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Abstract

Software failures in wireless sensor systems are notoriously difficult to debug. Resource constraints

in wireless deployments substantially restrict visibility into the root causes of system and application

level faults. At the same time, the high deployment cost of wireless sensor systems often far exceeds

the cumulative cost of all other sensor hardware, such that software failures that completely disable a

node are prohibitively expensive to repair in real-world applications, e.g. by on-site visits to replace

or reset nodes. This thesis describes NodeMD, a fault management system designed to improve node

debugging capabilities prior to deployment, and enable remote debugging on in-situ sensor nodes that

fail. This system successfully implements lightweight run-time detection, logging, and notification of

software faults on wireless mote-class devices. NodeMD introduces a debug mode that catches a failure

beforeit completely disables a node and drops the node into a state that enables further diagnosis and

correction, thus avoiding on-site redeployment. We present a detailed analysis of NodeMD on real world

applications of wireless sensor systems.
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1. Introduction

Wireless sensor networks (WSNs) are often deployed in distant rugged environments, e.g. Great Duck

Island off the coast of Maine [3], around wildfires in the Bitterroot National Forest [4], and surrounding

an active volcano in Ecuador [5]. These types of deployment are expensive and sometimes even risky

to deployment personnel. For example, in the FireWxNet [4] deployment, a helicopter was used by fire

personnel to deploy nodes on three different mountains, in some cases requiring the firefighters to climb

down the mountain to place the nodes.

Compounding the expense and difficulty of WSN deployments concludes that software bugs are often

encountered in the field. Software can reach buggy states in the wild initiated by data-driven sensing

behavior that is not detected through ordinary lab testing. In addition, the rigor in testing sensor networks

is much smaller then testing in other regimes, e.g. space software, due to much fewer resources devoted to

testing. Our own experiences deploying a fire sensor network in the mountainous terrain of the Bitterroot

National Forest in Idaho [4] suggests that software bugs will inevitably be experienced in the field.

Although some data-depedent faults are unavoidable, many faults in live deployments are aggregates

of limitations in lab testing. Sensor network debugging today usually begins with staring at a set of

blinking LEDs. JTAG debuggers on sensor boards provide increased visibility into faults, but they are

only useful for nodes directly connected to the debugging hardware. Other wired options, such as serial

messages, influence application timing too severely to be reliable indicators of node performance. In

general, the debugging options available to sensor node programmers are few and unsatisfactory.

Since nearly all of these lab techniques depend on a wired interface, whether the tested conditions are

accurate is also a concern. Given the options available forwirelessnode debugging, a tester is essentially

back to square one: blinking LEDs. However, testing sensor node software is often short-circuited to
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quickly deploy and collect data, moving node software from several wired nodes directly to live, wireless

deployments. Testing and deploying software in this fashion is comparable to a pharmaceudical company

skipping the 10-year clinical trials for a product, and assuming a product that is safe for a mouse is also

safe for a human being. In order to ensure a piece of sensor node software is “safe” for deployment, the

testing environment should nearly replicate the deployment itself. Thus, “remote” in the context of this

thesis applies to both in-situ sensor nodes and lab tested nodes alike.

When encountering a software fault, a node will typically enter a bad/unresponsive state that looks

like a “black hole”. The fault is detected retroactively by what information wedon’t receive. Given this

lack of information, actually determining the cause and effects of the fault on this remote node proves to

be a challenge.

The goal of this thesis is to remedy the difficulties in wireless debugging withNodeMD, a diagnostic

system for sensor nodes designed for accurate lab testing and debugging remote deployments. By man-

aging faults atrun timethe NodeMD system is capable of (1) catching software faults as they occur and

before they completely disable a node, and (2) aiding diagnosis of the root cause of the fault, reducing

the need for a costly redeployment of nodes through on-site visits.

While NodeMD can be considered stand-alone software, it is also presented as the missing link in a

complete diagnostic solution. Work in the WSN research community has offered several approaches that

coincide with this system, but do not directly address the diagnostic challenges presented in this thesis.

SOS [9] is capable of propagating new code images to a remote system. Several systems, including

Marionette [15] and Nucleus [14], are capable of requesting state information from a running system,

and the recent approach taken by t-kernel [22] prevents some issues that can potentially disable a node

in the field. While these systems address pieces of remote fault management, we have identified three
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components still needed to effectively address remote faults at run time: faultdetectionfault notification

and faultdiagnosis.

As an analogy, node debugging at the present is similar to a doctor treating a sick patient. The doc-

tor gives a best-effort diagnosis and treatment, but whether that initial treatment is correct ultimately

depends on how much information the doctor is provided. If a patient becomes very ill due to a misdi-

agnosis, an emergency trip to the hospital for additional treatment is much more costly than what would

have been needed had the first diagnosis been correct.

Similarly, remote sensor nodes occasionally require emergency treatment. The WSN community is

in a situation where emergency visits arealmostunnecessary, because we have a mail-order pharmacy

(SOS), blood tests (Marionette, Nucleus), and vaccination from the most common diseases (t-kernel).

But with only these pieces of the puzzle, we cannot completely avoid a need for emergency visits because

we are missing initial patient contact and timely diagnostic tools. Diagnosing a fault on a remote node

is equivalent to treating a patient who can speak very few words - it’s very difficult to tell if the node

is healthy or seriously ill. There is no equivalent ability, in the suite of tools available to the WSN

community, to a human patient that picks up the phone and reports “Doctor, I am not feeling well, these

are my symptoms and this is what I’ve done in the last few days”.

NodeMD is the last piece of the puzzle that is necessary to bring the analogy of a “remote doctor” to

the world of WSNs. With NodeMD providing the missing link, we can envision a complete system based

on keeping the “human in the loop”, in which problems with the software are brought immediately to the

attention of the programmer, good diagnostic tools are provided for timely diagnosis of the problem, and

once the problem is diagnosed and corrected, the capability to remotely update a sensor node with de-

bugged code. Ultimately the goal of our system is to bring node debugging from its current archaic state
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in WSNs and embedded systems closer to the level that exists in modern desktop computing systems.

The main contributions of this thesis comprise the following:

• Building a fault management system for WSNs that is capable of detecting a broad spectrum of

software faults at run-time

• Introducing detection and recovery/debugging algorithms that catches those faults so as to avoid

completely disabling the afflicted node

• Timely notification of the fault along with a brief diagnostic history of the events that led up to the

fault

• Continued interaction with the halted node to close the loop on the debugging cycle by including

a human programmer

• Resource-constrained solutions to all of the above

• A proof-of-concept implementation for several real-world sensor applications

The techniques proposed in this thesis are generalizable across many different systems and most of

them are not OS/application specific, but could be used in a wide context of embedded operating systems.

In Section 2, we discuss related work in fault management in WSNs. Section 3 presents the unified

system architecture of NodeMD. Section 4 introduces our suite of algorithms for detecting faults at run-

time, including stack overflow, deadlock, livelock, and application-specific faults. Section 5 discusses

our solution for entering the recovery/debug mode upon a detected fault and providing notification via

a compressed history of the events leading up to the fault. Section 6 introduces methods of allowing
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interactive debugging between a human and the remote node in the halted state. Finally, section 7 pro-

vides a detailed analysis of the current implementation in the Mantis OS [8] for several real-world sensor

applications.

2. Related Work

For sensor nodes in a wireless deployment or testbed environment, some systems are emerging that

provide limited visibility into fault behavior. The Sympathy system [13] focuses on debugging network-

ing faults, providing periodic reporting of various networking metrics to diagnose the reason behind

reduced network throughput. The approach is somewhat limited in its periodic reporting, though the

period can be adjusted, and does not focus on detecting software failures at the node level.

Nucleus [14], a deployment debugging system, was developed to resolve a lack of information when

live deployments fail. Its primary features are a robust logging system and on-demand requests for

information from nodes in the network. One essential aspect we have in common is our debugging

methods must persist even when the application fails. Nucleus stores “printf” style messages in a limited

buffer within main memory, and also writes them to flash memory to act as a sensor node “black box”.

Such messages are inefficient to store in main memory, considering storage size needed vs. amount of

information logged, and the slow storage of messages in flash may affect timing in the program if log

operations are called within timing sensitive code. Additionally, once a node has failed such information

is only available after the node has been retrieved.

Recent work done in t-kernel [22], a reliable OS kernel, takes an approach that ensures the scheduler

is always able to retake control from a thread. At a low level, each branch instruction first jumps to the

scheduler for verification before jumping back to the target address. In fact, this preemption technique
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would be useful to support some of the techniques proposed by NodeMD. t-kernel provides a “safe

execution environment”. However, t-kernel does not specify what algorithms to use for detecting faults

nor how to efficiently provide information to diagnose a fault.

Marionette [15] provides a mechanism to query the memory in nodes for their state. It is specific to

TinyOS, and does not focus on detection and notification of faults as they occur.

A variety of approaches for remote code updates in WSNs have been proposed, and are summarized

in [7]. These approaches can be roughly divided into a networking component that achieves reliable

code propagation, e.g. Deluge [10] and Aqueduct [11], and an operating system component that enables

efficient update of code images on a sensor node, e.g. SOS [9] or the ELF loader [23]. Our fault manage-

ment system is agnostic to the particular combination of mechanisms chosen for remote code updates. In

theory any of them could be reused in the proposed architecture. For example, the ELF dynamic modules

loader [23] was recently implemented inside of MOS to enable efficient code updates, the same platform

upon which NodeMD is implemented. Our focus in this thesis is not on these mechanisms, but instead is

on our innovation in fault detection, notification, and diagnosis, the missing links in fault management

for WSN systems.

3. System Architecture and Design Goals

NodeMD’s fault management system consists of three main subsystems that correspond to the system

shown in Figure 1. These subsystems are combined under a single unified architecture to provide an

expansive solution to run-time fault diagnosis in deployed WSNs.

• The faultdetectionsubsystem is designed for monitoring the health of the system and catching

software faults such as stack overflow, livelock, deadlock, and application-defined faults as they
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occur, signified by the ’X’ of the failed node in the figure.

• The faultnotificationor reporting subsystem is responsible for constantsystem-orientedlogging,

in a space and time-efficient manner, the sequence of events occurring in the system. This diag-

nostic history in the form of a circular bit vector is then conveyed in a notification message back

to the human user.

• The faultdiagnosissubsystem halts node and drops it into a safe debug and error recovery mode

wherein interactive queries can be accepted from a remote human user for more detailed diagnostic

information. Accepting and processing remote code updates can also be handled by this mode.

Figure 1. System architecture of NodeMD.

NodeMD must accomplish the above diagnostic features while achieving a variety of other design

goals. First, it is important that fault detection and notification be memory-efficient and low overhead in
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terms of CPU and radio bandwidth, to fit within the resource-constraints of deployed sensor nodes. This

has strong implications, such as the design to hold the event history in main memory versus external

flash. Second, the design of NodeMD should afford the human user flexibility to extend and customize

the diagnostic capabilities, e.g. in pursuit of a particular bug or class of bugs. For example, NodeMD

allows a user to define their own application-specific conditions for triggering the detection of a “fault”

and the subsequent halting of the node. NodeMD also allows users to request more detailed diagnostic

information when a node is in a halted but functional debug mode. Third, our goal is to introduce algo-

rithms and solutions that are generally applicable to a wide range of embedded systems. For example,

the stack overflow detection algorithm is applicable not just on thread-based systems like MOS, but is

also useful to detect aberrant behavior on event-driven single-stack systems like TinyOS.

4. Fault Detection

Detecting faults that can potentially disable a node is not a fully resolved problem in the context of

WSNs. This section presents work towards identifying fault-prone conditions and implementing detec-

tion algorithms to prevent such conditions from paralyzing a node.

Our system currently identifies three generic classes of high-risk faults to applications that are of

especial interest in sensor operating systems: stack overflow, livelock and deadlock, and out-of-bounds

memory writes. Support for detection of both application-specific and OS-specific faults is also added

in our implementation. Our design can expand to accommodate detection of other faults, but at present

we have focused on effectively detecting these general classes.

While many WSN operating systems follow event-driven models, some fault classes between event-

driven and concurrent systems are mutually exclusive. Typical problems in event-driven programming
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concern the need for non-blocking concurrency and run-to-completion code segments, which are implic-

itly addressed by multithreaded scheduling. While our detection system is designed for the prominent

issues in multithreaded systems, detection of some faults also applies to event-driven models, e.g. stack

overflow.

4.1. Stack Overflow

Due to the extremely limited memory available, e.g. 4 KB of RAM on MICA [6] class sensor motes,

we have identified stack overflow as a key suspect in software failure. Although stack usage can be

estimated by static analysis, used by some approaches [20] [24], data dependencies common in WSNs

make it difficult to choose a stack size that is minimal yet guaranteed never to be exceeded. Errors in

the code can also make static analysis invalid. In comparison, if static analysis is useful for finding a

“ballpark” stack size, stack overflow detection in NodeMD is a failsafe when the static analysis results

needs to be fine tuned.

Our challenge has been to design and build a lightweight detector that can catch stack overflow before

it causes further damage. Our approach does not assume any hardware-based memory protection, such

as an MMU, since such hardware support is frequently absent on the embedded microcontrollers typical

of sensor nodes. Our implementation makes detection of stack overflow relatively inexpensive, so we

can afford to call them frequently without using an excessive number of cycles. We are using an aspect-

based [1] approach for this detection, and believe that this is a practical approach due to few assumptions

about the code.

In order to understand what happens during a procedure call, we present an example of how the AVR-

GCC [25] compiler handles the initial entry point to a scope, usually a procedure. This is the compiler
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used for MICA class sensor motes that have the AVR family of microcontrollers. When a procedure

call is compiled using AVR-GCC, the compiler calculates the total stack requirements of a scope in the

first pass, and then during the second pass it generates instructions to add this value to the stack pointer

at the scope entry point. There are two conclusions we can draw from this behavior. First, when a

procedure is called, the stack pointer is instantly set to the maximum stack depth of the called procedure,

and consequently all stack values are referenced at reverse offsets from this pointer. Second, the stack

pointer will only increase at scope entry points. As a result, by checking stack overflow at these points

the detection algorithm is both exhaustive and efficient.

Figure 2 shows the stack at the entry point of a procedure with 2 parameters and 3 local variables.

Although locals 1, 2 and 3 are not yet defined, the compiler has determined that they will be defined

within this scope and has reserved stack space for them. As shown by this example, we can tell whether

a procedure will overflow its stack even before that stack space is actually used.

SP -> 0
<reserved for local 1>
<reserved for local 2>
<reserved for local 3>
return addr
old SP
param 2
param 1
....

Figure 2. Stack content after a procedure call, AVR-GCC assembly.

NodeMD implements a compile time preprocessor to insert stack checking code at the entry point

of every procedure in the application and supporting operating system (with a few exceptions, namely

the scheduler). Our approach is inspired by features offered by the AspectC++ language [1] and AOP
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[27], although we have used a custom implementation for robustness and to avoid several limitations

of AspectC++, including unnecessary overhead and language dependence. AspectC++ allows definition

of an aspectthat will execute code at a procedure entry and/or exit. On the backend it translates to

standard C++ by nesting each called function within a wrapper function that executes entry and exit code.

Unfortunately, the AspectC++ implementation roughly doubles the stack overhead due to additional

variables that are put on the stack during the wrapper’s call - these variables are not removed! We were

unable to avoid this behavior without modifying the AspectC++ compiler, so NodeMD implements a

parser for C files that inserts a procedure checking call within the target function itself.

The stack checking algorithm itself compares the current thread’s stack top to the stack pointer (SP)

just after a procedure is called. If the SP exceeds the thread stack top, calling the current function will

result in a stack overflow. Interrupts are addressed in the same way; at each interrupt handler entry, the

stack requirements are checked against the current thread’s stack top.

On the AVR (Mica2/Z) platform a red zone detection approach is not needed because the SP is only

volatile during procedure calls, which we exhaustively check. It is also important to note that using the

SIGNAL keyword to define AVR interrupt handlers avoids stack issues with nested interrupt processing.

Future adaptations will require compiler-specific algorithms, but an open research issue is whether an

efficient generic approach can be found.

Finally, since it is likely that several bytes of another thread’s stack have already been corrupted,

any further normal execution risks a memory error. Thus, when this case is detected, it’s critical to

immediately jump to error recovery code, i.e. a debug mode, and freeze the running state of the system.

This is discussed further in section 5.
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4.2. Deadlock and Livelock

Deadlock and livelock are cases where a node is still “alive” but is no longer responsive. Although

the node hasn’t experienced a fatal error and rebooted (as would be the case in a stack overflow) one

or more application threads has entered a bad state. In a multithreaded application, it’s assumed that the

loss of even a single application thread will likely result in a useless node.

4.2.1. DeadlockClassical problems in concurrent programming arise from interdependency. When a

piece of code blocks on a condition that will never be met, that part of the system isdeadlocked.

Common cases for deadlocks are a collective dependence on semaphores, mutexes, timer interrupts,

and data dependencies (the thread will unblock when the temperature has exceeded X degrees). Even

something as simple as a thread that is explicitly suspended but is forgotten to be resumed will deadlock

itself and possibly other parts of the system. Taking all these possibilities into account, an exhaustive

algorithm to determine a fatal co-dependency would seem to be, if not impossible, quite difficult to

achieve at run-time in resource-constrained nodes.

4.2.2. Livelock Livelockedcode, a situation similar to deadlock, differs because the code is not specif-

ically blocked but is unable to make forward progress. For example, a running thread will never pass a

while(1); statement, and is therefore livelocked. However, since the thread is not blocked but is instead

executing compare-and-branch instructions repeatedly, the thread can not be considered deadlocked.

While this example is extreme, the while condition could just as easily be waiting for a state machine

that will never enter the needed state again.

Many of the conditions that cause deadlock can also result in a livelock by polling on a condition

rather than blocking. In addition to the dependency issues noted for deadlocks, detecting livelock be-
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comes significantly more complex when livelocked code is within an interrupt disabled context. When

an application livelocks within an interrupt handler or atomic section, the scheduler is no longer able to

context switch, process timers, or have any control over system execution. Thus, even software solutions

used to detect and recover from this condition may not be able to run. While deadlock can run into this

same problem, the context switch initiated by a blocking call should leave the interrupt disabled context

anyway.

4.2.3. General Solution: Thread CheckpointsOur key observation of deadlock and livelock is that

they are two conditions with a common symptom: parts of the system are not running. Rather than ad-

dressing the causes of these conditions, our approach is to identify theirsymptomsand draw a diagnostic

conclusion based on those symptoms. The specific conditions identified by NodeMD are:

• Some threads deadlocked (partial deadlock)

• All threads deadlocked

• At least one thread livelocked

• One thread livelocked in interrupt disabled context

In a multithreaded OS, the symptoms of all but the last condition can be identified when a persistent

thread fails to repeat a sequence of code. In WSNs, applications are often duty-cycle driven due to

sensing and/or power requirements, which leads to repeated segments of code, within a while() block

for example. When either a deadlock or livelock occurs in that thread, none of the statements within that

loop will recur. Therefore the case we aim to detect is when a thread has noticeably stopped repeating.

Use of a hardware watchdog timer is the simplest way to detect this. If the watchdog is reset at

every iteration of a while statement, the system recovers itself when that reset does not occur. However,

15



applying a watchdog to a multithreaded system presents a challenge: how can a single timer ensure that

several threads are all executing properly?

Alternatively, the watchdog may be embedded within a low-level thread scheduler, but at a worst

case it is not fine grained enough to catch every instance of livelock and deadlock. Even at the best

case, a scheduler-based watchdog runs a serious risk of false positives because the scheduler must make

assumptions about the application (how long can a thread be unresponsive before it’s considered dead-

locked/livelocked?). Yet another extensibility issue exists due to the logistics of watchdogs. On our target

AVR (Mica2/Z) platform, the 8-bit hardware timers restrict the maximum watchdog length to 2 seconds.

After encountering all of these constraints our approach aspires to integrate a viable software solution,

while incorporating a hardware watchdog for additional reliability.

The solution proposed by NodeMD begins with an assumption that in a multithreaded OS we can

estimate the period of the thread, e.g. the time it takes for a while() loop to iterate. Duty cycles in WSN

applications are designed for relatively specific wakeup/sleep times. Combining the repetitive nature of

threaded applications, and the time constraints needed for a correct duty cycle, our assumption is that

we can base a thread “timeout” value on the approximate thread period. The application programmer

effectively states some constraints about the program, and NodeMD’s detection schemes determine if

those application constraints have been violated. While this requires some manual insertion of code, it

is a best-effort compromise that avoids assumptions about application timing.

Our implementation introduces the notion of a threadcheckpointto emulate the behavior of a hardware

watchdog. Each threadregistersone or more checkpoints to be expected, stored in either a hash table or

linked list. During registration the programmer specifies the expected period of this checkpoint. Next,

a setcheckpoint(&mycheckpoint) call is added to a repeated point in the thread, usually at the start
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of a while() statement. When a checkpoint isset, the current system real time is stored to a parameter

of the specific checkpoint, effectively timestamping the most recent thread period. As seen by the [#]

indicators in Figure 3, this approach requires only 3 additional lines per checkpoint. One other point

is that the value of C, the estimated time for the instructions not shown, can easily be overestimated,

resulting only in a slightly longer detection time. As long as the thread period is notunderestimated the

algorithm will work correctly.

#define sleep_time_a 1000
#define C <approximate cost of ...>

checkpoint_t mycheckpoint; [1]
void thread_a()
{

register_checkpoint(&mycheckpoint, sleep_time_a + C); [2]
while(1)
{

set_checkpoint(&mycheckpoint); [3]
...
thread_sleep(sleep_time_a);

}
}

Figure 3. Example checkpoint code.

Verifying the timeout of each checkpoint is done at the kernel level. At a periodic interval (preferrably

in a hardware timer), all registered checkpoints are compared to the current real time (CRT). Specifically,

if the difference between the CRT and the thread’s last timestamp exceeds the thread’s timeout value,

our algorithm assumes the thread has livelocked or deadlocked and enters error recovery code. NodeMD

currently enforces a default timeout equal to 2*period, but the multiplier can be set differently at compile

time.
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Notice that this solution does not account for the final detection case, in which a thread is livelocked

with interrupts disabled. In this situation control flow is never released from the running thread. The

system hardware timers are crippled, and the scheduler cannot initiate a context switch or process any

software timers, both of which prohibit the detection algorithm from running.

To solve this problem, NodeMD incorporates a hardware watchdog as a second tier in ahierarchical

protection scheme. While checkpoints in software ensure the correctness of each thread, the watchdog

is enabled and is then reset each time the detection algorithm executes. If the detection algorithm is

ever unable to run, such as when an interrupt disabled livelock occurs, the watchdog acts as a safety

mechanism and enters recovery code once the node has reset. One of the limiting factors of the AVR

watchdog is its 2 second maximum timeout, so the detection algorithm needs to have a more frequent

period than the watchdog limit.

Unfortunately, part of our diagnosis is based on the preservation of main memory, which is lost when

the hardware resets. An area we’re still exploring is whether references to main memory can be saved to

non-volatile storage and used to access the old data. If the memory on a platform is not zeroed after a

watchdog reset, and we provide static heap locations for separate system components, it may be possible

to save the volatile areas we’re interested in (as that static memory would always be at the same place

and would not overwrite volatile memory). Implementation success will likely vary on a platform-by-

platform basis, so this is proposed as a best effort solution.

Finally, it should be noted that NodeMD’s detection method is not a time-critical approach. The dead-

lock or livelock has already occurred when it is caught. We do not believe that this is a big limitation, as

the system catches the fault soon thereafter and is able to drop into a debug mode that enables continued

interaction with the node. In summary, deadlock and livelock do not paralyze our NodeMD system.
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4.3. Illegal memory access

A recent approach to software memory protection has used memory maps and permissions to ensure

the validity of memory writes [2]. Validating a memory access in this implementation was determined to

cost 66 cycles, which translates to a fairly modest cost is applications that are not memory intensive, i.e.

Surge. Although the memory protection cost is high when applied to memory intensive applications, we

believe that this approach is viable because the algorithm could be enabled only for debugging, and then

disabled once the code causing the memory fault is fixed. NodeMD is capable of supporting detection

of illegal memory writes, though we have currently focused our efforts elsewhere on more unaddressed

aspects of fault detection.

4.4. Application-specific faults

Many data integrity rules to WSN applications are domain specific. An example is temperature in a

weather observation system, which should not report values outside of a logical range, or report rates of

change that are too rapid. Incorrect data typically indicates a sensor hardware fault.

Our system supports an API that the application programmer can call when custom code detects that

domain-specific constraints are violated. Our implementation currently introduces the ASSERT(condition)

macro to validate that certain application constraints are not untrue. This is similar to the approach in-

troduced by Design by Contract [12], but would not kill a program. Instead, since WSN applications are

single process, the application jumps directly to error recovery code.

Although on the surface this looks like “just plain asserts”, there are proposed methods for designing

software in a way that uses assertions to the maximum effect. One example of such work is Design by

Contract [12] mentioned above, which uses assertions to verify method preconditions, postconditions
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and/or invariants.

As an example of assertions in the application specific domain, a weather observation system could

check that gradients in temperature change are within expected limits, and that the behavior of a particu-

lar node is consistent with the network (e.g. if a single node among 10 nodes in the space of 1 square mile

is detecting a temperature that is 30 degrees centigrade lower than other sensors, the sensor is probably

broken).

We believe that this custom detection and its interaction with the system is one of the areas where

significant additional research can be done.

5. Fault Notification

For many complex problems that arise in debugging, human interaction is often the only reliable way

to address many software issues. Therefore, when a fault is detected we desire to relay a diagnostic

profile of the faulty node to the application programmer in order to help diagnose the cause of the fault.

Retrieving fault information poses perhaps the most difficult challenge to any WSN debugging system.

With a wired interface, JTAG debugger units provide a multitude of information to any connected node.

This solution is practical for a handful of nodes, but to debug an entire deployment we need a JTAG unit

for each node. At a cost about three times that of the actual sensor node [21], using a JTAG adapter for

every node in a testbed is simply not practical. In addition, the use of JTAG units does not expand to

purely wireless environments.

Conventional string logging is a more commonly used approach for wired devices. While string log-

ging is viable for some debugging, there are several significant limitations. Each character in a printed

string is sent sequentially over the serial line. At the maximum speed of a serial line, 57600 baud, send-
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ing each byte takes 2.8 ms, not including the overhead in software [17]. In general, sending strings on

the serial line is likely to change the timing of the program and as a result mask or alter timing dependent

problems. It’s not uncommon for an embedded program to run correctly with several “printf” statements,

only to fail when they are taken out.

Additionally, serial transmission is an interrupt driven operation not compatible with much of the

interrupt disabled code we have in WSN operating systems. Although polling implementations can be

used, this introduces its own subset of problems. While messages can be buffered and sent at a later time,

the buffer space needed to store string messages in main memory conflicts with the memory conservation

WSN applications require. Frequent propagation of messages over a multi-hop network substantially

increases the cumulative costs in both time and energy consumption.

We instead present a solution that is minimally intrusive to the running application yet offers a rich

set of diagnostic information designed to identify how and why an application faulted.

5.1. Maintaining a streamlined diagnostic profile

Once a fault is detected, a key design issue is what information to send in the error report. Should only

a summary of the information be presented to the human? If so, which information should be included in

the summary? Another observation is that a snapshot of the current state of memory may be insufficient

to diagnose certain software faults. The history or profile of behavior leading up to the fault may also

need to be preserved, e.g. the sequence of function calls that resulted in the software fault, not just the

current call stack. This opens up a variety of issues, such as how much recorded history to store and

where to store it (in RAM, in-chip flash, external flash), how to compress that history in memory-limited

systems, and what historical information and events will be most useful to which types of faults.
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The solution NodeMD implements is to keep an execution trace of recent system events within a

circular bitmap, similar to work found in ARTS [18] and the Wind River System Viewer [19]. Each

defined event can be described as a unique order of bits, and compressed to a length dependent on the

number of combinations needed to express all recorded events. Events are encoded in compressed form

and entered into a circular buffer in main memory. When memory allocated to the buffer is exhausted

we begin overwriting the oldest events first. One important thing to note is NodeMD avoids using flash

memory because the expensive write instructions do not facilitate frequent log messages.

Which events in the system are recorded depends to some extent on the application domain. We have

identified a set of 15 significant events that we have found to paint a fairly accurate picture of execution

history. These include procedure entry/exit, thread behavior (context switches, blocking, sleeping), timer

behavior, and interrupts. Most events are logged at various levels in the operating system, however our

parser discussed in Section 4.1 also adds debugging code to the application when necessary.

In addition to the system defined events, some application specific events can be added to help di-

agnosis. While in the system domain it makes sense to log a semaphore operation, in the application

domain it may make sense to log particular events related to application behavior, e.g. “I think the fire

is starting” in the case of a fire control system. Due to that, the system has the ability to log custom user

events that are more configurable than the implicit system level logging.

There is a memory trade off between the detail of events logged and the length of logging that is

possible. Long event traces (e.g. last 5 minutes of running) are useful when trying to determine at what

time a fault occurred, but if there are not enough details in them to know exactly what happened, they are

not useful enough to resolve the fault. Although we do not write in flash memory due to the performance

impact, NodeMD could be modified to allow for writing the event queue in flash memory, allowing for
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much larger buffer sizes at the expense of execution times.

At the moment, our implementation supports event logging in RAM. Initial experiences with this

system suggest that our design choices provide enough detail and that the event buffer is large enough

to record enough information about errors. A more detailed analysis of NodeMD’s event logging and its

effectiveness in conjunction with other system components is described in section 7.

In addition to what is implemented so far, we predict that a useful function would be to allow the

equivalent of a request to “preserve the buffer at the moment when this pattern is encountered, and stop

logging once when buffer space is exhausted”. This would allow us to createsnapshotsof situations in

which the error occurs a long time before the node enters debugging mode (e.g. error manifests as crash

10 minutes later), and would allow us the maximum amount of usable data in the event buffer, at the

expense of debugging information before and long after the set time.

5.2. Entering a debug mode

Our system is designed to enter a “debug mode” that will take effect when a fault is detected. Before

a node enters a faulty state, it jumps to a sequence of methods responsible for stabilizing and preserving

the state of the system. This mode could alternatively be initiated at any other time with a specific

network command. For the the system faults addressed in this thesis, we believe we have solutions to

the previously identified faults that ensure that the notification is properly sent.

In addition to this, any memory location (including complete memory dump useful for debugging on

simulators) could be sent on user request. However, as the complete memory picture is expensive to

transmit over a wireless network, this information will be sent only at the request of the human operator.

At the time of the fault, a set of initial error recovery code freezes critical parts of the system to avoid
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issues that might arise from the fault, such as a context switch after a stack overflow. Certain application

modules are then reinitialized in software to ensure critical operations, such as networking needed for

notification, will be possible even if an error occurred in that module. For example, if the application

fails inside a call to the radio driver, it’s likely that the mutex held by that call would not be released

until the driver was essentially “reset”. NodeMD takes a software solution to resetting OS components

in order to preserve the main memory as much as possible.

After the initial code, NodeMD enters a debugging state with bi-directional communication. A faulty

node uses the wireless network to inform the human that the system is in a faulty state and upload the

available crash information. Given that the event trace is large enough to span several packets, the initial

content of this information is limited to the direct cause of error and the event trace itself. Following the

first upload, the node will remain in a duty-cycled standby state waiting for instructions. While NodeMD

has a limited implementation of this debugging mode, open research issues include whether jumping to

this mode could cause parts of the system at the time of the fault to be lost, and whether certain faulty

states could interfere with the correct operation of the debugging code. Additionally, there is a great

deal of post-analysis research still to be done regarding reliable network communication between the

programmer and a node in debugging mode.

6. Fault Diagnosis - Closing the Loop

The final piece of the architecture is enabling interaction between the human user and faulty nodes in

the system. Our system permits two forms of data to be sent to the faulty node, namely queries for more

detailed information and updates containing new code. For example, our system is open to retrieving an

entire memory dump from a faulty sensor node along with any logged diagnostic information. In terms
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of remote code updates, our intent is to choose a reasonable combination of reliable code propagation

and degree of operating system modularity to enable dynamic reprogramming. The prior work in this

area [9, 10, 11] offers many options for implementing this functionality. .

6.1. Remote Debugging

When the debugging mode is initialized, the node is effectively in a remote debugging state and the hu-

man is able to perform several actions. By tweaking the monitoring parameters more information about

the fault can be collected (e.g. increasing the size of the event bitmap, and amount of info collected). The

node can be restarted to replicate the error and take the new parameters into effect. If more information

is still needed, an entire memory dump can be transferred from the sensor node to the human. However,

this is an expensive operation because a Mica2/Z node has total of 4 KB of RAM [6], and packet sizes

are typically fewer than 50 bytes. This becomes significantly slower and more costly if a faulty node is

multiple hops away from the base station.

Our controls allow the human to obtain all available fault information on a node, and at the same time

avoids unnecessarily straining power consumption of the node and network (as would be a case if an

entire memory dump were initiated). At the same time, it allows on-demand transfer of all information

to the human, allowing the human to balance how usable the information is versus how much strain its

transfer puts on system resources.

6.2. Code Updates

The Mantis research group is currently working on an implementation that modifies MOS to support

dynamic loading of modules as a means of efficient code updates. The MOS system has been supple-

mented with a thread whose task is to act as an ELF loader [23]. This work is an ongoing collaboration
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with the Swedish Institute of Computer Science (SICS). Once this is completed, our implementation

of NodeMD in MOS will be able to leverage this mechanism for integrating a method for remote code

updates.

7. Implementation and Experimental Analysis

To evaluate the effectiveness of NodeMD, we present our implementation results from the use of

NodeMD in the Mantis OS (MOS). All of our experimental results are based on this MOS implementa-

tion; however the system is not inherently tied to any OS. Notification and diagnostic schemes proposed

in this thesis could be implemented in any operating system, and although fault detection schemes pro-

posed are tailored towards multithreaded OS’s, some of the general techniques are applicable to event

driven models as well.

7.1. Detection of Discussed Faults

With respect to the detection of deadlock, livelock, stack overflow and application-specific faults,

the implementation of NodeMD is able to successfully detect the target conditions presented in earlier

sections.

In our experiments we are able to implement several cases of stack overflow, all of which are imme-

diately detected with an accurate event history leading to that stack overflow. In an ironic twist, while

testing the system for deadlock recovery, a bug in the recovery code caused a stack overflow. Although

the recovery code was not expected to analyze itself and this scenario was unintentionally encountered,

NodeMD’s stack overflow detection correctly identified the problem.

The exhaustive approach in our stack overflow detection should always detect cases of stack overflow
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without the risk of false positives. Though any stack space needed by the detection implementation itself

must be taken into account, our implementation in MOS incurs no such costs.

Section 4.2.3 identifies four specific cases all classified under the terms deadlock and livelock: com-

plete deadlock, partial deadlock, livelock, and interrupt-disabled livelock. For each of these conditions

we evaluated NodeMD’s checkpoint-based algorithm on a binary scale: either the deadlock/livelock oc-

currence was caught, or it was not. Our tests use a simple application to reproduce conditions leading to

these cases.

The test application starts a set of threads programmed to either run correctly, or encounter one of the

problems above. The checkpoint-based approach was able to accurately detect the presence of all cases

with 1, 2 and more than 2 threads in combinations of complete deadlock, partial deadlock and livelock.

As for false positives, due to how algorithm works, if correct thread periods are specified, the algo-

rithm will not incorrectly report a deadlock or livelock. However, the responsibility for estimating this

value is left entirely to the application programmer.

Keeping in mind that this algorithm is an extension of the standard watchdog timer approach to de-

tection of deadlock/livelock (by allowing the equivalent of multiple watchdog timers with only one

hardware timer), it is not surprising that it has characteristics similar to watchdog timers. Namely, the

avoidance of false positives, and capturing the occurrence of deadlock or livelock within a time bound

equal to the sum of the failed thread’s period and the periodic interval of the checking algorithm.

Our current implementation was able to detect when an interrupt-disabled livelock case occurred.

This is probably the least common deadlock state, as systems are spending the majority of their time

with interrupts enabled. For this case our implementation is limited to only entering the debug mode, so

notification of this situation is possible but the previous state of memory is not preserved.
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Correctly diagnosing when an individual case of deadlock/livelock has actually occurred has also

proven to be dependent on the event trace. Since NodeMD’s checkpoint-based detection algorithm is

based on providing information to the human, it expects a programmer to correctly interpret the data in

order to diagnose the problem. Is the provided data sufficient for fault diagnosis? Experience from the

hard real-time community using similar tools [19], [26] indicates that similar systems have definitely

benefited from those tools similar to NodeMD, and determining what additional event categories would

be useful becomes the point in question.

It is very difficult to design an experiment that measures effectiveness in a general case, but the fact

that the combination of hardware watchdogs and event traces have been used for a long time in the hard

real time community [19] attests to their usefulness in practice. In addition, NodeMD provides more

information than what was available to the programmer beforehand, including how deadlock detection

location corresponds to the code.

7.2. Event Logging - Detailed Analysis

Using the compressed trace described in section 5.1, our implementation of NodeMD uses 4 bits for

each logged event in the system. Using binary bit patterns we have 24 (16) possible events. Application

behavior is modeled by the following set of default events (also listed verbatim in Appendix A):

• Context switches

• Procedure calls/returns

• Hardware interrupts

• Thread blocks/unblocks, both explicit and OS directed, i.e. interrupt driven devices
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• Software timer sets/fires

• Thread sleep/wakeup behavior

• Creating and exiting threads

Figure 4. Example application and corresponding trace data.
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In Figure 4 we can see how the C code in a simple mos application corresponds to an event trace

received when a fault occurs. In the code, we see two threads, start and blinka, respectively identified

by blue and green color coding. The trace below has also been color coded to represent the high level

relation of traces to system code, and line numbers have been added to traces where we can approx-

imate the application-level cursor. We can clearly identify different running thread contexts, context

switches, and kernel routines for thread scheduling and power management. Note that in this example

the ASSERT(0) statement simulates the failure of an application-specific fault. We will describe a more

complex example in detail further in this section.

At line 8 the blinka thread sets a BREAKPOINT trace code in order to help identify key locations in

the application code. “Breakpoints” can be inserted anywhere in code as a “find me” for the programmer,

which helps to provide correspondence between code and event traces. In Figure 4 we see this breakpoint

appear as the last trace before the error. Since we know where the breakpoint was inserted (which in other

cases will likely be compounded with nearby events) we can conclude where the error occurred.

One issue we’ve encountered is the ambiguity when changing contexts between several threads, as

opposed to this case which has only two threads. After a context switch occurs, it’s often very difficult

to tell which thread is currently running in the trace, especially when those threads have very similar

behavior. Part of the optimization needed by our run-time logging is a trade off between the amount of

history to record and the detail of each record. The requirements will vary widely on an application-

specific basis, so we allow the application to configure such parameters as buffer size and bits per trace

code. A flag at compile time could allow the scheduler to set a trace at each context switch indicating

which thread is now running. Alternatively, application programmers can increase the number of bits for

each trace code and use new bit patterns at their own discretion.
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During our implementation we uncovered an event trace of an actual legacy bug in MOS, previously

only detectable by unpredictable node behavior and manual code analysis. Recently, several MOS pro-

grammers had identified this bug, where certain MOS code would unknowningly initiate a context switch

while within an interrupt handler. Specifically, when an interrupt handler posted a semaphore that un-

blocked a thread, the kernel would initiate a thread dispatch to immediately process the unblocked thread

(if that thread was at the front of the ready queue). In most cases, this would not pose a problem because

a blocking operation in the newly running thread would immediately context switch back to the han-

dler, which would then exit. However, under certain conditions, MOS programmers reported a visible

1 seconddelay would occur between the entry and return from an interrupt handler. While that specific

example is not available, we identified the occurrence of this phenomena while testing this system. The

before-and-after traces from the bugged code and then the corrected code are shown in Figure 5.

Figure 5. Before-and-after traces from a bug in MOS, where an application could
unknowningly context switch out of an interrupt handler.
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Notice the highlighted traces in the first trace section. Areas in red are running within the interrupt

handler, areas in yellow are outside of the handler. When a timer fires [48], it’s handler procedure is called

[49] and the semaphore is posted [50] (unblocking a thread waiting for that semaphore). Immediately

we recognize the system context switch out of the handler [51]before the trace reports a procedure

return. This indicates our handler has not yet returned, which results in several unpredicted conditions,

one of which is the new running thread remains in the interrupt disabled context initiated by the handler.

Fortunately within a few instructions the other thread goes to sleep [53] and context returns to the handler

[54], which then returns [55]. Clearly there could have been a serious context error if the external thread

did not block immediately.

In the second trace section, the same set of code is run after the OS bug is fixed. Since the section

highlighted in red contains the entire interrupt handler routine, and does not incur a context switch, we

have verified that the bug has been fixed.

Finally, while the traces shown are true to the actual execution in most cases, the events in this model

are implemented within MOS on a best-effort basis. One thing we do not include are scheduler interrupts

(occurring every 1 ms in MOS), and instead record occasional behavior resulting from those interrupts,

such as context switching or software timer processing. Recording a trace every 1 ms may be realistic,

but since it would rapidly overwrite any useful data in the buffer, logging such interrupts defies the

practical goals of this system. However, if an error directly related to that interrupt were to occur, we

would be unable to visualize that error in the trace.
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7.3. Event Trace Evaluation

One of the most difficult questions posed by our system is the optimal event trace size. How can

we most efficiently use our limited memory to log only useful data? In some cases simply covering all

events within the period of each thread is acceptable, in others more extensive information is necessary.

In general, the factors that influence our buffer “burn rate” are entirely application specific: the number

of threads and software timers, the number of function calls within each, and even the types of functions

called all determine the required size for a certain time window.

Table 7.3 identifies the number of traces logged by MOS routines commonly called in sensor applica-

tions. Several expanded event traces for these functions can be found in Appendix B.

Routine Traces Required
mos led on 2
printf 13 + n chars
dev read (TEMP) 18
com send (CC2420) 23
com recv 31
com recv timed 32 (success)
com recv timed 12 (timed out)

Table 1. Trace requirements for common application-called routines in MOS.

As a case study, let’s describe the sensor networking application used in the FireWxNet deploy-

ment [4]. This is a very complex application encompassing nearly all of the features in MOS. Within

the application, two threads are spawned. In the first, data is read from 4 different sensors into a packet

buffer that is sent over the radio every 1 second. The other thread repeats a blocking receive on a 5 sec-

ond timeout. During the execution of these threads, a wind sensor hardware interrupt fires periodically,

and three software timers retrieve data from the wind sensor, update the neighbor table, and handle state
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transitions for power management. After 1 minute of awake time, the node changes to a low power sleep

state for the next 14 minutes.

In our experiments, processing a single iteration of the sending and receiving threads, plus all con-

current timers, requires approximately 250 traces. Even one iteration of just the sending thread, without

timers, requires 98 traces, resulting from several devread() calls and a comsend(). Given that the sched-

uled awake time for this duty cycle leads to at least 60 iterations of the sending thread, logging the entire

awake period is outrageously expensive - around 6000 traces, or 3000 bytes using our approach.

However, many conclusions can be drawn from only the most recent events. A stack overflow trace

showing a series of function calls without any returns may be due to an unintentional recursion. On the

other hand, a stack overflow showing relatively normal behavior indicates that the allocated stack size

was probably too small, and certain conditions lead to a slightly higher requirement than expected.

Alternative methods for determining buffer sizes presents an interesting topic for future work in this

area. A static analyzer could be incorporated into the system for optimal buffer size allocation. Using a

database of trace sizes expanded from the limited example in Figure 7.3 and a set of basic requirements

for application programs, a rough estimate for buffer space used per time could be determined. Addi-

tionally, allowing for selective logging of only particular events and for “freezing” the buffer content

after particular patterns of events has occurred (as suggested in section 5.1.) would allow the available

buffer space to be utilized for the time period with the most useful debugging information.

7.4. Success of Error Reporting

As part of the ongoing implementation of NodeMD in MOS we have a rudimentary implementation of

the error recovery and debugging mode. Currently, calling mosdebugerror report(...) (described further
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in Appendix A) spawns a high priority “debugging” thread that begins the following error recovery

sequence:

• Globally disabling interrupts

• Globally disabling trace debugging to freeze the contents of the event trace

• Calling several init functions, e.g. cominit() and cc2420init() to free any potentially locked mu-

texes in the radio driver.

In the original design, code that detected a fault immediately jumped to this recovery sequence, rather

than spawning a thread. This approach posed a problem when the calling context was using close to its

maximum allocated stack space, especially when the fault was detected in an interrupt handler, which

requires additional stack space for the handler overhead. Under the right conditions, we found that it was

possible for statements in the recovery sequence and later instructions to overflow the calling contexts

stack. Using the standard MOS memory allocation scheme, where thread stacks and heap memory grow

from opposite ends of memory, corrupted memory from this overflow is most likely allocated to another

thread stack. The debugging mode is designed to be single threaded, and therefore any corrupted memory

in other thread stacks should not be touched. However, we concluded that haphazardly using memory is

probably a greater risk to the system than initializing a thread (which has it’s own risks, namely the need

for an additional thread stack in a system that may already be out of memory).

By reinitializing the device drivers without resetting the OS itself, critical components effectively un-

dergo a “soft reset”. Any memory in these drivers should also be freed and reallocated, but an alternative

would be to doubly allocate the reinitialized memory and completely avoid manipulating memory asso-

ciated with the faulty node state. However, the most efficient way to safely reset and reinitialize a faulty
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node is still an open ended research topic.

As part of the debugging mode following this sequence, NodeMD repeats a send-receive-sleep cycle.

Since the event trace likely contains the crucial debugging information, the entire trace is broadcast

using several packets formatted using a standard MOS network packet header, a NodeMD debug packet

header, and a 30 byte debug payload. The packet format does imply that several packets will be needed

to send the entire trace, and this should be accounted for at a potential receiver. After the broadcast,

NodeMD’s debugging mode waits a few seconds for a response, and then drops into a low power sleep

state. The process repeats itself when the node wakes up. While the integration of a multi-hop debugging

interface is still in development, the described mechanism achieves one of this thesis’ primary goals: the

ability to export information from a faulty node.

Using this implementation, the proof-of-concept capabilities support the use of a dedicated “debug-

ging base station”. To demonstrate, in Figure 6, three nodes (in green) are deployed in a 1 hop network,

where node 3 is the base station. Adjacent to this deployment is a sidelined node 4 (red), acting as a re-

ceiver for debug formatted packets. This node can report information it hears to a connected PC. When

the deployment is healthy, this base station receives no packets. If node 4 is in listening range when node

2 encounters a fault, it will hear the broadcast debug packets and forward those along the connected

interface. If node 4 receives any requests from the connected interface, it forwards those requests back

to node 2. In our experiences, the diagnostic information received using NodeMD in this manner is very

helpful for lab debugging.

As a final note, much of this work with error recovery and the debugging mode is experimental. Not

all of the benefits and costs of the proposed solution are clear, due to limited real world experiments,

but this method has been successful for fulfilling the objectives of this thesis. Future Mantis research
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Figure 6. An example of how NodeMD error reporting can be used with a dedicated
“debugging base station”.

on reliable error recovery will conclude whether a more optimal solution can be found. NodeMD is

designed to evolve with further innovations in related research.

7.5. General Overhead

How do our algorithms actually impact system performance? One of NodeMD’s primary objectives

is to remain lightweight and as unintrusive as possible to the underlying application and OS. Evaluating

the simplest blinkled application against the FireWxNet application from our case study, the require-

ments of NodeMD are quite reasonable. For reference, the blinkled application uses a single thread to

frequently toggle an LED (the FireWxNet code is described in the above section). Table 7.5 shows a

comparison between the original data in MOS followed by the compounded overhead with NodeMD

included.
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Application Original MOS NodeMD Included
blink led RAM 585 887
blink led ROM 25212 28768
FireWxNet RAM 780 1072
FireWxNet ROM 30204 34470

Table 2. Overhead analysis in MOS, see text for details.

Using these results we see an increase in main memory requirements corresponding to 92 bytes +

the trace buffer size + 10 bytes per checkpoint. These experiments assume 1 checkpoint per application

thread, which translates to an extra 10 bytes in the blinkled application and 20 bytes in the FireWxNet

application. The 92 bytes of static overhead is accrued from necessary globals in the implementation,

including a 67 byte packet buffer. We also see an additional∼14% increase in program memory for

both, a result of the parser-added debugging code. The added amount is dependent on the complexity of

the application. Given the features added by NodeMD, and the flexibility to tailor several trace buffer

details to minimize overhead, we argue that the requirement costs of NodeMD are far outweighed by its

contributions.

One of the important qualities of the logging system is that it does not impact program timing in

substantial way. In effect, each log operation takes either 43 or 79 cycles, depending on whether the log

crosses a byte boundary or not. Although it is possible that this is enough to change program timing, this

is a fairly small number. By comparison, calling the mosled on() function costs 35 cycles. Therefore,

writing a trace in MOS is roughly equivalent to turning on one or two LEDs, which is essentially invisible

to the application.

The algorithm itself is a straightforward sequence of instructions and is unlikely to dramatically

change the order of execution, as opposed to a printf statement that initiates several blocking opera-
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tions, context switches, and hardware interrupts.

Likewise, the detection of stack overflow uses only 32 cycles to check the stack at each function call,

which is even less likely to noticeably impact timing.

Although exhaustively checking procedure entry points and frequently calling traces can become ex-

pensive, generally WSN applications are considered to have a relative abundance of CPU cycles [22].

The FireWxNet application spends the majority of its awake cycle idling; waiting for software timers,

data available on the radio, and data available on the ADC. Therefore the cycles added by NodeMD

should not introduce substantial timing delays due to CPU processing latency.

8. Future Work

We have identified several key areas for future work as we have presented the thesis. In addition,

NodeMD needs more in situ testing, in order to prove its capabilities in deployed environments. We

plan to instrument a WSN field application in the coming months with NodeMD. We would like to be

able to assess the accuracy of such a NodeMD deployment in capturing bugs that occur in the field. We

would also like to demonstrate the generalizability of the proposed detection algorithms and notification

architecture of NodeMD to other embedded OS’s such as micro-C OS.

9. Conclusions

This thesis has described NodeMD, a comprehensive system implementation for detection, notifica-

tion, and diagnosis of software failures in remote wireless sensor nodes, thereby minimizing the need

for on-site redeployment of failed nodes. NodeMD is capable of detecting a broad spectrum of soft-

ware faults as they occur and before the completely disable a node, including stack overflow, deadlock,
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livelock, and application-specific faults. We present specific novel detection algorithms: aspect-based

stack overflow detection; and application-defined threadcheckpointsthat act as custom watchdog timers

within each thread. We introduce a debug mode that halts the embedded system upon detection of a

failure, and notifies a remote user via a summarized event trace in the form of a bit vector. Our sys-

tem permits interactive queries from the remote human user for more diagnostic state information. We

present detailed implementations and experimental analysis of all of our fault detection algorithms on

real-world applications such as the FireWxNet. We observe that NodeMD has already captured two

real-world bugs in the Mantis OS.
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10. Appendix A - New debugging function calls added to MOS

10.1. Event trace function calls

void mos_debug_set_trace(uint8_t code);

Sets the trace code in the event trace, where code< DBCODE MAX SIZE.

void mos_debug_clear_trace();

Clears the event trace and sets the system trace cursor to &debugtrace[DEBUGTRACE START].
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10.2. Default trace codes defined in mosdebugging.h

#define DBCODE_CONTEXT_SWITCH 1
#define DBCODE_PROCEDURE_CALL 2
#define DBCODE_PROCEDURE_RETURN 3
#define DBCODE_INTERRUPT 4
#define DBCODE_THREAD_BLOCK 5
#define DBCODE_THREAD_UNBLOCK 6
#define DBCODE_TIMER_SET 7
#define DBCODE_TIMER_FIRED 8
#define DBCODE_THREAD_SLEEP 9
#define DBCODE_THREAD_WAKEUP 10
#define DBCODE_NODE_SLEEP 11
#define DBCODE_NODE_WAKEUP 12
#define DBCODE_THREAD_NEW 13
#define DBCODE_THREAD_EXIT 14
#define DBCODE_BREAKPOINT 15

Trace code 0 is reserved for the current trace cursor, however this is an implementation specific detail.

10.3. Checkpoint function calls

void mos_debug_register_checkpoint(debug_checkpoint_t *cp,
uint32_t ms);

Initializes checkpoint ’cp’ with a millisecond timeout 2*ms and inserts it into the checkpoint list. If a

checkpoint is already on the list this function has no effect.
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void mos_debug_set_checkpoint(debug_checkpoint_t *cp);

Searches the checkpoint list for checkpoint ’cp’, and if found timestamps cp to the current system real

time.

10.4. Checkpoint data structure

A checkpoint in MOS is defined by the following C data structure

typedef struct debug_checkpoint_ {
uint32_t timeout;
uint32_t timestamp;
struct debug_checkpoint_* next;

} debug_checkpoint_t;

43



10.5. The assertion statement

Using the ASSERT(condition) macro defined below, application programmers can detect when application-

specific constraints are violated.

#define ASSERT(condition) { \
if(condition) \

mos_debug_error_report(SIGNAL_ASSERTION_FAILED); \
}

10.6. System debugging functions

void mos_debug_check_stack();

Calls the stack checking algorithm, inserted at compile time to the entry point of each MOS function

call (with a few exceptions, e.g. the scheduler).

void mos_debug_status_check();

Called from the 1 ms hardware timer in the MOS scheduler once every 1500 iterations (1.5 seconds),

the status check algorithm verifies that no threads are livelocked or deadlocked. Specifically, the function
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traverses the list of registered checkpoints and ensures mosget realtime()< (timestamp+timeout).

void mos_debug_error_report(uint8_t signal);

Spawns a thread that initializes the error recovery mode and enables remote debugging.
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11. Appendix B - Detailed Event Traces From Table 7.3

11.1. mosled on - 2 traces

void mos_led_on(uint8_t led)
{

PORTA &= ˜(1<<led);
s |= (1 << led);

}

In a simple function like mosled on, the event trace will only log the procedure entry and return

markers.

procedure call
procedure return
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11.2. comrec timed

This function is a blocking receive on the CC2420 radio. When called, the function blocks until the

radio’s “data ready” interrupt fires, or the timeout alarm expires, indicating the function should no longer

wait for data.

static mos_alarm_t timer;
comBuf *com_recv_timed(uint8_t iface, uint32_t msecs)
{

<variable declarations, initialization, and parameter error checking>

// If the interface is not in use, start the timeout alarm and block
if(if_bufs[iface] == NULL) {

<timer initialization>
mos_alarm(&timer);
if_threads[iface] = mos_thread_current();
mos_thread_suspend_noints(int_handle);
int_handle = mos_fast_mutex_lock();

}

if(current.timed_out || !if_bufs[iface]) {
if_threads[iface] = NULL;
mos_fast_mutex_unlock(int_handle);
return NULL;

}

// Grab the first buffer on the list and shift the head pointer
buf = if_bufs[iface];
if_bufs[iface] = buf->next;

// Take this thread out of the table and unlock the mutex
if_threads[iface] = NULL;
if(timer_enabled)

mos_remove_alarm(&timer);
mos_fast_mutex_unlock(int_handle);

return buf;
}
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This is the corresponding trace for a successful receive.

10 procedure call
11 timer set
12 thread block
13 context switch
--- 14-37 within cc2420 interrupt handler (not shown) ---
14 interrupt
15 procedure call
16 procedure return
17 procedure call
18 procedure return
19 procedure call
20 procedure return
21 procedure call
22 procedure return
23 procedure call
24 procedure return
25 procedure call
26 procedure return
27 procedure call
28 procedure return
29 procedure call
30 procedure return
31 procedure call
32 procedure call
33 procedure return
34 thread unblock
35 procedure call
36 procedure return
37 procedure return
---
38 context switch
39 procedure return

To explain the majority of this trace without the interrupt handler code, the lengthly sequence of

procedure calls within the interrupt is the swapping of data from the hardware data buffer into a MOS

com buffer. When all of the data has been swapped, the interrupt unblocks the receiving thread and

returns.
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The second figure is the event trace after a comrecv timed has timed out.

10 procedure call
11 timer set
12 thread block
13 context switch
14 timer fired
15 procedure call
16 thread unblock
17 procedure return
18 context switch
19 procedure return

In this second trace we see the timeout expire and the entry point to the timer handler unblock the

receiving thread (and also set the current.timedout value). Note that the procedure call immediately

after the “timer fired” event is actually the timer handler (also not shown) executing, and the procedure

return at trace 17 is the return instruction from the handler.
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