical and engineering models. Top-down models have limitations to consider at an 

individual building level. The bottom-up statistical models require numerous empirical data and have a 

limited capability to assess the impact of new technologies. The bottom-up deterministic engineering 

models cannot consider an uncertainty problems. To overcome the uncertainty issue, stochastic methods 

such as Monte Carlo, Bayesian calibration were applied to the engineering models. However, there have 

been few stochastic building stock models and existing stochastic models also have some limitations in 

terms of computational cost, insufficient building stock information, and calibration process.  

The purpose of this dissertation is the development of improved stochastic building stock energy 

model for predicting the urban scale building energy use. In order to overcome the limitations of current 

models, this dissertation proposed a stochastic-deterministic-coupled model was proposed based on the 

Bayesian calibration and meta-models. Detailed analyses were conducted for each step of the proposed 

methodology. The main findings and conclusions drawn are: 

 

 Bayesian calibration and inverse models were compared to choose a stochastic method. Bayesian 

calibration was selected to take advantage of existing knowledge and various meta-models. It 

has been quantitatively confirmed that using meta-models instead of the original dynamic 

building energy model can save computational time. 

 

 In order to reduce the computation time in the Bayesian calibration process, the dominant 

parameters were selected through the sensitivity analysis and the calibration was performed for 

the dominant parameters. The sensitivity value index (SVI) was presented that can synthesize the 

difference by various sensitivity analysis methods and various target outputs. 
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 A meta-model is used to reduce the time to process the MCMC in Bayesian calibration. Analysis 

of the effect of meta-models’ accuracy on the results of Bayesian calibration was carried out. The 

accuracy of the five meta-models (MLR, NN, SVM, MARS, and GPE) was compared, and the 

Bayesian calibration results using the meta-models were compared. This study has confirmed that 

the computing time and the accuracy of calibration varied according to the type of meta-model. 

Using the GPE showed the best accuracy while it took a long time than others. The calibration 

using MLR is less accurate than others in predicting parameter values due to model errors. 

However, estimation of energy use showed good agreement (In the base range case, the 

CVRMSE were less than 1.2% for monthly EUI and 0.3% for annual EUI). Focusing only on 

simulation time and energy usage prediction, the availability of Bayesian calibration using MLR 

has been confirmed.  

 

 Energy usage data is essential for the calibration. A methodology using a correlation analysis and 

a hierarchical clustering was proposed to determine informative energy data for the Bayesian 

calibration. The influence of the quantity and quality of energy data on the accuracy of the 

Bayesian calibration was analyzed in an individual building. Even though there is insufficient 

energy data, one can obtain reliable results if the informative data was selected using the 

proposed method. Furthermore, computational cost can be reduced by using only informative 

energy data for Bayesian calibration. The selection of informative energy data should be chosen 

considering the purpose of the calibration and computational cost. 

 

 The proposed stochastic-deterministic-coupled building stock energy model was analyzed using 

commercial and residential virtual building stocks. The differences between the stochastic 

individual building model and stochastic building stock model were examined by comparing both 

models. The proposed method produces distorted posterior distributions which differ from the 

target distribution for input parameters due to meta-model error. It is confirmed that the distorted 

posterior distribution can be used to evaluate the effect of ECM. An aggregation method of the 

EUI distributions for different building type stocks was examined, and it can be applied to other 

temporal scales to find peak energy demand for the target district. 
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 There are three kinds of building stock information needed to implement the proposed stochastic-

deterministic-coupled building stock energy model: building energy use data, building features, 

and total floor area. The necessary information was summarized according to the degree of detail, 

and the alternative information to replace the insufficient information was examined. Then, 

influence of uncertainty in building stock data on energy prediction was analyzed. In a given 

case, the influence of the building type information was the greatest. 

 

 The proposed stochastic-deterministic-coupled building stock energy model was applied at 

campus scale. 80 buildings in the target campus are classified into four building types. A 

regression method was proposed to reduce calibration errors due to different energy usage 

patterns in the same building type. After the calibration, the estimated building energy 

consumption at the campus was matched successfully for both entire campus (within 3%) and 

each type of building stock (within 7.5%). Using the proposed method, the annual energy use as 

well as monthly energy use has been calibrated by energy type. Moreover, the estimated posterior 

distributions for parameters were employed to estimate the energy conservation measures. The 

probabilistic methodology can produce a more advanced analysis compare to deterministic 

methods. 

 

 The proposed method allows modeling current energy use and evaluating potential energy 

conservation measures at various spatial and temporal resolution. The methodology can be used 

by policy-makers and urban planners to evaluate effects of retrofits and to provide energy demand 

for energy supply alternatives such as distributed generation and district heating and cooling. By 

enabling stochastic results of building stocks, the proposed method can help local governments 

and utilities decide on energy-related policies and incentives. 
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8.2 Future work 

The work undertaken in this thesis has highlighted interesting research questions and future 

investigations. In this context, some of the recommendations for future work have been identified: 

 

 Expansion of the proposed model into urban-scale 

o The proposed stochastic building stock energy model was demonstrated at campus scale. 

The proposed model needs to be validated on a larger scale. New problems that did not 

occur on the campus scale are expected. The most challenge is to access building stock 

information. Collaboration with local government and utility companies is needed.  

o Once the building stock data is collected, buildings should be grouped according to 

building properties. In the influence study on building stock information (Chapter 6), 

information about the type of building was found to be important. Therefore, more 

research on how to organize and classify the information of many buildings will be 

needed. In the current model, the building data analysis and classification of buildings 

were performed manually. This work may be subjective of the modeler. Clustering and 

classification techniques such as machine learning can be introduced to define 

archetypes. 

 

 Improving the accuracy of meta-model 

o The proposed model uses the multiple linear regression models (MLR) as a meta-model 

because of computational time. In chapter 4, it was found that accurate meta-model leads 

to accurate calibration results. There is a need for a way to increase the accuracy of MLR 

without significantly increasing computational time. A various transformation such as 

interaction and second-order terms can be included to increase the predictive 

performance. 

 

 Including statistical parameters  

o The proposed model is based on engineering building model. It is expected that the 

accuracy of the model can be improved by combining statistical parameters in the current 

model. For example, even in the same type of housing, there will be a difference in 

energy use depending on the annual income or age of people. The combination of these 
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statistical parameters will reduce the uncertainty that the engineering model does not 

cover. 

 

 Uncertainty of occupancy schedule 

o The parameters related human behavior in building energy modeling remain the greatest 

uncertainty yet. Moreover, these are the most characteristic parameters that classify the 

building type and function. Building schedules have traditionally been simplified by 

using deterministic hourly schedules and peak loads. The proposed stochastic-

deterministic-coupled building stock energy model also uses deterministic building 

schedules. Further study on schedule model considering uncertainty due to human 

behavior is required.   

 

 Development of interactive map  

o By developing the proposed model, an interactive map can be developed that is linked 

with GIS data. GIS will make it easier to obtain building stock information. The floor 

area data from the GIS will facilitate the aggregation process. An understanding of 

building stock energy will be enhanced through the interactive map of various temporal 

and spatial analyses, including energy retrofit analysis. 
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APPENDIX 

Appendix A. Results of Chapter 4.2 (Determination of informative energy data) 
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Parameter distribution for Case EG4-2 

 

Parameter distribution for Case EG8-1 

 

EUI distribution for Case EG4-2 EUI distribution for Case EG8-1 
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Parameter distribution for Case EG8-2 Parameter distribution for Case EG17-2 

 

EUI distribution for Case EG8-2 EUI distribution for Case EG17-2 
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Case T 

 

Parameter distribution for Case T1-1 

 

 Parameter distribution for Case T4-1 

 

EUI distribution for Case T1-1 
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Parameter distribution for Case T4-2 

 

Parameter distribution for Case T8-1 

 

EUI distribution for Case T4-2 

 

EUI distribution for Case T8-1 
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Parameter distribution for Case T8-2 

 

Parameter distribution for Case T12-2 

 

EUI distribution for Case T8-2 

 

EUI distribution for Case T12-2 
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Case E 

 

Parameter distribution for Case E1-1 

 

Parameter distribution for Case E4-1 

 

EUI distribution for Case E1-1 
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Parameter distribution for Case E4-2 

 

Parameter distribution for Case E8-1 

 

EUI distribution for Case E4-2 
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Parameter distribution for Case E8-2 

 

Parameter distribution for Case E12-2 

 

EUI distribution for Case E8-2 

 

EUI distribution for Case E12-2 
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Case G 

 

Parameter distribution for Case G1-1 

 

Parameter distribution for Case G3-1 

 

EUI distribution for Case G1-1 

 

EUI distribution for Case G3-1 

 

  

11 12 13 14 15

0
.0

0
0
.1

5

EPD

EPD [W/m
2

]

D
e
n
s
it
y

13 14 15 16 17

0
.0

0
0
.1

0
0
.2

0

LPD

LPD [W/m
2

]
D

e
n
s
it
y

19.5 20.5 21.5 22.5

0
.0

0
.2

0
.4

HSP

Heating Setpoint Temp. [ C ]

D
e
n
s
it
y

22.5 23.5 24.5 25.5

0
.0

0
.2

0
.4

CSP

Cooling Setpoint Temp. [ C ]

D
e
n
s
it
y

16 18 20 22 24

0
.0

0
0
.1

0

OCC

Occupancy [m
2

/person]

D
e
n
s
it
y

0.60 0.70 0.80

0
2

4
6

INF

Infiltration rate [1/h]

D
e
n
s
it
y

11 12 13 14 15

0
.0

0
0
.1

5
0
.3

0

EPD

EPD [W/m
2

]

D
e
n
s
it
y

13 14 15 16 17

0
.0

0
0
.1

0
0
.2

0

LPD

LPD [W/m
2

]

D
e
n
s
it
y

19.5 20.5 21.5 22.5

0
.0

0
.2

0
.4

HSP

Heating Setpoint Temp. [ C ]

D
e
n
s
it
y

22.5 23.5 24.5 25.5

0
.0

0
.2

0
.4

CSP

Cooling Setpoint Temp. [ C ]

D
e
n
s
it
y

16 18 20 22 24

0
.0

0
0
.1

0

OCC

Occupancy [m
2

/person]

D
e
n
s
it
y

0.60 0.70 0.80

0
2

4
6

INF

Infiltration rate [1/h]

D
e
n
s
it
y



249 

 

Parameter distribution for Case G3-2 

 

Parameter distribution for Case G5-2 

 

EUI distribution for Case G3-2 

 

EUI distribution for Case G5-2 
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Appendix B. CU Building list 

No. Name 
Build 

Year 

Renovati

on Year 

Total 

Floor 

Area 

[m2] 

Floors Original Primary Use 
Functi

on 

EUI 

[GJ/m2] 

1 University Club 1939 1939 2737.2 3 Administrative Offices  
Educat

ion 
0.598 

2 University Memorial Center 1953 1986 24986.4 5 Food Service 
Servic

e 
1.151 

3 Museum of Natural History 1937 1937 3009.1 2 Museum 
Servic

e 
0.797 

4 
Bruce Curtis Building (Museum 

Collections) 
1911 2002 4201.5 4 Research 

Labora

tory 
1.790 

5 Economics 1930 1930 3175.1 3 Classrooms 
Educat

ion 
1.009 

6 Guggenheim Geography 1908 1908 2474.0 3 Classrooms 
Educat

ion 
0.573 

7 Education 1956 1956 4645.3 3 Classrooms 
Educat

ion 
1.046 

8 University Theatre 1902 1989 6594.7 2 

Other - 

Entertainment/Public 

Assembly 

Servic

e 
0.804 

9 Hellems Arts and Sciences 1921 1921 10797.7 3 Classrooms 
Educat

ion 
0.881 

10 Cristol Chemistry and Biochemistry 1958 1997 13732.0 4 Laboratory 
Labora

tory 
2.548 

11 
Cooperative Institute for Research in 

Environmental Sciences 
1987 1987 2791.1 3 Laboratory 

Labora

tory 
3.263 

12 Ekeley Sciences 1925 2014 12703.6 3 Laboratory 
Labora

tory 
3.257 

13 Roser ATLAS Center 2006 2006 6946.3 4 Museum 
Servic

e 
0.673 

14 Hale Science 1899 1992 4290.8 4 Classrooms 
Educat

ion 
0.766 
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15 McKenna Languages 1937 1947 2133.5 2 General Office 
Educat

ion 
0.442 

16 Old Main 1899 1986 2349.8 4 

Other - 

Entertainment/Public 

Assembly 

Educat

ion 
1.049 

17 Woodbury Arts and Sciences 1890 2000 7302.1 3 Administrative Offices  
Educat

ion 
0.827 

18 Macky Auditorium 1922 1986 8105.9 3 

Other - 

Entertainment/Public 

Assembly 

Servic

e 
0.824 

19 Norlin Library 1939 1977 31130.0 4 Library 
Educat

ion 
0.839 

20 Koenig Alumni Center 1899 1899 810.0 2 Administrative Offices  
Educat

ion 
0.969 

21 Center for Community 2010 2010 29476.8 4 Food Service 
Servic

e 
1.141 

22 Regent Administrative Center 1964 1964 8872.9 3 Administrative Offices  
Educat

ion 
0.900 

23 University Administrative Center 1930 1986 1409.7 3 Administrative Offices  
Educat

ion 
0.581 

24 Wardenburg Student Health Center 1959 1995 6109.3 3 Medical Office 
Servic

e 
1.378 

25 Cheyenne Arapaho Hall 1954 1954 10452.1 4 Residence Hall 
Reside

nce 
0.730 

26 Willard Hall 1955 1955 9949.7 4 Residence Hall 
Reside

nce 
0.626 

27 Hallett Hall 1956 1956 8661.0 4 Residence Hall 
Reside

nce 
0.501 

28 Reed Hall 1947 1947 2389.0 3 Residence Hall 
Reside

nce 
0.723 

29 Imig Music 1955 1997 9927.6 2 Classrooms 
Educat

ion 
0.742 

30 Farrand Hall 1948 1948 15239.2 5 Residence Hall/ Food 
Reside

nce 
1.132 

31 Crosman Hall 1947 1947 2553.0 3 Residence Hall Reside 0.640 
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nce 

32 Aden Hall 1947 1947 2500.4 3 Residence Hall 
Reside

nce 
0.697 

33 Baker Hall 1937 2013 10558.3 5 Residence Hall 
Reside

nce 
0.584 

34 Libby Hall 1955 1955 10876.0 4 Residence Hall/ Food 
Reside

nce 
1.364 

35 Joint Institute for Lab Astrophysics 1965 2012 14880.4 10 Laboratory 
Labora

tory 
3.053 

36 Duane Physics and Astrophysics 1971 1971 18070.8 11 Laboratory 
Labora

tory 
1.149 

37 Benson Earth Sciences 1997 1997 8904.2 4 Laboratory 
Labora

tory 
1.603 

38 Mathematics Building 1992 1992 5699.2 4 Classrooms/ Library 
Educat

ion 
0.743 

39 Ramaley Biology 1952 1981 10363.0 4 Research 
Labora

tory 
2.672 

40 Gold Biosciences Building 1995 1995 12746.0 5 Research 
Labora

tory 
3.894 

41 Porter Biosciences 1971 2003 10125.1 5 Research 
Labora

tory 
4.692 

42 Muenzinger Psychology 1971 1971 14272.7 5 Research 
Labora

tory 
1.902 

43 Sewall Hall 1934 1934 9289.7 5 Residence Hall/ Food 
Reside

nce 
1.230 

44 Student Recreation Center 1973 2014 29776.3 3 Fitness Center 
Servic

e 
0.831 

45 Wolf Law 2006 2006 17057.8 5 Classrooms/ Library 
Educat

ion 
0.655 

46 Fleming Law Building 1958 1973 11899.6 3 Classrooms 
Educat

ion 
0.614 

47 Kittredge West Hall 1981 2013 6902.3 3 Residence Hall 
Reside

nce 
0.691 

48 Kittredge Central 2013 2013 9302.8 3 Residence Hall 
Reside

nce 
0.713 
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49 Smith Hall 1963 2011 8847.8 3 Residence Hall 
Reside

nce 
0.769 

50 Andrews Hall 1963 2009 5823.6 3 Residence Hall 
Reside

nce 
1.026 

51 Buckingham Hall 1963 2010 6345.4 2 Residence Hall 
Reside

nce 
0.769 

52 Arnett Hall 1964 2008 5893.2 2 Residence Hall 
Reside

nce 
1.034 

53 
Fiske Planetarium and Science 

Center 
1975 1975 1897.5 1 

Other - 

Entertainment/Public 

Assembly 

Servic

e 
0.881 

54 
Speech, Language, and Hearing 

Sciences 
1960 1960 2095.7 3 General Office 

Educat

ion 
0.332 

55 Koelbel Building 1969 2007 16417.6 4 Classrooms/ Library 
Educat

ion 
0.698 

56 Engineering Center 1965 1990 54590.8 3 Laboratory 
Labora

tory 
1.781 

57 
Integrated Teaching and Learning 

Laboratory 
1996 1996 3374.4 3 Laboratory 

Labora

tory 
2.140 

58 Discovery Learning Center 2002 2002 4740.8 4 Laboratory 
Labora

tory 
1.412 

59 
Environmental Health and Safety 

Center 
1980 2000 2110.1 2 Service 

Servic

e 
1.295 

60 Police and Parking Services 1991 2007 3151.5 2 Police Station 
Servic

e 
1.585 

61 Smiley Court 1963 1963 21355.0 4 Multifamily Housing 
Reside

nce 
0.781 

62 Institute for Behavioral Genetics 1966 2006 2385.5 2 Research 
Labora

tory 
3.508 

63 
Research Laboratory No. 4, Life 

Science 
1964 1964 1113.2 1 Laboratory 

Labora

tory 
2.475 

64 Research Laboratory No. 2, RL2 1963 1963 7140.1 3 General Office 
Educat

ion 
0.735 

65 Research Laboratory No. 1, Litman 1961 1961 5099.9 2 Laboratory 
Labora

tory 
1.508 
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66 Administrative and Research Center 1969 1974 17341.5 7 General Office 
Educat

ion 
0.653 

67 
Research Laboratory No. 6, Marine 

Street Science Center 
1980 1992 4511.7 1 General Office 

Labora

tory 
1.947 

68 Science Learning Laboratory 1960 1960 2919.0 2 Laboratory 
Labora

tory 
1.351 

69 Computing Center 1973 1973 2680.1 2 General Office 
Labora

tory 
2.594 

70 
Jennie Smoly Caruthers Biotec 

Building 
2012 2012 31867.0 5 Laboratory 

Labora

tory 
1.678 

71 
Center for Astrophysics and Space 

Astronomy 
1981 1981 2896.8 1 Laboratory 

Labora

tory 
1.979 

72 
LASP Space Technology Research 

Center 
1991 2006 10919.8 3 General Office 

Labora

tory 
2.019 

73 
Family Housing Children's Center - 

Newton Court 
1975 1975 666.4 1 Pre-school/Daycare 

Educat

ion 
0.409 

74 Athens North Court 1980 1980 4820.3 3 Residence Hall 
Reside

nce 
0.671 

75 Darley Towers 1969 1969 11263.1 15 Residence Hall 
Reside

nce 
1.054 

76 Stearns Towers 1966 1966 23281.8 15 Residence Hall 
Reside

nce 
0.912 

77 Williams Village North Hall 2011 2011 13256.6 6 Residence Hall 
Reside

nce 
0.689 

78 
Bear Creek Apartments at Williams 

Village - Building 1A 
2003 2003 17732.1 6 Residence Hall 

Reside

nce 
0.635 

79 
Bear Creek Apartments at Williams 

Village - Building 1B 
2003 2003 17733.9 6 Residence Hall 

Reside

nce 
0.622 

80 University Residence 1987 1987 641.6 2 Residence 
Reside

nce 
0.888 

 

 

 


