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Abstract

Our goal is to accurately estimate the error in any prediction of a regres-
sion model. We propose a probabilistic regression framework for basis
function regression models, which includes widely used kernel methods
such as support vector machines and nonlinear ridge regression. The
framework outputs a point specific estimate of the probability that the
true regression surface lies between two user specified values, denoted
by y; andy,. More formally, given anyys > y;, we estimate the

Pr(y; < y < 1lx, f(x)), wherey is a true regression surface,is

the input, andf(x) is the basis function model. Thus the framework
encompasses the less general standard error bar approach used in regres-
sion. We assume that the training data is independent and identically
distributed (iid) from a stationary distribution, and make no specific dis-
tribution assumptions (e.g. no Gaussian or other specific distributions
are assumed). Theory is presented showing that as the number of train-

ing points increases, estimatesIdf(y; < y < ysalx, f(x)) approach

the true value. Experimental evidence demonstrates that our framework
gives reliable probability estimates, without sacrificing mean squared er-
ror regression accuracy.

1 Introduction

The statistics community has long studied regression models that predict an @usut

well as an error bar estimate for the probability that the observed outigsuvithin some

e of the prediction: i.e.Pr(|g — y| < ¢) [5]. Estimates ofPr(|y — y| < ¢) are useful

in practice because they measure spread of observed regression values, allowing the user
to make informed decisions about how predictions should be used. Although standard
statistical techniques such as locally linear regression [3] can give very good error bar
predictions for low dimensional problems, such techniques do not generally work well on
complex, high dimensional, problem domains.

In contrast, the machine learning community has potentially powerful techniques for re-
gression [4, 1], but very little attention has been given to solving the general accuracy
regression accuracy estimation problem of findihdy; < y < ys|x, f(x)) given any

y2 > y1. Itis important to distinguish this problem from the one posed in Gaussian Pro-
cess Regression [9, 8], where the goal is to obtain a error estimate on the model of the
meanof the regression surface which is given pix). Our goal is to estimate the spread
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Figure 1: An example of a the type of regression problem considered in this paper. The
noise term is a function of the inputand it is not Gaussian.

of values aboutiny hypothesizethean f (x). Applications of such models are plentiful

and include such things as weather prediction (e.g. what is the likely spread of tomor-
row’s temperature values) and economics (e.g. with what certainty can next years GDP be
predicted).

Section 2 presents our theoretical formulation. Section 3 gives a numerical implementation
of this theory. Experimental results are given in Section 4 Finally, Section 5 concludes with
a brief discussion of further research.

2 Theoretical Formulation

Let {(x1,¥1), .-, (xn,yn)} be a set ofN training examples, where € I' C R? are

independently and identically distributed (iid) from some stationary distributipn The

standard regression function formulation assumes that the oytgui®is generated from:
y=rf(x)+p

wheref (x) € R is a single valued function defined anc %<, andp is a random variable

with mean zero (i.eE[p] = 0) and finite variance (i.eV[p] = ¢,0 < ¢ < o0, ¢ € R). This

regression formulation assumes thigfp] and V' [p] are independent at. Furthermore,

the error analysis typically assumes that noise tgrist Gaussian [9, 3]. Therefore, this

standard frameworkannotbe used to analyze the noise in a regression problem given in

Figure 1. Figure la shows a regression function where the noise is not Gaussian, and it

changes as a function of the inputThis noise term is shown in Figure 1b. The variation,

as a function of, in the probability that the noise term lies betweeh5 and0.5, is shown

in Figure 1c. It is interesting to note that any method that does not use knowledge of noise

at specific points, cannot in general be used on the class of problems depicted in Figure

This paper assumes a more general regression formulation. We make the same distribution
assumptions os, however, we assume thate ® is generated from:

, y=f(x)+px) (1)
where the random variable has E[p(x)] = 0 andV[p(x)] = ¢(x), 0 < ¢(x) < o0,
¢(x) € R. Therefore the distribution of the noise tedependson x. In addition, no
Gaussian assumptions (or any other specific distributions assumptions) are made on the
noisep(x). As a result, the framework proposed in this paper can be applied to regression
problems of the type in Figure 1.

We symbolize the probability function that generatedt a specificx ash(p|x), and the

cumulative distribution functioncgf) as:
P1

H(p1|x)=Pr(p<pi|x)= /h(p' |x)dp' )

— 00



Becausef (x) is constant at each poigt the cumulative distribution functioredf) of y at
x is simply given by:
Pr(y<wyilx) = [ h(y - f(x)|x)dy
=H (y1 — f(x)[x)

Therefore, if we can exactly know the point specific cdf of the noise t&r(p; |x), we
can solve the problem posed in this paper. Namely,

Pr(yi <y <walx)=Pr(y <ys|x) - Pr(y <y |x) 3)

=H(y2 — f(x)[x) — H(y1 — f(x)[x)

One contribution of this paper is a framework for estimathfigp; |x) from training data.

2.1 Error cdfs for Basis Function Models

Intuitively, the point specific cumulative distribution function of the error term can be ob-
tained by looking at the distribution of points that pass through that specific point. Formally,
this simply consists of all outputsthat are generated at a specific inguHowever, from

a practical standpoint, ik is high dimensional, data is in general sparse, and obtaining
samples ofy at any givenx is not possible (this results from the well known curse of
dimensionality problem which is especially prevalent when the regression function is non-
linear [3]). However, if we restrict our class of regression models to be a superposition
of basis functions, the problem becomes potentially more tractable in high dimensional

domains. Specifically, let the regression mo@%(ls) to be of the form:
M
Fx) = aii (x) +b 4)
=1

where foralli € 1,..., M, ¢; : R? — §R,7andai,b € R. If we restricty; to be a Mercer
Kernel K (x;, x), this gives the familiar Support Vector Machine Regression model [7]:

M
f(x) = ZaiK (x;,%) +b (5)

=1
When the model is thus restricted, the problem of estimating an edfdvrecomes linear
in basis function spacg;. We now must find all outputg that are generated at a specific
point in basis function space give lfy, (x), ..., ¢a(x)). Given this regression model
representation, the problem constrained further to:

Pr(yi <y <wy®(x))=

H (g2~ )12 (0)) = H (11— [ (x) 2 (x))
where® (x) = (¢1(x), ..., ¢ar (x)), f(x) is defined in (4), and the outputsare ob-
tained as defined in equation (1). It is interesting to note that the mean of the true error cdf

H(y — f(x)|®(x)) in this space i:ot necessarily zero. The reason for this that the true
regression functiorf(x) in (1) is not necessarily exactly representable in a user specified

basis function space, and therefore, in genefék) # f(x). Therefore, if we can em-
pirically estimate the local mean &f (y — f(x)|®(x)), we can potentially obtain a better
approximation off (x) using:

§=f+E[H (y—fx)]ex)] (6)

This leads us to the following theorem.

Theorem I Given the above assumptions, and further assuminghigt— f(x)|®(x))

is known exactly, Ief’(x) : R4 — R be any bounded function that has the form defined in
equation (4). Then, for akk generated according to the distributian,,, the following is

holds:
F o)+ B[H (1 - fx)0m)] - 1)

<



fx) = f(x)

Proof Sketch: If f(x) = f(x), then the above equation becomes an equality because
EH(y— f(x)|®(x))] = 0. If f(x) # f(x), thenE[H(y — f(x)|®(x))] measures how

far f(x) is from f(x). Therefore addind?[H (y — f(x)|®(x))] to f(x) must, by defini-
tion, bring it closer tof (x). This completes the proof sketch.

Empirical evidence supporting this theorem is given in Section 4. In order to make this
theoretical framework useful in practice, we need a numerical formulation for estimating

H(y — f(x)|®(x)). We refer to this estimate & (y — f(x)|®(x)), and the next section
describes how it is obtained.

3 Numerical Formulation

We assume a set of training examplgs, v1), ..., (Xn,yn)} generated according to
equation (1). Given these examples, we want to estimate the probability that the true output
y, at some specifig’ generated according to the distributifn,, falls between some user
specified boundg, > y,. Given the theory in Section 2, we reduce this problem to:

Prin<y<ml@)= -
i (2= F 18 (x)) = (31— [ () 2 () )

Similarly, we calculate the prediction at each point using (see (6)):

§j=Fe)+ B[ (y- fx) o) (®)
Our framework depends on how well we can estimate the point specific noise cdf

H(y — f(x)|®(x)), which we describe next two sections. In Section 3.1 we assume
that the training example§(x1,y1), ..., (xn,yn)} were NOT used to construct the re-

gression modelf(x), and show that these independent samples can be used to obtain

H(y — f(x)|®(x)). In Section 3.2, we present a cross validation approach for getting
this unbiased data.

3.1 Estimating H(y — f(x)|®(x)) From Unbiased Data

If we assume thaf(xy,v1),..., (xn,yn~)} where not used to construct the regression

model f(x), then asN — oo, for any specific poink’ we can obtain an infinite inde-
pendent sample of points thétx;, y;),« = 1,2, ...} that satisfy®(x;) = ®(x’), where

D(x;) = (d1(x41), ..., o (x1)) @A P (x') = (1 (x’), ..., pas(x')) are the basis functions.
Given these outputg’ that correspond to the inputs in this §ék;,v;),7 = 1,2, ...}, we

could directly estimate thedf numerically [2]. The obvious problem with this approach is
that, if x is a real valued vector, it is likely that there arepoints in{(x;,v;),i = 1,2, ...}

that satisfy®(x;) = ®(x’). To address this problem we measure the distance, in ba-
sis function space, betwedn(x’) and the pointy(x;,4;),i = 1,2,...}. At first glance

this approach may seem problematic because the number of basis functions may be large,
which once more leads to the curse of dimensionality dimensionality [3]. However, we
need not measure distance in the entire basis function space, only that part of it which lies
on the regression model surface. And since this surface is linear in basis function space, we
implicitly constrain our distance measures to the this hyperplane. Thus, given a threshold
distancel,,,;,,, we obtain a set of pointgx;, y;),¢ = 1, ..., k} such that, forali = 1, ..., k,

1 2
i > i H(I) (%) — @ (x )H 9

These points are then used to estimate, — f(x')|®(x’)) by calculating an empirical
cumulative distribution functionecdf) [2], which is a standard function in the Matlab
statistics toolbox (also known as the Kaplan-Meier cumulative distribution function).



There is a tradeoff here in choosidg,;,,. If itis too small, theecdf will not be an accurate
estimate of the truedf. If d,,,;, is too big, it will include a region that is too large, making
the estimate of the errarot point specific. To address this, we take a cross-validation
approach. The property of Kaplan-Meier cdf that we exploit is that, given a confidence level
of 100(1 — «)%, it returns a range of maximum and minimwalf estimates. By randomly
dividing the points{(x;,v;),? = 1,2,...} into two sets, we can use cross validation to
decide when the firatdf of one set is within tha00(1 — «)% confidence interval of the
second. Whed,,,;,, is large enough so that this is true, we 466(1 — «)% confident that

our estimates off (y — f(x')|®(x’)) is accurate.
We now state the following theorem.

Theorem 2 Assume tha{(x1,v1), ..., (X, yn)} Wherenot used to construct the re-

gression modef (x). Assume also thaf(x), f(x) and p(x) are define on a compact set.
Then, as the number of training examples approaches infinity{ o) and d,,;, — 0,

for any specificc’ generated according to the distributidd,., E[|H (y — f(x')|®(x)) —
H(y — f(x")|®(x"))|]] — 0, whereH (y — f(x)|®(x')) is estimated using the Kaplan-
Meier cdf as defined above.

Proof Sketch: The proof follows directly from the properties of the Kaplan-Meidf and
the definition of compact set.

The importance of the above theorem is that it establishes the convergence of our method
to the true point specificdf noise estimates as the sample size increases.

3.2 Obtaining Unbiased Data

In order to ensure that the data used to estiméig — f(x')|®(x’)) is unbiased,
we use a standard); fold cross validation technique. We separate the data=
{(x1,11), .-, (xn,yn)} into Q sets of approximately equal siZg, ...., Tiy,. Then, for
i =1,...,Qs we generat€); modelsf, (x), ..., fq, (x), where modef;(x) is constructed
using data sefD — 7;}, allowing the points irll} to be unbiased with respect fo(x).
Therefore, every point in the original sét = {(x1,v1), ..., (xn,yn)} IS unbiased with

respect to one modg‘ii(x). By measuring the distance fd,;, in (9) using the basis
functions for which a point wallOT used to build the corresponding model, we obtain an

unbiased set for estimatind (y — f(x')|®(x)).

3.3 Algorithm Summary

The final Probabilistic Regression model is defined by: 1) a single basis function medel
(aty.yar), D(x) = (¢1(x), ..., dr(x)) andb as defined in (4); a set of valugs, ..., y,
(see (4)) for each training point input, ..., x 5 obtained via cross validation as described
above; and finally a vectdg, (x;), ..., $x(x;)) for each training input. For each test point

x, we calculatéPr(y; <y < y]x, f(x)) as follows (note that the we use thedf function
in thematlab statistics toolbgx

1. Projectx into basis function space

2. Find dpi,. Choose a window sizé,,;, that gives100(1 — a)% confidence in
estimates of (y — f(x')|®(x')).

3. Estimate probability and locally optimal meabse (7) to estimat®r(y; < y <
y2|x, f(x)) and (8) to estimatg.
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Figure 2: Results Symmetric Toy Example
4 Experimental Results

4.1 Learning Algorithm Implementation Details

The regression model formulation proposed here requires 1) a specificatiofoothe

100(1 — a)% confidence interval in estimating the empiricalf noise (see Section 3.1);

2) the number of fold€) s used to obtain unbiased samples (see Section 3.2); and, 3) the
basis function learning algorithm used to construct the regression model (4) for each fold.
Unless specified otherwise, we ugpha = 0.05 andQ ; = 10 in the experiments reported
here.

We experimented with two types of basis function algorithms: ridge regression with
Gaussian Kernels, and support vector regression. For ridge regression [3] we set
the ridge parameter tde — 6. For support vector regression we used libSVM
(www.csie.ntu.edu.twicjlin/libsvm/).

4.2 Toy Data

The toy regression example used here is the one dimensional problem shown in Figure 1.
The data was generated according to:

f(21) = 21 — sin (272?) cos (27z?) exp (z7)
The noise ternp is dependent om; as shown in Figure 2b and was calculated as follows:

N [0.7exp (Lz02) 0.2] - Pr(0.5)

N [—O.?exp (_HMO%W) ,0.2} — Pr(0.5)
whereN(m, o) is a Gaussian distribution with meam and standard deviation, and—
Pr(0.5) means with probability 0.5 - therefore the noise term is equally likely to be above

and below the meayfi(x;). Given this definition of noise, the exaet(0.2 < y < 0.2|z1)
is plotted in Figure 2hb.

p(x) =

We experimented with two type of basis function regression models. Both used a Gaussian
kernel with20? = 0.01. The first model type was a kernel ridge regression [3] model with
the ridge parameter tte — 6. The second was the- SVR algorithm [6] withv = 0.5 and

Cc=1.

The results for estimating the mean functiffx) using 500 and 2000 training examples

are presented in Figure 2a. One can see that both algorithms do fairly well,A8¥R

based on 2000 examples doing slightly better than ridge regression. The results for pre-
dicting thePr(0.2 < y < 0.2|z1) are given in Figure 2b, for training set sizes of 500,
2000 and 5000. The proposed algorithm, using both ridgera8¥R gave poor predic-
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Table 1: Regression Data Sets

Data Number of | Number of | Training | Testing [ Q¢ Number of
Examples | Features Size Size Random Experiments
abalone 4177 8 3133 1044 | 10 50
housing 505 13 455 51 10 100
cpu small 8192 12 4096 4096 5 10
robot arm 20000 12 15000 5000 2 1
space ga 3106 6 1500 1606 10 10

tions of Pr(0.2 < y < 0.2]z1) when only 500 training samples were used. However, when
2000 training samples are used, the proposed algorithm accurately predicts the probabili-
ties. Furthermore, with 5000 training samples the the predictio8.2 < y < 0.2|zq)

closely match the true values. Therefore, as predicteth®prem 2as the training sample

increases, the approximationsif{y — f(x')|®(x’)) improve.

4.3 Benchmark Data

We applied the proposed algorithm to 5 standard regression datasets. These are summa-
rized in Table 1. Théousingdataset was obtained from the UCI Machine Learning Repos-
itory (http://www.ics.uci.edu/ mlearn/MLRepository.htnfTheabaloneandcpusmall sets

were obtained from Delven(tp://www.cs.toronto.edw/delve). Thespace gadataset was
obtained from StatLibHttp://lib.stat.cmu.edu/datasejs/Therobot armdataset was orig-

inally used in [4] and contains 4 outputs - the results reported here on this dataset are
averaged over these outputs. Table 1 indicates the total number of examples, the number
of features, the training and test set sizes, the number of {}dssed to obtain unbiased
samples, and the number of random tests done.

We used the/-SVR algorithm [6] to build the regression modgléx), with the Gaussian
Kernel. For all experiments we set= 0.5, C = 500 and, following [6] the Gaussian
kernelo such thao? = 0.3d, whered is the dimension of the data as defined in 1. All
inputs in the datasets were scaled to lie betwgand1.

To evaluate the probabilities generated by the our framework, we divided each test data
set outputs into intervals bounded Py andy-, such that the observed frequencies in the
first interval is0.1, in the second interval i8.3, in the third interval i).5, in the fourth
interval is0.7, and finally in the fifth interval i$.9. These observed frequencies can be

compared to the actual predict®d(y; < y < y2|x, f(x)). The mean absolute difference
between the predicted and observed probabilities (i.e. frequency) is shown in Figure 3. The
z-axis shows the predicted probability and ghaxis shows the mean absolute error in this
prediction over all runs. We can see that the probability estimates quite accurate, falling
within a probability of0.05 for the small Housing Dataset, and much lower for the larger



Table 2: MSE Error Rates on Regression Data Sets

Data Standard SVM| Locally Modified SVM
abalone 5.2 4.6
housing 9.8 9.4
cpu small 16.0 15.9
robot arm 3.2 3.1
space ga 0.012 0.011

datasets. Once more showing that more data leads to better probability estimates.

Finally, the mean squared error rates of our algorithm are given in table 2 (note that the
predictions ofj are made as specified in equation (8)). We can see that the proposed algo-
rithm slightly outperforms an SVM regression model (generated using the same learning
parameters) who's mean predictions have not been locally modified. This result supports
Theorem 1which states that local estimates of the mean can improve overall regression
accuracy.

5 Conclusion

The goal of this paper is to formulate a general framework for predicting error rates in
basis function regression models, which includes the widely used support vector regression
formulation, as well as kernel based ridge regression. Given any user spggified,,

we estimate th@®r(y; < y < ys|x, f(x)), which strictly depends on the input Our
formulation is based on empirically estimating theint specificcumulative distribution
functions of the noise term. The observation that makes this feasible is that the regression
problem is linear in basis function space, allowing us to effectively group points together for
estimating the cumulative distribution function of the noise. Our approach does not make
specific distribution assumptions, such as Gaussian noise. In addition, under appropriate
smoothness and compactness assumptions, we can show that estimates of the cumulative
distribution function of the noise converge to the true value as the learning sample size
increases. Experimental results indicate that our method gives good estimRigg;,0K

y < 12]x, f(x)), as well as mean squared regression errors that match those obtained by
support vector regression.
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