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A B S T R A C T   

Geospatial datasets derived from remote sensing data by means of machine learning methods are often based on 
probabilistic outputs of abstract nature, which are difficult to translate into interpretable measures. For example, 
the Global Human Settlement Layer GHS-BUILT-S2 product reports the probability of the presence of built-up 
areas in 2018 in a global 10 m × 10 m grid. However, practitioners typically require interpretable measures 
such as binary surfaces indicating the presence or absence of built-up areas or estimates of sub-pixel built-up 
surface fractions. Herein, we assess the relationship between the built-up probability in GHS-BUILT-S2 and 
reference built-up surface fractions derived from a highly reliable reference database for several regions in the 
United States. Furthermore, we identify a binarization threshold using an agreement maximization method that 
creates binary built-up land data from these built-up probabilities. These binary surfaces are input to a spatially 
explicit, scale-sensitive accuracy assessment which includes the use of a novel, visual-analytical tool which we 
call focal precision-recall signature plots. Our analysis reveals that a threshold of 0.5 applied to GHS-BUILT-S2 
maximizes the agreement with binarized built-up land data derived from the reference built-up area fraction. We 
find high levels of accuracy (i.e., county-level F-1 scores of almost 0.8 on average) in the derived built-up areas, 
and consistently high accuracy along the rural–urban gradient in our study area. These results reveal consid
erable accuracy improvements in human settlement models based on Sentinel-2 data and deep learning, as 
compared to earlier, Landsat-based versions of the Global Human Settlement Layer.   

1. Introduction 

Accurately mapping the spatial distribution and dynamics of human 
settlements at planetary scale is critical for monitoring and under
standing global processes such as (sub)urbanization, land take, rural
–urban transformations, the dynamics of the wildland-urban interface 
and other human-nature coupled systems. To understand, mitigate, or 
adapt to pressing issues related to these processes, such as biodiversity 
loss, overpopulation or increasing social inequality, and to ensure sus
tainable urban and rural development, stakeholders, planners, and re
searchers often use remote sensing-based land use, land cover, or 
settlement data as a basis for decision making. For example, the change 
rate of built-up area over time with respect to population change is an 
important indicator for sustainable urban development (Corbane et al., 
2018, Ehrlich et al., 2018, Melchiorri et al., 2019, Cai et al., 2020) which 
may, alongside other demographic or socio-economic metrics, drive 

political decisions at a local scale but also at a country level or even in a 
global context. Specifically, the Sustainable Development Goal (SDG) 
indicator 11.3.1. quantifies the land use efficiency of a city, which is 
directly related to the level of sustainability: While compact cities pro
vide access to public services at lower cost, sprawling cities (i.e., more 
built-up surface increase per population increase) typically require 
increased demand for mobility (e.g., commuting effort) and thus, 
increased energy consumption. (UN Habitat; 2018). 

Thus, the accuracy of the data underlying such indicators and de
cisions is critical. Global, high-resolution, and typically multitemporal 
datasets on built-up areas have emerged in recent years, catalyzed by the 
availability of long-term remote sensing archives (e.g., Landsat), the 
more recently launched Sentinel-1 and Sentinel-2 platforms, and by 
technological advances facilitating data access and processing, such as 
Google Earth Engine (Gorelick et al., 2017) or Deep Learning (Ball et al., 
2017, Zhu et al., 2017). Such datasets include the Global Human 
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Settlement Layer (GHSL; Pesaresi et al., 2013), Global Artificial Imper
vious Area (GAIA; Gong et al., 2020), Global Urban Footprint (Esch 
et al., 2017) and its successor, the World Settlement Footprint (WSF; 
Marconcini et al., 2020a) including the multi-temporal dataset WSF- 
Evolution (Marconcini et al., 2020b), as well as the High Resolution 
Settlement Layer (HRSL; Facebook Connectivity Lab & CIESIN 2016). 
Moreover, industry-driven efforts have sparked the availability of 
building footprint and road network data at a continental or nearly- 

planetary scale123 (Sirko et al., 2021), complemented by Volunteered 
Geographic Information (i.e., OpenStreetMap, OSM). Such community- 
based, participatory mapping efforts can be useful for local, timely data 
acquisition, for example in the case of disaster response (Herfort et al., 
2021). While these datasets represent considerable improvements 
regarding their spatial resolution as compared to older data products (e. 

Fig. 1. Data processing and analysis flow diagram.  

Fig. 2. Study area: The 30 counties covered by MTBF-33. These counties can be grouped into nine study regions, which are labelled in the map.  

1 https://sites.research.google/open-buildings/.  
2 https://github.com/microsoft/GlobalMLBuildingFootprints.  
3 https://github.com/microsoft/RoadDetections. 
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g., Defourny et al., 2006, Balk et al., 2006), there is an urgent demand 
for quantifying the accuracy of these datasets, to enable informed, re
flected, and uncertainty-aware data interpretation and decision making. 
This is particularly important as such datasets are commonly used for 
population disaggregation (Freire et al., 2015, Leyk et al., 2019, 
Palacios-Lopez et al., 2019). 

The GHS-BUILT-S2, which is tested herein, is one of the input layers 
for the most recent generation of the GHS-BUILT data suite (Schiavina 
et al., 2022), Thus, quantitative knowledge of its accuracy is crucial for 
the evaluation of the follow-up data products mapping different com
ponents of the built environment, rural–urban classes, as well as popu
lation distributions. Herein, we use our reference data employed in 
earlier studies, and conduct a spatially explicit accuracy assessment of 
the GHS-BUILT-S2 dataset, building up on our previous work (Section 
2). The GHS-BUILT-S2 dataset is particularly interesting, as it reports the 
probability of being built-up for each grid cell, whereas previous GHS- 
BUILT versions provided binary built-up / not built-up labels. These 
“built-up probabilities” are the output of a deep learning-based classi
fier, and indicate the presence of built-up surface. Built-up land data is 
commonly used for (a) population disaggregation, (b) quantification of 
built-up surface, density, and its variations within an area of interest, or 
(c) Characterization of the morphology of urban spaces or the built 
environment. All these applications require either Boolean (built-up / 
not built-up) data, or a continuous measure of built-up surface. Thus, the 
translation of these probability values to a meaningful measure of built- 
up area is crucial for the unbiased usability of the GHS-BUILT-S2. This 
problem, in a general sense, is a common issue in the broader context of 
explainable and interpretable artificial intelligence (Gunning et al., 
2019, Papadakis et al., 2022), and contributes to a growing body of 
literature focusing on uncertainty-aware applications of deep learning in 

the field of remote sensing (Maxwell et al., 2021a,b). Thus, in this work, 
we pose the following questions:  

1) How can built-up probabilities be translated into a meaningful, 
physical measure of built-up area?  

2) How accurate is the GHS-BUILT-S2 across regions in the United 
States, and across the rural–urban continuum, in a localized context?  

3) How sensitive are the obtained, spatially explicit, thematic accuracy 
estimates to grid misalignment and to the chosen spatial unit? 

We try to answer these questions by 1) analyzing the relationship 
between built-up probability and built-up area fraction, and performing 
an agreement analysis to find the “optimal” threshold for converting 
built-up probabilities in GHS-BUILT-S2 to binary layers of built-up land, 
2) conducting a rigorous, spatially explicit accuracy assessment against 
our reference data, and 3) assessing the sensitivity of our accuracy es
timates to various parameters used in the accuracy assessment. For the 
spatially explicit accuracy assessment conducted in step 2) we present a 
novel visual-analytical method to assess local accuracy variations within 
a given (focal) region, which we call “focal precision-recall signature 
plots”. In the following, we provide an overview of related work (Section 
2), describe our data and methods (Section 3), present and discuss our 
results (Section 4), and conclude with some final remarks (Section 5). 

2. Related work and contributions of this study 

To meet the demand for quantitative knowledge on the uncertainty 
in human settlement datasets, researchers have carried out data inte
gration and evaluation efforts to facilitate accuracy assessments of the 
GHSL built-up area layers at 38 m or 30 m resolution (Blei et al., 2018, 

Fig. 3. Visual comparison between GHS-BUILT-S2 built-up probabilities and built-up fractions based on the reference data for parts of Hampden County (Massa
chusetts) and New York City. 

J.H. Uhl and S. Leyk                                                                                                                                                                                                                           



International Journal of Applied Earth Observation and Geoinformation 123 (2023) 103469

4

Leyk et al., 2018, Liu et al., 2020), of OSM (Hecht et al., 2013, Fan et al., 
2014, Brovelli & Zamboni 2018), of WSF (Marconcini et al., 2020a), or 
cross-comparisons of several of the aforementioned datasets (Klotz et al., 
2016). Such evaluation efforts also include studies focusing on specific 
regions (Mück et al., 2017, Sliuzas et al., 2017, Leyk et al., 2018, Liu 
et al., 2020, Tripathy & Balakrishnan 2021), geographic concepts (e.g., 
the rural–urban continuum; Leyk et al., 2018, Uhl et al., 2018, Uhl & 
Leyk 2022a, Uhl & Leyk 2022b), rural areas in particular (Kaim et al., 
2022, Wang et al., 2022), or different landscape and settlement types (e. 
g., informal settlements; Van Den Hoek and Friedrich, 2021). Related to 
data quality issues, the implications of discrepancies between 
population-based and built-up area based urban definitions have been 
studied (Balk et al., 2018, Leyk et al., 2019). 

However, few studies have explored the accuracy of built-up surface 
datasets over time. This is due to a lack of multi-temporal, independently 
compiled reference data of presumably higher accuracy than the data 
under test (FGDC 1998). Thus, in previous work, we used an integrated 
dataset of cadastral parcel data and building footprint data, including 
construction year information, to generate multi-temporal ground truth 
data of built-up surface at arbitrary points in time. This work was carried 
out in 2016, when no open country-wide building footprint dataset or 
open harmonized parcel dataset existed. Specifically, we collected par
cel data including construction year information, and building footprint 
data from cadastral offices for a selection of 33 counties in the United 
States, where such data were available. We integrated the parcel and 

building footprint data via spatial joins to create a set of over 6 million 
building footprints attributed with their construction year (Uhl and 
Leyk, 2022c). This dataset is the multitemporal building footprint 
dataset for 33 U.S. counties (MTBF-33) and represents a reliable data 
source to create snapshots of built-up area for arbitrary points in time 
between 1900 and 2015. Building construction dates come from public 
records such as tax assessments, and building footprint data is mostly 
derived from LiDAR point cloud data or manual digitization. 

We employed the MTBF-33 dataset to quantify temporal accuracy 
trends from 1975 to 2014, in the first version of the Global Human 
Settlement Layer (GHS-BUILT R2015B; Pesaresi et al., 2016), derived 
from Landsat data at a resolution of 38 m (Leyk et al., 2018). The same 
dataset was used to quantify accuracy improvements between the GHS- 
BUILT R2016A and the GHS-BUILT R2018A (Florczyk et al., 2019), 
which was available at 30 m resolution, also based on Landsat data, but 
informed by Sentinel-2 multispectral data available at 10 m resolution, 
and the GHS-BUILT-S1 (Corbane et al., 2017), derived from Sentinel-1 
Synthetic Aperture Radar data at 20 m spatial resolution (Uhl et al., 
2018). 

While these accuracy assessments were carried out within strata of 
built-up surface density, approximating the rural–urban continuum, 
they were based on global accuracy estimates (i.e., calculated per stra
tum and epoch) possibly neglecting local variability of data accuracy (e. 
g., Foody 2002, Strahler et al., 2006, Wickham et al., 2018). Hence, we 
also employed the MTBF-33 dataset to measure local accuracy variations 

Fig. 4. Preprocessing 10 m built-up probabilities and reference data to generate different binary built-up surface layers. (a) Rasterized reference building footprint 
data at 2 m spatial resolution, derived from building footprint vector data from the MTBF-33 database, (b) reference built-up fraction at 10 m spatial resolution, (c) 
GHS-BUILT-S2 built-up probability surface at 10 m spatial resolution, (d) reference built-up fractions binarized for a range of thresholds, and (e) the GHS-BUILT-S2 
built-up probabilities binarized by the same range of thresholds. All data shown for a part of the city of Charlotte (Mecklenburg County, North Carolina). 
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in the GHSL R2018A built-up surfaces using a spatially explicit accuracy 
assessment, revealing further spatial disentanglements of accuracy 
trends over time (Uhl & Leyk, 2022a). In that work, we presented an 
efficient spatial data processing pipeline for the creation of continuous 
(focal) accuracy surfaces, facilitating spatially explicit agreement as
sessments of categorical gridded data in general (Uhl & Leyk, 2022a). 
Moreover, we tested the suitability of commonly used agreement met
rics for the quantification of built-up area mapping accuracy, taking into 
account the varying levels of class imbalance between grid cells labelled 
as built-up and not built-up along the rural–urban gradient (Uhl & Leyk, 
2022a). Moreover, we employed this data processing pipeline to explore 
the relationship between mapping accuracy and morphological char
acteristics of the built-up areas (exemplified by the GHS-BUILT R2018A 
dataset). We employed correlation and regression analyses based on 
continuous accuracy surfaces, and landscape metrics calculated in the 
same grid and at the same spatial scales. That study identified strong 
associations between mapping accuracy and morphology of built-up 
surfaces, constituting important a priori information for data analysts 
regarding expected levels of data accuracy (Uhl & Leyk, 2022b). 

Other studies demonstrated the usefulness of the MTBF-33 dataset 
for applications beyond accuracy assessments (e.g., as training data for 
information extraction in multi-temporal geospatial data; Uhl et al., 
2017, Uhl & Leyk, 2020). Therefore, we made the MTBF-33 dataset 
publicly available (Uhl & Leyk, 2022c). Given the work in Leyk et al. 

(2018), Uhl et al. (2018), and Uhl & Leyk (2022a) provides a sequence 
focusing on GHSL data accuracy across different data versions 
(including different sensors and source data resolutions), at increasing 
spatial detail, it is a natural next step to apply our evaluation framework 
to the more recent, GHS-BUILT-S2 dataset available at 10 m spatial 
resolution. 

Thus, the work presented herein will extend the progression of 
evaluated GHSL versions, in a consistent manner (i.e., using the same 
study areas covered by the MTBF-33 dataset), documenting potential 
effects of classifier choice (i.e., Symbolic Machine Learning vs. Con
volutional Neural Networks) on mapping accuracy. Moreover, we make 
several novel methodological contributions: We aim to facilitate the 
establishment of practical guidelines for data users interested in trans
lating probabilistic classification outputs into meaningful physical 
measurements and raise awareness of potential spatial variability in 
these “translation rules”. Finally, in addition to the novel visual- 
analytical tools for spatially explicit agreement assessments (i.e., focal 
precision-recall signature plots) presented herein, we conduct a spatially 
explicit sensitivity analysis aiming to sensibilize data analysts about the 
effects of positional uncertainty on the outcomes of thematic agreement 
assessments. 

Fig. 5. Input and output surfaces of the spatially explicit accuracy assessment. (a) binarized GHS built-up probability (>0.5) and (b) binarized reference built-up 
fractions (>0), Also shown for different focal window sizes (1 km, 2.5 km and 5 km) are (c) derived localized confusion matrix element surfaces and (d) focal 
accuracy surfaces. All data shown for a part of the city of Charlotte (Mecklenburg County, North Carolina). 
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3. Data and methods 

The data used in this study is the GHS-BUILT-S2 dataset, and the 
MTBF-33 reference dataset (Section 3.1) which are the basis for all 
analytical steps (Section 3.2). These steps are shown in Fig. 1 and will be 
described in the following section. 

3.1. Input data and preprocessing 

In this work, we used 30 out of the 33 counties covered by the MTBF- 
33 dataset (Section 2) as study areas (Fig. 2). This is consistent with the 
study areas in prior work (Leyk et al., 2018, Uhl et al., 2018) and thus, 
will enable the direct comparison of accuracy measures across different 
versions of the GHSL, reducing potential effects of uncertainty in the 
reference data when assessing changes in accuracy across data versions. 

For the counties covered by MTBF-33, we obtained the GHS-BUILT- 
S2 surfaces, available at 10 m spatial resolution, in Mollweide projection 

(Corbane et al., 2020). Among these counties are Hampden County 
(Massachusetts) and New York City,4 for which we show the GHS- 
BUILT-S2 in Fig. 3. We then rasterized the MTBF-33 building polygon 
data to an intermediate spatial resolution of 2 m, aligned to (and nested 
within) the GHS-BUILT-S2 grid, and then aggregated these 2 m grid cells 
to the 10 m cells by calculating the proportion of 2 m cells, i.e., the 
fraction of reference built-up area per grid cell, reported in % (see Fig. 3 
for some examples). We did this based on all buildings in MTBF-33 
(regardless of their construction date), and thus, approximately repre
senting the building stock in 2015. This rasterization process is also 
illustrated in Fig. 4 a) and b). 

The GHS-BUILT-S2 dataset contains built-up probabilities, which are 
the output of a convolutional neural network based classifier called 

Fig. 6. Assessing the relationship between built-up probability (BUPROB) reported in GHS-BUILT-S2 and built-up fraction (BUFRAC) derived from the reference 
data: Bivariate histogram of BUPROB and BUFRAC at the grid-cell level: (a) across all countries, (b) for Hampden County, (c) for New York City; bivariate histograms 
based on cell-level BUPROB and BUFRAC calculated in moving windows of 5 × 5 cells, to account for the spatial context used for CNN inference, for (d) all counties, 
(e) Hampden County, and (f) New York City; bottom row shows median trendlines of BUPROB in bins of BUFRAC for (g) 1 × 1-cell BUFRAC vs. 1 × 1-cell BUPROB, 
and (h) for 5 × 5-cell BUFRAC vs. 1 × 1-cell BUPROB. 

4 Our New York City study area encompasses the five boroughs of Bronx, 
Brooklyn, Manhattan, Queens, and Staten Island. 
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GHS-S2Net (Corbane et al., 2021). GHS-BUILT-S2 is based on Sentinel-2 
multispectral remote sensing data, acquired in 2018. Thus, there is a 3- 
year temporal offset to our reference data. 

3.2. Methods 

3.2.1. Assessing the relationship between built-up probability and built-up 
fraction 

Based on the grid cells covered by both, GHS-BUILT-S2 and MTBF- 
33, we visually compared the co-occurrences of built-up probability 
(henceforth called BUPROB) in GHS-BUILT-S2 and the built-up fraction 
(henceforth called BUFRAC) derived from the reference data, on a cell- 
by-cell basis, for each county under study, and across all counties. We 
also calculated correlations between BUFRAC (see Fig. 4b) and BUPROB 
(see Fig. 4c) across all counties, and for each county individually. This 
way we were able to assess whether the relationship between BUPROB 
and BUFRAC is stationary across regions as an indication of the 
robustness of the classifier underlying the GHS-BUILT-S2 and its spatial 
generalization capabilities (Section 4.1). Moreover, we conducted a 
regression analysis between the two spatial variables, to further test the 
variability of their relationship across regions. Knowledge of this rela
tionship will be important to better understand the translation of built- 
up probability into built-up fraction. Specifically, we used regression 

analysis to test whether BUFRAC can be estimated from BUPROB by 
fitting a function. We tested a linear model, as well as 2nd, 3rd, and 4th 
order polynomial functions to allow for a more complex relationship 
between the two spatial variables, and analyzed regional variability in 
the model performances. 

3.2.2. Generating binary built-up surface layers 
For many applications of human settlement data, such as population 

disaggregation (e.g., Leyk et al., 2019, Palacios-Lopez, 2019) or analyses 
of urban size and morphology (e.g., Strano et al., 2021, Uhl et al., 2021, 
Uhl & Leyk, 2022b), practitioners require binary layers of built-up vs. 
not built-up areas. Thus, a second issue when working with the GHS- 
BUILT-S2 data product is the thresholding / binarization of the contin
uous built-up probabilities to create a binary layer. To provide guide
lines on how to identify the optimal threshold in the GHS-BUILT-S2 
BUPROB values, we used a heuristic approach: We applied four cutoff 
values (i.e., >0%, >25%, >50%, >75%) to both the reference BUFRAC 
surfaces (see Fig. 4d), and the BUPROB surfaces (Fig. 4e). We then 
assessed the thematic agreement between the binarized BUFRAC and 
BUPROB surfaces, for all 16 threshold combinations, by calculating the 
F-1 score (van Rijsbergen, 1974) for each combination, for each county, 
and for sub-county strata that were defined based on reference built-up 
area density. This is motivated by prior work, that revealed accuracy 

Fig. 7. Binary agreement of boolean built-up / not built-up surfaces created from the GHS-BUILT-S1 and the reference data, by systematically applying different 
binarization thresholds to the continuous GHSL built-up probabilities and the built-up fractions derived from the reference data, shown across all counties under test, 
and for Hampden County (Massachusetts) and New York City. 
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variations across the rural–urban continuum (Leyk et al., 2018, Uhl 
et al., 2018, Uhl et al., 2022a, Uhl et al., 2022b; see Section 2) creating 
the expectation that the relationship between BUPROB and BUFRAC 
could also vary between rural and urban strata. To do so, we calculated 
the built-up area density based on the reference built-up area fractions 
within 1 km × 1 km blocks. In each county, we grouped these blocks into 
lower-, medium- and higher-density strata, using an equal width clas
sification scheme. Finally, for each county and each of its strata, we 
identified the threshold combination for which the agreement maxi
mizes (Section 4.2). 

3.2.3. Spatially explicit accuracy assessment 
As uncertainty in geospatial data is known to be often spatially non- 

stationary (Foody, 2002, Leyk and Zimmermann, 2004, Wickham et al., 
2018), researchers and analysts increasingly conduct spatially explicit 
accuracy assessments (Foody 2007, Löw et al., 2013, Khatami et al., 
2017, Waldner et al., 2017, Mitchell et al., 2018, Morales-Barquero 
et al., 2019), rather than reporting overall accuracy metrics which 
overly generalize the spatial variations of accuracy (Strahler et al., 
2006). Hence, once we decided for a cutoff value to binarize both sur
faces BUPROB and BUFRAC (based on the method described in Section 
3.2.2), we conducted a spatially explicit, thematic accuracy assessment 
between the two surfaces. To do so, we employed a strategy developed 
in earlier work (Uhl & Leyk, 2022a; see Section 2), which overlays a 
binary, gridded test surface (binarized BUPROB) on a reference surface 
(binarized BUFRAC) (Fig. 5a,b). Specifically, this overlay creates four 
surfaces, each encoding the presence (1) / absence (0) of the four 
agreement categories per grid cell (true positives = TP, true negatives =
TN, false positives = FP, false negatives = FN). Next, a user-defined 
kernel convolves over each of these agreement category surfaces and 
counts the occurrences of TP, FP, and FN within a focal window given by 
the extent of the kernel. Herein, we used quadratic kernels of size 1 km 

× 1 km, 2.5 km × 2.5 km, and 5 km × 5 km, to capture local accuracy at 
multiple spatial scales. The result of these convolutions are three sur
faces per kernel size, holding the counts of TP, FP, and FN grid cells 
within the focal region around each grid cell, and thus, representing a 
spatialized (or localized) version of a binary confusion matrix (Fig. 5c). 

Note that the TN category is disregarded here, as the true negatives 
(i.e., areas not built-up in test and reference data) often represent the 
dominant class, particularly in rural areas, and thus, we do not use 
agreement metrics involving the count of TN, as they tend to yield 
inflated or biased values if there is class imbalance (e.g., Rosenfeld & 
Melley, 1980, Stehman & Wickham, 2020). In a final step, surfaces of 
focal precision, recall, and F-measure are calculated on a cell-by-cell 
basis, resulting in spatially exhaustive, spatially explicit agreement 
metrics between the input surfaces (Fig. 5d), representing focal (or 
localized) accuracy estimates. These surfaces can then be used for 
further analyses. 

The cell-by-cell sum of focal TP and FN yields the total number of 
built-up reference grid cells per focal window. Likewise, the cell-by-cell 
sum of focal TP and FP yields the total number of built-up grid cells in 
the test data. These counts represent the quantity of built-up area per 
focal window, which we call “built-up quantity”. By comparing these 
counts derived from the reference and the test data, we can measure the 
quantity agreement of built-up area per focal window, while relaxing the 
constraint of positional alignment, as measured by the cell-by-cell 
agreement metrics precision, recall, and F-1 score. 

Moreover, we use these counts to calculate the reference built-up 
surface density (henceforth called “built-up density”) per focal win
dow to define density-based strata. We then calculate accuracy metrics 
within these strata and analyze accuracy trajectories across the rural
–urban continuum (i.e., from rural low-density settlements to urban 
high-density settlements) (Section 4.3). 

Herein, we used the created agreeement surfaces to perform the 

Table 1 
Agreement-maximization threshold for Reference data and GHSL, across different strata of urbanness, and corresponding F-1 scores per stratum, global (i.e., per 
county) at full resolution, and global within 3×3 cell blocks.   

Agreement maximization threshold F-1 score 
Stratum Low-dens. Medium-dens. High-dens. Low-dens. Medium-dens. High-dens. overall 

1x1 
overall 
3x3 

County Ref. GHSL Ref. GHSL Ref. GHSL      

Anoka County 0% 50% 0% 50% 0% 50%  0.612  0.659  0.667  0.581  0.715 
Baltimore County 0% 50% 0% 50% 0% 50%  0.507  0.575  0.669  0.671  0.804 
Barnstable County 25% 50% 0% 50% 0% 50%  0.473  0.587  0.617  0.613  0.803 
Berkshire County 0% 50% 0% 25% 0% 25%  0.533  0.536  0.590  0.565  0.706 
Boulder County 0% 25% 0% 25% 0% 25%  0.462  0.455  0.554  0.436  0.571 
Bristol County 0% 50% 0% 50% 0% 50%  0.538  0.600  0.640  0.660  0.816 
Carver County 0% 50% 0% 50% 0% 50%  0.632  0.667  0.681  0.588  0.704 
Dakota County 0% 50% 0% 50% 0% 50%  0.533  0.601  0.669  0.668  0.811 
Dukes County 0% 50% 0% 50% 0% 50%  0.471  0.522  0.576  0.581  0.748 
Essex County 0% 25% 0% 25% 0% 25%  0.544  0.596  0.637  0.624  0.821 
Franklin County 0% 50% 0% 50% 0% 50%  0.500  0.525  0.562  0.579  0.705 
Hampden County 0% 50% 0% 25% 0% 25%  0.457  0.531  0.600  0.516  0.698 
Hampshire County 0% 50% 0% 50% 0% 25%  0.500  0.519  0.581  0.552  0.702 
Hennepin County 0% 50% 0% 50% 0% 50%  0.632  0.645  0.677  0.625  0.777 
Hillsborough County 0% 50% 0% 50% 0% 50%  0.383  0.472  0.643  0.624  0.785 
Manatee County 0% 50% 0% 50% 0% 50%  0.500  0.556  0.695  0.688  0.828 
Mecklenburg County 0% 25% 0% 50% 0% 25%  0.534  0.619  0.659  0.615  0.753 
Middlesex County 0% 50% 0% 25% 0% 25%  0.518  0.581  0.638  0.410  0.535 
Milwaukee County 25% 50% 0% 25% 0% 25%  0.446  0.590  0.666  0.408  0.584 
Monmouth County 0% 50% 0% 50% 0% 50%  0.519  0.625  0.698  0.507  0.609 
Nantucket County 0% 50% 0% 50% 0% 50%  0.441  0.532  0.568  0.585  0.765 
Norfolk County 0% 25% 0% 25% 0% 25%  0.554  0.601  0.644  0.642  0.824 
New York City 0% 50% 0% 50% 0% 50%  0.637  0.752  0.810  0.797  0.929 
Plymouth County 0% 50% 0% 50% 0% 50%  0.494  0.570  0.618  0.621  0.787 
Ramsey County 0% 50% 0% 50% 0% 50%  0.558  0.636  0.664  0.636  0.810 
Sarasota County 0% 50% 0% 50% 0% 50%  0.546  0.607  0.692  0.685  0.844 
Suffolk County 0% 50% 0% 50% 0% 25%  0.591  0.688  0.743  0.731  0.906 
Vanderburgh County 0% 50% 0% 25% 0% 25%  0.617  0.598  0.658  0.655  0.804 
Washington County 25% 75% 0% 50% 0% 50%  0.556  0.634  0.659  0.604  0.725 
Worcester County 0% 25% 0% 25% 0% 25%  0.482  0.543  0.596  0.346  0.473  
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following analyses: We calculated the overall agreement between the 
binary surfaces 1) per county, 2) within three (equal width) reference 
built-up density-based strata per county, loosely related to rural, peri- 
urban, and urban areas, and 3) we visually assessed the interactions 
between localized commission and omission errors, by creating scat
terplots of focal precision and focal recall, per county. This is motivated 
by the findings of previous accuracy assessments, where we found low 
precision, but high recall in urban areas, as well as low precision and low 
recall in rural areas, mostly caused by the false detection of roads as 
built-up areas (e.g., Leyk et al., 2018). Thus, such “signature plots” of 
focal precision vs focal recall provide a visual-analytical way to assess 
the overall levels (and distributions) of commission and omission errors, 
and to detect interactions between them (Section 4.3). 

3.2.4. Localized built-up area regression analysis 
While we assessed the thematic agreement between the gridded 

surfaces in Section 3.2.3, we are aware that positional uncertainty in the 
source datasets may cause misalignment between the gridded reference 
and test surfaces, which may bias the outcomes of our thematic accuracy 
assessment as described in Section 3.2.3 (e.g., Congalton, 2007). Hence, 
we relaxed the constraint of cell-by-cell alignment between test and 
reference data and used the focal built-up area in both datasets to assess 
their quantity agreement, disregarding their spatial overlap. We con
ducted linear regression analyses using the focal built-up quantities in 
test and reference data, per county, and across all counties, to test the 
regional variability of the quantity agreement (Section 4.4). This anal
ysis is also motivated by a range of applications of human settlement 
data that do not require an analytical unit of 10 m grid cells, where 

coarser spatial resolutions are sufficient (e.g., urban shape analysis using 
landscape metrics, population disaggregation, etc.). 

3.2.5. Sensitivity to positional uncertainty and assessment support 
Related to the mentioned potential misalignment between the grid

ded test and reference surfaces, we analyzed the sensitivity of the 
agreement measures to potential positional uncertainty in the data. As 
our reference surfaces are based on cadastral data, there is some posi
tional uncertainty associated with the building footprint polygons, that 
propagates into our gridded surfaces (Congalton, 2007). Moreover, the 
Sentinel-2A data underlying the GHS-BUILT-S2 dataset may be affected 
by positional uncertainty due to image registration and other image 
processing steps. 

To test the sensitivity of our focal accuracy metrics to such potential 
misalignment, we implemented two sensitivity analyses: 1) For a se
lection of three counties (i.e., New York City, Hampden County, Mas
sachusetts, and Boulder County, Colorado) we systematically shifted the 
reference surface by 1 and 2 cells in both x- and y-direction, mimicking 
offsets between the data of up the 20 m in each direction. We then 
recalculated the focal accuracy metrics for each combination of shifts, 
and assessed their variation, on average, as well as spatially explicit 
(Section 4.6.1). 

Moreover, we recalculated our focal accuracy assessments based on 
aggregated grid cell blocks. For example, if a built-up grid cell at native 
10-m resolution does not spatially coincide with a built-up reference 
cell, but has a built-up reference cell within its 3 × 3 cell neighborhood, 
the assigned agreement category would still be TP (true positive). Such 
an aggregation of the analytical unit used for map comparison is a 

Fig. 8. Focal precision-recall plots for all 30 counties, for a focal window size of 1 km. Coordinates of the black dots indicate precision and recall, respectively, 
calculated over the total county extents. 
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commonly employed technique to relax the requirement of alignment at 
the native resolution and to account for potential positional discrep
ancies between datasets which may bias the thematic agreement mea
sures (Congalton, 2007, Gu & Congalton, 2020, Gu & Congalton, 2021, 
Marconcini et al., 2020a). We did such a block-based accuracy assess
ment for all counties using 3 × 3 and 5 × 5 cell blocks (Section 4.6.2). 
For an overview of data processing and analyses conducted herein we 
refer to Fig. 1. 

4. Results and discussion 

4.1. The relationship between built-up probability and built-up fraction 

We binned the BUFRAC and BUPROB values for each county into 
bins of 4% and 1%, respectively, and visualized the bivariate histograms 
of the joint BUFRAC / BUPROB distribution. Moreover, we calculated 
the median BUPROB per BUFRAC bin. We observe generally a positive 
association between BUFRAC and BUPROB when using the data distri
bution over all counties (Fig. 6a), but we observe considerable variation 
in the bivariate histograms and median lines for individual counties 
(Fig. 6b,c, see Appendix Fig. A1 for all 30 counties under study). For 

Fig. 9. Focal accuracy estimates along the rural–urban continuum: Relationship between F-measure and reference built-up density per county, for a focal support of 
1 km. 

Table 2 
Approximate accuracy trends of the GHS-BUILT built-up surface datasets across different versions, gathered from evaluation studies based on the MTBF-33 reference 
dataset. Note that the reported F-1 scores are approximate averages across all counties, and that GHS-BUILT-R2018A was only evaluated in the state of Massachusetts, 
encompassing 14 out of 33 counties covered by MTBF-33.  

GHSL release Source data Spatial 
resolution 

Epoch F1 
(most 
rural) 

F1 (most 
urban) 

Data reference or related publication Validation 
study 

GHS_LDSMT_2015 Landsat 38 m 2014  0.11  0.85 https://doi.org/10.2788/253582 Leyk et al., 2018 
GHS_LDSMT_2017 Landsat +

Sentinel-1 
30 m 2014  0.05  0.67 https://doi.org/10.1080/20964471.2019.1625528 Uhl et al., 2018 

GHS-BUILT-S1 Sentinel-1 20 m 2016  0.05  0.60 https://doi.org/10.1080/20964471.2017.1397899 Uhl et al., 2018 
GHS-BUILT- 

R2018A 
Landsat +
Sentinel-2 

30 m 2014  0.45  0.80 https://doi.org/10.2905/jrc-ghsl-10007 Uhl & Leyk, 
2022a 

GHS-BUILT-S2 Sentinel-2 10 m 2018  0.52  0.63 https://doi.org/10.2905/016D1A34-B184-42D 
C-B586-E10B915DD863 

This study  
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example, we observe higher median BUPROB per BUPRAC bin in New 
York City (Fig. 6c) than in Hampden County (Fig. 6b). This effect can 
also be seen in the examples shown in Fig. 2, illustrating how large and 
densely built structures in New York City cause high levels of built-up 
probability, as opposed to smaller, less densely arranged buildings in 
Hampden County. This could also indicate that the classifier used to 
create the GHS-BUILT-S2 surface is more confident in detecting high- 
density structures as built-up, possibly also due to spillover effects 
caused by highly impervious surfaces in the vicinity of the buildings. 
Also, New York City may have been used as a training site for the GHS- 

BUILT-S2 classifier training phase, and the lower probabilities (which 
can be interpreted as lower levels of confidence) are the effect of weaker 
inference performance when generalizing on out-of-distribution data. 

The county-level median BUPROB lines (Fig. 6g) indicate that even 
grid cells of very low BUFRAC have median BUPROB values of around 
25% in Hampden County, and up to 60% in New York City. Thus, these 
two counties represent extreme cases among the counties under test. 
This is in line with the previous observations, and likely to be the result 
of spillover effects of impervious surface surrounding the buildings, as 
well as mixed-pixel effects in general, and the intensity of this effect is 

Table 3 
Built-up quantity regression analysis results per county.  

County Slope Intercept R2 County Slope Intercept R2 

Anoka County  1.102  0.456  0.868 Manatee County  1.046  0.434  0.932 
Baltimore County  1.020  − 0.155  0.946 Mecklenburg County  0.549  1.913  0.965 
Barnstable County  0.847  0.007  0.953 Middlesex County  0.873  − 0.798  0.686 
Berkshire County  0.602  0.064  0.928 Milwaukee County  0.654  1.462  0.958 
Boulder County  0.655  − 0.104  0.928 Monmouth County  0.994  0.939  0.697 
Bristol County  0.936  − 0.314  0.875 Nantucket County  0.904  0.412  0.930 
Carver County  1.177  0.047  0.966 Norfolk County  0.853  − 0.322  0.958 
Dakota County  1.078  0.410  0.914 New York City  1.054  0.601  0.951 
Dukes County  0.864  0.184  0.948 Plymouth County  0.823  0.065  0.900 
Essex County  0.810  − 0.335  0.964 Ramsey County  0.811  2.616  0.946 
Franklin County  0.702  0.075  0.967 Sarasota County  1.018  0.689  0.918 
Hampden County  0.441  0.395  0.958 Suffolk County  0.947  0.818  0.963 
Hampshire County  0.570  0.161  0.858 Vanderburgh County  0.760  0.342  0.938 
Hennepin County  0.983  1.470  0.908 Washington County  1.115  0.131  0.947 
Hillsborough County  1.011  1.454  0.938 Worcester County  0.598  0.010  0.928  

Fig. 10. Scatterplots of reference and GHSL-based built-up quantity per county for a focal support level of 1 km.  
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driven by the built-up density and the level of impervious surface. 
Another interesting observation is the drop of median BUPROB for grid 
cells of close to 100% built-up fraction in some counties. These are likely 
large buildings, possibly with a roof material that may occur more rarely 
in the training data, and this sparseness may cause lower levels of 
classification confidence. 

Here, it is noteworthy that only grid cells have been taken into ac
count where both BUFRAC and BUPROB are > 0, to avoid omission or 
commission errors to interfere in the analysis of the relationship be
tween BUFRAC and BUPROB. 

Despite the difference in the intercepts of the median BUPROB lines, 
the correlation coefficients between BUFRAC and BUPROB are relatively 
stable across counties, ranging from 0.25 to 0.4 for the majority of 
counties (see Appendix Table A1). The overall Pearson’s correlation 
coefficient between BUFRAC and BUPROB is 0.37, further confirming 
the generally observed (and expected) positive association of BUFRAC 
with BUPROB. 

Can users infer the built-up fraction from the built-up probability at 
the cell-level? To address this, we used a curve fitting approach to es
timate BUFRAC as a function of BUPROB. As can be seen in Fig. 6 a-c, a 
given BUFRAC value corresponds to a wide range of BUPROB values, 
and thus, this relationship is ambiguous. The patterns observed in Fig. 6 
a-c suggest a non-linear relationship between BUFRAC and BUPROB, 
and thus, we fitted a range of polynomial functions of degree one to four 
using ordinary least squares. As suspected, the predictive power of 
BUPROB for BUFRAC is low, with R2 values rarely exceeding 0.2, and 
RMSE values of around 30% when estimating BUFRAC in % grid cell 
area (Appendix Table A2). These poor results indicate that built-up area 
fraction at 10 m resolution cannot be inferred reliably from the built-up 
probabilities provided by the classifier underlying the GHS-BUILT-S2. 

While these findings could be important for the interpretation of cell- 

level built-up probabilities and potential translation into built-up pro
portions, there is a slight scale mismatch between cell-level BUFRAC and 
BUPROB. According to Corbane et al. (2021) the CNN used to produce 
the GHS-BUILT-S2, (i.e., the GHS-S2Net; Corbane et al, 2021) uses 
image patches of 5 × 5 pixels of the underlying Sentinel-2 multispectral 
data. Thus, the CNN-based determination of the built-up probability at a 
given grid cell C is influenced by its spatial context, while the BUFRAC 
estimates in Fig. 6 a-c,g refer to the cell C only. Hence, to account for this 
mismatch, we calculated the BUFRAC within moving windows of 5 × 5 
cells, to reduce this mismatch. The bivariate histograms of BUFRAC (5 ×
5) and BUPROB (1 × 1) (Fig. 6,d-f) and the county-level median 
trendlines (Fig. 6h) show different patterns than their cell-by-cell level 
counterparts (Fig. 6a-c,g). Specifically, the previously observed in
tercepts are much smaller, indicating low levels of built-up probability 
for low levels of BUFRAC in the spatial window observed by the CNN. 
Moreover, BUPROB drops for samples of high BUFRAC in the 5 × 5-cell 
window, indicating lower levels of confidence of GHS-S2Net for large 
built-up structures extending across several grid cells. The high spread of 
BUPROB for grid cells of low BUFRAC (Fig. 6d,e) indicates lower levels 
of classification confidence for sparsely built-up regions. On average 
(Fig. 6h), highest built-up probabilities are obtained for 5 × 5-cell 
samples with a reference BUFRAC of around 60% to 70%, possibly 
indicating that the training data predominantly contained training 
samples with built-up fractions in that range. This additional assessment 
reveals interesting details regarding the way how the GHS-S2Net works: 
The wide range of BUPROB for similar, low values of BUFRAC across 
most counties (Fig. A2) indicates that features other than built-up 
fraction (or its manifestation in the Sentinel-2 multispectral data) are 
used as salient features within the GHS-S2Net for the determination of 
the probabilistic output. 

Fig. 11. Sensitivity of focal (thematic) accuracy estimates to spatial offsets, modelled by systematically shifting the reference and test grids. Average focal precision 
in (a) Boulder County, (b) Hampden County, and (c) New York City, and (d-f) corresponding plots for average focal recall, based on 24 combinations of shifts in x and 
y direction, applied to the reference data. 

J.H. Uhl and S. Leyk                                                                                                                                                                                                                           



International Journal of Applied Earth Observation and Geoinformation 123 (2023) 103469

13

4.2. Agreement between binary built-up / not built-up surfaces 

When binarizing both, the continuous BUFRAC and BUPROB sur
faces based on the cut-off values discussed in Section 3.2.2, we observe 
that the thematic agreement between these binarized surfaces is highest 
when using a threshold of > 50% for the built-up probabilities, and a 
threshold of > 0% for the reference built-up fraction surfaces. This 
observation is remarkably consistent across the three density-based 
strata (loosely related to rural, peri-urban, and urban areas), over all 
counties, for Hampden County and New York City (Fig. 7) and for most 
of the other counties under study (Table 1). In practice, this implies that 
by using a cutoff value of 50% applied to the GHS-BUILT-S2 surface, the 
resulting binary layer can be interpreted as a built-up area presence- 
absence surface, and this surface exhibits relatively high agreement 
with a binary surface that maps any grid cell containing a built-up area 
fraction > 0 as “built-up”. Specifically, the F-1 scores range from around 
0.5 in the low-density strata to 0.65 or higher in the high-density strata. 
While these values were obtained at a native resolution of 10 m, the F-1 
scores derived from 3 × 3 cell blocks (corresponding to 30 m × 30 m) 
increase in many counties to around 0.8 or higher, measured across all 
three strata (Table 1). These F-1 scores obtained at 3 × 3 cell blocks are 

comparable to results of accuracy assessments carried out in earlier 
work, using the Landsat-based GHS-BUILT-R2018A. However, these 
earlier experiments resulted in considerably lower F-1 scores across 
rural–urban gradients (cf. Leyk et al., 2018). This indicates that a 
remarkable jump in accuracy can be expected when using the GHS- 
BUILT-S2 as a basis for built-up area mapping, at least for the areas 
under study, likely for the US, and possibly elsewhere as well. Moreover, 
these findings are in line with accuracy estimates reported in Corbane 
et al. (2021). Here, it should be noted that while we found high levels of 
consistency of the agreement maximization threshold for our study sites 
in the U.S., these cut-off values are likely to be different in Europe or 
Asia, as indicated in Hafner et al. (2022) who identify an optimal 
threshold of around 0.5 for a study area in the U.S., and in Corbane et al. 
(2021), where a threshold of 0.2 (rural areas) and 0.5 (dense urban 
areas) is recommended to provide best results, globally, on average. 
Furthermore, the maximum agreement found for binarization thresh
olds of > 0% (BUFRAC) and > 50% (BUPROB) can be partially explained 
with the design of the training labels. According to the definition of 
“built-up area” in Corbane et al. (2021), any grid cell that overlaps with 
a roofed structure is considered “built-up”, corresponding to a threshold 
of > 0% built-up surface. Thus, this observation also underlines the good 

Fig. 12. Sensitivity analysis of the focal accuracy measures to systematic offsets between GHSL and reference data: (a) median trendlines of F-1 score per reference 
built-up area density stratum (using 100 equal-width bins), (b) maps of the range of focal F-1 scores per grid cell, based on the 25 grid shift combinations, and (c) the 
reference built-up surface density for comparison, illustrating that F-1 score ranges are narrower in high-density regions. All data shown for New York City, Hampden 
County (Massachusetts), and for a subset of Boulder County (Colorado). 
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generalization capabilities of the relationship between training labels 
and Sentinel-2 data by the GHS-S2Net across different regions. 

4.3. Spatially explicit accuracy assessment 

Based on the localized confusion matrices calculated in focal win
dows of 1 km × 1 km, we created focal precision-recall plots for each 
county (Fig. 8). The location, spread, and shape of the visualized point 
clouds provide rich information about the overall levels of commission 
and omission error, their variation within each county, and their inter
action (Fig. 8). Thus, these plots represent a visual-analytical method to 
assess different aspects of map classification accuracy or agreement of 
binary surfaces within a given region, and to compare across regions. 
The additional color-coding of the data points indicating the reference 
built-up surface density within each focal window (scaled across all 
regions) enables the localization of specific commission-omission error 
combinations along the rural–urban continuum. 

For example, New York City and Suffolk County (i.e., the city of 
Boston, Massachusetts) are among the counties of very high density, 
exhibiting high levels of completeness (i.e., recall) and correctness (i.e., 
precision) across their spatial extents. Surprisingly, Milwaukee County 
(i.e., the city of Milwaukee, Wisconsin) has similar levels of built-up 
surface density, but shows lower levels of precision, and even more 
pronounced, of recall. Mecklenburg County (i.e., the city of Charlotte, 
North Carolina) shows high levels of precision, but also higher levels of 
omission errors. Other point cloud shapes such as for Hillsborough or 
Sarasota County, and to a lesser degree, for Manatee County (all located 
in the Greater Tampa region, Florida), we see a more linear relationship 
of precision and recall, indicating that in places where the binarized 
GHS-BUILT-S2 surface is more correct, it is also more complete. This 
could also indicate that data from Florida was used for training the 
classifier underlying GHS-BUILT-S2, or the detection of settlements in 
that region is more straightforward than in others, possibly due to 
vegetation and other factors. 

These plots also reveal other interesting cases, such as Boulder 
County (Colorado), which seems to be divided into a high precision and 
high recall region (likely the city of Boulder itself), and places of high 
precision but low recall (possibly the scattered, rural settlement in the 
Mountains and the Plains). Counties with data points spread towards the 
left part of the graphs (i.e., low levels of precision) could be affected by 
recent growth in built-up area (during 2015 to 2018) that is not con
tained in the MTBF-33 reference data (dated to 2015 or earlier in some 
counties), but correctly measured in the GHS-BUILT-S2 (reflecting the 

state of built-up areas in 2018). Thus, these locations could contain 
higher levels of false positives, induced by missingness in the reference 
data. Finally, the black dots illustrating the overall precision-recall pairs 
calculated across all grid cells per county once more illustrate the need 
for spatially explicit accuracy assessments, as overly generalized accu
racy metrics often fail to take into account the spatial non-stationarity of 
the uncertainty in geospatial data (e.g., Leyk and Zimmermann, 2004, 
Strahler et al., 2006, , Foody, 2007, Wickham et al., 2018). 

We also used our focal accuracy estimates to assess the accuracy 
variations along the rural–urban continuum. While there are multiple 
ways to model the gradient from rural to urban areas (e.g., Waldorf & 
Kim, 2015), we used the built-up surface density derived from the 
reference data, as it is enumerated consistently to our focal accuracy 
estimates (see Section 3.2.3). We did this visually-analytically by 
transforming the reference built-up densities into the range [0,1] and 
plotting them against the F-1 score computed for each focal window 
(Fig. 9). These plots indicate that low accuracy (as measured by the F-1 
score) almost exclusively occur in low-density regions. F-1 levels then 
increase steadily at low slope towards high-density regions. In some 
cases, F-1 scores slightly drop towards the high-density regions, likely 
due to mixed-pixel effects and spillover effects of impervious surfaces, in 
highly built-up areas, resulting in higher levels of commission errors. 
Generally, these trends are very encouraging, as compared to similar 
assessments of earlier versions of the GHS-BUILT, where the trends 
across the rural–urban continuum were much steeper, indicating an 
improved mapping of rural and peri-urban settlements in the GHS- 
BUILT-S2 dataset and less of a difference in data quality between rural 
and urban settings. We summarize these accuracy trends across different 
GHSL data versions in Table 2. 

4.4. GHSL built-up area accuracy trends across data versions 

Putting the overall results reported herein in the context of previous 
evaluation studies consistently based on the MTBF-33 dataset, we 
observe two interesting trends: 1) mapping accuracy (as measured by 
the F-1 score) increases in rural areas from 0.11 (GHS_LDSMT_2015) to 
0.52 (GHS-BUILT-S2), whereas it decreases in urban areas from 0.85 
(GHS_LDSMT_2015) to 0.63 in GHS-BUILT-S2 (Table 2). While it is very 
promising to observe that the detection of rural settlements has 
increased considerably across versions, as a result of higher data reso
lution and improved information extraction strategies, the decrease in 
the F-1 score in urban settings may be due to the finer resolution of the 
data: At lower spatial resolutions, F-1 is higher due to an aggregation 

Fig. 13. Sensitivity of focal precision-recall plots to analytical scale and spatial support. Shown are focal precision-recall signature plots with varying analytical unit 
(i.e., block size from 1 × 1 grid cells, 3 × 3 grid cells, and 5 × 5 grid cells) in x-direction, and varying spatial support (i.e., focal window size, ranging from 1 km (top 
row) to 5 km (bottom row). 
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effect (i.e., built-up areas may also encompass roads between buildings), 
whereas at finer resolution (10 m, 20 m), individual buildings are 
mapped, and the spaces between buildings are labelled as not built-up. 
This difference in granularity may cause higher levels of both omission 
and commission errors, particularly in semi-dense urban settings char
acterized by small buildings and thus, result in lower F-1 scores in urban 
settings overall. In the latter case, the effects of positional uncertainty on 
thematic accuracy may also have a larger effect. This becomes evident 
when looking at Table 1, where the F-1 scores calculated in 3x3-cell 
windows often exceeds 0.8, and yielding an average F-1 score of 0.75. 
In summary, we can say that across data versions, accuracy in rural areas 
has increased, and the accuracy gradient between rural and urban areas 
has become less steep. 

4.5. Regression analysis 

While the assessment presented in Section 4.3 focused on thematic 
agreement of built-up vs. not built-up grid cells, we also assessed the 
quantity agreement of built-up surface within our focal windows, by 
means of regression analyses, relaxing the constraint of spatial coinci
dence of built-up grid cells. Using a linear regression model to estimate 
reference built-up quantity based on the GHS-derived built-up quantity 
(measured within the 1 km × 1 km focal windows, ranging from 0 to 1), 
we find a highly linear relationship with an R2 of 0.93 across all 
counties, a slope of 0.87 and an intercept of 0.20 (Table 3). These 
regression models perform similarly at the county level, with R2 values 
of > 0.9 in most counties. The slope values, however, exhibit some 
variations across counties, with a minimum value of 0.44 in Hampden 

Fig. A1. Bi-variate frequency distributions of built-up fraction (x-axis) and built-up probability (y-axis) for all 10 m grid cells within each of the 30 counties 
under study. 
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County. As we have seen in Fig. 6, Hampden County is also the county 
with the lowest built-up probability, on average. 

Thus, the observed differences in the relationship between built-up 
quantities are likely an effect of lower levels of classification confi
dence in the GHS-BUILT-S2 in some regions. The scatterplots of focal 
built-up quantity from the GHSL and the reference data confirm these 
observations (Fig. 10). In some counties we observe superposed effects 
of a linear relationship for low and medium density areas, and a 
superlinear relationship towards high-density areas, where the built-up 
quantity in GHS-BUILT-S2 exceeds the reference built-up quantity (e.g., 
Bristol, Essex, Middlesex counties). The opposite trend can be observed 
for Suffolk County (i.e., the city of Boston), where in high-density areas 

the relationship becomes sublinear. 

4.6. Sensitivity analysis 

As noted earlier, the outcomes of thematic accuracy assessments 
based on gridded data may be biased by positional uncertainty in the 
underlying spatial data, that can result in random or even systematic 
misalignment of grid cells. This issue is addressed in Section 4.6.1. 
Moreover, the analytical unit at which the assessment is conducted, may 
also affect the results, due to the same misalignment but also general 
aggregation issues, subject to the Modifiable Areal Unit Problem 
(MAUP; Openshaw and Taylor, 1979, Flowerdew et al., 2001, 

Fig. A2. Bi-variate frequency distributions of built-up fraction (x-axis) and built-up probability (y-axis) for all 10 m grid cells within each of the 30 counties under 
study, using reference built-up fractions calculated within a moving 5x5-cell window, consistent with the image patches used as input for the GHS-S2Net classifier. 
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Goodchild, 2022). Finally, the level of spatial support (i.e., the focal 
window size used to calculate localized accuracy estimates) may affect 
the results, which is another manifestation of the MAUP. Hence, we 
systematically varied both the analytical unit and the spatial support to 

assess the effects on our focal precision and recall estimates (Section 
4.6.2). 

Fig. A3. Focal precision-recall signature plots for a spatial support of 1 km and 5 km.  
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4.6.1. Sensitivity to spatial offsets 
We systematically shifted the reference grid by 1 and 2 grid cells in 

each direction, and recomputed the focal precision and recall values for 
each combination of grid shifts in x-and y-direction. To keep the 
computational effort to a feasible level, we only conducted this analysis 
for three counties (i.e., Boulder County, Hampden County, and New 
York City). Fig. 11 reports the average focal precision and recall for each 
shift combination. We observe a sharp drop of average precision and 
recall, even if grids are shifted by 10 m only. This effect is most nuanced 
in Boulder County, where this drop from 0.64 to around 0.45 for pre
cision (Fig. 11a), and from 0.2 to 0.13 for recall (Fig. 11d), corresponds 
to relative decreases in average agreement (i.e., approximately 27% for 
precision, and approximately 45% for recall, respectively). This effect is 

least dominant in the highly urban study area of New York City (Fig. 11 
c,f; around 10% relative drop when shifting grids by 10 m), which can be 
explained by the spillover and mixed-pixel effects occurring in highly 
impervious areas. This stark contrast between high-density settings and 
rural counties (i.e., Boulder County is largely characterized by scattered, 
rural settlements in the Mountains and the Plains) emphasizes the 
importance of the positional accuracy of spatial data as a prerequisite for 
unbiased thematic accuracy assessments. 

While these shifts appear to affect the overall level of accuracy es
timates as a function of the settlement density in a given region, their 
effect on the accuracy trajectories is less nuanced (Fig. 12a): While the 
trend lines are shifted along the y-axis (as a result of lower agreement), 
their slopes along the rural–urban continuum remain largely unaffected, 

Fig. A4. Scale sensitivity analyses per county. Shown are focal precision-recall signature plots, with varying analytical unit (i.e., block size from 1 × 1 grid cells, 3 ×
3 grid cells, and 5 × 5 grid cells) in x-direction, and varying spatial support (i.e., focal window size, ranging from 1 km (top row) to 5 km (bottom row). 
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except for areas of extremely low settlement density in Hampden and 
Boulder counties. Finally, we visualized the range of F-1 scores at the 
grid cell level, for each of the 25 grid shift scenarios (Fig. 12b). These 
maps reveal further detail about our previously found relationship 

between settlement density and accuracy sensitivity: Even within our 
three test counties, the sensitivity of accuracy estimates to positional 
offsets varies, and these variations exhibit an inverse trend to settlement 
density (Fig. 12c), with lowest F-1 score dispersion levels found in high- 

Fig. A5. Focal built-up density vs. F-measure plots for a spatial support of 1 km and 5 km.  
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Fig. A6. Focal reference built-up quantity vs. GHS built-up quantity per county, for a spatial support of 1 km and 5 km.  
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density areas within a county. 
These results illustrate that accuracy estimates are differently 

affected by positional uncertainty in the underlying spatial data. As we 
can generally assume that geospatial data quality is higher in high- 
density urban areas than in rural regions, which may also affect our 
reference data (e.g., terrain variations, occlusions from vegetation, less 
frequent data update cycles in rural areas), it is reasonable to assume 
that our accuracy estimates in rural areas may be negatively biased by 
such positional inaccuracies, and that the “true” accuracy of the GHS- 
BUILT-S2 data in rural areas is even higher than reported herein. 

4.6.2. Sensitivity to the spatial support and to the analytical unit 
Lastly, we tested the effect of increasing block size (i.e., analytical 

unit) and increasing spatial support (i.e., focal window size used as 
analysis extent) on our focal precision-recall signature plots (cf. Fig. 8). 
When increasing the block size, we observe increasing accuracy, in both 
precision and recall (Fig. 13). This increase in the analytical unit is a 

mechanism to account for slight offsets in the gridded data, which would 
cause disagreement when calculated at the native resolution. We 
observe indeed increasing levels of both, precision and recall, in low- 
density but also high-density regions (Fig. 13). Interestingly, 
increasing spatial support leaves overall precision and recall levels 
largely unaffected, but the dispersion of the focal accuracy metrics is 
reduced as we increase the spatial support, which is a general data ag
gregation effect. The same can be observed for the focal precision-recall 
signature plots calculated for a support of 5 km, for all 30 counties 
(Fig. A3), and jointly for increasing support and block size (Fig. A4). A 
similar effect is also notable when visualizing F-1 scores trajectories 
across the rural–urban continuum (Fig. A5): Extreme values disappear 
due to the increased aggregation of the focal accuracy estimates. Hence, 
it is recommended to keep the focal window size small – large enough to 
ensure a robust sample size, and small enough to capture the spatial 
details in accuracy variation, as a large focal window size occludes fine 
spatial details in accuracy variation, and also increases the computa
tional effort (i.e., more grid cells to take into account for each accuracy 
metric computation). 

The increase of the analytical unit not only affects localized (focal) 
accuracy estimates, but also global (i.e., county-level accuracy esti
mates), exhibiting a similar trend, and potentially representing more 
realistic accuracy estimates (Table A3). 

Finally, we also tested the effect of spatial support on the quantity 
agreement analysis (cf. Section 4.4). When comparing the regression 
analysis results of focal built-up density across different levels of spatial 
support, we observe increasing R2 values as we increase the spatial 
support (an effect of extreme values being aggregated, see Fig. A6, and 
thus, reducing the impact of their residuals on the R2), but we also 
observe fairly stable regression coefficients across different support 
levels (Table A4), indicating that the relationship between the reference 
and test built-up density is largely unaffected by the choice of the spatial 
support. 

5. Conclusions 

Herein, we presented a framework for the accuracy assessment of 
high resolution (i.e., 10 m) probabilistic built-up surface indicators. 
Specifically, we used machine learning-based probabilities of built-up 
area presence, as reported in the GHS-BUILT-S2 dataset and developed 
a multi-stage strategy for their evaluation against highly reliable 
building footprint data. The first stage is the analysis of the relationship 
between built-up probability and reference built-up fraction. While we 
found positive associations between these two variables, we also found 
that built-up probability cannot be directly translated into built-up area 
fractions, as indicated by the poor regression model performance (Sec
tion 4.1). In the second stage, we binarized both BUPROB and BUFRAC 
surfaces, and assessed for which binarization threshold the agreement 
between these binarized surfaces maximized. We found that, for a 
threshold of 50%, applied to the GHS-BUILT-S2 data, the resulting bi
nary built-up presence-absence layer shows the highest agreement with 
the reference dataset, which labeled any grid cell as built-up if it con
tains at least one building (or a part of it). This thresholding approach 
appeared to be an effective way to interpret and translate machine 
learning-based probabilities into a meaningful physical measure. In the 
third stage, we assessed the thematic and quantity agreement of the 
resulting built-up area layers and observed increasing accuracy from 
rural to urban settings, but we also observed much higher levels of ac
curacy (both precision and recall) in rural areas, when compared to 
earlier versions of the GHS-BUILT data. 

While this multi-stage framework can be applied to similar datasets, 
we also proposed a novel visual-analytical tool for spatially explicit 
accuracy assessments of binary gridded data, which are focal precision- 
recall signature plots (cf. Section 4.3). We also highlighted multiple 
methods for analyzing the sensitivity of accuracy estimates. Knowledge 
of the accuracy of the GHS-BUILT-S2 provides important guidance for an 

Table A1 
Correlation coefficients between GHS built-up probability and built-up area 
fraction, as well as with focal accuracy / built-up surface density.  

County Pearson’s correlation coefficient of built-up probability and  
BUFRAC  F1 Precision Recall Reference 

built-up 
density 

Anoka County  0.284   0.086  0.042  0.084  0.521 
Baltimore 

County  
0.327   0.319  0.135  0.375  0.583 

Barnstable 
County  

0.407   0.168  0.114  0.119  0.464 

Berkshire 
County  

0.413   0.132  0.115  0.105  0.452 

Boulder County  0.251   0.386  0.082  0.345  0.636 
Bristol County  0.366   0.266  0.168  0.259  0.555 
Carver County  0.290   0.047  − 0.097  0.211  0.468 
Dakota County  0.287   0.267  0.203  0.234  0.518 
Dukes County  0.406   0.164  0.127  0.126  0.496 
Essex County  0.342   0.230  0.123  0.218  0.562 
Franklin 

County  
0.408   0.137  0.120  0.089  0.425 

Hampden 
County  

0.394   0.110  0.239  0.020  0.476 

Hampshire 
County  

0.398   0.134  0.159  0.074  0.427 

Hennepin 
County  

0.223   0.194  0.188  0.120  0.535 

Hillsborough 
County  

0.285   0.340  0.354  0.245  0.529 

Manatee 
County  

0.335   0.327  0.272  0.316  0.548 

Mecklenburg 
County  

0.328   0.173  0.119  0.142  0.291 

Middlesex 
County  

0.339   0.311  0.171  0.306  0.594 

Milwaukee 
County  

0.141   0.358  0.241  0.312  0.389 

Monmouth 
County  

0.376   0.208  0.169  0.164  0.509 

Nantucket 
County  

0.372   0.226  0.155  0.163  0.543 

Norfolk County  0.340   0.228  0.125  0.219  0.503 
New York City  0.331   0.442  0.334  0.428  0.643 
Plymouth 

County  
0.384   0.204  0.132  0.187  0.482 

Ramsey County  0.282   0.207  0.201  0.117  0.410 
Sarasota 

County  
0.322   0.260  0.229  0.240  0.503 

Suffolk County  0.246   0.340  0.254  0.347  0.526 
Vanderburgh 

County  
0.370   0.256  0.164  0.204  0.555 

Washington 
County  

0.288   0.174  0.058  0.238  0.519 

Worcester 
County  

0.367   0.185  0.140  0.146  0.461  
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unbiased and informed interpretation of the dataset itself, and for 
follow-up data products such as the GHS-BUILT R2022A that are 
partially based on the GHS-BUILT-S2 (Schiavina et al., 2022). 

A minor shortcoming of our analysis is the temporal gap between the 
MTBF-33 reference dataset (referred roughly to 2015) and the GHS- 
BUILT-S2 from 2018. The urban growth from 2015 to 2018, not 

Table A2 
Fitting polynomial functions to estimate built-up fraction from built-up probabilities, per county, and for polynomials of degree 1 to 4.  

Polynomial degree 1st 2nd 3rd 4th 
County RMSE R2 RMSE R2 RMSE R2 RMSE R2 

Anoka County  29.136  0.081  28.588  0.115  28.307  0.132  28.268  0.135 
Baltimore County  29.752  0.107  29.090  0.147  28.792  0.164  28.783  0.164 
Barnstable County  24.492  0.166  24.140  0.190  24.072  0.194  24.050  0.196 
Berkshire County  26.365  0.170  26.041  0.191  25.997  0.193  25.997  0.193 
Boulder County  30.367  0.063  30.100  0.080  30.005  0.085  29.998  0.086 
Bristol County  27.898  0.134  27.255  0.174  27.198  0.177  27.185  0.178 
Carver County  29.310  0.084  28.729  0.120  28.407  0.140  28.368  0.142 
Dakota County  30.341  0.082  29.908  0.108  29.570  0.128  29.544  0.130 
Dukes County  23.454  0.165  23.168  0.185  23.112  0.189  23.100  0.190 
Essex County  27.865  0.117  27.593  0.134  27.557  0.136  27.545  0.137 
Franklin County  25.984  0.167  25.611  0.190  25.561  0.193  25.559  0.194 
Hampden County  27.593  0.155  27.183  0.180  27.116  0.184  27.114  0.184 
Hampshire County  26.714  0.158  26.397  0.178  26.339  0.182  26.337  0.182 
Hennepin County  30.948  0.050  30.582  0.072  30.438  0.081  30.421  0.082 
Hillsborough County  29.727  0.081  29.508  0.095  29.497  0.095  29.483  0.096 
Manatee County  29.343  0.112  29.195  0.121  29.182  0.122  29.164  0.123 
Mecklenburg County  30.514  0.108  30.038  0.135  29.791  0.150  29.779  0.150 
Middlesex County  28.514  0.115  28.205  0.134  28.181  0.135  28.173  0.136 
Milwaukee County  31.189  0.020  30.589  0.057  30.580  0.058  30.501  0.063 
Monmouth County  27.446  0.142  26.481  0.201  26.375  0.207  26.327  0.210 
Nantucket County  24.205  0.138  23.958  0.156  23.930  0.158  23.927  0.158 
Norfolk County  28.612  0.116  28.183  0.142  28.139  0.145  28.122  0.146 
New York City  30.049  0.110  29.095  0.165  29.015  0.170  28.948  0.174 
Plymouth County  26.442  0.148  25.938  0.180  25.863  0.185  25.844  0.186 
Ramsey County  29.582  0.080  29.317  0.096  29.204  0.103  29.184  0.104 
Sarasota County  29.233  0.104  29.107  0.112  29.088  0.113  29.077  0.113 
Suffolk County  30.991  0.061  30.506  0.090  30.493  0.091  30.466  0.092 
Vanderburgh County  28.985  0.137  28.545  0.163  28.471  0.167  28.460  0.168 
Washington County  29.124  0.083  28.563  0.118  28.254  0.137  28.213  0.139 
Worcester County  27.916  0.135  27.609  0.154  27.578  0.156  27.573  0.156           

Table A3 
Sensitivity of overall accuracy metrics to the analytical unit (i.e., grid cell block sizes).  

County Precision 
(1x1) 

Precision 
(3x3) 

Precision 
(5x5) 

Recall 
(1x1) 

Recall 
(3x3) 

Recall 
(5x5) 

F1 
(1x1) 

F1 
(3x3) 

F1 
(5x5) 

Anoka County 0,612 0,764 0,841 0,554 0,673 0,727 0,581 0,715 0,780 
Baltimore County 0,672 0,816 0,858 0,669 0,792 0,842 0,671 0,804 0,850 
Barnstable County 0,666 0,835 0,898 0,567 0,775 0,872 0,613 0,803 0,884 
Berkshire County 0,731 0,845 0,882 0,461 0,606 0,692 0,565 0,706 0,776 
Boulder County 0,683 0,819 0,862 0,320 0,438 0,478 0,436 0,571 0,615 
Bristol County 0,700 0,844 0,889 0,624 0,790 0,860 0,660 0,816 0,874 
Carver County 0,610 0,758 0,820 0,568 0,657 0,693 0,588 0,704 0,752 
Dakota County 0,626 0,769 0,830 0,716 0,858 0,909 0,668 0,811 0,867 
Dukes County 0,604 0,746 0,807 0,560 0,749 0,826 0,581 0,748 0,817 
Essex County 0,714 0,879 0,920 0,554 0,770 0,857 0,624 0,821 0,887 
Franklin County 0,676 0,772 0,810 0,506 0,648 0,729 0,579 0,705 0,768 
Hampden County 0,747 0,868 0,912 0,394 0,583 0,728 0,516 0,698 0,809 
Hampshire County 0,719 0,832 0,872 0,447 0,607 0,711 0,552 0,702 0,784 
Hennepin County 0,645 0,795 0,862 0,606 0,759 0,805 0,625 0,777 0,832 
Hillsborough County 0,583 0,735 0,778 0,671 0,842 0,907 0,624 0,785 0,838 
Manatee County 0,658 0,799 0,833 0,721 0,858 0,900 0,688 0,828 0,865 
Mecklenburg County 0,763 0,873 0,916 0,516 0,663 0,778 0,615 0,753 0,841 
Middlesex County 0,717 0,870 0,914 0,287 0,386 0,430 0,410 0,535 0,585 
Milwaukee County 0,697 0,881 0,925 0,289 0,437 0,483 0,408 0,584 0,635 
Monmouth County 0,651 0,792 0,848 0,414 0,495 0,528 0,507 0,609 0,651 
Nantucket County 0,585 0,733 0,795 0,586 0,800 0,874 0,585 0,765 0,832 
Norfolk County 0,712 0,868 0,915 0,585 0,784 0,875 0,642 0,824 0,895 
New York City 0,771 0,916 0,929 0,824 0,944 0,975 0,797 0,929 0,951 
Plymouth County 0,681 0,827 0,881 0,571 0,750 0,837 0,621 0,787 0,859 
Ramsey County 0,682 0,828 0,886 0,596 0,793 0,859 0,636 0,810 0,872 
Sarasota County 0,663 0,823 0,872 0,710 0,865 0,922 0,685 0,844 0,896 
Suffolk County 0,742 0,899 0,914 0,720 0,914 0,955 0,731 0,906 0,934 
Vanderburgh County 0,738 0,862 0,901 0,589 0,754 0,832 0,655 0,804 0,865 
Washington County 0,621 0,762 0,823 0,588 0,691 0,734 0,604 0,725 0,776 
Worcester County 0,727 0,854 0,896 0,227 0,327 0,385 0,346 0,473 0,538  
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measured by MTBF-33 would result in lower precision values. However, 
as we observe high precision levels throughout our analysis, we believe 
that this temporal discrepancy has only a minor effect on our findings. In 
future work, we will test different methods for the agreement maximi
zation stage (e.g., ROC analysis; Green & Swets 1966), and apply this 
framework to larger spatial extents, within and outside of the United 
States. 
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Carver County  1.177  0.047  0.914   1.220  − 0.058  0.962   1.251  − 0.116  0.984 
Dakota County  1.078  0.410  0.948   1.101  0.258  0.976   1.116  0.179  0.985 
Dukes County  0.864  0.184  0.964   0.878  0.130  0.983   0.889  0.095  0.991 
Essex County  0.810  − 0.335  0.967   0.821  − 0.397  0.981   0.826  − 0.418  0.987 
Franklin County  0.702  0.075  0.958   0.726  0.029  0.978   0.753  − 0.001  0.983 
Hampden County  0.441  0.395  0.858   0.435  0.515  0.863   0.445  0.440  0.902 
Hampshire County  0.570  0.161  0.908   0.590  0.088  0.950   0.611  0.031  0.964 
Hennepin County  0.983  1.470  0.938   0.990  1.349  0.957   0.991  1.258  0.972 
Hillsborough County  1.011  1.454  0.932   1.037  0.991  0.968   1.047  0.809  0.980 
Manatee County  1.046  0.434  0.965   1.048  0.236  0.985   1.051  0.187  0.991 
Mecklenburg County  0.549  1.913  0.686   0.520  2.281  0.746   0.490  2.608  0.792 
Middlesex County  0.873  − 0.798  0.958   0.891  − 0.938  0.971   0.887  − 0.896  0.978 
Milwaukee County  0.654  1.462  0.697   0.693  0.184  0.785   0.715  − 0.518  0.856 
Monmouth County  0.994  0.939  0.930   1.033  0.565  0.967   1.045  0.413  0.982 
Nantucket County  0.904  0.412  0.958   0.936  0.196  0.980   0.964  0.102  0.989 
Norfolk County  0.853  − 0.322  0.951   0.877  − 0.539  0.968   0.914  − 0.846  0.976 
New York City  1.054  0.601  0.900   1.071  0.008  0.914   1.099  − 0.876  0.929 
Plymouth County  0.823  0.065  0.946   0.831  0.017  0.973   0.831  0.001  0.982 
Ramsey County  0.811  2.616  0.918   0.812  2.460  0.948   0.829  1.992  0.963 
Sarasota County  1.018  0.689  0.963   1.023  0.484  0.986   1.030  0.343  0.994 
Suffolk County  0.947  0.818  0.938   0.946  0.762  0.950   0.946  0.690  0.955 
Vanderburgh County  0.760  0.342  0.947   0.756  0.336  0.969   0.756  0.306  0.979 
Washington County  1.115  0.131  0.928   1.140  0.041  0.957   1.177  − 0.081  0.971 
Worcester County  0.598  0.010  0.900   0.601  − 0.057  0.917   0.616  − 0.189  0.914  
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multi-scale cross-comparison framework for global settlement layers: Evidence from 
Central Europe. Remote Sens. Environ. 178, 191–212. 

Leyk, S., Uhl, J.H., Balk, D., Jones, B., 2018. Assessing the accuracy of multi-temporal 
built-up land layers across rural-urban trajectories in the United States. Remote Sens. 
Environ. 204, 898–917. 

Leyk, S., Zimmermann, N.E., 2004. A predictive uncertainty model for field-based survey 
maps using generalized linear models. International Conference on Geographic 
Information Science 191–205. 

Leyk, S., Balk, D., Jones, B., Montgomery, M.R., Engin, H., 2019. The heterogeneity and 
change in the urban structure of metropolitan areas in the United States, 1990–2010. 
Sci. Data 6 (1), 321. 

Leyk, S., Balk, D., Jones, B., Montgomery, M.R., Engin, H., 2019. The heterogeneity and 
change in the urban structure of metropolitan areas in the United States, 1990–2010. 
Scientific data 6 (1), 321. 

Leyk, S., Gaughan, A.E., Adamo, S.B., de Sherbinin, A., Balk, D., Freire, S., Pesaresi, M., 
2019. The spatial allocation of population: a review of large-scale gridded 
population data products and their fitness for use. Earth Syst. Sci. Data 11 (3), 
1385–1409. 

Liu, F., Wang, S., Xu, Y., Ying, Q., Yang, F., Qin, Y., 2020. Accuracy assessment of Global 
Human Settlement Layer (GHSL) built-up products over China. PLoS One 15 (5), 
e0233164. 
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