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ABSTRACT

A family of languages is called arithmetic if each infinite
language in it is such that its length set contains an arithmetic
progression. It is proved that there exists an ETOL language which
is not an arithmetic substitution of any EDTOL Tanguage. This result
sheds some Tight on the question: How much more "complicated" are

ETOL Tanguages than EDTOL Tanguages?



INTRODUCTION

One of the basic research topics in the theory of L systems is
the role of the "deterministic restriction" (see, e.g., [4] or [5]).
In other words one investigates the behavior of deterministic L
systems versus the behavior of L systems without the deterministic
restriction. This restriction is of grammatical nature: we call an
L system deterministic if for each letter there exists precisely one
production for each possible situation (table, context). The "ideal"
result explaining the role of a deterministic restriction would be of
the following kind: there exists a language operator ¢ such that every
language in the L family X can be obtained as the result of applying
¢ to a language in the deterministic subfamily of X. Only partial
results in this direction are known(see, e.g., [3]).

We feel that for some basic L families such a translation of a
deterministic restriction on a grammar into a "natural" language
operator is impossible. This paper is a step towards such a negative
result for the family of ETOL Tlanguages. As a natural operator we
have chosen a substitution into a family of languages L which has the
property that the length set of each infinite lTanguage in L contains:
an infinite arithmetic progression. Then we demonstrate that there
exists an ETOL language which cannot be obtained as a result of such
a substitution from an EDTOL Tanguage. Thus the substitutions into
regular languages, context free languages or even ETOL languages of
finite index (see [6]) cannot make up for the loss of the language
generating power resulting from imposing the deterministic restriction

on ETOL systems.



PRELIMINARIES

We assume the reader to be familiar with the basics of the
theory of ETOL systems (e.g. in the scope of [4]).

We use N, N+, R and R' to denote the sets of nonnegative integers,
positive integers, nonnegative reals and positive reals respectively.
For a set Z, #Z denotes the cardinality of Z.

For a word x, |x| denotes its length and min x denotes the set
of letters occurring in x. For a language K, Min K={a:(33x)K[asan x]1}
and Length K={naN:(33x)K[Ix[=n]}.

If ¢ is a substitution (of type X) on z and K is a language over
£ such that for every element a of Min K, ¢(a) is a language of type Y

then we say that ¢ 48 of type Y on K. For the family of languages Y

languages in Y.

We use L(ETOL) and L(EDTOL) to denote the families of ETOL
languages and EDTOL languages respectively.

Now we will introduce several notions specific to this paper.

Definition 1. An infinite language K is called arithmetic if

Length K contains an infinite arithmetic progression; otherwise K is
called antionithmetic. A family L of languages is called arithmetic
if every infinite language in L is arithmetic; otherwise L is called

antiaonithmetic,

For example it is very well known (see, e.g., [7]) that both
the family of context free Tanguages and the family of regular
languages are arithmetic.

Definition 2. Let ¢ be a substitution, ¢:z—>L. If L is

arithmetic than ¢ is called anithmetic.



The following basic property of arithmetic substitutions will be
used in the sequel.

Lemma 1. Let L be an antiarithmetic language. If L=¢(L) where ¢
is an arithmetic substitution than ¢ is finite on L.

Proof.

Let L=o(L).

Let us assume, to the contrary, that L contains a word w=wjaw,
such that for the letter a,¢(a) is infinite. Since ¢ is arithmetic,
¢(a) contains an infinite sequence of words z;,z,,... such that
|z1],]22]5... form an arithmetic progression. But if w; and w, are
fixed elements of ¢(w;) and ¢(w,) respectively then wyziW,,WiZoWo,...
is an infinite sequence of words in L such that |wyziw,|,|wizowyl,...
form an arithmetic progression. This however contradicts the fact

that L is antiarithmetic.

Definition 3. A function f from R* into RY is called stow if

( Va)R+( 3na)R+( VX)RJ,[% wn, then f(x)<x*].

Thus a constant function, (log x)k and (log x)]Og 109 X 4pe
examples of slow functions, whereas log quOg X, x2, /X are examples
of functions that are not slow.

Definition 4. Let © be a finite alphabet and let f be a function

from R+ into R+; A word w over % is called f-xzandom (over 3) if every

two disjoint subwords of W which are Tonger than f(|w|) are different.

The following result will be useful in the sequel. At the same

time it nicely illustrates the notion of f-randomness.



Lemma 2. Let f:R—sR', where f(x)=6:Tog x. Let 2={0,1}. Then

(Yn) ,(32) +[|z|=2n and z is f-random].
N X

Proof.
Let V={0,1,%$}. Let neN+ and let yl,...,yzn be an arbitrary, but
$.

fixed, ordering of all words over r of length n. Let an=y1$y2$...$y2n

Clearly no two disjoint subwords of @ that are of length at least 2n
are identical. Let ¢ be the homomorphism from V into £* defined by
¢(0)=0§,w(1)=13 and y($)=101. Let Bn=¢(an). Clearly no two disjoint
subwords of By that are of length at least 6n are identical.

Finally let z be the prefix of Bn of length ", Obviously z do
not contain two disjoint subwords of length at Teast 6n that are

identical and so z is f-random.

As a direct corollary of the pumping theorem for EDTOL languages
(see [1] or [2]) we get the following result.
Theorem 1. If f is a slow function and an EDTOL language K

contains infinitely many f-random words then K is arithmetic.



RESULT

In this section we prove our main result.

Theorem 2. There exists an ETOL language K such that there do
not exist an arithmetic substitution ¢ and an EDTOL language M with the
property that K=¢(M).

Proof.

Let G=<V,Q,S,=> be an ETOL system with
V={S,F,0,1},
£={0,13,

Q={P1,P2,P3},
P1={S—>S2,F—F,0—>F,1—>F},
P,={S5—0,5S —1,F—F,0—F,1—>F}, and
Py={S—>F,F—>F,0—03,1—>13}.

Let K=L(G). We will prove now that for no EDTOL language M, K

is an arithmetic substitution of M.
1) K is antiarithmetic.
Proof.
Clearly Length K={2n-3m:n,m20}. Let for g>1,

KeéAqK={ksLength K:k<q}. But if 2ns3msq then n<log,;q and m<logsq.

Consequently

Less K (Tog,q)+(10gsq)
lim ——3— < Tim =0,
q—~——~>oo q—»—>00 q

and so Length K do not contain an arithmetic progression.

2) (y m)N+( Bnm)N+(\1 a,b)

L4 a,b>nm,|u|<m,ls|<m,lw!=2a-3

N+( VW)K( V%B)Z+

b
and w=wyowy

then w=wiBw,eK Lmplies a=g].
Proof.

Let us take nm=m.



(1)  First we prove that if w=w,Bw,eK then |a|=]8].

If weK then there exist ¢ and d such that le=2c-3d. Let us

d b

assume that |w|>|w| and let us consider s=|w|-|w|=2%3%2%.3,

Clearly either c>a or d>b and so s is either divisible by 22 or
by 3%, But 2%m and 3%m while obviously |w|-|w|<m; a contra-
diction. Similarly if we assume that |w|>|w| we get a contra-
diction. Thus it must be that if weK then |w|=|w| and so
la]=]8].

(i1) Now we will prove that if |a|=|8} and weK then a=8.
Note that W=W1"'W§a where each W is a word of length 3b such
that it either consists of 1's only or it consists of 0's only.

Thus if we replace any subword o of w by a word B of the same

length and obtain in this way a word in K then it must be «=8.

3) K is not the result of an arithmetic substitution on an EDTOL
language.

Proof.

Let us assume, to the contrary, that there exists an EDTOL
language M and an arithmetic substitution ¢ such that K=¢(M).

By Lemma 1 we can assume that ¢ is a finite substitution. Let
r be the maximal length of a word that ¢ can substitute for a single
letter. Let a>r,b>r and let us consider a word w in K such that
|w|=2a-3b. Let z be a word in M such that ¢(z)=w. Then from 2) it
immediately follows that for every x in min(z),9(x) is a singleton.

Let us denote by SLngE¢M the set of all Tetters x from MinM
such that ¢(x) is a singleton. From the above discussion we know that

Sing£¢Mfﬂ. Let Z=Mr1(SLng£¢M)*. Since the intersection of an EDTOL

with a regular language is an EDTOL language and since a homomorphic



image of an EDTOL language is an EDTOL Tanguage, ¢(Z) is an EDTOL
language. Also from the previous paragraph we know that
Kr={WsK:|w[=2a»3b,a>r and b>rrc ¢(Z).

Now let us consider the function f on positive integers such
that f(x)=6 3r+1-]ogzx. Clearly f is a slow function. On the other
hand Kr contains infinitely many f-random words, which is seen as
follows. Let a>r and let us generate in G, using (a-1) times table P,
and then the table P,, a word X4 of length 28, Then, using (r+1) times
table P53, let us substitute 03" for each 0 in x and 13r+1 for each 1
is f-random if

in x obtaining in this way the word y Now A

a,r+l’ s+
ond only if Xq is f-random. However by Lemma 2, for every a>1 there
exists an f-random word over {0,1} of the length 2%, Since every word
over {0,1} of length 22 can be generated in G (in the way that X, was
generated) Kr contains infinitely many f=random words.

Then however by Theorem 1 we get that ¢(Z) (remember that
Krg;¢(z)) is arithmetic. Since ZEM, ¢(Z)<S ¢(M)c K and this implies

that K is arithmetic. This contradicts 1) and consequently 3) holds.

Corollary 1. Let X stand for either context free or regular or
ETOL of finite index. Then it is not true that L(ETOL)=@X(EDT0L).

Proof.

It is well-known (see, e.g., [7]) that the families of regular
and context free languages are arithmetic. It is proved in [6] that

the family of ETOL Tlanguages of finite index is arithmetic.
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