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Abstract

Our goal is to accurately estimate the error in any prediction of a regres-
sion model. We propose a probabilistic regression framework for basis
function regression models, which includes widely used kernel methods
such as support vector machines and nonlinear ridge regression. The
framework outputs a point specific estimate of the probability that the
true regression surface lies between two user specified values, denoted
by y1 and y2. More formally, given anyy2 > y1, we estimate the
Pr(y1 ≤ y ≤ y2|x, f̂(x)), wherey is a true regression surface,x is
the input, andf̂(x) is the basis function model. Thus the framework
encompasses the less general standard error bar approach used in regres-
sion. We assume that the training data is independent and identically
distributed (iid) from a stationary distribution, and make no specific dis-
tribution assumptions (e.g. no Gaussian or other specific distributions
are assumed). Theory is presented showing that as the number of train-
ing points increases, estimates ofPr(y1 ≤ y ≤ y2|x, f̂(x)) approach
the true value. Experimental evidence demonstrates that our framework
gives reliable probability estimates, without sacrificing mean squared er-
ror regression accuracy.

1 Introduction

The statistics community has long studied regression models that predict an outputŷ, as
well as an error bar estimate for the probability that the observed outputy is within some
ε of the prediction: i.e.Pr(|ŷ − y| ≤ ε) [5]. Estimates ofPr(|ŷ − y| ≤ ε) are useful
in practice because they measure spread of observed regression values, allowing the user
to make informed decisions about how predictions should be used. Although standard
statistical techniques such as locally linear regression [3] can give very good error bar
predictions for low dimensional problems, such techniques do not generally work well on
complex, high dimensional, problem domains.

In contrast, the machine learning community has potentially powerful techniques for re-
gression [4, 1], but very little attention has been given to solving the general accuracy
regression accuracy estimation problem of findingPr(y1 ≤ y ≤ y2|x, f̂(x)) given any
y2 > y1. It is important to distinguish this problem from the one posed in Gaussian Pro-
cess Regression [9, 8], where the goal is to obtain a error estimate on the model of the
meanof the regression surface which is given byf̂(x). Our goal is to estimate the spread
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Figure 1: An example of a the type of regression problem considered in this paper. The
noise term is a function of the inputx and it is not Gaussian.

of values aboutany hypothesizedmeanf̂(x). Applications of such models are plentiful
and include such things as weather prediction (e.g. what is the likely spread of tomor-
row’s temperature values) and economics (e.g. with what certainty can next years GDP be
predicted).

Section 2 presents our theoretical formulation. Section 3 gives a numerical implementation
of this theory. Experimental results are given in Section 4 Finally, Section 5 concludes with
a brief discussion of further research.

2 Theoretical Formulation

Let {(x1, y1), ..., (xN , yN )} be a set ofN training examples, wherex ∈ Γ ⊆ <d are
independently and identically distributed (iid) from some stationary distributionDx. The
standard regression function formulation assumes that the outputsy ∈ < is generated from:

y = f (x) + ρ
wheref (x) ∈ < is a single valued function defined onx ∈ <d, andρ is a random variable
with mean zero (i.e.E[ρ] = 0) and finite variance (i.e.V [ρ] = c, 0 ≤ c < ∞, c ∈ <). This
regression formulation assumes thatE[ρ] andV [ρ] are independent ofx. Furthermore,
the error analysis typically assumes that noise termρ is Gaussian [9, 3]. Therefore, this
standard frameworkcannotbe used to analyze the noise in a regression problem given in
Figure 1. Figure 1a shows a regression function where the noise is not Gaussian, and it
changes as a function of the inputx. This noise term is shown in Figure 1b. The variation,
as a function ofx, in the probability that the noise term lies between−0.5 and0.5, is shown
in Figure 1c. It is interesting to note that any method that does not use knowledge of noise
at specific pointsx, cannot in general be used on the class of problems depicted in Figure
1.

This paper assumes a more general regression formulation. We make the same distribution
assumptions onx, however, we assume thaty ∈ < is generated from:

y = f (x) + ρ (x) (1)
where the random variableρ hasE[ρ(x)] = 0 andV [ρ(x)] = c(x), 0 ≤ c(x) < ∞,
c(x) ∈ <. Therefore the distribution of the noise termdependson x. In addition, no
Gaussian assumptions (or any other specific distributions assumptions) are made on the
noiseρ(x). As a result, the framework proposed in this paper can be applied to regression
problems of the type in Figure 1.

We symbolize the probability function that generatedρ at a specificx ash(ρ|x), and the
cumulative distribution function (cdf) as:

H (ρ1 |x ) = Pr (ρ ≤ ρ1 |x ) =

ρ1∫

−∞
h (ρ′ |x )dρ′ (2)



Becausef (x) is constant at each pointx, the cumulative distribution function (cdf) of y at
x is simply given by:

Pr (y ≤ y1 |x ) =
∫ y1

−∞ h (y′ − f (x) |x ) dy′

= H (y1 − f (x) |x )
Therefore, if we can exactly know the point specific cdf of the noise termH (ρ1 |x ), we
can solve the problem posed in this paper. Namely,

Pr (y1 ≤ y ≤ y2 |x ) = Pr (y ≤ y2 |x )− Pr (y ≤ y1 |x )
= H (y2 − f (x) |x )−H (y1 − f (x) |x ) (3)

One contribution of this paper is a framework for estimatingH (ρ1 |x ) from training data.

2.1 Error cdfs for Basis Function Models

Intuitively, the point specific cumulative distribution function of the error term can be ob-
tained by looking at the distribution of points that pass through that specific point. Formally,
this simply consists of all outputsy that are generated at a specific inputx. However, from
a practical standpoint, ifx is high dimensional, data is in general sparse, and obtaining
samples ofy at any givenx is not possible (this results from the well known curse of
dimensionality problem which is especially prevalent when the regression function is non-
linear [3]). However, if we restrict our class of regression models to be a superposition
of basis functions, the problem becomes potentially more tractable in high dimensional
domains. Specifically, let the regression modelsf̂(x) to be of the form:

f̂ (x) =
M∑

i=1

aiφi (x) + b (4)

where for alli ∈ 1, ..., M , φi : <d 7→ <, andai, b ∈ <. If we restrictφi to be a Mercer
KernelK(xi,x), this gives the familiar Support Vector Machine Regression model [7]:

f̂ (x) =
M∑

i=1

aiK (xi,x) + b (5)

When the model is thus restricted, the problem of estimating an errorcdf becomes linear
in basis function spaceφi. We now must find all outputsy that are generated at a specific
point in basis function space give by(φ1(x), ..., φM (x)). Given this regression model
representation, the problem constrained further to:

Pr (y1 ≤ y ≤ y2 |Φ (x) ) =
H

(
y2 − f̂ (x) |Φ(x)

)
−H

(
y1 − f̂ (x) |Φ(x)

)

whereΦ(x) = (φ1 (x) , ..., φM (x)), f̂(x) is defined in (4), and the outputsy are ob-
tained as defined in equation (1). It is interesting to note that the mean of the true error cdf
H(y − f̂(x)|Φ(x)) in this space isnot necessarily zero. The reason for this that the true
regression functionf(x) in (1) is not necessarily exactly representable in a user specified
basis function space, and therefore, in general,f(x) 6= f̂(x). Therefore, if we can em-
pirically estimate the local mean ofH(y − f̂(x)|Φ(x)), we can potentially obtain a better
approximation off(x) using:

ŷ = f̂(x) + E
[
H

(
y − f̂ (x) |Φ(x)

)]
(6)

This leads us to the following theorem.

Theorem 1: Given the above assumptions, and further assuming thatH(y − f̂(x)|Φ(x))
is known exactly, let̂f(x) : <d 7→ < be any bounded function that has the form defined in
equation (4). Then, for allx generated according to the distributionDx, the following is
holds: ∣∣∣f̂ (x) + E

[
H

(
y1 − f̂ (x) |Φ(x)

)]
− f (x)

∣∣∣
≤



∣∣∣f̂ (x)− f (x)
∣∣∣

Proof Sketch: If f(x) = f̂(x), then the above equation becomes an equality because
E[H(y − f̂(x)|Φ(x))] = 0. If f(x) 6= f̂(x), thenE[H(y − f̂(x)|Φ(x))] measures how
far f(x) is from f̂(x). Therefore addingE[H(y − f̂(x)|Φ(x))] to f̂(x) must, by defini-
tion, bring it closer tof(x). This completes the proof sketch.

Empirical evidence supporting this theorem is given in Section 4. In order to make this
theoretical framework useful in practice, we need a numerical formulation for estimating
H(y − f̂(x)|Φ(x)). We refer to this estimate aŝH(y − f̂(x)|Φ(x)), and the next section
describes how it is obtained.

3 Numerical Formulation

We assume a set of training examples{(x1, y1), ..., (xN , yN )} generated according to
equation (1). Given these examples, we want to estimate the probability that the true output
y, at some specificx′ generated according to the distributionDx, falls between some user
specified boundsy2 > y1. Given the theory in Section 2, we reduce this problem to:

P̂r (y1 ≤ y ≤ y2 |Φ (x) ) =
Ĥ

(
y2 − f̂ (x) |Φ(x)

)
− Ĥ

(
y1 − f̂ (x) |Φ(x)

) (7)

Similarly, we calculate the prediction at each point using (see (6)):

ŷ = f̂(x) + E
[
Ĥ

(
y − f̂ (x) |Φ(x)

)]
(8)

Our framework depends on how well we can estimate the point specific noise cdf
Ĥ(y − f̂(x)|Φ(x)), which we describe next two sections. In Section 3.1 we assume
that the training examples{(x1, y1), ..., (xN , yN )} were NOT used to construct the re-
gression model̂f(x), and show that these independent samples can be used to obtain
Ĥ(y − f̂(x)|Φ(x)). In Section 3.2, we present a cross validation approach for getting
this unbiased data.

3.1 EstimatingĤ(y − f̂(x)|Φ(x)) From Unbiased Data

If we assume that{(x1, y1), ..., (xN , yN )} where not used to construct the regression
model f̂(x), then asN → ∞, for any specific pointx′ we can obtain an infinite inde-
pendent sample of points that{(xi, yi), i = 1, 2, ...} that satisfyΦ(xi) = Φ(x′), where
Φ(xi) = (φ1(xi), ..., φM (xi)) andΦ(x′) = (φ1(x′), ..., φM (x′)) are the basis functions.
Given these outputsy′ that correspond to the inputs in this set{(xi, yi), i = 1, 2, ...}, we
could directly estimate thecdf numerically [2]. The obvious problem with this approach is
that, ifx is a real valued vector, it is likely that there arenopoints in{(xi, yi), i = 1, 2, ...}
that satisfyΦ(xi) = Φ(x′). To address this problem we measure the distance, in ba-
sis function space, betweenΦ(x′) and the points{(xi, yi), i = 1, 2, ...}. At first glance
this approach may seem problematic because the number of basis functions may be large,
which once more leads to the curse of dimensionality dimensionality [3]. However, we
need not measure distance in the entire basis function space, only that part of it which lies
on the regression model surface. And since this surface is linear in basis function space, we
implicitly constrain our distance measures to the this hyperplane. Thus, given a threshold
distancedmin, we obtain a set of points{(xi, yi), i = 1, ..., k} such that, for alli = 1, ..., k,

dmin ≥ 1
M
‖Φ(xi)− Φ(x′)‖2 (9)

These points are then used to estimateĤ(y − f̂(x′)|Φ(x′)) by calculating an empirical
cumulative distribution function (ecdf) [2], which is a standard function in the Matlab
statistics toolbox (also known as the Kaplan-Meier cumulative distribution function).



There is a tradeoff here in choosingdmin. If it is too small, theecdf will not be an accurate
estimate of the truecdf. If dmin is too big, it will include a region that is too large, making
the estimate of the errornot point specific. To address this, we take a cross-validation
approach. The property of Kaplan-Meier cdf that we exploit is that, given a confidence level
of 100(1−α)%, it returns a range of maximum and minimumcdf estimates. By randomly
dividing the points{(xi, yi), i = 1, 2, ...} into two sets, we can use cross validation to
decide when the firstcdf of one set is within the100(1 − α)% confidence interval of the
second. Whendmin is large enough so that this is true, we are100(1− α)% confident that
our estimates of̂H(y − f̂(x′)|Φ(x′)) is accurate.

We now state the following theorem.

Theorem 2: Assume that{(x1, y1), ..., (xN , yN )} wherenot used to construct the re-
gression model̂f(x). Assume also thatf(x), f̂(x) andρ(x) are define on a compact set.
Then, as the number of training examples approaches infinity (N → ∞) anddmin → 0,
for any specificx′ generated according to the distributionDx, E[|Ĥ(y − f̂(x′)|Φ(x′)) −
H(y − f̂(x′)|Φ(x′))|] → 0, whereĤ(y − f̂(x′)|Φ(x′)) is estimated using the Kaplan-
Meier cdf as defined above.

Proof Sketch: The proof follows directly from the properties of the Kaplan-Meiercdf and
the definition of compact set.

The importance of the above theorem is that it establishes the convergence of our method
to the true point specificcdf noise estimates as the sample size increases.

3.2 Obtaining Unbiased Data

In order to ensure that the data used to estimateĤ(y − f̂(x′)|Φ(x′)) is unbiased,
we use a standardQf fold cross validation technique. We separate the dataD =
{(x1, y1), ..., (xN , yN )} into Qf sets of approximately equal sizeT1, ...., TQf

. Then, for

i = 1, ..., Qf we generateQf modelsf̂1(x), ..., f̂Qf
(x), where model̂fi(x) is constructed

using data set{D − Ti}, allowing the points inTi to be unbiased with respect tôfi(x).
Therefore, every point in the original setD = {(x1, y1), ..., (xN , yN )} is unbiased with
respect to one model̂fi(x). By measuring the distance fordmin in (9) using the basis
functions for which a point wasNOT used to build the corresponding model, we obtain an
unbiased set for estimatinĝH(y − f̂(x′)|Φ(x′)).

3.3 Algorithm Summary

The final Probabilistic Regression model is defined by: 1) a single basis function modela =
(a1, ..., ak), Φ(x) = (φ1(x), ..., φk(x)) andb as defined in (4); a set of valuesy1, ..., yn

(see (4)) for each training point inputx1, ...,xN obtained via cross validation as described
above; and finally a vector(φ1(xi), ..., φk(xi)) for each training input. For each test point
x, we calculatePr(y1 ≤ y ≤ y2|x, f̂(x)) as follows (note that the we use theecdf function
in thematlab statistics toolbox):

1. Projectx into basis function space.

2. Find dmin. Choose a window sizedmin that gives100(1 − α)% confidence in
estimates of̂H(y − f̂(x′)|Φ(x′)).

3. Estimate probability and locally optimal mean. Use (7) to estimatePr(y1 ≤ y ≤
y2|x, f̂(x)) and (8) to estimatêy.
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Figure 2: Results Symmetric Toy Example

4 Experimental Results

4.1 Learning Algorithm Implementation Details

The regression model formulation proposed here requires 1) a specification ofα for the
100(1 − α)% confidence interval in estimating the empiricalcdf noise (see Section 3.1);
2) the number of foldsQf used to obtain unbiased samples (see Section 3.2); and, 3) the
basis function learning algorithm used to construct the regression model (4) for each fold.
Unless specified otherwise, we usealpha = 0.05 andQf = 10 in the experiments reported
here.

We experimented with two types of basis function algorithms: ridge regression with
Gaussian Kernels, and support vector regression. For ridge regression [3] we set
the ridge parameter to1e − 6. For support vector regression we used libSVM
(www.csie.ntu.edu.tw/∼cjlin/libsvm/).

4.2 Toy Data

The toy regression example used here is the one dimensional problem shown in Figure 1.
The data was generated according to:

f (x1) = x1 − sin
(
2πx3

1

)
cos

(
2πx3

1

)
exp

(
x4

1

)
The noise termρ is dependent onx1 as shown in Figure 2b and was calculated as follows:

ρ (x) =





N
[
0.7 exp

(
−‖x1−0.25‖2

0.05

)
, 0.2

]
→ Pr (0.5)

N
[
−0.7 exp

(
−‖x1−0.25‖2

0.05

)
, 0.2

]
→ Pr (0.5)

whereN(m,σ) is a Gaussian distribution with meanm and standard deviationσ, and→
Pr(0.5) means with probability 0.5 - therefore the noise term is equally likely to be above
and below the meanf(x1). Given this definition of noise, the exactPr(0.2 ≤ y ≤ 0.2|x1)
is plotted in Figure 2b.

We experimented with two type of basis function regression models. Both used a Gaussian
kernel with2σ2 = 0.01. The first model type was a kernel ridge regression [3] model with
the ridge parameter to1e− 6. The second was theν-SVR algorithm [6] withν = 0.5 and
C = 1.

The results for estimating the mean functionf(x) using 500 and 2000 training examples
are presented in Figure 2a. One can see that both algorithms do fairly well, withν-SVR
based on 2000 examples doing slightly better than ridge regression. The results for pre-
dicting thePr(0.2 ≤ y ≤ 0.2|x1) are given in Figure 2b, for training set sizes of 500,
2000 and 5000. The proposed algorithm, using both ridge andν-SVR gave poor predic-
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Figure 3:Results on five datasets.

Table 1: Regression Data Sets
Data Number of Number of Training Testing Qf Number of

Examples Features Size Size Random Experiments
abalone 4177 8 3133 1044 10 50
housing 505 13 455 51 10 100

cpu small 8192 12 4096 4096 5 10
robot arm 20000 12 15000 5000 2 1
space ga 3106 6 1500 1606 10 10

tions ofPr(0.2 ≤ y ≤ 0.2|x1) when only 500 training samples were used. However, when
2000 training samples are used, the proposed algorithm accurately predicts the probabili-
ties. Furthermore, with 5000 training samples the the predictionsPr(0.2 ≤ y ≤ 0.2|x1)
closely match the true values. Therefore, as predicted byTheorem 2, as the training sample
increases, the approximations ofĤ(y − f̂(x′)|Φ(x′)) improve.

4.3 Benchmark Data

We applied the proposed algorithm to 5 standard regression datasets. These are summa-
rized in Table 1. Thehousingdataset was obtained from the UCI Machine Learning Repos-
itory (http://www.ics.uci.edu/ mlearn/MLRepository.html). Theabaloneandcpusmall sets
were obtained from Delve (http://www.cs.toronto.edu/∼delve/). Thespace gadataset was
obtained from StatLib (http://lib.stat.cmu.edu/datasets/). Therobot armdataset was orig-
inally used in [4] and contains 4 outputs - the results reported here on this dataset are
averaged over these outputs. Table 1 indicates the total number of examples, the number
of features, the training and test set sizes, the number of foldsQf used to obtain unbiased
samples, and the number of random tests done.

We used theν-SVR algorithm [6] to build the regression modelsf̂(x), with the Gaussian
Kernel. For all experiments we setν = 0.5, C = 500 and, following [6] the Gaussian
kernelσ such that2σ2 = 0.3d, whered is the dimension of the data as defined in 1. All
inputs in the datasets were scaled to lie between0 and1.

To evaluate the probabilities generated by the our framework, we divided each test data
set outputs into intervals bounded byy1 andy2, such that the observed frequencies in the
first interval is0.1, in the second interval is0.3, in the third interval is0.5, in the fourth
interval is0.7, and finally in the fifth interval is0.9. These observed frequencies can be
compared to the actual predictedPr(y1 ≤ y ≤ y2|x, f̂(x)). The mean absolute difference
between the predicted and observed probabilities (i.e. frequency) is shown in Figure 3. The
x-axis shows the predicted probability and they axis shows the mean absolute error in this
prediction over all runs. We can see that the probability estimates quite accurate, falling
within a probability of0.05 for the small Housing Dataset, and much lower for the larger



Table 2: MSE Error Rates on Regression Data Sets
Data Standard SVM Locally Modified SVM

abalone 5.2 4.6
housing 9.8 9.4

cpu small 16.0 15.9
robot arm 3.2 3.1
space ga 0.012 0.011

datasets. Once more showing that more data leads to better probability estimates.

Finally, the mean squared error rates of our algorithm are given in table 2 (note that the
predictions of̂y are made as specified in equation (8)). We can see that the proposed algo-
rithm slightly outperforms an SVM regression model (generated using the same learning
parameters) who’s mean predictions have not been locally modified. This result supports
Theorem 1, which states that local estimates of the mean can improve overall regression
accuracy.

5 Conclusion

The goal of this paper is to formulate a general framework for predicting error rates in
basis function regression models, which includes the widely used support vector regression
formulation, as well as kernel based ridge regression. Given any user specifiedy2 > y1,
we estimate thePr(y1 ≤ y ≤ y2|x, f̂(x)), which strictly depends on the inputx. Our
formulation is based on empirically estimating thepoint specificcumulative distribution
functions of the noise term. The observation that makes this feasible is that the regression
problem is linear in basis function space, allowing us to effectively group points together for
estimating the cumulative distribution function of the noise. Our approach does not make
specific distribution assumptions, such as Gaussian noise. In addition, under appropriate
smoothness and compactness assumptions, we can show that estimates of the cumulative
distribution function of the noise converge to the true value as the learning sample size
increases. Experimental results indicate that our method gives good estimates ofPr(y1 ≤
y ≤ y2|x, f̂(x)), as well as mean squared regression errors that match those obtained by
support vector regression.
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