A DatarBase System Designed
for Flexibility and Usability from FORTRAN *
by
Leon Osterweil
Lori Clarke
David W. Smith

Department of Computer Science
University of Colorado
Boulder, Colorado 80302

#CU-CS-072-75 July 1975

CU-CS-072-75 is a condensed version of CU-CS-052-74

* This work supported by NSF Grant GJ-36461.






SUMMARY

This paper discusses the design, implementation and usefulness.
of a system for the:Flexiﬁ1e.creation;'accesﬁing; and reformatting
of 1ist’structured data bases in ANSI FORTRAN programs. The system
is portrayed as being a useful tool in building prototype systems
where frequent design modifications are expected and which, for

reasons such as portability, are to be written in FORTRAN.

Key Words: Data Base, Data Management, Portabhility.



Introduction

The data base management system described here provides a
flexible and powerful mechanism for creating and using 1ist‘stPUCw
tured data bases from ANSL FORTRAN programs and for referencing
items in such data BaseStsymbolica1Tyﬁ By a 1ist‘structured data
base, we mean a collection of lists of data aggregates (which we shall
call nodes), where a data aggregate (node) consists of individual data
items (fields) arranged in memory in some rigid predefined order and
format. Many contemporary languages allow for the creation and sym-
bolic referencing of items in such data aggregates. For example
record formats, which can be declared in the DATA DIVISION of a
COBOL program, can be used to implement such 1lists and nodes, and
other languages such as PL/1 and PASCAL offer similar capabilities.
The lengths of 1ists in such structures, however, must usually be
prespecified, thereby Timiting the flexibility of programs using
them. ANSI FORTRAN unfortunately makes no explicit provision at all
for either the efficient creation or graceful manipulation of lists
of symbolically referenceable nodes. It is, however, frequently
quite useful in tasks such as data management to be able to at
least create such structures.

Our motivation for creating this system arose during a research
effort involving the construction of a prototype programming system
whose data structures and list organizations would ultimately be
dictated at least in part by preliminary experience with the partially
constructed prototype. Hence we realized that we needed a capability

through which we could routinely design new data aggregates and routinely



alter and augment existing structures and list lengths without having
to make modifications to an ever growing body of programs. We believe
that the need for such a capability generally arises during most
prototype development efforts, where the format of needed data
structures cannot be precisely known at the outset. Because ANSI
FORTRAN Tacks this fieXibi]ity, we believe that FORTRAN's usefulness
as a tool in software experimentation is weakened. Other considera-
tions, such as portability, however, dictated the use of FORTRAN as
our prototype development language. Thus we set about enabling the
needed data aggregate creation flexibility while, nevertheless, leaving
the existing language unaltered.

We restricted ourselves to creating and accessing symbolically
referenceable nodes and fields and have not addressed ourselves to
the problems of creating capabilities for performing the powerful
operations on structures which exist in such languages as COBOL and
PL/1. Such operations can easily be implemented as sets of higher
level subroutines which call the lower level ones created and de-
scribed here.

This system actually consists of 1) an initialization program
which sets up the framework for building the data base and node struc-
tures according to specifications supplied by the user, 2) a Tibrary
of user callable subroutines for doing such things as adding nodes
to lists, and entering and retrieving data items into and from fields,
and 3) a rollin/rollout package for saving data bases on mass storage
files and then restoring them, perhaps after an extended period of
time during which the node and field formats may have been changed.

The system allows the user to reference all nodes and fields

by node and field names which he has selected himself, provided these



names are legal FORTRAN variable names.

The field names and node names which the user wishes to use from
his program are first set up as an input file. The initialization
program then processes this input file to create node formats. It
builds tables which associate the user names with internal specifica-
tions of nodes and fields, and then writes these tables out to a binary
data file on mass storage. It also creates labelled COMMON statements
containing the field names, and node names. These COMMON statements
are written to a different mass storage file consisting of symbolic
line images. The COMMON statements are read from this symbolic
file and incorporated into the user's programs during a preprocess
phase of his execution. The tables are read from the binary file
during an initiation phase of execution.

In order to change node descriptions, the user need only change
his input file and rerun the initialization routine. New COMMON state-
ments and new node formats, embodied in new access tables, will be
created by the initialization routine and placed into the two mass
storage files for use by all subsequent runs. Of course, all user
subprograms which refer to nodes and fields must also be recompiled.
Because all fields are referenced by the user merely by passing names
to the data accessing routines, which in turn perform their accessing
by using the tables created by the initialization program, old programs
will continue to run successfully. O01d data bases can be restructured
using the rollout/rollin programs so that they also conform to the new
data base description. Hence the crucial ideas here are to assure
that all list and field references are made by means of variables,

and that the values of the variables are reset only by automated



routines. This gives great f]exibility; and makesqurvmqre natural,
readable code since the node and field names can be made mnemonic.

Throughout this work we have attempted to make portability an
important consideration. Al11 routines are written in FORTRAN, and
uses of nonstandard formations have been kept to a minimum and
quarantined to a very small body of small subprograms. Word and
field sizes are initialized once in a BLOCK DATA subprogram in an
effort to aid machine independence.

A detailed description of the actual implementation of this

system can be found in [2].



Overview

The data base system allows for the creat{on and manipulation
of lists organized in two different ways -- sequentially and linked.

A Tist is basically an ordered collection of nodes. The two organiza-
tions differ in the mechanisms by which the successor node of a given
node can be reached (see [1], Section 2.2). Because each kind of

Tist structure is well suited to a different class of important
problems, it was deemed important to give users both kinds of list
capabilities.

Users create lists by first defining node formats, and specifying
whether a given node type is to be a part of either a linked list or
a sequential Tist. System utility routines can then be used to
compose nodes into lists. A1l sequential Tists built within the
system will be composed entirely of nodes of the same type (format).
Moreover for each sequential node type there can be only one list
composed of these nodes. On the other hand, it is possible to create
many different linked lists, each composed of nodes of varying linked
node types.

A11 Tists comprising a 1ist structured data base reside in a large
FORTRAN vector called the data base area. The data base area is di-
vided into three sections; the prefix, the sequential 1ist area, and
the Tinked Tist area (see Figure 1). The prefix occupies a small
area at the beginning of the data base area. It contains information
specific to the structure of the particular data base area containing
it. For example, the size of the data base area, and the location and
sizes of the various sequential Tists are kept in the prefix. The

prefix allows each Tist structured data base to be more or less



!

“pPointers to fronts of sequential

U lists

“pointers to lasr entries in

 Sequential lists

| free list pointer
wd

”%equential list 1

>

Sequential list 2

—

e

0

®
e

MM—‘W*W

sequential list n

unallocated linked storage

allocated linkéd nodes

Figure

1: Data Base Area Storage Layout

prefix

sequential
list
area

linked
list
area



self-descriptive. This makes it possible for the user to set up and
access several data base areas simultaneously.

The sequential 1ist area follows immediately after the prefix.
The initial size of this area is determined by a global parameter.

A1l sequential lists declared by the user through his initialization
file will reside in this area. Space is initially allocated for each
of these Tists in a rather arbitrary fashion. Whenever any sequential
1ist overflows its allocated area, an algorithm due to Garwick

(see [1] pp. 242-246) is used to reallocate storage for all the
sequential Tists within the sequential area. There are three tables
which are required by Garwick's algorithm. A1l are stored in the data
base area prefix.

The Tinked 1ist area extends from the end of the sequential area
to the end of the data base area. A1l Tinked lists built by the user
are stored here. Initially the entire linked area is considered to
be available for use in creating Tinked nodes for Tlinked lists.
Whenever a request for the allocation of a Tinked node occurs, storage
for the node is allocated from the end of the available linked area.
Hence the linked 1ists grow from the end of the data base area towards
the end of the sequential area. This facilitates the process of
expanding either the linked or sequential area at the expense of the
other, should such action become desirable. The free 1list pointer,

a pointer to the last Tocation of the Tinked area which is currently
available for linked node allocation, is maintained in the prefix.

It is important to observe that the data base area need not be
entire]y contained in central memory. A11 accesses to individual
fields in the linked and sequential areas are made through calls to

memory access routines. For small data base areas, these routines



are simply routines for extracting words or part words from a central
memory array. For large data base areas, these routines should be
thought of as entries into a paged memory system, which is responsible
for fetching into central memory and holding, those sections of a disk
or drum resident data base area which are of current interest. (It
seems prudent, however, that the prefix be central memory resident

at all times.)

In recognition of both the possibility of paging and difficulties
in attempting random access to linked 1lists, it was decided, moreover,
that routines should be provided which transform a linked Tist residing
in the data base into a sequential 1ist residing outside the data base
area. Using such routines, a linked 1ist can be copied into a Tinear
array supplied by the user and then accessed by using the sequential
list routines designed for data base resident sequential Tists. Part
of the data base prefix is recreated in this linear array so that these
routines can access the 1list successfully. Conversely, routines
are provided so that a list can be built in a linear array outside
the data base as a sequential list, and then converted to a linked

Tist in the data base.



- Initialization

The function of the Initialization Program is to read in a file
embodying the user's specifications of names;‘formats, etc., and build
the tables necessary for creating and accessing the data aggregates as
specified.

This data file is begun with a line containing the level number
of the data base description. This level number must be updated every
time the format of the data base is changed in order to insure that the
rollin/rollout programs will work properly. This will be discussed in
detail in a later section of this paper.

The balance of the data file consists of node and field specification
lines. There must be a 1ine naming each node type to be created, and a
line specifying each field of every node type.

A node type description line contains 1) the name to be associated
with the node type, and 2) the organization -- sequential or linked (coded
as T or N) to be used in forming 1ists from this node type. Since the
name will eventually enter the system as a FORTRAN integer variable,
it is expected that the name supplied on this line will consist of a
letter I, J, K, L, M, and N followed by five or fewer letters or digits.
It is also possible to place a C in column 11 Qf this line denoting that
the following line consists entirely of a prose message concerning the
node. This message will be printed with the initialization summary
statistics‘and is intended to be an automated documentation aid.

Immediately following each node type description 1ine and
associated message (if any), the user must place one field description
line for every field which is a component of the node. The field
description line is identified as such by having the letter F placed

in column 1, followed by the name of the field. As with node names,



10

this must be a legal ANSL,FORTRAN yar{ab]e name. In addition care must

be taken to see that all field names are unique, and different from all

node names. There must also be an indication of the type of the field.

Under the current implementation four types are allowed -- integer (I),

real (F), pointer (P), and alphanumeric (A). Care must be exercised in

the selection of field names to assure that the implicit type associated
by ANSI FORTRAN with the specified name is always integer. It should be
noted that a node may consist of fields of differing types.

The range of values of the field may also be specified on the field
description line if the field is of type integer or real. If the range
is specified (by placing the minimum and maximum values on the Tine in:
appropriate columns), then whenever the system attempts ‘to'store a value
into the field during execution, that value will be compared to the range
specification. Out of bounds values will cause an error message to be
produced. Range checking can be suppressed either by omitting maximum
and minimum values, by specifying that a field is of type N (integer
with no range checking) or X (real with no range checking), or by
suppressing checking at run time (run time checking is discussed later).
As with node description Tines, a C placed in column 11 alerts the program
to the existence of a message line immediately following.

The input file is terminated by a sentinel line in the form of a
field specification Tine for a field whose name is END***,

Figure 2 shows a section of a data initialization file used to
create a data base area which is designed to hold information about
FORTRAN programs. Two sequentfa] nodes,‘ISTMTB and ISYMTB are specified
by T's in column 1. C's in column 11 indicate that comment lines follow.
Hence we see that ISTMTB and ISYMTB are intended to be a statement table
and a symbol table respectively.

Following each sequential node description line are specifications



11

2
T ISTMTE C
STATEMENT TABLE
F LINOST IC
LINE NUMBER OF FIRST LINE OF STATEMENT
F IBLKST IC
NUMBER OF THE BASIC BLOCK CONTAINING THIS LINE
F ITYPST IC
STATEMENT TYPE CODE
F IIVHST PC
POINTER TO THE LINKED LIST OF INPUT VARTIABLES (CONSISTS OF TIIVNOD'S)
F IOVHST PC .
POINTER TO THE LINKED LIST OF OUTPUT VARTABLES (CONSISTS OF IOVNOD'S)
F PCBLST FC 0.0 - 1.0
FRACTION OF CHARACTERS THAT ARE BLANKS IN THIS STATEMENT
F IEXHST P
T ISYMTB ¢
SYMBOL TABLE
F ISNAME IC
CODED REPRESENTATION OF THE SYMBOL NAME
F ISDTYP AC
THE TYPE CODE FOR THE SYMBOL~-~I IS INTEGER, R IS REAL
F ISNTYP I ' 0
F ISNDIM PC ]OQO

POINTER TO A LINKED LIST OF DIMENSION INFORMATION
F ISDATV IC

NUMBER OF DATA STATEMENT INITIALIZING THIS VARIABLE (IF ANY)
F ISCOMN I =

F ISEQUV P

F ISSTMT P

N IIVNOD ¢

THE LINKED NODE TYPE USED FOR INPUT VARTABLES TO STATEMENTS
F IIVNDX IC

INDEX OF THE VARIABLE IN THE SYMBOL TABLE

F LNKFDL PC ,

FIELD BY WHICH THIS LIST IS LINKED TOGETHER

F IIVIYP I

N IOVNOD

F IOVYNDX I

F LNKFD2 P

F IOVIYP IC ‘

OUTPUT CATEGORY OF THIS VARTABLE FOR THIS STATEMENT

F END##%

§® 06 e s

Figure 2:

A sample data deck for the Initialization Program,



12

for the fields comprising the nodes. Thus we see, for example, that
LINOST, IBLKST and ITYPST are integer fields of statement table nodes,
while ISNAME, ISNTYP, ISDATV and ISCOMN are integer fields of symbol

table nodes. Descriptions of some of these fields follow their definition
cards (a C in column 11 is used to indicate a following description

card). In addition notice that ISNTYP is specified to hold only integers
between 0 and 1000. A1l other integer fields have no bounds specified,
and thus will have no range checking. PCBLST 1is the only real valued
field specified. It is a field that is a member of the statement table
nodes and can take values between 0.0 and 1.0. ISDTYP is the only
specified alphanumeric field. It is a field that is a member of the symbol
table nodes.

The fields IIVHST, IOVHST, IEXHST, ISNDIM, ISEQUYV, and ISSTMT are
pointer fields. The first three belonging to statement table nodes, the
last three to symbol table nodes. As pointer fields, these fields will
contain pointers to nodes of linked 1ists. From the comment Tine
following IIVHST it can be seen that the author intended this field to
point to a node defined by the description of IIVNOD. This is merely a
comment. No explicit linkage is created by the system. The user has
the power and obligation to properly build linked lists and create
pointers to them.

In this case, the author has indicated that he will use IIVHST
fields to hold pointers to linked lists consisting of nodes of type IIVNOD.
Definition cards for the nodes of type IIVNOD as well as nodes of type
IOVYNOD are found after the description lines for the two sequential
lists. N's in column 1 indicate that IIVNOD and IOVNOD nodes will be
used to build 1inked lists. As with sequential node description lines,
each 1inked node description line is followed by a comment line

(optional) and field description lines for the fields of the node.



13

Finally, the data file is terminated by'thﬁ,ENfo* sentinel Tline.

The allocation of individual nodes, and accessing of specific fields
within the individual nodes are done by the user by means of a compre-
hensive 1ibrary of FORTRAN callable routines. These routines accept as
parameters the symbolic node and field names specified on the above
described data base initialization file. The initialization program
builds the tables needed to associate these names with actua] data base

‘area locations.

Specifically, the initialization program reads in the above described
file and produces 1) the data required to initialize tables and variables
in four labelled COMMON areas called NODETS, FIELDS, DBTABS, and ARPARS,
and 2) the actual card images of the labelled COMMON statements whose
variables and arrays are to be initialized. These are written onto the
two mass storage files referred to earlier.

The Tlabelled COMMON block_NODETS is a 1ist of simple variables
each of which is the name of a node type named in the input deck. The
initialization value of each such variable is merely the integer
indicating its order of appearance in the COMMON block 1ist.

The labelled COMMON block FIELDS is likewise a list of simple
variables, but each of these is the name of a field specified in the
input deck. These variables too are initialized to integers indicating
order of appearance.

Clearly, the process of creating and writing the FORTRAN 1ine
images declaring the labelled COMMON blocks FIELDS and NODETS is a
simple matter. The COMMON statements generated for the blecks FIELDS
and NODETS using thaAdata file shown in Figure 2 is shown in Figure 3.

Once ;hese,linewimage& are on the mass storage file, they must be punched



14

COMMQN/NODETS/ISTMTBg ISYMTB, IIVNOD, IOVNOD

COMMON/FIELDS/LINOST, IBLKST, ITYPST, IIVHST, IOVHST, PCBLST, IEXHST,

*ISNAME, ISDIYP, ISNTYP, ISNDIM, ISDATV, ISCOMN, ISEQUV, ISSTMT, IIVNDX,

" XLNKFD1, IIVIYP, IOVNDX, LNKFD2, 10VTYP

Figure 3

The COMMON statements declaring COMMON blocks NODETS and FIELDS written to

INCDAT after execution of the initialization program using the deck shown

in Figure 2 as input.



15

out and inserted manually into a userhs;program'decksg or written
directly into his program files either by a FORTRAN preprocessor or by
a system routine (such as INCLUDE under EXEC 8 on the UNIVAC 1108).

In any case, this is the mechanism by which 1list and field names, as
specified by the user in his specification file, become meaningful
variable names, usable from his FORTRAN code.

The initialization values of the variables in these two blocks,
are written to a binary file during this initialization run and then
set as values of the proper variables during the execution of a startup
subroutine which must be invoked before the user attempts to use any of
the routines in the data accessing library.

The labelled COMMON blocks DBTABS and ARPARS contain the variables
and arrays which are used to associate field and node names with the
corresponding offset positions in data base areas. These arrays and
variables are also used to check the correctness of access requests.
The statements declaring these COMMON blocks are created by the
initialization program and written out to the mass storage file of
symbolic 1line images. They are later incorporated into the source
text of the routines of the data accessing library by the preprocessor
or INCLUDE facility. The values of the variables in these COMMON
blocks~are also created here. They are written to the binary mass
storage file by this program and read from the file into the corresponding
variables during execution of the startup subroutine mentioned above.

A complete description of the tables and variables contained in
DBTABS and ARPARS can be found in [2], along with detailed descriptions
of hOW'they'are created by the initia]ization program and used by the
routines of the data accessing library.

In an effort to use storage efficiently the system allows for the



16

creation of fields. of two diffgrgnt sizgs¥~~xfu11‘WQrd.and part word.

In the current implementatiqn pointer fields occupy a part word, while
alphanumeric fields, real fields, and integer fields without range
checking’0ccupy‘fu11‘words.‘ In the case of integer fields with range
checking specified, a computation is made to determine the most appro-
priate field size. Two {mp1ementation parameters which must be supplied
through a BLOCK DATA subprogram enable the initialization program to
make this determination. These parameters are NUMBTS, the word size of
the machine in bits, and NPWPFW, the number of part word fields which
are to be placed into a full word for this implementation. Using these
two parameters the maximum integer size accommodated by a part word field
is easily determined. Then, if an integer field has range checking
specified and the Tndicated range of integers can be accommodated by a
part word field, the system allocates only a part word field for 1it.

It is worthwhile to note in closing here that the initialization
program also prints out a summary of its activities. A1l node type
names which have been declared are printed out. The fields comprising
each node type are also named and described with respect to data type,
range, and location within their node.

Any descriptive comments inserted by the user in his input deck
are printed out next to the items he wished to have described. The
total numbers of sequential node types, linked node types, and fields
are listed in a summary table which also lists the sizes in number of
words and number of fields for all nodes. Finally the program produces
dumps of both the symbolic and binary mass storage files. In this way

the system helps in the creation of documentation for the user's programs.



17

An Example of the Use of the Data Accessing Library

As mentioned befora; it was decided that a body of powerful, high-
level data base manipulation routines would not be built. Instead a
comprehensive library of low level routines was created. These routines
perform such tasks as seizing and initializing new nodes for the various
1ists, entering and retrieving data into and from specified fields,
and searching Tists for prespecified data items. It is expected that
higher level subroutines will easily be constructed from these lower
level routines in response to future needs. The names of the routines
comprising this data accessing library are listed in Appendix A along
with their calling sequences and brief descriptions of what they do.

As an example of the operation of the data base system, Figure 4
shows a sequence of FORTRAN code which operates on a data base area
created according to the specifications in Figure 2. Figures 5a, 5b
and 5c show an example of how the code in Figure 4 is used to transform
an existing data base area. As noted in the comments for subroutine
ENTIVS, the code creates a statement table node and a linked 1ist of the
input variables to the statement. Specifically, in Figure 5¢ we see

that 1) the Lt

node of table ISTMTB is created and added to ISTMTB,

2) a statement type code of 15 (as dictated by the input data) is

inserted into it, and finally, 3) an input variable 1ist of four nodes is
created in the Tinked area and appended to the new ISTMTB node, indicating
that the symbols entered into ISYMTB as items 6, 4, 2, and 1 respectively
are inputs to statement L. It should be noted that ENTIVS uses six
separate routines (NXTPOS, PUTTBL, ITBSCH, NEWNOD, PUTLST, and ADLSTT)

in the data base accessing library to perform these operations.



18

SUBROUTINE ENTIVS(NTP, NIVARS, IVCODS, IAREA)

C THIS SUBROUTINE CREATES A STATEMENT NODE FOR A NEW STATEMENT
C 1IN THE DATA BASE AREA IAREA. IT
€ SETS THE TYPE FIELD OF THE NODE TO NTP, 1T THEN
C SEIZES AN INPUT VARTABLE NODE FOR EACH TNPUT VARIABLE
C 1IN THE STATEMENT. THE NUMBER OF SUCH VARIABLES IS
C PASSED AS THE VALUE OF NIVARS, AND REPRESENTATIONS OF
C THE VARIABLE NAMES ARE PASSED AS INTEGERS TN THE ARRAY
C IVCODS. THE INPUT VARIABLE NODES ARE SET To CONTAIN
C THE LOCATIONS IN THE SYMBOL TABLE OF THE APPROPRIATE
C SYMBOLS AND ARE LINKED ONTO THE LIST OF INPUT SYMBOLS
C FOR THIS STATEMENT. THIS LIST IS LINKED OUT OF THE IIVHST
C FIELD OF THE NEW STATEMENT NODE,

COMMON/NODETS /ISTMIB, ISYMTB, IIVNOD, IOVNOD

COMMON/FIELDS /LINOST, IBLKST, ITYPST, IIVHST, IOVHST, PCBLST, IEXHST, ~

*ISNAME, ISDTYP, ISNTYP, ISNDIM ISDATV, IScomy, 1SEQUV, Isstmr, IIVNDX,

*LNKFD1, IIVIYP, IOVNDX, LNKFD2, IOVTYP

DIMENSION IAREA(1), IVCODS (1)
C SEIZE A NEW STATEMENT TABLE NODE--ITS NUMBER IS L

L = NXTPOS(ISTMIB, IAREA)
C INSERT TYPE CODE

CALL PUTTBL(NTP, ITYPST, L, ISTMTB, IAREA)

N =1
€ LOOP FOR ADDING INPUT VARIABLES ONE AT A TIME

10 IF(N.GT. NIVARS) RETURN



C TIND LOCATION IN ISYMIB OF SYMBOL REPRESENTED BY
C IVCODS(N). IF NOT FOUND PRINT ERROR MESSAGE
ISYLOC = ITBSCH(IVCODS(N), ISNAME, ISYMTB, IAREA)
IF(ISYLOC,NE.0)GOT030
WRITE(6,20) TVCODS (N)
20  FORMAT(15H ERROR-~SYMBOL , 110, 13H NOT IN TABLE)
GOTO 40
C SEIZE NEW LINKED NODE, LOAD SYMBOL REPRESENTATTON
C INTO IT AND LINK IT INTO INPUT VARTABLE LIST
30 Loc = NEWNOD (IIVNOD, IAREA)
CALL PUTLST(ISYLOC, IIVNDX, IIVNOD, LOC, IAREA)
CALL ADLSTT(IIVHST, L, ISTMIB, LNKFD1, IIVNOD, LOC, IARFA)
40 N=N+1
GOTO 10

END

Figure 4

A subroutine using data base manipulation routines.

}93



20

SO i

, ODS f
NTP: f 15 | TVeops 7732 |
~7
4165
NIVARS: | 4 8926 |
1239
Figure 52! Sample input to the routine shown in Figure 4.
: prefix
: 4
[ ISTMTB - allocated nodes
L {
} ISIMTB - unallocated nodes
E

1 {1« 1239
!"

2 1 8926 ] 1
.n( g
gy 7714 ] !

T ~ISYMTB - allocated nodes

LSNAME 2 (s ;
fields ™~ i : {

..

53507 ]
\ )(

7 ISYMTB -~ unallocated nodes

i Linked
| list
area

Figure 5b: A portion of data base area IAREA before execution of the
subroutine shown in Figure 4.



i
I
";“m..«m - \’/"“("“—/ - ™, {"'-»».,_J

S ey ot

TAREA T -
Prefix
ITYPST field
§ :"'"‘”““"““‘“’T“
N 15
IIVHST field — T L5 |
- ./L; b TR
1 112239
, 118926 ]
3 7714 T
4 {4165 l
5 { 3407 ]
| 6 {7732 |
|
|
|
i
i
\
\,\, A
7 N
e 2
2T
Z/‘ 2. “ A
IIVNDX fieldSAQEi:“Mw__~> P!
~J ) T
-
|

Figure f¢:

A portion of data base IAR

subroutine shown in Fi

Figure 5a.

ISTMTB

ISTMTB

21

allocated nodesg

!

unallocated nodes

i

ISYMTB - allocated nodes

ISYMIB - unallocated nodes

Linked 1list area

LNKFD1 fields

EA after execution of the
gure 4 using the data shown 1in



22

The,wgrgingswof these:and most of the other datafacceSSing routines are
described briefly in appendix A and in detail in [2].

A brief description of the handling of linked 1lists seems in
order here. A linked list or treelike structure consisting of virtually
any configuration of 1inked nodes could readily be constructed by using
just the Tow level node creation and field accessing routines of the data
accessing library. It was felt, however, that the linked 1ist structure
most often created would be a 1ist consisting entirely of nodes of the
same type. For this reason a set of routines designed to create, augment,
and search such lists was built and imbedded in the library (ADLSTT 1is a
member of this set) as a convenience for the user.

The Tinked 1lists that are created and maintained by these routines
are circularly linked. The 1ist header, which must be a
pointer field in a sequential or 1inked node, points to the last node on
the Tist. The last node points to the first node on the list, which in
turn points to the second node on the list and so forth. This structure
was selected because it facilitates the accessing and addition of nodes

at either end of the list.



23

Error Detection

In designing the data base system heavy emphasis was put on detecting
user errors. The general philosophy employed was to alloW'the user to
obtain as much error feedback as possible, as soon as possible, in order
to help him avoid cascading errors. It was felt that checking for a
wide variety of possible error conditions would greatly simplify the
process of debugging a program, and also help to acquaint a new user
with the data base system itself.

In placing error checking code throughout the system we attempted
to anticipate a wide range of possible errors. For example, argument
checking is done for virtually all data accessing routines. Such routines
invariably expect as arguments a field name, node type name, individual
node specification and data base area vector. The checking routines
attempt to verify that the vector passed is in fact a data base area.
They verify whether or not the individual node specification actually
specifies a node which has previously been allocated (this is possible
because all such allocations must be done by means of system routines).
They verify whether the type of the node (linked or sequential) to be
accessed agrees with the type of the access routine invoked (the
routines used to access linked nodes are different from those used to
access sequential nodes). They also verify that the field name passed
is actually a field of the node whose name has been passed. Other
types of error checking are also present.

Bounds checking is performed. In general, before any routines
in the data accessing library attempt to access an individual word
in the data base area, the address of the word is examined to verify

that the word actually lies within the data base area. In addition,



24

it is possible to determine whether the word to be accessed should
lie in either the sequential area or the linked area. In such cases
a check is made to determine whether the computed address is in the
correct part of the data base area. In addition, the whole concept
of data item range checking is designed to provide the user with an
early warning that the values he is creating and storing do not conform
to his prestated estimates. Thus the range checking feature is very
much in keeping with our objective of comprehensive error detection.
Clearly, it is our feeling that references to subscripts that are
out of array bounds are a major source of FORTRAN errors. 1In a
linked structure, moreover, such references can be most easily made
and particularly disastrous. In order to protect the user from this
kind of error and to encourage the user to allow the system to do
pointer manipulation, all pointer values are flagged with a readily
distinguishable bit configuration by the system making it possible to
examine an arbitrary value for the presence of pointer flag bits. The
implementor must define in a block data subprogram a COMMON variable
which contains this pointer bit configuration. Those routines in the
data accessing library which require pointers as arguments examine
the values passed to them to verify that values which should be pointers
are in fact pointers.
In a similar vein, the system also recognizes a special empty bit -
~ configuration. It is often useful to be able to determine whether a
particular field has been initialized with a value or not. For this
reason, all nodes, during their initial allocation, have all of their
fields set to empty by the allocation routines. Because the system
recognizes both full word fields and part word fields, there are two

different empty bit configurations -- full word empty and part word



25

empty. (Both must be defined by the implementor by means of COMMON
variables in a BLOCK DATA subprogram.) Because an attempt to read an
empty field out of a data base is often symptomatic of an error, the
system prints out a warning message whenever a user attempts to do so.

In designing the error handling mechanisms for the system, a
careful attempt was made at producing meaningful error output. Thus,
most error messages are accompanied by 1lists of pertinent parameters.
In addition, in the case of erroneous field references, the actual
names of the offending node types and fields are printed. The node
type and field references are passed to the checking routines as
integer values, derived from the variables in the COMMON blocks FIELDS
and NODETS. These values would be of little meaning to the user, however.
Hence they are used as indices into arrays containing the alphanumeric
representation of the node type and field names, which are presumably
more meaningful. It is these alphanumeric names that are printed out
for the user by the error checking routines.:

It is felt that these error checking faci]ities provide the
user with tools for detecting a wide range of errors at their source.
This is a powerful tool in being able to rapidly and accurately isolate
faulty usage of the data base system. Checking, however, can be costly
in execution time when employed in a well tested, operational program.
Therefore, all data accessing routines give the user the option of
either selecting or suppressing checking. A COMMON logical variable
determines whether checking is done. The value of this variable can
be changed within a program, thereby allowing the.user to contro] the
segments. of his code that are to be tested.

This two level (all or none) approach to checking seems to be

a desirable feature, but it should be pointed out that additional



26

1eyels;wpu1d‘enhancg;;he,axstgmks,flexibiliﬁyu qu examp]e it would
probab]y“ﬁéyuseful to have an optional 1eyel of error checking solely
for detecting "empty" ffe]d'retrieva]s:' The 9emptyf bit configuration
discussed earlier enables us to make this test. Often; the retrieval
of such "empty" fields is quite reasonable and is not indicative of an
error. In such cases the user probably does not want to have a warning
message generated. Under the current implementation he can suppress
the warning only by suppressing all error checking -- an unreasonably
harsh alternative. Under a multilevel ervor detection scheme, this
type of error checking could be selectively enabled and disabled

independently of other error checking.



27

Interprogram Communication of Data Base Areas

The purpose of creating a data'base:iS'to store an existing body
of data for future reference. The.data base accessing system described
so far will readily allow a program to reference a data base which
has been created during the execution of that program. Often, however,
it is useful for a program to be able to reference a data base which
has been set up during the execution of a previous program. If the
data base is central memory resident, the usual procedure is to have
the first program generate the data base and write it out to a mass
storage device such as a disk,or tape, and then have the second program
begin its execution by reading in the data base from mass storage.

The second program is then subsequently able to access the data base.

We have created a pair of routines, ROLLIN and ROLOUT, for storing
and recalling central memory resident data bases as described above.
Such routines are easy to write assuming that the data base description
has not been changed between the execution of the run which creates and
stores the data base and the execution of the run which recalls and
uses the data base. In particular, the first program must call ROLOUT,
naming as parameters the data base area to be saved and the mass
storage file on which to save the data base. ROLOUT then writes out
the total number of words in the data base area, followed by the entire
data base area, using a binary write. (Note that the total size of the
data base is readily available, being stored in the prefix.)

The second program can then recall the data base area by a call
to ROLLIN. A description of ROLLIN and its parameters can be found
in Appendix A. ROLLIN must read in the‘first'word of the mass storage
file holding the data base and use it as a count of the number of

succeeding words to be read in to restore the data base. Assuming



28

the data base‘description has not changed between the two runs, the
data base can now be accessed as described in the earlier parts of
this paper. If the data base description has been altered in the
interim, however, the ROLOUT/ROLLIN scheme described above will not
work. In general, the node type and field description vectors in
DBTABS will have changed between the ROLOUT and ROLLIN. Relative
locations of fields within nodes will have ehanged, and the use of
new accessing vectors on old data base areas will result in disaster.

This problem is very real and important for this system because
an overriding design goal was to allow for flexibility and ease of
alteration of the data base description. Thus it is ordinarily ex-
pected that modifications to the data base description might be made
fairly regularly. It is not unreasonablie, however, to envision the
following situation. A data base is created at sizeable cost. ‘It
retains its validity throughout a series of relatively minor data base
description modifications, and it still is required by a particular
program over a period of several weeks or months during which the data
base format is changing. It may be costly to regenerate the data base
anew in accordance with each new data base description. It is far
preferable to create a more sophisticated ROLOUT/ROLLIN package which
automatically detects alterations in data base formats and rolls in
an old data base in the current format so that it can be used imme-
diately with current accessing vectors.

Under such a scheme a user need never even know that the data base
description has changed (unless of course, fields or node types which
his program references have been deleted). He simply rolls in the
data base and references node types and fields via the symbolic names

which he has always used. This section describes such an adaptive,



29

dynam1ca11y reformatt1ng ROLOUT/ROLLLN package

The ROLOUT algorithm is far more simple than the ROLLIN a]gor1thm.
In order to save a data base area ROLOUT copies out the data base as -
well as the data base description (access information) onto the mass
storage file.

The more difficult aspects of storing a data base arise upon
trying to ROLLIN the data base. ROLLIN has been organized into six
major subroutines: READIN, COMPAR, GARBGE, ADJPTR, CPYOUT, and
COPYIN. Figure 6 is a diagram of the flow of control through the
routines of the ROLLIN process.

The first routine, READIN,*beginS'by reading in the stored data
base and the old accessing vectors from the designated mass storage file.
At this point, the routine detects if there has been a change in data
base description by comparing the old vectors with the current vectors,
previously initialized by the usual data base routine for reading the
vectors off of their mass storage file. If there have been no changes
in the description, then the rest of the routines are skipped and
ROLLIN returns. It is possible for the user to force execution of
these routines, however, in order to obtain certain desirable side
effects of the reformatting process. These side effects will be
discussed at a later point in this section.

The second phase of the ROLLIN process involves comparing the
descriptions of the two (presumably different) data bases to decide
what data must be transferred into the new data base. The routine that
does this comparison is named COMPAR. When COMPAR is called to compare
the descriptions of the.data bases, it checks to find which node type
and field names are found in both descriptions. For these node types
and fields, COMPAR forms a mapping function from one description into

the other description.



GARBGE

ADJPTR

MOVPTR

N

N\

CPYOUT

|

COPYIN

Figure ¢g- Diagram representing the flow

of control through the
routines of the ROLLIN process

-

30



31

TheAthird routine of ROLLIN 1is called GARBGE. To make sure that
the new data base will have 0n1y‘the nodes desired, some nodes may
be eliminated from the data base. A basic assumption of the data
base system is that all meaningful information in the linked area is
accessible from some pointer field in a sequential list or some chain
of pointers originating in a pointer field of a sequential Tist.

To find these points GARBGE steps through the sequentia] lists that
transfer into the new data base and inspects within every such se-
quential 1ist, every pointer field that transfers. If a pointer
field is found to be non-empty, then the pointer is to be followed
into the linked area. To follow the pointer, GARBGE calls the routine
MARKND .

MARKND is an adaptation of a classical garbage collection marking
scheme (see Knuth [1] for a thorough treatment of garbage collection
marking algorithms). Upon reaching a linked node, MARKND examines the
destination address field and the visited field to determine whether
the node has already been reached during execution of GARBGE. If
so, one of the fields will have been set to a nonzero value, and MARKND
does nothing further with the node. If not, MARKND examines the node
to determine whether the type of the node is named in the new data
base description. If not, a "visited" mark is placed in the node and
nothing further is done with this node. If so, then the destination
address field of the node is loaded with a destination address. This
is the offset within the new data base area at which the node will
eventually be loaded. This offset is determined while GARBGE is -
executing in the following way. During an initialization phase of
GARBGE an offset pointer is initialized tO»the last location in the

new data base area (this must be an input parameter to ROLLIN).



32

Whenever MARKND encounters.a node which belongs in the.newidata

base area, the node's size is determined and the,StartTng address -

of the node is determined by subtracting the size from the current
offset pointer value. The result is placed into the destination
address field of the node. The offset pointer is then updated to this
value.

Having thus processed the current node, MARKND then proceeds to
mark all nodes reachable from it via pointer fields in the node. A1l
but one of these pointers are pushed on a stack, and MARKND processes
the other exactly as described above. When a node and all of its
successors have been completely processed, MARKND pops a new node off
of its stack and continues. Eventually the stack becomes empty, and
MARKND returns to GARBGE, having marked all linked nodes reachable
directly or indirectly through the pointer field 0rigina11y passed
by GARBGE. When GARBGE has fnvoked MARKND for all pointers from the
sequential area into the Tinked area, then all nodes accessible in the
new data base will have an address in their destination address field.
If the destination address field of a linked node does not have an
address, then that Tinked node need not be transferred into the new
data base.

When GARBGE has completed marking nodes with their forwarding
addresses, the ADJPTR routine is entered. ADJPTR changes all pointer
fields to point to node locations within the new data base. ADJPTR
steps through the sequential Tlists looking for pointers. When a
pointer is found, the pointer field is adjusted to point to the address
contained in the destination address field of the node pointed to,
provided that the field contains an address. If the field does not

contain an address, then the node does not transfer into the new data



33

base and so'tha‘pointgr fig]d:is_sgﬁ to igmpﬁxf. Once,thg‘sgqyential
pointer isyadjusied, then a]]‘poin;ers;withjn\1inkad'nodes reachable
from the sequential pointer must be changed. ADJPTR calls MOVPTR to
change‘these"pointers. MOVPTR wnrks much‘like.MARKND; stacking,
unstacking, and resetting pointers. If a node has been eliminated,
then all pointers to the node are set to fempty" and the pointers from
the node are not followed. The mark and destination address fields are
used to insure that a node is not visited twice.

When all of thevpointers to 1inked nodes have been adjusted, all
that remains is to move the nodes into their new locations. We have
devised inplace algorithms for doing this, but all are awkward and
inefficient. Hence in order to move the nodes to their new Tocations,
we write the nodes that transfer to the new data base onto an auxiliary
mass storage file and then read them back in at their new address
Tocations. The routines to do this copying are called CPYOUT and
COPYIN. CPYOUT copies the sequential lists that transfer and then
steps through the Tinked area copying out only the linked nodes that
are marked with a destination address. COPYIN does the complicated
job of reading the nodes back in and transforming the old nodes into
the new nodes. By using the tables generated by COMPAR, as well as
both the old and new data base accessing vectors, COPYIN can transform
the nodes. To transform a node, COPYIN must extract data items from
the old nodes, insert them into the new nodes in the proper offset
fields in the nodes to "empty", and reset the mark and destination

address fields of all linked nodes to zero.



34

It is worthwhile to noteyhere.that it iswpossible for the
description of fempty" or the pointer flag to change between the time
data base was rolled out and the time it is rolled in again. If
either has changed, then COMPAR makes note of the fact and CPYOUT/COPYIN
recognizes the old empty or pointer flag in the old data base, while
writing the new empty or pofnter flag into the new data base.

As alluded to earlier, some_interesting side effects of the ROLOUT/
ROLLIN proceSS'may‘make.the,use'of all the phases of ROLLIN desirable.
For example, ROLLIN eliminates any linked nodes not pointed to directly
or indirectly’from the.sequential tables in much the same way that a
garbage collection would, thereby making more room for new data
aggregates. Another advantage of the complete ROLLIN operation is that
it tends to localize 1inked 1lists into a smaller address space. This
localization becomes a distinct advantage when the data base is accessed
through a paging scheme, because all of the linked list nodes comprising
a given Tist will be stored closer together after ROLLIN. Hence the
Tist will cross fewer page boundaries. Thus accessing an entire linked
list should involve fewer page faults. To allow a user to obtain these
desirable side effects even though there has been no change in the data
base description, a logical parameter was included in the call to ROLLIN.
If the parameter is .TRUE. then the full six steps of ROLLIN will be
taken regardless of whether or not the data base description has changed

between ROLOUT and ROLLIN.



- 35

Conclusions

This system is embodied in a collection of approkimate]y 75
FORTRAN program unitS‘consisting of approximately“4000 source state-
ments. Approximately'TO'man-montbs\of effort were required for the
design, coding, checkout and documentation of the system. The sygtem
has been in operation for approximately 18 months on the CDC 6400 at
the University of Colorado and it has been heavily used for nearly
12 months by the FORTRAN program va]idation project at the University
of Colorado, which provided the original impetus for its creation.
During this time the system has been successfully transported to a
similar machine (the CDC 7600) operating under a different operating
system.

This experience provides an.interestfng case history which we
believe indicates that the system has successfully met its design
goals. The FORTRAN validation project has to date produced in excess
of 20,000 FORTRAN source statements comprising a system which analyzes
FORTRAN programs. At the outset the project investigators were unsure
about the nature of the analytic procedures which would be desirable
in validating programs. Hence tentative decisions were made about
the design of these procedures and the nature and organization of the
data which they would require. As the project progressed the structure
and quantity of the needed data was expected to change often. Thus
a list structured data base was set up using the data base system
described here. The tentative data aggregates were defined by means
of an initialization run, and programs accessing the data aggregates
thereby defined were immediately produced. The;eXpectation of the

project investigators was that these programs would never have to be



36

altered because of changes;in.the‘structure-of the data aggregates.

As time progressed and such changes to data aggregate organization

were made, this expectation was borne out. Data‘aggregate organization
was altered frequently, sometimes drastically, without any necessity
for reprogramming due to these changes. As a result the investigators
were able to concentrate on the design of their validation system,

free of worry about possible reprogramming due to changing requirements
for data items and organizations.

The error detection capabilities of the system proved useful,
consistently allowing programmers to pinpoint errors close to their
source. The ROLLIN/ROLOUT capability also proved useful, but in a
somewhat unexpected way. After several months,‘work was begun on a
new analytic system requiring only some of the data needed and created
by‘the old va]idatfon system and requiring the derivation of certain
new data aggregates. After the creation of a new, paraliel data base
description for this new project it became possible to use the ROLLIN/
ROLOUT routines to transform data bases created by the original analytic
system into data bases usable by the new system. In this way, the
high cost of recreating the data bases was traded off for the lesser
cost of simply reformatting them. Hence it proved feasible and useful
to create a given data base once and have it shared, through reformatting,
by two different analytic systems.

A]thqugh the.data base system has proven to give the desired
flexibility, certain drawbacks have become apparent. The inefficiencies
in time,and storage, expected in a system such as this, have definitely
been noticed. Tha;data base system makes only a perfunctory attempt
at,packing data items into words efficiently, -thereby reducing the
effective size of data bases. In addition, each data access must be

made through a long chain of subprogram invocations at high cost in



37

execution speed. (Execution time can bevspeeded up somewhat, however,
by suppressing most‘diagnostic‘checks as described above).

Any change in a data base description generally entails the
recompilation of all subprograms which refer to the data base, invariably
an expensive process.

In addition, a program which makes heavy use of the data base
system inevitably takes on an unreadable, un-FORTRAN-1ike appearance,
due to the profusion of subprogram invocations. There appears to be no
alternative to this heavy use of subprograms which does not involve an
extensive preprocessing scheme or extensions to the FORTRAN language
itself. Both schemes were rejected by our group as entailing more
effort and allowing less flexibility than the scheme described here.

It is worth observing that part of the unreadability of the programs
using our system, however, is attributab]e to the ANSI FORTRAN
]imitation on variable and subprogram names to six or fewer characters.
We believe that by allowing longer names, the readability of these
programs, and indeed all FORTRAN programs could be greatly enhanced.
Carrying this last point to its logical conclusion, it seem clear that
FORTRAN 1is basically not a very suitable language at all for producing
systems which must deal with complex or changeable data aggregates.
Non-trivial data aggregates are not provided for adequately in ANSI
FORTRAN, thus any attempt at providing for them seems destined to
appear artificial and contrived. Many newer languages (e.g., PL/I and
PASCAL) provide more adequate data aggregate capabilities. Unfortunately,
at present these languages are less well-established than FORTRAN and
programs written in them are far less portab]e; Hence the system
designer 1is faced with a choice between probable loss of portability

and probable Toss of clarity and esthetic appeal. Often, as in the



38

case Qf thg.validaticn prqject, the‘negd fqr portahi]ity must‘prevail.

Having weighed the various factors, we have concluded that the
above cited weaknesses clearly reduce the usefulness of our system in
producing production programs, but do not outweigh its advantages in
building prototypes. Loss of efficiency, relative opacity of source
code and frequent recompilations are:the,usua] prices one pays in any
large software development effort; The program validation group was
not spared these costs by using the data base system. They were spared
worries about description of plans and schedules due to changes in
data organization. In addition, because the data base system is FORTRAN
based and highly portable, the prototype which uses it also has good
portability characteristics.

In summary, we believe that this case history gives a good indi-
cation that the data base system is a valuable tool for use in con-
structing prototype systems where the use of FORTRAN is dictated by

other considerations, such as portability.



39

REFERENCES

1. D. E. Knuth, "The Art of Computer Programming", VQ 1, Fundamental
Algorithms, Addison Wesley, Reading, Mass., 1969.

2. L. Osterweil, L. Clarke and D. W. Smith, "A FORTRAN System for
Flexible Creation and Accessing of Data Bases". Department of
Computer Science, University of Colorado, Report #CU-CS-052-74,
August 1974.



40

Appendix A

List of Subprograms in the Data Accessing Library

User level data accessing routines

ADLSTL(IFIELD,NDTYPH,LOCH,LNKFLD,NODTYP,LOC,IAREA)
ADLSTL is a subroutine that adds a node to the end of a linked
1ist. The list header is contained in a field of a linked 1ist node.

The 1lists maintained by this routine are circularly Tlinked.

ADLSTT(IFIELD,NUMBER,ITABLE,LNKFLD,NODTYP,LOC,IAREA)
ADLSTT 1is a subroutine that adds a node to the end of a Tinked

list. The 1ist header is contained in a field of a sequential list

node. The Tists maintained by this routine are circularly linked.

CPLIST(LNKFLD,NODTYP,LOC,IAREA,IBUF, IBUFSZ)
CPLIST is a subroutine that copies a circularly linked Tinear
list in a data base array into a sequential Tlist in a linear array.

The 1ist can then be accessed by the sequential Tist accessing routines.

INITDB(IAREA,IASIZE)
INITDB is a subroutine that initializes an array as a data base.
Before an array can be used as a data base this subroutine must be

called.

INITRN(INPFIL)
INITRN is a subroutine to initialize the common blocks used in
the data base routines. This subroutine must be called before any

data base routines are executed.



47

ISMPTY (IWORD,IFIELD)
ISMPTY is a logical function that returns the value true if
IWORD is flagged as an empty field and returns the value false other-

wise. This is a machine dependent routine.

ITBSCH(INFQ,IFIELD,ITABLE,IAREA)

ITBSCH is a function that searches a designated field of every
node of a sequential 1ist to determine if a designated data item is
present. ITBSCH returns as its value the sequence number of the first
node to contain the data in the specified field. If the data is not

found ITBSCH returns a value of zero.

ITMLST(IFIELD,NODTYP,LOC,IAREA)
ITMLST is a function that returns as its value the contents of a
field of a linked 1ist node. There exists a corresponding real valued

function XTMLST for fields that contain floating point values.

ITMTBL(IFIELD,NUMBER,ITABLE,IAREA)
ITMTBL is a function that returns as its value the contents of a
field of a sequential 1ist node. There exists a corresponding real

valued function XTMTBL for fields that contain floating point values.

LSTPOS(ITABLE,IAREA)
LSTPOS is a function that returns as its value the sequence

number of the Tast node allocated to a sequential list.

LSTSCH({INFO,IFIELD,NODTYP,LOC,LNKFLD,IAREA)
LSTSCH is a function that searches a designated field of every node

of a linked list to determine if a designated data item is present.



42

LSTSCH returns as its value a pointer to the first node on the 1ist to
contain the data in the specified field. If the data is not found in
the Tinked 1i$t nodes then LSTSCH returns a value of zero. LSTSCH

requires that the“deéighated Tinked 1ist be circularly linked.

MKLSTL(IFIELD,NDTYPH,LOCH,LNKFLD,NODTYP,IAREA, IBUF)

MKLSTL is a subroutine that copies and transforms a sequential
1ist stored in a linear array into a linked 1ist stored:in a data base
array. The:1list header is in a field inﬂa linked Tist node. If the header
already points to a linked 1ist consisting of nodes of the same type

as the list to be created then the old list is overwritten.

MKLSTT(IFIELD,NUMBER, ITABLE,LNKFLD,NODTYP,IAREA, IBUF)

MKLSTT is a subroutine that copies and transforms a sequential 1ist
stored in a linear array into-a linked 1ist stored in a data base array.
The 1ist header is in a field in a sequential 1ist. If the header
already points to a linked 1list consisting of nodes of the same type

as the list to be created then the old list is overwritten.

MTYLST(IFIELD,NODTYP,LOC,IAREA)
MTYLST is a subroutine that flags a field of a linked Tist
node as empty. Note that system routines flag all fields of a

newly allocated node as empty.

MTYTBL (IFIELD,NUMBER,ITABLE, IAREA)
MTYTBL is a subroutine that flags a field of a sequential list
node as empty. Note that the system routines flag all fields of a

newly allocated node as empty.



43

NEWNOD (NODTYP, IAREA)
NEWNOD is.a function that allocates a linked 1ist node from the
free 1ist and returns as its value a pointer to-the allocated node.

NEWNOD sets all fields of the node to empty.

NXTPOS(ITABLE,IAREA)
NXTPOS is a function that allocates a new node to a sequential
Tist. NXTPOS returns as its value the sequence number of the new node.

NXTPOS sets all fields of the node to empty.

PUTLST(INFO,IFIELD,NODTYP,LOC,IAREA)

PUTLST is a subroutine that enters data into a field of a
Tinked 1ist node. This subroutine enters only data of type integer.
There exists a corresponding subroutine XPTLST to enter floating point

data.

PUTTBL(INFO,IFIELD,NUMBER,ITABLE,IAREA)

PUTTBL 1is a subrouttne that enters data into a field of a
sequential 1ist node. This subroutine enters only data of type integer.
There exists a corresponding subroutine XPTTBL to enter f]oating point

data.

ROLLIN(IAREA,IASIZE,IFLNM, IAUX,IGCFLG)

ROLLIN is a subroutine that reads in a data base array and node
and field descriptions from a file. If the current node and field
descriptions have been modified, the data base is transformed into
the current data base format. Garbage collection occurs whenever the

data base must be transformed or upon request.



44

ROLOUT (IAREA, IFLNM)
ROLOUT is a subroutine that writes an entire data base array

and node and field description onto secondary storage for later use.

STLIST(NODTYP,IBUF,IBUFSZ)
STLIST is a subroutine that initializes a Tinear array so.that a
linked-1ist may be created and accessed as a sequential list within the

vector.

TOPLSL(IFIELD,NDTYPH,LOCH,LNKFLD,NODTYP;LOC,IAREA)
TOPLSL is a subroutine that adds a node to the front of a linked
list. The list header is contained in a field of a linked 1ist node.

The lists maintained by this routine are circularly Tinked.

TOPLST(IFIELD,NUMBER,ITABLE,LNKFLD,NODTYP,LOC,IAREA)
TOPLST is a subroutine that adds a node to the front of a linked
1ist. The list header is contained in a field of a sequential Tist.

The lists maintained by this routine are circularly Tinked.

XPTLST(XINFO,IFIELD,NODTYP,LOC, IAREA)
XPTLST is a subroutine that enters a real data item into a field
of a linked 1ist nade. The corresponding subroutine for integer data

is PUTLST.

XPTTBL(XINFO,IFIELD,NUMBER, ITABLE, IAREA)
XPTTBL is a subroutine that enters a real data item into a field
of a sequential list node. The corresponding subroutine for integer

data is PUTTBL.



45

XTMLST(IFIELD,NODTYP,LOC,IAREA)
XTMLST is a function that returns as its value the contents of
a real valued field on a linked list node. The corresponding function

for integer fields is ITMLST.

XTMTBL (IFIELD,NUMBER, ITABLE,IAREA)
XTMTBL is a function that returns as its value the contents of a
real valued field on a sequential 1ist node. The corresponding function

for integers is ITMLST.



LIST OF FIGURES

Figure 1: Data Base Area Storage Layout .
Figure 2: A Sample Data Deck for the Initialization Program.
Figure 3: The COMMON Statements Declaring COMMON blocks NODETS

and FIELDS Written to INCDAT After Execution of the
Initialization Program Using the Deck Shown in Figure 2

as Input.
Figure 4: A Subroutine Using Data Base Manipulation Routines.
Figure ba: Sample Input to the Routine Shown in Figure 4.

Figure 5b: A Portion of Data Base Area IAREA Before Execution of
the Subroutine Shown in Figure 4.

Figure 5c: A Portion of Data Base IAREA After Execution of the
Subroutine Shown in Figure 4 using the Data Shown in
Figure 5a.

Figure 6: Diagram Representing the Flow of Control Through the
Routines of the ROLLIN Process.



