RESPONSE TIMES IN.LEVEL STRUCTURED SYSTEMS
by

Paul K. Harter, Jr. *

CU-CS~-269-84 July, 1984

Department of Computer Science, University of Colorado,
Boulder, Colorado 80309

* This research was supported by National Science Foundation
Grant # MCS-8216707.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS
OR RECOMMENDATIONS EXPRESSED IN THIS PUB-
LICATION ARE THOSE OF THE AUTHOR AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE
NATIONAL SCIENCE FOUNDATION,

Response Times in Level-Structured Systems

Paul K. Harter, Jr.

Abstract

Real-time programs are among the most critical programs in use today,
yet they are also among the worst understood and difficult to verify. Validation
of real-time systems is nonetheless extremely important in view of the high
costs associated with failure in typical application areas. We present here a
method based on an extended temporal logic for deriving response-time pro-
perties in complex systems with a level structure based on priority. The
method involves a level by level examination of the system, where information
distilled {from each successive level is used to adjust the results for later levels.
The results obtained at each level of the system are static, in that they are not
affected by later analyses, which obviates having to consider a complex system
as a whole.

Response Times in Level Structured Systems

1. Introduction

The work reported here deals with the problems associated with verifying
real-time systems. A real-time system is one which monitors or controls events
in an external environment and which therefore must respond within certain
hard-time constraints if it is to perform properly. Typical real-time applica-
tions include industrial process control, guidance systems and device emulation
for hardware testing. The cost of software failure can be tremendous in these
applications. Thus, the validity problem for real-time programs is an important
one. Unfortunately, it is generally agreed that real-time programs are the most
difficult to understand and hence to write, debug, or modify. Further, it is by
now almost universally accepted that normal testing and debugging does not
ensure working software. Thus, it is felt that it would be best to apply some
systematic formal procedure to ensure accuracy. The choice of method is
somewhat more highly contested. One promising approach is through the use
of formal verification techniques. The application of these techniques to real-
time programs, however, is more difficult than to other programs.

To motivate this claim, consider the following. A sequential program
involves only a single process, which transforms input data and generates the
appropriate output. Programs in this class generally function deterministically
and are hence easiest to verify; yet despite considerable progress in the area,
large sequential programs are (almost) never formally verified. The difficulties
lie largely in finding formal specifications for programs, finding the appropriate
loop invariants and manipulating the large complex formulae involved in proofs.

Concurrent programs retain the difficulties involved in the verification of
sequential programs and add to them problems of interference among multiple
executing processes. In most cases, the strongest assumption allowed about
process scheduling is that all processes make ‘‘finite progress.” As a result, one
must make the worst case assumption for concurrent programs, i.e. that the
statements of the various processes may execute in any order consistent with
the processes themselves. Processes sharing address-spaces may then inter-

leave access to common variables in unpredictable ways. In general, the

number of possible interleavings is exponential in the number of processes.
Various techniques have been suggested for coping with the interference result-
ing from interleaving in the context of program verification. These techniques
are generally easier to apply where some explicit synchronization is employed
to restrict the number of possible interleavings.

Real-time programs deal with events that arise spontaneously in the exter-

nal environment. These events may be viewed as the product of fictitious asyn-
~ chronous processes, whose execution speeds canmot be controlled using the
explicit synchronization mechanisms | provided in concurrent programming
languages. Correct functioning of the system, therefore, depends on the ability
of the program to keep pace in real time with these processes. As might be
imagined, real-time programs have all the problems associated with concurrent
programs with the additional problems that go along with a dependence on real
time. It is now necessary to consider statement execution times, priority
structure, interrupts and device latency. |

Previously reported work [Bernstem 81b] has dealt primarily with proving
Safety properties of real- ~time programs, while the work reported here deals
with proving a class of liveness properties, which we call response time proper-

ties. Using the notation of the above reference, response time properties are

those of the form A'v:fi&B (A«jv%B), which assert that whenever property 4 is
established property B will be (will not be) established before n (until at least
m) time units have elapsed. For a real-time program interacting with its
environment, it is often necessary to prove just such properties. One may wish
to prove that a program polls a device at a certain frequency

<n
(poll~~>next —poll) in order to make sure no information is lost. One might
Just as well wish to prove that a program will not poll a device too frequently

>m
(poll~~~>next —poll), as getting the same information twice would prejudice
results.

Our previous techniques are, of course, applicable to this problem, how-
ever, as the size and complexity of the system increase, the complexity associ-
ated with applying these techniques increases dramatically. In this paper we
examine a class of systems employing multiple priorities and level structuring
and present a technique for deriving approximate results for these systems. We
hasten to point out that the error in these results is on the side of

-0

conservatism, hence any result proven with these techniques holds in general.

The only other work applicable to level structured systems of which we are
aware was reported by Wirth [Wirth 77a]. In that work, Wirth proposed a three-
step method for the construction of real-time software, the last of which was a -

check on the situations involving ‘‘races’”. The proposed checks involved a
(number of simplifying assumptions on the nature of processes and their
interrelationships. Given his assumptions, he gave rules for considering the
time lost to a process due to interrupts at higher priorities as an aggregate
effect in the average case. The analysis here is similar to that proposed by
Wirth. The difference lies in our level-by-level approach, the fact that we con-
sider inter-level procedure calls, and the fact that we derive precise rather
than "‘average case” upper and lower bounds. In addition, our treatment of
upper and lower bounds allows us to handle situations in which Wirth's simplify-
ing assumptions do not hold.

In the next section, we review our notation and some of our previous work
as required for the understanding of the material to follow. For details, the
reader is referred to the report cited above [Bernstein 81b]. In the sequel we
define the class of systems under discussion and then present the techniques
applicable to that class. Finally, we illustrate these techniques with an exam-
ple.

2. Previous Work and Notation

In this section we attempt to provide the reader enough background to fol-
low our presentation. We make no attempt here to be precise or complete.

We model the execution of a real-time program as the interleaved execu-
tion of the various processes involved. This is a fairly accurate model, particu-
larly for programs running on multiprogrammed machines and has been used
in much of the work on the verification of concurrent programs [Owicki 82],
[Gabbay 80], [Wolper 81]. Formally, our model includes a set of states and a set
of sequences over those states corresponding to the set of possible executions
of a program. The primary difference in our model is the inclusion of a time
stamp on each state, indicating the time the state was entered. Each non-
initial state in a sequence is typically the result of the execution of one "ready"
atomic action beginning in the previous state, where an action is "ready" if it is
the next action to be executed by a runnable process. To simplify the

-3~

semantics of our assertion language, execution sequrences of terminating pro-
grams are extended to infinity by replication of the "last' state. Thus, the exe-

cution sequernce:

S=sg, S1, Sg, -

1]

represents a program execution that starts in state ‘‘sg,” executes an opera-
tion leading to state ''s;,”” then executes another to lead to state “‘s3” and so
forth. The one exception to the above rule is the case where, in a particular
state, there is no ready process. In this instance, the next state will be the
result of a process suddenly becoming ready due to the occurrence of an exter-
nal interrupt from the clock or some I/0 device. Then, the following state will
be the result of the execution of the atomic action of that process immediately
after the action that caused it to become blocked.

Our assertion language is an extended temporal logic including two new
‘operators for describing properties involving real time. These operators are
two of the more useful specializations of general real-time eventuality opera-
tors. Koymans, Vytopil and de Roever [Koymans 83] discuss a very general
operator: U, which they call "strong until in real-time t.” '

Our assertion language includes the familiar operators of temporal logics.
Assertions may refer not only to the values of program variables but to pro-
gram locations as well. The assertions that refer to this locations are ‘“‘at 4,”
“in A, and "‘after A,”" where 4 is the label any statement of the program in
question. Informally, they state that in some process control resides at the
beginning of, in the middle of, or immediately following the statement A.

General temporal assertions are built up from immediate assertions
(assertions on individual states) using the temporal operators ‘[0’ meaning

LRI}

“maintains,” "0 meaning “eventually,” and ‘O meaning ‘‘next,” as well as
the logical operators “/\,” “\/" and ** =.” Formulae involving these operators

are assigned meaning recursively in the usual way:

PG aslong as P remains true, @ will be true
arP henceforth P is true (é truedP)

OP now or later P is or will be true
OF in the next state P will be true

For brevity and clarity we will make use of a number of abbreviations. The
first is in common use, the others are not. The first captures the notion of tem-

poral implication or eventuality.
Prrrs @=0(P20Q).

Thus, "Pr~~~>@" means that ‘“‘whenever P is true, @ will eventually become
true.” The next abbreviation captures the notion of "next to execute”, i.e. that
a particular action will be the next selected for execution.

sel A=al ANQafter A, |

where 4 is the label of an indivisible operation. Thus *‘sel 4" is true if 4 is eligi-
ble for execution (af 4) and will have been executed by the next state in the
sequence (QOafter A). For a given action, we indicate that its execution must be
followed by another execution of the same action by:

sel Arr~>Qsel A,

which indicates that 4 must be selected for execution infinitely often. The O
operator is required in this formulation by the structure of the logic.

The last abbreviation presented here is the predicate ‘‘path.”’ The expres-
sion “‘path (P, @, k)" denotes the property: *‘if execution reaches a state satis-
fying P, then if it is to reach a state satisfying F, it must first pass through a
state satisfying €.” This is expressible using the non-abbreviated form of the
“[O" operator as:

P> —=QVRO-R.

In addition to the more familiar notation of temporal logic just discussed,
we now review our notation [Bernstein 81b] for real-time properties. Our
approach is to define ‘“‘time bounded eventuality”’ properties similar to the
“Prenns> @' defined above. We intend that these do no more than put simple
upper or lower bounds on the time between P and §. For assertions /; and /Iy:

<n
Iy~ i Every occurrence of I; is followed by an

occurrence of [, in fewer than n time-

units.

>
Iy~~~3>]5 iff No occurrence of I, is followed by an oc-
currence of I, except in more than m

time-units.

These two properties are useful for specifying upper and lower bounds for
program execution. Note that the second does not imply liveness, i.e. it does
not assert that a state satisfying /; will ever be reached. Thus, it is only an

assertion of a lower bound.

We now review a few of our inference rules for reasoning with real-time to
indicate the flavor of the reasoning involved. The first gives the result of a com-

parison of relative rates of progress.

<n >n

A > B Oy) RPR
path(ANC, B, D)

This asserts that if it takes less than n units time for B to become true starting
in a state in which 4 is true and more than n units for D to become true from
any state in which C is true, then if 4 and C are true simultaneously, then B
must become true before D becomes true. This is a simple consequence of the
relative speeds of achieving B and D starting from a state in which 4 and C are
true.

To compute execution speeds, we must be able to combine the rates asso-
ciated with parts of a program to give rates for their combination. This is done
using rules such as the following:

>n >
Prross @, @oevss R, path (P, Q. R)

>m 4+

Prrrrs R

GTA

This states that if it takes at least n units to get from P to @ and m from @ to
F that it takes at least m+n from P to F. The path assertion is necessary to
disallow the case where execution could go through R on the way from P to .

<n
A similar rule (LTA) applies for the “P~~~»@Q" relation except that no path

-B-

assertion is necessary in that case.

Suppose that P~~~>@ via either of two paths, and that we can derive the
execution rates for each path, then the following rule gives the rate for the exe-
cution from P to @.

<n <m
(PN = B> Q, (PN B>)
maz (n,m)

P o>)

ALP

This concludes our brief review of our notation and previous work. It is
hoped that the reader now has a sufficient feel to enable him to understand the
presentation to follow.

3. Level Structured Systems and Analysis

As mentioned in the introduction, we consider here real-time systems that
have been designed with a level structuring and present a technique for deriv-
ing bounds on response times in these systems. While it is certainly possible to
apply previous techniques to the analysis of such systems, ignoring their struc-
ture, the resulting task is likely to be far too complex to allow a reasonable
chance for success. Thus, in this work, we consider systems that are divided
into levels by priority, where each level is made up of one or more processes of
a given priority, and is autonomous with respect to other levels. Levels have
disjoint address spaces and may communicate only via procedure calls.

In systems involving several processes running at different priorities, the
lower priority processes are interrupted and lose control of the processor
whenever a higher priority process is ready. Thus, in these systems, code
sequences in lower priority levels that would execute without interruption were
it not for the higher priority levels (i.e. do not contain any statements that
cause process switching) are subject to arbitrary interruption by higher levels.
While the execution times of indivisible operations are not affected by the prior-
ity structure, the derivation of response times for sequences of indivisible
operations at any but the highest priority (non-interruptible) level is made
extremely difficult by the ever present potential for interruption.

Rather than consider the potential time lost (due to of pre-emption by
higher levels) between each pair of indivisible operations of a particular code

sequence, it is often possible to consider the effects of the higher priority levels

7=

on the lower levels as a net increase in the execution times over sequences of
code. That is, one can derive the execution time for a particular code sequence
in the absence of any higher priority processes, and then increase it by the
amount that higher priority processes would use up during that time. In effect
one is treating the higher levels as having a slowing influence over the entire

sequence rather than accounting for their effects piecemeal.

The analysis of the level-structured systems considered here, parallels
their structure. Each level is examined independent of the others in order of
decreasing priority. Once a level has been analyized, the results for that level
are adjusted to reflect the influence of higher levels. This will be covered in
detail in the next two subsections.

3.1. Level Structured Systems

Each level contains processes that spend some time executing and the rest
of the time waiting. Thus, process execution is cyclic in nature, being divided
into an execution phase and a waiting phase. This is a fairly restrictive model
of processes and simplifies the discussion and analysis presented here. Similar
analj\zsis could be carried out even if the cycles were more complex, perhaps
involving several execution phases of varied length rather than just one. The
length of the execution phase depends on the code to be executed and the
activities of processes at higher levels. The time required for a complete cycle

can depend on many factors as will be seen in detail later.

Processes wait either voluntarily, as a result of executing some operation
that explicitly causes a process switch (eg. a wait) or involuntarily, because of
pre-emption by processes at higher priority. The lowest and highest priority
levels represent special cases. Processes at the lowest priority level need not
wait voluntarily, as processes at all other levels must, since they interrupt no
one. (If a process at some higher level never waited voluntarily, then processes
at all lower levels would make zero progress. This yields very poor real-time
bounds for these levels.) Processes on the highest priority level, on the other
hand, only wait voluntarily since there are no higher priority levels to pre-empt
them.

A level may also contain passive procedure code implementing functions
that are made available to processes at the next lower level. Since the code
resides at a higher level than the calling process, that process has its priority

~8-

raised for the duration of the call. As a result, no other process at the callers
level may execute during the execution of the procedure body. This can have
the effect of making procedure calls to higher levels “‘atomic’ with respect to
the calling level. A discussion of the implications and benefits of this implemen-
tation is given by Bernstein and Ensor [Bernstein 81a].

The question of “‘atomicity’” of procedure calls affects the analysis of level
structured systems. If procedure code contains statements that lead to pro-
cess switching, such as pause (delays a process for a specified period) or wait
(delays a process pending a particular action, send, by another process), then
there can arise situations where execution dies out on the called level and some
other process in the calling level can be allowed to execute before the call actu-
ally completes execution. This by itself is not an obstacle to level-structured
analysis. However, it is necessary to place some restrictions on this situation in

order to apply our results. This is explained below.

Our level structured approach to analysis requires that response times in a
level be derivable from that level and higher levels. Consider the case where a
process executing in level k& calls a procedure on level £ —1 (higher priority lev-
els have lower numbers) that contains a wait. If the corresponding send is exe-
cuted as a result of a future call from level & to k£—1 by some other process,
then the execution time for the first procedure can not be derived by examina-
tion of levels 1 through £ —1 and our techniques cannot succeed. Thus, for our
current purposes, we assume that whenever a procedure contains a wait(g), the
corresponding send(g) must be executed as a result of actions on the part of

another process on the same {called) level and not on the calling level.

To illustrate this distinction, we consider two example cases. In the first
case, there is a procedure which is called by a lower priority level process to
obtain some service from a process on the higher priority level. If that process
is currently busy, the calling process could execute a wait statement and be
reactivated by the server process when it is no longer busy. In this case, the
time that the calling process spends waiting depends on the server process and
not on the callers level.

On the other hand, one could imagine a situation wherein the higher prior-
ity level procedure protects a shared resource used by the lower priority level

processes. When a process desires to use the resource it calls the procedure to

see if the resource is available. If not, the process executes a wait statement to
delay itself until some other lower priority level process (the one currently in
possession of the resource) calls a procedure to return it and wake up the wait-
ing process. In this case, the time the first process spends waiting for the
second to call and return the resource cannot be determined without examin-

ing the code at the lower priority level. Thus, this situation is not allowed.

3.2. Level by Level Analysis

We now present a technique for the analysis of the level structured sys-
tems just described. For an N level system, the analysis proceeds from the
highest priority level (15¢) to the lowest (Nth). At each level, analysis is per-
formed to derive results of two types. Some results are of immediate interest
in that they yield information that may be desired about the level. Other
results are required for the further analysis of lower priority levels.

The basic strategy in examining a particular level is to derive response
times for that level, as if that level represented the entire system. This may be
done, for example, using the techniques outlined briefly in section 2. These
results are ‘‘virtual-time results,”” and are subject to adjustment to account for
the time used by higher priority levels, before they can be considered valid
response time results for the system as a whole or *‘real-time results.”

As described earlier, processes are cyclic. Thus, the slowing effect of a
higher priority level process on the timing characteristics of processes on a
lower priority level is captured by the ratio of the execution time in each cycle
to the total cycle length. Consider the two processes shown in Figure 1. The
high priority process P; executes for 20 milliseconds out of every 100 mil-
liseconds and the code sequence from 4 to B in Pp would require 1 second if

executed without interruption. With P; present, P loses these 20 milliseconds

20
100

cute alone. Thus, P, will require 1.25 seconds on the average to execute from 4

of the rate at which it would exe-

out of every 100, so that it executes at 1—

to B. The actual value will range from 1.24 to 1.26 depending upon where P, is
in its cycle when P begins at 4. The techniques presented here will give one or
the other of these depending upon whether one is deriving an upper bound or a

lower bound, but uses the same idea and is based on these ratios.

_10-

wveosgeew —- DrOCEss executing

——— -- process waiting

(e

P, execution--20ms P, waiting—-80ms

Level Boundary

C LA AAA]A:A“Q
4

VP23 at A Pgi ot B

Figure 1 -- Process Time Dilation

In examining a level in isolation, it is not possible to derive response-time
properties for sequences of code in that level that involve procedure calls to
higher priority levels, since the execution times for these procedures depend
on code in the higher priority level. For such sequences, one first derives
virtual-time results for the code sub-sequences between the inter-level calls.
These virtual-time results are then adjusted for the effects of higher priority
levels to produce real-time results. These real-time results can then be com-
bined with the real execution times for the called procedures previously
obtained by analysis of the higher priority level. The reason for this two step
approach is that the procedure code resides at a higher priority level and is
thus less susceptible to interruption by higher priority levels than is the calling
code. This will be discussed in detail as we discuss the derivation of load-pairs

for a level.

11

<n
The techniques for deriving properties of the form *“A~~>F,” called
“upper bounds,” are very nearly the dual of those for properties of the form

>m
“Aren> B called U'lower bounds,’” though not precisely. We formulate the fol-
lowing discussion in terms of proving an upper bound property for a level-
structured system, though we will necessarily cover the material necessary for

lower bound properties along the way.

Assume that we have an N-level system and wish to prove that an upper

bound result REQUESTEDMT\{&COMPLETED holds for the system, where
REQUESTED and COMPLETED are predicates describing the states of
processes in level k (1<k<N). Further, assume that the execution path taking
the system from the former state to the latter is an arbitrary execution of
processes in levels £ through 1. We need not consider execution in levels k+1
through N, since they contain lower priority process whose execution canno‘t
affect timings at level £. To derive this property we must apply the following
level-by-level analysis to levels from 1 to &k, since lower levels do not influence
the result. | '

- For each level, we must derive both real-time and virtual-time results that
abstract the response time characteristics of that level for use in deriving
results for lower priority levels.

Note--In order to keep our notation clear, we will adopt the convention
that virtual time processes are indicated using a slightly different
operator. We will write:

<n
Prorrs>),

to denote the virtual-time result that P leads to Q. This result may be
converted to a real-time result as described below, which will then be

written using the familiar notation and a different value for n.

Processes execute a "‘wait/execute-cycle’’, which we abstract as two “load-
pairs.” For each process F;, a maz-load-pair is a pair <c;, E;>, where c¢; is a
lower bound on the duration of the cycle and F; is an upper bound on the actual
execution time during each cycle. The max-load-pair for P; represents the
maximum load to the system that can be caused by F;. Analogously, min-load-

pair <(;, e;> represents the minimum load possible due to a process, where

12

now C; is an upper bound on the cycles duration and e; is the minimum actual
execution time during the cycle. The load-pairs are combined into min and
max load-sets for each level:

LS'm'z',nké {<C;, e;>| P; is al priority higher than k] and

LSmaz, 8 {<c;, E;>| P, is at priority higher than kJ,

which represent the total system load due to levels higher than k.

Given a virtual-time property for some level, we wish to adjust it to take
into account the time used by higher priority levels. A load-set is a way to
represent the percentage of tine used up by higher levels and hence is an indi-
cation of the degree to which those levels ‘“‘slow down’’ processes at the current
level. The load-sets for a given priority level are used to adjust virtual-time
results for that level. Virtual lower bounds are adjusted using the min-load-sets

~ since, in the worst case, the higher priority level processes will all execute as

short a time as possible and as seldom as possible. For virtual upper bounds we
use max-load-sets since the adjusted real upper bound must hold even when all
the higher priority level processes are exeéuting as long as possible and as
often as possible. -

>m
Note--For lower bound properties (A~~~3>B), of course, no adjustment
is required since any virtual lower bound must also hold as a real lower
bound if the level must ‘“‘run more slowly,” however, adjustment will

result in tighter lower bounds which are more useful. End-of-note

The adjustment of a virtual-time property results in a real-time property, which
is the same property with a corrected (real) bound (<n” or >m’). In order to
assure the validity of the adjusted result, upper bounds must reflect the max-
imum possible dilation, while lower bounds receive the minimum required dila-
tion. Thus, no attempt is made to reflect average case behavior; worst case (or
worse) is generated.

The algorithm to follow generates the new upper (<n’) or lower (>m”)
bound for virtual upper (n) or lower (m) bounds at level k as defined by the
relations:

-13-

b minfd|d=n+ 5 [21e53, and
<Ct, E',)ELSYnaxk ‘C‘i

m 2 min{d |[d=m+ by ([Q—J+bump(d, Ci, ei)) %i},

<G, e;>€LSminy G

1 2f z mod Yy>y—=z
. b
where: bump(z, y, z)2 0 otherwise

Intuitively, these just say that the adjusted upper (lower) bound is the lowest
number d that represents a time sufficient for the uninterrupted execution (n
or m) as well as the total of the maximum (minimum) execution times for the
maximum (minimum) number of cycles that can possibly (must necessarily)

occur during that time. The maximum number of cycles of process P; for

adjusting upper bounds is given by [—d—-}

(2

For lower bounds, the minimum number of complete cycles (and hence
execution phases) of a process P; during a given period will be realized when

that period begins immediately upon completion of one of P;’s execution

phases. Then, after l—g—} cycles, P; can take as long as C;—e; to begin another
i

execution phase, since that is the latest point at which the execution phase can
begin and still complete by the end of the cycle at (. Thus, the minimum

number of execution phases of process P; for adjusting lower bounds is given by

“I_—(/%—J+bump(d, C;, e;).” where the function “bump” accounts for the assump-
i
tion that the execution phase begins as late as possible.

The algorithm for computing the adjusted upper (lower) bounds works by
successive approximation to find the values defined above. For each candidate
n’ (m’), a test is made to see whether n (m) and the executions of the max-
imum (minimum) number of cycles that can occur during n° (m”) can fit in n’
(m”). If not, then n” (m”) is set to the smallest value such that that number of
cycles of execution will fit. Changing n” (m”) however, lengthens the time dur-
ing which cycles could occur. As a result, the new value of n* (m’) may not
satisfy the above test. Thus we must iterate until an n” (m*) is reached that

satisfies the above test. If, for the current level, it is the case that

-14-

e -
. or, for lower bounds: % —_~
<cq, E;>€LSmaz, Ci <G, e;>€LSmin, Ci

%

which represents the fraction of the CPU left for processes at level k, is less
than one, the value of n” (m’) will increase faster than the execution time
required by the additional cycles, and the algorithm will converge. The algo-
rithm is shown in Figure 2.

Under certain circumstances, the algorithm converges more quickly by
starting with an approximation for n”. For computing adjusted upper bounds,
the relation:

wrane()
1— =

<c,, E;>€LSmaz, Ci

provides an approximate n’. The accuracy of this approximation increases as:

(1) The ratio %becomes smaller for all i, and
i

(2) The ratio -g-’f—-becomes larger for all 1.
i

That is, as there is less and less execution for each cycle, and as there are more
and more cycles occurring during nn”. In his paper [Wirth 77a], Wirth assumed
these ratios to be very favorable, on the order of 10:1. This assumption allows
the above relation to be considered an approximate solution to the problem of
computing time dilation as was done by Wirth. The approximation may be
viewed as an average case result. As we are interested in true upper bounds,
this approximation will be too small and may thus be used as a starting point
for our algorithm. For lower bounds, on the other hand, this relation tends to
exaggerate the minimum possible dilation, and hence will lead to inaccurate
results.

Assuming that the code for all higher priority levels has been analyzed,
previously, so that the required information is available, we now describe how to
generate the corresponding information from the current level in order to con-

tinue the level-by-level analysis.

-15-

(1) Compute:

% ey

or, for lower bounds: Y .
<cq, E;>€LSmaz;, Ci <G, e;>€LSming Ci

If it is greater than one, then the load from the higher priority levels is too
high and the virtual bound becomes an infinite real bound. Quit now, the
algorithm will never terminate if you proceed.

(3) Setn” () equal ton (m).

(3) Assign:

n =n+) [P;}*Ei

<cy, E;>€LSmaz, Ci

or, for lower bounds:

m’o=m+ 3 (l%%hbump(m', Ci. €))%

<Cy, e, >€LSming 7

Now, if

n’<n+ ¥ f”—] *E;

<c;, E;>€LSmaz;, Ci

or, for lower bounds:
mem+ ¥ (e roumpim, G,) %
<q, €; >ELSmink ()

then go back to (3) and do it again. Otherwise, you are done and the
current value of n” (m”) is the adjusted real-time bound.

Figure 2 -- Algorithm for Time Dilation

Recall that a load-pair has two components, the cycle time and the execu-
tion time per cycle. For both min-load-pairs and max-load-pairs the execution
time must be a virtual-time result, while the cycle time must be a real-time
result. The motivation for this derives from the algorithm for time dilation

presented in the last subsection as we now explain.

-16-

The execution time represents the number of processor cycles lost to
lower priority level processes during each cycle of the higher priority process.
If the execution time component were required to be a real-time result, then
inaccuracies would arise in the computation. Consider the dilation at level &
due to a higher priority level I (I<k). The real-time bound on the execution
during any cycle of a process in level ! comprises the time that that process
actually spends executing as well as the time that it loses to higher priority lev-
els. In computing dilation for level k£, we use LSmin, or LSmaxz,, which contain
entries for all levels having priority greater than &, including . If these entries
contained real-time execution bounds, then the effect on level k£ would “count
the higher priority levels more than once’ by dilating by higher priority levels
as well as by times from level I that have been dilated by those same higher
priority levels.

The cycle time, on the other hand, must be a real-time quantity, since it is
used to compute the number of execution cycles that occur during a real-time
interval. Thus, in deriving the load-pairs for a level, we must derive both real-
time and virtual-time bounds.

Further, for general analysis, we will need both min-load-pairs and max-
load-pairs, which requires that we have both lower and upper bounds on both
the execution time and the cycle time for each process. Thus, to simplify nota-
tion, we introduce the abbreviation:

ub <ub >ib
Presais Q= Prosc QI Proec Q.

We define startz; and donez; to be predicates indicating the beginning and
ending of the execution phase of process F;. Then, for the min-load-pairs and

max-load pairs for P; we need to derive the virtual-time result:

E,

{
startz; >donez;, (execution-time)
€
and the real-time result:
G
startz; ~~~>COstartz; . (cycle-time)

Cy

Then, for process F;, the min-load-pair is <(;, e;> and the max-load-pair is

1'7

<Civ E’i >.

We also define, for each procedure entry Fj, the predicates enproc; and exproc;
denoting the entry to and exit from procedure F; resulting from a call. Then,
for each procedure entry on level k, we will derive:

Y
enproc; ~a~>ezprocy, and (real-procedure-time)
4

7T
i

enproc; MT:» exproc; . (virtual-procedure-time)
i

This result will be used in the derivation of bounds for code sequences at level
k+1, which involve inter-level calls to level k. As will be seen later, we will need
this information for procedure entries in both real-time and virtual-time form.

The derivations of execution-time and procedure-time are similar, and will
“be discussed first, whereas cycle-times involve special consideration and will be
dealt with separately. For any segment of code in level k, virtual upper or
lower bounds are calculated as described above. Code sequences involving
inter-level procedure calls pose no extra difficulties for virtual time results. As
we assume that analysis has already been carried out for higher priority levels,
the virtual times 7; and {; are available for any called procedure and can be
used as the bounds for the call statement. In this way, procedure calls are
treated the same as any other statements with the exception that their virtual
execution bounds are derived from the higher level rather than being deter- -

mined by the language implementation.

Note--As far as level k is concerned, these calls may or may not actually
appear as atomic. What is important is the assumption, stated earlier,
that the procedure-time for entries in level k—1 are completely deter-
mined by levels 1 through £—1 and do not depend on levels & through
N. As long as this holds, the virtual execution time derived from the
analysis of the higher priority levels can be used as described to derive
bounds for code containing inter-level calls. If a procedure contains
statements such as wait or pause, which can lead to execution in level k
before the call terminates, then that procedure call must be treated as

a non-atomic statement with a non-deterministic switching point in the

_18-

middle. Thus, in examining level &k, this call must be seen as terminat-
ing an “‘atomic action' of its process. End-of-note.

Unfortunately, we can not take a virtual bound derived as above, and apply
the algorithm of the last sub-section to generate a real bound, since the dila-
tion for the procedure code above level k£ is different from that of the code in
level k. The reason for this is that there are fewer levels that can pre-empt the
execution of the procedure code. For this reason (see Figure 3) ,’ we must break

any segment of code containing procedure calls into smaller segments bounded

A
by procedure calls. The virtual bounds for these sub-segments (sel 1~~~3>sel 2,
a

B
sel 3'\'\'\;'9)385 5) are then dilated using the above algorithm to yield the real-

time bounds (a”, A" and b7, B"). These real-time bounds can then be combined
(using LTA and GTA) with the real bounds for the procedures (¢, T; and t5, Ts),
which were obtained by previous analysis to yield a real-time result: '

A +B 4T+ T,
sell r~~~n~> selB.

@ +b
Note that it does not matter here whether the procedures are actually execut-
ing or possibly waiting during the times given. For the purpose of finding
bounds for calling processes, the only important factor is the time required
before the procedure returns.

Thus we see that by combining techniques for dealing with levels in isola-

tion with the algorithm above, we can derive procedure-times and execution-

1) ... statements ... 7,

2) call procl; {real: enprocl'\r\:&ezprocl !
3) statement

4) statement 7.

5) call procg; freal: enprocgm?:&ezprocz !

6) ... statements ...

Figure 3 -- Code sequence containing interlevel calls

-18-

times for the processes and procedures of level k.

For cycle-times, there are two very different cases. The execution for any
cycle may be triggered either spontaneously, or in response to some action of
the process. In the former case, the rate of occurrence of interrupts is
independent of the execution rate of the level. An example of this might be a
process that is actuated in response to a line-clock interrupt. This process will
spend some time in execution and then simply terminate, only to be reac-
tivated (modeled as the spontaneous transfer of the first label of the process
from the delay-set into the ready-set) when the interrupt occurs. These
processes can also be thought of as procedures (i.e. passive code), which are
invoked spontaneously from outside the system since they simply terminate
and don't execute a wait statement. There is no difference in the analysis, only
the aesthetics. For these processes, the oycie-times (G, and c;) cannot be
derived but are part of the environment and must be taken as given. Generally,
. the specification will be in terms of some range, in which case C; is just the

upper bound on the repetition time and ¢; is the lower bound.

The second case is where the execution phase of a process occurs as a
result of some triggering action taken by that process during its last execution
phase. Examples of this are where a process initiates an 1/0 operation and
then waits on the device signal, or where a process executes for a time and then
executes a pause statement to delay itself for some interval. In these cases,
the cycle time is not fixed by the environment but is dependent both on the
length of time the process spends waiting and on the time it takes for the pro-
cess to get around to taking its initiating action. For example, since we assume
that the completion of an 1/0 operation does not result in the immediate
transfer of control to the process waiting for it, a process that alternately reads
and calculates can have either of two very different life cycles. If we take the
process P from the time it begins its read, then if the system is very quiet, the
cycle may be: ‘

1) P waiting for read to complete

2) P read completed; P selected for execution
3) P processing new information

4) P finished processing

5) P begin read statement

20

On the opposite extreme, consider the case where the process P begins its read,
and then, just before the read completes, a process on the next lower level
(k+1) executes a procedure call to level k. At the same time, all the other
processes on level k& (who were waiting, since otherwise level k+1 could not
have executed the call) enter the ready-set. Again, from the same point:

1) P waiting for read to complete, process on level k +1 executing

2) process on level £ +1 calls procedure on level &

3) P's read completed

4) procedure at level & executing; all other processes become ready
5) procedure finishes executing; other process selected to run

8) all other processes run

7) last other process completes; P selected for execution

8) P processing new information

9) P finished processing

10) P begins next read statement

Of course, this is not actually the worst imaginable case, since one can imagine
that P might never get another chance to run. In such a system it would be
impossible to derive any upper bound. However, for a realistic situation, where
processes are scheduled such that no process can have two chances to run
before a given process has a chance, i.e. there is no overtaking, one must still
consider this as a possible case.

Thus, for the derivation of cycle times for processes with dependent
cycles, the upper and lower bounds are very different. For the lower bound

(c;), we assume the first scenario above and use:
Ci:ei‘*‘IOTminD,

where /O0Tminp is the minimum possible response time for the 1/0 device D as
described in section IV. For the upper bound, we want to use the longest possi-
ble cycle and consider the second scenario. Recalling that T; is the execution
time of procedure entry F; and assuming the “fair’” scheduler (no overtaking)
described above, we use:

G=E;+10Tmazp+), FE, +max{T;|for F; an entry on level ki,
Puy€level k

where the second two terms represent the maximum delay in being selected for

_21-

execution. Wirth [Wirth 77a] called the third term a “hidden delay’’ in respond-
ing to 170 interrupts; he did not consider procedure calls.

This concludes the ydescription of the énalysis. The next section presents
an example showing the application of these techniques to a simple level-
structured system.

4. Example

In this section, we illustrate the techniques presented in the previous sec-
tion for the analysis of level-structured real-time systems. We examine a sys-
tem for process monitoring in which there are two levels as seen in Figure 4.
Note the introduction of the structuring commands for dividing the system into
levels (level ... levend) and the keyword function for defining functions. The
former cause all bracketed code to run at the same priority level (lower

numbers have higher priorities), while the latter has its familiar meaning.

1) level 1

2) function GETIME(): current-time;

3) ... { read day /date record, calculate current-time and returni ...
4) end;

5) cobegin

6) begin f{process CLOCK}

7) ... fupdate day/date record by one “‘tick” § ...;

8) end; ,

9) // while true do begin {process FLOW_MONj
10) pause(Wrzon_ioN) '

11) ... {read flow sensor valuej ...;

12) ... {process new valuej ...;

13) end

14) coend

15) levend;

16) level 2 :

17) while {rue do begin {process TEMP_MONjJ
18) pause(Wrgyp_son)

19) time := GETIME();

20) ... {read temperature sensor valuel ...;

21) ... {process based on valuej ...

22) end

23) levend

Figure 4 - A level-structured system for process monitoring.

-22-

The higher priority level, level 1, contains two processes CLOCK and
FLOW_MON as well as a function for reading the current time called GETIME.
CLOCK is a process that receives an interrupt from an external timer at regular
intervals, at which time it updates the current value of the day/date record.
FLOW_MON is a process which reads the current Value of a flow sensor from its
memory location and does some processing based on the relation of the current
value to the previously found value. After this processing, FLOW_MON puts itself
to sleep using a pause statement for a predetermined interval. The function
GETIME is supplied so that processes at the lower level can read the day/date
record without being interrupted and (possibly) getting inconsistent results.
Note that to avoid this possible inconsistency, GETIME cannot contain wait
statements.

Level 2 runs at lower priority and contains one process TEMP_MON, which
alternately waits (pause) and does processing. Each time TEMP_MON wakes up,
he checks the time by calling GETIME and reads the current value of the tem-
perature sensor (this sensor is sampled at lower priority since it monitors a
more slowly changing quantity) and does some processing based on its value.

We wish to show for this example that the cycle time for the TEMP_MON
process is short enough to ensure that it will be able to read the temperature
sensor at a rate high enough so as not to lose information. The possibility
exists that this process be pre-empted so much by the higher priority CLOCK
and FLOW_MON that its processing time is dilated to the point where, after
pa‘useing, it has missed a change in the sensor value. We wish to show that this
is not the case.

We assume in this example that execution times for simple statements are
significant and that analysis has already been carried out on the code
sequences indicated in Figure 4 by the ellipses and comments. The presumed
results are as shown in the accompanying table. Note that the results for the
pause statements are real-time results based on the semantics of the pause
statement. The real-time result for CLOCK is assumed to have been given for

the environment and gives the rate at which CLOCK-interrupts occur.

We are interested in deriving the rate at which TEMP_MON can read the
temperature in order to show it is high enough to ensure that no information is

lost. In order to do this we must derive the real-time bound:

...23..

Module Real/Virtual Presumed Results
<Terrme
GETIME virtual eNPTOC GRTIME ~ND eXPTOC CRTIME
>CCLOCK
CLOCK real sel Br~~~~>Osel B
<Eciock
virtual sel G~~~3>afler 8
WrLov_son
FLOW_MON | real sel 10 ~~~> after 10
WFLOY_HON
Errovyon
virtual sel 11 r~r3>sel 10
: €FLOV_HON
<Wreyp_son
TEMP_MON | real sel 18 ~~> after 18
<X7Eue_uon
virtual sel 20 ~~~3> sel 18
<Creup_iion

sel 20 ~~~> QOsel 20,

and compare Cprgyp yon to the desired time between reads.

We first finish the analysis of level 1 and then handle level 2. Since level 1
is the highest level, it loses no time due to pre-emption by higher levels. Thus,
the virtual-time results for GETIME, CLOCK and FLOW_MON are also real-time
results. Since we are deriving an upper bound for TEMP_MON in level 2, we need
to construct the max-load-pairs for CLOCK and FLOW_MON to find the load-set
LSmaz,. For CLOCK, we have the lower bound on the cycle-time given from the
environment and the execution time from prior analysis giving:
<cerock, Ecrocx>. For FLOW_MON, the (real) minimum cycle time is given by:
Crrow MoN =Wrrow yon e rLowmon, While the (virtual) execution time we have
from prior analysis. Thus, we have <cprow yon, Errow mon>.

For TEMP_MON, the (real) upper bound on the cycle time is derived using
LTA from the (real) upper bounds around his loop. The (real) upper bound for

24

the pause is as shown in the table, and the (real) upper bound for the pro-
cedure call on line 19 is also shown, as discussed above. The real upper bound
for the code in lines 20 and 21 is calculated using the time-dilation algorithm
presented above, where

LSmax={<cpromyon. Errownon>. <Ccrock. Ecrock™>}

and the starting virtual bound is <Xgzyp yoy as shown in the table of assumed
results. This results in the real-time result X" gpyp yon. Having derived all the

necessary results, we can use LTA to derive:

<Creup_yon
sel 20 ~~n~> (Osel 20,

where now CTEMP_MON: WTEMP_M0N+ TGE'TIME'+X’ TEMP_MON - To make the example
concrete, suppose that the various time-bounds given in the table above have
the following values.

Bound Value Bound Value
Eerocx 4ams | Teprmure oms
COLOCK 20ms | Wrgypyony 50ms

Wrrow oy 39ms | Xrgypyony 100ms
Errow_son 8ms

EFLOW_MON oms

Then
LSmaz ,={<20ms, 4ms>, <40ms, 8ms>{,

and the algorithm yields the result X” ppyp yoy=176ms. Then, the upper bound
on the time for a complete cycle of the TEMP_MON process is 231ms. Thus, if
the desired inter sample time on TEMP_MON's temperature sensor is 231 ms or

greater, the system will meet its constraint.

5. Conclusion

We have presented a method based on an extended temporal logic for
deriving response-time properties in complex systems with a level structure
based on priority. The method involves a level by level examination of the sys-
tem, where information distilled from each successive level is used to adjust

-25-

the results for later levels. The results obtained at each level of the system are
static, in that they are not affected by later analyses, which obviates having to

consider a complex system as a whole.

The method is quite general and deals successfully with procedure calls
between levels as well as systems whose execution characteristics make them
inaccessible to simpler analysis. It is possible to derive both lower and upper
bounds that are tight, in the sense that they are, in principle, achievable by the
system in execution. .

These analysis techniques have not yet been applied to actual, working sys-
tems, though we feel this is possible, perhaps with some mechanical aids. This
remains a problem for the future.

References

[Bernstein 81a] A.J. Bernstein, J. R. Ensor.
A Modula Based Language Supporting Hierarchical Develop-
ment and Verification.
Software — Practice and Ezperience 11 (3):237-256, March
1981.

[Bernstein 81b] A.J. Bernstein, P. K. Harter.
Proving Real Time Properties of Programs With Temporal
Logic.
Proceedings of the 8" snnual ACM Symposium on Operat-
ing Systems Principles (Asilomar, California), pages 1-11,
ACM SIGOPS, December 1981.

[Gabbay 80] D. Gabbay, A. Pnueli, S. Shelah, J. Stavi. On the Temporal
Analysis of Fairness.
Conference Record of the 7 Annual ACHM Symposium on
Principles Of Programming Languages (Las Vegas), pages
163-173, ACM SIGACT-SIGPLAN, January 1980.

[Koymans 83] R. Koymans, J. Bytopil, W. P. de Roever.
Real-Time Programming and Asynchronous Message Pass-
ing.
Proceedings of the Second Annual Symposium on Princi-
ples of Distributed Computing, (Montreal, Quebec), pages
187-197, August 1883.

-26_

[Owicki 82]

[Wirth 77a]

[Wolper 81]

S. 5. Owicki, L. Lamport.

Proving Liveness Properties of Concurrent Programs.

ACM Transaclions on Programming Languages and Sys-
tems 4 (3):455-495, July 1982.

N. Wirth.
Towards a Discipline of Real-Time Programming.
Communications of the ACM 20 (8):577-583, August 1977.

P. Wolper.
Temporal Logic Can Be More Expressive.

Proceedings of the 2% pnnual Symposium on Founda-
tions Of Computer Science, pages 340-348, IEEE Computer
Society, 1981.

-27-

