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Abstract
McCaffrey, Katherine (PhD, Atmospheric and Oceanic Sciences)
Characterizing Ocean Turbulence from Argo, Acoustic Doppler, and Simulation Data
Thesis directed by: Baylor Fox-Kemper, Assistant Professor, Department of Geological Sci-
ences, Brown University, and the Cooperative Institute for Research in Environmental Sci-
ences, University of Colorado at Boulder

Turbulence is inherently chaotic and unsteady, so observing it and modeling it are no easy
tasks. The ocean’s sheer size makes it even more difficult to observe, and its unpredictable
and ever-changing forcings introduce additional complexities. Turbulence in the oceans
ranges from basin scale to the scale of the molecular viscosity. The method of energy trans-
fer between scales is, however, an area of active research, so observations of the ocean at all
scales are crucial to understanding the basic dynamics of its motions. In this collection of
work, I use a variety of datasets to characterize a wide range of scales of turbulence, including
observations from multiple instruments and from models with different governing equations.

I analyzed the largest scales of the turbulent range using the global salinity data of the
Argo profiling float network. Taking advantage of the scattered and discontinuous nature
of this dataset, the second-order structure function was calculated down to 2000m depth,
and shown to be useful for predicting spectral slopes. Results showed structure function
slopes of 2

3
at small scales, and 0 at large scales, which corresponds with spectral slopes of

−5
3

at small scales, and −1 at large scales. Using acoustic Doppler velocity measurements,
I characterized the meter- to kilometer-scale turbulence at a potential tidal energy site in
the Puget Sound, WA. Acoustic Doppler current profiler (ADCP) and acoustic Doppler ve-
locimeter (ADV) observations provided the data for an analysis that includes coherence,
anisotropy, and intermittency. In order to more simply describe these features, a parame-
terization was done with four turbulence metrics, and the anisotropy magnitude, introduced
here, was shown to most closely capture the coherent events. Then, using both the NREL
TurbSim stochastic turbulence generator and the NCAR large-eddy simulation (LES) model,
I calculated turbulence statistics to validate the accuracy of these methods in reproducing
the tidal channel. TurbSim models statistics at the height of a turbine hub (5m) well, but
do not model coherent events, while the LES does create these events, but not realistically
in this configuration, based on comparisons with observations.

Each of the datasets have disadvantages when it comes to observing turbulence. The
Argo network is sparse in space, and few measurements are taken simultaneously in time.
Therefore spatial and temporal averaging is needed, which requires the turbulence to be
homogeneous and stationary if it is to be generalized. Though the acoustic Doppler current
profiler provides a vertical profile of velocities, the fluctuations are dominated by instrument
noise and beam spread, preventing it from being used for most turbulence metrics. ADV
measurements have much less noise, and no beam spread, but the observations are made at
one point in space, limiting us to temporal statistics or an assumption of “frozen turbulence”
to infer spatial scales. As for the models, TurbSim does not have any real-world forcing, and
uses parameterized spectra, and coherence functions and randomizes phase information,
while LES models must make assumptions about sub-grid scales, which may be inaccurate.
Additionally, all models are set up with idealizations of the forcing and domain, which
may make the results unlike observations in a particular location and time. Despite these
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difficulties in observing and characterizing turbulence, I present several quantities that use
the imperfect, yet still valuable observations, to attain a better description of the turbulence
in the oceans.
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Chapter 1

Introduction

1.1 What is turbulence?

Turbulence is a fascinating phenomenon that has been studied for centuries, but is so complex

that there still remains much to be understood about it. The state of being turbulent is

defined by Merriam-Webster.com (2014) as:

a : great commotion or agitation,

b : irregular atmospheric motion especially when characterized by up-and-down currents,

c : departure in a fluid from a smooth flow.

Causing “great agitation” among fluid dynamicists since the 16th century, the chaotic and

unpredictable nature of turbulence has been both the attracting and deterring factor in its

study. With variations from a smooth flow occurring in both space and time over a large

range of scales, turbulent flows occur in many different forms in the world we live. Beyond

the most familiar atmospheric turbulence experienced by almost anyone who has flown in an

airplane, turbulence is present in many applications including: boundary layers of vehicles,

blood flow through arteries, internal combustion engine cylinders, wakes of air and sea craft,

industrial emissions and pollution, and in the magnetic fields in the Earth’s core or on the

Sun.

1



A fluid is defined as turbulent in fluid dynamic terms when the Reynolds number is in

the range

Re ≡ UL

ν
=

(L/T )L

ν
=
L2/T

ν
≈ O(104 − 108), (1.1)

where U , L, T , and ν, are the velocity, length, time, and molecular viscosity scales of the fluid

(Pope, 2000). The Reynolds number is the ratio of the non-linear inertial to linear viscous

effects, which determines whether the flow is dominated by viscosity and is therefore smooth

and laminar (low Reynolds number), or dominated by inertia, and therefore is complex and

turbulent (high Reynolds number). The complexity of turbulence is such that the flows span

a range of length and time scales, from a largest, “outer” scale, δ, to the smallest “inner”

scale set by the viscosity, λν . The relationship between the two scales is set by the outer

scale Reynolds number (L = δ in Equation 1.1) as δ/λν = O(10−1)Re
3/4
δ (Pope, 2000). In

the ocean, δ ∼ 1000km, and λν ∼ 1mm, resulting in a range of more than five orders

of magnitude (Jimenez, 1997).There is also a range of time scales in every turbulent flow,

from a longest scale, Tδ ≡ δ/u, to the shortest scale, Tν ≡ λν/u. The ratio of longest to

shortest time scales is also Tδ/Tλ = O(10−1)Re
3/4
δ , again resulting in a range of five orders

of magnitude in the ocean.

However, most turbulent flows are not the same at all locations (u = u(x), and δ = δ(x)),

so the Reδ becomes a function of the location in the flow, i.e. Reδ = Reδ(x) (Pope, 2000). A

flow is homogeneous when the statistics are the same in all locations in the flow, and a flow is

isotropic when statistics are the same in all directions. Thus, the statistics of most turbulent

flows (e.g. u′2, v′2, or w′2) are globally inhomogeneous and anisotropic. Turbulence can also

be non-stationary, or changing on long time scales. Section 1.2 will discuss the importance

of removing the slowly-changing signal to identify the turbulence that may be considered

stationary. The non-stationarity, heterogeneity and anisotropy in turbulent flows contribute

to their difficulty to observe, analyze, and predict.

The most commonly used method of analyzing turbulence comes from the seminal work

of A.N. Kolmogorov (1941) (commonly referred to as “K41”). In this work, K41 makes three
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hypotheses. The first states that,

When looking at a small volume L� δ(x) with characteristic time dimension T much

less than δ(x)/u, the turbulence can be approximated as being locally homogeneous, isotropic,

and stationary.

The second states that,

In that small volume with characteristic dimension L and over the same short duration

T , the turbulence will be essentially universal, depending only on the local values of the

kinetic energy dissipation rate ε, the viscosity ν, and the spatial scale r (or wavenumber

k).

And the final hypothesis is that,

For r between the local inner and outer scales (r < δ(x) but r > λk(x)), the turbulence

statistics become independent of ν and thus depend only on the dissipation rate ε and

the scale r (or wavenumber k).

Most turbulence theories that have followed K41 are based on this assumption of homoge-

neous, isotropic, stationary turbulence, with analyses of the kinetic energy spectrum, shown

in Figures 1.1&1.2. This spectrum can be divided into sections as shown, with forcing at

large scales (small k), dissipation at small scales (large k), and an inertial range where en-

ergy is neither created or destroyed, but simply transferred from large to small scales. The

spectral slope, λ, of the inertial range in this forward energy cascade (commonly plotted on

log-log axes) has been analyzed in laboratory experiments and found to support the K41

hypotheses (Gibson and Schwarz, 1963; Grant et al., 1962; Lumley, 1964).

Before the work of K41, and through observing and forecasting the weather, Lewis Fry

Richardson (1922) spoke very eloquently:

Big whirls have little whirls that feed on their velocity,

and little whirls have lesser whirls and so on to viscosity.

Following the foundational work of K41, subsequent work has shown that the turbulent

cascade over an inertial range can also be applied to other isotropic, homogenous flows.
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Figure 1.1: A schematic of a kinetic energy spectrum, with the forcing, inertial and dissipa-
tion ranges shown.

Obukhov (1949) and Corrsin (1951) theorized about the variance spectra of passive tracers

in a three-dimensional flow. They found that a tracer will follow the same slope behavior as

the kinetic energy spectrum that carries the tracer, with a spectral slope of λ = −5
3
. Soon

after, Batchelor (1959) predicted the tracer variance spectrum between the viscous scale,

when energy is dissipated, and the diffusivity scale, where the tracer is dissipated. In this

small scale, the now-called “Batchelor spectrum” follows a spectral slope of λ = −1. With a

similar argument, Vallis (2006) showed that, in a flow dominated by one eddy-turnover time

scale, the passive tracer spectrum has a forward cascade with slope of λ = −1. Research

continues to investigate other turbulent regimes where spectral slopes can be expected to

differ. The ocean itself has many different regimes, which will be introduced briefly below,

and investigated further with observations in Chapter 2.
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Figure 1.2: Normalized velocity spectra at differing Reynolds numbers, from Gibson (1963).
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1.1.1 Geophysical Turbulence - Oceans

In many ways, the highly complex ocean is no different from the theoretical or laboratory

flows that are more simple to analyze. It has the same basic kinetic energy spectrum, with

forcing, inertial or transport, and dissipation ranges of motion. The ocean is forced at the

largest scales by the temperature gradient between the unevenly-heated equator and poles

(Stewart, 2004). Winds also provide forcing on the oceans by transferring momentum at

the air-sea interface, and the gravitational and rotational forces of the Earth force tides

and geostrophic currents. At the smallest scales, energy is dissipated at the molecular

level through friction. In between, mesoscale and submesoscale eddies form the inertial

range of turbulent motions. The spectral slope differs depending on the particular turbulent

regime and forcings, and in certain regimes, can include an enstrophy (vorticity squared)

cascade with different slopes. For example, in 2D turbulence, energy and enstrophy are

both conserved, so there is also an enstrophy cascade that cannot overlap with the energy

cascade, resulting in an inverse energy cascade with spectral slope of λ = −5
3

to large

scales from a central wavenumber, and a forward enstrophy cascade with spectral slope of

λ = −3 to small scales (Kraichnan, 1967). The ocean can sometimes be nearly 2D because

stratification, rotation, and depth can limit vertical motions. Non-dimensional parameters,

like the Rossby number which compares rotational and inertial forces (Ro = U/fL, where

f = Ωcosθ is the Coriolis parameter for rotation rate Ω and latitude θ) and the Prandtl

ratio which compares rotation and buoyancy (Pr = f/N , where N2 is the Brunt-Väisälä, or

buoyancy, frequency), define regimes in the oceans when particular forces are important (or

not) (Vallis, 2006). When horizontal scales are near the deformation radius (LR =
√
gD/f0,

where g is the acceleration due to gravity, D is the water depth, and f0 is the Coriolis

parameter at a particular latitude) and thus horizontal motions are much larger than vertical

ones, variations in f are small, Ro is small, the ocean is considered to be quasi-geostrophic.

Charney (1971) showed that quasi-geostrophic motions are very similar to 2D, and therefore

share the inverse energy cascade slope of λ = −5
3

and the forward enstrophy cascade with
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slope of λ = −3. The difference between 2D and QG is in the vertical boundaries in QG,

as identified in Salmon (1980), and Blumen (1982) identified the surface-forced QG (surface

quasi-geostrophy, or SQG) scenarios with an inverse energy cascade with spectral slope of

λ = −2 and a forward temperature variance cascade with slope of λ = −8/3. Each of these

predictions for spectral slopes is based on theory, and in many ways, the actual ocean is

more complicated than the simplified theories, so observations are needed to answer which

theory is correct, and if multiple theories’ slopes are observed in different regions or ranges

of scales, what the determining factors are.

1.2 Observing Ocean Turbulence

An analysis of the spectrum of turbulence in the oceans requires observations at many spatial

and temporal scales. The largest spatial scales may be the easiest to observe with the use

of satellites, while the smallest can only be observed in localized studies. The longest time

scales are impossible to study since they are much longer than a human lifetime, but decadal

scales are observable by satellites. The shortest timescales can again only be observed locally.

Intermediate spatial and temporal scales are observed to varying degrees.

Observing turbulence requires a span of temporal and spatial scales of observations,

so that mean and fluctuating components can be separated. The averages used for the

statistical description can be temporal, spatial, or ensemble, depending on the nature of the

problem at hand. From the average, a fluctuating value can be obtained, as in a Reynolds

decomposition,

u = u + u′, (1.2)

where u is the full flow property (e.g., velocity or temperature), u is the mean, and u′ is the

fluctuation (Pope, 2000). From this definition, it is also true that u = u, and u′ = 0.

When making observations of turbulent flows, the spatial and temporal sampling resolu-

tion as well as averaging intervals are not trivial. For a flow with a characteristic fluctuation
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time scale τ and outer time scale T , the averaging time interval, δt, used to remove the

background state must satisfy τ < δt < T . Similarly, the spatial averaging scale must be

larger than the smallest length scale of the fluctuations and smaller than the forcing length

scale. This requirement has two major implications: first, about the sampling resolution,

and second, about the averaging scales. The sampling frequency of an instrument is often

non-negotiable, so the appropriate instrument is needed for the desired information. For ex-

ample, an acoustic Doppler current profiler (ADCP) has a sampling frequency of O(1 Hz),

while an acoustic Doppler velocimeter (ADV) has sampling frequencies higher than 10 Hz

(Nortek USA, LLC, 2014). The ADV can, therefore, measure smaller structures in the flow

than an ADCP. For some applications, those small-scale fluctuations may be important, but

for others, the lower resolution may be sufficient.

When choosing an appropriate averaging interval, an analysis of the scale separations is

necessary. An example analysis done on ADCP velocity measurements from a tidal strait

to illustrate this procedure. In decomposing the velocity signal into a temporal mean and

perturbation, the goal is to capture the small-scale (in time and space) turbulent effects

aside from the large-scale (in time and space) tidal effects. Taylor’s “frozen turbulence”

hypothesis of the relationship between the time and length scales is assumed, which assumes

that the mean flow is slower than the turbulent flow, so, for a given mean velocity scale,

u, the time and length scales of the turbulence are related directly to the mean velocity as

U ∼ L/T (Taylor, 1938). This requires that, for turbulence at larger spatial scales, a longer

time scale is needed to capture the motions, and vice versa. With a goal of capturing the

large, coherent structures in the tidal flow, the largest δt possible is desirable. However,

the tidal signal impacts the flow at longer time scales, so a careful analysis was needed to

separate the two.

Figure 1.3a shows a 10.5-hour segment of velocities with different δt means, and Fig-

ures 1.3b and c show the resulting perturbations (δt = 60, 30, and 20 minutes in Figure 1.3b

and δt = 10 and 5 minutes in Figure 1.3c). From these plots, it is clear that the 60, 30 and
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20-minute averages are too long because a significant trend remains over the intervals where

the tide is changing direction. That trend is therefore being included in the “turbulence,”

though it is actually the tidal signal.

The variance for each segment in the entire sample for different δt values was computed,

and is shown in Figure 1.4. For the smallest values of δt, there are higher variances seen,

with a decrease as δt increases to about δt = 5. Ignoring the outliers, the range of variances

stays about constant until approximately δt = 35 when it increases again. Using this range

of ideal δt values, as well as the information in Figure 1.3, the higher end of this range is

known to be too large. Therefore, after this analysis, the interval length, δt, for the mean-

perturbation decomposition was chosen to be 10 minutes. This captures the largest scales

of turbulence without contaminating it with the tidal signal.

Unfortunately the availability of observations often forces averaging on inopportune

scales. The global Argo dataset, for example, has large spatial coverage, but the closest

floats are only O(1− 10km) apart, disabling the Argo floats from being used for any subme-

soscale observations. The following section introduces several examples of ocean turbulence

observations, explaining how the available observations can be used, as well as their limita-

tions.

1.2.1 Relevant Observations

Observations of ocean turbulence are largely limited to specific regions where a particular

phenomenon is occurring. Global observations are fairly limited, with the exception of the

recent Argo project (Argo Science Team, 1998). Typically global ocean observations are con-

strained to the ocean surface though the use of satellites. Localized observational campaigns

involving autonomous gliders, floats, and tow-yos have been completed more extensively. An

introduction to different turbulence characterization methods based on observations is done

below with a selection of studies (an excellent review of similar observations can be found

in Callies and Ferrari (2013)).
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Figure 1.3: a) Velocity (black) over a 10.5-hour segment with averages shown in color: δt =
60-minute: green, δt = 30-minute: red, δt = 20-minute: blue, δt = 10-minute: magenta, δt
= 5-minute: cyan. Perturbation from the mean are shown in b) and c) for δt = 60, 30 and
20min, and δt = 10 and 5min, respectively, with the same colors as a).
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Figure 1.4: Variances for each segment with δt varying.

Global turbulence estimates from satellite data

Satellites provide a significant amount of information about the ocean surface with their

repeated measurements over the entire globe. Satellite programs include sea-surface temper-

ature (SST, e.g., Aqua, Envisat), sea-surface salinity (SSS, e.g., Aquarius), sea-surface height

(SSH, e.g., Jason 1 and 2 ), ocean color for chlorophyll (e.g., Aqua), and sea-ice cover (e.q.,

Aqua) (JPL, 2014; NASA, 2014). From SSH, surface velocities can be computed, assuming

geostrophy (motions balanced between the pressure gradient from SSH and rotation), and

it is possible to infer turbulence quantities from other data like SST and SSS. Wunsch and

Stammer (1995) used two years of TOPEX/POSEIDON altimetric measurements to calcu-

late global wavenumber spectra (Figure 1.5). They calculated global maps of SSH variability

from the data, which is obtained in each location on the Earth’s surface every 10 days. In

the along-track wavenumber spectra, they observed slopes of λ = −5/2 below the deforma-

tion radius and a shallower slope at larger scales, with errors possibly including the slope

of λ = −3 of the enstrophy cascade. Scott and Wang (2005) also used SSH observations to
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Figure 1.5: Figure 6b from Wunsch and Stammer (1995): Example of the anomaly of el-
evation η′ = η − η, relative to four-year mean η during one 10-day period (March 10-20,
1993). The geostrophic flow vectors corresponding to the elevation anomaly are superposed.
Wavelengths shorter than about 500km have been omitted to permit some visual clarity.
The actual anomaly field is far more complex and visually dominated by the omitted small
scales.

analyze the two-dimensional energy cascade, seeing an inverse cascade, though it is limited

to scales only just above the deformation radius. Using satellite data to gain information

about ocean turbulence is very useful, but it gives no sub-surface information. Only recently

have satellite altimetry spectra supported SQG (not QG) dynamics, which inform the sub-

surface (Le Traon et al., 2008). Also, spectra from altimetry measurements are limited by

the assumption of geostrophy needed to obtain velocity from SSH, excluding all ageostrophic

(i.e., turbulent) motions.

Regional turbulence estimates from gliders, floats, and tow-yos

Focusing on particular regions where interesting dynamics are known or predicted to oc-

cur can provide information to extend on larger scales. Wang et al. (2010) and Ferrari

and Rudnick (2000) used ship-board ADCPs and towed instruments on transects between
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New York and Bermuda, and in the subtropical North Pacific, respectively. Callies and

Ferrari (2013) analyzed the data at scales smaller than 200km (submesoscale) from both

campaigns and found spectral slopes indicating interior QG dynamics in the Gulf Stream

region, while neither interior nor surface QG dynamics appear in the more quiescent tropical

North Pacific. Cole and Rudnick (2012) also obtained more than two years of observations

from an underwater glider in the central subtropical North Pacific, north of the Hawaiian

islands. They investigated thermohaline fluctuations by computing spectra of salinity varia-

tions along constant density surfaces (isopycnals) between the scales of 15− 1300 km. This

creates a passive tracer cascade, since salinity and density are independent (temperature

changes balance salinity changes to keep density constant). Their results showed spectral

slopes of λ = −1 at the scales observed, and on isopycnals down to 25.8 kg m−3. Another

localized study in the North Atlantic used relative dispersion theory to predict the probabil-

ity of the location of neutrally buoyant subsurface drifters over time (LaCasce and Bower,

2000). Their results shown evidence of an inverse energy cascade in the western basin, but

not in the east. Klymak and Moum (2007) used a horizontally-towed vehicle equipped with

a microstructure profiler in the Kauai Channel in Hawaii to measure turbulent dissipation

rates, as well as spectra of pressure, isopycnal displacement, temperature, and isopycnal

slope. This horizontal spectral information was compared to vertical measurements to quan-

tify the Garrett-Munk internal wave spectrum (Garrett and Munk, 1972). Each of these

observational campaigns was conducted with a slightly different purpose and instruments,

highlighting the vast range of measurement techniques used for observing ocean turbulence.

However, global coverage with these methods and instruments is unreasonable.

Local estimates of turbulence with acoustic instruments

Thomson et al. (2012) characterize of turbulence at two tidal energy sites in the Puget Sound,

WA using ADCP and ADV data. With only the availability of a time series of observations

at one point (ADV) or in a vertical profile (ADCP), Taylor’s hypothesis is employed to gain
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spatial information from temporal data. This hypothesis requires that the turbulence is

advected at a faster rate than it changes, so the time scales are directly proportional to the

length and velocity scales (L = UT ) (Taylor, 1938). The fractional turbulence intensity, or

the intensity of turbulence at different spatial scales, is calculated by a change in variables

from frequency to length scale in the horizontal velocity spectra (representative of the velocity

variance at a particular scale), divided by the mean speed. Spectral slopes of λ = −5
3

were

seen, with length scales of about 70m containing the most turbulence intensity at the Nodule

Point location in the Puget Sound. With only a time series available, the only way to gather

length scale information is through an assumption about the flow which may not be valid

for all, if any, real-world tidal flows.

1.3 Modeling Ocean Turbulence

With the lack of observations to adequately characterize turbulence in many cases, numerical

models are used to fill in the gaps in time and in space. Since the statistics of the energy

spectrum are based on the large scale flow (δ and u), only the mean flow needs to be resolved

and then turbulence statistics can be obtained from the large-scale motions (Kolmogorov,

1941). The goal of modeling is to predict, from solving particular mathematical equations,

the future state of a flow based on specific initial and boundary conditions. The continuity

and Navier-Stokes (NS) equations for fluid motion (Equation 1.3) are first ensemble-averaged

(direct-numerical simulations compute the fully-resolved NS equations, but are extremely

computationally expensive and not reasonable for flows with a large range of scales), in

order to solve for the mean flow (Equation 1.4, called the Reynolds-Averaged Navier-Stokes,

or RANS, equations).

∂ui
∂xi

= 0;
∂ui
∂t

= −uj
∂ui
∂xj
− 1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(1.3)

∂ui
∂xi

= 0;
∂ui
∂t

= −uj
∂ui
∂xj
− 1

ρ

∂p

∂xi
+

1

ρ

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xj

)
− ρu′iu′j

]
(1.4)
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(Pope, 2000). However, even the equations for the mean flow include higher-order terms

(i.e., u′iu
′
j) that prevent closure, so the biggest challenge in modeling turbulence is adequately

representing the higher-order terms while obtaining a closed equation set to solve. Those

higher-order terms are the turbulence that we want to most accurately capture, and extensive

work is still being done to improve the methods of modeling this term. In many models, the

gradient transport theorem is used, which relates the turbulent flux of a quantity ψ by the

fluctuating component u′i to the mean gradient of ψ by a proportionality constant diffusivity:

u′iψ
′ = −D ∂ψ

∂xi
. (1.5)

In the case of ψ = uj, the diffusivity, D is equal to the eddy viscosity, νT . Several models

predict the behavior of νT , including mixing-length theory models (Smagorinsky, 1963; Lo-

max and Baldwin, 1978), and k−ε and k−ω models (Launder and Spalding, 1974). Without

going into the details of these models, the important point is that whichever estimation of νT

is used, the equation set is now closed, and can therefore be solved at all points in a chosen

volume.

Another method of solving the NS equations is large-eddy simulations (LES). This

method applies a low-pass filter to solve the NS equations at low computational cost. A

sub-grid scale (SGS) model is then used for the smaller, unresolved scales. This method is

based on the assumption that the most energetic eddies are the large ones, and that the

smaller eddies receive their energy through the cascade, are independent of the flow geom-

etry or forcing mechanisms, and can therefore by modeled (if the cut-off scale lies in the

inertial range) (Moeng, 1984). The chosen parameterization scheme is much less sensitive

than in the RANS model since only the small eddies are parameterized, as opposed to all of

them. The most popular SGS model is that of Smagorinsky (1963), using a nonlinear eddy

viscosity. Other SGS models include those of Germano et al. (1991); Bardina et al. (1980);

Domaradzki and Saiki (1997), and Scotti and Meneveau (1999).
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An additional way to solve the closure problem is to avoid it altogether and solve a

different set of equations which use the statistical properties of the flow, instead of the

physical ones. Since the kinetic energy spectrum is a statistical property that relies only

on the first two moments (the mean and standard deviation), this can be the starting point

for a stochastic turbulence model, such as the National Renewable Energy Laboratory’s

TurbSim model (Jonkman, 2009). Defining a spectral model, then computing an inverse

Fourier transform can provide the velocity perturbations to be added to a more basic mean

flow. This method is very simplified, making it very computationally cheap, but it also misses

strongly coherent or intermittent features of flow that may be important (Mücke et al., 2011).

The work herein includes an analysis of both a stochastic-turbulence generating model and

LES, with the aim of understanding which model more accurately creates turbulence that

can be relied on.

1.4 Why is ocean turbulence important?

The global ocean energy budget is not fully understood, but is important for many reasons, a

sampling of which are presented here. First, the role that the oceans play in determining the

global climate is paramount. Nearly half of the sun’s radiation is absorbed by the oceans,

and, with its large heat capacity, a great deal of it gets mixed deeper by the winds and

transported poleward as part of the “global conveyor belt” of ocean circulation (Broecker,

1991; Stocker et al., 2013). Trenberth and Solomon (1994) estimated the amounts of heat

transported northward (Figure 1.6) in each basin, but with very large error bars. The

amount of energy that gets transported by the main global circulation is determined by the

amount of eddy activity and energy transfer to smaller scales, and ultimately dissipated.

The locations where large and small amounts of energy exist determine the climatological

properties of the Earth. With the current changes to global climate that we are seeing, it

is becoming increasingly important to understand the mechanisms behind how the ocean’s
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Figure 1.6: The poleward ocean heat transports in each ocean basin and summed over all
oceans (total), as computed from the net flux through the ocean surface, integrated from
65N and adjusted south of 30◦S, for 1988 (Trenberth and Solomon, 1994).

heat is transported (i.e., by turbulence) in order to continually improve global climate models

(GCMs). A more complete understanding of the ocean will allow models to predict future

states with better precision. For this reason, many studies have set out to determine the

spectral behavior of the energy transfer between large and small scales from observations

in different locations in the oceans. With the knowledge of the rates of forcing, transfer,

and dissipation, GCMs can more accurately parameterize the smaller scales of turbulence

that they cannot resolve, and the greater number of observations allows for better model

validation and reliability.

Another important reason for studying ocean turbulence that drives parts of this research

is the usage of ocean energy for power generation. Much like the strong winds in parts of the

world, there are ocean currents that surpass 1 m s−1, which, with the density of water 1000×

that of the air, can produce substantial amounts of energy (O’Rourke et al., 2010). Marine

renewable energy comes in four main types: ocean thermal, wave, tidal, and ocean current
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Figure 1.7: General behavior of the wind power curve with changes in turbulence intensity
(Figure 28.1 from Kaiser et al. 2007).

energy conversion (the 3 later forms are marine hydrokinetic, or MHK, energy sources). The

focus of the research here will be tidal energy conversion. Turbulence plays an important role

in the generation of power through its impacts on a turbine and the mean flow (Legrand,

2009). In some cases, a fast flow with strong turbulence may be less desirable than a

slower flow with weaker turbulence. The importance of turbulence effects on wind turbines

is becoming increasingly appreciated as experience increases. Intense coherent turbulent

structures can be structurally harmful to turbines, can decrease the capacity to generate

power, and can increase the overall cost of power production. Elliott and Cadogan (1990),

Kaiser et al. (2007), and Rareshide et al. (2009) showed that increased turbulence intensity

decreases the power generated by a turbine at high wind speeds and slightly increases it at

low wind speeds (Figure 1.7). Sutherland (2002), Frandsen et al. (2007), and Mücke et al.

(2011) quantified the loading response of the turbine to turbulent flows, showing increased

loads that decrease the lifetime of the turbines. With increased observations and improved

numerical models, more specific features (e.g., size, shape, frequency) and their impacts on

power generation can be better understood.

There are, of course, many other interesting problems inside the realm of ocean turbu-

lence, but the applications presented above are the ones motivating the work in the following
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chapters of this dissertation. I set out to answer these questions, with a collection of obser-

vations and models as my tools. Each of the tools has its disadvantages and cannot do a

complete characterization on its own, but much useful information can be gained from the

imperfect data nonetheless.
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Chapter 2

Observations of Macro-turbulence

from the Global Argo Profiling Float

Network

Since the global coverage of satellite observations is limited to the surface of the oceans,

the Argo global network of subsurface floats is providing the very first observations on a

global scale down to 2000m. This groundbreaking dataset opens the doors for much greater

understanding of the large-scale circulation, and the growing density of data coverage will

extend the information to smaller scales as time passes. Only one study, by Roullet et al.

(2013), has used Argo data for turbulence, introducing the second moment of the potential

density probability density function as a diagnostic of mesoscale turbulence. This chapter

will analyze large-scale turbulence with the global coverage of the Argo profiling float dataset,

using methods proven to characterize turbulence in the atmosphere. This work introduces

a new method that can be used for GCM validation, providing more than just the point

comparisons at depth that Argo provides, but addressing the turbulent motions as well.

The contents of the chapter have been submitted for publication in the Journal of Physical

Oceanography (McCaffrey et al., 2014a & b).
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2.1 Observations from Argo Profiling Floats

The large, and ever-increasing, spatial and temporal extent of Argo’s dataset provides an

unprecedented tool for observing the large-scale ocean circulation and global changes, as well

as providing the observations needed to validate GCMs. The temporal resolution of the Argo

float network also provides greater accuracy for climatologies and data re-analysis products

which use any observations available and, with the use of dynamical models, interpolate to

cover the entire globe (Kanamitsu et al., 2002). One such example of a climatology utilizing

the extensive Argo float network is the Ocean Comprehensive Atlas, or OCCA, climatology

of Forget (2010). Having a high-quality climatology allows for a better understanding of

anomalous events in the oceans, like a hurricane which mixes and de-stratifies the ocean as

it passes. When investigating the approximate re-stratification time for the ocean mixed layer

after a hurricane has passed, scalings are needed based on the differences of the temperature

between the wake and the surrounding waters, as well as the mixed layer (restratification)

depth. The OCCA climatology, using Argo, provided the climatological temperatures under

non-hurricane conditions for use in calculating the depth to which the mixed layer needs to

re-stratify (see Appendix B and Haney et al. (2012)).

The Argo profiling float network was organized in 2000 from a less consolidated set of

floats, and has been increasing in float density since (Argo Science Team, 1998). With more

than 3500 floats routinely measuring the oceans down to 2000m, the oceans are being ob-

served in much greater detail than ever before. The Argo float network provides temperature,

salinity and pressure measurements around the world, as seen in Figure 2.1. Each Argo float

descends to 1000m, where it drifts for 9 days until descending to the full 2000m. As it ascends

to the surface, the temperature and salinity profile is recorded, and then transmitted to a

satellite. Near-real time observations are then made available, as well as a quality-controlled

dataset after analysis. For more detail on the observational methods and instrumentation,

please see Argo Science Team (1998).

The availability of such a large number of observations down to 2000m allows an inves-
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Figure 2.1: The locations of all 3606 operating Argo floats on 7 December 2013. http :
//www.argo.ucsd.edu/

tigation of previously indescribable processes. The measurements from Argo floats span a

large range of scales, from O(10km) to O(1000km), allowing analysis of temperature and

salinity in a spectrum over that range. Unfortunately, traditional spectral analysis by Fourier

methods requires continuous measurements in time and space, which are very rare in the

ocean (Ferrari and Rudnick, 2000; Klymak and Moum, 2007; Cole and Rudnick, 2012; Cal-

lies and Ferrari, 2013). The structure function analysis of Frehlich and Sharman (2010b)

introduced a method of calculating spectral slopes from rawinsonde (weather balloon) data.

This method used second-order horizontal structure functions of temperature and velocity

from randomly spaced rawinsonde profiles, and inferred spectral slopes that matched the re-

sults of the previous spectral analysis of Nastrom and Gage (1985) in the atmosphere. With

Argo floats taking randomly spaced vertical profiles, analogous to a balloon in the atmo-

sphere, here, we apply the rawinsonde method to the extensive Argo dataset to investigate

the spectral behavior of the oceans.
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2.2 Structure Function Analysis

Here, and in Appendix C and McCaffrey et al. (2014), I introduce the method of using struc-

ture functions from Argo data to characterize large-scale turbulence. Utilizing the available

salinity observations from Argo, the second-order salinity structure function (Equation 2.1)

was calculated in locations varying in depth, latitude, basin, and eddy activity:

DS(s,x) ≡ [S ′(x)− S ′(x + s)]2 → DS(s) = [S ′(x)− S ′(x+ s)]2, (2.1)

where S ′ is salinity perturbation from a mean, s is the separation distance vector between

simultaneous observations, and x is the location vector, and the overbar represents an aver-

age over x and time (Kolmogorov, 1941). The OCCA monthly-mean climatology was chosen

as the background state to determine the fluctuating component of the salinity. A monthly

mean was chosen to eliminate the large-scale forcing of the annual cycle but keep the faster,

turbulent scales. As discussed in Chapter 1, the choice of averaging intervals is critical to

an accurate description of the ocean’s turbulent flows. With the sparse Argo floats, the

structure function, which is an average in space and time, acts to smooth over the scales

smaller than the intervals. The spatial averages in the structure function are determined by

the assumptions of stationary, homogeneous, isotropic turbulence which is the basis for the

power-law scalings of theoretical turbulence (Kolmogorov, 1941). The assumption of homo-

geneous turbulence allows averaging over all locations (i.e., D(s,x) = D(s)), and isotropy

allows averaging over all directions (i.e., D(s) = D(s)). The time averaging intervals for

stationarity, however, require special attention when using Argo data. For the structure

function average, the time differences between observations also needed to be accounted for.

Only very few Argo floats measure at the exact same time, so a limit was set, dependent on

an advection velocity of ocean signals and the distance between measurement locations. I

experimented with the limiting velocity and determined that 1m s−1 - a speed faster than

most ocean currents - maintained the structure function slope of the faster velocity (which
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Reference Theory λ γ

Obukhov (1949), Passive or active tracer cascade −5
3

2
3

Corrsin (1951) in energy cascade
Batchelor (1959), Passive tracer cascade in enstrophy −1 0

Vallis (2006) cascade or other single dominant timescale
Klein et al. (1998) Surface frontogenesis active −2 1

or passive tracer cascade

Table 2.1: Several theories of spectral slope, λ, and structure function slope, γ, for different
turbulent regimes.

allowed more observations, but may include subsequent profiles from the same float, or the

same eddy sampled multiple times), but was smoother than a slower velocity, which drasti-

cally decreased the number of pairs entering the average.

Assuming a homogeneous, isotropic turbulence spectrum with power-law behavior over

a range of wavenumbers, then a related scaling law for the structure function is expected

(Webb, 1964). If the power law of the salinity spectrum is given by B(k) = αBk
λ, with

spectral slope, λ, the structure function will also have a polynomial form: Dθ(s) = cDs
γ +C0

with structure function slope, γ, and a constant C0 representing contributions from other

portions of the spectrum not adhering to the B(k) = αBk
λ law (shown to be negligible in

Webb (1964)). The relationship between the two slopes is

γ = −λ− 1. (2.2)

In the case when two discernible spectral slopes are present, the equivalent structure function

can be written as

Dθ(s) = c1s
γ1 + c2s

γ2 , (2.3)

where the relationship in Equation 2.2 applies to γ1 at small scales (large wavenumber), and

γ2 at large scales (small wavenumber) (McCaffrey et al., 2014).

As introduced in Section 1.1.1, several theories of spectral and structure function slopes

exist, so the goal of this study is to identify which theory, or theories, may describe the
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behavior in the regions analyzed. See Table 2.1 for a summary of these theories. The

behavior of active tracers varies from those of passive tracers, so structure functions were

calculated along both isobars and isopycnals, distinguishing between the active and passive

tracer behavior of the oceans. We compared structure functions varying in depth, latitude,

eddy activity, and basin to determine the dependence on physical properties of the flow.

2.3 Structure Function Results

The full results are included as Appendix C and McCaffrey et al. (2014a), but the major

findings are summarized here. Unfortunately the assumption of homogeneity that underlies

each of these turbulent theories is seen to be mostly untrue. Salinity variance, defined as

the average difference squared between the OCCA climatology and the Argo observations,

(SOCCA − SArgo)2, was calculated and mapped along constant pressure and density surfaces,

and is shown in Figure 2.2a and b, respectively. (Figure 3 in McCaffrey et al. (2014) maps

the depth of isopycnals to show that steep isopycnal slopes exist in some locations.) “Ho-

mogeneous” regions were chosen along the 5m isobar (solid line in Figure 2.2a) and the

25.9 kg m−3 isopycnal (2.2b) for a comparative analysis, with homogeneity defined as a dif-

ference in salinity variance of less than two orders of magnitude (shown on Figures 2.2a & b,

with subplots showing variance in the region). The resulting structure functions in the ho-

mogeneous regions were compared to those in strongly heterogeneous regions (like the dashed

box in Figure 2.2a) in order to assess the importance of this assumption.

The homogeneous region chosen on the isobar of 5m was in the Kuroshio current region

of the northwest Pacific Ocean (defined in Appendix A of McCaffrey et al. (2014a)). The

region spans scales up to 4000 km, and contains 7000 salinity profiles (though only O(1000)

pairs are “simultaneous”). Figure 2.3a shows the salinity structure functions on isobars

from the surface (5m) to 2000m. At small scales, below about 200 km, a slope of γ = 2
3

is seen, with slopes of γ = 0 at larger scales. This slope behavior is constant with depth,

25



Figure 2.2: The log of salinity “variance” at (a) 5m, where the homogeneous region of the
Kuroshio (solid line) was chosen and analyzed in Figure 2.3, and (b) at 25.8 kg m−3, where
the homogeneous region of the Gulf Stream was chosen and analyzed in Figure 2.4. The
heterogeneous region analyzed in Figure 2.5 is shown in the dotted line in a). Subplots show
the variance in each region, with the color bars spanning only 2 orders of magnitude.
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Figure 2.3: Salinity structure function, DS(s)|p, (a) in the Kuroshio uniform variance region
at depths from 5m (top-most line) to 2000m (bottom-most). The slopes of the small scale
(solid) and large scale (dashed) fit lines (b), and the amplitude (c) is plotted with depth in
pressure in meters. A 95% bootstrap interval is also shown in thin lines in (b) and (c) for
slopes and amplitude.

as seen in Figure 2.3b. However, the amplitude of the structure functions decreases with

increasing pressure, with a fairly constant mixed layer at the surface to 75 km (Figure 2.3c).

Because this region is homogeneous, it is reasonable to infer the spectral-structure function

relationship. These slopes are consistent with the slopes predicted by Obukhov (1949) and

Corrsin (1951) for the active tracer cascade in the energy cascade at smaller scales, with a

spectral slope of λ = −5
3
. The large-scale slope of γ = 0 is not predicted by any theories,

but a random signal has a slope of 0 (see the appendix in Appendix C), which suggests that

above 200 km, the salinity signal is noise.

Along the 25.8 kg m−3 isopycnal, the homogenous region was chosen in the northwest

Atlantic, near the Gulf Stream current (defined in Appendix A of McCaffrey et al. (2014a)).

The region spans scales up to 3500 km, and contains 6000 salinity profiles (though fewer

than 1000 pairs are “simultaneous”). The isopycnal salinity structure function, shown in

Figure 2.4a, exhibits different behavior from the isobaric structure functions at small scales.

The large-scale slope of γ = 0 is seen on all isopycnals, but at small scales, a slope is

often not discernible. This may be a result of a smaller number of observations in that
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region at small scales (see large confidence intervals on Figure 2.4b). There is similar depth

dependence along isopycnals as isobars, with the structure function amplitude decreasing

with increasing density below a constant mixed layer down to 26.4 kg m−3. Again, since

this region is considered homogeneous, the spectral slope is inferred from the structure

function. The slopes for the isopycnal structure function are consistent with the theories

of Obukhov (1949) and Corrsin (1951) for the passive tracer cascade in the energy cascade,

with a spectral slope of λ = −5
3
. This is consistent with the slopes seen in the isobaric

structure functions as well. The large-scale slopes of γ = 0 are consistent with the theory

of Vallis (2006) for a passive tracer cascade in the case when stirring is done by the largest

eddies, and the flow is dominated by a single timescale of those eddies, producing a forward

enstrophy cascade above the largest length scale where λ = −1. It is worth noting that only

the bottom 4 structure function lines are along isopycnals that exists all year. In this region,

the 27.4 kg m−3 isopycnal reaches the surface in the wintertime. There is no discernible

difference between the structure functions of salinity along the isopycnals that do and do

not outcrop each year.

Once the assumption of homogeneity is no longer valid, like between 10-30N and 140-

160W in the Pacific Ocean where there is a large variation in salinity variance, the spectral

slope cannot be inferred from the structure function slope, but the structure function must be

used on its own as a statistic. The comparison between the depth dependence of the isobaric

and isopycnal structure functions then becomes an interesting study to identify the effect of

internal waves in the structure function (Figure 2.5). Since internal waves are fluctuations

of isopycnals, following an isopycnal removes that signal, thus removing internal waves from

the isopycnal structure function. Both isobaric and isopycnal structure functions have a

slope of γ = 2
3

at the surface at all scales. However, deeper, the isobaric structure functions

flatten out to γ = 0 at large scales, with small scales steeper than γ = 0 but shallower than

γ = 2
3
. Only the deepest isopycnal slopes flatten out to γ = 0, while most remain shallower

than γ = 2
3
. The uniform behavior across all scales in the isopycnal structure functions
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Figure 2.4: Salinity structure function, DS(s)|σ, in the Gulf Stream uniform variance region
at densities 24.4 kg m−3 to 27.8 kg m−3, binned by 0.1 kg m−3. The slopes of the small
scale (solid) and large scale (dashed) fit lines (b), and the amplitude (c) is plotted with
depth, with pressure in meters on the left axis and the average density on the right. A 95%
bootstrap interval is also shown in thin lines in (b) and (c) for slopes and amplitude.

makes sense since there is no dominant length scale in the heterogeneous region. However,

the internal waves impose a length scale on the isobaric structure functions, giving them the

slight difference seen between small- and large-scale slopes.

When comparing structure functions on pressure and potential density surfaces, the flat

slopes of the isopycnals may be misleading. It may seem that the isopycnal structure func-

tions are flat due to atmospheric noise, like the isobaric structure functions above the dom-

inant forcing scale. However, the flattening of the deeper isopycnals suggests that there is

a different mechanism at work there from the isobaric structure functions. The mixing of

passive and active tracers identifies this difference, as described in Vallis (2006).

The latitude dependence of the structure functions along isobars and isopycnals was also

analyzed. Latitude is hypothesized to affect the structure function by changing the largest

small-scale slope according to the Rossby deformation radius, which decreases with the sine

of latitude (Chelton et al., 1998). Additionally, geographical features like subtropical or

subpolar gyres vary with latitude. Figure 2.6 shows the structure functions along isobars

29



101 102 103

10−4

10−3

10−2

10−1

s (km)

D
S(s

) (
ps

u2 )
a)a)

101 102 103
10−5

10−4

10−3

10−2

s (km)

D S(s
) (

ps
u2 )

b)

Figure 2.5: Salinity structure functions, DS(s), between 10-30N and 140-160W in the Pacific
Ocean (a heterogeneous region with high and low salinity variance) on (a) pressure surfaces
(5 − 2000m) and (b) density surfaces (25.1 − 27.7 kg m−3, the isopycnals that persist all
year). Bold reference lines show a slope of γ = 2

3
(solid) and 0 (dashed).

at 5m (top left) and 1900m (top right), and isopycnals at 25.8 kg m−3 (bottom left) and

27.8 kg m−3 (bottom right). On isobars, at the surface, there is a peak in amplitude at the

equator, suggesting high eddy and internal wave activity, and low points in the amplitude in

the center of the subtropical gyres between 25-35 N and S. At all latitudes at small scales,

a slope between γ = 0 and γ = 2
3

is seen, but that slope flattens to γ = 0 at high latitudes

and remains constant nearer to the equator. At 1900m, the peak amplitude is at the high

latitudes, with the lowest amplitude seen at the equator. Most latitude bands have a slope

of approximately γ = 0 at all scales except when γ = 1
3

at the non-equatorial low latitudes.

The latitude dependence of the isopycnal structure functions encourages more investi-

gation into its mechanics. The isopycnal of 25.8 kg m−3 (bottom left panel of Figure 2.6)

is near the surface at high latitudes, and below the thermocline at the low latitudes. The

amplitudes of the structure functions act as expected, with higher amplitudes at higher lati-

tudes where the isopycnal is closer to the surface. However, the peak at the equator suggests

either a shallower isopycnal, or additional eddy activity at depth. The asymmetry with lat-

itude in structure function amplitude but not in isopycnal depth (see Figure 3 of McCaffrey
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et al. (2014)) encourages further investigation into the difference between the northern and

southern hemispheres. This asymmetry is much larger on the 27.8 kg m−3 isopycnal, with

flatter slopes and much higher amplitude in the northern hemisphere. A hypothesis to ac-

count for this behavior is that the northern Atlantic is the site of a large seasonal injection of

temperature and salinity variations on isopycnals (called “spice”). Yeager and Large (2007)

proposed that the wintertime injection of spice increases salinity variability that then is sub-

ducted and transported southward by the meridional overturning circulation. The shallow

depth of the 27.8 kg m−3 isopycnal in the northern Atlantic supports this theory since it is

more likely to reach the deep wintertime mixed layer where spice is injected. The asymmetry

of the structure function amplitudes may be explained by this process, as salinity variations

are highest in the northern Atlantic and decrease to the south. This process happens along

isopycnals where salinity is a passive tracer, so this behavior is not expected to be seen in

the isobaric structure functions.

To analyze the role of eddies in the structure function, we compared regions high in

eddy kinetic energy (EKE) and those low in EKE, as identified from maps of Aviso EKE

(Figure 2.7). Both high-EKE and low-EKE regions are nearly homogenous, but the high-

EKE regions have a large-scale preferred flow direction, making it less isotropic than the

low-EKE regions. We only calculated the isopycnal structure function in order to isolate the

eddy activity apart from internal wave activity. The comparison is done in Figure 2.8. In

low-EKE regions (Figures 2.8b and d), there are slopes of γ = 2
3

at all scales at the surface,

with flatter slopes at depth at large scales. In high-EKE regions (Figures 2.8a and c), the

surface structure functions in the Gulf Stream and Kuroshio are the same, with slopes of

γ = 2
3

at small scales and γ = 0 at large scales. However, the two western boundary currents

are different along deeper isopycnals. The slope of γ = 2
3

extends to the largest scales at

depth in the Gulf Stream, but in the Kuroshio, the surface large-scale slope of γ = 0 extends

in the smaller scales. Though it is possible that a lack of observations introduces noise that is

distorting the slope at small scales, this may indicate that the eddy activity extends deeper
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Figure 2.6: Salinity structure function, DS(s)|p, at 5m (top left) and 1900m (top right), and
DS(s)|σ, at 25.8 kg m−3 (bottom left) and 27.8 kg m−3 (bottom right), with D(s) on the
z-axis, and separation distance and latitude on the horizontal axes.

Figure 2.7: Log10 of eddy kinetic energy (cm2 s−2) on the surface from AVISO satellite
altimetry measurements from 1993-2010. Chosen high-EKE are shown in black boxes, and
low-EKE regions in gray boxes.
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in the water column in the Gulf Stream than it does in the Kuroshio.

A comparison of the amplitudes of the structure functions in the high-EKE and low-EKE

regions illuminates the higher variance seen at the surface in the high-EKE regions that is

missing in the low-EKE regions. At the deepest isopycnals, the two low-EKE regions and the

Kuroshio have similar amplitudes, suggesting that the surface mixing adds salinity variance

only on the isopycnals with structure functions that have a changing slope. The higher

amplitude even at the deepest isopycnals in the Gulf Stream supports the hypothesis that

the eddy activity extends throughout the water column in this region, but not the others.

The structure function is also a tool to identify characteristics of ocean basins, like the

location of deep water formation, which occurs in the North Atlantic, but not the North

Pacific. Figure 2.9 compares the deep and shallow isobaric structure functions for the North

and South Atlantic and Pacific. All eight structure functions have a small-scale slope of

approximately γ = 2
3

and large-scale slope of γ = 0 (a 95% bootstrap confidence interval,

described in Appendix B of McCaffrey et al. (2014a), is shown for each to support statistical

significance of these results). The amplitude of the surface structure functions in both basins

are similar, but the deep structure functions act quite differently. The amplitude in the North

Pacific is much smaller than that of the North Atlantic. The southern oceans’ structure

functions also show the small amplitude, like that of the North Pacific. These results may

be the indicator of the highly saline deep water that is formed in the North Atlantic, or the

presence of the highly saline Mediterranean outflow (“Meddies”) (Reid, 1994).

2.4 Conclusions from Structure Functions

Though it was shown that the assumption of homogeneity is rarely true, the comparison

between the structure functions in homogeneous and heterogenous regions shows that this

differentiation is not necessary. Comparing the homogeneous isopycnal structure function

in the Gulf Stream western boundary current (Figure 2.4a) to the heterogeneous isopycnal
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Figure 2.9: Salinity structure function, DS(s)|p, in the a) North (30-40N) and b) South (30-
40S, right) Atlantic (star) and Pacific (circle) Oceans at 5 (solid) and 1000 (dashed) meters.
Reference slopes of γ = 0 (dashed) and 2

3
(solid) are shown in bold.

structure function in the high-EKE western boundary currents (Figures 2.8a and c) shows

that the distinction of homogeneity does not affect the resulting structure functions. This

could be a result of either choosing “homogeneous” variance regions that are still too het-

erogeneous, or else heterogeneous turbulence, as quantified by the structure function, is not

substantially different from its homogeneous analog. In either case, these results suggest

that if the relationship is to be made, that it may be made for any geographical region.

This facts makes the structure function an even stronger metric than the usual turbulence

spectrum, since the assumption of homogeneity is not required. The ability to extend the

relationship even in the case of two structure function slopes shows that this tool is very

useful for characterizing turbulence with discontinuous observations.

The major conclusion of this work is that it is possible to use the scattered, discontin-

uous Argo temperature and salinity data to calculate structure functions as a method of

statistically describing the large-scale end of the inertial range of salinity (or temperature)

variance in the oceans. The methodology of Frehlich and Sharman (2010b), with the the-

ory of Webb (1964), allows the structure function slopes to be used to infer the slope of

the salinity variance spectra in cases of isotropic, homogeneous turbulence, and we showed
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that the assumption of homogeneity is not necessary for calculating the structure function.

In addition to including the up-to-date Argo measurements, incorporating additional data

sources would increase the density of measurements, which would allow the structure func-

tion to be calculated over a larger range of scales, most specifically into the smaller scales

of the inertial range. This method can now be applied to output from GCMs to determine

how well they capture the large-scale turbulent behavior, especially at depth where other

validation possibilities are much more limited. Despite the discontinuous and spotty nature

of the observations that have discouraged many from using the extensive Argo dataset for

turbulence analysis, this work shows that the Argo float network allows turbulence statistics

to be calculated at depths and in geographic locations not examined previously, and the

increasing size of the dataset will further the capabilities of this method.

36



Chapter 3

Observations of Tidal Turbulence

from ADCP and ADV

With the growing interest in ocean renewable energy, a better understanding of the marine

environment is needed in order to make further progress in research and development of

these technologies. The Puget Sound, WA has the highest energy-harnessing potential in

the United States, with its narrow channels, concentrating tidal flows that can produce

0.6 TWh/yr of extractable power (Haas, 2011). Previous analyses of the Puget Sound

have included resource assessment (Epler et al., 2010), general site characterization (Gooch

et al., 2009), site characterization with simple turbine models (Polagye and Thomson, 2013),

and initial turbulence characterization (Thomson et al., 2012). Unfortunately, observing a

tidal strait for all aspects that impact turbine placement and power production is virtually

impossible. On this smaller scale, higher resolution measurements are needed, and on much

smaller scales than those observed in Chapter 2. Here the use of acoustic Doppler instruments

is more reasonable, with their ability to measure both mean and turbulent quantities on a

faster time scale.

In this work, I performed a higher-order, detailed characterization of the turbulence

at a prospective tidal energy site in the Puget Sound to gain a better understanding of
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the features of the flow that will impact a turbine and its power production. Turbulent

“gusts,” or coherent, intermittent eddies put particularly strong and variable stresses on

turbine blades as they turn, leading to misalignment of the drive train and wearing of

the gearbox (Ragheb and Ragheb, 2010). Therefore, a thorough site characterization with

quantifications of coherent eddies can potentially prevent untimely, unexpected, and costly

failures in turbines. Since tidal energy is still in its early stages of development, these savings

can be invaluable to making this technology more accessible.

Using the acoustic Doppler observations from Thomson et al. (2012), this chapter ex-

amines three typical turbulent metrics (turbulence intensity, turbulent kinetic energy, and

coherent turbulent kinetic energy), introduces another (anisotropy magnitude), and analyzes

the dependence of several higher-order turbulent statistics on these metrics. These statistics

include autocorrelations for time scale information, probability density functions for inter-

mittency, and anisotropy tensor eigenvalues for quantification and a physical description of

anisotropy of the flow. Each of these statistics was chosen from literature on laboratory and

numerical experiments (Kolmogorov, 1941; Novikov and Stewart, 1964; Lumley and New-

man, 1977), where the limitations of real-world observations do not apply. It will be shown

that the parameters presented here, which are based on well-founded turbulence theory, pro-

vide a better physical description of the turbulence at a tidal energy site than the simple

turbulence intensity used previously. The knowledge of the size, shape, and incidence of co-

herent structures in the tidal strait will allow for turbines to be designed to better withstand

these events.

The results presented here are explained in detail in Appendix D and McCaffrey et al.

(submitted, 2013). These results will be used in Chapter 4 for comparisons of turbulence

from a stochastic turbulence simulator (the TurbSim model from the National Renewable

Energy Laboratory (NREL), Jonkman and Kilcher (2012)), and large-eddy simulations (LES;

an adaptation of the National Center for Atmospheric Research (NCAR) LES, Alexander

and Hamlington (2014)).
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3.1 ADCP and ADV Measurements

Two different instruments, an acoustic Doppler current profiler (ADCP) and an acoustic

Doppler velocimeter (ADV), were used by Thomson et al. (2012) for the initial turbulence

analysis at two tidal energy sites in the Puget Sound. An ADCP takes a vertical profile

of velocities across four divergent acoustic beams (sampling volume O(1m) in diameter,

increasing with distance from the device), while an ADV measures three components of

velocity at one point from three convergent beams (sampling volume O(1cm) in diameter)

(Nortek USA, LLC, 2014). See the right panel of Figure 3.1 for schematics of the instruments.

Doppler noise is inherent to both instruments, but is much larger for the ADCP (Thomson

et al. (2010) show the need to remove this noise from turbulence intensity from ADCP

measurements). Unfortunately, the Doppler noise and beam spread inherent to the ADCP

prevented its data from being used for the more extensive turbulence analysis done here

(the ADV only measured at Nodule Point, so the Admiralty Head site was discarded). An

analysis that lead to this conclusion is contained in Appendix E. It is possible to calculate

turbulence statistics from the high-sampling frequency, less noisy ADV, so the results that

follow are based off of these observations.

The ADV is located at Nodule Point, on the eastern side of Marrowstone Island in the

Puget Sound, where Verdant PowerTM was considering building an array of turbines. The

site, which is 22m deep and 10km wide, has a maximum current velocity of 1.8m s−1 at

the proposed hub-height of 4.7m above the seabed. The observations span four days from

17 February to 21 February 2011 using an ADV sampling at 32Hz on the apex of a Tidal

Turbulence Tripod at approximately hub-height. This includes 8 full tidal cycles during a

spring tide, sufficient for an analysis of the small-scale turbulence. A map of the region with

bathymetry and locations of both sites, along with pictures of the instruments deployed at

each location is in Figure 3.1. These and more details on the observations can be found in

Thomson et al. (2012).

Each of the three velocity components have been decomposed into a mean (u) and per-
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Figure 3.1: Left: Fig. 1 from Thomson et al. (2012): Regional map, bathymetry, and
locations of two tidal energy sites in Puget Sound. At Admiralty Head, a Sea Spider was
deployed on the seafloor to collect AWAC data. At Nodule Point, the Tidal Turbulence
Tripod was deployed on the seafloor to collect ADV and ADCP data. The Sea Spider was
ballasted with 800 lb of lead (ingots), and the Tidal Turbulence Tripod was ballasted with
1800 lb of steel (railroad wheels). Right: Basic schematics of an ADCP (top) and ADV
(bottom).
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turbation (u′) as in Equation 1.2, where u = ui + vj + wk. The horizontal velocities are

defined in perpendicular components, where −i is aligned toward the seaward principal flow

direction, j is perpendicular to the principal flow direction, and k is in the vertical direction.

As explained in Chapter 1, we used a 10-minute time mean (in contrast to the shorter 5-

minute mean chosen by Thomson et al. (2012)) to retain the longest timescales of coherent

turbulence structures in the perturbation, while capturing the tidal and diurnal variations

in the mean. Assuming Taylor’s hypothesis, this defines motions smaller than ∼ 1.08 km,

or 1/10th of the channel width, as turbulent (for 1.8m s−1 mean velocities).

The three components of velocity from the ADV at Nodule Point are shown in Figure 3.2,

with the observed velocities in gray, and the 10-minute mean in black. The dotted lines

identify “slack conditions,” when the velocity is not large enough to drive a turbine, defined

as u ≤ 0.8m s−1. Reynolds stresses (and their time-averaged covariances) are defined as u′iu
′
j

(shear stresses are when i 6= j, and normal stresses are when i = j). Coherent turbulent

structures appear as bursts in these shear stresses in a well-mixed, homogeneous flow, such

as a tidal strait (Kelley et al., 2000). Velocity perturbations, and the normal and shear

stresses are shown Figures 3.3a, b, and c. Peaks occur periodically in each signal with the

M2 (semidiurnal) tide dominated mainly by the normal stresses. Turbulent bursts can be

seen in the shear stresses, also occurring at a roughly diurnal period, coincident with strong

ebb and flood conditions. Some days have two turbulent bursts, with the stronger turbulence

associated with the stronger flood. Diurnal variability is also typical as one large and one

small (i.e., mixed semi-diurnal) flood or ebb per day. The w′ fluctuations are considerably

smaller than those in the other directions, as indicated by the very small vertical normal

stress.
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Figure 3.2: Velocities in the along stream (u; a), cross-stream (v; b), and vertical (w; c)
directions from the ADV at Nodule Point from 17 Feb 2011 to 21 Feb 2011 at approximate
hub-height depth of 4.7m. Gray dots show instantaneous velocity measurements, and black
lines show 10-minute averages. Dotted lines in a) show the slack condition criterion. Three
99th-percentile values of Iu, TKE, CTKE, and A values when u > 0.8m s−1 are shown in
the red squares, green diamonds, and blue circles, respectively on the u velocity plot.
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Figure 3.3: a) Velocity perturbations, b) turbulent kinetic energy components, and c)
Reynolds shear stress components, from the Nodule Point ADV shown in Figure 3.2.
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3.2 Turbulence Metrics: Iu, TKE, CTKE, and A

The turbulence metric most commonly used in the wind and tidal energy industries for

site classification because of its impact on power generation and turbine loading (Elliott and

Cadogan, 1990; Kaiser et al., 2007; Rareshide et al., 2009) is the turbulence intensity, defined

as

Iu =
σu
u

=

√
u′2 − n2

u
, (3.1)

where the overline indicates a 10-minute average, and n is the instrument’s Doppler noise

(Thomson et al., 2012). Turbulent kinetic energy, (TKE or k) defined as one-half the sum

of the normal stresses,

TKE =
uiui

2
=

1

2

(
u′2 + v′2 + w′2

)
, (3.2)

has also been shown have a negative impact on power production (Wharton and Lundquist,

2012). Coherent turbulent kinetic energy, introduced by Kelley et al. (2000) as a metric that

closely correlates with loads on a wind turbine, is defined as

CTKE =
1

2

√
(u′v′)2 + (u′w′)2 + (v′w′)2. (3.3)

These three metrics, plotted in Figure 3.4a, b & c, are the most popular for general descrip-

tions of turbulence that affects a turbine. However, each of these metrics has a down-side.

The turbulence intensity is simply a statistical descriptor and is dependent on the coordinate

system chosen. Similarly, CTKE is also dependent on coordinate system, and may therefore

be skewed for flows with tidal flows that are not purely symmetrical. In addition, CTKE is

an instantaneous measure, so though it incorporates fluctuations in all three directions, there

is no way to measure how long this “coherence” exists. Ideally, a true scalar, invariant of

coordinate system, could be used to quantify turbulent events. TKE is tensor invariant, but

does not describe the anisotropy between its components, or include the shear stresses. To

this end, we created a new metric which we call the anisotropy magnitude, A, that captures
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the shear stress terms like the CTKE, but also the anisotropy from the normal stresses, like

TKE.

Beginning with the anisotropy tensor (Lumley, 1978),

aij =
uiuj
2k
− δij

3
, k =

uiui
2
, (3.4)

and its three principal invariants (I, II, III),

I = aii ≡ 0

II = aijaji (3.5)

III = aijainajn,

with a sum implied to occur over repeated indices (Einstein notation), we have true scalars

that are independent of coordinate system, dependent only on the asymmetries of the tur-

bulence. Analyzing invariants II and III (I is zero by definition of aij) will show the

departures from isotropy (often visualized by the classic Lumley Triangle of Lumley and

Newman (1977)), since isotropic turbulence has the property that I = II = III = 0. From

the scalars, k and II, we formed the coordinate-system invariant version of CTKE, the

anisotropy magnitude:

A = k
√
II ≡ (3.6)

=

√
1

2

(
u′v′

2
+ u′w′

2
+ v′w′

2
)

+
1

6

(
u′2

2
+ v′2

2
+ w′2

2 − u′2 v′2 − v′2w′2 − v′2w′2
)
.

This metric has the following attributes: 1) Unlike TKE, but like CTKE, A = 0 for

isotropic, uncorrelated turbulence. 2) Like CTKE and TKE, A has the units of energy

(m2s−2). 3) A tends to grow with CTKE, approaching a version of CTKE formed from

the time-averaged shear stresses as CTKE � k. 4) Like CTKE and TKE, A is real, and

5) unlike CTKE, A is a true, coordinate-independent scalar. The anisotropy magnitude, A,
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is therefore similar in meaning to the CTKE in Equation 3.3, though improved. A allows

instrument noise to be removed through the averaging, while it remains in the CTKE. The

anisotropy magnitude, A, is plotted at Nodule Point in Figure 3.4d, exhibiting simultaneous,

similarly-intermittent peaks as CTKE between periods of low anisotropy. Figures 3.2, 3.4,

3.7, 3.10, 3.11, and 3.14 show three extreme values (in the 99th-percentile) of Iu, TKE,

CTKE, and A, and it is intriguing to note that the extreme occurrences of TKE co-occur

with two peaks in CTKE, and one in A, but the peaks in A do not always co-occur with

those of CTKE or Iu. This highlights the fact that neither CTKE nor Iu are reliable,

coordinate-system independent indicators of turbulence or anisotropy, but that TKE and A

capture the same features with a reliable, coordinate-system independent manner.

3.3 Physical Characterization

From the single-point measurements of velocity in time from an ADV, there are several

temporal statistics that can inform us about the coherence, intermittency, and anisotropy

of the flow. Using Taylor’s hypothesis, these temporal analytics can be related to spatial

properties. In the sections below, autocorrelations will be used as measures of coherence,

probability density functions and higher-order moments will be used for intermittency, and

the eigenvalue method of Banerjee et al. (2007) will be used to quantify anisotropy.

3.3.1 Coherence

With only a time series of velocities at one location in space, spatial correlations cannot be

calculated, but the temporal autocorrelation can. The sampling frequency of 32Hz from

the ADV allows the analysis of very small scales, up to the 10-minute scale. The temporal

autocorrelation is defined as

ρ(τ) =
u′(t)u′(t+ τ)

u′2
(3.7)
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where the overbar is the 10-minute mean. Figure 3.5 shows the resulting autocorrelation

from all non-slack intervals, along with the mean autocorrelation (bold solid black line).

The Taylor, λ, and integral, Λ, scales are often used to quantify the longest time over

which the turbulence stays correlated, and the time until the flow is uncorrelated, respectively

(Pope, 2000). These scales are defined as

λ2 = −2

[
d2ρ

dτ 2

∣∣∣∣
τ=0

]−1
, (3.8)

Λ =

∫ ∞
0

ρ(τ)dτ. (3.9)

The average λ and Λ are shown in Figure 3.5. While most intervals become uncorrelated

quickly, some intervals remain correlated up to 100 seconds. These intervals show themselves

to be different from the normal behavior of the flow, highlighting coherent events. Using the

average flow velocity of 0.83 m s−1, the Taylor and integral scales relate to length scales of
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0.070m and 8.42m, from Taylor’s hypothesis. The intervals with the longest integral scales

(40 − 60 s) tend to have horizontal speeds about 1 m s−1, resulting in correlation length

scales of 40 − 80m. This compares reasonably well to the length scales of 75m obtained

by Thomson et al. (2012) from Taylor’s hypothesis applied to the “fractional” turbulence

intensity. It is also interesting to note that 8 of the 10 longest integral scales and 7 of the

10 longest Taylor scales occur during flood tides.

3.3.2 Intermittency

The presence of these particularly coherent events that deviate from the normal conditions

beckons an analysis of intermittency. The probability density function (pdf) of velocity in-

crements (∆uτ = u(t+ τ)− u(t) at time interval, τ), normalized by the standard deviation,

is used for this analysis. A deviation from Gaussian behavior in the tails of the pdf indicates

intermittency, or a higher probability of extreme events occurring. This indicates that higher

order moments are necessary to describe the distribution, not just the mean and standard

deviation or turbulence intensity. In addition, Mücke et al. (2011) showed the close corre-

lation between the velocity increments and fluctuations in torque on turbine blades as seen

in similar departures from Gaussian in the pdf tails of both quantities. The higher proba-

bility of alternating loads from torque fluctuations was therefore attributed to extreme wind

events, or “gustiness.” Figure 3.6 shows the pdfs of velocity increments with a dotted line

showing the Gaussian (normal) distribution, and circles, squares, and diamonds represent-

ing ∆u′, ∆v′, and ∆w′, respectively. The black shapes have a time interval of ∆t = 1/32s.

From Taylor’s hypothesis, this represents motions at approximately 3cm scales, which is less

impactful on a turbine, so the pdfs with ∆t = 3.6s (∼ 3 m), and ∆t = 7.2s (∼ 6 m) are also

shown. The ∆t = 1/32s case is the closest to the Gaussian curve, with large intermittency

(deviations from Gaussian) only in the vertical velocity. The scales associated with a half

and whole turbine rotor diameter, however, exhibit more intermittent behavior in all direc-

tions, and equally. This behavior highlights the need for an inclusion of higher moments,
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Figure 3.6: Probability density functions of the velocity perturbation increments, ∆u′ (cir-
cles), ∆v′ (squares), and ∆w′ (diamonds) from Nodule Point ADV data, with Gaussian
curves for reference (dashed). ∆u′ (circles), ∆v′ (squares), and ∆w′ (diamonds): Black
shapes have a time interval of ∆t = 1/32s (∼ 3 cm), gray are ∆t = 3.6s (∼ 3 m), and white
are ∆t = 7.2s (∼ 6 m).

since the mean and standard deviation do not suffice. The first four moments (mean, stan-

dard deviation, skewness, S, and excess kurtosis, K − 3), shown in Figure 3.7, support the

lack of Gaussianity with the deviations from S = 0 and K − 3 = 0. The excess kurtosis is

particularly meaningful since it is a measure of flatness of the probability distribution. Peaks

in K − 3 show more peakedness at small increments, and wider tails. Therefore, the peaks

in K − 3 support the results of the coherence analysis that shows that there are significant

intermittent events in this flow.

3.3.3 Anisotropy

The differences in the pdfs of ∆u′, ∆v′, and ∆w′ are indicators of anisotropy in the flow.

Though the pdf indicates anisotropy, other tools may provide more information. For example,
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Figure 3.7: First four moments of the u-velocity from the Nodule Point ADV data, based
on 10-minute intervals. Top-bottom: mean, standard deviation, σ, skewness, S, and excess
kurtosis, K − 3. Three 99th-percentile values of Iu, TKE, CTKE, and A values when
u > 0.8 m s−1 are shown in the red squares, green diamonds, and blue circles, respectively.
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the second-order temporal structure function of horizontal and vertical velocities can be

compared. Similar to Equation 2.1, the second-order temporal structure function is defined

as

D(τ) = [u (t)− u (t+ τ)]2. (3.10)

The structure function, which can be related to the wavenumber spectrum in isotropic,

homogeneous turbulence, uses the 10-minute mean to determine the fluctuating velocity,

u′, and no difference appears in the structure function when linear de-trending is used for

the perturbation. Figure 3.8 compares these temporal structure functions, with box plots

representing the statistics of the structure functions of each non-slack 10-minute interval.

The top plot shows the u-velocity structure functions, and the bottom plot shows the w-

velocity. The solid line on each is the other’s median, for better comparison. At small scales,

the two lines are parallel, but at scales larger than about 3 seconds, the w-velocity structure

functions flatten out, while the u-velocity continues with a slope of approximately γ = 2
3
.

Anisotropy is manifest in the separation in slopes at the large scales.

Once it has been determined that coherent, intermittent features exist in the flow, and

that the flow is sometimes anisotropic, it is possible to do an analysis using the anisotropy

tensor (Equation 3.4) to quantify and physically describe those features. Banerjee et al.

(2007) introduced a method of quantifying anisotropy as a function of the eigenvalues of the

anisotropy tensor. The Cayley-Hamilton theorem proves that the eigenvalues may be found

using only the tensor invariants (I, II, III) and vice versa. Therefore, the eigenvalues are

coordinate-independent (Cayley, 1858).

The anisotropy is plotted on a “barycentric map,” which is a ternary diagram with

each of the three vertices representing a type of turbulence: one-dimensional (linear), two-

dimensional (planar), and three-dimensional (fully isotropic). If the eigenvalues of the

anisotropy tensor, aij are λ1, λ2 and λ3, where λ1 ≥ λ2 ≥ λ3, the coordinates of the barycen-
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Figure 3.8: Box plots of the second-order temporal structure functions for each 10-minute
interval with an u > 0.8 m s−1 of the Nodule Point ADV data. Black circles are the median,
the boxes show the 25th-percentile, and the vertical lines include the entire range. Top plot
is the horizontal velocity structure function and the bottom is the vertical velocity structure
function. For comparison, the solid line on the horizontal structure functions shows the
median of the vertical velocity structure functions, and the line on the vertical structure
functions shows the median of the horizontal velocity structure functions. The dotted line
is a guideline with slope of 2/3, corresponding to the K41 turbulent cascade (Kolmogorov,
1941).
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tric map are

C1c = λ1 − λ2, (3.11)

C2c = 2 (λ2 − λ3) , (3.12)

C3c = 3λ3 + 1. (3.13)

To plot on a Cartesian plane where the vertices of the barycentric map are (x1c, y1c), (x2c, y2c),

and (x3c, y3c), the location of each point is

xnew = C1cx1c + C2cx2c + C3cx3c (3.14)

ynew = C1cy1c + C2cy2c + C3cy3c. (3.15)

The barycentric map is shown in Figure 3.9, showing the one-, two-, and three-component

limits at each vertex of the triangle (the barycentric map), with axis-symmetric and plane-

strain limits shown as well. Each 10-minute interval falls someplace on that map, quantifying

the distribution of the three types of turbulence. Points close to one vertex are strongly

dominated by that turbulence type. The results show that the majority of intervals falls in

the middle of the plot, but closer to the one- and two-component limits, with some significant

events reaching closer to the one-component limit. The vast open space at the top of the

barycentric map shows that the turbulence is never close to the isotropic limit between the

sampling frequency and the 10-minute window. Interestingly, the slack conditions (plotted in

gray) are even further from isotropic than the channeled flows, with one- and two-component

turbulence at slack periods.

An additional benefit to the eigenvalue approach of quantifying anisotropy is that the

eigenvectors associated with the ordered eigenvalues give the principal axes of the turbulence.

In the one-component limit, the eigenvector associated with the largest eigenvalue is oriented

in the (linear) direction of the flow, and the plane made by the eigenvectors of the two largest
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eigenvalues describes the two-component turbulence. This directional information could also

come from the Reynolds stresses. Consistency between these approaches derives from the

close relationship between the Reynolds stresses and the anisotropy tensor.

3.4 Parameterizations with Turbulence Metrics

Once a thorough turbulence characterization has been completed for coherence, intermit-

tency, and anisotropy measures, a single parameter is desirable that will capture those events,

without needing the entire analysis. This parameter will be useful for modeling and classi-

fication of tidal energy sites. To this end, the dependence on Iu, TKE, CTKE, and A was

determined for the physical characteristics.

A comparison between CTKE and A, with three values in the 99th-percentile of Iu,

TKE, CTKE, and A, is a first step to showing how one parameter can be used in place of

a long list (Figure 3.10). The strong correlation between CTKE and A, which supports the

generation of A as being similar to CTKE, suggests using the tensor invariant A in place

of CTKE. Since CTKE has been closely correlated to loads on a turbine, it is a natural

conclusion that A would also have that impact, though further studies are needed to confirm

this hypothesis.

The turbulence intensity versus mean speed plot gains a great deal of information when

colored based on A, as in Figure 3.11. The 1/u behavior is expected from the definition of

Iu, and the scatter in the points is informative, but color based on A highlights the points

that will have the most impact on the turbine - with the highest Iu when the mean speed is

highest. The 99th-percentile intervals of Iu, TKE, CTKE, and A when u > 0.8 m s−1 all

occur in this region as well. Figures 3.10 and 3.11 both support the use of A over CTKE

and Iu, but a parameterization based on the physical properties of the flow is the greater

goal of this work.

Parameterizing the intermittency with A is done in Figure 3.12, where the pdf of ve-
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Figure 3.12: Probability density functions of the velocity perturbation differences, ∆u′ (cir-
cles), ∆v′ (squares), and ∆w′ (diamonds) with a ∆t = 7.2s (∼ 6 m) from Nodule Point ADV
data, with Gaussian curves for reference (dashed). Black includes when A < 0.005m2 s−2,
white includes when A > 0.005m2 s−2.

locity increments is computed for high versus low A (A greater or less than 0.005m2 s−2),

compared to low A. Although slightly counter-intuitive, this result suggests that within a

single coherent structure, velocity increments are more Gaussian, but in differences span-

ning from one smaller-scale structure to the next, the intermittency appears. These results

show that the coherent events at ∆t = 7.2s (∆x ∼ 6m) are nearly random in all three

directions, as is expected from the structure function analysis and the spectral results of

Thomson et al. (2012), which are isotropic at this scale. It is possible that using the pdf to

parameterize intermittency with A is not useful, since choosing ∆t may be a larger indicator

of intermittency, so the dependence on A does not appear.

Parameterizing coherence with Iu, TKE, CTKE, and A is possible with regression

analysis between each of these metrics and the integral and Taylor scales, Λ and λ. Table 3.1

shows these results, identifying A as most closely parameterizing coherence in the Taylor
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λ Λ

Iu 0.596 0.450
TKE 0.747 0.079

CTKE 0.680 0.017
A 0.884 0.317

Table 3.1: Coefficients of correlation, R2, between Taylor scale, λ, and Integral scale, Λ, and
Iu, TKE, CTKE, and A from the Nodule Point ADV data.

scale, λ, while the coefficients of determination are lower for TKE, CTKE and Iu (i.e.,

poorly predicted). Figure 3.13 plots this relationship between A and λ. It makes sense that

CTKE and A have stronger relationships with coherence time scales since they include more

information about the cross-correlations and directional variability than Iu. The R2 value

of 0.884 supports this claim, suggesting that A is a better measure of coherence in a flow

than TKE, CTKE or Iu. This also indicates that, since the longer time scales are more

intermittent, these intervals are also higher in A.

Anisotropy is possibly the most important feature of the turbulence to parameterize

since it is not captured at all by the currently-used turbulence intensity. The four different

color schemes on the the barycentric map in Figure 3.14 highlight the dependencies of each

parameter on the anisotropy. The peaks in all four quantities do happen when the flow is

furthest from isotropic (three-component limit), but the overall coloring varies substantially.

While turbulence intensity does have a strong relationship with anisotropy, it is misleading;

since Iu only measures one component, it is defined to peak at the one component limit.

The behavior of the CTKE and TKE on the barycentric map is fairly random, while the

dependence on A is more related to the location on the map.

Using the comparisons made in this section, it is clear that A captures the behavior

of CTKE, but provides more helpful information than Iu, while correlating closely with

both the Taylor correlation scale and the proximity to the most anisotropic corner of the

barycentric map. These results all support the use of A to parameterize turbulence in a tidal

strait. If an additional parameter is to be calculated also, TKE shows the second strongest
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correlation to length scales, though anisotropy is lacking.

3.5 Conclusions from Tidal Turbulence

With the goal of more extensively characterizing the turbulence at a potential tidal energy

site in the Puget Sound, I used ADV measurements to calculate turbulent properties like

coherence, intermittency, and anisotropy. Making a comparison between the physical prop-

erties and the general turbulence metrics (Iu, TKE, CTKE, and A), we showed that the

anisotropy magnitude, A, which we introduced, is the best for parameterizing the turbulent

properties. Instead of calculating many different statistics, A can be used, independent of

the chosen coordinate system, and the other characteristics can be inferred.

Though the ADV only measures velocities at one point in space, its high sampling fre-

quency and low Doppler noise make it a viable tool for computing temporal turbulent statis-

tics. With Taylor’s hypothesis of frozen turbulence, these temporal statistics can be extended

to spatial scales. However, real-world complexity may be hidden in this analysis by this hy-

pothesis. In order to avoid the need for this assumption, measurements in time and in space

are necessary. An array of ADVs can provide the spatial resolution, improving with the

number of locations collecting simultaneous observations. Undoubtedly, new insight into the

coherent, intermittent-in-time signals sensed here would result from information about their

horizontal and vertical spatial coherence and intermittency.

The next chapter will compare the statistics of the observations to those of the output

of turbulence from numerical models. The analysis here showed that turbulence in this

region is strongly anisotropic, with coherent, intermittent events. A comparison between

stochastic turbulence and turbulence created by a large-eddy simulation for this location

will identify the strengths and weaknesses of each type of model in an effort to improve

modeling capabilities for turbine design.
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Chapter 4

Modeling Realistic Turbulence:

TurbSim & LES

With the major disadvantage presented by the limited availability of observations of ocean

turbulence, numerical models are invaluable to understanding of the energy transfer process

in the oceans. Two models are presented here which use different foundational concepts to

solve for a full flow field, including turbulence. The National Renewable Energy Laboratory’s

(NREL) HydroTurbSim (or TurbSim) model is based on the assumption of a kinetic energy

spectrum with forcing and dissipation scales, and an inertial range in between (Figure 1.1),

and an inverse Fourier transform is performed to obtain a time series of velocities (Jonkman,

2009). On the other hand, the National Center for Atmospheric Research’s (NCAR) LES

model is based on the pseudo-spectral, wave-averaged, non-hydrostatic, Boussinesq equations

of fluid motion, where small-scale turbulence is parameterized (Moeng, 1984). First, output

from the TurbSim model is compared to the observations from Nodule Point, using several

of the metrics introduced in Chapter 3 as the indicator of goodness of the model. Then, the

output from the NCAR LES is analyzed, and spatial correlations are compared between the

two models.
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Thyng et al. (2013) compared these ADV records and related observations in this region

to a simulation using the hydrostatic, Boussinesq, sigma-coordinate Regional Ocean Model-

ing System (ROMS, Shchepetkin and McWilliams (2005)). Their results indicate that the

large scale flow is adequately simulated, but the model resolution in their implementation

is unable to fully reproduce the characteristics of the observed turbulence. They propose

extensions to these parameterizations that can be used diagnostically and can guide future

parameterization improvements. Models like TurbSim and NCAR LES are meant to resolve

turbulence at smaller scales that ROMS relegates to parameterizations, so these models are

expected to compare more closely to the observations.

Figure 4.1 shows a snapshot in time of velocity perturbation, u′, from both models

to be analyzed here. The TurbSim model produces low-resolution, cross-stream-vertical

plane of velocities. The top border of the TurbSim output is aligned with a the top of

the (hypothetical) rotor disk, shown as the dashed lines in the larger LES domain. From

this figure, it appears that the LES has more coherence than TurbSim, so this is the main

hypothesis of this work. It is expected that TurbSim will create turbulence that matches the

lower-order statistics (i.e., mean and turbulence intensity), while the LES will create realistic

coherent structures. Only one LES run has been performed, for a short time period, so the

results here are preliminary, with better agreement with the observations to come with a

longer time series from model data.

4.1 Introduction to Stochastically Modeled Turbulence

The NREL TurbSim model (Jonkman, 2009) is a stochastic model which creates two-

dimensional flow fields in time. The method assumes an isotropic kinetic energy spectrum

which is put through an inverse fast Fourier transform (ifft) to create a time series of velocities

at the location of the hub. An example of a spectrum and its unique time series is shown in

Figure 4.2. User-defined Reynolds stresses and a model-defined coherence function are used
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3
from K41 shown in red for reference. b) Time series of the horizontal

velocity associated with the kinetic energy spectrum in a).

to determine all three velocity components in the full y− z plane (y is the horizontal coordi-

nate, and z is the vertical, both tangent to the turbine rotor plane). TurbSim has recently

been adapted for simulating tidal environments (and informally called HydroTurbSim), with

specific spectral models and coherence functions with empirically derived coefficients from

observations at Marrowstone Island, WA and the East River, NY (Jonkman and Kilcher,

2012). An overview of the method used in TurbSim is shown in Figure 4.3.

The spectral model form for velocity component K (i.e., K = u, v, or w) is

SK(f) =
σ2
Ks1,K

[
∂u
∂z

]−1
1 + s2,K

[
f

∂u/∂z

]5/3 , (4.1)

67



 

56 

Appendix C: Flow Charts 

 

 

Figure C-1. Overview of the TurbSim simulation method; blue lines indicate processes influenced 
by input-file parameters; black lines indicate internal variables and processes 
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Figure 4.3: Figure C-1 of Jonkman and Kilcher (2012): Overview of the TurbSim simulation
method; blue lines indicate processes influenced by input-file parameters; black lines indicate
internal variables and processes. Note: coherent structures capability does not exist for tidal
simulations.
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where f is frequency, and the empirically defined coefficients are

〈s1,K , s2,K〉 =


〈1.21, 4.30〉, K = u

〈0.33, 0.50〉, K = v

〈0.23, 0.26〉, K = w.

(4.2)

The shear, ∂u/∂z, is calculated from the specified mean velocity profile, and the component-

TKE levels, σ2
K , are determined based on an exponential profile proportional to URef 2 at a

reference height, RefHt (both user-defined):

σ2
K = (0.05URef)2 µKe

−2z/RefHt, (4.3)

where µu = 4.5, µv = 2.25, µw = 0.9 are empirically determined coefficients from Marrow-

stone Island, WA.

While still in frequency space, a spatial coherence function is applied to the spectrum of

each velocity at the hub to create a two-dimensional plane of u−, v- and w-velocities. The

degree of spatial coherence between point i and j is defined in general as

Cohi,j(f) =
|Sij(f)|√
Sii(f)Sjj(f)

, (4.4)

where Sii is the power spectral density, and Sij is the cross-spectral density. For the specific

spectral model used for tidal simulations, this relationship is estimated as

Cohi,jK = Exp

−aK [ r
zm

]CohExp√[
fr

um

]2
+ [bKr]

2

 , (4.5)

where r is the distance between points i and j, f is cyclic frequency, CohExp is a coherence

exponent input parameter, and zm and um are the mean height and wind speed of points i

and j. The spatial coherence decrement, a, and offset parameter, b, are defined separately
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for each component wind speed.

At each location, a pseudorandom number generator is used to create random phases

(one per frequency per grid point per wind component) for the velocity time series. To

move from frequency space, where the flow is defined, to physical space, where the velocities

are desired, an ifft is computed, and a zero-mean time series is created. This time series is

then added to the background mean profile, defined as a logarithmic profile and plotted in

Figure 4.11:

u(z) =
UStar

κ
ln

[
z

zref

]
+ URef, (4.6)

where κ = 0.41 is von Karman’s constant. The assumption of a log-layer profile is a strong

assumption that is not able to be confirmed with the ADV observations at Nodule Point,

but this profile is based on vertical profiles observed with an ADCP at other similar tidal

locations, so the assumption is accepted for Nodule Point as well.

The TurbSim product is a two-dimensional plane of three components of velocity which

change in time. The comparison to the observations is done by only using the model output

at the location of the hub at all times. TurbSim was run with 34 different mean speeds from

−1.8 m s−1 to 1.8 m s−1, and Reynolds stresses defined from the observations (Figure 4.4).

Each mean speed was run 10 times, to increase the amount of data used for calculation and

presentation of statistics. Statistics are computed on each 10-minute run individually, and

each run is independent of all others (the changing mean speeds are not meant to be part of

a time series).

4.2 TurbSim results

The statistics used in Chapter 3 were computed from the TurbSim output, and the most

informative results are shown here. The turbulence intensity versus mean speed plot (Fig-

ure 4.5) shows that, though the turbulence intensity is defined to have an inverse relationship

with u (Iu ∼ 1/u), the turbulence intensity from TurbSim is constant. Though this is unre-
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Figure 4.4: Average Reynolds stresses (blue - u′w′, green - u′v′, red - v′w′) for differing mean
velocities, u, from ADV data at Nodule Point, which are input at hub height for TurbSim.
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alistic (compare the colored dots to the averages from the Nodule Point ADV observations

in black), above the cut-in speed of 0.8 m s−1, the differences are small. Similar to the

observations, however, the color based on anisotropy magnitude, A, highlights the intervals

that have both the highest turbulence intensity as well as mean speed. When generating the

spectra for the v- and w-velocities, TurbSim sets v′2 and w′2 to be constants proportional

to u′2, defining k, and the anisotropy in the Reynolds normal stresses. The user defines

the Reynolds shear stresses, so the anisotropy tensor, and therefore A, is comprised of a

combination of model and user-defined quantities that are not changing realistically with

the flow. The barycentric map (Figure 4.6) shows relatively similar locations of intervals

from TurbSim and observations, suggesting that the anisotropy is dominated by the shear

Reynolds stresses (user-defined to match observations), rather than normal stresses (defined

by TurbSim). Later results will show how the anisotropy in the normal stresses is missing

from the TurbSim data.

A comparison between CTKE and A (Figure 4.7) shows the correlation between TurbSim

(blue dots) and the observations (red dots), with similar behavior between the two. The

closer correlation between CTKE and A in TurbSim is also evidence of A being dominated by

the shear-components of the anisotropy, which are the components that determine CTKE.

The major difference between observations and TurbSim results is that the most extreme

events in CTKE and A are missing from the TurbSim data.

This begs for further analysis into the coherent and intermittent events in TurbSim

output. To this end, the temporal autocorrelation function and Taylor and integral scales

were computed, and shown in Figure 4.8. It is immediately clear that the coherent events

from the observations (the intervals with autocorrelations with much shallower slopes, that

stay correlated longer) are missing in the autocorrelations from TurbSim. Every interval

becomes uncorrelated at the same rate, which is also unlike the observations where some

become immediately uncorrelated, while others remain. The Taylor and integral scales are

indicative of this behavior also. Though the mean Taylor scale from TurbSim (λ = 0.59s)
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Figure 4.7: CTKE versus A from TurbSim output (blue), LES (black), and observations
from Nodule Point (red) with the dashed one-to-one line for comparison.

is higher than that of the observations (λ = 0.08s), the intervals that become uncorrelated

faster in the observations are missing. The average integral scale is also similar to the

observations (TurbSim: Λ = 8.197s, ADV: Λ = 10.127s), but an analysis of the distribution

of integral scales shows a large contrast. Figure 4.9 compares the distributions of integral

scales and their associated length scales (using Taylor’s hypothesis and the mean velocity

for each 10-minute interval) between the observations at Nodule Point (a and c) and the

TurbSim output (b and d). The peaks (approximately the mean) of the histograms are

located at a similar scale, but the tails are much larger in the observations, and cover a

significantly longer range. The longer time scales that are missing from TurbSim are related,

through Taylor’s hypothesis, to the longer spatial scales, including the 75m scales seen by

McCaffrey et al. (submitted, 2013) and Thomson et al. (2012).

The lack of coherent events is also seen in the probability density functions of velocity

increments (∆uτ = u(t + τ) − u(t) at time interval, τ) shown in Figure 4.10. The pdf has
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with the average shown in bold black. The two dashed lines are the autocorrelations from
the two intervals from LES output. Right: Autocorrelations from the ADV observations at
Nodule Point, with the average shown in bold black.

been used with TurbSim results in the atmosphere to show “gustiness” in the winds and the

alternating loads on a wind turbine that result; strong differences or changes over time steps

appear in the non-Gaussian tails of the pdf of both velocity increments and torque increments

(Mücke et al., 2011). In observations (Figure 4.10a), these intermittent events are seen at

longer time intervals (∆t = 30 and 60s), but were not seen at ∆t = 1/10s. In contrast,

the pdfs of velocity increments from TurbSim output show a decrease in intermittency at

∆t = 30 and 60s. As shown in Mücke et al. (2011), it is important to model the intermittent

events of the flow in order to accurately predict turbine loads, and these results show that

TurbSim does not model these features. In addition, there is anisotropy in ∆u, ∆v, and

∆w at the ∆t = 1/10s of the observations, but not so in TurbSim, which always assumes

isotropic normal stresses.

In conclusion, the comparison between output from TurbSim and the ADV observations

for Nodule Point show both positive and negative aspects of the stochastic model. In general,

TurbSim accurately produces turbulence as it is defined by the model, including stresses and

anisotropy shapes based on the barycentric map of Banerjee et al. (2007). However, the
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Figure 4.10: Probability density function of velocity increments (∆u - circles, ∆v - squares,
∆w - diamonds), normalized by each’s standard deviation, in increasing time intervals: black
is ∆t = 1/10s, gray is ∆t = 30s, and white is ∆t = 60s, from observations at Nodule Point
(a) and from TurbSim output (b).

most impact-ful coherent events are not created by the stochastic model. This is a known

problem in TurbSim; in the atmospheric version of the model, empirically-derived, Kelvin-

Helmholtz-like coherent structures are added to the final turbulent time series (Jonkman and

Kilcher, 2012). A similar analysis to determine the appropriate method for including coherent

structures in the tidal environment has not been completed, as it has for the atmosphere.

4.3 Introduction to NCAR LES

The previous section showed that coherent events are not created by a stochastic model, so

a physical model, based on the NS equations, is a possible improvement. The model chosen

here is the NCAR LES, introduced by Moeng (1984). Collaborators at the Turbulence and

Energy Systems Laboratory (TESLa) at the University of Colorado Boulder have modified

the model, previously adapted for ocean scenarios by McWilliams et al. (1997), to model the

tidal channel at Nodule Point, WA (Alexander and Hamlington, 2014). This version of the

model solves the filtered wave-averaged, Boussinesq equations (called the Craik-Leibovich
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equations) given by

Du

Dt
+ (f + ω)× (u + us) = −∇π − gẑ (ρ/ρ0) + x̂Fp + SGS, (4.7)

π = p/ρ0 +
1

2

[
|u + us|2 − |u|2

]
(4.8)

Dρ

Dt
+ us · ∇ρ = SGS, (4.9)

∇ · u = 0, (4.10)

where u is the three-dimensional flow velocity, f is the Coriolis parameter, ω = ∇× u is the

vorticity, g is the acceleration due to gravity, ρ is the density, ρ0 is a reference density, p is

the pressure, Fp is a driving pressure term, and SGS represents subgrid-scale terms from

the LES model. These equations include the effects of wave forcing by the additional Stokes

velocity terms, us, which is constant horizontally and super-exponentially decreases with

depth. The pressure-driving force is constant in these runs, but will be used in the future to

simulate changing magnitudes and directions of the mean flow in a tidal channel (Alexander

and Hamlington, 2014). The SGS stresses, τij are derived from the method of Sullivan et al.

(1994) based on both the resolved-scale strain rate, Sij, and the horizontally-averaged strain

rate, Sij, as

τij = 2νtγSij − 2νTSij, (4.11)

where νt and νT are turbulent and mean flow eddy viscosities, respectively, and γ = S ′/(S ′+

S ′ is an isotropy factor written in terms of the strain rate magnitudes S ′ ≡
√

2S ′2ij and

S ≡
√

2S2
ij. The classic Smagorinsky model defines the turbulent eddy viscosity as

νt = (Cs)
2
√

2SijSij, Cs =

(
Ck

√
Ck
Cs

)1/2

, (4.12)
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and the mean flow eddy viscosity as

νT = (CKLm)2

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

(4.13)

where u and v are horizontal velocities in the along-stream and cross-stream directions, and

the model coefficients are Ck = 0.1, Ce = 0.93, and the product CKLm is chosen to match

Monin-Obukhov similarity theory near the wall (Sullivan et al., 1994). This work does not

analyze the choice of SGS model, but rather focuses on the scales of the turbine (1− 100m).

The model was run by Alexander and Hamlington (2014) to simulate wind-, wave- and

tidally-driven flow at Nodule Point, with a depth of 22m, and has a max mean speed at the

surface of 3.205 m s−1. The model was spun up to allow the turbulence to develop fully,

when the turbulence intensity matched the observations. An optional actuator disk turbine

is available, though this analysis does not include that feature. The model has 256×256×320

grid points for a 300m×300m×22m simulation (1.17m resolution in the horizontal directions

and 6cm in the vertical). With a varying time step of about 1s, the data used span 848s,

giving one full 10-minute period, and half of a second. The results for these two intervals

will be discussed, and future work will include a larger dataset in time.

4.4 LES Results

Figure 4.11 shows vertical profiles of mean u-velocity and turbulence intensity from the LES

and TurbSim (TS), with the averages from the ADV observations at hub height at Nodule

Point (ADV). The LES model creates a more realistic mean velocity profile of u (Figure 4.11a)

that includes wall boundary profile that reaches 0 at the wall. The TurbSim model does not

resolve the wall boundary. However, the LES run has mean speeds that are much faster

than observed, so future model runs will be performed to produce a more realistic mean

profile. The turbulence intensity profiles (Figure 4.11b) each have benefits over the other.

TurbSim very accurately captures the turbulence intensity levels of the observations at hub
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Figure 4.11: a) Vertical profile of the mean speed, u, from LES (black) and TurbSim (blue),
with the max u-velocity from all observations (ADV) shown in the red dot. b) Vertical profiles
of turbulence intensity from LES (black), TurbSim (TS; blue), and the average turbulence
intensity at hub height for intervals with u > 0.8 m s−1 from observations (ADV; red dot).

height, but has a constant profile in z, independent of mean speed. The LES, on the other

hand, captures the changing turbulence intensity with depth (including a slight increase at

the surface from the wave and wind effects), but over-estimates Iu at hub height. The Iu

profiles from the ADCP at Nodule Point in Thomson et al. (2012) show a higher average

Iu at hub height from the ADCP than the ADV. The ADCP’s profile is steeper than that

of the LES, with minimum values of Iu at the surface of 8− 9%, rather than 4− 5% in the

LES.

The hope for using LES is to capture the intermittent, coherent structures in the flow.

Using the same temporal statistics from the observational analysis, as well as spatial co-

herence, we can determine if LES does, in fact, generate more realistic turbulent features

than TurbSim. The anisotropy eigenvalues were plotted on the barycentric map along with

the TurbSim data in Figure 4.6, and also colored with the anisotropy magnitude, A. In

general, the points match the observations and TurbSim results, as the points are closer

to the one- and two-component limits than the isotropic limit. However, only having two
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10-minute intervals is, unfortunately, not very helpful; more time information is needed to

see the full range of anisotropy types and shapes. Knowing from the observations that there

is also a dependence on the mean speed in the barycentric map (gray versus black points in

Figure 3.9) requires longer model runs to identify the dependence in the LES data. From

observations, the coherent structures appear to arrive during the slack conditions, but since

the LES is not set up with the geographical details that are believed to force these features,

they may not appear in the LES output.

When the LES intervals are plotted on the same color axis as the TurbSim data, they

appear as very deep red, including the right-most point, which has a lower A, and is in the

region that McCaffrey et al. (submitted, 2013) showed generally has lower A. This suggests

that the LES data, with more time intervals included, should be plotted with its own scale

for A to see the dependence. Figure 4.7 also supports this, with the two LES points (in black)

far higher on the scale of CTKE and A. TurbSim results showed a lack in the highest values

of CTKE and A; the LES output appears to capture these points, but the magnitude of both

of the intervals suggests that the LES might, in fact, be over -estimating these quantities.

Again, the conclusion to be made from these results is that we need many more intervals,

again changing in mean speed, to determine the true behavior of A and CTKE in the LES

model.

Turning to the pdf for information on the intermittency in the LES model, the short times

again become a problem. Figure 4.12 shows the pdfs of the velocity increments from the LES

output. Only having 848s of data produces very noisy pdfs that do appear nearly Gaussian,

but need more data to take form. Even the pdfs from the ADV data and TurbSim output

with only 848s are scattered and more Gaussian than the pdfs with more data. However,

the temporal autocorrelation can still be used to accurately identify the intermittent or

constant behavior in the turbulence, represented by the distribution of coherence in the

flow. Though there are only two intervals, a general idea can be gained by comparing the

autocorrelations from the LES to that of TurbSim, as is done in Figure 4.8. The two dashed
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Figure 4.12: Left: Probability density function of velocity increments (∆u - circles, ∆v
- squares, ∆w - diamonds), normalized by each’s standard deviation, in increasing time
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lines correspond to the two intervals of LES data (note that the second is only 248 seconds

long, so ρ(t > 248) = 0), exhibiting differing levels of coherence, one of which is longer than

every interval from TurbSim. The integral and Taylor scales for the first interval are 50.098s

and 7.9647s, and for the second interval they are 5.836s and 6.533s, respectively. Using

Taylor’s hypothesis, this corresponds to a longest correlation length scale of 121.76m. This

length scale is very large, and is determined by the mean speed, which in this case, is much

larger than observed. Therefore, in the case when the mean speed is 1.8 m s−1, this length

scale (assuming Λ doesn’t change), is 90m, which, though still slightly too large, is more

reasonable and more consistent with the observations.

4.5 Spatial Correlations from LES

The advantage of having a numerical model is the spatial grid of velocities, not the limited

data from an instrument. In order to assess the accuracy of using Taylor’s hypothesis for

estimating length scales, the spatial autocorrelation was calculated with the model output

from the LES, and the results are shown in Figure 4.13. The spatial autocorrelation is

defined as

ρ(r) ≡ u′(x, y, z)u′(x+ r, y, z)

u′2
, or (4.14)

ρ(r) ≡ u′(x, y, z)u′(x, y + r, z)

u′2
, (4.15)

where r is the separation distance in the streamwise (x, Figure 4.13a) or cross-stream (y,

Figure 4.13b) direction and the overbar is an average in horizontal and vertical space. Since

this method of estimating length scale uses the along-stream velocity, the spatial autocorre-

lation was first calculated in the along-stream-vertical plane. The spatial autocorrelations do

not look very different from the temporal equivalents from the LES, but they do look quite

different from the ADV observations’ temporal autocorrelations. All lines become uncorre-
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lated at about the same rate, and that is seen in the small range of Taylor scales (2.9−4.3m).

Figure 4.14 compares the integral length scales from the observations and each model for the

along- and cross-stream autocorrelations, either directly from the spatial autocorrelations or

from Taylor’s hypothesis of the temporal autocorrelation for the ADV and TurbSim (since

its horizontal resolution is too small in the cross-stream case). The along-stream case for the

ADV-TurbSim comparison was done above, but adding the LES to the analysis shows that,

though the average integral scale is similar in all three cases, a strong bi-modal distribution

is seen in the histogram of the LES results, with peaks at very small scales (< 10m) and

large scales (30− 35m). The mean integral scale of 18.5m is not indicative of the most com-

mon scales in the flow, making this an unreasonable parameter to use for characterizing the

flow. The cause of this distribution is not clear from the physics of the model, which has no

preferred scale at which turbulence is generated. The coherent features with length scales of

greater than the water depth are all limited in the vertical direction, requiring the anisotropy

to be high. Though it is desirable to have these coherent structures in the modeled flow,

the distribution is not similar to the observations, so turbines built to withstand this tur-

bulent environment would be “over-built,” possibly losing the ability to generate power as

efficiently. From this comparison between spatial and temporal autocorrelations, it appears

that Taylor’s hypothesis is not an accurate method of estimating length scales from time

scales at these velocities, since the long time scales from ρ(τ) do not appear in ρ(r).

The spatial coherence function from TurbSim, defined in Equation 4.5, is also plotted on

Figure 4.13a. Since TurbSim does not create planes in the along-stream direction, this corre-

lation function assumes isotropic turbulence in the along-stream and cross-stream directions

so that the vector r between points i and j can be turned 90◦ (this may not be an accurate

assumption, and will be discussed below). The TurbSim coherence function matches the

LES output fairly well at the smaller scales, and appears to have the same behavior as the

LES times with the integral scales at or below 10m. The set coherence function does not

allow for a bimodal distribution of integral scales, but at this point, it is not certain that the
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Figure 4.13: Spatial autocorrelation in the along-stream-vertical plane (a) and cross-stream-
vertical plane (b) from the LES output (every 10 time steps shown for clarity), with the
average for all times in the solid black line, and the coherence function from TurbSim (with
f = .01s−1 in a) and f = .1s−1 in b) in the dashed line.

LES result is desirable anyway. Further observations with more than one location in space

are needed for this confirmation.

Spatial correlations in the cross-stream direction are possible with both the LES output

and the TurbSim coherence model. This information is completely impossible to obtain from

either a vertical profile or a single-point collection of observations. Only multiple horizontal

observations can provide the spatial correlations in this direction, since Taylor’s hypothesis

cannot be used when the mean flow is slow. Differences in the flow in this direction across

a turbine rotor also induces torque and loads on the turbine (Alexander and Hamlington,

2014). The autocorrelation in this cross-stream direction is plotted in Figure 4.13b. These

results are much less variable, with a range of only 3m for both the Taylor and integral

scales. The correlation is much smaller in the cross-stream direction, which is consistent

with the fact that the turbulence is being advected in the along-stream, but not cross-

stream direction, introducing a favored direction of coherence. The distribution of integral

scales (Figure 4.14b) does not exhibit the bimodal behavior of the along-stream direction.

This result indicates that whatever physical process is causing the second peak in integral
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scales in the along-stream direction does not impact the cross-stream direction. The spatial

coherence function for TurbSim has been plotted on the spatial autocorrelations from the LES

in Figure 4.13 as well. On this plot, there is no directional transformation, nor assumptions

necessary, since the TurbSim output is in the cross-stream-vertical plane. The TurbSim

model fits the LES output very well with a value of f (frequency) an order of magnitude larger

than in the along-stream direction, suggesting that higher frequency fluctuations dominate

the turbulence in this direction. The better fit of the TurbSim coherence model in this

direction may be an indicator that the isotropic assumption made to equate the coherence

in the along-stream and cross-stream directions is incorrect, and the model should only be

used in the y−z plane, as in the TurbSim output. This is also consistent with the anisotropy

of the barycentric map results in observations and LES. However, the integral length scales

from TurbSim made with Taylor’s hypothesis are unrealistic since there is essentially no

mean v-velocity. Note that while all of the other x-axis ranges in Figure 4.14 extend to 60m,

the TurbSim cross-stream uΛ range only extends to 0.06m. TurbSim will need to be run at

a much higher resolution in order to calculate the spatial autocorrelations, and this work is

planned for the future.

The availability of a grid of velocities is a great benefit that comes from numerically

simulating a tidal strait, but model verification is still needed to support these results.

An array of just two ADVs would provide an enormous amount of information to support

the model results. Placing two horizontally-spaced ADVs would capture the horizontal

coherent structures which dominate the anisotropy (from the barycentric map and turbulence

intensity), and which induce pressure differences across the rotor plane. Vertically spaced

ADVs would also capture the structures that vary in the vertical, though anisotropy in this

direction is not as strong. The mean flow’s vertical shear across the rotor plane can be

measured by an ADCP to greater accuracy than two ADVs. Future field work will place

two TTMs in the horizontal, cross-stream direction and then two in the horizontal, along-

stream direction, with the option of having two ADVs on each TTM (Thomson, personal
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communication). This data will provide valuable information as to which direction has the

most impact on a turbine, and how quickly the turbulence changes with the mean flow, to

assess the accuracy of Taylor’s hypothesis.

4.6 Conclusions from Model Results

The two models presented here differ greatly in their basic make-up. The NREL TurbSim

model is based on the assumption that turbulence is a stochastic process, and a time series

of velocity perturbations is created out of a pre-defined kinetic energy spectrum. The LES

model, on the other hand, is a physical model based on the Boussinesq Navier-Stokes equa-

tions including wave-, wind-, and tidal-forcing, where the largest eddies are resolved and the

smallest turbulent scales are modeled. Each model brings advantages and disadvantages to

the table as we attempt to create a full flow-field of realistic turbulence. TurbSim is much

simpler and easier to run on one processor on a desktop computer (3200 mins of simulated

time takes under 10 minutes of wall time), with several user-defined quantities to guarantee

realism in those areas, such as the Reynolds stresses and turbulence intensity at hub height.

However, there is no ability to include coherent structures in the current form of the tidal

model, so the turbulent events that impact a turbine the most are missing from the turbu-

lence created by this stochastic model. The LES requires a much more complicated model

set-up and super-computing abilities to run in a manageable time (15 minutes of simulated

time takes 24 wall hours on 768 processors). In exchange, the LES is based on realistic

physics and accurately creates, without being defined by the user, realistic vertical profiles

of quantities like Reynolds stresses and turbulence intensity.

A deeper look into the output from TurbSim and LES continued to show strengths

and weaknesses in each model. While output from TurbSim captures the anisotropy in

the Reynolds shear stresses, and thus has values for A similar to the observations, the

largest, coherent intervals that are seen in the ADV data are not seen in TurbSim data.

89



Conversely, the two intervals analyzed from LES output showed values of A that are too

large. The model-defined turbulence intensity in TurbSim does match the observations at

hub-height, but there is no dependence on mean speed, so, while the model accurately creates

the turbulence intensity it is defined to create, it is not realistic based on observations of

changing mean flow velocities (both in time and in the vertical profile). With the current

LES data, the changes in mean velocity are not modeled, but the vertical profile of mean

speed and turbulence intensity are more realistic than those of TurbSim.

While investigating the creation of coherent events in TurbSim and LES, some expected

and unexpected results were seen. The autocorrelations and pdfs from TurbSim supported

the hypothesis that the model would not create coherent, intermittent events. The range of

Taylor and integral scales did not capture the longer coherent events, and the pdfs did not

increase in intermittency with longer time scales seen in the observations. Though it was

predicted that the LES would capture these longer events, it did not appear as predicted.

The temporal autocorrelation did show longer Taylor and integral scales on one of the two

intervals analyzed, but the spatial autocorrelations in the along-stream direction, expected

to mimic the behavior of the temporal autocorrelation, showed a very different, bimodal

distribution of integral scales. Figure 4.15 shows an along-stream snapshot of the u-velocity

perturbation, with the smaller scales (5 − 10m) and larger scales (30 − 40m) evident. It

is unknown whether this bimodal distribution is realistic, however, and the current LES

data is too short to see if the temporal scales are also bimodal. The cross-stream auto-

correlations from the LES, compared to the coherence function in TurbSim were very similar,

but unsupported by an array of observations.

The most immediate area for future work is to run a more realistic scenario of the LES,

with longer times that cover at least one tidal cycle to include changes in the speed and

direction of the tidal flow. A “simulated ADV” of sorts will be created, that will be a higher

resolution, longer time series of velocities at one point in space for a direct comparison with

the observations. This will introduce new challenges with more time necessary to run the
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Figure 4.15: Streamwise-vertical plane of u-velocity perturbation, u′ along the center line of
the LES data, with the turbine plane shown in the solid line..

model, and more time and space needed to handle the larger datasets. These are obstacles

that are worth waiting for, however, in order to achieve the realism necessary for the problem

at hand. The combination of the temporal statistics and the spatial ones available from the

3-dimensional volumes will also help verify the instances when Taylor’s hypothesis is and is

not appropriate for these purposes and scales.

Though the model results provide additional information about the turbulence in the tidal

strait that can be fed into a turbine model like NREL’s Fatigue, Aerodynamics, Structures,

and Turbulence (FAST), the current state of both the tidal TurbSim model, and the tidal

NCAR LES is lacking important features of the flow. Thomson et al. (2012) hypothesized

that a major influence on the turbulence at Nodule Point is the presence of a headland

upstream of the proposed turbine site. A far-field feature such as this is very difficult to

model. Nevertheless, without these models, there would be no way to predict loads on a

turbine. Engineers must be aware of the faults of these models, but can still use their output

to continue designing turbines to withstand the turbulent environment of a tidal energy site.
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Chapter 5

Conclusions

This dissertation was motivated by a fascination with the incredibly complex, and often

beautiful, nature of turbulence, and a desire to understand it more fully. The oceans support

life on Earth, and impact all humans - regardless of how far from a coast they may be -

because of its role in determining our climate, and providing us with many natural resources.

Recognizing the importance of turbulence to applications such as climate change and ocean

energy, I set out to explain as much as possible with the limited amount of data available to

me. Despite the shortcomings of each of the datasets, I was able to use each for at least a

preliminary analysis (I only needed to discard one dataset from the full analysis).

I introduced the topic of ocean turbulence based on the foundational theories that underly

all modern turbulence work. The theoretical work of Kolmogorov, Kraichnan, and Batchelor

have remained the starting point for other turbulence theories and observations. Parallel to

the more classical turbulence work in the laboratory, oceanographers have been theorizing

and observing the more complex systems, creating relevant theories to predict interior and

surface quasi-geostrophic behavior, as well as tracer variance properties. The kinetic en-

ergy (and sometimes enstrophy) spectrum remains the most popular tool to understanding

turbulent environments in both laboratories and oceans, so beginning with these theories is

necessary to contributing to the modern knowledge of ocean turbulence. An introduction to
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some previous observations of ocean turbulence showed the gaps, which include global ob-

servations below the surface, as well as continued work in localized regions of interest. The

body of my dissertation then focused on three methods of characterizing ocean turbulence,

at both the global scale, and the very small, local scale.

Chapter 2 introduced a new method of characterizing ocean turbulence from a network

of scattered, discontinuous vertical profiles from Argo floats. Previously thought to not

be dense enough in its coverage in time and space, McCaffrey et al. (2014) showed that

the data is sufficient for the structure function method, which had previously been used

with rawinsondes in the atmosphere (Frehlich and Sharman, 2010b). The results of that

chapter showed that it is possible to use temperature and salinity data from Argo floats

to compute structure functions at spatial scales as small as 20km in some regions. While

most previous ocean turbulence observations have been at the surface or in the mixed-layer,

the Argo network provides a unique look at the deep ocean, with observations in profiles

extending to 2000m depth. The basic assumptions of homogeneity and isotropy that allow

the transformation between structure function (physical) space to spectral (wavenumber)

space often do not hold in the ocean, but our results showed little change between more

homogeneous and heterogeneous regions in terms of the shape of the structure functions,

while the magnitude differed. This makes the structure function an even stronger tool for

characterizing turbulence than the kinetic energy spectrum, since homogeneity and isotropy

are not necessary for computation. The structure function itself is a useful diagnostic, which

can be predicted with theories (e.g., Eyink (1996)), or compared directly to spectra computed

in the same location in heterogeneous high-resolution ocean models.

Having shown success in calculating structure functions from Argo data, this method

can now be applied to GCM data as an improved method of model validation beyond the

simple point comparisons that Argo has provided up until now. These comparisons may be

able to highlight regions in the oceans where the physics are inaccurate in the models. A

subsequent project to follow this one would be to gather GCM output in vertical profiles to
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match the times and locations of Argo profiles, and compute structure functions, again on

both isobars and isopycnals. Locations varying in latitude, depth, and levels of eddy activity

and homogeneity will identify more clearly where GCMs fail and succeed at capturing the 3d

turbulent processes that transfer energy from the large forcing scales to the small dissipation

scales, or the 2d processes that transfer energy from the intermediate forcing scales to the

large dissipative scales. Having observations of these processes can improve climate models,

ultimately providing more reliable predictions of our future climate, and how we, as humans,

can affect it.

Still motivated by the desire to understand the complexities of the oceans that affect our

lives, Chapter 3 changed focus to the second major application of the turbulence research

done here: ocean renewable energy. The ocean is capable of providing us with substantial

amounts of energy, but the technology is new and the implications of extracting energy are

still unknown, so research questions are still wide open. Understanding the turbulence at

a potential tidal energy site is vital to its development and success. Taking advantage of

the available observations in the Puget Sound, WA where two potential tidal energy sites

are located, I performed a more extensive characterization of the turbulence than previously

conducted. The goals were to identify the time and length scales of the strongest coherent

features, physically describe them (i.e., what shape?), and parameterize them with simple

turbulence metrics. Though velocity profiles are available from an ADCP, the less noisy

ADV was used because its small sampling volume did not introduce the inherent beam

spread of the diverging beams of an ADCP. This greatly limited the amount of informa-

tion that we could gain about the turbulence because we lost access to the direct spatial

information, and were left with only a time series of velocities at one point in space. This

meant relying on Taylor’s frozen turbulence hypothesis, which is only true for flows whose

turbulent fluctuations happen at much faster timescales than the mean flow that advects

them. Nonetheless, the high temporal resolution of the observations makes them perfect for

the temporal statistics calculated here, which included autocorrelations, structure functions,
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probability density functions of the velocity increments, and the anisotropy properties. Using

this collection of physical properties, I made a comparison between three basic turbulence

metrics (turbulence intensity, turbulent kinetic energy, and coherent turbulent kinetic en-

ergy) to determine which is best at capturing the strong turbulent events. An additional

metric, based on the anisotropy tensor and is a tensor invariant version of the coherent

turbulent kinetic energy, which we called the anisotropy magnitude, A, was introduced and

included in this comparison. This metric showed the closest relationship with the intermit-

tency, coherence, and anisotropy as quantified by the physical parameters. This quantity

parameterizes these properties of the flow much better than the previously used turbulence

intensity.

This study is just the beginning of what could be a full career in site characterization for

tidal energy sites, since there is such a wide variety of directions to go. First, and maybe

most importantly, is the connection that remains to be shown in the water between turbulent

characteristics and loads on a turbine. These comparison have been made in the atmosphere

for wind turbines (Kelley et al., 2000; Mücke et al., 2011), and the correlation is expected

to be the same. Unfortunately, there are very few tidal turbines in operation, and it is

difficult to measure the loads in the water, so numerical models like the NREL Fatigue,

Aerodynamics, Structures, and Turbulence (FAST) model are given the responsibility of

providing these answers (Jonkman and Buhl, 2005). These temporal statistics also could be

supported by additional observations that provide spatial information. The Tidal Turbulence

Mooring (TTM), which can have multiple ADVs on a compliant mooring with an ADCP at

the base, can be used for this purpose, and provide vertical spatial statistics (Thomson et al.,

2013). Future field campaigns are planned which will include multiple TTMs for horizontally

varying observations as well (Thomson, personal communication). Other future turbulence

characterizations can also be conducted in the presence of an operating tidal turbine. While

the turbulence impacts the turbine, the turbine also impacts the turbulence and the tidal

channel, including the bottom bed and any biological organisms living there. Laboratory
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experiments and numerical simulations have addressed the questions of a turbine’s influence

on the tidal flow, but few observations have been made to support them thus far (Hill et al.,

2013; Kang et al., 2012). Clearly, the need for further observations of turbulence for tidal

energy applications is still great!

Since the list of needed observations for tidal energy applications is so long, numerical

models are necessary to suffice in the meantime. As more observations come in, the models

can continue to expand to construct a full tidal flow. The observations that informed the

analysis in Chapter 3 were used in Chapter 4 to set up two very different numerical models

of the tidal flow for this purpose. The first, the NREL HydroTurbSim (or TurbSim) model,

is a stochastic turbulence generator performing an inverse Fourier transform on a pre-defined

kinetic energy spectrum to obtain a turbulent time series to be added onto a mean flow pro-

file. Calculating the same temporal statistics on the TurbSim output to compare to the ADV

observations at Nodule Point, it was seen that the turbulence is created as defined: realisti-

cally in the anisotropy of the Reynolds shear stresses, but unrealistically in the anisotropy

of the normal stresses. Additionally, the strong, coherent features of the flow are not seen.

These results are as expected, since the physical mechanisms that create coherent structures

in a flow are not included in a stochastic model. This model is user-friendly, very fast to

run, and is generally useful for capturing the average turbulence intensity, which has been

shown to have strong impacts on loads and power production (Rareshide et al., 2009), but

for a more in-depth analysis, a physical model is needed at the expense of ease and time.

In search of a model that does create the realistic, coherent structures, we turned to

large-eddy simulations of the tidal flow from Alexander and Hamlington (2014). Solving

the wave-averaged, Boussinesq Navier-Stokes (Craik-Liebovich) equations in Equations 4.10

captures the wind-, wave-, and tidal-forcings in the modeled area. The output from the

LES show a hint of more realistic coherent features, though the small amount of available

data in time is not enough to see the full range of scales. Anisotropy values may be larger

than observations because of the mean speeds that are unrealistic to the location (too fast),
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creating more shear than is present at Nodule Point. The spatial correlations that are

available from models that are not possible from single-point observations were calculated

with their resulting integral and Taylor scales. The spatial coherence scales did not match

those obtained assuming Taylor’s hypothesis from the temporal coherence scales from the

ADV observations, most notably in the along-stream direction, where there are two dominant

length scales in the LES data. Especially at the peaks in the tidal cycle when mean velocities

are fastest, it appears that Taylor’s frozen turbulence hypothesis is not appropriate, since the

mean flow has such a strong impact on the turbulence. The difference in spatial correlations

between the along-stream and cross-stream directions also indicates that the mean tidal flow

determines the turbulent properties, so a full analysis needs to include a full tidal cycle, not

just the fastest mean speed.

The most immediate future work is to run the LES model with more realistic velocities

to match the observations closer, and run for a longer time to obtain more of the tidal sig-

nal. The output from the LES can also be used as input for the FAST model to identify

the resulting loading on a turbine from the different properties of the flow, like scales and

anisotropy. To accompany the future observations of turbulence in the presence of an op-

erating turbine, this LES model, with its actuator disk capabilities, can be used to predict

turbine array spacing and environmental affects. LES models often have the ability to in-

clude bottom topography (and terrain-following coordinates) that may account for some of

the missing scales of turbulence in the current runs. Further development of the LES of

Nodule Point and Admiralty Head is planned by Hamlington and Alexander (Hamlington,

personal communication).

Just as the in situ observations have inherent shortcomings, all models do as well. The

most general disadvantage with modeling is that only a small range of scenarios are possible

to model. Only a model that includes every type of forcing, including human-caused and

far-field motions, could create a nearly-accurate kinetic energy spectrum, but even then,

the inability to exactly solve the fluid equations prevents a perfect prediction of a future
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turbulent state. Though this sounds very pessimistic, I hope that this dissertation has

shown that there is always use in the data. The sometimes far-from-perfect data, whether

from observations or models, are not a reason to give up on studying turbulence. Though

it was sometimes discouraging to realize that what I set out to do was not possible with

the data I had, I was forced to accept and even appreciate the bits of knowledge that were

obtainable. Having specific hypotheses to test (theories of spectral slopes in Chapter 2,

CTKE-load relationships in Chapters 3 and 4) allowed the limited data to cover a larger

fraction of the questions at hand, rather than having open-ended or broad questions which

could have required much more data. All observations and models give information otherwise

unknown about turbulent flows. Only through continued research into and observations of

each of these areas can we slowly increase our knowledge of the complex oceans.

When beginning this research more than four years ago, I quickly learned that observa-

tional data is not to be taken for granted, and is not very simple to work with. Difficulties in

determining averaging intervals, grid sizes, appropriate methods of interpolation, and other

unpredicted obstacles presented themselves along the way. I greatly appreciated the lessons

I learned on a month-long CLIVAR research cruise aboard the R/V Atlantis, when I recog-

nized the need for extreme detail while collecting and sampling ocean water at depth (e.g.,

during every-other profile, gloves must be worn by all scientists sampling before dissolved

inorganic carbon!). Returning to my land-locked state to work with data gained through

other people’s hard work took on a new meaning; I became more aware of the importance

of every result. Collecting the research done over the past five years has been a great chance

to acknowledge how this work presents information about the ocean that was completely

unknown to the world beforehand. I hope that this dissertation can be the beginning of a

career of new realizations of the beauty of turbulence.
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Appendix A

Frequently Used Abbreviations

ADCP Acoustic Doppler current profiler

ADV Acoustic Doppler velocimeter

CTKE Coherent Turbulent Kinetic Energy

EKE Eddy Kinetic Energy

GCM Global Circulation (or Climate) Model

K41 Kolmogorov (1941)

LES Large-eddy simulation

NCAR National Center for Atmospheric Research

NREL National Renewable Energy Laboratory

QG Quasi-Geostrophy

SGS Sub-grid scale

SQG Surface Quasi-Geostrophy

TKE Turbulent Kinetic Energy

TTM Tidal Turbulence Mooring
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Appendix B

Hurricane wake restratification rates

of one-, two- and three-dimensional

processes

This work has been published in the Journal of Marine Research, and can be found here:

http://dx.doi.org/10.1357/002224012806770937 .

Abstract The restratification of the cold wakes of Tropical Cyclones Fanapi, Frances, Igor,

and Katrina are examined based on derived scalings for processes that can restore the hur-

ricane wake toward the pre-cyclone conditions. The different restoration processes depend

on the parameters of the wake: depth, width, buoyancy anomaly, and wind stress. The

parameters needed are derived for each wake from satellite and climatological data. The

scalings are based on model results and existing parameterizations, including air-sea heat

fluxes (1d), Ekman buoyancy fluxes (2d), and mixed layer eddies (3d). The dominant surface

restoration occurs by a combination of surface fluxes and Ekman buoyancy fluxes, while the

submesoscale mixed layer eddy bolus fluxes are the dominant subsurface effect.
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Appendix C

Observations of Ocean

Macroturbulence: Structure Function

Analysis from Argo Profiling Float

Data.

This appendix contains the text of McCaffrey et al. (2014) and McCaffrey et al. (2014a),

submitted to the Journal of Physical Oceanography in January, 2014.

Abstract - Estimates of Ocean Macro-turbulence: Structure Function and Spec-

tral Slope from Argo Profiling Floats, I: Methods

The Argo profiling float network has repeatedly sampled much of the world’s ocean. This

study uses Argo temperature and salinity data to form the tracer structure function of ocean

variability at the macro-scale (10−1000 km, mesoscale and above). Here, second-order tem-

perature and salinity structure functions over horizontal separations are calculated along

either pressure or potential density surfaces, which allows analysis of both active and pas-

sive tracer structure functions. Using Argo data, a map of global variance is created from
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the climatological average and each datum. When turbulence is homogeneous, the struc-

ture function slope from Argo can be related to the ocean’s temperature or salinity variance

spectral slope. In the oceans, where turbulence is mostly heterogeneous, spectra may be

misleading, but structure functions still provide statistical information that can be under-

stood or used for model validation. This method is shown to match previous results from

continuous glider observations in the Pacific Ocean.

Introduction

Understanding the nature of the turbulent processes in the atmosphere and ocean is crucial

to determining large-scale circulation, and therefore climate prediction, but the relationship

between large-scale circulation and small-scale turbulence is poorly understood. Atmospheric

turbulence has been studied through spectral and structure function analyses for decades

(Nastrom and Gage, 1985; Lindborg, 1999; Frehlich and Sharman, 2010a), and the results

have been duplicated by high resolution General Circulation Models (GCMs) and mesoscale

Numerical Weather Prediction (NWP) models as well (Koshyk and Hamilton, 2001; Ska-

marock, 2004; Frehlich and Sharman, 2004; Takahashi et al., 2006; Hamilton et al., 2008).

As realistic ocean climate models become increasingly turbulent, a similar dataset to the

Nastrom and Gage spectrum would be a perfect evaluation tool.

It is often assumed that constraining a horizontal power spectral density curve, or spec-

trum, requires a nearly-continuous synoptic survey, such as by satellite (Scott and Wang,

2005), tow-yo (Rudnick and Ferrari, 1999), ship (Callies and Ferrari, 2013), or glider (Cole

and Rudnick, 2012). Near-surface spectra from tow-yo and satellite have been studied by

the authors and collaborators among many others (Fox-Kemper et al., 2011), but a similar

comprehensive analysis has not been done at depth because of the limited availability of
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continuous observations. However, the recent atmospheric rawinsonde method of Frehlich

and Sharman (2010a) demonstrates that a collection of individual observations may be used

to form the structure function, which is closely related to the power spectrum in station-

ary, isotropic, homogeneous turbulence. Structure function analysis is quite common in the

engineering literature on turbulence (She and Leveque, 1994, is a well-known example).

With the increased density of Argo profiling floats sampling down to 2000 m over the

past two decades, as well as the success of the rawinsonde method in the atmosphere, a new

method is attempted to quantify large-scale turbulence in the oceans. Since spectra have

not been computed from Argo data, point-by-point agreement between satellite and Argo

(Gommenginger et al., 2010; Bhaskar et al., 2009) is sufficient to validate this utilization of

surface Argo data, but the analysis here goes beyond what satellites alone can provide. In

these previous analyses, satellite data was constrained to surface properties, while in situ

estimates were of limited geographic and seasonal scope. These observations often yielded

new insight, for example testing the predictions of quasigeostrophic turbulence theories and

elucidating the importance and ubiquity of near-surface ocean fronts. Even without support-

ing theory, the structure function statistic is a useful constraint on high-resolution models,

as structure functions are easy to calculate in a model from even a single output snapshot.

In this study, temperature and salinity data from Argo are used to characterize large-scale

turbulence at depth by constructing structure functions and, in some cases, inferring the

related temperature and salinity variance spectra.

Previous ocean surface observations suggest that the spectral behavior for scales larger

than about 1 km differs from smaller scale turbulence (e.g., Hosegood et al., 2006). Here, we

call variability on this range of large scales “macro-turbulence” to emphasize that, aside from

being large scale, little is known about what is being observed (see also Forget and Wunsch

(2007)). While dynamical frameworks for mesoscale, quasigeostrophic turbulence spanning

this spatial range at sub-inertial frequencies are heavily studied, they may not be complete in

the description of data from the real ocean where temporal filtering has not been performed.
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Macro-turbulence is considered between 10 and 104 km, including mesoscale eddy activity,

internal waves, and other signals such as atmospheric forcing responses.

Structure Function - Spectrum Relationship

The tracer autocorrelation function, Rθ is a measurement of the similarity (or difference)

between a point located at x and another separated by a distance vector, s, defined as

Rθ(s,x) = θ′(x)θ′(x + s), (C.1)

where θ′ is any tracer (e.g., potential temperature or salinity) deviation from an appro-

priate mean. The nth-order tracer structure function, Dθ,n, is similarly defined and the n = 2

form is related to the autocorrelation by

Dθ,n(s,x) = (θ′(x)− θ′(x + s))n , (C.2)

Dθ,2(s,x) = 2
(
θ′2 −Rθ(s,x)

)
. (C.3)

In the case of isotropic turbulence, the structure function and autocorrelation are inde-

pendent of direction (e.g., D(s,x) = D(s, x)), and for homogeneous turbulence, they are

independent of x (e.g., D(s, x) = D(s)). Exploiting the relationship in Equation (C.3) is of

primary interest, so unless specified, n = 2 is assumed, and Dθ(s) = Dθ,2(s).

In structure functions and spectra, the definition of “variance” and deviation from the

“mean” must be clarified. Controlling noise, seasonality, and the resolution of chosen sep-

aration distances all detract from the use of a uniform bin average as mean, so instead the

near-global mean monthly Ocean Comprehensive Atlas (OCCA) for the 3-year period from

December 2003 through November 2006 (Forget, 2010) was used to approximate an appro-

priate turbulence-free mean for each location and each month. The temperature (salinity)

variance is thus estimated as the difference between the observed temperature (salinity) and
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the climatological value, θ′ = θObs − θClim (S ′ = SObs − SClim). While the Argo data is

assimilated into the OCCA product, the model used for the assimilation is not high enough

resolution to be eddy-permitting. In some sense, the “noise” of deviations from the OCCA

climatology is the object of study here. However, these details aside, experimentation re-

vealed the structure functions presented here did not change appreciably if a time average

of all Argo data on a grid was used instead of this climatology.

If a given homogeneous, isotropic turbulence spectrum has power-law behavior over a

range of wavenumbers, then a related scaling law for the structure function is expected

(Webb, 1964). Suppose this power law is given by B(k) = αBk
λ, with spectral slope, λ.

The structure function will also have a polynomial form: Dθ(s) = cDs
γ + C0 with structure

function slope, γ, and a constant C0 representing contributions from other portions of the

spectrum not adhering to the B(k) = αBk
λ law (shown to be negligible in Webb (1964)).

The relationship between the two slopes (derived in Appendix A)is

γ = −λ− 1. (C.4)

However, structure functions calculated here often have a bend point with two slopes,

so an analysis is needed to determine whether that was a sign of two separate power laws

in the spectrum (a common example occurs in Nastrom and Gage (1985), where a spectral

slope of λ = −5/3 is seen at the small scales, and λ = −3 is seen at large scales). A detailed

examination of this case is shown in Appendix A. This analysis shows that, if spectral slopes

of the two power-law scalings are λ1 and λ2, then the structure function can be written as

Dθ(s) = c1s
γ1 + c2s

γ2 , (C.5)

where the same relationship between structure function slope, γ, and spectral slope, λ (Equa-

tion C.4) applies between the large scale structure function slope versus small wavenumber

spectral slope, and for the small scale structure function slope versus large wavenumber spec-
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tral slope. As long as the inertial range over which each power law applies is large enough

and γ1 < γ2, the first term dominates the small scale, and the second term dominates the

large scales. A primary goal of this paper will be to estimate γ from data over length scales

where a single power law is suspected, or both γ1 and γ2 when a single linear fit is not

apparent, and compare to theories that predict γ or a spectral equivalent.

Relevant Theory

Kolmogorov (1941) proposed the idea of an inertial range in isotropic, homogeneous tur-

bulence, removed from frictional effects and removed from the scale of forcing. Through

dimensional analysis, he arrived at a kinetic energy spectrum of E(k) ∝ k−5/3 in this range,

and a corresponding velocity structure function slope of γ = 2
3
. Using Kolmogorov-like di-

mensional arguments, Obukhov (1949) and Corrsin (1951) predict a temperature spectrum

with slope λ = −5
3

in the “intermediate” range where forcing is at a remote scale and dis-

sipation is also distant (large Péclet number). The temperature structure function slope of

γ = 2
3

is expected for the Obukhov-Corrsin intermediate range.

It is important to note that velocity and temperature are active variables on constant

pressure surfaces (isobars). The restoring to background stratification is a primary driver of

internal waves, for example. However, strongly-stratified motions preferentially follow, not

isobars, but potential density or neutral density surfaces to minimize energy expenditures

(McDougall, 1987), although exact conservation is not possible (Nycander, 2011). Since tem-

perature and salinity variance balance each other on isopycnals, temperature and salinity

variations within the layer act as passive tracers.1 A comprehensive study of temperature

and salinity variations requires calculating turbulent statistics on both isobars and isopyc-

nals (Cole and Rudnick, 2012) to analyze the properties of the variances as active versus

passive tracers. Here isobaric structure functions will be contrasted with isopycnal structure

functions, taken along surface-referenced potential density surfaces. Experimentation with

1Sometimes these variations are called ‘spice’, which is marked by compensating thermal and haline
variations along a potential density surface, for example Yeager and Large (2007).
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isoneutral structure functions and other reference levels for potential density yielded similar

structure functions, so the simpler choice of fixed potential density with the surface reference

pressure was made. Thus, the observations here will distinguish passive tracers from active,

as should the predicted scalings. First, let us address the passive scalars, such as salinity

variations on an isopycnal.

Due to rotation, stratification, and limited total depth, large-scale ocean flows are quasi-

two-dimensional (dominantly horizontal). Two-dimensional turbulence scalings by Kraich-

nan (1967) of the kinetic energy slope of E(k) ∝ k−3 in the enstrophy cascade range (plus a

logarithmic correction neglected here) at small scales and E(k) ∝ k−
5
3 in the inverse energy

cascade at large scales could potentially describe barotropic motions. The eddy-turnover

timescale for stirring by the largest eddies (τk ∝ (k3E(k))−1/2) is therefore a single dominant

value for the entire enstrophy cascade where E(k) ∝ k−3, and varies for the inverse energy

cascade where E(k) ∝ k−
5
3 . As barotropic flow is not strongly affected by salinity and tem-

perature variations, scalars in regions where barotropic cascades are dominant should behave

as passive tracers.

Batchelor (1959) theorized that in 2- or 3-dimensional velocity fields, between the viscous

and diffusive scales, a passive tracer follows λ = −1 and thus, γ = 0. The scales observed

in this study, however, are much larger, so the Batchelor spectrum does not apply directly.

However, Batchelor (1959) and Vallis (2006) argue that in turbulence where each wavenumber

is dominated by a single eddy-turnover timescale, a passive tracer spectrum should exhibit

a slope of λ = −1 (γ = 0). For example, the Vallis scaling likely applies for separation

distances larger than the largest eddies. Two cases where such a scaling applies should be

kept in mind. First, as just explained, the 2d enstrophy cascade is expected to have a single

dominant timescale and thus behave in this way. Within the range of scales of a 2d energy

cascade no dominant timescale exists, and the Obukhov-Corrsin spectrum is expected to

apply. However, if the inverse energy cascade only goes over a limited range of scales (Scott

and Wang, 2005), then all scales larger than the largest eddies of this cascade are again
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dominated by a single eddy turnover time, and λ = −1 (γ = 0) applies for these largest

scales.

Spectral behavior in quasi-geostrophic (QG) flows is more complex, as passive and active

tracers have distinct behavior. Charney (1971), Salmon (1982), and Blumen (1978) all

describe kinetic energy spectra for the quasi-geostrophic flows. For all cases, passive tracers

should behave as Obukhov-Corrsin predict when E(k) ∝ k−5/3, or as the single eddy-turnover

timescale result of λ = −1 (γ = 0) when E(k) ∝ k−3. However, the wavenumber range

where these spectral slopes should appear in quasi-geostrophic flow is unclear as the effects

of ‘surface’ QG (SQG) and ‘interior’ QG differ strongly by forcing and depth (Tulloch and

Smith, 2006; Callies and Ferrari, 2013).

In QG and SQG, active tracers are related to the potential energy spectrum that ac-

companies the kinetic energy spectrum. The relationship between potential energy and

kinetic energy differs between QG and SQG, however. Unfortunately, tracers observed by

the method here can shed little light on these scalings without additional knowledge of the

kinetic energy. Callies and Ferrari (2013) address the kinetic energy spectrum and its com-

parison to QG and SQG scalings with distance and depth from cruise data where velocities

are directly observed.

The difficulty with QG and SQG active tracer scalings is that other phenomena occur

that may affect the scalings which do not occur in QG or SQG dynamics. For example,

the Garrett and Munk (1975) spectrum of internal waves is thought to often dominate the

isobaric temperature and salinity variability, but the quasigeostrophic equations filter out

these waves. Using mooring data, it may be possible to separate the sub-inertial motions

from the faster ageostrophic modes, but such data is very sparse. Argo data do not afford

this possibility. Another example is frontogenesis, which forms too slowly in QG (Williams,

1972). The presence of fronts has a direct influence on both the tracer and kinetic energy

spectra. Klein et al. (1998) theorized that jumps in velocity and tracers would lead to

a λ = −2 slope, and Bernstein and White (1974) and others observed a spectral slope of
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λ = −2 above 400 m which they attribute to frontogenesis. Cole and Rudnick (2012) observe

λ = −2 for isopycnal salinity spectra down to nearly 1000 m depth in the central subtropical

North Pacific. A comparison with that data is below. Callies and Ferrari (2013) find strong

effects that they attribute to waves–not eddies–over submesoscale separation scales (below

about 20 km) in the Gulf Stream region.

A summary of this section is shown in Table 2.1.

Note on Homogeneity and Isotropy

All of the spectral theories above assume isotropy and homogeneity. Even without assuming

homogeneity and the subsequent connection to spectra, the structure function is still an

interesting diagnostic of ocean turbulence–unlike the traditional Fourier spectrum. Hetero-

geneous turbulence requires special care beyond Fourier methods, such as wavelet analysis or

Wiener filters. Here it is shown that the assumption of homogeneity is not always, and maybe

never be, valid, and the results from various regions with different levels of heterogeneity

will be analyzed.

In situations where data are easily found, such as a simulation of turbulence, a hetero-

geneous, anisotropic turbulent flow could be analyzed conditionally by position and angle.

That is, the structure function Dθ(s,x) would remain a function varying along with six in-

dependent variables (two vectors, six components). With output from a model, structure

functions could be calculated at every location, only averaging over time steps to maintain

all six degrees of freedom. However, in the ocean, data are not so easily had, so a compromise

is taken for the first analysis of the present data.

As seen by the large range of values in the salinity variance map in Figure C.1, the salinity

variance is not homogeneous over much of the oceans. A particularly heterogeneous region

was chosen in the central Equatorial Pacific to show the importance of the differentiation.

Figure C.2 shows the isobaric salinity structure function for the whole region (bold), and

then each four subregions, as shown in Figure C.1. The 95% confidence interval for the entire
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region shows the statistical significance of the differences between the average and its more

homogeneous subgroups. However, the confidence intervals (see Table C.2 in Appendix B)

are much larger for the four subgroups, making it harder to determine an accurate slope.

Furthermore, the longest separation distances can only be studied in the larger box of the

entire region. Therefore, in heterogeneous regions, a connection to a spectral slope is not

made, as scaling laws are likely to vary significantly and interpretation of spectra in such

cases would be questionable. The structure function can be interpreted directly in such cases,

by preserving the x and s dependences. However, in noisy data, the structure function must

still be averaged over limited areas, which reduces the number of independent variables at

the cost of smoothing out the data. As Argo data continue to accumulate, it will become

possible to reduce this effect by binning the averaging regions more and more finely, and

only the testable assumption of statistical stationarity remaining.

Similarly, isotropy is also rare, both in flow analysis and sampling. To minimize biases in

sampling in a few directions from an anisotropic field, all directions of pairs were weighted

equally, even when some directions had fewer observations. For example, in a region chosen

as a rectangle, there were more pairs in the major-axis direction, so they were weighted

less to balance with the fewer minor-axis pairs. If more than 10% of the pairs were in the

same direction (binned in 18◦ bins), then a weight was applied. This approach reduces

the imbalance caused by an anisotropic distribution of pairs in particular directions, but

may increase noise due to increased weights for less well-sampled orientations. Again, as

the number of Argo observations increases, the added data can be used to isolate directional

information by binning into smaller and smaller directional spans. Here we choose to average

over all directions, which reduces precision, but increases accuracy of a clearly defined metric

that converges to the sole metric in the case of isotropy.

Finally, it is possible, or even likely that sampling biases are inherent in the style of

sampling based on passive float technology. That is, floats will be unlikely to drift into or

out of coherent structures, and are likely to be ejected from regions of high eddy activity
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Figure C.1: The log of salinity “variance” at 5 m. a) shows the global variability of salinity
variance, with the box showing the heterogeneous region examined in Figure C.2, and the
bold line showing the location of the C&R observations. b) The heterogeneous region - note
the different colorbar - and its four sub-regions.
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Figure C.2: Isobaric salinity structure function in the central Equatorial Pacific between
10S and 10N and 180W and 150W. The bold line is the structure function computed for
the entire region, with a 95% confidence interval in gray shading, and each of the four lines
is a subregion: star - 10S-Eq, 180-165W; diamond - 10S-Eq, 165-150W; circle - Eq-10N,
180-165W; square - Eq-10N, 165-150W
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toward lower energy regions (e.g., Davis, 1991). Without a substantially higher density of

observations, such sampling biases due to heterogeneity are not easily detected generically

and so are neglected here. However, all structure functions result from a large number

of observational pairs (see Appendix B), and instrument error analysis and bootstrapping

confidence intervals are used to verify these assumptions (see Appendices B and C).

Data Analysis Techniques

The data used in this analysis were obtained from the ∼3600 Argo floats located around

the world in all oceans, from 2000 to 2013. Argo is to “provide an enhanced real-time

capability for measurement of temperature and salinity through the upper 2000 m of the

ocean and contribute to a global description of the seasonal cycle and inter-annual variability

of the upper ocean thermohaline circulation” (Argo Science Team, 1998). The extensive

float network introduced the first systematic sampling of temperature and salinity of the

global ocean on a large spectrum of scales with accuracy of approximately .01◦C and .01

psu, respectively. Each Argo float takes a vertical profile of temperature and salinity as

it ascends from 2000 m to the surface, where it transmits the obtained data to a satellite

before descending and drifting for 9 days. Calibration is done on all profiles at one of

the national data centers, and though an incorrect or missing calibration could skew the

statistics computed here, they are assumed to be correct (Carval et al., 2011). These data

were collected and made freely available by the International Argo Program and the national

programs that contribute to it (http://www.Argo.ucsd.edu, http://Argo.jcommops.org). A

simple quality-control scheme was applied to the data before analysis began. In processing

the data, we relied on the Argo delayed-mode procedures for checking sensor drifts and

offsets in salinity, and made use of the Argo quality flags. Density was computed for each

Argo temperature/salinity profile, which was then interpolated to density levels, ∼ 24.0 −

27.8 kg m−3 in intervals of 0.1 kg m−3, and depth levels, 5m at the surface, with increasing
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intervals down to 2000m.

The structure function for potential temperature and salinity are computed as follows:

Dθ(s) = (θ′(x)− θ′(x+ s))2, (C.6)

DS(s) = (S ′(x)− S ′(x+ s))2. (C.7)

Overbar here implies spatiotemporal averaging, with weighting to balance among orienta-

tions. If the flow is heterogeneous or anisotropic, this procedure can only provide the spatial

average of the structure function. Horizontal structure functions are computed here, so only

observations at the same vertical level were used, either on pressure levels standard to Argo

data, or in 0.1 kg m−3 potential density bands. When separations were taken along pressure

surfaces, these isobaric structure functions will be denoted Dθ(s)|p, or for separations along

potential density contours, the isopycnic structure function will be written as Dθ(s)|σ. Struc-

ture functions are plotted on a graph with logarithmic axes with the separation distance, s,

on the horizontal and D(s) on the vertical, while a power spectral density is usually plotted

with wavenumber, k, on the horizontal axis. On these log-log structure function plots, the

slope of the line is γ (sometimes equated to the spectral slope minus one, from Equation

(C.4).

In order to maximize coverage, data collected over the whole time period were included.

The separation distance, s, for each data pair was calculated with the known location of the

floats. Since few (or no) Argo floats measure at the exact same time, a limiting velocity, cmax,

was chosen to select observations that occur close enough together in time (∆t) and over

sufficient spatial separation (s) that effective simultaneity is expected, i.e. a typical ocean

signal could not travel between the two locations. Thus, only separations where s > cmax∆t

were considered “simultaneous,” and used for analysis (following Frehlich and Sharman,

2010a). A slow cmax is desirable in order to include more data pairs in the analysis, but if,

for example, a float samples the same eddy in subsequent profiles, and the limiting velocity is
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too slow, the same eddy would be sampled twice. This results in overly-correlated pairs and

biased structure functions. On the other hand, sampling points that are too far apart in time

and space become uncorrelated and virtually random, so the structure functions became flat.

When experimenting with different cmax values, the high values created structure functions

that were too noisy, with too few pairs being included in the computation. When cmax was

too low, the structure functions became more smooth (desirable), but the slopes changed

(undesirable). Therefore, the velocity chosen made the structure functions as smooth as

possible before the slope changed. A speed of cmax = 1 m s−1 was chosen to be likely

to exceed the propagation speed of all large-scale, unidirectional signals, though the exact

chosen cmax had little effect on the resulting structure functions.

As mentioned, the structure functions are calculated on both isobars and isopycnals.

Potential density (σθ, the density of a parcel of water brought to the surface to eliminate

compressive effects (Stewart, 2008)) was calculated with the Thermodynamic Equation of

Seawater toolbox (McDougall, 2011) with the temperature, depth and salinity measured by

each Argo float, using a reference pressure of the surface (σ0). Potential density was chosen

as the density coordinate instead of neutral density because the path-dependence of neutral

density introduces inconsistencies in structure function interpretation at large s. However, by

calculating structure functions with both neutral and potential density coordinates with the

same data, only minor differences in the average D(s) occurred, so the results presented are

not overly sensitive to this choice. For reference, Figure C.3 shows the calculated potential

density from the OCCA climatology with depth in the western Atlantic (a) and central

Pacific (b) Oceans.

Structure Function Results

It is of immediate importance to note that it is possible to use the Argo data to retrieve the

structure function over macro-scale separation distances. Due to lack of simultaneous nearby
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Figure C.3: Potential density (in kg m−3) along 23.5W in the eastern Atlantic Ocean (a)
and 180W in the Pacific (b), calculated from the OCCA climatology of temperature, salinity,
and pressure with the Thermodynamics Equation of Seawater.
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observations at scales smaller than O(10km), the structure function is noisy and slope is not

discernible for submesoscales, but at scales larger than O(10km), a clear slope can be seen.

Cole and Rudnick (2012) (hereafter referred to as C&R) calculated salinity spectra on 7

isopycnal bands along 158W from 22.75-29N, and observed a spectral slope of λ = −2 (see

Figure 9 of C&R). Taking advantage of the Argo data in that region (156-160W, 10-40N),

the structure function was computed on the same potential density bands and including the

same region and is shown in Figure C.4. A slope of γ = 1 is seen, consistent with the spectral

slope of λ = −2 of C&R. The magnitudes and slopes from C&R were used and the amplitude

of the corresponding structure function was calculated, and the equivalent (model) structure

function is shown as the dashed line in Figure C.4a, and the thin lines in Figure C.4b. The

range of scales represented in C&R (the length of the bold line) is surpassed by the use of

Argo data. The difference in magnitude can be attributed to the inclusion of several years of

data (and therefore inter-annual variability), while C&R only have one year. The seasonal

spectra in C&R were also duplicated and matched in magnitude quite well (Figure C.4b).

However, C&R has more data for each individual month in this region, so the Argo structure

functions (even using a larger area from 0-50N) for the seasons are noisier. The close match

provides confidence to continue and calculate both isobaric and isopycnal structure functions,

as is done extensively in the companion paper (McCaffrey et al., 2014a).

Conclusions

The first conclusion worthy of attention is that the Argo float network’s observations of tem-

perature and salinity are a useful tool to understand the temperature and salinity variance

spectrum in the ocean, and with the addition of velocity data, this method can be used for

the kinetic energy structure function as well. Following the methodology of Frehlich and

Sharman (2010a), using individual observations varying in height (or depth, for the ocean),

structure functions can be calculated and sometimes used to infer the spectral slope of the
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Figure C.4: a) Salinity structure function, DS(s)|σ, along 158W for 10-40N along isopycnals
of 25.2− 25.8 kg m−3, 25.8− 26.4 kg m−3, 26.4− 26.6 kg m−3, 26.6− 26.8 kg m−3, 26.8−
27.0 kg m−3, 27.0−27.2 kg m−3, 27.2−27.3 kg m−3. Bold line is a fit to the structure function
model equivalent to the spectrum found by C&R. b) Structure functions at 25.2−25.8 kg m−3

for the seasons specified in C&R. April-May: solid, Nov-Dec: dashed. Thin solid and dashed
lines are the structure function model equivalent to a fit of C&R’s spectrum for the April-May
and Nov-Dec, respectively.

tracer variance spectrum, depending on homogeneity. Even with discontinuous and spotty

temperature or salinity measurements, an appreciation of the turbulence statistics at greater

depths and over broader geographic regions than previously observed is now possible, and

will only improve with the growth of the Argo dataset. The ability to get back a spectrum

from a structure function, even in a case where two distinct structure function slopes are

present and data is filled with gaps, shows how powerful a tool the structure function is.

Another strength of the structure function is its ability to be used for heterogeneous flows.

The more classical spectrum requires the flow to be homogeneous to identify a spectral slope.

Because the oceans are not homogeneous (the variance in even the most homogeneous regions

of the ocean still varies by more than an order of magnitude), the structure function is often

a better tool to use than the variance spectrum. However, the primary limitation to this

approach is data density, as spatial refinement reduces the amount of observation pairs that

can be used.

Two primary validation techniques have been presented here. First, the point-by-point
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agreement between satellite measurements and Argo (Gommenginger et al., 2010; Bhaskar

et al., 2009) implies that a satellite-based structure function would provide similar answers

to those from Argo, but would be limited to surface temperatures only. Second, the Argo

data are in agreement in slope, magnitude, and seasonal variability when compared to the

Cole and Rudnick (2012) glider data. However, the Argo data is easily extended over longer

time and spatial scales, as it has already been collected on a near-global basis for many years.

This study also shows that even unevenly spaced, discontinuous salinity and temperature

measurements in the ocean are capable of producing turbulent statistics that may be similarly

interpreted instead of, or along with, the traditional tracer spectra.

This work has opened many possibilities for future studies beyond the results already

presented. Alongside the increasing number of Argo floats measuring at depth, it would be

beneficial to include other sources of data to fill in the spatial gaps in Argo’s network that

would allow the structure function to be calculated further into the inertial range of the

oceans at smaller scales (e.g., mooring data). This method can also be extended to velocity

observations in order to directly measure the kinetic energy structure function.
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Appendix A
LargeStructure Function - Spectrum Relationship, In Depth

The spectral and structure function theory will be addressed starting from the isotropic

temperature variance spectrum, B(k), found similarly to the approach used in Webb (1964):
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θ′2 =

∫ ∞
0

B(k)dk. (C.8)

for wavenumbers, k, where θ′ is temperature variance, defined in Section C. The salinity

variance spectrum is the same as Equation C.8, with S ′ instead of θ′, and from here on, tem-

perature variance and salinity variance will be discussed interchangeably. The temperature

variance autocorrelation function, R(s), and nth-order structure function, Dθ(s), for spatial

separation, s, are defined by

R(s) = θ′(x)θ′(x+ s), (C.9)

Dθ(s) = (θ′(x)− θ′(x+ s))n. (C.10)

The second-order (n = 2) structure function, which will most often be calculated here,

has the unique relationship to R(s) by

Dθ(s) = 2(θ′2 −R(s)). (C.11)

The autocorrelation may be represented spectrally for isotropic, homogeneous turbulence

by

R(s) =

∫ ∞
0

B(k) cos[ks]dk. (C.12)

Using the relationship between the autocorrelation and structure function from (C.11),

and the spectral definition of autocorrelation in (C.12), the structure function can be written
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spectrally by

Dθ(s) = 2

∫ ∞
0

B(k) (1− cos[ks]) dk. (C.13)

As mentioned in Section C, for a given spectrum, B(k) = αBk
λ, with a single spectral

slope, λ, over a range from kmin < k < kmax and a given structure function, Dθ(s) = αDs
γ,

with a single structure function slope, γ, a change of variables (ks→ ξ) yields

Dθ(s) = 2

∫ ∞
0

αBk
λ (1− cos[ks]) dk

= 2αBs
−λ−1

∫ ∞
0

ξλ (1− cos ξ) dξ

= sγ
[
2αB

∫ ∞
0

ξλ (1− cos ξ) dξ
]
. (C.14)

This shows that γ = −λ−1, relating the slope of the structure function, γ, to the spectral

slope, λ. Webb (1964) shows that outside of the inertial range [kmin, kmax], the contribution

to the spectrum is small, so (C.14) can be truncated and written as

Dθ(s) = sγ
[
2αB

∫ kmax

kmin

ξλ (1− cos ξ) dξ
]
. (C.15)

One could make the same argument for the kinetic energy spectrum, E(k), and velocity

structure function, DU(s). Thus,

U2 =

∫ ∞
0

E(k)dk (C.16)

DU(s) = (u(x)− u(x+ s))2. (C.17)

Following the same method, DU(s) ∝ sβD and E(k) ∝ kβE produce the same relationship:
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βD = −βE − 1.

In the case of a tracer variance spectrum with a direct and indirect cascade producing

two power-law scalings (as is the case in Nastrom and Gage (1985)), (C.13) can be split into

four pieces spanning intervals in k:

Dθ(s) = 2

∫ ∞
0

B(k) (1− cos[ks]) dk

= 2

(∫ kmin

0

B(k) (1− cos[ks]) dk +

∫ k1

kmin

α1k
λ1 (1− cos[ks]) dk

)
+

2

(∫ kmax

k1

α2k
λ2 (1− cos[ks]) dk +

∫ ∞
kmax

B(k) (1− cos[ks]) dk

)
. (C.18)

Since the first and the last integrals are definite and negligible (Webb, 1964), inserting

the continuity of B(k) (α1k
λ1
1 = α2k

λ2
1 ) produces

Dθ(s) = 2α1

(∫ k1

kmin

kλ1 (1− cos[ks]) dk + kλ1−λ21

∫ kmax

k1

kλ2 (1− cos[ks]) dk

)
(C.19)

Assuming each of the two inertial ranges is large (kmin << k1 << kmax) the structure

function is dominated by only one of the two integrals in (C.19), depending on scale of s

when compared with the wavenumber (kmin < 1/s < k1 or k1 < 1/s < kmax). Performing the

change of variables as done above for the single power law case, gives the structure function

in terms of s,

Dθ(s) = 2

(
α1s

−λ1−1
∫ k1s

kmins

ξλ1 (1− cos[ξ]) dξ + α2s
−λ2−1

∫ kmaxs

k1s

ξλ2 (1− cos[ξ]) dξ

)
.

(C.20)

Thus, when the inertial ranges are deep, the structure function is closely approximated

by a polynomial with two terms:
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Dθ(s) = c1s
γ1 + c2s

γ2 , (C.21)

with γ1 = −λ2 − 1 and γ2 = −λ1 − 1. The analysis of Nastrom and Gage (1985) con-

firmed that the bend point where the structure function switches from being dominated by

the second to the first term happens near s ≈ 1/k1, although this result was much clearer

when the inertial ranges were made wider than those in the actual observations of Nastrom

and Gage (1985). Other prototypical dual cascade spectra were also tested, yielding similar

results (e.g., the direct and indirect cascades of 2D turbulence from Kraichnan, 1967).

Appendix B
Structure Function Details The tables included here show the details of the

structure function calculations, including the numbers of float profiles in each calculation,

the number of “simultaneous” pairs used, and the 95% bootstrap confidence intervals for the

structure functions.

The 95% bootstrap confidence interval was calculated because the population of pairs

that contribute to the average in the structure function are not normally distributed, so the

standard deviation of the observations is not sufficient. Using the Central Limit Theorem

(Devore, 2009), which states that the means, xn from n samples of a population (here, the

pairs of simultaneous observations), are normally distributed, and therefore, the population

mean (µ, the true quantity of the structure function) is the mean of the sample means

(µ = xn). Therefore, the confidence interval is the area with a 95% probability that it con-

tains the true structure function value. This theorem is only true when n is sufficiently large

(usually larger than n = 30, though some populations may require more), so n = 200 was

used here.
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Region # of profiles # of pairs

10S-10N, 180W-150W 14236 1098734
10S-Eq, 180-165W 3537 29194
10S-Eq, 165-150W 3758 39664
Eq-10N, 180-165W 3484 32588
Eq-10N, 165-150W 3456 32509

Table C.1: Number of profiles and pairs used to compute the structure function in the
heterogeneous region analysis in Figure C.2.

Region 10S-10N, 10S-Eq, 10S-Eq, Eq-10N,W Eq-10N,
180W-150W 180-165W 165-150W 180-165W 165-150W

s (103 km)

0.0139 2.3±0.3069 NaN NaN NaN 0.9±0.3068
0.0247 1.6±0.1153 0.7±NaN 4.2±NaN NaN 0.7±0.0846
0.0439 3.4± 0.1492 7.2±0.4158 0.5±0.0203 5.8±0.3515 4.7±0.2722
0.0781 9.3±0.2352 11.7±0.9514 8.1±0.2947 13.4±0.6854 9.5±0.4817
0.1292 25.4±0.2157 31.5±0.6355 10.4±0.1810 31.1±0.6352 26.6±0.4008
0.2048 30.4±0.1330 31.9±0.2762 15.4±0.1035 61.4±0.4863 30.3±0.3192
0.3246 42.7±0.1127 35.2±0.2894 29.1±0.1250 83.0±0.4407 51.6±0.2703
0.5145 54.5±0.0728 65.2±0.1959 31.7±0.0779 104.8±0.2505 71.5±0.1970
0.8155 66.9±0.0393 71.7±0.1704 46.2±0.0550 85.9±0.1561 74.0±0.1290
1.2924 73.7±0.0266 94.6±0.1830 51.3±0.0645 88.5±0.1539 67.8±0.1037
2.0484 90.5±0.0252 99.3±0.6636 62.2±0.2756 65.7±0.4382 70.6±0.3711
3.2465 105.8±0.0426 NaN NaN NaN NaN

Table C.2: The structure function plus/minus the 95% bootstrap confidence interval for
the structure function in the heterogeneous region analysis in Figure C.2. All values are
10−3 psu2.

Appendix C
Error Analysis An important aspect of structure function analysis that must be

included is an understanding of random noise. Lester et al. (1970) showed that the struc-

ture function of Gaussian white noise has a slope of γ = 0, so those results were replicated

with a randomly generated dataset of temperatures and salinities with changing standard

deviations. The same calculation was particularly important to determine the noise level

generated by measurement error. Results of this analysis are shown in Figure C.5. Using the

square of the known standard error of the Argo measurements of temperature and salinity
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Depth # of profiles # of pairs

25.5 3649 34228
26.1 4549 60546
26.4 4620 65251
26.6 4608 65894
26.8 4668 66417
27.0 4768 67930
27.2 4764 67848

Table C.3: Number of profiles and pairs used to compute the structure function in Figure C.4.

density
(kg m−3) 25.5 26.1 26.4 26.6 26.8 27.0 27.2

s (103 km)

0.0139 1.5±0.099 1.5±0.029 0.1±0.003 0.3±0.023 0.9±0.048 0.3±0.029 0.1±0.014
0.0247 2.6±0.100 0.7±0.018 0.6±0.027 0.4±0.019 0.4±0.040 0.2±0.009 0.2±0.002
0.0439 2.4±0.077 1.1±0.031 0.2±0.008 0.6±0.019 1.3±0.052 0.6±0.022 0.4±0.008
0.0781 7.5±0.100 1.5±0.031 0.7±0.021 0.9±0.022 2.0±0.026 0.9±0.022 0.4±0.007
0.1292 8.4±0.092 2.4±0.023 2.1±0.024 1.9±0.025 2.6±0.024 1.7±0.017 0.5±0.005
0.2048 8.8±0.078 3.1±0.030 2.9±0.034 3.4±0.037 4.4±0.039 2.2±0.016 1.2±0.016
0.3246 9.5±0.035 3.6±0.014 3.3±0.024 4.0±0.023 3.9±0.018 2.1±0.008 1.1±0.007
0.5145 9.1±0.032 4.0±0.016 4.1±0.017 4.1±0.018 4.8±0.016 2.6±0.007 1.3±0.005
0.8155 9.7±0.021 6.7±0.012 6.8±0.014 7.3±0.013 4.6±0.009 2.4±0.004 0.8±0.001
1.2924 15.6±0.023 11.9±0.012 4.8±0.009 4.7±0.007 3.1±0.005 1.6±0.002 0.7±0.002
2.0484 14.7±0.024 14.5±0.014 4.9±0.009 5.0±0.009 2.7±0.007 1.2±0.003 0.4±0.003
3.2465 NaN 16.1±0.046 16.1±0.017 6.4±0.013 5.2±0.0072 0.9±0.001 0.1±0.000

Table C.4: The structure function plus/minus the 95% bootstrap confidence interval for the
structure functions in Figure C.4. All values are 10−3 psu2.

(.01 degree Celsius and .01 psu, respectively) as the standard deviation, and a typical tem-

perature and salinity value for the mean, a Gaussian dataset was created, and the structure

function was calculated. A noise floor for the structure function including the error from the

climatology was also considered, using the total standard deviation, σtot =
√
σ2
Argo + σ2

clim.

This more realistic noise floor (dashed line in Figure C.5) of O(10−4) is still below the struc-

ture functions calculated, allowing this analysis of turbulence from Argo data to continue

without fear of data measurement errors interfering.
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Abstract - Estimates of Ocean Macro-turbulence: Structure Function and

Spectral Slope from Argo Profiling Floats, II: Global Results

Previous studies have shown that a second-order structure function can be computed from

discontinuous, scattered observations to describe the kinetic energy or tracer variance in both

the atmosphere and the ocean. Taking advantage of the global coverage of the Argo profil-

ing float network, this study extends the structure function method to examine the depth,

latitude, eddy kinetic energy, and basin dependence of salinity anomalies. An analysis of

homogeneous versus heterogeneous regions, based on salinity variance, is also completed.

Structure functions are computed along both isobars and isopycnals to differentiate between

the active and passive tracer variance spectra. In homogeneous regions, the active tracer

structure function slopes of approximately γ = 2
3

at small scales flatten out to 0 (related

to spectral slopes of λ = −5
3

and −1, respectively) as separation distance increases, with a

strong amplitude dependence on depth. These slopes are consistent with scaling arguments

originating from Obukhov, Corrsin, and Batchelor. The passive tracer structure function

is also flat at large scales, but with a shallower small-scale slope. In heterogeneous regions

where the relation to spectral slope breaks down, structure function slopes of γ = 0 are seen,

with amplitude decaying with depth. Structure function amplitude changes with latitude,

differing at the surface and at depth. The amount of eddy activity also impacts the structure

functions, both in slope and in amplitude. Turbulence intermittency could be detected with

present Argo observations via the tails of the probability distribution, but reliable computa-

tion of higher order structure functions will require more observations.

Introduction

In an attempt to gain a better understanding of the transfer of large-scale ocean energy

to smaller scales, spectral and structure function analyses can be invaluable. Atmospheric
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turbulence has been studied through spectral and structure function analyses for decades

(Nastrom and Gage, 1985; Lindborg, 1999; Frehlich and Sharman, 2010a), and the results

have been duplicated by high resolution General Circulation Models (GCMs) and mesoscale

Numerical Weather Prediction (NWP) models as well (Koshyk and Hamilton, 2001; Ska-

marock, 2004; Frehlich and Sharman, 2004; Takahashi et al., 2006; Hamilton et al., 2008).

As realistic ocean climate models become increasingly turbulent, a similar dataset to the

Nastrom and Gage spectrum would be a perfect evaluation tool. Unfortunately, continuous

observations are sparse in the oceans.

The recent rawinsonde method of Frehlich and Sharman (2010a) proved that calculating

second-order structure functions from scattered individual rawinsondes can be used to infer

a spectral slope that matches the results of Nastrom and Gage. In the companion paper,

McCaffrey et al. (2014) adapt this method for use with the temperature and salinity ob-

servations from Argo profiling floats. There, it was shown that a discernible slope can be

identified, and that structure functions from Argo salinity data matches observed salinity

variance spectra from Cole and Rudnick (2012). The success of that work allows the expan-

sion of the method to answer questions as to how salinity variance changes geographically. In

the current work, the second-order salinity structure function is calculated in regions varying

in depth, latitude, eddy activity, and level of homogeneity. Several theories have predicted

the spectral and structure function slopes of turbulent regimes, and those results are sum-

marized in Table 2.1. The results of the current analysis show some consistency with the

scaling laws derived by assuming a continuous transfer of kinetic energy and temperature

variance between many scales of motion. Intriguingly, these results differ by region, offering

a greater diversity of possibilities that those explored in more regional studies.

Two prominent recent examples which will be contrasted against are the observations of

Cole and Rudnick (2012) and Callies and Ferrari (2013). Those analyses used glider salinity

and temperature and ship-based velocity measurements to form turbulence spectra over a

range of scales covered by the analysis herein. The results here show that while consistency
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is found with those observations with Argo data selected from the same region and time,

these spectral shapes are not present in all regions. Few general principles are found that

apply globally, and some sense of the diversity is demonstrated here. The patterns that do

arise are found in regions grouped by latitude, depth, and eddy kinetic energy magnitude.

Data Analysis Techniques

As described in detail in McCaffrey et al. (2014), the temperature, salinity, and pressure

data used for this analysis were attain by the Argo profiling float network from 2000 to 2013.

Potential density was computed for each Argo temperature/salinity profile using the Ther-

modynamic Equation of Seawater toolbox (McDougall, 2011), and interpolated to constant

levels, ∼ 24.0 − 27.8 kg m−3 in intervals of 0.1 kg m−3. Argo observations are made at

depth levels from 5m at the surface down to 2000m, with increasing intervals with depth.

See Appendix A for details on the depth and density bins.

The second-order potential temperature and salinity structure functions are defined as

Dθ(x, s) = (θ′(x)− θ′(x + s))2, (C.22)

DS(x, s) = (S ′(x)− S ′(x + s))2. (C.23)

Notation is as in McCaffrey et al. (2014), but here the s represents separation vector along

the chosen vertical coordinate, x position vector, θ is potential temperature, and S is salinity.

Here horizontal separations will be taken along pressure surfaces (isobaric structure func-

tions) or along potential density surfaces (isopycnal structure functions). As discussed in Mc-

Caffrey et al. (2014), a compromise must be reached between the available data density and

the regional specificity of the structure functions. For this reason, only one structure function

will be evaluated in each region and it will be averaged over all angles, with the assumption

that this average is sensible and meaningful (e.g., the expected value of Dθ(x, s) ≈ Dθ(s)).

The resulting structure functions have a relatively simple shape (piecewise linear when in
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log (ordinate) and log (range), i.e., dual power law), so a least-squares fit is performed on

the logarithm of each structure function to estimate the slope, bend point, and amplitude of

each line. An in-depth explanation of this process can be found in Appendix B. Through-

out Section C, results from this line-fitting regime will be discussed alongside the structure

functions as a quantification for comparison purposes. A 95% confidence interval was also

computed by bootstrapping for the structure functions, though for readability, only a few

are shown here (e.g., Figure 2.9). The confidence intervals show that the slopes reported are

statistically significant at some scales, based on the number and agreement of observations

available (given in Appendix A).

Structure Function Results

Homogeneous Regions: Depth Dependence

As turbulence homogeneity and isotropy are desirable for analysis, an attempt was made

first to locate the largest regions of homogeneous, isotropic behavior. Salinity variance was

mapped in search of regions with “uniform” variance.2 Variance was considered “uniform” if

less than two orders of magnitude spanned the variance in the region. As seen in Figure C.6,

there is large variation in salinity variance in both basins shown. The most uniform regions

(see solid boxes in Figure C.6), chosen along the 5 m isobar and 25.8 kg m−3 isopycnal, were

used for initial structure function calculations, where homogeneity was assumed. In other

more heterogeneous regions, like the dotted lined region in Figure C.6, the link between the

structure function and spectrum was not exploited, since it is bound to be less reliable, so

spectral slopes are not inferred from structure functions.

While making the assumption of homogeneous flow, the observed structure function slope

can be related to the spectral slope. At the surface, two regions of uniform variance were

2As discussed in the companion paper, here variance is defined as the squared magnitude of deviations
from the Ocean Comprehensive Atlas (OCCA) (Forget, 2010) climatology.
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Figure C.6: The log of salinity “variance” at (a) 5 m and (b) 25.8 kg m−3 with solid boxes
around the chosen homogeneous regions in the western boundary currents, and a dotted line
around the heterogeneous region in the central Pacific.
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chosen, one along an isobar and the other along an isopycnal, and both happened to be in

the western boundary currents. On isobars, the uniform region of the Kuroshio Current was

chosen, and the isobaric salinity structure function was calculated on every depth level down

to 2000 m, as shown in Figure 2.3a. Additional details of all structure functions, including

the borders of the homogeneous regions and the number of profiles at each depth level, are

included in Appendix A. Two distinct structure function slopes are seen in these results, so

the two power-law behavior is expected in the equivalent salinity variance spectra. There

is a slope near γ = 2
3

in the smaller scales, with no dependence on depth (Figure 2.3b).

This corresponds to the spectral slope of λ = −5
3

predicted by the theory of 3-dimensional

turbulence of Kolmogorov (1941), as well as the theory of the surface quasi-geostrophic

(SQG) temperature cascade by Blumen (1978) and the inverse energy cascade of 2d and

quasigeostrophic turbulence of Kraichnan (1967) and Salmon (1980). In this location, as

in the SQG theory (Callies and Ferrari, 2013), the structure function amplitude decays

exponentially with depth. This intriguing result differs from that of (Callies and Ferrari,

2013), which offers the possibility that an exponential decay, as in SQG theory, may apply

in this location but not in the shallow section repeatedly observed by the Oleander. Note

however, that the SQG theory would also predict a sharp drop or rolloff of structure function

at small separation distances which is not observed here. At larger scales, the structure

function slope flattens out to γ = 0 at all depths, with a bend at approximately 200 km.

This may be indicative of the energy injection scale at the size of the largest eddies, above

which no additional energy is added, resulting in a flat structure function. The amplitude

(Figure 2.3c) does, however, decrease with depth, and the mixed layer is discernible above

300 m where the structure function amplitude remains fairly constant.

A difference is seen in the isopycnal structure function results (Figure 2.4a) in the Gulf

Stream homogeneous region, but again, two distinct slopes are seen at some depths. The

isopycnals also decrease in structure function amplitude when moving deeper into the water

column, but the behavior of the slopes is slightly different from the isobars. Only at inter-
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mediate depths at small scales is the slope γ = 2
3

with large scale slopes of γ = 0. The scale

when the change in slope takes place is 100 km. The γ = 2
3

behavior may be described by

the theory of passive tracer variance of Obukhov (1949) and Corrsin (1951), with structure

function slopes equivalent to a spectral slope of λ = −5
3
. In the mixed layer, the large scale

slope of γ = 0 is seen, but the small scales are too noisy to extract a slope. The deepest

isopycnals have a slope of γ = 0 at all scales, possibly signifying a new regime of activity at

depths deeper than about 27.5 kg m−3. At larger scales, the slope of γ = 0 is equivalent to

a spectral slope of λ = −1, which coincides with the extension by Vallis (2006) of a scaling

from (Batchelor, 1959) to the passive tracer cascade (see also McCaffrey et al. (2014)). This

theory would suggest that the largest eddies are the size of the onset of the γ = 0 regime,

around 100 km. The extension of γ = 0 slope to smaller scales would therefore indicate that

the largest scale of eddies deep in the Gulf Stream region is smaller than the scales measured

by the Argo salinity structure functions. The isobaric structure function in this Gulf Stream

region has no depth dependence on the location of the bend point, with shapes similar to

those of the isobaric structure functions in the Kuroshio.

The differences seen in the isobaric and isopycnal structure functions could be attributed

to the internal wave signal that is substantially weaker in the isopycnal structure function,

or the difference in eddy activity along and across isopycnals. The general fact that isobaric

structure function slopes are weakly dependent of depth, but isopycnal structure function

slopes strongly change with depth shows the difference that the chosen coordinate, and

probably internal waves, make. Similar behavior is seen in the isopycnal structure function

in this Kuroshio region, where at the surface, the slopes flatten to γ = 0 at large scales

only at the surface, but have a slope of γ = 2
3

at all scales at depth. Internal waves most

likely dominate the isobaric structure function at large scales (Klymak and Moum, 2007),

whereas on isopycnals, only the eddy activity remains at large scales, and that changes with

depth. This hypothesis could be further investigated by calculating a prediction from the

Garrett-Munk spectrum (Garrett and Munk, 1972) of internal waves across this region, but
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this process is beyond the scope of the current paper. The larger scale for persistence of the

γ = 2
3

slope deep in the water column is an indicator of the energy (and therefore tracer)

cascade to larger scales as a function of depth.

One may contrast these results against those of Callies and Ferrari (2013) and Cole and

Rudnick (2012). An approximate analog of the potential energy spectrum of Callies and

Ferrari (2013) (where the SQG signature was not seen) is the isobaric potential density

structure function. The isobaric potential density structure function in Figure C.7 does

show the expected SQG behavior, with a flattening of the structure function at large scales

at depth (equivalent to a steeper potential energy spectrum at large wavenumber) but not

at the surface. However, this behavior is not found everywhere in the structure function,

and the rolloff of spectral slope is weaker at small scales than expected in SQG. It is our

inference that the ocean does not have only one potential energy spectral shape, and neither

the isobaric potential density structure function in the Kuroshio nor the results of Callies

and Ferrari (2013) appear generically applicable. Similarly, the clear spectral slope observed

by Cole and Rudnick (2012) across all the scales they observe is seen here to change on

scales around a few hundred kilometers to a different slope. In Figure 2.4, the break point is

not even a constant “largest eddy” scale, but rather a function of depth. The next sections

leave behind homogeneity, and thus the direct connection to spectral slopes, to find general

patterns in structure functions that apply globally.

Heterogeneous Regions: Depth Dependence

Once the assumption of homogeneity has been removed, the slope of the structure function no

longer has a relationship to the spectral slope, but comparisons of structure functions between

depths, latitudes, levels of eddy activity, and ocean basin become interesting problems in

themselves. Beginning this new assessment of ocean turbulence with the structure function as

its own statistic, both isobaric and isopycnal structure functions were calculated at different

depths. While some patterns emerge from the depth variations of structure functions, no
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Figure C.7: Isobaric potential density structure function, DS(s)|p, (a) in the Kuroshio uni-
form variance region at depths from 5 m (top-most line) to 2000 m (bottom-most). Bold
reference lines show a slope of γ = 2

3
(dashed) and 0 (solid). The slopes of the small scale

(solid) and large scale (dashed) fit lines (b), and the amplitude (c) is plotted with depth in
pressure in meters. A 95% bootstrap interval is also shown in thin lines in (b) and (c) for
slopes and amplitude.

globally consistent patterns emerge. Thus, in contrast to the SQG-based or other theories

that predict rapid decay in variance with depth with faster decay at small scales, so a

steepening of the structure function slope is expected, some regions show changes in slope

with depth, while others show nearly constant slopes at all depths. This indicates that subtle

variations in stratification, interior potential vorticity, topography, etc., lead to a diversity

of results. Some of the more common patterns will be shown here.

In heterogeneous regions, where eddies do not dominate the flow, the depth dependence

holding pressure versus density constant can highlight the internal wave activity at depth.

Figure 2.5 shows the isobaric (a) and isopycnal (b) structure function in the central North

Pacific, covering a region that includes locations with high and low variance (see the dotted

lined region in Figure C.1). At the surface, both isobaric and isopycnal structure functions

have a slope of γ = 2
3

at all scales. Deeper, however, the two differ; isobaric results show

flattening all the way to γ = 0 at large scales, and small scales have slopes steeper than

γ = 0, but shallower than the slope of γ = 2
3

seen at the surface. The slopes of the isopycnal
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structure functions slightly flatten to just below γ = 2
3
, but only the deepest few density

levels show a slope of γ = 0. These differences between pressure and density surfaces can be

instructive about the effects of internal waves and eddies on the structure function. Along

isopycnals where internal waves are excluded, it makes sense that a region with heterogeneous

variance would have a uniform slope over all scales, since no particular scale dominates the

spectrum. On isobars, the internal waves impose a scale relation of separation distance

versus correlation magnitude that does not carry over to along-isopycnal variability.

Heterogeneous Regions: Latitude Dependence

Latitude is anticipated to be a determining factor in the structure function slope and ampli-

tude, because the Rossby deformation radius decreases with latitude (Chelton et al., 1998),

and other geographical features like sub-tropical and sub-polar gyres vary with latitude.

Figure 2.6 shows the isobaric salinity structure function in 10 degree latitude bands in the

Atlantic Ocean at 5 m (a) and 1900 m (b). Immediately, it is important to note the different

vertical scales on these two plots, as the deep locations have a significantly lower amplitude

of structure function, and its changes with latitude are within different orders of magnitude

than those at the surface. This is consistent with results from the previous section, where

deeper isobars have a lower amplitude than the surface locations.

At the surface, the equator has the highest amplitude, indicating high eddy and internal

wave activity, while 25-35 N and S have the lowest amplitude, possibly due to their central

location in the subtropical gyres. Here, a slope greater than γ = 0 is seen at the equator

and low latitudes, but the slope never reaches γ = 2
3
. This slope extends to large scales

in low latitudes, but at high latitudes, the slope flattens out to γ = 0. At a depth of

1900 m, nearly opposite results are seen. The higher latitudes have the highest amplitude,

with a minimum at the equator and low latitudes. A strong symmetry can be seen in the

latitude dependence of the structure function. The changes in amplitude are almost directly

correlated to latitude, with the strongest variations between 35-45 N and S. Approaching
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the equator, however, the temperature variance decreases, to a minimum at low latitudes.

Most latitude bands have a slope of γ = 0, with a small (approximately γ = 1
3
) slope at the

non-equatorial, low latitudes.

Latitude dependence along isopycnals shows interesting behavior, and encourages more

study into its mechanics. Figure 2.6 shows the isopycnal structure functions in 10-degree

latitude bands in the Atlantic Ocean at 25.7 kg m−3 (a) and 27.7 kg m−3 (b). The isopycnal

of 25.7 kg m−3 is used to compare the latitudes where it is near the surface, to those where

it is below the thermocline (see Figure 3 in McCaffrey et al. (2014)). At higher latitudes,

this isopycnal is closer to the surface, and its amplitude acts accordingly. There is, however,

a peak at the equator as well, possibly indicating either a shallower isopycnal, or increased

eddy activity at depth. This peak is weaker than the equatorial peak seen in the isobaric

structure function, however. The asymmetry between the northern hemisphere and southern

hemisphere shows that it is not just the depth (or the amount of time that this isopycnal is

in the mixed layer) that determines the structure function amplitude, since isopycnal depth

is fairly symmetrical with latitude. The deeper isopycnal at 27.7 kg m−3 has a significant

asymmetry with latitude, with flatter structure functions with larger amplitudes in the

Northern Hemisphere. A hypothesis for this behavior is that the amplitude is due to the levels

of temperature and salinity changes along isopycnals (called “spice”). The theory proposed

by Yeager and Large (2007) states that seasonal injections of spice in the North Atlantic

increase the salinity variability on density surfaces that are then subducted and transported

southward by the meridional overturning circulation. The map of the depth density levels

shows that the 27.7 kg m−3 isopycnal is closer to the surface in the northern hemisphere,

which means that it is more likely to reach the deeper wintertime mixed layer where spice

is injected. That variability is then transferred along the isopycnal southward, which may

explain the continuous southward decrease in structure function amplitude. Despite the

isopycnal reaching the surface again in the southern hemisphere, the structure function

only increases slightly, suggesting that an additional forcing is experienced in the northern
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hemisphere that does not occur in the south–perhaps eddy shedding from North Atlantic

deep water or salty Mediterranean eddies. The map of isopycnal depth, as well as the latitude

dependence of this isopycnal structure function could therefore support this theory. This

behavior is not relevant along pressure surfaces, so this signal is missing altogether from the

structure functions in Figures 2.6a and b.

Heterogeneous Regions: Eddy-Rich vs. Eddy-Poor

In order to identify the effect of eddies in the isopycnal structure function, regions where eddy

activity is very high are compared to regions where the activity is much smaller. Figure 2.7

identifies the regions where eddy activity is small (gray) and large (black), based on the

Aviso eddy kinetic energy. The altimeter maps were produced from data distributed by

Aviso (http://www.aviso.oceanobs.com/), as part of the Ssalto ground processing segment.

The structure functions in this section are all calculated along isopycnals to isolate the eddy

activity and show the difference that their level of kinetic energy may make on the structure

function.

The high-EKE and low-EKE regions along isopycnals are compared in Figure 2.8. Eddy-

poor regions (Figure 2.8b and d) have slopes of γ = 2
3

at all scales at the surface. At

larger scales, deeper in the water column, the slopes flatten out, but not completely; few

density levels show a slope of γ = 0, but most stay just above flat. In the high-EKE regions

(Figure 2.8a and c), two different stories are needed. At the surface in both regions, a slope

of γ = 2
3

is seen at small scales with a slope of γ = 0 at large scales. However, in the

Gulf Stream, the slope of γ = 2
3

extends to the largest scales measured in this region. In

the Kuroshio current, the surface slopes extend deeper, but instead of the small scale slope

extending to larger ones, here the large scale slope of γ = 0 extends into the small scales.

However, it is possible that the noise at small scales is distorting the slope.

When making a comparison between high-EKE and low-EKE behavior, one can see that

the amplitude is higher at the surface in the high-EKE regions, which is indicative of its
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higher variance from eddies. The deeper isopycnals in high-EKE regions show very similar

structure function behavior to the low-EKE regions, suggesting that the stirring below the

surface is much weaker than at the surface, and no energy is injected above ∼ 100 km. The

deep isopycnals in both high-EKE and low-EKE regions exhibit the same behavior, including

amplitude, except in the Gulf Stream, where the amplitude remains higher.

Returning to the previous results in the depth dependence Sections 3C & C in light of

the discussion of the high-EKE and low-EKE regions reveals an important fact. The ho-

mogeneous regions were both in western boundary currents, where eddies are strong, and

the heterogeneous region is in the eastern basin where eddies would be scarce. Therefore,

comparing the homogeneous isopycnal structure function (Figure 2.4a) to Figures 2.8a and

c, and the homogeneous isobaric structure function (Figures 2.5b) to Figures 2.8b and d, it

is clear that the homogeneous regions have the same structure function behavior as the het-

erogeneous eddy regions. The same can be said for the low-EKE regions on isopycnals. The

conclusion can be made that the structure function slopes and amplitudes do not differ quali-

tatively between homogeneous and heterogeneous regions. An exact quantitive comparison is

impossible since our definition of “homogeneous” versus “heterogeneous” is subjective. This

could be an indicator of one of two things: either not even the chosen “uniform” variance

regions are homogeneous, or else heterogeneous turbulence, as quantified by an averaged

structure function as done here, is not substantially different from a homogeneous analog.

Heterogeneous Regions: Basin Dependence

Particular features of ocean basins can also be distinguished through the use of isobaric

structure functions. Deep water formation occurs in the North Atlantic, but not the Pacific,

so this behavior is investigated in the structure function. Figure 2.9 compares the deep

and shallow isobaric structure functions for the North and South Atlantic and Pacific. A

consistent small-scale slope of approximately γ = 2
3

and large-scale slope of γ = 0 is shared by

all structure functions, independent of depth, latitude, or basin (the 95% confidence intervals
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shown support statistical significance of these results). The surface structure functions (solid

lines) have nearly identical amplitude behavior across basins, but at depth, a difference can

be seen. At depth in the North Atlantic, the structure function amplitude is much larger,

and approximately equal to that of the surface in the Pacific. The deep North Pacific is much

weaker, as is expected due to the decrease in variance with depth there. In the Southern

oceans, the deep structure functions are both much lower in amplitude than the surface,

highlighting the difference that the deep North Atlantic exhibits (potentially either eddy

effects or spice injection). This could be a signature of the highly saline deep water which is

formed in this region.

Higher Order Structure Functions and Intermittency

Kolmogorov’s 4/5th’s law states that: “In the limit of infinite Reynolds number, the third

order (longitudinal) [velocity] structure function of homogeneous isotropic turbulence, eval-

uated for increments, s small compared to the integral scale, is given in terms of the

mean energy dissipation per unit mass ε (assumed to remain finite and non-vanishing) be

(u(x)− u(x+ s))3 = -4
5
εs” (Frisch, 1995). Because of its exact and nontrivial nature, this

means that if a third-order velocity structure function does not have the γ = −4
5

slope, one,

if not both, of the assumptions (isotropy and homogeneity) must be violated. The equivalent

theory for passive tracers, θ, found by Yaglom (1949) states

[u(x)− u(x+ s)][θ(x)− θ(x+ s)]2 = −4

5
ε s. (C.24)

With the addition of velocity data–perhaps even from float displacement measurements–

estimates of this third-order structure function might be used to directly test the assumptions

of isotropy and homogeneity. In addition, higher-order structure functions would differentiate

between structure functions with a slope of γ = 0 because of a single eddy-turnover timescale,
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and those with slopes of γ = 0 from random origin. A single timescale of stirring ultimately

randomizes the flow, but the higher moments would appear in the higher-order structure

functions differently from random data.

Higher order structure functions (Dθ,3(s), Dθ,4(s), Dθ,5(s), etc) are often computed along-

side probability density functions (pdfs) of the salinity(/temperature/velocity) differences to

identify intermittent signals, as well as to verify the existence of finite higher-order moments

(Frisch, 1995). In the inertial range, the turbulent cascade should result in a normal dis-

tribution of differences, with non-normal intermittent behavior appearing in the tails of the

pdf. Figure C.8 illustrates that using the pdf can be an additional descriptive characteristic

of turbulence in a particular region. The pdf of salinity differences at 5 m depth in the

Kuroshio (a), which was chosen for being (nearly) homogeneous, is much closer to being

normally distributed (shown by the dashed line) than the Equatorial Atlantic (b), which is

expected to see intermittent eddy activity. In order for the higher moments to exist, the tail

of the pdf must be exponential, instead of diverging algebraically. Though the behavior in

the tails shown here appears to be exponential, it is also noisy, so a strong conclusion cannot

be made, discouraging further computation of higher-order structure functions.

Conclusions and Summary

Supported by the previous results of Frehlich and Sharman (2010b) and McCaffrey et al.

(2014), the structure function method has been applied for the analysis of salinity variance in

the world’s oceans. Although the assumption of homogeneity does not seem to apply based on

salinity variance maps, the results of the structure functions do not vary in homogeneous and

heterogeneous regions. This is encouraging because the assumption of homogeneity would

be a severe limitation, and without this limitation, future studies may continue calculating

spectral slopes from structure functions. The ability to get back a spectrum from a structure

function, even in a case where two distinct structure function slopes are present and data is
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Figure C.8: Normalized probability distribution functions of ∆S in the inertial range of 10
to 300 kilometers at 5 m depth in the uniform variance region of the a) Kuroshio and b) in
the Equatorial Atlantic.

filled with gaps, shows how powerful a tool the structure function is.

Isobaric structure functions show most significantly an amplitude decrease with depth.

Slopes of γ = 2
3

at all scales along isopycnals, and on isobars at small scales and γ = 0 at

larger scales are seen at depth. These results support the theories of the energy cascades

of Kolmogorov (1941) and Kraichnan (1967), and the passive tracer cascade of Obukhov

(1949) and Corrsin (1951), which are all based on simple dimensional analyses of the energy

and tracer variance equations. Latitude variations show variable behavior along isobars

and isopycnals, and at depth and on the surface. Along isobars near the surface, structure

functions are largest in magnitude near the equator and have slopes at all scales consistent

with Kolmogorov spectra. Along deeper isobars, structure function magnitude is greater

away from the equator (although less than surface values at all latitudes), and tend to

flatten out at larger separation distances. Along isopycnals, deep surfaces resemble the deep

structure functions along isobars which may demonstrate weak internal wave activity at

depth.. Near-surface isopycnals do not show equatorial strengthening and tend to level off

at larger scales. Comparing high-EKE and low-EKE regions show strong eddy activity at
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the surface which decreases with depth. It is also possible to use the structure function to

investigate ocean characteristics, like the location of deep water formation and spice injection

in the North Atlantic.

Though it is beyond the scope of the work here to definitively explain the causes of these

variations, models and theories of geographic variations in mesoscale eddy and internal wave

statistics should capture their patterns. For this reason, some care is taken in Appendix A to

provide reproducibility details that can be directly checked against realistic eddy-permitting

and finer resolution models.

With the growing amount of observations from the Argo dataset, the strength of this

method will only increase. Including other observations (i.e., moorings, gliders, and cruise

data), the knowledge of smaller scales of ocean turbulence will be observable as well.

Acknowledgments This paper was inspired by conversations with Rod Frehlich. We

wish that there had been more time with Rod, so that we could learn more from him. The

Argo Program is part of the Global Ocean Observing System. KM was supported by the

CIRES/NOAA-ESRL Graduate Research Fellowship. BF-K was supported by NSF 0855010

and 1245944 and GF was supported in part through NASA project “Estimating the Circu-

lation and Climate of the Ocean (ECCO) for CLIVAR” and NSF 1023499.

Appendix A
Structure Function Details

This appendix includes the detailed information for each structure function herein, in-

cluding the number of profiles in the selected region at each depth and the number of

“simultaneous” measurement pairs. In addition, the regions defined as homogeneous and

heterogeneous are identified:

Kuroshio homogeneous region, “uniform” at 5m:
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SW: lon = 141; lat= 33;

NW: lon = 142; lat= 43;

SE: lon = 155; lat= 42;

NE: lon = 157; lat= 42;

Gulf Stream homogeneous region, “uniform” at 25.9kg m−3:

SW: lon = -76; lat= 36;

NW: lon = -75; lat= 40;

SE: lon = -46; lat= 40;

NE: lon = -41; lat= 50;

Heterogeneous region, “non-uniform” at 25.9kg m−3 and 5m:

SW: lon = -160; lat= 10;

NW: lon = -160; lat= 30;

SE: lon = -140; lat= 10;

NE: lon = -140; lat= 30;

Appendix B
Line-Fitting Algorithm

In order to quantify the differences among structure functions, a line-fitting algorithm was

created to extract the slopes of the structure functions with one (or two) linear fit(s). A test

was first performed to decide whether more than one linear fit was needed. On the structure

functions with only one slope, a least-squares method of linear regression was performed,

using the bootstrap method of sampling to obtain a confidence interval. The advantage of

using the bootstrap method for the confidence interval is that the assumption of normality

for the individual observations is not necessary.

Since the relationship to the spectral slope no longer holds in heterogeneous regions,
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there could be two separate linear slope regimes with no relation to the spectrum. In this

case, the same linear regression was performed, but in steps so as to find the amplitude and

approximate bend point where a change in slope occurs. A bootstrap analysis was completed

for this process. First, randomly chosen data points were fitted by two lines with the bend

point at each separation distance bin. A least-squares error was calculated for the lines fit

for each bend point, and the bend point with the smallest error was chosen (sbend). Using

that bend point, all data points were then considered for the best-fit line. Another bootstrap

regime was then run, choosing random data points and calculating the resulting slopes of the

best-fit lines for the sub-sets of the original data. A bootstrap interval using 200 subsamples

was calculated from these results, providing a confidence interval for the chosen best fit from

all points.

In the homogeneous regions where two structure function slopes are discerned, the same

linear fitting regime was used, and the relation to the spectral slope was applied to the

results. The bend point for the spectral slope was computed to be k1 = 1/sbend.
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Depth No. profiles No. pairs Depth No. profiles No. pairs

5m 3927 19383 360m 5665 43034
15m 5747 51574 380m 5743 44320
25m 6209 62357 400m 5561 42531
35m 6292 62408 420m 4378 26605
45m 5966 61334 440m 4589 31627
55m 6278 61816 460m 5200 39488
65m 6208 61002 480m 5182 37971
75m 6017 58401 500m 5370 41386
85m 6111 56751 550m 5381 41204
95m 6110 54444 600m 5365 40905
105m 5532 45353 650m 5119 36565
115m 5806 44674 700m 5257 39031
125m 5592 42608 750m 5096 36193
135m 5611 44095 800m 5304 39631
145m 5590 42647 850m 5020 35310
155m 5834 44958 900m 5260 39069
165m 5380 41946 950m 4937 34395
175m 5802 44475 1000m 4917 36343
185m 5577 42378 1100m 4796 34845
200m 5838 45174 1200m 4627 32091
220m 5840 45391 1300m 4551 31028
240m 5840 45135 1400m 3573 22269
260m 5712 43950 1500m 3428 20762
280m 5783 44871 1600m 3319 20461
300m 5014 31869 1700m 3270 20042
320m 5704 43439 1800m 3187 19231
340m 5828 44912 1900m 2831 14045

Table C.5: Number of profiles and profile pairs used to compute the isobaric structure
function for each depth in the “uniform” region of the Kuroshio, shown in Figure 2.3.
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Density No. profiles No. pairs Density No. profiles No. pairs

24.9kgm−3 381 1015 26.4kgm−3 2626 23940
25.0kgm−3 433 1086 26.5kgm−3 3233 31730
25.1kgm−3 470 1323 26.6kgm−3 3618 37997
25.2kgm−3 497 1536 26.7kgm−3 3800 41771
25.3kgm−3 617 2112 26.8kgm−3 4430 50953
25.4kgm−3 615 2135 26.9kgm−3 4551 54158
25.5kgm−3 756 2971 27.0kgm−3 4971 61753
25.6kgm−3 889 3889 27.1kgm−3 5191 67238
25.7kgm−3 969 4475 27.2kgm−3 5256 69048
25.8kgm−3 1136 5831 27.3kgm−3 5321 70538
25.9kgm−3 1271 7173 27.4kgm−3 5309 70638
26.0kgm−3 1515 9189 27.5kgm−3 5411 73461
26.1kgm−3 1772 12426 27.6kgm−3 5375 72775
26.2kgm−3 1909 14009 27.7kgm−3 5201 67818
26.3kgm−3 2380 20055

Table C.6: Number of profiles and profile pairs used to compute the isopycnal structure func-
tion for each density level in the “uniform” region of the Gulf Stream, shown in Figure 2.4.
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Depth No. profiles No. pairs Depth No. profiles No. pairs

5m 10139 365192 360m 13013 614256
15m 14736 825454 380m 14582 815007
25m 14740 822307 400m 13260 660630
35m 14735 822046 420m 9254 344965
45m 14757 824696 440m 14720 816694
55m 14795 830618 460m 9454 334480
65m 14781 828257 480m 9462 342825
75m 14809 832856 500m 14387 783612
85m 14832 835247 550m 14166 769917
95m 14813 833364 600m 14219 768681
105m 14848 837059 650m 14418 779360
115m 14856 837475 700m 13688 688283
125m 14903 841562 750m 14092 744171
135m 14930 843148 800m 14224 753096
145m 14198 748041 850m 13346 668227
155m 14897 841062 900m 13198 635600
165m 13027 615750 950m 12705 600324
175m 14883 840231 1000m 10303 452745
185m 12432 555375 1100m 9591 385024
200m 14888 839387 1200m 8155 258947
220m 13800 702299 1300m 8131 257549
240m 13586 696020 1400m 7545 218515
260m 14153 743979 1500m 6931 183331
280m 13486 685195 1600m 6925 182970
300m 13798 708247 1700m 6902 181216
320m 14885 838701 1800m 6880 179759
340m 13768 698935 1900m 6827 176746

Table C.7: Number of profiles and profile pairs used to compute the isobaric structure
function for each depth in the heterogeneous region of the Pacific, shown in Figure 2.5a.
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Density No. profiles No. pairs Density No. profiles No. pairs

24.9kgm−3 11652 483239 26.4kgm−3 13841 736917
25.0kgm−3 11997 512881 26.5kgm−3 13928 739101
25.1kgm−3 11823 496640 26.6kgm−3 13956 741433
25.2kgm−3 11483 470120 26.7kgm−3 14043 748687
25.3kgm−3 11034 425446 26.8kgm−3 14169 761025
25.4kgm−3 10927 424389 26.9kgm−3 14373 782291
25.5kgm−3 10987 427971 27.0kgm−3 14340 771766
25.6kgm−3 11129 443197 27.1kgm−3 14320 767621
25.7kgm−3 11547 480032 27.2kgm−3 14358 772878
25.8kgm−3 11680 488667 27.3kgm−3 14287 765540
25.9kgm−3 12160 538459 27.4kgm−3 10154 439285
26.0kgm−3 12490 571559 27.5kgm−3 8155 259510
26.1kgm−3 13101 637287 27.6kgm−3 6932 183701
26.2kgm−3 13621 700790 27.7kgm−3 26 3
26.3kgm−3 13905 733375

Table C.8: Number of profiles and profile pairs used to compute the isopycnal structure
function for each density level in the heterogeneous region of the Pacific, shown in Figure 2.5b.
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Appendix D

Characterizing Turbulence

Anisotropy, Coherence, and

Intermittency at a Prospective Tidal

Energy Site.

This appendix contains the text of McCaffrey et al. (submitted, 2013), submitted to Renew-

able Energy in October, 2013. The figures not included in Chapter 3 are included here.

Abstract

As interest in marine renewable energy increases, observations are crucial for understanding

the environments that prospective turbines will encounter. Data from an acoustic Doppler

velocimeter in Puget Sound, WA are used to perform a detailed characterization of the

turbulent flow encountered by a turbine in a tidal strait. Metrics such as turbulence inten-

sity, structure functions, probability density functions, intermittency, coherent turbulence

kinetic energy, anisotropy invariants, and a new scalar measure of anisotropy are used to

characterize the turbulence. The results indicate that the scalar anisotropy magnitude can
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be used to identify and parameterize coherent, turbulent events in the flow. An analy-

sis of the anisotropy characteristics leads to a physical description of turbulent stresses

as being primarily one- or two-dimensional, in contrast to the isotropic, three-dimensional

small scale turbulence predicted by classical Kolmogorov theory. A new measure of the

anisotropy magnitude is introduced to quantify the level of anisotropic, coherent turbulence

in a coordinate-independent way. These diagnostics and results will be useful for improved

realism in modeling the performance and loading of turbines in realistic ocean environments.

Introduction

With the growing interest in ocean renewable energy, a better understanding of the marine

environment is needed in order to make further progress in research and development. In

many respects, progress made in the wind energy industry presages ocean energy develop-

ments, from the shape and mechanics of marine hydro-kinetic (MHK) turbines to metrics

used for site characterization. The European Marine Energy Commission Assessment of

Tidal Energy Resource recommends turbulence in its list of metrics for site characterization

(though it is not required) (Legrand, 2009), and the comprehensive assessment of tidal in-

stream devices by the Electric Power Research Institute briefly recognizes that turbulence is

harmful to turbines (Bedard et al., 2005). However, the importance of turbulence effects on

wind and tidal turbines is becoming increasingly appreciated since intense coherent turbu-

lent structures can be structurally harmful to turbines, can decrease the capacity to generate

power, and can increase the overall cost of power production (Frandsen et al., 2007; Mücke

et al., 2011; Kaiser et al., 2007; Rareshide et al., 2009).

The International Electrotechnical Commission (IEC) standard metric for quantifying the

level of turbulence at wind energy sites is the turbulence intensity (addressed in SectionD)

(IEC, 2005). However, this metric does not address all turbulent events that may affect gen-

eration and safety, such as coherent structures and intense eddies. Hand et al. (2003) used
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an array of turbulence intensity measurements to assess coherence and turbulence length

scales, while Sutherland (2002) performed a multi-variable regression analysis of the equiva-

lent fatigue loads of a turbine, finding that the vertical component of the inflow velocity has

most impact.

To date, studies of MHK sites have continued to use the turbulence intensity as the

primary metric for characterizing ocean turbulence environments (Elliott and Cadogan, 1990;

Gooch et al., 2009; Epler et al., 2010; Polagye and Thomson, 2013). However, atmospheric

and oceanic turbulence differ due to the distinct tidal, seasonal, and diurnal forcings of each

fluid. Some of the most comprehensive characterizations, such as Thomson et al. (2012),

Thomson et al. (2013), and Gunawan et al. (sion) have furthered the characterization of

ocean turbulence by also examining energy spectra and spatial structure functions. A more

detailed description of MHK sites using higher order statistics will reveal additional insights

into the turbulent environment of a tidal strait.

In the present study, a higher-order, detailed characterization of ocean observations is

performed in order to obtain more accurate predictions of loading and power production

from a tidal turbine. This information is useful for comparisons of turbulence observations

with numerical turbulence simulators (like the TurbSim model from the National Renew-

able Energy Laboratory (NREL) (Jonkman and Kilcher, 2012)), which currently use only

turbulence intensity and a power spectral density curve to create more realistic turbulent

environments for turbine simulator models (like FAST). Turbulence manifested in gusts, or

coherent, anisotropic, and intermittent eddies puts particularly strong and variable stresses

on a turbine as it turns, leading to misalignment of the drive train and wearing of the gearbox

(Ragheb and Ragheb, 2010). As a result, a site characterization that quantifies the incidence

and properties of intense, coherent, anisotropic turbulent eddies has the potential to prevent

untimely, unexpected, and costly failures in turbines.

Using velocity measurements from the Puget Sound, WA, this paper examines several

higher-order metrics in order to characterize and identify extreme turbulence eddies (or
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“events”) in a tidal strait. These metrics include velocity structure functions for time scale

information, probability density functions for intermittency, and anisotropy tensor eigenval-

ues for quantification and physical description of anisotropy. The specific metrics chosen

are drawn from the laboratory and numerical experiment literature, where collection of data

is simpler than in real-world ocean observations (Kolmogorov, 1941; Novikov and Stewart,

1964; Lumley and Newman, 1977). However, these metrics are demonstrated here to be

suitable for application to observational data as well. Higher-order statistics and a parame-

terization more grounded in turbulence theory are proposed to improve the classification of

anisotropy at potential tidal energy sites. An easily understood visualization of anisotropy

proposed by Banerjee et al. (2007) is presented as well. With an improved set of parameters

that provide a better physical description of the flow, it will be shown that more accurate

predictions of turbulence coherence can be obtained. Knowledge of turbulence coherence will

allow turbines to be better designed to withstand the particular scales of turbulence that

cause the largest loads and put the most strain on gear boxes. This paper is organized as

follows: Section 2 characterizes the flow with several statistical parameters; Section 3 pro-

poses a new parameterization based on the characterization; and Section 4 concludes with a

discussion of the implications of this work to the marine energy industry.

Characterization of Turbulence

The data used in this analysis were collected from an acoustic Doppler velocimeter (ADV)

device at Nodule Point, on the eastern side of Marrowstone Island in the Puget Sound

(Thomson et al., 2012). The site, which is 22 m deep, was under consideration for an array of

Verdant PowerTM turbines and has a maximum current velocity of 1.8 m s−1 at the proposed

hub-height of 4.7 m above the seabed. The measurements examined here were collected from

February 17th to February 21, 2011 using an ADV sampling at 32 Hz on the apex of a Tidal

Turbulence Tripod at approximately hub-height. The location is well-mixed, with minimal
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stratification as measured from a CTD (conductivity-temperature-depth sensor). More detail

on the observations and how they were performed can be found in Thomson et al. (2012).

Velocity Decomposition and Statistics

Each of the three velocity components have been decomposed into a mean (u) and pertur-

bation (u′):

u = u + u′, (D.1)

where u = ui + vj +wk. The horizontal velocities are defined in perpendicular components,

where −i is aligned toward the seaward principal flow direction, j is perpendicular to the

principal flow direction, and k is in the vertical direction. Wave motions are neglected for

the location analyzed here, although they may be important in other locations since they

introduce coherent structures that appear in the variance. The mean used here is a 10-

minute time mean, by contrast to the shorter 5-minute mean chosen by Thomson et al.

(2012). The 10-minute interval was chosen in an attempt to retain the longest timescales

of coherent turbulence structures in the perturbation, while capturing the tidal and diurnal

variations in the mean. Within each averaging interval, the mean flow was assumed to be

steady, which can create discontinuities at interval edges. Experimentation with a range of

averaging intervals suggested that 5 to 10 minute variability is appropriately categorized as

turbulent (see Appendix). Assuming Taylor’s frozen turbulence hypothesis (Taylor, 1938),

this allows motions smaller than ∼ 1.8 km at Nodule Point (for 1.8 m s−1 mean velocities).

Figure 3.2 shows the three components of velocity at Nodule Point from 17 Feb 2011 to

21 Feb 2011 at approximately hub-height depth (4.7 m), with the observed velocities in gray,

and the 10-minute mean in black. “Slack conditions,” where the velocity is not large enough

to drive a turbine, are defined as u ≤ 0.8 m s−1 (shown with dotted lines on Figure ??),

and occur at high and low tides. This is in contrast to ebb and flood tides when velocities

are larger. Velocity perturbations, the individual components of turbulent kinetic energy
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(TKE = 1
2

(
u′2 + v′2 + w′2

)
), and total TKE are shown Figures 3.3a, b, and c. Peaks occur

periodically in each signal with the M2 (semidiurnal) tide dominated mainly by the u′2 and

v′2 components of the TKE. Diurnal variability is also typical as one large and one small

(i.e., mixed semi-diurnal) flood or ebb per day. The w′ fluctuations are considerably smaller

than those in the other directions, as indicated by the very small w′2 component of the TKE.

Reynolds shear stresses are defined as u′iu
′
j. In a well-mixed, homogeneous flow such as

a tidal strait, coherent turbulent structures appear as bursts in the Reynolds shear stresses

(Kelley et al., 2000). Figure 3.3d shows the covariances, where turbulent bursts can be seen

occurring at a roughly diurnal period. Outside of the turbulent burst, all three components

are approximately zero with only occasional peaks in one component. Some days have two

turbulent bursts, both during flood tide, with the stronger turbulence associated with the

stronger flood.

Turbulence Intensity and Coherent Turbulent Kinetic Energy

The metric most commonly used in the wind industry to characterize the turbulent envi-

ronment is the turbulence intensity, I (ISO 4354, 1997). Turbulence intensity, shown in

Figure D.1a, is the ratio of the standard deviation of the velocity to the mean with a noise-

corrected term subtracted for acoustic Doppler measurements, and is defined as

I =
σu
u

=

√
u′2 − n2

u
, (D.2)

where the overline indicates a 10-minute average (Iu ≈
√

2
3
k−n2

u
for isotropic turbulence)

(Thomson et al., 2012). Although in much of the wind literature turbulence intensity is

calculated from wind speeds (often measured by cup anemometers) (Elliott and Cadogan,

1990), turbulence intensity can be calculated in all three directions (Iu, Iv, Iw), but the along-

stream intensity, Iu, is used here. Figure D.2 shows turbulence intensity plotted versus

mean flow speed for the entire sampling period at Nodule Point. The highest turbulence
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Figure D.1: a) Turbulence intensity, b) coherent turbulent kinetic energy, and c) anisotropy
magnitude, A, from the Nodule Point data shown in Figures 3.2 and 3.3. Three 99th-
percentile values of Iu, CTKE, and A values when u > 0.8 m s−1 are shown in the red
squares, green diamonds, and blue circles, respectively.
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intensities occur below 0.8 m/s, which are considered slack conditions when the turbine

would be motionless. The fastest mean velocities at Nodule Point (∼ 2 m s−1) see turbulence

intensities around 10%, while slower mean velocities see turbulence intensities that reach up

to 20%. This behavior is consistent with the Iu ∼ 1/u relationship, which has been removed

in the inset of Figure D.2 where u′2 vs. u is shown. This encourages further analysis into

what causes the turbulence intensity to peak, since the large spread suggests that local values

of u are not a good predictor of σu.

Although turbulence intensity is a helpful metric for determining loads on a turbine

(Mücke et al., 2011), a more detailed characterization of the type of turbulence will show

individual turbulent events like a large, anisotropic eddy passing through the region. Coher-

ent turbulent kinetic energy (CTKE; the magnitude of the instantaneous Reynolds shear

stresses) is another common metric in the wind literature used to identify coherent turbulent

events (Gooch et al., 2009; Jonkman, 2009), and is defined as

CTKE =
1

2

√
(u′v′)2 + (u′w′)2 + (v′w′)2. (D.3)

CTKE identifies the instances when the Reynolds shear stresses peak, while the turbulence

intensity identifies only one component of the kinetic energy. The use of the cross terms

identifies the spatially coherent features in the flow (though CTKE is an instantaneous

quantity, so the temporal coherence remains unknown).

The method employed by Kelley et al. (2000) & Kelley et al. (2005) to describe coherent

turbulent structures uses wavelet analysis to decompose the Reynolds stresses and coherent

turbulent kinetic energy alongside observed loads on wind turbines to characterize the time

and frequency behavior of the coherent structures and their effect on the turbines. These

results have shown that bursts of CTKE at scales 6% − 23% of the rotor diameter induce

higher structural loads on both stiff and flexible-blade wind turbines. Although observations

of loads are not available for a tidal turbine, Reynolds stresses and CTKE from ADV
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Figure D.2: Turbulence intensity versus mean speed for each 10-minute interval at Nod-
ule Point. The gray area indicates slack conditions. Three 99th percentile values of Iu,
CTKE, and A values when u > 0.8 m s−1 are shown in the squares, diamonds, and circles,
respectively on each plot. Inset is the joint pdf of u vs u′2, with the best-fit line.

measurements can be used to infer expected loading events.

CTKE is shown in Figure D.1b, and will be used as an additional metric for parameter-

ization of turbulence at this location. An alternative to CTKE, the anisotropy magnitude

A (Eq. D.11), that is more firmly grounded in turbulence theory is shown in Figure D.1c

and presented in Section D. Three illustrative intervals in the largest 99th percentile of

Iu, CTKE, and A when u > 0.8 m s−1 were chosen to highlight the meaning of these

diagnostics. These intervals are also indicated in Figures 3.2, D.1, D.2, 3.7, 3.9, and 3.10.
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Correlation and Length Scales

Turbulence intensity is a poor descriptor of the spatial and temporal structure of turbulence

in the tidal channel, so quantifying the scales of motion leading to large Iu is a natural next

step. Spatial and temporal correlation scales can also give a much better physical description

of the turbulence than is possible with turbulence intensity so velocity autocorrelations were

calculated to infer the time (and, using Taylor’s hypothesis, length) scales of the turbulence.

The temporal autocorrelation is defined as

ρ(τ) =
u′(t)u′(t+ τ)

u′2
(D.4)

where the overbar is the 10-minute mean, and results are shown in Figure 3.5. The coherence

function used in TurbSim is also plotted (with a = 8.8, L = 2.454.7, f = .0001 Jonkman

(2009)), showing the stretched exponential form used to include coherent structures in the

model. Although the model significantly under predicts the coherence for certain intervals,

it does capture the mean observed at this location quite well.

The Taylor, λ, and integral, Λ, scales are used to quantify the longest time over which the

turbulence stays correlated, and the time until the flow is uncorrelated, respectively (Pope,

2000). These scales are defined as

λ = −2

[
d2ρ

dτ 2

]−1
, (D.5)

Λ =

∫ ∞
0

ρ(τ)dτ. (D.6)

These correlation time scales were calculated for each 10-minute interval where u > 0.8

in Figure 3.5. The average correlation length scales are shown, though Figure 3.5 clearly

shows intervals with much higher λ and Λ than the mean. Using Taylor’s frozen turbulence

hypothesis with the mean horizontal velocity and Λ for each 10-min segment, the average

correlation length scale is 11.6 m, with the longest correlation equivalent to 81 m. Thomson
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et al. (2012) calculated a dominant length scale of 2 − 3 times the water depth (average of

75 m) at Nodule Point from the “fractional” turbulence intensity, with a large spread.

Frequency Analysis: Structure Functions

Structure functions of each 10-minute interval with u > 0.8 m s−1 were computed in order

to study the relationship of correlation over the longer and shorter timescales, analogous

to an energy spectrum. Structure functions are especially useful for problems with uneven

measurements in space or in time, but they are used here with the even time-series of

observations in order to directly relate to the correlation time scales from the previous

section. The second-order temporal structure function is defined as (Webb, 1964)

D(τ, t) = [u (t)− u (t+ τ)]2, (D.7)

which has a slope (γD) that is related to the slope of the energy spectrum (γE) by

γD = −γE − 1. (D.8)

This relationship can be used to define the energy spectrum of simulated turbulence used

as input into a computational fluid model of a turbine. Structure functions provide spectral

information about a range of timescales, as opposed to λ and Λ which provide single correla-

tion scales. Spatial structure functions have also been used to infer energy dissipation rates,

as done in Wiles et al. (2006) and Thomson et al. (2012).

Figure D.3 compares the temporal structure function of the horizontal (top) and vertical

(bottom) velocities from the Nodule Point ADV. For easier comparison, the solid line in the

horizontal structure function plot is the median of the vertical structure functions, and vice

versa. The slope of nearly γD = 2/3 seen in both directions up to a time scale in the 1−5 sec

range matches the scaling theory of three-dimensional, isotropic turbulence from Kolmogorov

(1941). The structure function slope of γD = 2/3 is equivalent to the frequency spectral slope
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of f−5/3. The structure function median in one direction is almost always outside of the 25th

percentile of the other direction’s structure function (see solid lines on each plot), exhibiting

the preference for larger horizontal velocity covariance at these time scales. At first glance,

this difference in amplitude between the vertical and horizontal velocity structure functions

seems to suggests that the covariances are not isotropic, but McCaffrey et al. (tion) show

that the transformation from frequency to temporal space introduces an integration constant

that may explain the offset in structure function amplitude seen here. Thus, only the slope

of the structure function is meaningful in this context, not the magnitude. A slight flattening

occurs on the vertical structure function at about 3 sec that does not occur in the horizontal

structure function. This supports the results of Thomson et al. (2012) for frequency spectra

with 5-minute windows, which exhibit isotropy from 1− 10 sec scales. At lower frequencies,

the vertical spectra flatten out, showing the large-scale anisotropy. A random phase signal

has a structure function slope of 0, suggesting that over the longest timescales vertical

velocities are not associated with a turbulent cascade. Note that the γD = 2/3 slope of these

structure functions (and the related kinetic energy spectrum slope) is not a unique indicator

of an energy cascade in three-dimensional turbulence –indeed the inverse energy cascade in

two-dimensional turbulence of Kraichnan (1967) would also follow γD = 2/3. Consistency of

the structure function with Λ is indicated by the point where the structure functions flattens

out being on the order of the average integral scale from Figure 3.5.

Intermittency from Probability Density Functions

The flow diagnosis reveals distinctions among different 10-minute intervals, which likely ex-

tends to turbulence intermittency. A useful tool used to analyze turbulent behavior is the

velocity difference probability density function (pdf), which can quantify the intermittency

of turbulence (e.g. coherent structures and eddies). Comparing pdfs in each direction further

uncovers the anisotropy. Gaussian turbulence should manifest itself as a collection of veloc-

ity differences that are normally distributed for small differences, with intermittent events
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Figure D.3: Box plots of the second-order temporal structure functions for each 10-minute
interval with an u > 0.8 m s−1 of the Nodule Point ADV data. Top plot is the horizontal
velocity structure function and the bottom is the vertical velocity structure function. For
comparison, the solid line on the horizontal structure functions shows the median of the
vertical velocity structure functions, and the line on the vertical structure functions shows
the median of the horizontal velocity structure functions. White circles are the median, the
boxes show the 25th-percentile, and the vertical lines include the entire range. The dotted
line is a guideline with slope of 2/3.
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appearing as deviations from Gaussian distributions in the tails (Frisch, 1995). Although

the small velocity differences in all pdfs shown in Figure 3.6 do follow the Gaussian curve

(dashed lines), the strong departure from Gaussian in the tails indicates that there is a

significant amount of intermittency in this flow.

Higher statistical moments were calculated for each velocity component (subscript i) also

in 10-minute intervals (mean, variance, skewness S, and kurtosis K, respectively) in order

to provide more quantitative measures of intermittency. Moments of the u-velocity at Nod-

ule Point are plotted in Figure 3.7. A purely random, Gaussian flow would have moments

Si = 0 and Ki = 3. It is clear from the skewness and kurtosis (shown here as deviations from

Gaussian, K − 3) that many intervals deviate from normally distributed, random velocity

perturbations. The departure from Gaussian in the pdfs expands consistently on the depar-

ture from 0 in the skewness and kurtosis (minus 3) in Figure 3.7. The differences between the

pdfs of ∆u′,∆v′, and ∆w′ highlight the anisotropic nature of this flow. The larger frequency

in the tails of the pdf of ∆w′ is the strongest sign of anisotropy.

A single observation at Nodule Point covers 1/32 of a second, so looking at velocity differ-

ences over slightly longer intervals will accentuate persistent features. Figure 3.6 compares

the pdfs using ∆t = 1 (1/32 sec), 115 (115/32 sec) and 230 (230/32 sec), corresponding to

the smallest features captured by the ADV, and at 3 m and 6 m, which are potential half-

and full-rotor diameters, assuming Taylor’s hypothesis (with the overall average of the flow

speed as the velocity scale). As the time interval increases, the intermittency increases for u

and v velocities but decreases for w. Thus, as in the structure function analysis, horizontal

velocities are more coherent on longer timescales than vertical, and now we may associate

those correlations as well with intermittency. There is only a small difference in intermit-

tency between the 3 and 6 m-scales, suggesting that the intermittent structures occur on a

scale larger than the turbine rotor.
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Tensor Invariant Anisotropy Magnitude

The metrics analyzed thus far indicate that turbulence at this location in the Puget Sound

features anisotropy and coherence. However CTKE is, like Iu, not a true scalar as it depends

on the coordinate system chosen. In the case of CTKE, the dependence on coordinate

system is not obvious, but direct calculation using this data and alternative coordinate

system choices, such as a rotation of the u-v coordinates by 45o, results in an altered value of

CTKE. By aligning the u-velocity with the along-stream direction and w with the vertical as

done here, one arrives at a unique definition of CTKE. However, the turbulent structures

that arrive at the study location may observe coordinate-invariance symmetries not shared by

CTKE (e.g., non-horizontal planar or axial symmetries). Locations where the ebb and flood

flow directions are not anti-parallel, are likely to cause inconsistencies in the interpretation

of CTKE. Here we construct a quantity similar to CTKE, but formed from true scalars so

that coordinate-independence is achieved.

The flow at Nodule Point has been determined to be anisotropic and to possess intermit-

tent coherent structures. A coordinate-system-invariant metric of anisotropy in the presence

of such structures is therefore desirable. A more detailed anisotropy analysis can be done

using the anisotropy tensor (Lumley, 1978):

aij =
uiuj
2k
− δij

3
, k =

uiui
2
, (D.9)

and its three principal invariants (I, II, III),

I = aii ≡ 0

II = aijaji (D.10)

III = aijainajn,

with a sum implied to occur over repeated indices (Einstein notation). Like the turbulent
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kinetic energy, k, these invariants are true scalars independent of coordinate system–they

depend only on the symmetry, or lack thereof, of the turbulence itself. An analysis of the

invariants II and III (since I = 0 by the definition of aij) provides a method of quantifying

anisotropy in a turbulent flow and physically describing the departures from isotropy, inde-

pendent of the chosen coordinate axis. Isotropic turbulence with uncorrelated orthogonal

velocity fluctuations has the characteristic that I = II = III = 0, and deviations away

from this point describe different turbulent regimes, as illustrated by the classical Lumley

Triangle (Lumley and Newman, 1977). The next section illustrates an updated version of

the Lumley Triangle due to Banerjee et al. (2007).

The coordinate-system invariant scalar magnitude of the anisotropy similar to the CTKE,

denoted A, is constructed from the scalars II and k as

A = k
√
II ≡

√
1

4

(
2[u′v′

2
+ u′w′

2
+ v′w′

2
] + u′2

2
+ v′2

2
+ w′2

2
)
. (D.11)

This definition possesses the following attributes: 1) Like CTKE, A = 0 for isotropic,

uncorrelated turbulence. 2) Like CTKE, A has the units of energy (k). 3) A tends to grow

with CTKE, approaching a version of CTKE formed from the time-averaged shear stresses

as CTKE � k. 4) Like CTKE, A is real, and 5) unlike CTKE, A is a true, coordinate-

independent scalar. The anisotropy magnitude, A, is therefore similar in meaning to the

CTKE in Equation D.3, though not identical because CTKE is an instantaneous measure,

and A uses the 10-minute means of the Reynolds stresses. This allows instrument noise to be

removed through the averaging, while it acts to enhance CTKE. The anisotropy magnitude,

A, is plotted at Nodule Point in Figure D.1c, exhibiting simultaneous, similar intermittent

peaks as CTKE between periods of low anisotropy. However, it is intriguing to note that

the extreme occurrences of A do not always co-occur with those of CTKE or Iu, as seen

in Figures 2-4. Thus, we may conclude that neither Iu or CTKE is a reliably coordinate-

independent indicator of extreme turbulence or anisotropy, and that A accentuates the same
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features but in a quantitatively reliable manner.

Anisotropic Barycentric Map

Banerjee et al. (2007) introduce a visualization of anisotropy that contains additional in-

formation beyond A, based on the eigenvalues of the anisotropy tensor as opposed to the

invariants. The “barycentric map” is a ternary diagram with vertices representing purely

one-component (linear), two-component (planar), and three-component (isotropic) turbu-

lence. This map is easier to read than the Lumley Triangle since the three turbulent states

are equally spaced, and each have one point to represent them. The Cayley-Hamilton the-

orem proves that the eigenvalues may be found using only the tensor invariants (I, II, III)

and vice versa. Thus like the invariants, the eigenvalues (and the barycentric map) are

coordinate-independent (Cayley, 1858). The axis-symmetric and plain-strain limits are rep-

resented by straight lines on the barycentric map.

If the eigenvalues of the anisotropy tensor, aij are λ1, λ2 and λ3, where λ1 ≥ λ2 ≥ λ3, the

coordinates of the barycentric map are

C1c = λ1 − λ2, (D.12)

C2c = 2 (λ2 − λ3) , (D.13)

C3c = 3λ3 + 1. (D.14)

To plot on a Cartesian plane where the vertices of the barycentric map are (x1c, y1c), (x2c, y2c),

and (x3c, y3c), the location of each point is

xnew = C1cx1c + C2cx2c + C3cx3c (D.15)

ynew = C1cy1c + C2cy2c + C3cy3c (D.16)

The barycentric map is shown in Figure 3.14, with four color schemes to be discussed in
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Section D: turbulence intensity, Iu, CTKE, A, and
√
II. These results show that the vast

majority of the flow is in the middle of the map, extending closer to the one- and two-

component limits. The large empty space on the top part of the triangle highlights that this

flow is never in the isotropic turbulent regime for scales between the sampling frequency and

the 10-minute window.

The eigenvectors of the anisotropy tensor, when ordered, give the principal axes of the

turbulence. In the one-component limit, the eigenvector associated with the largest eigen-

value orients the (linear) direction of the flow, and the plane made by the eigenvectors of the

two largest eigenvalues describes the two-component turbulence. It is also possible to gain

the directional information from Figure 3.3d and 3.3e to see which of the Reynolds stress

components dominates the CTKE signal. Consistency between these approaches derives

from the close relationship between the Reynolds stresses and the anisotropy tensor.

Parameterization of Extreme Turbulence

A single parameter, or small set of parameters, to describe the turbulence at a particular

location is desired for modeling and classification of tidal turbine locations. The turbulence

intensity has been the parameter used, and only briefly has CTKE been introduced to

discuss coherence in a flow. Here, the metrics discussed in Section D are compared in order

to identify the best parameter to characterize turbulence.

The 10-minute intervals with Iu, CTKE, and A in the 99th percentile (when u >

0.8 m s−1) are marked on most plots. The peaks in CTKE do not appear as peaks in

Iu or A, as seen clearly in Figure D.2, highlighting that these quantities correspond to differ-

ent kinds of turbulent events that an analysis of only one quantity would miss. CTKE peaks

when two or more velocity components have large fluctuations, while Iu peaks with only one,

differentiating between a shear stress and a linear stress. The differences in CTKE and Iu

in Figures D.2 & 3.7 show that the turbulence intensity peaks occur during slow, near-slack
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tides. The anisotropy magnitude, however, sometimes peaks with Iu, and sometimes CTKE.

While all three quantities coincide with intervals with a large standard deviation in u′, Iu

appears in the highest peaks (since Iu is directly proportional to the standard deviation). All

three quantities appear with kurtosis less than 3, representing a probability density function

that is flatter than Gaussian, indicating intermittency.

The ability to parameterize coherence with Iu, CTKE, and A is examined through

regression analysis between each metric and λ and Λ. The resulting correlation coefficients

are shown in Table D.1. The intervals with high Iu, A, and CTKE are associated with longer

turbulent timescales λ and Λ (see Section D). However, quadratic regressions between Iu,

and CTKE (most often used for this purpose; Jonkman (2009)) and λ or Λ do not yield

statistically significant coefficients of determination (i.e., poor predictability). Thus, if we

consider our long turbulent timescales to indicate coherent structures, then the extremal

intervals do indicate the presence of coherent structures, but the metrics Iu and CTKE

are not only a measure of coherence. However, the quadratic relationship between A and

the Taylor scale, λ is very strong, with an R2 value of 0.884. This relationship is plotted in

Figure 3.13. CTKE and A include more information about cross-correlations and directional

variability than the turbulence intensity, so it is perhaps not surprising that they give a better

physical description of the flow and a less noisy prediction of other measures of coherence

in the turbulence, which is the goal of this study. The advantage of turbulence intensity

over CTKE and A is that directional velocity observations are not needed, only a current

speed. However, without directional information, Iu is a poor predictor of coherence, and

one should consider adding other measures of coherence, such as λ, in addition to Iu.

Understanding the intermittency of coherent structures is beneficial for predictions of

loads on a turbine. Using A as a measure of coherence, supported by Figure 3.13, and com-

paring the larger A events (A > 0.002) to the total flow on a probability density function,

the A events appear as smaller deviations from Gaussian in the tails (see figure 3.12). Al-

though slightly counter-intuitive, this result suggests that within a single coherent structure,
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Table D.1: Coefficients of correlation, R2, between Taylor scale, λ, and Integral scale, Λ,
and Iu, CTKE, and A from the Nodule Point ADV data.

λ Λ

Iu 0.596 0.450

CTKE 0.680 0.017
A 0.884 0.317

velocity differences are more Gaussian, but in differences spanning from one smaller-scale

structure to the next, the intermittency appears. These results show that the coherent events

at ∆t = 230 samples, ∆x ∼ 6m are nearly random in the u and v directions, but intermittent

in the w direction. Again, the anisotropy seen in Figure 3.6 appears in the pdf differences

in the three directions.

Anisotropy is an important feature that is potentially problematic to a turbine (intro-

ducing an uneven strain on the blades), and a characteristic that is not currently modeled,

so the comparison between the measures of turbulence or coherence and anisotropy can give

a much more accurate description of the flow. The three color schemes in Figure 3.9 high-

light the differences between turbulence metrics and their relationships to anisotropy on the

barycentric map. The extreme events in Iu, CTKE, and A occur on the edge of the scatter

farthest away from the isotropic limit. The tendency in all three metrics is such that higher

values often occur when the turbulence is most toward the one-dimensional limit, although

the extreme events are distributed among the scatter in each variable.

The turbulence intensity exhibits a strong relationship with anisotropy, with high Iu

events approaching the one-component limit. This shows that at this location, the strongest

component of the turbulence is aligned in the along-stream direction that is used in the

turbulence intensity. Not shown, but important to note, are the intervals during slack

tides which fall closer to the lower lefthand corner of the barycentric map, closer to the

one-component limit than the faster intervals. Since turbulence intensity increases with

decreasing mean velocity, these results are in agreement, although it is counter-intuitive that
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the slack tides would exhibit one-component turbulent behavior more than the fast tides.

The color based on CTKE shows a much weaker relationship with anisotropy, with

peaks in CTKE scattered throughout the map’s domain. The anisotropy magnitude, A,

is similar to CTKE, as expected, but with a slightly stronger correlation in predicting the

dimensionality of the turbulence. By analyzing
√
II, which contributes to A, the relationship

between II and the one-component limit becomes evident. The fact that A does not follow

this behavior indicates that k, the turbulent kinetic energy in all three directions (as opposed

to the single direction captured in the turbulence intensity), dominates the anisotropy at

these scales;
√
II is therefore a better metric for measuring anisotropy in the one-component

limit. The correlation was calculated between
√
II and the correlation time scales, Λ and λ,

with resulting correlation coefficients of 0.601 and 0.436 respectively. While the correlation

between
√
II and Λ is larger than the other metrics,

√
II and λ is much lower than the

strong correlation between A and λ.

When comparing CTKE and A in Figure 3.10, a very strong relationship exists (since

A was derived to be the invariant form of CTKE), and the highest Iu, CTKE and A

intervals all appear in the high end of the plot. This supports the use of A as opposed

to CTKE in characterizing intense turbulent events since it similarly captures anisotropic,

coherent events, but is a tensor invariant quantity better supported by turbulence theory than

CTKE. Since CTKE has been demonstrated to correlate with turbine loading, and A is

closely related, further studies must be conducted to determine whether the
√
II (anisotropic

turbulence) or the k (intense turbulence) factors of coherence turbulence measured by A are

most closely related to loading.

The occurrence of one-component “turbulence” may be a sign that some residual of

the tidal flow itself continues to be categorized as “turbulence” using 10-minute averages–

unfortunately some mixing of mean and turbulence is inevitable when Reynolds averaging

is used in turbulent flows without clear scale separation.
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Concluding Remarks

The tidal site of Nodule Point shows strong signs of turbulent events that are expected

to impact tidal energy conversion devices. Some of these events have peaks in coherent

turbulent kinetic energy, some have peaks in turbulence intensity, and most exhibit one-

component anisotropic behavior. The presence of this type of turbulence means that a

preferred direction to the loading events is to be expected, putting a particular orientation

of strain on the turbine. In order to predict these impacts, an analysis of turbulence should

include turbulence intensity, either in its traditional or coordinate-system invariant form (the

ratio of the full TKE to the mean kinetic energy), and a measure of anisotropy. Both CTKE

and Iu are useful metrics for measuring turbulence, but when all three velocities are available,

the coordinate-independent measures A, k, and the invariants or eigenvalues of the anisotropy

tensor are a preferred physical description that include many details about the directions

of the one- and two-components of the turbulence. Other measures of intermittency and

coherence, such as the pdfs and structure functions, can be important diagnoses of the

degree to which Kolmogorov-like scalings for turbulent cascades hold for the environment of

interest.

The observed anisotropy at Nodule Point can possibly be attributed to the shallow depth

that does not allow isotropy above scales larger than the water depth. In addition, two-

dimensional turbulence may be created by topographic vortex shedding, which would produce

an inverse energy cascade with a slope of γD = 2/3 as was observed here. However, high

resolution surface measurements (e.g. SAR, HF radar, or ocean color) are necessary to

confirm this hypothesis. Stratification is unlikely to be forcing the two-dimensional flow,

since the tidal strait is well-mixed. Therefore, it is predicted that tidal straits in general will

have two-dimensional turbulence at scales larger than their depth, although observations at

more sites are needed to support this hypothesis.

A next step will compare the statistics of the observations to those of the output of

turbulence simulators and turbine models. The observations show strongly that turbulence
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in this region is not isotropic, even outside of the peaks in turbulence metrics. Turbulence

simulators like TurbSim create isotropic turbulence and then add on an optional coherence

function (Jonkman, 2009). A comparison between the resulting loads and efficiencies for

turbines in stochastic turbulence and turbulence created by a physical ocean model (like

the Regional Ocean Modeling System of Shchepetkin and McWilliams (2005)) or large-eddy

simulation (like the National Center for Atmospheric Research LES model of Sullivan et al.

(1994)) for this location will identify the strengths and weaknesses of each type of model in

an effort to improve modeling capabilities for turbine design. Thyng et al. (2013) compare

these ADV records and related observations in this region to a simulation using ROMS.

Their results indicate that the large scale flow is adequately simulated, but the subgrid

parameterizations in their implementation are unable to fully reproduce the characteristics

of the observed turbulence. They propose extensions to these parameterizations that can be

used diagnostically and can guide future parameterization improvements.

Additional complexity in real-world turbulence at this and similar sites may be hidden in

this analysis by the assumption of Taylor’s frozen turbulence hypothesis. Several statistics

calculated here utilized this hypothesis to estimate spatial information from temporal data.

In order to relax that assumption, measurements in time and in space are necessary. An array

of ADVs can provide the spatial resolution, improving with the number of locations collecting

simultaneous observations. Undoubtedly, new insight into the coherent, intermittent in time

signals sensed here would result from information about their horizontal and vertical spatial

coherence and intermittency.
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Appendix A
Time window choice In decomposing the velocity signal into mean and pertur-

bation, the goal is to capture the small-scale (in time and space) turbulent effects aside from

the large-scale (in time and space) tidal effects. Taylor’s hypothesis of the relationship be-

tween the time and length scales is assumed, which states that for a given turbulent velocity

scale, û, the time and length scales are related as L/T . This requires that for turbulence at

larger spatial scales, a longer time scale is needed to capture the motions. With a goal of

capturing the large, coherent structures in the tidal flow, the largest δt possible is desirous.

However, the tidal signal impacts the flow at longer time scales, so a careful analysis was

needed to separate the two.

The power spectrum of the along stream velocity in Figure ??a shows significant peaks

at very low frequency, and at tidal frequencies of 2 and 4 cycles per day (diurnal and semi-

diurnal tides). Figure ??b shows spectra of the along-stream velocity perturbation obtained

through different time windows. With a 60-minute window, the tidal frequencies are still

apparent, but with decreasing δt, the peaks decrease. By δt = 5-minutes, the tidal signal is

imperceptible.

Figure 1.3a shows a 10.5-hour segment of velocities with different δt means, and the

resulting perturbations with 60, 30, and 20-minute δt are shown in Figure 1.3b and 10 and

5-minute intervals in Figure 1.3c. From these plots, it is clear that the 60, 30 and 20-minute

averages are too long because a significant linear trend remains over the intervals where the

tide is changing direction. That linear trend is therefore being included in the “turbulence,”

though it is actually the tidal signal. The 10- and 5-minute averages do not show this

remaining signal.

The variance, σ, for each interval in the entire sample for different δt values was computed,
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and is shown in Figure 1.4. For the smallest values of δt, there are higher variances seen,

with a decrease as δt increases to about δt = 5. Ignoring the outliers, the range of variances

stays about constant until approximately δt = 35 when it increases again. Using this range

of ideal δt values, as well as the information in Figure 1.3, the higher end of this range is

known to be too large. Therefore, after this analysis, the interval length, δt, for the mean-

perturbation decomposition was chosen to be 10 minutes. This captures the largest scales

of turbulence without contaminating it with the tidal signal.
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Appendix E

Justification for Rejection of ADCP

Data for Turbulent Statistics

The ADCP used for this analysis is located at Admiralty Head. The site is 56m deep, and

has maximum current velocity of 3.2m s−1 at the proposed hub-height of 8.1m. The ADCP

observations were taken from 9 May to June 11, 2011 at a sampling frequency of 1Hz. The

ADCP takes a vertical profile from 1.1m to 20.1m with 1m vertical resolution. The beam

spread at hub height is 6.8m. This may introduce substantial biased in the calculation of the

velocities, since this diameter is more than a potential turbine diameter (!). All turbulent

motions smaller than this width get averaged, smoothing out a significant amount of turbu-

lence. This averaging prevents statistics like the autocorrelation from being calculated, since

the most correlated, small-scale features are averaged over. The autocorrelations calculated

from this data shown an immediate drop off, and integral and Taylor scales much smaller

than this beam spread diameter, confirming the inability to use this statistic with these data.

In addition to the biases that averaging introduces, the inhomogeneity between beams

prevents correlations between velocity components (Reynolds stresses) from being accurate.

Stacey et al. (1999) acknowledged the need for a method of calculating Reynolds stresses and

TKE from ADCP data without the bias from Doppler noise. They introduced a method that
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uses the raw, along-beam velocities instead of the three-components which require averaging

across the beam spread area. With a four-beam ADCP with each beam aligned at angle, θ,

from the vertical, the velocities can be computed as

u1 = v sinθ + w cosθ (E.1)

u2 = −v sinθ + w cosθ (E.2)

u3 = u sinθ + w cosθ (E.3)

u4 = −u sinθ + w cosθ. (E.4)

This is an over-determined system that produces an “error velocity” that can be a check

of homogeneity across beams (i.e., if w computed from beams 1 and 2 is not equal to w

computed from beams 3 and 4, the flow is not homogeneous across beams, and the velocity

is not acceptable). Using these definitions of the velocities, and a Reynolds decomposition

(Equation 1.2) to get the perturbation velocities, the Reynolds stresses can be defined as

u′w′ =
u′23 − u′24

4sinθcosθ
(E.5)

v′w′ =
u′21 − u′22

4sinθcosθ
(E.6)

u′v′ =
u′21 + u′22

4sinθcosθ
-or-

u′23 + u′24
4sinθcosθ

. (E.7)

A comparison between the Reynolds stresses computed with the different definitions of w

is shown in Figure E.1. The deviation away from the one-to-one line shows that there is

considerable error, and therefore inhomogeneity between beams. This was a strong deter-

mining factor in the rejection of the ADCP data for computations of the Reynolds stresses,

and subsequently, the anisotropy tensor and magnitude.

An additional problem with the ADCP is caused by the Doppler noise, rather than the

beam spread. Thomson et al. (2010) showed the need to remove the noise (determined by

the instrument’s manufacturer) from the calculation of turbulence intensity, and even after
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Figure E.1: Reynolds shear stress component, u′v′, computed with w computed from beams
1 and 2 (u′v′12) and w computed from beams 3 and 4 (u′v′34). the dotted line shows the
one-to-one relationship, and the solid line is the line fit to the data.

that was removed, an additional biased remained. The Doppler noise level of the Admiralty

Head ADCP is n = 0.112, which also interferes with the calculation of the power spectrum

and structure functions, which have magnitudes at and lower than the noise level.

Because of the large Doppler noise and beam spread that prevent calculated the autocor-

relation, structure function, and anisotropy statistics from ADCP data, I determined that

this dataset is not sufficient for characterizing turbulence as described in Chapter 3.
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