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1 Introduction

A random walk is a particular type of stochastic processes. The idea of a random walk generally is to
study the path of something that is random. To study a random walk, we need to define the states and
the probability transition. The states are all the possible values that the walk can take. The probability
transition shows the probability of the event that the path is taken from one state to another or possibly
itself. Now consider a group of upper-triangular matrices under a multiplication, which will be precisely
defined in the next section. If we want to study a random walk on this group, we need to define all the states
and the probabilities. There are many ways to choose the state space. We could pick each element to be a
state itself. However, the choice of picking superclasses to be states is interesting.

2 Preliminaries

Let us now consider a particular family of groups.

Definition 2.1. For two positive integers m and n. consider the following group

UTsen = {{[Cém Iid( ] X e men(Fq)}, under multiplication,

where Fy is a finite field of size g. We call this group an upper-triangular group.

It is obvious to see that Id,,,, is the identity of this group. In particular, for any {Icém Iﬁ} and
n
Id,, Y

Idy, X | |Idp Y | _ |Idn X+Y
0 Id, 0 Id,| | O Id,

Idy, X17° [Idn —-X
0 Id, 10 Id,|
To study a random walk on a group, we need to consider two main components :

Thus, The group is abelian and {

(1) state space, and

(2) probability transition.

2.1 State Space
Before we define the particular state space on this group, it will be easier to consider the following set first.

Definition 2.2. For any positive integer m, we define the set

B, = {X € Mpsm(Fy) : Xij = {(C; Zz:j’, where ¢; # 0, fori—1,2,3,...,m}.

Note that for a matrix X € M,,xn(F,) and A € UT,,, the product AX is a matrix obtained by applying a
particular row operation; adding the multiple of one row to a higher one or scaling a row.



Example.

1 a O 1 0 2 1+4a-0 04+a-1 24a-1
01 sl-]10 1 1{=|0+b-1 14+b-1 1+0b-2
0 0 ¢ 1 1 2 c-1 c-1 c-2

Similarly, for matrix X € M,,xn(F,) and B € UT,, the product X B is a matrix obtained by applying a
particular column operation; adding the multiple of one column to a higher one or scaling a column.

Example.
1 0 2 1 a O 1 0+a-1 ¢-240-0
01 1]-/0 1 =10 14a-0 c¢-1+0b-1
1 1 2 0 0 ¢ 1 1+a-1 ¢-240b-1

We pick the set of superclasses to be the state space of this walk. Superclasses are the equivalence classes

of a particular equivalence relation obtained from representation theory. To be precise, the equivalence

relation is defined as follow.

Id,, X J Id,, Y
0 Id,|’ 0 Id,

[ ana = |

Definition 2.3. Let [ } € UT,xn- We say that they are in the same superclass

Bi1 Bio
0 B

A A
0 Ay

0 Y - Au A12 ) 0 X ) Bn B12
0 0] | 0 Ay 0 0 0 Byl
Id,, X} and {Idm

0 Id, 0 I dn]
and only if there exist Ay1 € B,, and By € B,, such that

if and only if there exist A = [
such that

], where A11,B11 € By, and Ass, Boy € By,

According to the definition 2.3, we can see that are in the same superclass if
Y = AllXBQQ.

In particular, the matrix Y can be obtained by applying the particular row or column operation to the
matrix X. This suggests that we should reindex the rows the other way. Thus, from now on we will index
any matrix as the following definitions

Definition 2.4. Let X € M, x(Fy). When we say X,;, we actually mean X, 11—, ; for (i,7) € {1,2,3,...,m}x
1,2,3,...,n).

Definition 2.5. Let X € M, (F,). The transpose of matriz X denoted by XT, is defined by

(XM)ij = Xji for (i,7) € {1,2,3,...,m} x {1,2,3,...,n}.

1 2 3
Example. Consider the matrix X = |4 1 1|. By the definition 2.4, we have X1; = 2, Xo; =4, X351 = 1.
1 2

[l N )| EE—— |

2
Also, by definition 2.5, we have X7 = [

DN =N
I N

Notice that all the possible changes happen just in the top-left-m x n box of the matrix. Thus, we can
possibly consider the top-left box of each element in the group. Precisely, consider the following group
isomorphism.



¢ : UTan — men(IFq)

Id,, X ,
[ 0 Idn} ~ X
. . . . — Id,, X
where My, xn(Fq) is considered as a group under addition. Clearly, ¢ is a bijection. Also, for any 0 Id
n
Id,, Y
and |: 0 Idn:| € UTan,

Id, X Id, Y _ _ Id,, X+Y|\ _ Id,, X Id, Y
([ ) e (U5 ) —eer=e ([ %) -e ([ Al [ l)
According to Definition 2.3, we say that X,Y € M,,«,(F,) are in the same superclass if and only if there

exist A1 € B,, and Bas € B, such that
Y = AllXBQQ.

Since we have group elements into a superclass, we can choose a representative element for each superclass.
We will discuss later why we want to pick a representative for each superclass. To choose a representative
element, consider the following set

moX;i <1 forj=1,2,...
Son = {X € Mpnll01)) | F I ZY I Tl

S Xij <1 fori=1,2,...,m.
To see how this set represents the set of the representative elements, we consider the following mapping

)\ : men(Fq) — Smxn

e s \ , where \x is in the same superclass as X.
X

Note that S;ixn € My xn({0,1}). Also, for any X € S, xn, X is already an echelon form. In particular, for

X € Siuxn, X = Ax. Hence, ) is surjective. We have defined and discussed about the state space for this
random walk. In the next subsection, we will discuss the other component.

2.2 Probabilities

As mentioned earlier in this section, we need to consider the probability transition for this walk. In this
particular walk, we allow either the zero matrix or rank 1 matrices to be chosen in each iteration. Before
going further, we should understand what a rank 1 matrix looks like.

Definition 2.6. For C' € M, (F,), we say that C is a rank 1 matriz if and only if > . Z?:l()‘c)ij =1.

0 00 0 0 0 0 0 0 0 0 0
Example. |2 4 4| is a rank 1 matrix becuase |2 4 4 ~ [0 0 0] ~ [0 O 0|. However,
1 2 2 1 2 2 1 2 2 1 0 0
0 0 0 0 0 0 0 0 O 00 0] 0 0 0
2 4 0] is not a rank 1 matrix because |2 4 0|~ [0 O —4(~ |0 0O —4| ~ |0 0 1{.
1 2 2 1 2 2 1 2 2 10 0] 1 0 0

Our goal is to compute the total probability of going from one superclass to another superclass. According
to the way we partition the group into this specific set of superclasses, we have the following fact for any
X,P,P' € Myxn(Fy),

[{X[Ax = p, and Axqp =v}| = [{X|Ax = p, and Axyp =v}|.



This suggests that we can either fix an element in each superclass or fix a element in each rank 1 matrix.
Hence, the idea of picking the representative element for each superclass makes sense now. In the next
section, we will do all the essential computations for potentially obtaining the total probabilities.

3 Main Results

In this section, we will discuss about all the possibilities of Ax;p, where X € S, is given and P is an
arbitrary rank 1 matrix. Before doing so, some notations and lemmas need to be stated.

3.1 Notation and Lemmas

Since from now on we will do a lot of row operations, so a nice notation will be helpful.

Definition 3.1. For X € My,x,Fg,
1. ‘e x row; +row;” means to multiple the it" row of X by the constant ¢ and add that to the j** row,
2. “cx row;” means to multiple the it row of X by the constant c,

3. “excol;+col;” means to multiple the it" column of X by the constant ¢ and add that to the " column,

th

4. “c x col;” means to multiple the i"" column of X by the constant c.

Definition 3.2. Define
[ ={z € Z]a <z < b},
[

| :
a,b) :={x € Zla < x < b},
a,b| :

)

a,b
b

( ={zr € Z|a < x < b},
(a,b) :={x € Z]a < x < b}.
This new notations of intervals will be useful in counting and keeping track of the entries.

Definition 3.3. For X € M,,«,(F,) and any subset I C [1,m] x [1,n], define -1 : My xn(Fq) = Mpxn(Fy)
such that
0 (i,5) ¢ 1.

Since row operations will be applied a number of times in the computations, this definition will be useful
to represent a matrix when some of the rows or columns have been reduced. The following lemma is also
helpful when we are doing row operations.

X — X] y where (X[)ij = {

Lemma 3.4. Let X € S;xn. Fori € [1,m],j € [1,n] such that
(a) Xi5 #0,
(b) Xp; =0 forall k € [1,7), and
(¢c) Xi, =0 for all k € [1,n] — {j}.

Then,
X ~ X-—Xj+ey , whered=][1,m]x{j}



Proof. For k € (i,m], we do the following row reductions
kaingl X Trow; + rowy,.

Then, we do the following row reduction

-1
Xij X row;.

Thus,
X ~ X—-Xj+e;y, whereJ=[1,m]x{j}.
O
Lemma 3.5. Let X € Fy"*". Fori € [1,m],j € [1,n] such that
(a) Xij #0,
(b) Xij =0 for all k € [1,m] — {i}, and
(¢) X, =0 for all k € [1, ).
Then,
X ~ X-—X;+ey, wherel={{i}x][l,n].
Proof. For k € (j,n], we do the following row (column) reductions
—XikXi;I X COlj + coly,.
Then, we do the following row reduction
Xi;1 X col;.
Thus,
X ~ X-—Xr+ey, wherel={i}x[l,n].
O

From now on, we will write a rank 1 matrix P as p-a” - b, for some p € Fy,a € F', and b € Fy.
Before we move into the main results, we need to understand the following notations, which will turn out to
be useful.

Definition 3.6. A triple (i,7,1s) is a zig-zag path of length l if
(a) i and j are sequences such that
(i) 1=1ip<ig <---<i <m,
(i) 1=jo<ji<--<j<n,
(b) ls €{0,1}.
Definition 3.7. Let X € Sxn. A zig-zag path (i, j,1s) is downward in X if
(a) X =0 forallk=0,1,...,1,

() X =1forallk=0,1,...,1—1.

Tk+1Jk



Definition 3.8. Let X € S,;xn. A zig-zag path (i,34,1s) is backward in X if
(a) X;

ikJk

=0 foralk=0,1,...,1,
(b) Xijryr =1 forallk=0,1,...,1—1.

Lemma 3.9. Let X € Syxn- A zig-zag path (i, 7,1s) is downward in X if and only if a zig-zag path (j,1,1s)
is backward in X7 .

Proof. Let (i, j,1s) be a downward zig-zag path in X. Hence,

(i) 1=dp<ip <---<ig <m,

(i) I=jo<ji<-<j<nm,
(ili) Xj,j, =0forall k=0,1,...,1,
(iv) X 1j, =1forall k=0,1,...,01—1, and
(v) Is € {0,1}.
Equivalently,
() I=jo<ji<--<j<m,
(i) 1=dp<ip < -+ < <m,
(iii) X7, =0forall k=0,1,...,1,
(iv) X k1k+1 =1forall k=0,1,...,1 —1, and
(v) Is €{0,1}
Therefore, a zig-zag path (j,14,1s) is backward in X7. O

Definition 3.10. Let X € Syxn. A zig-zag path (i, j,1s) is upward in X if
(a) X;

Tkjk

=1foralk=0,1,...,1,
(b) X;

k417K

=0 foralk=0,1,...,1—1.
Definition 3.11. Let X € S;xn. A zig-zag path (i,7,1s) is a forward in X if
(a) Xikjk

(b) X

Tkjk=1

=1foralk=0,1,...,1,
=0 foralk=0,1,...,1—1.

Lemma 3.12. Let X € Sxn. A zig-zag path (i, 4,1s) is upward in X if and only if a zig-zag path (j,i,1s)
is forward in XT.

Proof. Let (i, j,1s) be a upwardward zig-zag path in X. Hence,
(i) l=dg<iz <---<ip<m,

(i) 1=jo<ji<---<ji<n,



(ili) X, , =1forall k=0,1,...,1,
(iv) X 1j, =0forall k=0,1,...,1—1, and
(v) Is € {0,1}.
Equivalently,
(i

l=jo<p<---<7u<n,

(ii) 1 =49 <ip <--- < <m,

(iv Jqu_OfOT allk=0,1,...,1—1, and

)
)
(iil) X klkflfor all k=0,1,...,1,
)
)

(v) ls e {0,1}.

Therefore, a zig-zag path (j,4,1s) is forward in X7T. O

3.2 Main Theorems

We will start with a summary theorem. The summary theorem describes all the possibilities of X + P, where
X €S,,xn and P is a rank 1 matrix.

Theorem 3.13. Given X € S,,xn. For any rank 1 matriz p-a” -b, X +p-a” - b is equivalent to one of the
following:
(1) X + e,
(ii) X + Zk 0 (€inie — €iniiin) + (15) - €35, for some downward zig-zag path (i, j,1s),
(iii) X + Zk 0 (€inie = €injusr) + (I8) - €35, for some backward zig-zag path (i, j,ls),

(Z’U) X +p(1 +p)_1 ’ a(Lm] : b(l,n]a

l ' —1p—1 , T
(1)) X +en — Zk:l (eikjlc—l - eikjk) - Zk’:l (eik’fljk/ elk/j ) — st + ag bt a’(s m] (t n) fO?” some

upward zig-zag path (i,7,1s) and forward zig-zag path (i, j',1s"),

T

. -1 -1 —13—1 /
(vi) X —e1n = 320 (Cirsain = Cinsn) — w—o (eik/j,;,+1 - ei;,j,;/> + st +ag by agg - by, for some

downward zig-zag path (i,7,1s) and backward zig-zag path (i',7',1s"),

. -1 -1
(UZZ) X+61172k=1 (eikjk—l - eikjk)+(ls)'eizjzf k'=1 (eikuﬂ;@/ B eigcxj;;/)+(ls/)’eiz/jz/+a b a (s m] b/(f n]
for some upward zig-zag path (i, j,1s) and forward zig-zag path (i',j',1s"),
Proof. (i) First, we choose a; = by = 1. For k € (1,m], we do the following row operations

—ag X rowy + rowg

Hence,
X+4+p-al b~ X+p~aT~b—p'a{1mL]-b = X+p-e-b



Then, we apply Lemma 3.5 (¢ = 1,j = 1.) Thus,
X+p'€1'b ~ X+611.

Therefore,
X+4+p-al b ~ X+e.

LetpeFy, a= [a1 ag as - - ay) and b= [by by bs - - - by,], where a; = b; = 1. Also, choose by, = 0 for all
k & {jo,41,---, 51} and by # O for all {jo, j1,...,Ji_1}. Consider X +p-a” -b. For k € (ig, m] = (1, m],
we do the following row reductions

—ap X rowi + rowg.

Hence,
X+p-at b ~ X+p-e -b.

Then, we do the following row reduction

-1
—p X rowi + row;,.

Hence,
X+p-e-b ~ X+p-e,-b—ey-b

Write b = ej, + bjg,n]- S0, €iy - (€5, + D(jo.n]) = €irjo + €y * O(jo,n)- Thus,
X+p-ei,-b—ey -b=X+p-ey-b—eij — e biyn-
Next, we apply Lemma 3.5 (i = ig,j = jo). Thus,
X+p-eig-b—eijo—¢€iy bon ~ X+ e€ijo— €irjo — €y bjo,n]-
Since 0 = bj,+1 = -+ = bj,—1, S0 b(j, 0] = b[j, ,n)- Thus,

X+ €igjo = €irjo — €iy * D(jo,n] = X + €igjo — €irjo — €y Dy n)-

Hence,
X+p-aT~b ~ X+€i0j0_6i1j0_6i1'b[jl,n]'

Lemma 3.14. Fort=1,2,...,l — 1, we have

t—1 t
X + E : (eikjk - eik+1jk) — €4 'b[jmb] ~ X+ E : (eikjk - eik+1jk) — Ciypy 'b[jt+1,n]~
k=0 k=0

Proof. First, we do the following row reduction
bil X row;, + row;, .

Hence,
t—1 t—1
X+ (e--—e- -)—e-~bv ~ X+ (e--—e- -)—e--b4 —b e, by
ik ikt1k it~ Yj¢,m] ik ikt1k it " Yj¢,m] it iry1 " Yge,n]-
k=0 k=0

10



Next, we apply Lemma 3.5 (i = i¢,j = j¢). Thus,

t—1 t—1
X+ (e- i — €ip1d )76' b, —b e, by ~ X+ (e- i — €ipied )Jre- i —b e, b
ikJk ik+17k iy VL] T Y5, Cirga"Ohe,n] iKJk i1k ije — Y5, "Cirt1Yhe,n]
k=0 k=0

Again, write by;, ) = bj, - €j, + b(j, ). Hence,

-1 —pLl ... e ) — e -1, .. b
bjt “Ciygy b[jt,n] - bjt “Ciyq (b]t €j, + b(jt,n]) = Ciyq1je + bjt Ciyiq b(juﬂ]'
Then,
t—1 t—1
X+ (e. e )+6. C_ple b o= X+ (6, e )+e, e b re. b
TkJk Tk+1Jk iejr = Vg, "Clirgr "Y[5e,n] ikJk ik+1Jk itJt ~ Clep1de V5, "Ciegn Y (5e,n]-
k=0 k=0
Since 0 = bj,+1 ="+ =bj,., -1, 50 b(j, n] = b[j,,, ,n)- Thus,
t—1 t
—1
X+ Z (eikjk - eik+1jk) —ei, by ~ X+ Z (eikjk - eik+1jk~) = by, €y Dy -
k=0 k=0

Then, we do the last row reduction and that is
bj, X rows, .

Therefore,

t—1 t
X+ E : (eikjk - eik+1jk) — Gy 'b[jt»n] ~ X+ E : (eikjk - eik+1jk) — Cirp 'b[jt+1,n]-
k=0 k=0

Hence,
-1
X—|—p-aT-b ~ X+Z(eikjk_eik+1jk)_eil'b[jz,n]'
k=0

If Is = 0, then we choose bj, = 0. Therefore,

-1 -1 -1
X 4D (Cinsi = Cingrin) = €ir i) = X+ (€irje = Cirsni) = X+ Y (€ing — €iprsn) +(18) €3,
k=0 k=0 k=0

If s = 1, then Xy;, = 0 for all £ € [1,m]. So, We choose b;, # 0. By Lemma 3.5 (i = 4;,j = j;), we
have

-1 -1 -1
XA+ (Cinsi = Cinpnie) —€irbliim) ~ X+ (Cirg = Cinprii) Teis = X+ (€irji — €iririi) T(15)-€irjy-
k=0 k=0 k=0

Therefore,

-1
X+p- a b o~ X Z (eikjk - 6ik+1jk) + (Is) - Cirgr -
k=0

11



(iid)

Let X € S,xn and (4, 4, 1s) be a backward zig-zag path of length [ in X. By Lemma 3.9, a zig-zag path
(4,1,1s8) is a downward zig-zag path of length [ in X7 Also, note that (Is) - X;,;, = 0 for all k € [1,n]
implies that (Is) ~X,z;-l = 0 for all k € [1,n] Hence, by (ii), there exist p € Fy, b € Fy, and a € F;* such
that

-1
XT—I—p-bT-a ~ XT+Z(ejkik_ejk+1ik)+<l5)'€jziz'
k=0
Equivalently,

-1
X+p- a" b o~ X+ Z (eikjk - eikjk+1) +(Is) - Cirgy-
k=0

First, we choose p such that 1+ p # 0 and a; = by = 1. Also, we write
X+p-al - b=X—-e +e+p-al b
Notice that

ein+p-a’ b=en+p-(er+ a(T1,m]) “(e1 4 bany)
=en+p-(enn+er-ban+ a{l’m] -e1 + aam] “b(1m))
=en+p-ennt+p-er-bun+p- a(Tl,m] “e1+p- a(Tl,m] b))
=e1-((1+p)-er+p-ban) +p- a(TLm] ce1+p- a(TLm] “b(1n))

Note that the first row of the matrix is (1 + p) - ey +p - b(1,,). For k € (1,m], we do the following row
reductions
(14 p) " 'pay x row; + rowy.

Hence,
X+pa'b ~ X—en+p-a -b—p(l+p* -a(TLm]-((1+p)-el +pb(1,n)
Notice that

p-a’ - b—p(l+p)tafy - (L4p)-er+p-ban)
=er-(14p)-er+p-bamn) +D Al €1+t ban)
—p(1+p)~" - al - (L+p)-er+p-ban)
=e1-((1+p)-e1+p-bun) +p-aa,m] ce1+p- aa,m] “b,n))
—p- aam] cer —p*(L+p) - aa,m] b1
=e1-(14+p)-e1+p-ban)+@—p"(1+p~")- a(TLm] b1
=e - ((L+p)-e1+p-bay) +p(l +p)7! .a’(ILm] “b(1,n]

Hence,
X—en+p-a - b—pl+p)afy, - (L+p)er+p-bun)

12



X —en+er-((L+p)-er+p-bam) +p(1+p) " - al - ban-

Now, we apply Lemma 3.5(¢ = 1,7 = 1). Then,
X—en+er-((1+p)-exr+p-bun)+pl +p) - a(T1,m] “b(1,n]

X—en+en+pl+p) - a(TLm] b =X +p(l+p)! 'a%q,m] “b(1,n]-

There is another possibility of the matrix p - a” - b. We could choose p to be —1. However, to take
care of that case we need the following set of lemmas. The idea of employing the following lemmas is
that we break the row & column operations into steps. Each step will have a pattern in one of the
corresponding lemmas.

Lemma 3.15. Let X € S,,x, Such that Xij = X{,j, =1. Leta € F}" and b € F} such that a; # 0 and
b # 0. Suppose i’ < i orj <. If (i,]) # (¢,5'), then

T T
X + Ulim] " €5 T € b[j/,n] ~ X+ey— €;; + ey — €4 i + Aim] " €5 +ep - b(j/,n]~

Proof. First, we do the following row (column) reduction
-1
—a; -~ X col; + colj.

Hence,
T T —1 T
X + a[i)m] . ej + €e;r - b[j’,n] ~ X + a[i,m] . ej —a; - a[i’m] . 65 + € - b[j’,’n]

Write aj; ) = a; - €; + aim)- So, a;l . a%;’m] e; =€+ a"l. aam} - €. Thus,

T —1 T
[im] "€~ € — @ G, €5+ e - bl

T —1 T
X =+ a[i,m] . ej — Qa,; . a[i,m] . 63 —+ e+ b[j/7n] = X +a 5

K3
Then, we apply Lemma 3.4 (i =¢,j = j). Thus,

1 T

X+af-e—es—ataleten by o~ X4eg—es—alal, e +eir by

[i,m] J ij
Then, we do the following row (column) reduction

-1
—a; " X colj.
Therefore,
—1 T T
X + eij — eij —a . a(i,m] . 63- + €;r - b[j/,n] ~ X + Eij — eij + a(iym] . ej + e;r - b[]/n]
Similarly, we do the following row reduction

—bjil X Tow; + rows.

Hence,
X+ €ij = €; + a%;’m] "€ + e - b[j/,n] ~ Y+4ep- b[j’,n] - b;l Teh b[j’,n]a

13



Write b[j’,n] = bj/ ey + b(j/ﬂl}' Hence, b;,l cen b[j’,n] =

where ¥ = X +e;; — €,z + a%;,m] "€

oy + b7 e b Thus,

Y i bijrn) = b3t e by =Y e b = eq50 = b e b

Then, we apply Lemma 3.5 (i = i’,j = j'). Thus,

b e bt

-1
Y + €;r b[]/,n] — 6{,]—”, —b; - € b(Jl7n] ~ Y + €140 — e{’f’ — Y

J
Then, we do the following row reduction
-1
—bj, X TOWy .

Therefore,
-1
Y + €irjr — G{/jﬁ — bj’ ep - b(j’,n] ~Y + e ef’f’ + e - b(j/m]'

Hence,
T T
X+ Afim) - €5+ € byrm o~ X te— €; ey — €y T im) - €5 T € bt )
O
Lemma 3.16. Let X € S™*™ such that X3 =Xp, =1. Leta € FY and b € Fy such that a; # 0 and
by # 0. Suppose i’ < i orj < j. If (i,7) = (¢',§'), then
X + a,[l;m] €5 + e;r - b[j/ﬂl] ~ X + €ij + €qrjr — €440 + a;lb;/1 . aam] . b(j/ﬂl]‘
Proof. First, we do the following row (column) reduction

-1
—a; X colj + colj.

Hence,

X+ af et e by~ XA af e —a;taf

€jr +eir by
Writ, = e; - a S Lol e =edal a0 e
e a[z,m} = a; - €; a(l’m]. o, a; a[i)m] €jr = €45/ a; a(hm] €.

X+ ) € = 7 Gy €5t € Dpgry = X+ €5 = €3 — a5y e e bl

Then, we apply Lemma 3.4 (i = 1,5 = j). So,
X+ afy gy - €5 = €ijr =7 Gy €t by~ X e = eijr—ai - a e+ en by,
Next, for k € (i, m], we do the following row reductions

ai_lakbj_,1 X row; + rowy,

Hence,

X—l—eij—eij/—a;l-a(j;m]-ej/—i—ei/-b[j/,n} ~ X—i—eij—eij/—a;l-a(j;’m]-ej/—i-a;lb;,l-aam]~b[j/’n]+eir-b[j,’n]
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Note that

;1 . a:(l;m] . ej/ + a;lb;,l . aam] . b[]’,n] = a;1b71 . G,"(Z;’m] (_bj’ . ej/ =+ b[]’,n]) = a;lbil . a:(l;m] . b(Jl7n]

—a J J

Hence,

X+6¢j —€44! 70,14_ .

Ay my-er a7 b5t a s o bje m e b n) = Xbesg—eipta; b3t al; b nytei b ).

Then, we apply Lemma 3.5 (i =i, 5 = j'). So,
X ey —eijr a7 byt afy b e by~ Xt eij ey — eqgr+ag byt 6 gy - bl
O]

Lemma 3.17. Let X € S;xpn such that Xy =0 forallk =1,2,...,m and Xz'j‘ =1. Leta € F" and
b€ Ty such that a; # 0 and by # 0. Suppose i < i’ and j = j'. Then,

X + a[?m] cej ey b[j/,n] ~ X+ey— €; — a;l . aam] - €; + e ~b(j7n].

Proof. First, note that j* = 5. Hence,
T T
X + Af ) * € + e - b[j’,n] =X+ Afjm] " €5 + e - b[j,n]
Then, we do the following row (column) reduction
—a;l x col; + col;.

Then,

1

X + a[j;m] cej ey b[jyn] ~ X+ a[‘;m] cej —a; ~a[7;m} “e; + e - b[j’n]

We write af; ) = a; - €; + ag,m)- So, a;l ~a[€1m} ey =e;5+ a;l . aam] - €5. Thus,
T -1 T T -1 T
X+ Afjm) " €j — Q5 * Q] €5 T €4/ by =X+ Afim] " €5 — €5 — A Qi) " €5 T €ir “bpjm)

Next, we write bj; ) = bj - €j + b(j n)- S0,
WUiam) €5 F €+ Dljm) = Ay - €5 + €0+ (b5 - €5+ bgim) = (G[Ti,m] +b; ei’) “ej + e bijn)-

Thus,

1 T

X+ af €= €507 +a(; gy €5+ i by = X + (%,m] + b ei’) “€jtei bin —€;—a; A - €;

ij
Now, we apply Lemma 3.4 (i = 14,5 = j). Hence,

Xt (af g + by i) et bm — e =07 val e~ Xbey—eg—artall e ten b,

Therefore,

X + a,[l;m] . 6j -+ e+ b[Jl,n] ~ X + eij —e~—a

T
ij i Qm) €5 e b(jﬂb]'
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Lemma 3.18. Let X € S,,,xn such that X;j, =1and Xy =0 for allk=1,2,...,n. Let a € F" and
b€ Ty such that a; # 0 and by # 0. Suppose i =1i' and j < j'. Then,

X+ a[j;m] -ejt ey b[j/m} ~ X+ €ij = €;; + a(j;m] cej — b;l e b(j,n]'

Proof. Note that XT € S, such that X}:z =1land X[, =0forall k=1,2,...,n. By Lemma 3.17,
we have that

X"+ €j * Afi,m) + b[@"m] ey o~ X'+ €ji — €5 — ai_l €5 Q(i,m] + ban] €4

Hence,
T

X+ a[j;m] -ejt ey b[j’m] ~ X+ €ij = €;; + (i m] " € — b;l e b(]}"]'
[

Lemma 3.19. Let X € S™*" such that Xp; = 0 for all k = 1,2,...,m and X;;; = 0 for all k =
1,2,...,n. Let a € F' and b € Fy such that a; # 0 and b; # 0. If a; +b; # 0, then

X+ a[q;m] © €y +e; - b[jm] ~ X + €i5 — (ai + bj)il . aam] . b(jﬂl]'
Proof. For k € (i, m], we do the following row reductions
—(a; + bj)_lak X Tow; + rowy,.
Then,
X+ a[q;m] ejteibyy o~ X+ a%;,m] “ej+ e byn — (a; + bj)_l . a£7m] . ((az +0b;) e+ b(j,n]) ,
since bjj ) = bj - € + b(jn)- Note that
fymy € = (@i + b)) - aly g (@i +b5) - €5+ bjng) = @i €5 = (@i + b))~ - afi g - bisim)
Hence,
Xtaf py-ejteibyyn —(aitb;) T a; (a5 +05) - € + b)) = Xteibyymtaie;—(aitb;) ™ af pbin-
Next, we apply Lemma 3.5 (i = 4,j = j). Then,

X teibyn+ai-ej—(ai+b)" -al - bgm  ~ X +ey—(ai+b) - afy b

Remark. If a; +b; = 0, then
X + a%;’m] cej e b[j,n} = X+ aam] cej e b(j,n].
(v) We choose a; = by = 1. Hence,

a’ b= (e1+afy ) - (14 ban) = €11+ €1 ban) + {1 ) - €1+ 1 )+ b1l
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For k € (1,m], we do the following row reductions

—ap X rowy + rowg.

Thus,
X—-at b ~ X—aT~b+a(Tl,m] b

Notice that
X—-a" b+ a(TLm] . b(Ln] =X - (611 +e1- b(l,n] + a(Tl,m] -e1 + a(TLm] . b(lm]) + a(Tl,m] . b(l,n]
=X—-enn—er- b(1,n] - aam] Te1
= (X —en1) + (=a{y ) €1+ €1+ (=ban))
= (X —e11) + (=a{iym)) - €0 + €3 - (=b(ig )

Next, we choose a and b such that a(;, ) = afi, m) and by m) = bjj; m). Hence,
X—-al-b ~ (X —en)+ (—a[Tihm]) “€jy e (_b[jivn])

In particular, we write a{il m) = —Qliy,m] and bm,n] = —bpj1 n)- Therefore,

Ji.m
X — aT . b ~ (X — 611) —+ afihm] . 6]‘0 + ei6 . bi]ivn]

Note that X;15, = 1 and Xy ;s = 1. Apply one of the Lemma 3.15, where (i,7,7) = (i1, jo, 1), and (i',5',i') =

(ip,71,41). Thus,

/

(X = e11) +af, ) * €jo T €if * bjr

1T /
~ (X —en) +eiyjo = €+ €iggp = iyt + Ay m) - € T i b )

— T /
=X —enn + (€ijo — i) + (€igsy — €iggy) + A, m) - €5 T €3t biyr )
1 1
=X —en+ E (Cirjrr — €irgy) t E (ez;,,lg;, ez;,J;,) + G, ,m) € T ey b(j;,n]
k=1 k=1
. / / o T _ T / 1/
Note that we chose a’ and b’ so that iy m] = Wiy m] and b(j;,n] = b[jé,n]' Hence,
/ /
(X = enn) +ag, m) - €jo + €if Uy )
1 1
T /
~ X —e;+ E (€irjn—r — €inji) E :(ei;/_lj;/ - ei;/j,;/) t Ay m) " € T € b[jé,n]
k=1 k=1
So, we can iterate the Lemma 3.15 until we have
/ /
(X = €11) +a[3, my * €50 + €3f bt g
-1 -1
T /
~ X —e;+ E (Cirjn—r — €irgi) E (ei;c/_lj;c/ - ei;,j;,) + Ay m) € € 'b[jl’,n]
k=1 k=1
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We cannot apply the same Lemma for the last step, since (i, 5;) = (¢}, ;). That, however, suggests us
to use the Lemma 3.16. Apply Lemma 3.16, where (i,7,7) = (i1, ji—1,J;) and (i,5',1") = (41,91 %1)-
Then,

-1
’
X—en + E : Cirjror — Cinje) T § : W yine — G, /) +a[l; m] €1 T - b[jl/,n]
k'=1
-1
E E —1z— /
~ X —en (€ingios — Cinsi) + it _1dir k’jl/c’) T €y F i 5p — Cagy T 4, b a(ll m] b(jzlm]
k'=1
-1
1,1
=X—e11+ E elkjk 1 elk]k + § k’ T k,j;,) + €y Tt €ir_ jl — Cst + a;, b] a(zl, b(]l,n]
k'=1

l

1 T !
=X —en1+ E elk]k 1 eluk + E : i k/J /) teést +ay b “Q(s,m] b(t,n]
k'=1

We choose a; = by = 1. Note that (i, jo) = (40, J5) = (1,1). Hence, we can write
X+p-a® b= (X —eijy = Cigjr) + €irjo + Cinjs + -0’ b
Also, write a = e;, + a(1,,). Hence,
(X — €irjo — €iojr) + €irjo + €igjy +p-a’ - b
= (X —€irjo — Ciojr) F Cirjo T Ciojn + D (€ip + aa mp) "D
= (X — €ijo — €igjr) + Cirjo + €ivjy T D€y D+ D" a(TLm] b
= (X —€ijo — €igjr) t €irjo +€io - (D-0+ej)+p- a(l’m] b
For k € (1,m], we do the following row reductions
—ag X rowy + rowg.
Hence,
X +pal b
~ (X = €iyjy = Cigjy) F Cirjo T €ip - (D-bF€j) D aly b —aly - (0-b+ej)
= (X — €irjo — €igjr) T €irjo +€ip - (D-b+ej,) — a(TLm] -ej,
Next we do another row reduction
—p_1 X rowy + row;; .
(X = €irjo = Cigj)Feinjo T €ig - (P- b+ €5,) = aly - €5
~ (X — €irjo — €igjr) T €irjo +€ip - (D-b+ej,) — a(TLm] cej,—p toei - (p-btey)
(X — €iyjo — €igj1) + €injo T €ip - (P-D+¢€j,) — a(TLm] cej, —ein b—p e
= (X —e€ijo — €igji) — €3y - ( —€jo) i (P-bFej) = ali e — P ey,
( )

T —1
X —€irjo = €iogn) — €ir D) T €io - (P-b+€5) =y ) €5 =P - €y
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Next, we use lemma 3.5 (i = 1,7 = 1). Thus,

T -1
(X —€ijo = €igjr) = €iy *banyteio - (P b+ €)= €y =P - €y
T —
~ (X — €irjy = €igji) — €iy " b(n] T Cigjo — A1m] € — P " €irjy

—_— . . . . . . J— . . —_— T . . — - . . .
- (X — €iyjo — 61031) + €igjo €iy b(l,n] a(l,m] €j1 p Ciyj1

Now, we write bzl,n] = —(b1,m +p~'-ej,) and a’(io)m] = —a(iy,m]- Hence,

T —1
(X = €irjo = Cigjr ) F€igjo T+ €if *b1n] + (1 m) " €10 =P - €irjy

— . . p— . . . . / IT . .
= (X — €i1jo ez()ji) +e+ €] (1,n] + CL(l,m] €j1

P— . . —_ . . . . I /T . .
= (X —e€iyj, —€ingy) Hen ey bjgm) T Aligm) * €

Note that we choose a’ and b’ such that b/

— / /
Gpom) = Vg np 80 @ Thus,

(io,m] = Uiy m]"

/ 1T
(X — eirjo — €igj)tenn +ei by n) + Aip.m] €0

= (X —einjo — eiggp) +en + ey -y

T
j1,m] + a’[il,m] “ €1

— . . p— . . — . . — . . /T . - . . !
=X —en— (elljo elo]o) (626]{ 626]6) + Ay ,m) * G + €} b[]{,n]

1-1 1-1
=X —e11 =Y (€injo — Cingo) = Y_(€ipst — €iggg) + i,y €n it by )
k=0 k=0

Similarly, as last theorem, we can iterate the Lemma 3.15. Thus,

X+p-al-b
-2 -2
T /
~ X — e11 — E (6,‘1]‘0 — eiojo) — g (ez{)ji - ei&jé) + a’[il,l,m] “ €y + ei;/,l ’ b[jl’,il,n]'
k=0 k=0

Lastly, we apply the Lemma 3.16 since the paths meet at the end. Thus,

X+p-a®-b
-1 I'—1
§ : 2 : —17—1 " /
~ X — €11 — (6ik+1jk - eikjk) — (eik’jl/c'+1 - eiL/jL/) + est + Qg bt . a(s,m] . b(t,n]'
k=0 k’'=0

(vii) This is similar to (v) except for the last step. Since we do not require the two zig-zag paths to meet,
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so we can make some changes

-1
T /
X—enn + E Cirgr — Cinji) T E €ir, g, ~ €ir,gt,) G ) €y T € bl
k'=1
I'—1
—17— T /
~X —ep+ E €irjeos ~ Cirji) T E Cir, dl T k,j,’c,)""emzq t+ei_ i — Cugp T ay, bjl/ “A(i,m) b(jl’,n]
k'=1
-1
1,—
=X —e11+ E elkjk 1 eluk + E : VT 76%/]',;/) + €y Jrei;_lj,', — Est +ail bjl’ a(u, ] b(]l,n]
k'=1
l
_X_611+§ :61k]k L~ Ciggie) T § : i k/j,;/)
k'=1

According tot the computation in each proof, we can see that those are the only possibilities since they are
forced by the algebra. O

4 Conclusion

So far we have considered all the possibilities of going from one state (superclass) to another state (superclass.)
Next we possibly can actually count the number of elements that can take one from one state to another
state. Hence, we can employ the idea in probability to compute the probability of each edge in the chain.
Hence, we can apply the concepts in Markov chain.
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