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Node label controlled (NLC) grammars are graph grammars (operating on node
labeled undirected graphs) which rewrite single nodes only and establish connec-
tions between the embedded graph and the neighbors of the rewritten node on the
basis of the labels of the involved nodes only. They define (possibly infinite)
languages of undirected node labeled graphs (or, if we just omit the labels,
languages of unlabeled graphs). Boundary NLC (BNLC) grammars are NLC grammars
with the property that whenever - in a graph already generated - two nodes may be
rewritten, then these nodes are not adjacent. The graph languages generated by
this type of grammars are called BNLC languages.

In this paper we investigate the behaviour of graph invariants within BNLC
languages. First we demonstrate that there is a dependency between the chromatic
number and the clique number of graphs in BNLC langugages (while this is well-
known not to be true for arbitrary graph languages). Secondly, we introduce a
new graph invariant, the so-called index of a graph which seems to be very suit-
able for describing the adjacency structure of a graph. Then we prove that every
BNLC language is of bounded index (which is shown not to be true for arbitrary
graph languages). Thus we exhibit properties (concerning graph invariants) of
BNLC languages which are intrinsic to this class. We use them to demonstrate that

certain graph languages are not BNLC languages.



INTRODUCTION

Node Tabel controlled (NLC) grammars are graph grammars operating on node
labeled undirected graphs. A production in an NLC grammar is a pair (d,Y), where
d is a label and Y is a graph. Such a production is applicable to a node x in a
graph X if and only if x is labeled by d. The rewriting process consists of (i)
deleting x in X (together with incident edges), (ii) adding Y disjointly to the
remainder of X and (iii) establishing connections between nodes in Y and ("for-
mer") neighbors of x in the remainder of X. This embédding is controlled by a
so-called connection function conn which maps labels to sets of labels. More
specifically, a neighbor z (of x) labeled by a is connected to a node y (of Y)
labeled by b if and on]y<if a € conn(b). The graph 1angua§e generated by an
NLC grammar consists of the set of all graphs such that (i) they can be obtained
from the axiom (graph) Zax of the grammar by a sequence of rewritings, and
(ii) they have labels only from the set A of terminal labels of the grammar.

NLC grammars have been introduced by Janssens & Rozenberg (1980a,b) as a
basic framework for the mathematical investigation of graph grammars (the more
general work on the theory of graph grammars is well presented in Nagl, 1979,
and Ehrig, 1979). Since then this model has been intensively investigated, see,
e.g. Janssens & Rozenberg (1981), Brandenburg (1983), Turdn (1983), Ehrenfeucht
et al. (1984) and Janssens et al. (1984). In particular, it has turned out that
most basic problems of graph theoretic nature concerning NLC grammars {languages)
~are undecidable. Although the membership problem for NLC grammars is decidable,
NLC grammars can generate PSPACE-complete graph languages. Results like this
have inspired a search for feasible but "nontrivial" subclasses of the class of
NLC grammars (see, e.g. Janssens, 1983).

The class of boundary NLC grammars, BNLC grammars for short, has been defined
as follows (Rozenberg & Welzl, 1984a).An NLC grammar is a BNLC grammar if (i) the
left-hand side of each production is a nonterminal label, and (ii) all the graphs
involved (i.e., the axiom and the right-hand sides of productions) are such that
two nonterminally labeled nodes are never adjacent. It turns out that the class of
BNLC languages (i.e., the graph languages generated by BNLC grammars) can be
defined by using the subclass of NLC grammars in which (i) the left-hand side of
each production is a nonterminal label and (ii) the range of the connection func-
tion consists'of terminal labels only. Hence, on the one hand one can view BNLC
grammars as an analogue (in the framework of NLC grammars) of fundamental sub-
families of context-free string grammars (suchas linear grammars or context-free




grammars in operator normal form), while, on the other hand, one gets a
characterization of BNLC languages by considering a restriction on NLC grammars
that is certainly a very natural one from the mathematical point of view.

In Rozenberg & Welzl (1984a,b) a systematic investigation of BNLC grammars
has been initiated. Among others, it has been demonstrated that quite a number
of interesting families of graphs can be generated by BNLC grammars (e.g.
maximal outerplanar graphs, 2-trees, graphs of cyclic bandwidth = 2) and that
(as opposed to the general NLC case) BNLC Tanguages can be attractive from the
”comp1ex1ty" point of view (the membership problem in BNLC Tanguages can be
solved in polynomial time for connected graphs of fixed bounded degree). Moreover,
the famify of BNLC languages turns out to be closed under many of the operations
of taking of a BNLC language all graph Satisfying a certain graph property (e.g.
being k-colorable, being connected, or being nonplanar).

In this paper we continue this research and we concentrate on combinatorial
properties of BNLC languages. In particular, we investigate the behaviour of
graph invariants within BNLC languages. First we demonstrate that there is a
dependency between the chromatic number and the clique number of graphs in BNLC
languages (whiie this is well-known not to be true for arbitrary graph languages).
For example, we show that a BNLC language is of bounded chromatic number if and
only if it is of bounded clique number.‘Secondiy, we introduce a new graph inva-
riant, the so-called index of a graph which seems to be very suitable for des-
cribing the adjacency structure of a graph. Then we prove that every BNLC
language is of bounded index (which is shown not to be true for arbitrary graph
languages). Thus we exhibit properties (concerning graph invariants) of BNLC
languages which are intrinsic to this class. We use them to demonstrate that cer-
tain graph languages are not BNLC languages. For example, we prove that among all
graphs in a BNLC languages (i) there is only a finite number of Mycielski graphs
(see Mycielski, 1955) and (ii) there is only a finite number of square grid graphs.

The paper is organized as follows. General notions concerning'graphs and
graph grammars are recalled in Section 1. In Section 2 we recall basic notions

and properties concerning BNLC grammars. In Section 3 we consider the relationship
between the chromatic number and the clique number of graphs in a BNLC language.

In Section 4 we introduce the notion of the index of a graph and we demonstrate
that every BNLC language is of bounded index. Finally, a discussion in Section 5

concludes this paper.



1. PRELIMINARIES

We start with basic notations concerning graphs and graph grammars which we
need for this paper. We assume familiarity with rudimentarygraph theory, e.g.
in the scope of Harary (1969).

For a finite set V, we denote its cardinality by #V.

Graphs
We consider finite undirected node labeled graphs without loops and without

multiple edges. For a set of labels Z, a gfaph X (over z) is specified by a finite .

set VX of nodes, a set EX of two element subsets of VX (the set of edges), and a

function Py from VX into Z (the labeling function). The set of all graphs over 2

is denoted by ;.

Let X be a graph and let x € V,. The label set of X, 1ab(X), is the set

X
toy(y)ly €V, ). The neighborhood of x in X, neighy(x), is the set

ly € VXi{x,y} € EX}, The graph X-x is the subgraph of X induced by Vy~{x}. A graph
X' is isomorphic to X, if there is a bijection from VXl to VX which preserves
labels and adjacencies. The set of all graphs isomorphic to X is denoted by [X].
The size of X, #X, is the number of nodes in X, i.e., #X = #VX. Disregarding the

labeling function of X, one gets the underlying unlabeled graph of X, denoted by

‘und(X). For a set L of graphs we denote by und(L) the set {und(X) | X € L}. For a
label a, proj_(X) denotes the subgraph of X which is induced by the a-labeled

nodes in X. For a set of graphs L,:Eroj (L) = {proj_(X) | X€ L},

Graph Grammars -

A node label controlled (NLC) grammar is a system G = (Z,4,P,conn,Z . ),

where 7 is a finite nonempty set of labels, A is a nonempty subset of Z (the

set of terminals), P is a finite set of pairs (d,Y), where d € Z and Y ¢ GZ



(the set of productions), conn is a function from 2 into 2% (the connection

function), and Z =~ ¢ Gz (the axiom).

By (P] we denote the abstract production set {(d,Y')[Y' € [Y] for some

(d,Y) € P}. By maxr(G) we denote mﬂi({#zax}lj {#|(d,Y) € P for some d € Z} ).

The set Z-A is referred to as the set of nonterminals and we will reserve

the symbol I (possibly with an appropriate inscription) to denote Z-A . In the con-

text of G, given a graph X ¢ sze refer to nodes labeled by elements ofI" (4, res-

pectively) as nonterminal nodes (terminal nodes, respectively).

- Let X,Y,Z be graphs over I with VX n VY = @ and let x ¢ VX‘ Then X concretely
derives Z (in G, replacing x by Y), denoted by X = (x,Y) 7, if
G b
(@X(x),Y) € (P], VZ = VX-x U VY’ | |
E, = By, UEy U {{x',y} | x' € peéghx(x), y € Vy, @X(x') € conn(wy(y))},

¢., equais o
YA X

s
-

on Vo _o

. and @Z'equa}s oy oOn Vy. {Intuitively speaking, we repiace
X in X by the graph Y and connect a node y of Y to a neighbor x' of x if and only

i o,(x') € conn(ey(¥)).)

A graph X airectly derives a graph Z (in G), in symbols X 7? Z, if there

* s
is a graph Z' € [Z], such that X concretely derives Z' in G. =E?is the transitive

and reflexive closure of 7? L IFX =%$ Z, then we say that X derives Z (in G).

If G is understood, then we often omit the inscription G in = , =§? , and
N :
M

*
The exhaustive language of G, S(G), is the set {X ¢ GZ [ Zax FE$ X} and

the language of 6, L(G), is the set (X € G, | Z, = X}.

A graph language L is an NLC language if there is an NLC grammar G such

that L = L(G).



2. DEFINITIONS

Let ¢ be a set of labels. A graph X is a ®-boundary graph, if no two adja-
cent nodes of X that are labeled by elements of & are adjacent.

A boundary NLC (BNLC) grammar is éh NLC grammar G = (Z,A,P,gggﬁ,zax), where
Zax‘is a T-boundary graph and, for all (d,Y) € P, d €T and Y is a Tl -boundary
graph. A;graph Tanguage L is a BNLC language, if there is a BNLC grammar G such
that L = L{G). A ]anguage L of’ﬁn]abe1ed graphé is an unlabeled BNLC (u-BNLC)
language, if there is a BNLC Tanguage L' such that L = und(L').(Recall that we
set implicitely Z-4 =T.)

For examples of BNLC grammars and languages we refer to Rozenberg & Welzl
(1984a,b), where also a number of basic,préperties have been elaborated. We
recall here threé of these properties as they are often imp1icite1y used in

proofs of tnis paper.

PROPOSITION 2.1. Let G = (Z,A,P,conn,Zav) be a BNLC grammar. Then every

graph in S(G) is a I'-boundary graph. a

PROPOSITION 2.2. Let G be a BNLC grammar. Let X0 € S(G), Tet x,y ¢ VX and
. 0

let Yl’YZ’Xl’XZ be graphs-such that

X6 7?(x,¥1) 1 7?(y,Y2) )

holds. If Xi and Xé are the graphs, such that

X

y,YZ) 1 %?(X,Yl) Xé

holds, then Xé = X2. a

Xa 7?(

We use the following normal form for BNLC grammars. Let G = (Z,4,P,conn,Z)
be a BNLC grammar. Then G is normalized if (1) for all (A,Y) € P, #Y Z 1,

(2)#7Z =1, and (3), for all d € Z , conn(d) < A.



PROPOSITION 2.3. For every BNLC language L there is a normalized BNLC

grammar G such that L(G) = L - {\}, where X\ is the empty graph.

In what follows we consider two graph ]anguages to be equal if they coincide

up to the empty graph.
We conclude this section by providing a technical tool which will be needed

in forthcoming proofs.

Concrete.derivations

Let G = (Z,A,P,conn,Zax) be an NLC grammar. If a graph X concretely derives
a graph Z in G, replacing a node x by a graph Y, then, somewhat informally, we

refer to the construct X = (x,Y) Z as a concrete derivation step in G (from X %o 7).

A sequence of "successive" concrete derivation steps in G

. X X, = Lo e = X
D: Xg g(xo,yl) 1 7 {x,Y,) "2 (x__1>Y ) N

where n = 0 and the sets VX s VY , 1 =1 =n, are pairwise disjoint, is.refekred
0 i
to as a concrete derivation in G (from Xg o Xn)'

' . _ n . n
The node set of D is Vp = (Ji vxi.. The edge set of D is Ep= (Ji_ 4 E

The labeling function oy of D is defined by @D(x) = wkd(X) if x € VX and

X, ’

0
. n
op(x) = oy (x) if x €V, for some i, 1 =i =< n. Note that V, = VXO U Uieg in’
i i

hence ®p is defined on the whole set VD' Moreover, if x E‘in for some i, 0<1i=<n,
then @X_(x) = wD(x). Thus every concrete derivation D defines natur;]]y a graph
with ;et of nodes VD, set of edges ED and labeling function wD; this justifies
our abuse of notation in using VD’ ED’ and °p when referring to various elements
of a concrete derivation D. Note that this 'graph’ D is a I'-boundary graph when-
‘ever XO is a T'-boundary graph and G is a BNLC grammar.

Let O be a distinguished element not in Vp which is called the origin of D.

The predecessor mapping predD of D is a function from VD into VD U {0y} such

that for x ¢ VD



{OD if x ¢ VXO, and

EredD(x) =

. if x eV for an i, 0 =i < n-1.

1 Y
Hence Eﬁggo maps every node x in VD to the node from which x is’direct]y derived
(or to OD if x was already present in XO).

| The history Eliﬁu(x) of a node x ¢ VD in D is the sequence (yo,yl,...,ym),

mz> 1, yi €Vp forall i, 1 =is m, such that yo = 00, Yp = X» and y, = predp (¥ ;)

for a]l i, 0 =1 =m-1.
Finally, we denote the set of nodes in VX 'which are derived from a node
' n
X € VD“by targy(x), i.e., targp(x) = {y € VX {x € histy(y)}. (For a sequence

S = (YgoYps---sY) we write x €'s i there 15 an i, 0 =1 =m, such that x = y,.)

If D is understood, then we omit the inscription D in EredD h1stD, and targD.
We recall now some basic properties df concrete derivations in BNLC grammars.

PROPOSITION 2.4. Let G = (z,8,P,conn,Z) be a BNLC grammar and let D be a
concrete derivation in G from a r- boundary graph X to a graph X. Then

(1) If {x,y} € ED’ then at least one of the relations pred(x) € hist(y) or
pred(y) € hist(x) holds.

(2) Let hist(y) = (y ,yl,...,yk), k=1, and let x ¢ VD be such that

pred(x) = Y, for some 2, 0 = ¢ < k-1. If {x,y} € E then {x,yp l} € E and
@D(x) € conn(@D(y )) for all i, 242 < i < k.

(3) Let {x,y} ¢ ED and let x' ¢ targ(x) and y' ¢ targ(y). Then {x',y'} ¢ ED. o



3. CHROMATIC NUMBER VERSUS CLIQUE NUMBER IN BNLC LANGUAGES

Let X be a graph and let n be a positive integer. An n-coloring of X is a
function from VX into {1,2,...,n}. An n-coloring of X is called proper, if it

assignes different "colors" to adjacent nodes in X. The chromatic number, X(X),

of X is the minimum n for which there exists a proper n-coloring of X. The

clique number, «(X), of X is the maximum n such that there is a complete sub-

graph of X with n nodes.

A graph language L is of bounded chromatic number (of bounded clique number)

if there is a positive integer k such that x(X) = k (w(X) = k, respectively) for

all X ¢ L.
On the one pand, it is clear that w(X) = x (X) holds for every graph X.

Hence, a graph language of bounded chromatic number is also of bounded clique
number. On the other hand, there are graphs with "arbitrary small" clique num-
ber and "arbitrary large" chromatic number - this result was proved in Mycielski

(1955) and it is formally stated as follows.

PROPOSITION 3.1. For every pair of integers n and mwith 2 =n =<m, there

is a graph X such that «(X)= n and X(X) = m.

For example, triangle-free unlabeled graphs with arbitrary high chromatic
number can be constructed as follows. Let M3 be the cycle of length 5. For
iz 4, Mi is obtained from Mi-l by (i) adding to every node X in M, a node
x' which is adjacent to all neighbors of x and (ii) adding an additional node
y which is adjacent to all "new" nodes. Then m(Mi) = 2 and x:(Mi) = i for all
i, 1 2 3 (see Mycielski, 1955, or also Bondy & Murty, 1976). The graphs

Mi’ i = 3,are called Mycielski graphs.




In this section we show that such an independence between chromatic number
andclique number cannot exist within a BNLC language. More precisely, we will
demonstrate that for every BNLC language L and every positive integer n, there
is an integer m, such that, for all X € L, w(X) < n implies X(X) = m. This shows,
e.g. that a u-BNLC Tanguage cannot contain an infinite number of Mycielski graphs.

First we state a lemma which is easy to prove.

LEMMA 3.2. A graph language L ¢ GA (where A is a finite set of labels) is
of bounded chromatic number (of bounded clique number) if and on]y.if, for
all a € A, proj_(L) is of bounded chromatic number (ofvbounded clique num-

ber, respectively). o
Now we are ready to prove the key theorem of the section.

THEOREM 3.3. A BNLC language 1is of bounded chromatic number if and only if

it is of bounded clique number.

Proof. Since «(X) = X(X) for every graph X, the "only if part" of the
theorem holds. |

To prove the "if part" we proceed as follows. Let L be a BNLC language
of bounded clique number over a set of labels A. By Lemma 3.2 it suffices to
show that, for all a ¢ a, proj_(L) is of bounded chromatic number. Let a be
an arbitrary but fixed label from A. By Rozenberg & Welzl (1984b, Theorem 3.3),
there is a normalized BNLC grammar G = (z,{a},P,conn;Zax)‘such that
L(G) = proj_.(L). Clearly, we may assume that G is reduced, i.e., for each label

*
A € T there are graphs X and X' such that zax;; X' => X, X ¢ L(G) and A ¢ lab(X").

We consider now seperately two cases.
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Case 1: a £ conn(a).
Then every graph in L(G) consists of connected components each having no
more than maxr(G) nodes. Hence, X(X) <= maxr(G) holds for all X € L(G). This

settles the first case.

Case 2: a ¢ conn(a).

Here we proceed as follows. First we prove a number of consequences (claims)
of the fagt that L(G) is of bounded clique number. Thesekproperties allow us to
define fof each graph X ¢ L(G) a 2-#I'-coloring (based on a derivation df X in G)
which is "almost" proper. Finally, we poiht out how this co]oring of Xkcan bekex-
tended to a proper 2'#Fﬂgg§i(6)-coloring of X.

Let C(r) ={Aer|a econn(A)}. For A,B€ T, we write A~ B if A,B ¢ C(T')
and there is a production p = (A,Y) €P such that B ¢ lab(Y); we say theh that

p transfers A to B. ~ is the reflexive and transitive closure of ~. We say that

a sequence of productions PysPpseseaPyo k = 0, gradualily transfers A to B, if
either kK= 0 and A = B or k = 1 and there are labels AO’AI”"’Ak such that
A= AO’ B = Ak and P; transfers Ai—l to Ai for all i, 1 <1 < k.

Moreover, we write A ~ B, if A,B ¢ C(r') and there is a production

"

p = (A,Y) € P such that there are nodes x,y ¢ VY with @Y(x) = a, @Y(y)f= B, and

{x,y} € EY; we say then that p productively transfers A to B.

Obviously, A ~B implies A ~B. We will demonstrate that A X B excludes B ~A.

Claim 1. If A~ B, then B ~ A does not hold.

—~ *
Proof of Claim 1. Assume to the contrary that A ~B and B ~ A hold for some

A,B € C(T). Let m be an arbitrary positive integer. Then the following procedure

leads to a graph whose clique number exceeds m.

(1) Derive from Zax a graph containing an A-labeled node Zg- Let i = 1.
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(2) Apply to z; 14 productidn which productively transfers A to B. Let
X3sY; be two (fixed) nodes derived in this step such that X; is adjacent
to Yy X is labeled by a, and ¥; is labeled by B. |
(Note that X; and y; are adjacent to all nodes Xj’ J=1,2,...,i-1.)

(3) Apply now to y; a sequence of productions which gradually transfers
B to A (in such a way that always a node derived in the previous step

is replaced in the next one).let z; be an A-iabe]ed node obtained in

the last step. If the applied sequence Qas empty, let Z; =Y.
(Note that z is adjacent to all xj, J=1,2,...,i.)
(4) If i=m, then let i = i+l and gb back to step (2).
A(5) Apply "terminatihg sequences" of proddctions to all nonterminal nodes

(i.e., derive a terminally labeled graph from every nonterminal node).

.} induces a compiete subgraph of the grapn

1t i easilv se that IX. .Xeseoo
It is easily seen that {¥;.Xo,...sXp.1

obtained by the above procedure. Since m was chosen arbitrarily, this contradicts

the fact that L(G) is of bounded clique number. Hence the assumption that A~ B

dii-

Consider now a concrete derivation D of a graph X € L(G) from a graph XO €

[zdx], For x,y ¢ VX’ we write x - y, if {x,y} € ED, pred(x) € hist(y) and
pred(y) £ hist(x). We write x+ y if {X,y} ¢ ED and pred(x) = pred(y) (i.e.,
pred(x) ¢ hist(y) and pred(y) € hist(x)). Note that for all {x,y} ¢ EX, exactly

one of the relations x - y, ¥ - X Or X« y holds (see Proposition 2.4(1)).

Claim 2; Let x,y,z € VX be such that x - z, y -~ z and @D(pred(x)) =

oy(pred(y)) = v,(predy(z)). Then pred(x) = pred(y).

Proof of Claim 2. Consider hist(z) = (20’21""’Zk)’ k = 1. There must be

indices i,j such that pred(x) = z, and pred(y) = Zj'
(i) Assume that i < j. Clearly, a ¢ conn(@D(za)) for all 2,142 <= ; < k

(see Proposition 2.4(2)). Thus, in particular, a € conn(wD(zj+l)). Moreover,
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a e conn(@D(zj)). If j = i+ 2, then this is straightforward. If j = i + 1, then,
since zj = pred(y), we have @D(zj) = @D(Zk~1) and so indeed a ¢ conn(wD(zj)).

Hence, all labels @D(zj), ¢D(zj+1),...,¢o(zk_l) are from C(Tr'). Since y and zj+1

are produced in the same derivation step (i.e., pred(y) = pred(zj+1)) and since

{y,zj+1} € ED (otherwise {y,z} ¢ ED which contradicts y - z), we have @D(zj) ~
* 3 3 3 13 .
@D(Zj+l)' But @D(Zj+1) ~<pD(zk_1) = @D(zj) which is a contradiction to Claim 1.

(i) Analogously, assuming that i > j leads to a contradiction.

Consequently, i = j and so Claim 2 holds.

Claim 3. Let x,y,z ¢ VX’ X >y, pred(y) = pred(z). Then x - z holds.

Proof of Claim 3. Since y and z have the same label and both are derived

in the same derivation step, the claim holds.

For A €T , let Vi = (x € Vyjop(pred(x)) = A}. The function @, from Vi to

{0,1} 1is dinductively defined for x ¢ Vﬁ as follows:

0 if thereis no node y ¢ VQ with y - x or if, for all nodes
A . . o
aA{x) = { y € VX with y - X, aA(y) = 1 is alreaay defined,
1 if, there is at least one node y ¢ VQ with y - x and, for

all nodes y € VQ with y -+ X, aA(y) = 0 is already defined.

Claim 4. ap is well-defined on the whole set VQ-

Proof of Claim 4. Assume that ap is not defined on the whole set VQ. Then there

I

are nodes Xx,y,z € V

Recall that @D(pred

x)) = ¢p(pred(y))
= pred(z). Since aA(y) = 1, there is a node x' € VQ such that

@D(pred(z)) = A and hence it follows by

R e

Claim 2 that pred(y
x'" - y and aA(X') = 0 is already defined. However, by Claim 3 also x' - z holds

which is a contradiction to the fact that aA(z) = 0. Hence the claim holds.

such that y - x, z > x, and gA(y) = 1 and aA(z) = 0 are defined.
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Claim 5. Let X,y € VQ . If»aA(x) = aA(y) and {x,y} € EX’ then x « y.

Proof of Claim 5. If x <y does not hold, then either x - y or y = x holds.

In either case this would imply aA(x) # gA(y). Hence the claim follows.

Let {A .,AS}, s = #I', be an arbitrary but fixedyenumeratibn of all

1’A2"'
elements from I'. We define a 2s-coloring a of X as follows

a(x) = ap (x) « s+ 1, if x € VQi .
i
It is obvious from Claim 5 that if a(x) = a(y) and {x,y} € EX’ then x = y,
that is, pféd(x) = pred(y). Hence, for all j, 1 =j < 2s, the subgraph of X in-

duced by the nodes x with a(x) = j has connected components of maximal size
maxr(G) (this was meant by "almost" proper). Consequently, the coloring o« can

be easily extended to a proper 2s-maxr(G)-coloring of X. Hence the theorem hb]ds. o

As a matter of fact one gets the fo]!cwing functional dependency between the»

clique number and the chromatic number of graphs from a BNLC language.

THEOREM 3.4. For very BNLC language L there is a positive integer function

f such that X(X) = f («(X)) for all X € L.

L
Proof. For a positive integer n, let L(h) = {X € L]o(X) = n}. Then L(n) is

a BNLC Tanguage (see Rozenberg & Welzl, 1984b, Theorem 7.1). Hence, by Theorem 3.3;

L(n) is of bounded chromatic number. Thus, if we set fL(n) =

max ({1} U (x(x)1x € L'"Y}) for all n, n= 1, then f, is a well defined positive

integer function which satisfies the statement of the theorem. o

Thoerems 3.3 and 3.4 can be used to prove that certain graph languages are

not BNLC languages.

COROLLARY 3.5. The set of triangle-free unlabeled graphs (i.e, graphs with

clique number at most 2) is not a u-BNLC language. O
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Even stronger, we can conclude that there are sets of graphs which have a

finite intersection with every BNLC language.

COROLLARY 3.6. Every u-BNLC Tanguage contains only a finite number of
Mycielski-graphs. o

We conclude this section with a decidability result which can be proved using

Theorem 3.3: it is decidable whether or not L(G) is of bounded chromatic number for

an arbitrary BNLC grammar G. First we need the following lemma.

LEMMA 3.7. There exists an algorithm which, given an arbitrafy BNLC grammar
G, yields a BNLC grammar GC such that L(GC) is the set of all complete sub-

graphs of graphs from L(G).

Proof. Let L = L(G), where G is an arbitrary BNLC grammar. Then we can effec-
tively construct a BNLC grammar G' = (Z‘;A',P’,conn',Z') which generates the set
of induced subgraphs of graphs from L(G) (see Rozenberg & Welz1,1984b, Theorem 3.1).

A BNLC grammar G" = (2', &',P",conn",Z") is called context consistent, if

there is a function n from I'" into ZA" such that, for every X € S(G") and every
nonterminal node x € VX’ n(¢x(x)) = {@X(y)ly 6_ggigbx(xﬂ~ holds. That is, for
A € T", n(A) is the set of Tabels which occur in' the neighborhood of a node (in
any graph from S(G")) labeled by A. From Rozenberg & Welzl (1984a, Theorem 3.2)
it follows that we can construct a normalized context consistent BHLC grammar
G" = (z",a",P",conn",Z") with L(G") = L(G"'). Let n be the "context describing"
function of G"- |

Obviously, the set of all complete subgraphs of graphs from L is exactly the
set of all complete graphs from L(G").

Now it is not too difficult to see that the set of all complete graphs from

L(G") is generated by the BNLC grammar G_ = (ZC,AC,PC,conn »Z.)s where

— 1t = u = u = n
ZC = 3", AC A", conqC conn", ZC Z", and



PC = {(A,Y) ¢ P n (A) < conn"(d), for all d ¢ lab(Y), and Y is a complete grapn}.

Hence the lemma holds. a

THEOREM 3.8. It is decidable whether or not (i) L(G) is of bounded clique

number, (ii) L(G) is of bounded chromatic number, where G is an arbitrary

BNLC grammar.

Proof. Let G be an BNLC grammar. L(G) is of bounded clique number if and only
if the set of complete subgraphs of graphs from L(G) is finite. By Lemma 3.7, a
BNLC grammar GC generating this set can be effectively constructed. Since the

finiteness problem is decidable even for NLCkgrammars, assertion (i) follows. By

Theorem 3.3, assertion (ii) follows directly from (i). o
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4. INDEX IN BNLC LANGUAGES

In the previous section we considered the relation between two well-known graph
invariants in a BNLC language. In this section we introduce a new graph invariant,
the so-called index of a graph, which describes a significant part of the restric-
tion put on BNLC languages (by their generating grammars).

Let X be a graph and let U ¢ VX’ Two nodes x and y in VX - U are U-equivé]ent,
written X~y ¥ if they have the same heighborhood inVU, i.e., Egighx(x) nus= :
ﬂEing(Y) nu. C]e;r?y,‘~h is an eQufvalence relation.

The index of X relative to U, denoted by index,(X), is the number of equi-

valence classes of ~U on VX - U.

The index of X, denoted by index(X), is defined by
index(X) = min {index,(X)|U ¢ Vy, where #X/4 < #U =

The sub-index of X, denoted by sindex(X), is defined by

'

sindex(X) = max{index(Y)|Y is an induced subgraph of X}.

Remark 4.1. In order to indicate the bounds invo]vedzin the definition of
index. we could have used the terminology (l/4,1/2)-iggg5(x) rather than index(X).
However, since these are the only bounds we consider, we omit this additional
"prefix" in the notation. o

A graph language L is of bounded index (of bounded sub-index), if there is

a positive integer k such that index(X) = k (sindex(X) = k, respectively) for all

X € L.
We will show that every BNLC language is of bounded sub-index. First of all,

we observe that "being of bounded sub-index" is a "nontrivial" property.

Example. Let k be a positive integer. The square grid graph Sk is the unla-

beled graph defined by Vo = {(i,j)|o =i =k, 0=]J =k} and
k
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Ec = {{(i,d),(i",3")}1
) |

We claim that for k= 1 and n = #Sk.(=(k+l)?);index(sk) > |vn/4]. This can

o-d'+ 3 -3

\

be shown as follows.

Let U< Vo be such that n/4 = #U = [n/2], and Tet U = Vo - U. Then there
k k

are at least [Vn] nodes on the frontier of the subgraph induced by U (a node in
U is on its frontier, if it has a neighbor in U). At most four of the nodes on
the frontier of U can be U-equivalent (note that eVer& node in S, has at most
four neighbors). Consequently, index,(S,) = [Vn]/4 = |Vn/4] and the above asser-
tion holds. Of course,the bound is far from "optimal"; however, it suffices for

our purpose. o

Next we prove abasic- property (as regards index) of derivations in norma-

1ized BNLC grammars.

LEMMA 4.1, Let G = (Z,A,P,conn,Z) be a normalized BNLC grammar and let D be
a concrete derivation in G of a graph X € L(G) from a graph XO € [Z]. Then
there are nodes Yys¥gseensYys k=1, in VD’ such that for
k - .
U= [J54 targ(y.), (3) #X/4 < #U = [#X/2], and (b) index,(X) = #a + maxr(€).

Proof. Clearly the assertion holds for X with #X = 1. Let #X = 2. Let X be

a node in Vg, such that #targ(x) >‘[#X/2] and if pred(y) = x for a y ¢ Vy, then
gtarg(y) = [#x/2]. Obviously, such a node exists.

Let now yysY¥oseees¥ys &2 1 be an enumeration of all nodes y with pred(y) = X,

where (1) #targ(yi) > #targ(yi+1), for all i, 1 <1 = ¢-1, and (ii) there is an
2y 0= 29 = ¢ such that, for a11‘i, 1=1-= tg» @D(yi) ¢ T and, for all i,
2 i=e, QD(yi) ¢ A~ Then there is a k, 1 = k = ¢, such that the union U of

all sets targ(yi), 1 <i =<k, satisfies the following two conditions:

(c1) #X/4 < gU s [#x/27, and

(C2) either all nodes Yis 1< i< k, are nonterminal nodes or all
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nodes Yi» k< i=¢2, are terminal nodes.

We show now that index”(x) = #5 +maxr(G).
Let Wy = {y € Vy - targ(X)[{X,y} # Ep}. For all y € Wy and z € U, {y,z} # Ey
(see Proposition 2.4(3)); consequently, neighx(y) NU-=¢, and so all nodes in

WO are U-equivalent.

For each a € 4, let wé=={y € Vy - targ(x)loy(y) = a, {x,y} € Ep}. Then for
all nodes Y.y é'wa,’z € U, we have {y,z} € EX if and only if {y',z} € Ey. Conse-
quently, -for each a € A, all nodes in Wy are U-equivalent.

Let W6 = {y € Egﬁg(i) - Ulpred(y) # x}. That is, W6 contains the terminal
nodes derived from nonterminal nodes in T = %yilk < i = ¢}, If T contains no non-
terminal node,‘then W6 is empty. If this is not the case, then no nonterminal
node in T is adjacent to one of the nodes Yi» 1 =1 =k (recall that in this case
condition (C2) above implies that all nodeéyi, 1 =i =< k, are nonterminal nodes].
Consequently, we have ggighx(y) nuU-=9 foryc Wé and so all nodes in NO U NéA'
are U-equivalent.

For each terminal node y in T, let Nv = {y}. Note that there are at most
maxr(G) - 1 different sets wy of this type.

Clearly, the sets W, U W6, W, (for each a € A), and wy (for each y € T ﬂ'VX)
cover the complement of U in VX‘ The above reasoning shows that all nodes within
each of these sets are U-equivalent. Since there are at most #4 + maxr(G) different
 sets (one for NO U w., #8 for all wa with a ¢ a4, and maxr(G) - 1 for all wy with
yeTn VX), we have shown that nggﬁU(X) < #A + maxr(G). Hence the statement of

the lemma holds for our choice of YysYpsreeasYys O

Lemma 4.1. immediately implies that every BNLf language is of bounded index.

This result can be extended to sub-index in the following way.
THEOREM 4.2. Every BNLC language is of bounded sub-index.

Proof. It is easily seen that a graph language L is of bounded sub-index, if



and only if the set L' of induced subgraphs of graphs from L is of bounded
index. It is known that the set of all induced subgraphs of graphs from a BNLC
language is again a BNLC language (see Rozenberg & Welzl, 1984b, Theorem 3.1).

Since, by Lemma 4.1, every BNLC language is of bounded index, the theorem holds. o

It is instructive to notice that.it is the "boundary" restriction on NLC
grammars that yields the above property. It is well-known that, for a set of
labels 4, GA is an NLC language - hence the aboye property does not hold for

NLC Tanguages. For BNLC 1ahguages, we get the following easy corollaries.

COROLLARY 4.3. Every u-BNLC language contains only a finite number of square

grid graphs. o

Clearly, every square grid graph has chromatic number 2 and, moreover,

it is planar.
COROLLARY 4.4. The set of planar graphs is not a u-BNLC language, o

COROLLARY 4.5. For each integer k, k = 2, the set of all unlabeled graphs

X with x(X) = k is not a u-BNLC Tanguage. =



t

5. DISCUSSION

The present paper concludes the series of three papers investigating basic
properties of BNLC grammars and languages. The class of BNLC languages is certain-
ly a mathematically natural subclass of the class of NLC languages - it can be
defined either by requiring a simple property of all graphs involved in an NLC
grammar (i.e., axiom and right-hand sides of productions) or by requiring a simple
property of the connection function. We believe that the presented results (here
and in Rozenberg & Welzl, 1984a,b) demonst}ate that the class of BNLC grammars
(and languages) is an interesting class to investigate and that it can play a
role in the theory of graph grammars. '

Clearly, until now we have considered only the most basic problems
concerning BNLC grammars. Many questions about this class still have to be
asked (and answered!) in order to get a better understanding of BNLC grammars
and languages. We mention here three possible problem areas.

(1) Relationships of the class of BNLC languages to various other classes of

(2) Complexity of various standard graph problems but considered within the

class of BNLC languages. ‘
(3) Combinatorial properties of BNLC languages, in particular search for more

grapn invariants which describe properties of BNLC ianguages (as opposed to arbi-

trary graph languages or languages from different families).
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