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Abstract

In their paper, "Connectionism and Cognitive Architecture,” Fodor and Pylyshyn (1988) argue that
connectionism cannot offer a cognitive architecture that is both viable and different from the Classical
language of thought architecture: if it differs from the Classical architecture it is because it reinstantiates
simple associationism, and is therefore not a viable candidate; if it is viable, it is because it implements
the Classical view and therefore does not offer a new cognitive architecture—just a new implementation
of the old one. It is my purpose here to expose the false dichotomy in this argument, to show that the
space of connectionist cognitive architectures is much richer than this simple dichotomy presumes, and
that in this space is a large region of architectures that are implementations neither of a Classical
architecture nor of a simple associationist architecture; these architectures provide structured mental
representations and structure-sensitive processes in a truly non-Classical way.

In Section 1, I make a number of general remarks; in Section 2, I focus on the crux of their argument,
which turns on the compositional structure of mental states. I develop in some detail the argument that,
unlike simple associationist models, connectionist models using distributed representations can embody
compositionality at the same time as providing a new cognitive architecture that is not an implementation
of a Classical language of thought. In Section 3, I argue that the debate surrounding compositionality
illustrates the general point that by finding new formal instantiations of basic computation notions in the
category of continuous mathematics, connectionism can open up genuinely new and powerful accounts of
computation and cognition that go well beyond the limited progress that can be afforded by the kind of
implementationalist strategy that Fodor and Pylyshyn advocate.

Copyright © 1988 by Paul Smolensky.
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In their paper, "Connectionism and Cognitive Architecture,” Fodor and Pylyshyn (1988) argue that
connectionism cannot offer a cognitive architecture that is both viable and different from the Classical language of
thought architecture: if it differs from the Classical architecture it is because it reinstantiates simple associationism,
and is therefore not a viable candidate; if it is viable, it is because it implements the Classical view and therefore
does not offer a new cognitive architecture—just a new implementation of the old one. It is my purpose here to
expose the false dichotomy in this argument, to show that the space of connectionist cognitive architectures is much
richer than this simple dichotomy presumes, and that in this space is a large region of architectures that are
implementations neither of a Classical architecture nor of a simple associationist architecture; these architectures
provide structured mental representations and structure-sensitive processes in a truly non-Classical way.

In Section 1, I make a number of general remarks about connectionism, Fodor and Pylyshyn’s argumentation,
and the abuse of the term "implementation." In Section 2, I focus on the crux of their argument, which turns on the
compositional structure of mental states. I develop in some detail the argument that, unlike simple associationist
models, connectionist models using distributed representations can embody compositionality at the same time as
providing a new cognitive architecture that is not an implementation of a Classical language of thought. In Section
3, I bring together the more technical discussion of Section 2 back in contact with the more general issues raised in
Section 1. I argue that the debate surrounding compositionality illustrates the general point that by finding new
formal instantiations of basic computation notions in the category of continuous mathematics, connectionism can
open up genuinely new and powerful accounts of computation and cognition that go well beyond the limited
progress that can be afforded by the kind of implementationalist strategy that Fodor and Pylyshyn advocate.

1. General Remarks

1.1. In-principle arguments

It is worth stating up front that, in my opinion, the highly general, negative, in-principle arguments one finds on
the issue of cognitive architecture—like that of Fodor & Pylyshyn (1988; henceforth, F&P)—are stimulating and
useful but quite inconclusive; this is as true of anti-Classical arguments as it is of anti-connectionist arguments. On
the other hand, positive in-principle arguments can serve the valuable role of showing how to conceive of previously
inconceivable accounts; they serve as programmatic statements of research agenda. It was in this spirit, for
example, that Smolensky (1988a) was written; it was intended not as an in-principle attack on the Classical view but
as a positive in-principle argument for a fairly comprehensive connectionist framework for cognitive science.

This issue of negative vs. positive in-principle arguments bears strongly on Section Four of F&P, which
proceeds basically on the following plan:

(1) a. Collect many positive arguments for connectionism.
b.  Present them as negative in-principle arguments against the Classical account.
c.  Show that, as negative arguments, they don’t hold up.

It is interesting to note the shift from an offensive to a defensive posture here. Whereas arguments from advocates
of the Classical view used to be of the form, "the trouble with connectionism is that it can’t do X," increasingly we
now hear arguments of the form "well, Classical architectures can do X too." In Section Four, F&P offer us about a
dozen defensive arguments of just this form, where X ranges from graceful degradation and massive parallelism to
inexplicit rules and soft constraint satisfaction.

The moral seems to be that arguments of the form "formalism ¥ can’t do X" are sometimes provocative but, at
least when Y is a general, powerful formalism like symbolic or connectionist computation, such arguments are
almost virtually sure to fail. Arguments standing a chance of surviving that concern such features as massive
parallelism, soft constraints, and neural plausibility, must be positive arguments that connectionism achieves these
particularly well, not negative arguments that the symbolic approach can’t achieve them at all.
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1.2. The argument structure

In their offensive attack, F&P follow an argument structure frequently used in attacks on connectionism;

2) Propose a simplistic representation and process.

Claim this is what connectionism advocates.

Point out the inadequacies of the proposal.

Claim that any improvement requires abandoning connectionist commitments, and turns the

proposal into a "Classical account” or an "implementation” of one.

e o

This argument can be made rather cheaply through three tricks:

(3) a. Make the proposed representation and process as simple-minded as possible.
b.  Bloat the territory covered by the term "Classical account” as much as possible.
¢.  Bloat the relations covered by the term "implementation" as much as possible.

Each of these tricks are used in good measure by F&P, as by other critics of connectionism, and in this response I
will have to call them on all three accounts.

For F&P, the straw man required for step (2a) is provided, of course, by simple associationism. In order to
expose F&P’s trivialization of the real issue, I will argue

(4) a. that the true commitment of connectionism is not to simple associationism, but to something else
that can be clearly distinguished from that to which the Classical view is committed;
b. that this less simple-minded view of connectionism provides for ways of instantiating the
compositional structure of mental states; and
c.  that these connectionist instantiations of compositionality do not all reduce to "an implementation
of the Classical view," and in fact offer a new candidate for the cognitive architecture.

1.3. The true commitment of connectionism: PTC version

In this paper I adopt a view of connectionism that was presented and discussed at some length in Smolensky
(1988a,b), a view I call PTC (for the Proper Treatment of Connectionism). Oversimplifying a bit, according to
PTC, the true commitment of connectionism is to a very general formalism for describing mental representations
and mental processes. The Classical view is of course committed to the hypothesis that mental representations are
elements of a symbol system, and that mental processes consist of symbol manipulation operations. PTC is
committed to the hypothesis that mental representations are vectors partially specifying the state of a dynamical
system (the activities of units in a connectionist network), and that mental processes are specified by the differential
equations governing the evolution of that dynamical system.

The main point is this: under the influence of the Classical view, computation and cognition have been studied
almost exclusively under the umbrella of discrete mathematics; the connectionist approach, on the other hand,
brings the study of computation and cognition squarely in contact with the other half of mathematics—continuous
mathematics. The true commitment, according to PTC, is to uncovering the insights this other half of mathematics
can provide us into the nature of computation and cognition.

On this account, simple associationism is a particularly impoverished and impotent corner of the connectionist
universe. It may well be that the attraction a number of people feel to connectionism is an attraction to neo-
associationism; but it is nonetheless a serious mistake to presume connectionism to be committed to simple
associationist principles. To equate connectionism with simple associationism is no more appropriate than equating
Classical symbolic theory with Aristotelean logic. (The temptation Fodor may provide his readers notwithstanding,
I don’t recommend the second identification any more than the first.)
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In fact, the comparison with Aristotle is not wholly inappropriate. Our current understanding of the power of
connectionist computation might well be compared with Aristotle’s understanding of symbolic computation; before
connectionism can take really serious shots at cognitive modeling, we probably have at least as far to go in
developing connectionist computation as symbolic computation had to go between Aristotle and Turing. In giving
up symbolic computation to undertake connectionist modeling, we connectionists have taken out an enormous loan,
on which we are still paying nearly all interest: solving the basic problems we have created for ourselves rather than
solving the problems of cognition. In my view, the loan is worth taking out for the goal of understanding how
symbolic computation, or approximations to it, can emerge from numerical computation in a class of dynamical
systems sharing the most general characteristics of neural computation.

Under this characterization of the commitments of the Classical and connectionist approach, to claim, as F&P
explicitly .do, that any cognitive architecture that incorporates structured mental representations and processes
sensitive to that structure is a Classical Architecture, is to bloat the notion of "Classical Architecture” to an
unacceptable degree—in accord with (3b).

1.4. Implementation vs. refinement

The bottom line of F&P can be paraphrased as follows. "Standard connectionism is just simple associationism
wrapped in new jargon, and as such, is fatally flawed. Connectionists should pursue instead a nonstandard
connectionism, embracing the principles of compositionality and structure-sensitive processing: they should accept
the Classical view and should design their nets to be implementations of Classical architectures.” Behind this moral
is the assumption that connectionist models with compositionally structured representations must necessarily be
implementations of a Classical architecture; it will be my major purpose to show that this is false. The connectionist
systems I will advocate hypothesize models that are not an implementation but rather a refinement of the Classical
symbolic approach; these connectionist models hypothesize a truly different cognitive architecture, to which the
Classical architecture is a scientifically important approximation. The reader may suspect that I will be splitting
hairs and that the difference between "implementation” and "refinement" will be of no philosophical significance.
But in fact the new cognitive architecture I will hypothesize lacks the most crucial property of Fodor & Pylyshyn’s
Classical architecture: mental representations and mental processes are not supported by the same formal entities—
there are no "symbols" that can do both jobs.! The new cognitive architecture is fundamentally two-level: formal,
algorithmic specification of processing mechanisms, on the one hand, and semantic interpretation, on the other,
must be done at two different levels of description.

1.4.1. Bloating "implementation"

There is a sense of "implementation” that cognitive science has inherited from computer science, and I propose
that we use it. If there is an account of a computational system at one level and an account at a lower level, then the
lower one is an implementation of the higher one if and only if the higher description is a complete, precise,
algorithmic account of the behavior of that system. It is not sufficient that the higher-level account provide some
sort of rough summary of the interactions at the lower level. It is not sufficient that the lower-level account involves
some of the same basic ideas of how the problem is to be solved (for example, a decomposition of the problem into
subproblems). Such weak usages of "implementatdon" abound in the literature, particularly in the numerous
attempts to dismiss connectionism as "mere implementation"—following (3c). But in its correct usage,
implementation requires that the higher-level account provide an exact, precise, algorithmic account of the system’s
behavior.

I's important to see that, unless this definition of implementation is adopted, it is impossible to legitimately
argue to F&P’s ultimate conclusion: as long as connectionists are doing implementation, they’re not going to
provide a new cognitive architecture. If it is shown only that connectionism "implements" the Classical
Architecture under a looser definition of the term, then the conclusion that follows is that the Classical account

1. This point is brought out nicely in Cummins and Schwarz (1987), Schwarz (1987), and Cummins (1988).
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provides a rough, higher-level approximation to the connectionist account, or involves some of the same basic ideas
about how information is represented and processed. This is a much weaker conclusion than what F&P are after.
They want the conclusion that only true implementation will license: since the Classical account provides a
complete, precise, algorithmic account of the cognitive system, there is nothing to be gained by going to the lower
level account, as long as the phenomena of interest can be seen at the higher level; and, of course, it is exactly those
phenomena that the Classicist will count as "truly cognitive." To account for intrinsically lower-level phenomena—
in which category the Classicist will certainly include neural phenomena and may also include certain
perceptual/motor phenomena—the Classicist will acknowledge the need to condescend to a lower level account; but
within the domain of "pure cognition,” Classicists won’t need to get their hands so dirty. These are the sorts of
conclusions that Classicists have pushed for decades on the basis of analogies to higher- and lower-level computer
languages. But of course these languages, by design, satisfy the correct definition of implementation; none of these
conclusions follow from weaker definitions, and none follow from the connectionist position I defend here. Far
from the conclusion that "nothing can be gained from going to the lower level account,” there is plenty to be gained:
compieteness, precision, and algorithmic accounts of processing, none of which are in general available at the
higher level, according to PTC.

Since F&P’s conclusions cannot be licensed under any definition of "implementation” weaker than the correct
one, it is that one I will use. I will show that distributed connectionism can, without implementing the Classical
architecture, meet the basic demands F&P have outlined for a cognitive architecture. To repeat, then:

{5) X is implemented by Y if and only if X provides a complete, precise algorithmic higher-level
account of the system described at a lower level by Y.

Alternatively, in place of the word "algorithmic” I often use "formal"” to avoid the discrete, sequential connotations
the former term can carry.

1.4.2. A two-level cognitive architecture

To see how the distributed connectionist architecture differs fundamentally from the Classical one—fails to
provide an "implementation" using the correct definition of the term—I will now sketch how the connectionist
architecture is intrinsically split over two levels of description. We’ll consider the purest case: distributed
connectionist models having the following two properties:

©)

P

Interpretation can be assigned to large-scale activity patterns but not to individual units;

b. The dynamics governing the interaction of individual units is sufficiently complex that the
algorithm defining the interactions of individual units cannot be translated into a tractably-
specified algorithm for the interaction of whole patterns.?

As a result of these two properties, we can see that there are two levels of analysis with very different
characteristics. At the lower level, where the state variables are the activities of individual units, the processing is
described by a complete, precise, and formal algorithm, but semantic interpretation cannot be done, At the higher
level, where the system’s state is described in terms of the presence of certain large-scale patterns, semantic
interpretation can be done, but now complete, precise algorithms for the processing cannot be stated. As I have
characterized this in Smolensky (1988a), the syntax or processing algorithm strictly resides at the lower level, while
the semantics strictly resides at the upper level. Since both the "syntax" and the semantics are essential to the
cognitive architecture, we have an intrinsically split-level cognitive architecture here: There is no account of the
architecture in which the same elements carry both the syntax and the semantics. Thus we have a fundamentally
new candidate for the cognitive architecture which is simply not an implementation of the Classical one.>

2. The complexity criterion here is very low: the interactions should be more complex than purely linear. A lengthy and hopeful-
ly accessible discussion may be found in Smolensky, 1986.

3. Theriterion of "tractability” in (6b) is important here. For the purpose of identifying the scientific principles of cognitive sci-
ence, tractable descriptions that provide understanding and make scientific explanation feasible are essential. Thus, while we
might be able in principle to take the equations describing the interactions of individual units and rewrite them in some very com-
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Note that the conclusions of this section depend crucially on the assumption (6a) that connectionist
representations are distributed (when viewed at the level of individual units, the level at which processing
algorithms can be identified (6b)). Thus, while F&P and others may attempt to give the impression that the issue of
local vs. distributed representations is a little technical squabble between connectionists of no philosophical
consequence, I believe this to be profound mistake. Distributed representations, when combined with (6b), entail
that in the connectionist cognitive architecture, mental representations bear a fundamentally different relation to
mental processes than is true in the Classical account. I will return to this crucial point in Section 3.

1.5. Summary

As indicated in Sections 1.3 and 1.4, I am arguing that what the Classical/connectionist debate should really be
about is

(7) a. whether mental representations and processes are to be formally described by symbol systems,
within the category of discrete mathematics; and
b.  whether in the cognitive architecture the semantics of mental representation and the algorithms of
mental processes both derive from the same formal entities and reside at a single level of
description.

If this is correct, then any attempt to cast the connectionist position as either being defined by a commitment to
simple associationism or as "merely implementing” the Classical Architecture must rely on oversimplifying the true
commitment of connectionism, or to bloating either the terms "Classical Architecture” or "implementation” to a
truly misleading and unacceptable degree. F&P have made all three of these moves.

2. Compositionality and distributed connectionist representations

In this section I consider the crux of F&P’s argument, and argue that distributed connectionist architectures,
without implementing the Classical architecture, can nontheless provide structured mental representations and
mental processes sensitive to that structure. ,

2.1. The ultralocal case

Here is a quick summary of what I take to be the central argument of F&P.

plicated way so as to apply to large-scale activity patterns, unless those new equations are usable in practice, we really have no
choice but to ground our understanding and explanation of processing in the lower level. Similarly, even if meaningful semantic
interpretation is limited to the higher level, we can always define a unit to represent all situations in which it’s active, but that’s a
useless definition unless those situations form some meaningful class in the domain of interpretation; in the kind of model we're
now considering, by assumption that doesn’t happen (or only very rarely), and as a result, we have no choice but to ground our
semantic accounts in the higher level.

In general, these non-tractable descriptions of semantics or syntax on the wrong level incorporate complex transformations of the
variables that effectively exploit the other level without admitting it. (A fairly general case is worked out in Smolensky, 1986).
As an analogy, it is in principle possible to do predicate calculus using not the usual symbolic representation of formule, but their
Godel number representations; but the steps in going from one Gédel number to the other are in general intractably complex be-
cause they secretly involve transforming back to something isomorphic to the symbolic representation, doing the manipulation
there, and transforming back to Gédel numbers. To say that logic can be done directly on Gédel numbers without reference to
symbolic representations may be true in some sense; and in that same sense it may be possible to "do syntax" at the higher level
of the connectionist cognitive architecture or to "do semantics" at the lower level. But this does not change the fact that to "do
syntax" (describe processing), we must choose between (a) explicitly working on the lower level where the description is tract-
able, or (b) pretending to work at the higher level with descriptions that are intractable because they involve all the mess of
secretly transforming to the lower level, doing the real work there, and secretly transforming back. A cognitive scientist working
with a Classical Architecture is simply not forced to make this choice.
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(8) a. Thoughts have composite structure.

By this they mean things like: the thought that John loves the girl is not atomic; it’s a composite mental state built
out of thoughts about John, loves, and the girl.

(8) b. Mental processes are sensitive to this composite structure.
For example, from any thought of the form p & g—regardless of what p and g are—we can deduce p.

F&P elevate (8) to the status of defining the Classical View of Cognition, and claim that this is what is being
challenged by connectionism. I am arguing that this is wrong, but for now we continue with F&P’s argument.

Having identified claims (8) as definitive of the Classical View, F&P go on to argue that there are compelling
arguments for these claims.* According to these arguments, mental states have the properties of productivity,
systematicity, compositionality, and inferential coherence. Without going into all these arguments, let me simply
state that for present purposes I'm willing to accept that they are convincing enough to justify the conclusion that (8)
must be taken quite seriously.

Now for F&P’s analysis of connectionism. They assert that in (standard) connectionism, all representations are
atomic; mental states have no composite structure, violating (8a). Furthermore, they assert, (standard) connectionist
processing is association which is sensitive only to statistics, not to structure—in violation of (8b). Therefore, they
conclude, (standard) connectionism is maximally non-Classical: it violates both the defining principles. Therefore
connectionism is defeated by the compelling arguments in favor of the Classical View.

What makes F&P say that connectionist representations are atomic? The second figure of their paper (p. 16)
says it all—it is rendered here as Figure 1. This network is supposed to illustrate the standard connectionist account
of the inference from A & B to A and to B. It is true that Ballard and Hayes wrote a paper (Ballard & Hayes, 1984;
also Ballard, 1986) about using connectionist networks to do automated resolution theorem proving in which
networks like this appear. However it is a serious mistake to view this as the paradigmatic connectionist account for
anything like human inferences of this sort. This kind of ultralocal connectionist representation, in which entire
propositions are represented by individual nodes, is far from typical of connectionist models, and certainly not to be
taken as definitive of the connectionist approach.’

4. They admit up front that these arguments are a rerun updated for the 80’s, a colorized version of a film that was shown in
black and white some time ago—where the color comes mainly from replacing everywhere the word "behaviorism" by "connec-
tionism."

5. The conception of connectionist representation and processing embodied in Figure 1 is at the center of this entire argument, so
it important to properly locate this network and the Ballard & Hayes paper in the connectionist landscape; for those not well fam-
iliar with the territory, this may be facilitated by a sociogeographical digression. Hayes is a leading figure in the logic-based ap-
proach to symbolic Al, and (to my knowledge) this collaborative exercise is his only foray onto connectionist turf. Ballard is a
leading connectionist of the "Rochester school,” which tends to favor local representations over distributed ones, and which as a
result represents a radically different set of foundational commitments (see Feldman & Ballard, 1982) from those of the "San
Diego" or "PDP" school, as articulated for example in the PDP books (Rumelhart, McClelland, and the PDP Research Group,
1986; McClelland, Rumelhart, and the PDP Research Group, 1986); my version of the PDP framework is articulated as PTC in
Smolensky (1988a,b), which explicitly addresses the contrast with Feldman & Ballard (1982). (Incidentally, the name "PDP"
was coined to differentiate the approach from the "connectionist” approach already defined by Feldman and Ballard, 1982; the re-
ferent of “commectionist” subsequently expanded to engulf the PDP approach [e.g., Cognitive Science, 1985]. This left what I
have referred to as the "Rochester” approach without a distinctive name; the term "structured connectionist networks" is now
sometimes used, but it is potentially quite misleading.) As already evidenced in Section 1.4.2, it turns out that on foundational is-
sues generally, the local vs. distributed issue forces the two schools of connectionism to take quite different positions; a response
to F&P from the Feldman & Ballard (1982) perspective would have to differ completely from the one I offer here. While F&P
argue that distributed representations make no difference, I now proceed to identify a crucial fallacy in that argument, which this
paper as a whole shows to be quite inadequate.
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Figure 1: Fodor & Pylyshyn’s network

A&B

A B

A central claim in my response to F&P is that any critique of the connectionist approach must consider the
consequences of using distributed representations, in which the representation of high level conceptual entities such
as propositions are distributed over many nodes, and the same nodes simultaneously participate in the representation
of many entities. Their response, in Section 2.1.3, (p. 19) is as follows. The distributed/local representation issue
concerns (they assume) whether each of the nodes in Figure 1 refers to something complicated and lower level (the
distributed case) or not (the local case). But, they claim, this issue is irrelevant, because it pertains to a between-
level issue, and the compositionality of mental states is a within-level issue.

My response is that they are correct that compositionality is a within-level issue, and correct that the
distributed/local distinction is a between-level issue. Their argument presumes that because of this difference, one
issue cannot influence the other. But that is a fallacy. It assumes that the between-level relation in distributed
representations can not have any consequences on the within-level structure of the relationships between the
representations of A & B and the representation of A. And that’s simply false. There are profound implications of
distributed representations for compositionality; these are the subject of all of Section 2 of this paper. In particular,
it will turn out that Figure 1 is exactly as relevant to a distributed connectionist account of inference asitistoa
symbolic account. In the ultralocal case, Figure 1 is relevant and their critique stands; in the distributed case, Figure
1 is a bogus characterization of the connectionist account and their critique completely misses its target. It will
further turn out that a valid analysis of the actual distributed case, based on suggestions of Pylyshyn himself, leads
to quite the opposite conclusion: connectionist models using distributed representations describe mental states with
a relevant kind of (within-level) constituent structure. The rather weak sense of constituent structure in generic
distributed representations, identified in Section 2.2, will be made much stronger in explicitly designed distributed
representations, discussed in Section 2.3, in which constituents can fill varying structural roles.

2.2. The distributed (weakly compositional) case

For now, the goal is to show that generic connectionist models using distributed representations ascribe to
mental states the kind of compositional structure demanded by (8a), contrary to F&P’s conclusion based on the
ultralocal network of Figure 1.

2.2.1. The coffee story

My argument consists primarily in carrying out an analysis that was suggested by Zenon Pylyshyn himself at the
1984 Cognitive Science Meeting in Boulder. A sort of debate about connectionism was held between Geoffrey
Hinton and David Rumelhart on the one hand, and Zenon Pylyshyn and Kurt VanLehn on the other. While pursuing
the nature of connectionist representations, Pylyshyn asked Rumelhart: "Look, can you guys represent a cup of
coffee in these networks?" Rumelhart’s reply was "Sure" so Pylyshyn continued: "And can you represent a cup
without coffee in it?" Waiting for the trap to close, Rumelhart said "Yes," at which point Pylyshyn pounced: "Ah-
hah, well, the difference between the two is just the representation of coffee—you’ve just built a representation of
cup with coffee by combining a representation of cup with a representation of coffee."

I propose to carry out exactly the construction suggested by Pylyshyn, and see what conclusions it leads us to.
We'll take a distributed representation of cup with coffee and subtract from it a distributed representation of cup
without coffee and we’ll call what’s left "the connectionist representation of coffee.”
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To generate these distributed representations I will use a set of "microfeatures” (Hinton, McClelland, &
Rumelhart, 1986) that are not very micro—but that’s always what happens in examples that are cooked up to be
intuitively understandable in a nontechnical exposition. These microfeatures are shown in Figure 2.

Figure 2: Representation of cup with coffee

Units Microfeatures

upright container

hot liquid

glass contacting wood

porcelain curved surface

burnt odor

brown liquid contacting porcelain
porcelain curved surface

oblong silver object

finger-sized handle

860666060

brown liquid with curved sides and bottom

Figure 2 shows a distributed representation of cup with coffee: a pattern of activity in which those units that are
active (black) are those that correspond to microfeatures present in the description of a cup containing coffee.
Obviously, this is a crude, nearly sensory-level representation, but, again, that helps make the example more
intuitive—it’s not essential.

Figure 3: Representation of cup without coffee

Units Microfeatures

upright container

hot liquid

glass contacting wood

porcelain curved surface

burnt odor

brown liquid contacting porcelain
porcelain curved surface

oblong silver object

finger-sized handle

o) NOX NONOX NOXOX |

brown liquid with curved sides and bottom
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Given the representation of cup with coffee displayed in Figure 2, Pylyshyn suggests we subtract the
representation of cup without coffee. The representation of cup without coffee is shown in Figure 3, and Figure 4
shows the result of subtracting it from the representation of cup with coffee.

Figure 4: "Representation of coffee"

Units Microfeatures

upright container

®0

hot liquid

glass contacting wood

porcelain curved surface

burnt odor

brown liquid contacting porcelain
porcelain curved surface

oblong silver object

finger-sized handle

|_NONONOX N NONO

brown liquid with curved sides and bottom

So what does this procedure produce as "the connectionist representation of coffee"? Reading off from Figure 4,
we have a burnt odor and hot brown liquid with curved sides and bottom surfaces contacting porcelain. This is
indeed a representation of coffee, but in a very particular context: the context provided by cup.

What does this mean for Pylyshyn’s conclusion that "the connectionist representation of cup with coffee is just
the representation of cup without coffee combined with the representation of coffee"? What is involved in
combining the representations of Figures 3 and 4 back together to form that of Figure 2? We assemble the
representation of cup with coffee from a representation of a cup, and a representation of coffee, but it’s a rather
strange combination. There’s also the representation of the interaction of the cup with coffee—like brown liquid
contacting porcelain. Thus the composite representation is built from coffee extracted from the situation cup with
coffee, together with cup extracted from the situation cup with coffee, together with their interaction.

So the compositional structure is there, but it’s there in an approximate sense. It’s not equivalent to taking a
context-independent representation of coffee and a context-independent representation of cup—and certainly not
equivalent to taking a context-independent representation of the relationship in or with—and sticking them all
together in a symbolic structure, concatenating them together to form the kind of syntactic compositional structures
like with (cup,coffee) that F&P want connectionist nets to implement.

To draw this point out further, let’s reconsider the representation of coffee once the cup has been subtracted off,
This, suggests Pylyshyn, is the connectionist representation of coffee. But as we have already observed, this is
really a representation of coffee in the particular context of being inside a cup. According to Pylyshyn’s formula, to
get the connectionist representation of coffee it should have been in principle possible to take the connectionist
representation of can with coffee and subtract from it the connectionist representation of can without coffee. What
would happen if we actually did this? We would get a representation of ground brown burnt smelling granules
stacked in a cylindrical shape, together with granules contacting tin. This is the connectionist representation of
coffee we get by starting with can with coffee instead of cup with coffee. Or we could start with the representation
of tree with coffee and subtract off tree without coffee. We would get a connectionist representation for coffee which
would be a representation of brown beans in a funny shape hanging suspended in mid-air. Or again we could start
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with man with coffee and get still another connectionist representation of coffee: one quite similar to the entire
representation of cup with coffee from which we extracted our first representation of coffee.

The point is that the representation of coffee that we get out of the construction starting with cup with coffee
leads to a different representation of coffee than we get out of other constructions that have equivalent a priori
status. That means that if you want to talk about the connectionist representation of coffee in this distributed
scheme, you have to talk about a family of distributed activity patterns. What knits together all these particular
representations of coffee is nothing other than a type of family resemblance.

2.2.2. Morals of the coffee story

The first moral I want to draw out of this coffee story is this: unlike the ultralocal case of Figure 1, with
distributed representations, complex representations are composed of representations of constituents. The
constituency relation here is a within-level relation, as F&P require: the pattern or vector representing cup with
coffee is composed of a vector that can be identified as a distributed representation of cup without coffee together
with a vector that can be identified as a particular distributed representation of coffee. In characterizing the
constituent vectors of the vector representing the composite, we are not concermned with the fact that the vector
representing cup with coffee is a vector comprised of the activity of individual microfeature units. The between-
level relation between the vector and its individual numerical elements is not the constituency relation, and so
section 2.1.4 (p. 19-28) of F&P is irrelevant—it addresses a mistake that is not being made.

The second moral is that the constituency relation among distributed representations is one that is important for
the analysis of connectionist models, and for explaining their behavior, but it is not a part of the information
processing mechanism within the connectionist model. In order to process the vector representing cup with coffee,
the network does not have to decompose it into constituents. For processing, it is the between-level telation, not the
within-level relation, that matters. The processing of the vector representing cup with coffee is determined by the:
individual numerical activities that make up the vector: it is over these lower-level activities that the processes are
defined. Thus the fact that there is considerable arbitrariness in the way the constituents of cup with coffee are
defined introduces no ambiguities in the way the network processes that representation—the ambiguities exist only
for us who analyze the model and try to explain its behavior. Any particular definition of constituency that gives us
explanatory leverage is a valid definition of constituency; lack of uniqueness is not a problem.

This leads directly to the third moral: the decomposition of composite states into their constituents is not precise
and uniquely defined. The notion of constituency is important but attempts to formalize it are likely to crucially
involve approximation. As discussed at some length in Smolensky (1988a), this is the typical case: notions from
symbolic computation provide important tools for constructing higher-level accounts of the behavior of
connectionist models using distributed representation—but these notions provide approximate, not precise,
accounts.

Which leads to the fourth moral: while connectionist networks using distributed representations do describe
mental states with the type of constituency required by (8a), they do not provide an implementation—correctly
defined-—of a symbolic language of thought. The context-dependency of the constituents, the interactions that must
be accommodated when they are combined, the inability to uniquely, precisely identify constituents, the imperative
to take seriously the notion that the representation of coffee is a collection of vectors knit together by family
resemblance—all these entail that the relation between connectionist constituency and syntactic symbolic
constituency is not one of implementation. In particular, it would be absurd to claim that even if the connectionist
story is correct then that would have no implications for the cognitive architecture, that it would merely fill in
lower-level details without important implications for the higher-level account.

These conclusions all address compositional representation (8a) without explicitly addressing structure-sensitive
processing (8b). Addressing structure-sensitivity to the depth necessary to grapple with real cognitive modeling is
far beyond the scope of this paper; to a considerable extent, it is beyond the scope of current connectionism.
However, let me simply state the fundamental hypothesis of PTC that weaves the statistical sensitivity characteristic
of connectionist processing together with the notion of structure sensitivity: the mind is a statistics-sensitive engine
operating on structure-sensitive (numerical) representations. The previous arguments have shown that distributed
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representations do possess constituency relations, and that, properly analyzed, these representations can be seen to
encode structure. Extending this to grapple with the complexity of the kinds of rich structures implicated in
complex cognitive processes is the topic of the next section. Here it suffices to observe that once we have complex
structured information represented in distributed numerical patterns, statistics-sensitive processes can proceed to
analyze the statistical regularities in a fully structure-sensitive way. Whether such processes can provide structure-
sensitivity that is adequate to cope with the demands of linguistic and inferential processing is sure to be unknown
for some time yet.

The conclusion, then, is that distributed models can satisfy (8). Whether (8) can be satisfied to the depth
required by the full demands of cognitive modeling is of course an open empirical question—ijust as it is for the
symbolic approach to satisfying (8). At the same time, distributed connectionist models do not amount to an
implementation of the symbolic instantiations of (8) that F&P are committed to.

~ Before summing up, I'd like to return to Figure 1. In what sense can Figure 1 be said to describe the relation
between the distributed representation of A&B and the distributed representations of A and B? It was the intent of
the coffee story to show that the distributed representations of the constituents are, in an approximate but
explanation-relevant sense, part of the representation of the composite. Thus, in the distributed case, the relation
between the node of Figure 1 labeled A&B and the others is one kind of whole/part relation. An inference
mechanism that takes as input the vector representing A&B and produces as output the vector representing A is a
mechanism that extracts a part from a whole. And in this sense it is no different from a symbolic inference
mechanism that takes the syntactic structure A & B and extracts from it the syntactic constituent A. The
connectionist mechanisms for doing this are of course quite different than the symbolic mechanisms, and the
approximate nature of the whole/part relation gives the connectionist computation different overall characteristics:
we don’t have simply a new implementation of the old computation. ‘

It is clear that, just as Figure 1 offers a crude summary of the symbolic process of passing from A & Bto A,a
summary that uses the labels to encode hidden internal structures within the nodes, exactly the same is true of the
distributed connectionist case. In the distributed connectionist case—just as in the symbolic case—the links in
Figure 1 are crude summaries of complex processes and not simple-minded causal channels that pass activity from
the top node to the lower nodes. Such a simple causal story applies only to the ultralocal connectionist case, which
is the only legitimate target of F&P’s attack.

Let me be clear: there is no serious distributed connectionist model, as far as I know, of the kind of formal
inference F&P have in mind here. Many proponents of connectionism would be content to claim that formal
inference is a specially trained, poorly practiced skill that is far from central to cognition, and that therefore we can
afford to put off worrying about providing a connectionist model of it for a long time. I prefer to say that, at root,
the F&P argument concerns an important and central issue: the constituent structure of mental states; formal
inference is just one setting in which to see the importance of that constituent structure. So the preceding discussion
of the constituent structure of distributed representations does address the heart of their critique, even if a well-
developed connectionist account of formal inference remains unavailable.

2.3. The distributed (strongly compositional) case

But, one might well argue, the sense in which the vector encoding the distributed representation of cup with
coffee has constituent vectors representing cup and coffee is too weak to serve all the uses of constituent structure—
in particular, too weak to support formal inference—because the vector representing cup cannot fill multiple
structural roles. A true constituent can move around and fill any of a number of different roles in different
structures. Can this be done with vectors encoding distributed representations, and be done in a way that doesn’t
amount to simply implementing symbolic syntactic constituency? The purpose of this section is to describe research
showing that the answer is affirmative.

A large class of connectionist representations, which I call tensor product representations, is defined and
analyzed in Smolensky (1987a), and applied in Dolan & Smolensky (1988). We generate various members of this
class by variously specifying several parameters in a highly general method for creating connectionist
representations of structured information. The resulting parametric variation in the representations is very broad,
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encompassing very simple representations such as the case of Figure 1, as well as representations that are close to
true implementations of a syntactic language of thought. This class of representations covers the spectrum from
fully distributed representations to ultralocal ones, and includes representations with a full sense of constituency,
where role-independent constituents are assigned to roles in a structure and the representation of the structure is
built up systematically from the representation of the constituents.

The problem that motivates this work is mapping complex structures such as parse trees into vectors of activity
in connectionist networks, in such a way that the constituent structure is available for connectionist processing. A
general formal framework for stating this problem is to assume that there is a set of discrete structures S (like parse
trees) and a vector space V—a space of activity states of a connectionist network. A connectionist representation is a
mapping from § to V; the theorist’s job is to identify such mappings having various desirable properties. Tensor
product representations can provide many of these properties.

A particular tensor product representation is constructed in two steps.

(9 a. Specify a decompositional process whereby the discrete structures are explicitly broken down as a
set of constituents, each filling a particular role in the structure as a whole. This step has nothing
to do with connectionism per se, it just amounts to being specific about the kind of constituent
structure we want to represent.

b.  Specify two connectionist representations: one for the structural roles and another for their fillers
(the constituents). Thus, for every filler, we assign a vector in the state space of some network for
representing fillers; similarly, we assign to every role a vector in the state space of some network
for representing roles.

These two steps indicate the "parameters” in the general tensor product representational scheme that must be
specified to individuate a particular representation. Once these are parameters are specified, two very simple.:
operations from the theory of vector spaces are used to generate the representation of a particular discrete structure.
The representation of the whole is built from the representation of its constituent parts by the operation of
superposition which is simply vector addition: the vector representing the whole is the sum of the vectors
representing the parts. Step (9a) above specifies exactly what constituents are involved in this process. The vector
representing a given constituent is actually a role-sensitive representation: a representation of that constituent in the
role it plays in the whole. This vector is built by taking a particular vector product of the vector that represents the
constituent independent of any role, and the vector representing the role in the structure that is filled by the
constituent. Step (9b) specifies a set of vectors that represent individual structural roles and another set of vectors
that represent individual fillers for those roles (constituents) independently of any role. The product operation here
is a vector operation called the tensor product that takes two vectors and produces a new vector; if the two vectors
consist of #n and m activity values, then their tensor product is a vector of nm activity values, each one being a
differeng product (using ordinary numerical multiplication) of two activity values, one from each of the original
vectors.

The tensor product provides a general solution to a problem that has been nagging the distributed connectionist
representational world for a long time, the so-called variable binding problem: How can we take an activity pattern
representing a variable and another pattern representing a value and generate a connectionist representation of their
binding that has the right computational properties? The simplicity of the tensor product makes it possible to show it
does in fact satisfy the computational demands of (distributed) connectionist variable binding. The tensor product

6. The tensor product is closely related to what is called the outer product in matrix algebra (not to be confused with the physi-
cists’ cross product of three-dimensional vectors, which is sometimes also called the "outer product”). If u and v are two
column-vectors, [V x1] and [M x1] respectively, their outer product is the [N X3 | matrix uv”, where v is the [1xM ] row-vector
transpose of v. If the NM numbers in this [N xM | matrix are considered as the elements of vector (rather than a matrix) then this
vector is the tensor product of u and v. In order for the connectionist representational scheme we are considering to be able to
handle recursive decompositions of structures, the product operation we use must be extensible to products of arbitrarily many
vectors; with the tensor product, this is nonproblematic, whereas the utility of matrix algebra is essentially limited to outer pro-
ducts of two vectors.
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technique is a generalization of specific tricks (especially, conjunctive coding: Hinton, McClelland, & Rumelhart,
1986; McClelland & Kawamoto, 1986; Smolensky, forthcoming) that have been used to solve this problem in
particular instances in the past.

The tensor product representation of constituent structure considerably strengthens the notion of constituency
brought out in the previous section through the coffee story. There we saw that the whole/part relation between cup
with coffee and coffee is mirrored in a whole/part relation between their respective representations: the latter relation
was not the whole/part relation between molecular symbolic structures and their atomic constituents, as in a
symbolic language of thought, but rather the relation between a sum vector w and the component vectors that add up
to it: w = ¢+c+ - - - . The same is true here generally with respect to tensor product representations, but now in
addition we can identify the representations of each constituent as a role-dependent representation built in a
systematic way (through tensor product variable binding) from a role-independent representation of the filler and a
filler-independent representation of its role.

Among the computational properties required of the variable binding mechanism is the possibility of unbinding:
from the role-dependent representation of some constituent we must be able to extract the role-independent
representation of that constituent. Similarly, given the vector representing a symbolic structure as a whole, it should
be possible o extract the role-independent representation of the filler of any given role in the structure. Under a
wide variety of conditions, this is possible with the tensor product representation, although when so many roles are
simultaneously filled that the capacity of the representing network is exceeded, corruptions, confusions, and errors
can be introduced during unbinding. The conditions under which error-free unbinding can be performed, and
characterization of the errors occurring when these conditions are violated, can be computed (Smolensky, 1987a).
Thus, for example, if we have a tensor product representation for P&Q, and we wish to extract the first element P as
part of a deductive process, then as long as the representing network is not trivially small, we can easily do so
without error, using very simple (linear) connectionist processes.

So, returning to F&P’s critique, let’s see what the tensor product representational scheme can do for us in terms
of the simple Aristotelean inference problems they talk about.

Using the tensor product technique, it is possible to define a family of representations of tree structures. We can
consider a simple tree for P&Q consisting of & at the top, P as its left child, and Q as its right child; and we can
view the roles as positions in the tree, the simplest kind of role decomposition. The tensor product representation of
that tree structure is a vector F(P&Q ) which is related to the vectors representing the constituents, F(P ) and F(Q),
by a function B that is particular to constructing conjunctions:

F(P&Q) = B4 [F(P), F(Q)]
The function B, is defined by
Bs(u,v) =ce + Tou+Tyv
where ¢g is a constant vector and To and T; are linear operators (the most natural vector operators) that vary

depending on how the parameters individuating the tensor product representation are chosern.

I have descended to this level of detail and used this notation because in footnote 9 (p. 14) of F&P, exactly this
property is chosen to define F as a "physical instantiation mapping of combinatorial structure.” In this sense the
tensor product representation meets F&P’s formal requirements for a representation of combinatorial structure.

But have we merely provided an implementation then of a symbolic language of thought? In general, the
answer is "no." Depending on how we have chosen to set the parameters in specifying the tensor product
representation (which determines the properties of 7o and T;), we can fail to have any of the following properties
holding (Smolensky, 1987a):
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(10) a.  Uniqueness with respect to roles or fillers. If we’re not careful, even though the above equation is
satisfied, we can end up with P&Q having the same representation as Q&P, or other more subtle
ambiguities about what fills various roles in the structure.

b.  Unbounded depth. We may avoid the first problem (10a) for sufficiently small structures, but
when representing sufficiently large or deep structures, these problems may appear. Unless the
vector space in which we do our representation is infinite-dimensional (corresponding to a network
with infinitely many units), we cannot solve (10a) for unbounded depth. (Of course, the same is
true of Turing/von Neumann machines if they are only allowed bounded resources: but whereas
the capacity limit in the symbolic case is a hard one, the tensor product representation allows for
graceful degradation as resources are saturated.)

. Nonconfusability in memory. Even when problem (10a) is avoided, when we have representations
with uniquely determined filler/role bindings, it can easily happen that we cannot simultancously
store many such structures in a connectionist memory without getting intrusions of undesired
memories during the retrieval of a given memory.

d.  Processing independence. This is in a sense a generalization of the preceding point, concerning
processing constraints that may arise even when problem (10a) is avoided. In simple associative
processing, for example, we may find that we can associate two vectors representing symbolic
structures with what we like, but then find ourselves unable to associate the representation of a
third structure with what we like, because its associate is constrained by the other two.

With all these properties potentially failing to hold, it doesn’t sound to me like we're dealing with an
implementation of a symbolic language of thought. But at this point somebody’s going to want to say, "Well,
you’ve just got a lousy implementation of a symbolic language of thought." But it’s not that simple. We may have
- lost some (superficially desirable, at least) features of a symbolic language of thought, but we've gained some
(superficially desirable, at least) features of connectionist processing in return.

(849) a.  Massive parailelism. Since we have a vector that represents an entire tree at once, we can feed it
into the usual connectionist massively parallel processes. We don’t have to chunk around taking
the car of the cdr of the cdr of the car to get to one of the multitude of pieces of
information we need for a given process: It’s all there at once, all accessible in parallel’

b.  Content-addressable memory. This is the usual distributed connectionist story, but now it applies
to structured information.

C. Statistical inference. F&P are among the first to attack connectionism for basing its processing
mechanisms on statistical inference. One more reason for them to deny that the connectionist
framework I am discussing truly constitutes an implementation of their preferred architecture. Yet
their arguments against statistical processing are much less compelling than their arguments for
structure-sensitive processing. We are now in a position to go after both, in a unified framework,
dissolving a long-standing tension arising from a failure to see how to formally unify structure-
sensitive and statistical processing. Rather than having to model the mind as either a structure
cruncher or a number cruncher, we can now see it as a number cruncher in which the numbers

7. It’s all well and good to say, as F&P do, that the Classical view has no commitment to serial processing. "We like parallel
computation too." Fine, give me a massively parallel symbolic model that processes tree structures and I'll be happy to compare
it to this. ButIdon't see it out there.

See Dolan & Smolensky (1988) for an actual distributed connectionist model, TPPS, that uses the tensor product to represent a
symbolic structure and operate on it with massive parallelism. The system is an exercise in applying the tensor product represen-
tation to put on a somewhat more general and simple mathematical footing Touretzky & Hinton's (1985) Boltzmann machine im-
plementation of a distributed connectionist production system, DCPS. Each production in TPPS does pattern matching against
the whole symbolic structure in working memory in parallel, and does all parts of its action in parallel. Since it is an implementa-
tion of a traditional production system, however, productions are fired one at a time, although conflict resolution is done in paral-
lel. In progress is the application of the tensor product representation to a fully parallel and distributed parser for context-free
grammars.
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crunched are in fact representing complex structures.®

d. Statistical learning. Since structure can now be brought fully into the world of connectionist
learning research, we can move from declarations of dogma to actual empirical results about what
structurally-rich representations and processes can and cannot be acquired from experience
through statistically based learning. We can now foresee a time when it will be too late to put your
money down on the fate of the "poverty of the stimulus” dogma.

The bottom line is that the parametric variation in tensor product representations extends from simple ultralocal
representations of the sort F&P correctly dismiss towards—I hesitate to say all the way up to, but quite close to—a
true implementation of a symbolic language of thought. If you want such an implementation, you have to go to a
limit that includes the following characteristics:

(12) a. Orthogonality. The angle between the vectors representing different roles needs to go to 90
degrees, and similarly for vectors representing the fillers, to eliminate non-uniqueness and
minimize interference in memory.

b.  Infinite-dimensional representations. Otherwise, we can’t represent unboundedly deep structures
without confusion.

c. Simple operations. If we happen to want an implementation of sequential algorithms, then in
processing these representations we insist that the vector equivalent of the primitive symbolic
operations like car, cdr, and cons are all that can be done in one time step: We don’t avail
ourselves of the massively parallel operations that otherwise would be available to us.

I have talked so far mostly about representations and little about processing. If we are interested, as F&P are, in
inferences such as that from P&Q to P, it turns out that with tensor product representations, this operation can be
achieved by a simple linear transformation upon these representational vectors, the kind of transformation most:
natural in this category of representations. > Not only can this structure-sensitive process be achieved by
connectionist mechanisms on connectionist representations, but it can be achieved through the simplest of all
connectionist operations: linear mapping. All in an architecture that differs fundamentally from the Classical one;
we have not implemented a symbolic language of thought.

3. Connectionism, implementationalism, and limitivism

In this final section Id like to bring together the arguments of the first two sections, showing how the debate
over constituent structure relates to larger issues such as the import of rejecting implementationalism and of viewing
the commitment of connectionism as being the development of accounts of computation and cognition that exploit
insights from vector space theory and other branches of continuous mathematics.

- 3.1. The methodological implications of implementationalism and limitivism

Summarizing the constituency argument, we’ve got F&P principles of structure (8), and we’ve got a symbolic
instantiation of these in a language of thought using syntactic constituency. According to F&P, what connectionists
should do is take that symbolic language of thought as a higher level description and then produce a connectionist
implementation. The syntactic operations of the symbolic language of thought then provide an exact formal higher
level account of mental representations and processes.

8. Like connectionist networks, traditional computers were originally viewed exclusively as number processors. Newell and
Simon are credited with teaching us that traditional computers could also be used as powerful structure processors. I am essen-
tially trying to make the same point about connectionist networks.

9. This is true provided the parameter values defining the representation satisfy the very weak constraint that the simplest possi-
ble confusions are avoided (such as confusing P&Q with Q&P or with P or Q).
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By contrast, I have argued that the distributed view of connectionist compositionality allows us to instantiate the
same basic principles (8) without going through a symbolic language of thought. By going straight to distributed
connectionist models we get new formal instantiations of compositionality principles.

I happen to believe that the symbolic descriptions will provide scientifically important approximate higher level
accounts of how the ultimate connectionist cognitive models compute—but that these distributed connectionist
models will not implement a symbolic language of thought, under the relevant (and correct) definition of the word.
The approximations involved demand a willingness to accept context-sensitive symbols and interactional
components present in compositional structures, and the other funny business that came out in the coffee example.
If we’re willing to live with all those degrees of approximation, then we can usefully view these symbolic level
descriptions as approximate higher level accounts of the processing in a connectionist network.

An important overall conclusion on the constituency issue, then, is that the Classical and connectionist
approaches differ not in whether they accept principles (8), but in how they formally instantiate them. To really
confront the Classical/connectionist dispute, one has to be willing to descend to the level of the particular formal
instantiations they give to the nonformal principles (8). To fail to descend to this level of detail is to miss much of
the issue. In the Classical approach, principles (8) are formalized using syntactic structures for mental
representations and symbol manipulation for mental processes. In the distributed connectionist approach (8) are
formalized using vectorial representations for mental representations, and the corresponding notion of
compositionality, together with numerical mental processes that derive their structure sensitivity from the
differential way that they treat the parts of vectors corresponding to different structural roles.

In terms of research methodology, this means that the agenda for connectionism should be not be to develop a
connectionist implementation of the symbolic language of thought but rather to develop formal analysis of vectorial
representations of complex structures and operations on those structures that are sufficiently structure-sensitive to
do the required work. This is exactly the kind of research that, for example, tensor product representations are being
used to support.

Thus the PTC position is that distributed representations provide a description of mental states with semantically
interpretable constituents, but that there is no complete, precise formal account of the construction of composites or
of mental processes in general that can be stated solely in terms of context-independent semantically interpretable
constituents. On this account, there is a language of thought—but only approximately; the language of thought by
itself does not provide a basis for an exact formal account of mental structure or processes—it cannot by itself
support a precise formal account of the cognitive architecture!’

Constituency is one illustration of a central component of the general PTC approach to connectionism: the
relation hypothesized between connectionist models based on continuous mathematics and Classical models based
on discrete, symbolic computation. That relationship might be called the cognitive correspondence principle: When
powerful connectionist computational systems are appropriately analyzed at higher levels, elements of symbolic
computation appear as emergent properties.

Figure 5 schematically illustrates the cognitive correspondence principle. At the top are nonformal notions: the
central hypotheses that the principles of cognition consist in principles of memory, of inference, of compositionality
and constituent structure, etc. In the F&P argument, the relevant nonformal principles were their compositionality

10. An important open question is whether the kind of story I have given on cup of coffee using those hokey microfeatures will
carry over to the kind of distributed representations that real connectionist networks create for themselves in their hidden units—
if the analysis is made appropriately more sophisticated. The resolution of this issue depends on the (as yet largely inscrutable)
nature of these representations for realistic tasks. The nature of the network’s task is important, for it is perfectly likely that con-
nectionist networks will develop compositional representations in their hidden units only when this is advantageous for the prob-
lem they are trying to solve. As F&P, and the entire Classical paradigm, argue, such compositional representations are in fact im-
mensely useful for a broad spectrum of cognitive tasks. But until such tasks—which tend to be considerably more sophisticated
than those usually given to connectionist networks—nhave been explored in some detail with connectionist models, we won't real-
ly know if hidden units will develop compositional representations (in the approximate sense discussed in this paper) when they
"should."
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principles (8).

Figure 5: PTC vs. implementationalism
(Reprinted with permission of The Behavioral and Brain
Sciences.)
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The nonformal principles at the top of Figure 5 have certain formalizations in the discrete mathematical
category, which are shown one level down on the right branch. For example, memory is formalized as standard
location-addressed memory or some appropriately more sophisticated related notion. Inference gets formalized in
the discrete category as logical inference, a particular form of symbol manipulation. And so on.

The PTC research agenda consists in taking these kinds of cognitive principles and finding new ways to
instantiate them in formal principles based on the continuous mathematics of dynamical systems; these are shown in
Figure 5 at the lowest level on the left branch. The concept of memory retrieval is reformalized in terms of the
continuous evolution of a dynamical system towards a point attractor whose position in the state space is the
memory; we naturally get content-addressed memory instead of location-addressed memory. (Memory storage
becomes modification of the dynamics of the system so that its attractors are located where the memories are
supposed to be; thus the principles of memory storage are even more unlike their symbolic counterparts than those
of memory retrieval.) When reformalizing inference principles, the continuous formalism leads naturally to
principles of statistical inference rather than logical inference. And so on.

The cognitive correspondence principle states that the general relationship between the connectionist formal
principles and the symbolic formal principles-——given that they are both instantiations of common nonformal
notions, and to the extent that ultimately they are both scientifically valid descriptions of the same cognitive
system—is that if we take a higher level analysis of what’s going on in the connectionist systems we find that it
matches, to some kind of approximation, what’s going on in the symbolic formalism. This relation is indicated in
Figure 5 by the dotted arrow.

This is to be contrasted with an implementational view of connectionism such as that which F&P advocate. As
portrayed in Figure 5, the implementational methodology is to proceed from the top to the bottom not directly, via
the left branch, but indirectly, via the right branch: connectionists should take the symbolic instantiations of the
nonformal principles and should find ways of implementing them in connectionist networks.

The PTC methodology is to be contrasted not just with the implementational approach, but also with the
eliminativist one. In terms of these methodological considerations, eliminativism has a strong and a weak form.
The weak form advocates taking the left branch of Figure 5 but ignoring altogether the symbolic formalizations, on
the belief that the symbolic notions will confuse rather than enlighten us in our attempts to understand connectionist
computation. The strong eliminativist position states that even viewing the nonformal principles at the top of Figure
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5 as a starting point for thinking about cognition is a mistake—that it is better, for example, to pursue a blind
bottom-up strategy in which we take low-level connectionist principles from neuroscience and we see where they
lead us, without being prejudiced by archaic prescientific notions such as those at the top of Figure 5.

In rejecting both the implementationalist and eliminativist positions, PTC views connectionist accounts in
significant part as reducing and explaining symbolic accounts. Connectionist accounts serve to refine symbolic
accounts, to reduce the degree of approximation required, to enrich the computational notions from the symbolic
and discrete world, to fill them out with notions of continuous computation. Primarily that’s done by descending to
a lower level of analysis, by exposing the hidden microstructure in these kinds of large-scale, discrete symbolic
operations.

I have dubbed the PTC position /imitivism because it views connectionism as delimiting the domain D of
validity of symbolic accounts, and explaining the validity of the symbolic approximation through passage to the
"Classical limit," a general theoretical limit incorporating, e.g., the specifics described in (12), in which
connectionist accounts admit, more and more exactly, higher-level symbolic accounts—at least in the limited
domain D. This limitivist position on the relation between connectionism and symbolic theory is obviously modeled
after a relation frequently observed in the refinement of physical theories, e.g., the relation between quantum and
Newtonian mechanics.

The cognitive correspondence principle is so named because I believe that it has a role to play in the developing
microtheory of cognition that’s analogous to the role that the quantum correspondence principle played in the
development of microtheory in physics. This case from physics instantiates the structure of Figure 5 quite directly.
There are certain fundamental physical principles that arch over both the classical and quantum formalisms: the
notions of space and time and associated invariance principles, the principles of energy and momentum
conservation, force laws, and so on. These principles at the top of Figure 5 are instantiated in particular ways in the
classical formalism, corresponding to the point one level down on the right branch. To go to a lower level of
physical analysis requires the development of a new formalism. In this quantum formalism, the fundamental
principles are reinstantiated: they occupy the bottom of the left branch. The classical formalism can be looked at as
a higher level description of the same principles operating at the lower quantum level: the dotted line of Figure 5.
Of course quantum mechanics does not implement classical mechanics: the accounts are intimately related, but
classical mechanics provides an approximate, not an exact, higher-level account!! In a fundamental sense, the
quantum and classical theories are quite incompatible: according to the ontology of quantum mechanics, the
ontology of classical mechanics is quite impossible to realize in this world. But there is no denying that the classical
ontology and the accompanying principles are theoretically essential, for at least two reasons: (a) to provide
explanations (literally, perhaps, approximate ones) of an enormous range of classical phenomena for which direct
explanation from quantum principles is hopelessly infeasible, and (b) historically, to provide the guidance necessary
to discover the quantum principles in the first place. To try to develop lower-level principles without looking at the
higher-level principles for guidance, given the insights we have gained from those principles, would seem-—to put it
mildly—inadvisable. It is basically this pragmatic consideration that motivates the cognitive correspondence
principle and the PTC position it leads to.

3.2. Constituency via vector decomposition, explanatory relevance, and causal efficacy

As a final topic I would like to show how the previous methodological considerations relate specifically to the
technical heart of this paper. I want to show that, if we take the general position advocated above that the research
agenda of distributed connectionism is to find formal means within the continuous mathematics of dynamical
systems for naturally and powerfully embodying central nonformal principles of computation and cognition, then
the connectionist analysis of constituent structure I have described here is, if not inevitable, then at least perfectly
natural. I take up this topic because it has been suggested that in my analysis, perhaps in order to cook up a

11. Many cases analogous to "implementation” are found in physics: Newton's laws provide an "implementation" of Kepler's
laws; Maxwell's theory "implements” Coulomb’s law; the quantum principles of the hydrogen atom "implement" Balmer’s for-
mula.
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refutation of F&P, I have seriously contorted the notion of constituency; that superposition of vectors, and tensor
product binding, are just not appropriate means of instantiating constituency.

At the same time, I will consider the central question: "Is the sense in which vector decomposition constitutes a
constituency relation adequate to make constituency explanatorily relevant to or causally efficacious in the account
of the systematicity of thought, the basic problem motivating F&P’s critique?"

Let me begin with a few words about the idea of decomposing a vector into a sum or superposition of
component vectors: W = ¢i+¢x+ - . This technique is very commonly used to explain the behavior of dynamical
systems; it works best for simple linear systems, where the equations governing the interaction between state
variables are linear (such as the very simplest connectionist models). In that case—and the technique gets more
complicated from there—the story is as follows.

We want to know, if we start the system off in some initial state described by the vector w, what will the
system’s subsequent behavior be? (In the connectionist case, w characterizes the input, and we want to know what
states the system will then go through; especially, what the later state that determines the output will be.) First we
ask, how can the vector w be decomposed: w = ¢;+¢o+ - - -, S0 that the component vectors ¢; are along certain
special directions, determined by the linear interaction equations of the system; these directions m; are called the
"normal modes" of the system, and each ¢; = ¢;m;, where the coefficient ¢; tells how strongly represented in this
particular input w the % normal mode is. Once we have decomposed the vector into components in the directions
of the normal modes, we can write down in a closed form expression the state of the system at any later time: it is
just the superposition of the states arising from each of the normal modes independently, and those normal modes
are defined exactly so that it is possible to write down how they evolve in time? Thus, knowing the interaction
equations of the system, we can compute the normal modes and how they evolve in time, and then we can explain
how any state evolves in time, simply be decomposing that state into components in the directions of the normal
- modes. To see an example of this technique applied to actual connectionist networks, see the general analysis of
Smolensky (1986) and the specific analysis in Anderson & Mozer (1981) of the categorization performed in J. A.
Anderson’s "Brain-State-in-a-Box" model. (Both these analyses deal with what I call quasi-linear networks, a class
covering many actual connectionist systems, in which the heart of the computation is linear, but a certain degree of
non-linearity is also important.)

Thus, to explain the behavior of the system, we usually choose to decompose the state vector into components in
the directions of the normal modes, which are conveniently related to the particular dynamics of this system. If
there is change in how the system interacts with itself (as in connectionist networks that learn), over time we’ll
change the way we choose to break up the state in order to explain the behavior. There’s no unique way to
decompose a vector. That is to say, there are lots of ways that this input vector could be viewed as composed of
constituents, but normal mode decomposition happens to enable a good explanation for behavior over time. In
general, there may well be other compositions that are explanatorily relevant.

So, far from being an unnatural way to break up the part of a connectionist state vector that represents an input,
decomposing the vector into components is exactly what we’d expect to need to do to explain the processing of that
input.

Now, how reasonable is it to view this decomposition process as a formalization of the notion of decomposing a
"structure” into its "constituents"? I take it that it is a reasonable use of the term "constituent” to say that "electrons
are constituents of atoms." In modern physics, what is the relation between the representation of the electron and the
representation of the atom?

The state of the atom, like the states of all systems in quantum theory, is represented by a vector in an abstract
vector space. Each electron has an internal state (its "spin"); it also has a role it plays in the atom as a whole: it
occupies some "orbital,” essentially a cloud of probability for finding it at particular places in the atom. The internal
state of an electron is represented by a "spin vector"; the orbital or role of the electron (part) in the atom (whole) is

12. For example, in a dynamical system that oscillates, the evolution of the normal modes in time is given by: m,(t) = ' m,.
Each particular normal mode m, consists of an oscillation with a particular frequency n.
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represented by another vector, which describes the probability cloud. The vector representing the electron as
situated in the atom is the tensor product of the vector representing the internal state of the electron and the vector
representing its orbital. The atom as a whole is represented by a vector that is the sum or superposition of vectors,
each of which represents a particular electron situated in its orbital. (There are also contributions of the same sort
from nucleons.)

Thus the vector representing the whole is the sum of tensor products of pairs of vectors; in each pair, one vector
represents the parts independent of its role in the whole, and the other represent the role in the whole independent of
the part that fills the role. This is exactly the way I have used tensor products to construct distributed connectionist
representations for wholes from distributed connectionist representations of their parts (and from distributed
representations of the roles of parts in the whole)—and this is exactly where the idea came from.

So someone who claims that the tensor product representational scheme distorts the notion of constituency has
some explaining to do.

So does someone who claims that the sense in which the whole has parts is not explanatorily relevant. We
explain the properties of atoms by invoking properties of their electronic configuration all the time. Quantum theory
aside, physical systems whose states are described by vectors have for centuries had their behavior explained by
viewing the state vector as a superposition of component vectors, and explaining the evolution of the total state in
terms of the evolution of its component vectors—as I have indicated in the preceding discussion of normal modes.

Are the constituents of mental representations as I have characterized them in distributed connectionist systems
causally efficacious in mental processing?

The term "causally efficacious" must be used with some caution. The equations that drive the atom do not work
by first figuring out what the components particles are, and then working on each of them separately. The equations
take the elements comprising the vector for the whole atom and change them in time. We can analyze the system by
breaking up the vector for the whole into the vectors for the parts, and in general that’s a good way to do the
analysis; but nature doesn’t do that in updating the state of the system from one moment to the next. So, in this
case, are the constituents "causally efficacious” or not?

The same question arises in the connectionist case. The fact is, if the connections that mediate processing of the
vectors representing composite structures have the effect of sensible processing of the vector in terms of the task
demands, it is very likely that in order to understand and explain the regularities in the network’s behavior we will
need to break the vector for the structure into the vectors for the constituents, and relate the processing of the whole
to the processing of the parts. That this decomposition, and not arbitrary decompositions into meaningless
component vectors, is useful for explaining the processing is a consequence of the connections that embody the
process. Those particular components are useful for those particular connections. In general, what makes one
decomposition of a state vector useful for predicting behavior and not other is that the useful decomposition bears
some special relation to the dynamics in the system. It may well turn out that to explain various aspects of the
system’s behavior (for example, various cognitive processes acting on a given input), we will want to exploit
various decompositions.

As Fodor and Pylyshyn will I believe agree, care in treating "causal efficacy” is also required for the Classical
case. When we write a Lisp program, are the symbolic structures we think in terms of "causally efficacious" in the
operation of the computer that runs the program? There is a sense in which they are: even though we normally think
of the "real" causes as physical and far below the symbolic level, there is nonetheless a complete and precise
algorithmic (temporal) story to tell about the states of the machine described at the level of symbols. Traditional
computers (the hardware and especially the software) are designed to make that true, and it is the main source of
their power.

The hypothesis I have attributed to distributed connectionism is that there is no comparable story at the symbolic
level in the human cognitive architecture: no algorithm in terms of semantically interpretable elements that gives a
precise formal algorithmic account of the system’s behavior over time. That is a difference with the Classical view
that I have made much of. It may be that a good way to characterize the difference is in terms of whether the
constituents in mental structures are causally efficacious in mental processing.
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Such causal efficacy was not my goal in developing the tensor product representation; rather, the goal was and is
the design of connectionist systems that display the kinds of complex systematic behavior seen, for example, in
language processing—and the mathematical explanation of that systematicity. As the examples from physics show,
it is not only wrong to claim that to explaining systematicity by reference to constituent structures requires that those
constituents be causally efficacious: it is also wrong (but more honest) to claim (as Fodor often does) that such an
explanatory strategy, while not provably unique, constitutes "the only game in town." There is an alternative
explanatory strategy that has been practiced very effectively in physics for centuries, and that strategy can be
applied in cognitive science as well. There are now at least two games in town, and rather than pretending
otherwise, we should get on with the business of playing those games for all we can. Odds are, given how hard
cognitive science is, we’ll need to be playing other games too before long.

- The Classical strategy for explaining the systematicity of thought is to hypothesize that there is a precise formal
account of the cognitive architecture in which the constituents of mental representations have causally efficacious
roles in the mental processes acting on them. The PTC view denies that such an account of the cognitive
architecture existsi® and hypothesizes instead that, like the constituents of structures in quantum mechanics, the
systematic effects observed in the processing of mental representations arises because the evolution of vectors can
be (at least partially and approximately) explained in terms of the evolution of their components, even though the
precise dynamical equations apply at the lower level of the individual numbers comprising the vectors and cannot be
pulled up to provide a precise temporal account of the processing at the level of entire constituents—i.e., even
though the constituents are not causally efficacious'*

4. Summary

Shifting attention away from the refutation of F&P’s argument, let me try to summarize what I take to be the
positive contributions of the argument presented in this paper.

(13) a. AsF&P plead, it is crucial for connectionism for connectionism to separate itself from simplistic
associationist psychology.

b. Connectionism should accept (not deny) the importance of a number of computational principles
fundamental to traditional cognitive science, such as those relating to structure that F&P
emphasize, which go beyond the computational repertoire of simple traditional connectionist
networks.

c. The computational repertoire of connectionism should be extended by finding ways of directly,
naturally, and powerfully realizing these computational principles within the continuous
mathematics of dynamical systems (not indirectly, as F&P advocate, by implementing the discrete
symbolic formalization of these principles in connectionist networks).

d.  The resulting connectionist cognitive models aim to refine the account of cognition provided by
symbolic models: the symbolic models provide a scientifically important higher-level approximate
account of the connectionist model.

e. Justas a set of symbolic structures offers a domain for modeling structured mental representation
and processing, so do sets of vectors, once the appropriate notions are recognized in the new
mathematical category. Thus distributed (but not localist) connectionist representations provide a
computational arena for structure processing.

f.  The tensor product representation is a general technique for creating vectorial (distributed)
representations of structures; these representations are built up systematically by binding role-
independent vectors representing constituents to vectors representing their roles in the structure as
a whole, and superimposing the vectors representing these bindings.

13. Except for that limited part of the architecture I have called the "conscious rule interpreter”; see Smolensky, 1988a.

14. I use this characterization rather tentatively because I am not yet convinced that it will not be contaminated by problems with
the notion of "causally efficacious.”
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g.  Superposition and tensor products provide simple, natural, but powerful means to instantiate
within continuous mathematics the basic computational ingredients needed for representing and
processing structured mental states.

h.  The resulting connectionist model of mental processing is characterized by context-sensitive
constituents, approximately (but not exactly) compositional semantics, massively parallel
structure-sensitive processing, statistical inference and statistical learning with structured
representations.

i.  This connectionist cognitive architecture is intrinsically two-level: semantic interpretation is
carried out at the level of patterns of activity while the complete, precise, and formal account of
mental processing must be carried out at the level of individual activity values and connections.

j- Thus, mental representations are carried by activity vectors while mental processes are carried by
activity values: Mental representation and mental processes reside at two different levels of
analysis.

k. Thus, not only is the connectionist cognitive architecture fundamentally different from the
Classical one, so is the basic strategy for explaining the systematicity of thought. The systematic
behavior of the cognitive system is to be explained by appealing to the systematic constituent
structure of the representational vectors, and the connectivity patterns that give rise to and
manipulate these vectors: but the mechanism responsible for that behavior does not (unlike in the
Classical account) operate through laws or rules that are expressible formally at the level of the
constituents.
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