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Input current shaping has been required in AC-DC rectifiers in order to comply with regula-

tions that specify limits on input current harmonics. Boost power factor correction (PFC) rectifiers

are widely used to achieve near-unity input power factor and low current harmonic distortion. This

thesis addresses digital control techniques aimed at improving efficiency and reducing harmonic

distortion in digitally controlled single-phase boost PFC rectifiers operating over wide range of

loads. By taking advantage of the flexibility of digital controllers and using a discontinuous con-

duction mode (DCM) detection circuit, several proposed control techniques achieve low current

harmonic distortion and improve system efficiency over wide load range in DCM and in continuous

conduction mode (CCM). In heavy load operation, a simple passive power sharing technique is

introduced for interleaved boost PFC rectifiers to increase system power modularity; in medium

to light load operation, proposed adaptive approaches improve light load efficiency by extending

switching period to achieve low voltage switching and by adjusting switching frequency to scale

with processed power. Furthermore, a new current error estimation approach is applied to relieve

current sensing limitations and to reduce current controller design effort. Digital control techniques

are implemented and verified using field programmable gate array (FPGA) in several boost PFC

rectifier prototypes.
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Chapter 1

Introduction

Most electrical and electronics applications require DC power supplies. Nonetheless, utility

systems usually generate, transmit and distribute power with constant frequency ac voltage. A

rectifier is the power electronics interface that converts ac power to DC power. AC-DC rectifiers

may supply DC power to different electrical loads, but they are all connected to the same ac line

input. To maintain the quality of the ac line, standards and recommendations set current harmonics

and power factor limitations on rectifiers in applications, such as computer power supplies. The

AC-DC rectifier that achieves low current harmonics and a good power factor (close to 1) is called

the power factor correction (PFC) rectifier.

As the front-end stage of most computer power supplies, PFC rectifiers are more in demand

than ever with the progress of information technology. According to the U.S. Environmental Pro-

tection Agency, energy used by servers and data centers was 1.5 percent of total U.S. electricity

consumption in 2006 and is expected to be higher in the future [1]. Environmental impact from

computing power has been addressed recently [1–5]. In response to increasing energy cost and

environmental concerns, various energy efficiency initiatives and programs are addressing power

conversion efficiency and power quality in data centers and computer power supplies [6,7]. For ex-

ample, to qualify for the highest (“Platinum”) certification in the 80 Plus program addressing data

center power supplies operating from 230 Vrms ac line, the power supply efficiency must exceed

91% at 100% load, 94% at 50% load, and 90% at 20% load, with power factor greater than 0.95 at

50% load [6]. It is expected that future energy efficiency program specifications will be even more
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demanding in terms of efficiency, power factor and current harmonic distortion requirements for

off-line power supplies over even wider load ranges.

Among the switched-mode PFC rectifiers, boost or buck-boost topologies are more popular

due to their good current shaping ability over the entire ac line period. In general, boost PFC

rectifiers have higher conversion efficiency than buck-boost PFC rectifiers, which makes boost

topology the most popular structure for PFC rectifiers. In boost PFC rectifiers, although analog

control circuits have successfully been applied for current shaping, with the rapid progress of digital

processes, digital control circuits are becoming more attractive due to their potentials for improved

flexibility, programmability, reduced sensitivity to noise, reduced component count, etc.

This thesis focuses on digital control techniques for efficiency improvements and reductions

of current harmonic distortion over a wide range of loads in single-phase boost PFC rectifiers.

An introduction to boost PFC controllers, including analog and digital controllers, is given in the

first part of Chapter 2. Then, motivation for the work presented in this thesis is discussed, while

the last part of Chapter 2 reviews existing boost PFC control approaches to deal with efficiency

improvements and wide load range operation, both in continuous conduction mode (CCM) and in

discontinuous conduction mode (DCM). In Chapter 3, an adaptive switching light load efficiency

improvement approach is introduced. This approach includes a new current sensing correction

factor and an adaptive switching technique to reduce current harmonic distortion and to reduce

switching losses in DCM. Based on the adaptive CCM/DCM control, an adaptive frequency ap-

proach, which further improves light load efficiency, is introduced in Chapter 4. A current error

estimation technique is introduced in Chapter 5 to replace the traditional analog to digital converter

in inductor current sensing. Chapter 6 applies adaptive switching approaches and the passive power

sharing technique in interleaved boost PFC rectifiers to enable system power modularity. Chapter

7 summarizes the original contributions and concludes this thesis.



Chapter 2

Review of Switched-Mode Power Factor Correction Rectifiers

This chapter provides a brief introduction to the existing controllers for boost power factor

correction (PFC) rectifiers and describes the motivation for the research presented in this thesis.

First, basic principles of the boost switched-mode power converter are described in Section 2.1,

followed by an introduction to popular analog and digital boost PFC controllers in Section 2.2.

Then, motivations for the research on efficiency improvement and wide load range operation are

addressed in Section 2.3. Some issues related to the research targets, boost PFC rectifiers with

efficiency improvement and over wide load range operation, are addressed in the last two sections

in this chapter.

2.1 Boost Switched-Mode Power Converter

Boost converter is one of switched-mode power converters, as illustrated in Fig. 2.1. For the

switched-mode power converters, one common modulation is the pulse width modulation (PWM).

PWM converters regulate voltage or current by adjusting the duty ratio (d) of the transistor gate

control signal (g) with a constant switching frequency (fs). During dTs interval, g is logic high

and transistor (Q) conducts, which pulls the switch node voltage (vds) low. Voltage across inductor

(L) is positive and ramps the inductor current (iL) up. At the end of dTs, Q is turned-off and iL

flows through the diode (D). During the diode conduction interval, voltage across the inductor is

negative, which makes iL ramp down. If diode D conducts over the rest of the switching period

(Ts), which means that iL stays positive, the converter is operated in continuous conduction mode
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Figure 2.1: DC-DC boost converter circuits.

(CCM). CCM waveforms are illustrated in Fig. 2.2(a). On the other hand, if iL ramps down to

zero before the end of Ts, the converter is in discontinuous conduction mode (DCM), as shown in

Fig. 2.2(b). CCM and DCM differ in dynamics, which affects controller design and bandwidth of

the regulation loop.

2.2 Boost Power Factor Correction Controllers

Single-phase low-harmonic PFC rectifiers are usually the front-ends of electronic power sup-

plies. The PFC rectifier is an AC-DC rectifier that achieves low input current harmonics and a

good power factor (PF). The ideal PFC rectifier has the PF equal to 1 and has zero total harmonic

distortion (THD) for a sinusoidal ac input. PF is defined as the ratio between the real power

transmitted to the load and the apparent power from the source, as

PF =
average power

(rms voltage)(rms current)
. (2.1)

THD of the ac current signal is defined as

THD =

√

√

√

√

∞
∑

n=2

I2
n

I1
, (2.2)

where In is the magnitude of the nth current harmonic.
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The input impedance of an ideal PFC rectifier at line frequency can be regarded as a loss-free

emulated resistance (Re), which transfers power to the output, as the model shows in Fig. 2.3 [8].

In this section, common approaches to control boost PFC rectifiers are shown and classified

into two categories, analog controllers and digital controllers.

2.2.1 Analog Power Boost Factor Correction Rectifier Controllers

There are mainly three different types of the analog controllers in boost PFC rectifiers. These

include average current mode controllers (ACM), critical conduction mode controllers, and charge

controllers, such as nonlinear carrier controllers (NLC).

ACM has both current loop and voltage loop, as shown in Fig. 2.4 [8]. The voltage loop

regulates the output voltage (Vo) and generates the power control command (u), which multiplies

the rectified input voltage (vg) to generate the reference current (iref ). Current controller regu-

lates inductor current (iL) to follow iref , and achieves resistive load (Re) to the ac input. The

ACM approach needs a multiplier to generate the reference current; therefore, it is considered a

multiplication approach.
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Critical conduction mode controller, also called transition mode (TM) controller, operates the

boost PFC rectifier at the boundary between CCM and DCM, as the waveforms show in Fig. 2.5 [8].

Critical conduction mode controller keeps a fixed transistor turn-on interval (Ton) over half of the

line period (TL) and ends the transistor turn-off interval when the inductor current (iL) reaches

zero. Therefore, the switching period (Ts) varies over TL. Critical conduction mode controller

makes the average inductor current (iavg) follow the input voltage and exhibits loss-free-resistor

(Re) as

Re =
vg1

iavg1
=

vg2

iavg2
=

2L

Ton
, (2.3)

without the need for reference current multiplication. Critical conduction mode boost PFC con-

trollers are classified as the voltage follower type.

The third approach is nonlinear carrier control (NLC). NLC controller applies the ideal quasi-

steady state conversion characteristic in CCM and shapes the input current without input voltage

sensing [9,10]. NLC forms a simple current loop by using an integrator with reset and a Set-Reset

flip-flop with a nonlinear carrier waveform generator, as illustrated in Fig. 2.6. When the amount

of charge through the inductor (vQ) reaches the nonlinear carrier waveform (vC), the gate signal

resets, as

vQ(DTs) =

DTs
∫

0

iL(τ)dτ =
Vo · Ts

Re
(D)(1 − D), (2.4)

with corresponding waveforms shown in Fig. 2.7. The advantages of NLC are that it requires no

input voltage sensing or multiplication, and current compensator design requirements are reduced.

In addition to the analog PFC controllers mentioned above, digital PFC controllers are getting

more and more attention. An overview of some recently developed digital PFC controllers is given

in the next section.
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2.2.2 Digital Power Factor Correction Rectifier Controllers

Early developments of digitally controlled boost PFC rectifiers involved control algorithms

suitable for digital signal processors (DSP) and control algorithms with extra features, such as

improving the voltage loop dynamic response [11–16]. Predictive current control (PCC) is one of

the DSP suitable control algorithms. Different from the digital average current mode control, PCC

applies predictive rules to simplify the digital current loop design. The simplest predictive control

rule is equivalent to adding a duty ratio feed-forward term in the digital average current feedback

controller to reduce current distortion [17–21]. Some sensorless approaches take advantage of the

flexibility of the digital controller and then estimate or predict the other parameters. Input voltage

estimation approach, inductor current rebuilt approach and digital nonlinear carrier approach have

been developed. The input voltage estimation approach estimates the input voltage using distur-

bance observers [22]. The input current rebuilt approach estimates the inductor current based on

the input/output voltages and the transistor on/off intervals [23]. The digital nonlinear carrier

approach uses the quasi-steady state relationship between input and output voltages to calculate

the required duty ratio [24]. In addition, digital control can also be applied in DCM by calculating

the duty ratio appropriately [25].

2.3 Research Motivations

Efficiency is always the first consideration for power supplies. With the increase of energy

prices, high efficiency power supplies gain more and more attention. Demanding high efficiency

power supplies is based not only on economic reasons but is also based on environment protection

considerations. With the explosion of the information technology, the environmental impact of

computer power supplies has been considered and addressed [1, 2].

Nowadays, power supply companies have started to shift their focus from heavy load efficiency

to high efficiency over a wide load range. Electronic systems are not always operated at the

rated power; they are also operated at light load, in sleep mode, or in stand-by mode. In regular
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power supplies, efficiency drops dramatically at light load [26]. From an energy loss point-of-view,

this is equivalent to having low efficiency. Therefore, energy standards have started to set the

efficiency criteria across the whole range of the load conditions [6,7]. The 80plus program launched

specifications for power supplies in 2004, as 80% efficiency at 20%, 50%, 100% rated power [6].

Today, all computer power supplies have to pass the 80plus standard in order to obtain an Energy

Star certificate [7].

As the front-end of power supplies, power factor correction rectifier is the main block to

achieve high power factor and to maintain the low line current harmonic distortion. In order to

maintain grid network quality, most of the consumer electronic devices rated from 75W to 1kW

are required to meet the low-frequency harmonics limits of the European standard (EN61000-3-

2), adopted in 2001. For the power factor limitation, computer power supplies have to meet 0.9

PF at the 100% rated power to be certified by Energy Star. Some applications, such as lighting

applications, have different standards [7].

Furthermore, since 2007, Climate Saver Computing Initiative (CSCI) and other initiatives

have aimed to set stricter standards, including using rating levels of bronze, sliver, gold, and
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Rated Power Bronze Sliver Gold Platinum

η at 20% load 82% 85% 87% –

η at 50% load 85% 88% 85% –

η at 100% load 82% 85% 87% –

PF at 20% load 0.8 0.8 0.8 –

PF at 50% load 0.9 0.9 0.9 –

PF at 100% load 0.95 0.95 0.95 –

Table 2.1: Climate Savers Computing specifications for multi-output power supply units (η: effi-
ciency, PF: power factor).

platinum levels, which not only push the efficiency limitation to be higher over wide load range,

but also change the power factor requirement from full load to medium load range [6]. The highest

performance requirements for data center applications, are set for the platinum level: at 20%, 50%,

100% of the rated load, minimum efficiencies are 90%, 94% and 91%, with 0.9 power factor at

50% rated power (Table 2.1 and Table 2.2) [2, 6]. It is believed that in the near future, both the

efficiency limitation and the current harmonics standard are going to be stricter and be applied to

even lower power levels.

Due to the high efficiency and the low current harmonics requirements of the PFC rectifiers

over a wide range of loads, a study of the boost PFC control approaches for reducing current

harmonic distortion and improving the efficiency over wide load range is presented in this thesis.

The issues related to the wide load operated boost PFC rectifiers are discussed in the next section,

followed by the issues of the efficiency improvement in the boost PFC rectifiers.

2.4 Issues in Wide Load Operated Boost PFC Rectifiers

Among the controllers shown in Section 2.2 for the single-phase boost PFC rectifiers, the

voltage follower approaches work as resistance emulators by operating the converter at DCM or

boundary between CCM and DCM; multiplier approaches shape the input current to track the

reference current with current mode regulation, such as ACM; NLC takes advantage of the CCM

quasi-steady-state relationship to emulate input resistance without input voltage sensing. Most of
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Rated Power Bronze Sliver Gold Platinum

η at 10% load – 75% 80% 82%

η at 20% load 81% 85% 88% 90%

η at 50% load 85% 89% 92% 94%

η at 100% load 81% 85% 88% 91%

PF at 10% load – 0.65 0.65 0.65

PF at 20% load – 0.8 0.8 0.8

PF at 50% load – 0.9 0.9 0.9

PF at 100% load 0.9 0.95 0.95 0.95

Table 2.2: Climate Savers Computing specifications for single-output power supply units (η: effi-
ciency, PF: power factor).

the boost PFC controllers tend to operate in a limited load range in order to keep the power stage

operating in the desired mode, CCM, DCM, or boundary between CCM and DCM.

The approaches intended for CCM operation can also run in DCM but with increased current

harmonic distortion. In order to operate in CCM over a wide range of loads, there are two ap-

proaches that can be utilized. One is to increase the inductance value (L); the other is to increase

the switching frequency (fs). Increasing the inductance value not only slows the system dynam-

ics but also increases the size and the cost of the inductor. Increasing the switching frequency

introduces more switching loss, which results in poor efficiency especially at light load.

In the approaches intended for DCM operation or boundary between CCM and DCM opera-

tion, current sense is not necessary for input current shaping. As a result, they cannot be operated

in CCM. Under CCM/DCM boundary operation, critical conduction mode PFC rectifiers change

the switching frequency a lot, which increases the size of the input filter. DCM PFC controllers

have to be able to operate in DCM at the rated power. Therefore, the large current ripple increases

the system power loss and the electromagnetic interference (EMI) at heavy load.

In order to have the high efficiency PFC rectifier over wide range of loads, PFC controller

has to be able to operate in both modes, CCM and DCM. Some dual-mode approaches operate

two different controllers in different modes. Besides, when boost PFC rectifiers operate in DCM,

there is DCM current oscillation phenomena, which causes DCM current distortion. This section



14

discusses the issues related to wide load range operated boost PFC rectifiers, including dual-mode

operation and DCM distortion.

2.4.1 Dual-Mode Operated Boost PFC Controllers

For getting the low current harmonic distortion, non-mixed-mode controller approaches keep

the same operation mode over the entire ac line period (TL). Non-mixed-mode PFC rectifiers

always operate in one mode. CCM occurs over the entire TL if

Re ≤
2LCCM

Ts,CCM
. (2.5)

The boost PFC operates in DCM for the entire TL at light load if

Re ≥
2LDCM

Ts,DCM ·
(

1 − VM

Vo

) , (2.6)

where VM is the peak line voltage over the line period.

Two different non-mixed-mode approaches result in operating in single mode over the entire

line period TL. One is changing the switching frequency; the other is changing the equivalent

inductance. An approach based on changing the equivalent inductance (Leq) to control the PFC

operation mode is presented in [27]. It separates the boost inductor into two and adds a switch

leg between the two inductors, as shown in Fig. 2.8. At heavy load, while boost PFC operates

in CCM, it uses a nonlinear carrier controller with both inductors in series. At light load, the

switch leg shorts as a capacitor; part of the inductor (Lf ) with the capacitor (Cf ) leg forms a

DC side input filter before the boost PFC power stage. Due to the reduction of the inductance

value, boost PFC operates in DCM over the entire line period. In DCM, it still uses the nonlinear

carrier controller with a modified carrier waveform. In addition, some core materials vary their

permeability and their corresponding inductance values with different DC bias to achieve wide load

range operation [28,29].

The approach of changing the switching frequency is similar to the approach of changing the
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equivalent inductance value. It changes the switching frequency (fs) to enforce the boost PFC

rectifier to operate in one mode over the entire TL [30]. The controller uses the predictive current

control and calculates the required duty ratio for two different switching frequencies in either of

the operating modes, CCM and DCM. Both approaches of changing the switching frequency and

changing the equivalent inductor can operate over a wide range of loads and can reduce the current

distortion due to the mode transition. However, non-mixed-mode PFC rectifiers have relatively

large peak current in DCM and have low efficiency around the mode transition.

Dual-controller PFC rectifiers are able to operate in dual-mode within the ac line period.

There are two approaches to changing the modes within TL. One has constant on-time and variable

frequency in both CCM and DCM [31]; while the other operates at a constant frequency in CCM and

at varying frequency in DCM [32,33]. In CCM, the constant on-time approach uses the predictive

valley current controller to calculate the off-time; while in DCM, it uses the estimated off-time

without current sensing (Fig. 2.9). On the other hand, the constant frequency approach uses the

digital average current mode control (DACM) in CCM [32, 33]. When the boost power stage is in

DCM, the constant frequency approach uses a semi-TM approach, which operates around CCM and

DCM boundary with adding a constant charge-recovery interval as the discontinuous conduction

period, as illustrated by the waveforms in Fig. 2.10. Constant on-time and semi-TM controllers

achieve high switching frequency around input voltage zero-crossing when the converter processes

less power. This results in reduced efficiency.
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2.4.2 DCM Current Oscillation

When the boost PFC rectifier operates in DCM, there is a current oscillation phenomenon,

DCM oscillation, which causes increased current distortion at light load. It has been studied and

verified that DCM oscillation affects the current harmonic distortion when the boost PFC rectifier

operates in DCM [34].

DCM oscillation happens during the discontinuous conduction interval (Fig. 2.11). During

discontinuous conduction interval, inductor (L) and switch node capacitance (Cx) form a low-

damping LC resonant tank, where energy bounces between L and Cx. The DCM oscillation starts

from the time when the diode stops conducting and the switching node voltage (vds) equals to

output voltage (Vo). Due to the voltage potential difference between rectified input voltage (vg)

and Vo, iL rings around zero and vds rings around vg. This is called the DCM oscillation.

For constant switching frequency operation (fs = 1/Ts), the boost transistor may start to

conduct at any vds in the discontinuous conduction interval (Tdcm) because of the DCM oscillation.

Therefore, the inductor current level is not always zero at the time when the boost transistor starts

to conduct, which affects the average current over Ts. Also, the switch node capacitance (Cx) is

composed of inductor parasitic capacitance and semiconductor parasitic capacitance, including the

transistor and the diode parasitic capacitance. Semiconductor parasitic capacitances are nonlinear

capacitances which are affected by the voltage across the devices. Therefore, the constant frequency

operated PFC rectifiers suffer from the DCM current distortion due to the DCM oscillation (Fig.
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Figure 2.12: Waveforms illustrate DCM current distortion due to DCM oscillation (boost example).

2.12).

In order to reduce the current distortion due to the DCM oscillation, RC damping approaches

have been studied in [34]. An RC snubber leg, consisting of a capacitance (Csn) in series with a

resistor (Rsn) at the switching node, is added as illustrated in Fig. 2.13. The RC damping approach

successfully reduces the DCM oscillation and the DCM current distortion. However, the snubber

leg, Rsn and Csn, has to be a low impedance path to produce the damping effect. As a result,

losses are increased and converter efficiency is reduced.

2.5 Efficiency Improvement in PFC Rectifiers

In the past few years, efficiency improvement approaches for the boost PFC rectifiers from

component, control and topology aspects have been developed [35]. From the component point of

view, silicon carbide (SiC) diode and the new structure of metal oxide silicon field effect transistor

(MOSFET), CoolMOS, have reduced the PFC loss [36, 37]. SiC diodes have less reverse-recovery

charge than the regular silicon diodes. CoolMOSs have lower on-resistance than the regular vertical

power MOS transistors; SiC diode and CoolMOS make transistor turn-on time shorter and reduce

the transistor conduction loss. From the control point of view, paralleling modules with a shedding

approach improves the light load efficiency but increases the number of components, as Fig. 2.14

shows [38–40]. Burst mode operation also helps to improve the light load efficiency, but also

possibly generates audio noise [41]. Conduction angle control saves the switching loss but increases



19
D

Q

C R+

Vo

vac

iac

_

g

L

Cx

iL

+

_

vds
Rsn

Csn

Figure 2.13: Boost PFC rectifier operated in DCM with RC damping snubber.

the current harmonic distortion by keeping the transistor turned-off around zero-crossings of the

line input voltage (vac), as shown in Fig. 2.15 [42].

From the topology point of view, active snubber approaches to achieve zero voltage switching

(ZVS) or zero current switching (ZCS) reduce reverse recovery loss of boost PFC rectifiers by adding

extra components and increasing overall system complexity [43–45]. Bridgeless boost PFC rectifiers

increase overall efficiency by eliminating the full bridge rectifier and eliminating one conduction loss

component in the conduction path (Fig. 2.16) [35, 46,47].

Among the various efficiency improvement approaches, some could be combined together.

For the topology selection, in comparing the complexity of the system with the performance im-

provement, the regular boost PFC with full bridge rectifier approach is still the most attractive one.

Recently, bridgeless boost PFC rectifiers and interleaved boost PFC rectifiers get more attention

due to the heavy load efficiency improvement and improved system modularity. For the controller

selection, a smart but complicated PFC controller is difficult to be embedded in the regular analog

PFC controllers. A digital controller can easily add extra functions without increasing the cost

much. Digital control becomes the first choice to design the smart boost PFC controller.

This study focuses on the use of digital control for high efficiency over wide load range in

single-phase boost PFC rectifiers.
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Chapter 3

Adaptive Switching CCM/DCM Current Control in Boost PFC

Wide load range operated boost power factor correction (PFC) rectifiers require current

shaping ability in both continuous conduction mode (CCM) and discontinuous conduction mode

(DCM). As mentioned in Chapter 2, most PFC controllers suffer from current harmonic distortion

by operating in improper mode. Most of the dual-mode controllers have a discontinuity problem

during mode transitions. In addition, boost DCM oscillation introduces current harmonic distortion

when the converter is operating at light load in DCM. Although the RC damping approach relieves

the current harmonic distortion, it reduces both the light load efficiency in DCM and heavy load

efficiency in CCM [34].

In this chapter, a digital boost PFC controller that can operate over a wide range of loads

with high efficiency is introduced. First, a review of the digital average current control (DACM) and

the digital predictive current control (PCC), are discussed in Sec. 3.1. Then, a proposed approach,

which corrects the digital current sensing error, is addressed. Sec. 3.2 introduces a new adaptive

switching approach to reduce DCM current distortion without compromising system efficiency. A

detail of the adaptive switching CCM/DCM current controller is presented in Sec. 3.3, followed by

experimental results, including efficiency improvement and DCM current distortion reduction, in

the last section.
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3.1 Current Sampling Issue and Current Sensing Correction Factor

3.1.1 Digital Average Current Control / Predictive Current Control

DACM is one of the most popular control approaches in digitally controlled PFC rectifiers

(Fig. 3.1). DACM senses output voltage (Vo) and passes the voltage error signal (ev) through

a voltage controller, which regulates the output voltage. Output of the voltage controller, power

command (u), is multiplied with rectified input voltage (vg) to generate current reference (iref ).

To reduce the current sampling rate, DACM controller senses the inductor current at the middle

of the transistor conduction interval or diode conduction interval. The sensed current (iL,sense)

approximately represents the average inductor current over the entire switching period in CCM [17].

Current error (ei), the difference between iref and iL,sense, feeds into a current controller and a

digital pulse width modulator (DPWM) to generate a gate control signal (g), which controls the

boost transistor (Q).
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Figure 3.1: Block diagram of digital average current mode controller.

Predictive current control (PCC) technique is a high performance current control algorithm
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with relatively simple digital implementation. Based on the low current sampling rate, PCC

is a modification of DACM by using predictive rules. The next sensed inductor current value

(iL,sense[n + 1]) can be expressed as a function of the previous sensed inductor current value

(iL,sense[n]), the controlled duty ratio (d[n]) and the operating conditions, as

iL,sense[n + 1] = iL,sense[n] +
vg

L
· Ts −

Vo

L
· Ts · (1 − d[n]) , (3.1)

where d is the duty ratio; L is the boost inductor value; and Ts = 1/fs is the switching period.

By rewriting Eq. 3.1 and replacing iL,sense[n + 1] with the desired sensed current iref , the

required duty ratio (d[n]) to regulate inductor current can be calculated as

d[n] =
L

TsVo
· (iref − iL,sense[n]) +

(

1 −
vg

Vo

)

. (3.2)

Eq. 3.2 uses the inductor current relationship in a single cycle to calculate the duty ratio for

the next switching period based on current error and input/output voltage information. Depending

on the predictive rule, the inductor current error can be canceled out in the next switching period,

or next few periods.

Some predictive rules use multiple cycles to calculate the required duty ratio [17], as

d[n] =
L

TsVo
· (iref − iL,sense[n]) +

(

1 −
vg

Vo

)

+

(

1 −
vg

Vo

)

− d[n − 1]. (3.3)

The current predictive rule can be considered as a modification of the digital average current

mode control. Eq. 3.2 and Eq. 3.3 can be segmented into the digitally proportional current control

rule plus a feed-forward term, which is the estimated steady state duty ratio in CCM.

From the small signal point of view, compared to the single cycle predictive rule (Eq. 3.2),

the multiple-cycles predictive rule (Eq. 3.3) has an extra high frequency pole and increases the

feed-forward gain. Ideally, the single cycle predictive rule reduces current error and regulates
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inductor current in one cycle; while the multiple-cycle predictive rule takes multiple cycles (Fig.

3.2). However, multiple-cycle predictive rule also allows longer conversion time for current sensing.

3.1.2 Digital Current Sensing Error and Current Sensing Correction Factor

In DACM or in average PCC, the inductor current is usually sensed in the middle of the

transistor conduction interval (Ton) or diode conduction interval (Toff ). In CCM, the sensed

current (iL,sense) can represent the average current (〈iL〉Ts
) over the entire switching period (Ts),

as shown in Fig. 3.3. However, in DCM, iL,sense no longer represents 〈iL〉Ts
. The DCM current

sensing error introduces some current distortion during light load operation.

To remove the current sensing error, a current sensing correction approach has been developed

[48]. It introduces a current sensing correction factor (κ), which is the ratio between the sensed

current (iL,sense) and the average current 〈iL〉Ts
. The current sensing correction factor proposed

in [48] is based on estimation, as

κ =
iL,avg

iL,sense
=

√

√

√

√

2L

ReTs
·

(

Vo

Vo − vg

)

. (3.4)

Adding the current sensing correction factor in the controller successfully combines the CCM

and DCM controllers as a single controller over wide load range. However, the estimated current

sensing correction factor in Eq. 3.4 requires complicated calculation including a fast divider op-

eration and a square root operation. Instead of using the estimation approach to calculate κ, a

new approach, based on measurement, is introduced in this chapter. In DCM, the sensed current

value only represents an average current value over the conduction interval, sum of the transistor

conduction interval (Ton) and diode conduction interval (Toff ) (Fig. 3.3). The conduction interval

is the difference between Ts and discontinuous conduction interval (Tdcm). Therefore, the sensing

based current sensing correction factor is

κ =
iL,avg

iL,sense
=

Ton + Toff

Ts
= 1 −

Tdcm

Ts
. (3.5)
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Figure 3.3: Current sensing in digital average current control under CCM (top) and DCM (bottom).
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Instead of calculating the estimated value, this new approach detects Tdcm and uses a simple

multiplication in the digital controller to correct the current sensing error.

Adding the current sensing correction term, the complete set of the CCM/DCM predictive

current controller rules is as follows:

Ton[n + 1] = ∆Ton[n] + Ton,ff , (3.6)

∆Ton[n] = α · ei[n] + α · β · ei[n − 1] + ∆Ton[n − 1], (3.7)

ei[n] = Ts[n] · iref − (Ts[n] − Tdcm[n]) · iL,sense, (3.8)

Ton,ff = min

[

Ts ·

(

1 −
vg

Vo

)

, Ts ·

√

(

1 −
vg

Vo

)

·
2Lu

Ts

]

, (3.9)

where α is the term related to the current feedback gain; β is related to the zero location of the

proportional and integral (PI) current feedback compensator; and Ton,ff is the feed-forward term

from PCC.

From the stability point of view, κ is always equal to 1 in CCM. Current loop stability in

CCM is exactly the same as the regular average predictive current controller [17]. In DCM, for the

estimation approach (Eq. 3.4), the current loop stability of current sensing correction approach in

current loop has been addressed in [48]. However, since the proposed current controller has current

sensing correction factor feedback, the block diagram of the current control loop can be constructed

as shown in Fig. 3.4.

In addition to the current feedback loop, there is an extra κ feedback loop. Applying κ in

Eq. 3.2 and correcting the duty ratio feed-forward in DCM (Dff ) as Eq. 3.10 and Eq. 3.11, small

signal discrete transfer functions in z domain can be expressed:

d[n] =
L

TsVo
· (iref − κ · iL,sense[n]) + Dff , (3.10)
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Figure 3.4: Block diagram of current loop with measured current sensing correction factor (κ).

Dff = min

[

(

1 −
vg

Vo

)

,

√

2L

ReTs
·

(

1 −
vg

Vo

)

]

, (3.11)

Gκd(z) =
κ̂

d̂
=

Vo

Vo − vg
, (3.12)

Gdκ(z) =
d̂

κ̂
=

L · il,sense

VoTs
·
1

z
, (3.13)

Tκ(z) =
1

2

√

√

√

√

2L

ReTs
·

(

Vo

Vo − vg

)

·
1

z
, (3.14)

where Tκ is the κ loop gain. The κ loop has a gain always lower than 1, and the feedback loop is

stable.

There are several ways to detect Tdcm. One simple way is to detect inductor current zero-

crossing by a comparator and a digital controller to count Tdcm. This Tdcm detection approach is

shown in the next section.

3.2 DCM Oscillation and Adaptive Switching

3.2.1 DCM Switch Approach and DCM Comparator

As mentioned in Chapter 2, DCM oscillation is one of the issues that causes current harmonic

distortion at light load. Damping approach has been developed using an RC snubber leg to damp
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out DCM oscillation [34]. RC damping approach reduces the current harmonic distortion in DCM,

but it increases the snubber loss in both CCM and DCM. Instead of using the RC snubber leg, a

new approach to reduce current distortion due to DCM oscillation is proposed and developed in

this section.

The main idea is to store the DCM oscillation energy (ECx) from switching node capacitance

(Cx) to inductor. The DCM oscillation energy stored in Cx is

ECx =

Vo
∫

0

Cx(vds) · vdsdvds. (3.15)

A comparator and a switch (QDCM ) across the secondary winding of the inductor are added,

as shown in Fig. 3.5. During Tdcm interval, when the switching node voltage (vds) rings to be

equal to the rectified input voltage (vg), the controller sets the gate signal of the DCM switch

(gDCM ) high to store the oscillation energy in the magnetizing inductance (LM ) and circulates

current through QDCM . In order to find the correct timing to turn QDCM on, a DCM comparator

is added across the inductor secondary winding to detect the inductor voltage (vL) polarity. This

comparator signal (sDCM ) also helps to detect CCM/DCM boundary and to measure Tdcm, as

shown in Fig. 3.6. Tdcm information can be applied in Eq. 3.5, to correct the current sensing error

and to reduce current harmonic distortion in DCM.

When boost transistor is turned on, energy stored in Cx is discharged immediately. Adding

some dead-time (TD) between boost gate signal (g) and DCM gate signal (gDCM ) saves energy

(Esave), which depends on vg, as

Esave = min







Vo
∫

0

Cx(vds) · vds dvds, 2







Vo
∫

vg

Cx(vds) · vds dvds












. (3.16)

Ideally, DCM switch approach can recover most DCM oscillation energy in the boost PFC

rectifier. However, the DCM switch has to be implemented using semiconductor switches, tran-

sistors and diodes. The DCM switch has to be able to block positive and negative voltages, and

to allow current flow in one direction. Non-ideality of the DCM switch, forward voltage on the
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Figure 3.5: Block diagram of a boost PFC rectifier using the DCM switch.

diode and on-resistance of the transistor, reduces the saved energy (detailed analysis is shown in

Appendix A). In addition, due to the non-ideality of the DCM switch, some parasitic capacitance

exists. This is equivalent to adding extra capacitance at the switching node. Therefore, although

the DCM switch approach reduces the input current harmonic distortion due to the DCM oscilla-

tion, its losses diminish efficiency improvements. Experimental results and waveforms are shown

in Appendix A.

3.2.2 Adaptive Switching Approach

Due to the non-ideality of the DCM switch, the approach becomes one of the damping

approaches. For high efficiency at light load, an adaptive switching approach is introduced in this

section. The input current distortion due to the DCM oscillation is mainly caused by the uncertainty

of the inductor current level when the boost transistor starts to conduct. If the transistor is always

turned on at zero inductor current, the DCM current distortion will be reduced, as illustrated in

Fig. 3.7. Therefore, the main idea of the adaptive switching approach is to adjust the turn-on

timing of the boost transistor to meet zero inductor current condition. On the other hand, there

are two zero inductor current conditions during DCM oscillation. One is at high switching node
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Figure 3.7: Operation waveforms illustrating adaptive switching approach.

voltage, while the other is at low switching node voltage, as shown in Fig. 3.7. If the boost

transistor turns on at low switching node voltage, it saves the most switching node energy without

adding extra active snubber circuits (Eq. 3.16).

In order to turn the boost transistor on at the lowest switching node voltage, DCM oscillation

information is required. In DC-DC applications, since the input voltage is roughly a constant value,

the DCM oscillation period can be considered constant. A simple RC delay can be applied to turn

the boost transistor on at low switching node voltage [49–51]. RC delay approach has been applied

to AC-DC rectifiers in transition mode (TM) to approximately achieve low voltage switching [32,33,

51]. However, DCM oscillation period changes a lot with different components and operating points

in boost PFC rectifiers. Instead of applying the estimated delay time for low voltage switching, the

proposed adaptive switching approach uses DCM comparator signal (sDCM ) to precisely measure

part of the DCM oscillation period (Tosc) (Fig. 3.7). Taking advantages of digital control, the

controller applies half Tosc after the rising edge of sDCM to make the transistor turn-on at the

lowest switching node voltage. The hardware implementation of the adaptive switching approach

is a simple secondary winding of the inductor with a DCM comparator, as shown in Fig. 3.8.
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3.3 Adaptive Switching CCM/DCM Current Control

Adaptive switching CCM/DCM control combines the two proposed approaches described in

previous sections, the new current sensing correction factor and the adaptive switching approach.

Adaptive switching CCM/DCM control is based on the predictive current control with trailing

triangle modulation and uses PI compensator for current loop (Eq. 3.2). The block diagrams are

shown in Fig. 3.8 and Fig. 3.9. On the other hand, since the adaptive switching approach slightly

changes the switching period, its control rule is modified from the constant frequency predictive rule.

Instead of using a constant switching period (Ts), the adaptive switching CCM/DCM controller

uses the measured switching period (Tsw) to calculate the current sensing correction term (Eq.

3.8). The modification affects the current compensator gain and zero location only (Eq. 3.7).

The complete set of the adaptive switching CCM/DCM predictive current control law is listed

in the following equations:

Ton[n + 1] = ∆Ton[n] + Ton,ff , (3.17)

∆Ton[n] = α · ei[n] + α · β · ei[n − 1] + ∆Ton[n − 1], (3.18)

ei[n] = Tsw[n] · iref − (Tsw[n] − Tdcm[n]) · iL,sense, (3.19)
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Figure 3.10: Operation waveforms of adaptive switching CCM/DCM current controller.

Ton,ff = min

[

Ts ·

(

1 −
vg

Vo

)

, Ts ·

√

(

1 −
vg

Vo

)

·
2Lu

Ts

]

. (3.20)

The approach described here is based on the assumption that the DCM oscillation period Tosc

does not change much between two consecutive switching periods. The digital controller uses the

DCM comparator signal sDCM to measure and store the oscillation period Tosc. After expiration of

the nominal (CCM) switching period Ts, the controller waits for a low-to-high transition of sDCM ,

and extends the transistor turn-off time by Tosc/2 so that the next DCM oscillation cycle ends at

the point when the inductor current is zero and the drain voltage is at a minimum, as shown in

Fig. 3.10. The adaptive switching controller is implemented as a state machine, as shown in Fig.

3.11. Referring to the waveforms in Fig. 3.10, a switching period starts from the first transistor

conduction state SQon1; after the transistor is turned-off, the system is in the diode conduction

state SDon. If comparator signal sDCM stays low for the entire transistor turn-off interval Toff , the

system operates in CCM, ending the period in the second transistor conduction state SQon2. On

the other hand, if DCM comparator output sDCM flips to logic high before the end of Toff , the

system operates in DCM. Depending on sDCM , the state machine toggles between SV xL and SV xH

to measure Tosc. Before moving to transistor turn-on state SQon2, the system waits for one half of

Tosc to achieve valley switching at the minimum of vds ringing.
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3.4 Current Loop Dynamics Improvement in DCM

Continuous-time averaged small-signal models for duty-cycle control to inductor current dy-

namics have been derived in [8, 48]. According to these models, compared to CCM dynamic re-

sponse, the DCM response has a lower gain and does not include an integral term. Based on

the discrete-time modeling approach in [52,53], discrete-time small-signal responses including A/D

sampling and modulator delay effects can be derived for CCM (Gidz−CCM ) and DCM (Gidz−DCM )

operation, as

Gidz CCM =
îL

d̂
=

VoTs

L
·

1

z − 1
, (3.21)

Gidz DCM =
îL

d̂
=

vgTs

2L
·
1

z
. (3.22)

Using the fixed PI compensator Gicz, the corresponding current loop gain magnitude and

phase responses for CCM and DCM operations are shown in Fig. 3.12. It can be observed that the

gain and the cross-over frequency are much lower in DCM, resulting in poor current regulation and

increased current distortion in DCM. This issue has been addressed in [48] by applying different

compensators for DCM and for CCM operation, based on a CCM/DCM mode transition estimation.

The estimation, however, may be subject to errors due to inductance tolerances or current sensing

errors.

In order to maintain high current loop bandwidth in CCM and in DCM, a modified PI com-

pensator (Gicz M ) is applied. The compensator parameters, α and β in Eq. 3.18, are adjusted based

on the measured discontinuous conduction period Tdcm, thus eliminating possible mode estimation

errors, as

αdcm =
Vo − vg

vg + Vclamp
·

Ts

Ton,ff
· α, (3.23)
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βdcm = −0.25. (3.24)

In DCM, the compensator gain αdcm is increased and the zero location βdcm is shifted. Vclamp

clamps the gain to a finite value around zero-crossings of the line voltage. Fig. 3.13 shows how the

modification results in much improved bandwidth of the current control loop in DCM.

3.5 Results and Discussion

A 300W boost PFC rectifier (fs ≈ 80 kHz; L= 0.5 mH; C = 220µH) is built as shown in Fig.

3.14, using field programmable gate array (FPGA) development platform to implement the digital

controller. Its experiment setup is shown in Fig. 3.15.

At heavy loads, in CCM operation, all of the controllers operate exactly the same as the

constant frequency predictive current controller. They all result in low current harmonic distortion,

as illustrated by Fig. 3.16 and Fig. 3.17.

At medium load to light load conditions, when DCM occurs for most of the ac line period,

constant frequency operated predictive current controller with and without CCM/DCM current

sensing correction are shown in Fig. 3.18(a) and Fig. 3.18(b), respectively. Current controller with

CCM/DCM correction achieves lower current distortion. The DCM current sensing correction

improves current control and reduces distortion.

Besides, in DCM, in contrast to the constant frequency operation (Fig. 3.19(a)) adaptive

switching CCM/DCM current controller starts to turn the boost transistor at low switching node

voltage in DCM, as illustrated by the experimental waveforms in Fig. 3.19(b).

At light loads, input current distortion using the adaptive switching CCM/DCM controller

(Fig. 3.20(a)) is significantly reduced compared to the predictive CCM/DCM current controller

(Fig. 3.20(b)). The DCM distortion is reduced by switching at the lowest drain voltage, thus

reducing nonlinear effects of inductor current ringing on current regulation performance.

At very light load (5% rated power), DCM current distortion becomes more severe in constant
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Figure 3.12: Current loop dynamics with current loop compensator Gicz in CCM (200 W) and
DCM (80 W) (fs = 80 kHz; L= 0.5 mH; vg = 100 V).
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Figure 3.15: Evaluation board and experimental setup.



40

Figure 3.16: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive switching CCM/DCM controller (fs = 80 kHz; 300 W).

Figure 3.17: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive switching CCM/DCM controller (fs = 80 kHz; 200 W).
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(a) Predictive current controller

(b) Predictive CCM/DCM current controller

Figure 3.18: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac (fs = 80 kHz; 75 W).
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(a) Constant frequency predictive current controller

(b) Adaptive switching CCM/DCM current controller

Figure 3.19: Experimental boost PFC converter waveforms in DCM, inductor current iL, switching
node voltage vds, gate drive signal g and DCM comparator signal sDCM (fs ≈ 80 kHz).
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(a) Predictive CCM/DCM current controller

(b) Adaptive switching CCM/DCM current controller

Figure 3.20: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac (fs = 80 kHz; 50 W).
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frequency operation, such as predictive current control (Fig. 3.21) and predictive CCM/DCM cur-

rent control (Fig. 3.22). Adaptive switching reduces total current harmonic distortion dramatically,

as shown in Fig. 3.23.

Fig. 3.24 compares the total harmonic distortion (THD) performance of the considered con-

trollers, including predictive current control, predictive CCM/DCM current control, and adaptive

switching CCM/DCM current control.

Some distortion over the line at light load case is a result of the discrete number of the

oscillation periods allowed. With low current loop bandwidth in DCM, some distortion may occur

as shown in Fig. 3.25(a). However, applying the modified current controller in DCM (Sec. 3.4)

achieves an alternative number of oscillation periods and reduces the current harmonic distortion,

as shown in Fig. 3.25(b).

For efficiency testing, the power stage has been tested with two different diode types, a fast

soft recovery diode (FFPF04S60S) and a Silicon Carbide diode (CSD04060). The nominal switching

frequency in the experimental setup is 80 kHz. Measured efficiency as a function of output power is

compared in Fig. 3.26 for the considered control approaches. As expected, at high loads, efficiency

is slightly better with the Silicon Carbide diode because reverse recovery losses are lower. At

intermediate and light loads, when the converter operates in DCM most of the time, losses due

to the switch-node capacitance are more significant. As a result, the adaptive switching approach

offers more significant efficiency improvements with the Silicon Carbide diode, which has a larger

capacitance. Results are summarized in Table 3.1.
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Figure 3.21: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, predictive current controller (fs = 80 kHz; 15 W).

Figure 3.22: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, predictive CCM/DCM current controller (fs = 80 kHz; 15 W).
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Figure 3.23: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive switching CCM/DCM controller (fs = 80 kHz; 15 W).
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Figure 3.24: Current harmonic distortion comparison (vg−rms= 115 V; fs = 80 kHz).



47

(a) Adaptive switching CCM/DCM current controller with regular controller Gicz

(b) Adaptive switching CCM/DCM current controller with modified controller
Gicz M

Figure 3.25: Experimental boost PFC converter waveforms in DCM, inductor current iL, switching
node voltage vds, gate drive signal g and rectified input voltage vg (fs ≈ 80 kHz).
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Figure 3.26: Efficiency comparison (vg−rms= 115 V; fs = 80 kHz).
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Power Efficiency Power
Factor

THD

CCM Predictive Current Control 300W 95.3% 0.999 2.2%

CCM/DCM Predictive Current Con-
trol

300W 95.3% 0.999 2.2%

Adaptive Switching CCM/DCM
Current Control

300W 95.3% 0.999 2.2%

CCM Predictive Current Control 150W 94.7% 0.999 2.8%

CCM/DCM Predictive Current Con-
trol

150W 94.5% 0.999 2.8%

Adaptive Switching CCM/DCM
Current Control

150W 95.1% 0.999 2.8%

CCM Predictive Current Control 50W 93.6% 0.987 15.9%

CCM/DCM Predictive Current Con-
trol

50W 93.8% 0.994 7.3%

Adaptive Switching CCM/DCM
Current Control

50W 94.6% 0.994 5.9%

CCM Predictive Current Control 15W 88.6% 0.950 21.2%

CCM/DCM Predictive Current Con-
trol

15W 88.6% 0.933 15.6%

Adaptive Switching CCM/DCM
Current Control

15W 91.0% 0.937 10.7%

Table 3.1: Performance comparison of experimental CCM predictive current controller, CCM/DCM
predictive current controller and adaptive switching CCM/DCM current controller (vac,rms = 115V;
fs = 80kHz)(transistor: STP25NM60N; diode: CSD04060).



Chapter 4

Adaptive Frequency CCM/DCM Current Control in Boost PFC

At light load, switching loss is usually the dominant part of the power loss. Pulse frequency

modulation (PFM) reduces the switching frequency to reduce the switching loss at light load. PFM

is a well-known control approach to improve light load efficiency in DC-DC converters [54–56].

Similar ideas have been applied in power factor correction (PFC) rectifiers. One approach is

the burst mode, which reduces the equivalent switching frequency [41]. Another approach is the

conduction angle control, which keeps the transistor turned-off around input voltage zero-crossings

to improve efficiency [42]. In the constant on-time control, the switching frequency is adjusted

based on the load [31,57].

Burst mode and conduction angle control results in higher current distortion; the constant

on-time approach reduces the switching frequency only based on the load. However, within the

line period (TL), since the PFC rectifiers regulate the input current (ig) to follow the waveshape of

the input voltage (vg), the power level processed around peak line voltage is quite different from

that around line voltage zero crossing. In order to reduce the light load switching loss based on

the overall power level and instantaneous transmitted power level, a new approach is introduced in

this chapter. Sec. 4.1 addresses the principles of the adaptive frequency approach, which combines

PFM and current shaping. Then, details of the adaptive frequency CCM/DCM current control are

presented in Sec. 4.2. Experimental results are given in Sec. 4.3.
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4.1 PFM and Current shaping

In regular pulse width modulation (PWM) converters, constant frequency operation makes

the converter efficiency drop dramatically at light load. The conduction loss reduces with the power

level; however, since the switching loss is a strong function of operating frequency, the switching

loss does not change much with different power levels. Once the switching loss dominates the

system loss, the overall efficiency decreases dramatically. As a result, converters operating at high

switching frequency tend to have lower efficiency at light load. On the other hand, low frequency

operated converters have high current stress and introduce more conduction loss at heavy load.

To achieve high efficiency for wide load range, PWM plus PFM approaches have been de-

veloped in DC-DC switched-mode converters [54–56]. The PWM plus PFM approach combines

constant frequency PWM operation at heavy load and PFM operation at light load.

Adaptive frequency approach is similar to the PWM plus PFM approach. At heavy load,

when the boost converter is operated in continuous conduction mode (CCM), it runs the regular

predictive current control (PCC); while at light load, when the boost converter is operated in

discontinuous conduction mode (DCM), it adjusts the operating frequency.

The main idea of the adaptive frequency approach is based on using switching frequency to

shape the inductor current instead of using duty ratio (Fig. 4.1). Generally, constant frequency

PFC controller directly shapes the inductor current by the duty ratio (dDCM ) in DCM, as

dDCM =

√

2L

ReTs
·

(

1 −
vg

Vo

)

, (4.1)

which requires the power command (u=1/Re) and rectified input voltage (vg) information.

Instead of using the duty ratio to shape the inductor current, the proposed adaptive frequency

approach extends the minimum switching period (Ts), to shape the inductor current. By applying

the same transistor conduction period (Ton) as in the regular CCM operation and by changing the

switching period in DCM (Ts,DCM ), the adaptive frequency approach makes the average current

(〈iL〉Ts
) the same as in constant frequency case, as illustrated in Fig. 4.1.

To achieve correct current shaping, the required turn-on period has to be
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iLInductor Current
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iL   Ts,DCM

iL   Ts

iL   Ts

iL   Ts

Figure 4.1: DCM current shaping by duty ratio or shaping by switching frequency.

Ton,DCM = Ts ·

(

1 −
vg

Vo

)

= dDCM · Ts,DCM . (4.2)

Therefore, the DCM switching frequency of the adaptive frequency approach (Ts,DCM ) has

to be adjusted as

Ts,DCM = T 2
s ·

(

1 −
vg

Vo

)

·
Re

2L
. (4.3)

In the proposed adaptive frequency approach, the CCM switching frequency is constant,

fsmax = 1/Ts,min. The DCM switching frequency variation is based on keeping the transistor duty

cycle constant. Fig. 4.2 shows variations of the transistor duty ratio and the switching period over

one half of the line period at an intermediate load. When the converter operates at heavy load

under constant frequency operation in CCM, the switch duty ratio is approximately independent

of load. In DCM, with constant frequency operation, a lower duty ratio is required as the load

is reduced. The proposed adaptive frequency controller keeps the same duty ratio during DCM

operation,

DDCM =
Ton

Ts,DCM
=

2L

ReTs
, (4.4)

but allows the switching period to vary as Eq. 4.3. Note that the constant DCM duty ratio approach

also enables a smooth transition between constant-frequency CCM and variable-frequency DCM
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operation of the controller. The switching frequency variation is shown in the bottom part of Fig.

4.2, while the corresponding duty ratio variation is shown in the top part of Fig. 4.2.

A light load example is shown in Fig. 4.3. As opposed to constant frequency operation,

where current shaping is accomplished by adjusting the duty ratio, the switching period is adjusted

in the adaptive frequency technique.

At very light loads, depending on the selection of the maximum switching frequency fs,max

and inductance value L, the adaptive frequency CCM/DCM controller may operate below 20 kHz,

which may result in audible noise. A limit to the maximum allowed switching period (Ts,max)

is imposed to limit the minimum allowed switching frequency, as shown in Fig. 4.4. When the

adaptive frequency controller hits the lower frequency limit at very light loads, current shaping is

based on the current feedback only, without the feed-forward term.

4.2 Adaptive Frequency CCM / DCM Current Control

The adaptive frequency CCM/DCM controller is also taking advantage of the adaptive switch-

ing CCM/DCM control described in Chapter 3. The adaptive frequency CCM/DCM controller

applies the current sensing error correction and makes boost transistor turn on at the lowest drain

voltage. The system block diagram and current controller block diagram are shown in Fig. 4.5

and Fig. 4.6 respectively, which make use of the same hardware implementation as the adaptive

switching approach.

Adding the lower frequency limitation, the complete set of adaptive frequency CCM/DCM

controller equations is as follows:

Ton[n + 1] = ∆Ton[n] + Ton,ff , (4.5)

Ts[n + 1] = max [Ts,min, Ts,DCM ] , (4.6)
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Ts,DCM = min

[

Ts,max, T 2
s,min

(

1 −
vg

Vo

)

Re

2L

]

, (4.7)

Ton[n] = α · ei[n] + α · β · ei[n − 1] + ∆Ton[n − 1], (4.8)

ei[n] = Tsw[n] · iref − (Tsw[n] − Tdcm[n]) · iL,sense, (4.9)

Ton,ff = min

[

(

1 −
vg

Vo

)

· Ts,min, 2L · u ·
Ts,max

Ts,min

]

, (4.10)

where Ts,min is the constant switching period selected for CCM operation, Ts,max is the maximum

allowed switching period. In DCM, coefficients α and β are adjusted according to DCM current

controller shown in Chapter 3. Notice that adaptive frequency does not require complex digital

operations, such as square root calculation and fast divider operation. The only divider operation

required is Re, which is one over power command (u), as Eq. 4.7. In the digital voltage loop,

u updates once per line period. Therefore, using a multiplication and a feedback loop is a cost

effective approach to implement divider operation .

4.3 Results and Discussion

A 300W boost PFC rectifier (fs,max ≈ 80 kHz; fs,min ≈ 20 kHz; L= 0.5 mH; C = 220µH)

built for adaptive switching CCM/DCM current control (Chapter 3), also works as the platform to

demonstrate adaptive frequency CCM/DCM current control. System block diagram with compo-

nent information is shown in Fig. 4.7.

To demonstrate operation of the adaptive frequency approach, experimental waveforms, ac

line current iac and rectified line voltage vg, are shown in Fig. 4.8(a) and Fig. 4.8(b). Because the

adaptive frequency CCM/DCM current control is also taking advantage of the adaptive switching
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CCM/DCM control to form the low voltage switching, compared with constant frequency predictive

current control (Fig. 4.8(a)), the adaptive frequency CCM/DCM current control reduces the current

harmonic distortion dramatically (Fig. 4.8(b)).

A zoom-in of the waveforms at the top of the line period shown in Fig. 4.8(b) shows the

valley voltage switching with the switching frequency of about 54 kHz (Fig. 4.9(a)). A zoom in

closer to the zero-crossing of the ac line voltage in Fig. 4.8(b) shows how the switching frequency

is reduced to about 37 kHz (Fig. 4.9(b)).

Fig. 4.9(a) and Fig. 4.9(b) also show significant changes in the DCM oscillation period

Tosc at different operating points, which is a result of the fact that the switch-node capacitance is

highly nonlinear. Therefore, as discussed in Chapter 3, the proposed adaptive switching approach

based on on-line measurement of the oscillation period has advantages over fixed delay approaches

previously applied to AC-DC PFC rectifiers [32, 33,51].

At very light load (5% rated power), adaptive frequency CCM/DCM current controller shapes

the inductor current by the current feedback only. When operating frequency reaches its lowest

boundary, the adaptive frequency CCM/DCM current controller keeps the same feed forward term.

More current harmonic distortion is introduced compared to the adaptive switching CCM/DCM

current control shown in Chapter 3 (Fig. 4.10).

Fig. 4.11 compares the total harmonic distortion (THD) performance of the considered

controllers, including the predictive current control, the predictive CCM/DCM current control, the

adaptive switching CCM/DCM current control, and the adaptive frequency CCM/DCM current

control.

For efficiency testing, the same as the adaptive switching CCM/DCM current control shown in

Chapter 3, two different diodes have been tested, including a fast soft recovery diode (FFPF04S60S)

and a Silicon Carbide diode (CSD04060). The nominal switching frequency in the experimental

setup is 80 kHz; the minimum switching frequency in the adaptive frequency controller is set to

20 kHz. Measured efficiency as a function of output power is compared in Fig. 4.12 for the con-

sidered control approaches. Adaptive frequency CCM/DCM current controller offers even more
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(a) Predictive current controller

(b) Adaptive frequency CCM/DCM current controller

Figure 4.8: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac (fs,max =80 kHz; fs,min =20 kHz; 30 W).
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(a) Operation at 54 kHz at high input voltage, point A

(b) Operation at 37 kHz at low input voltage, point B

Figure 4.9: Experimental boost PFC converter waveforms in DCM using adaptive frequency
CCM/DCM current controller, corresponding to Fig. 4.8(b), inductor current iL, switching node
voltage vds, gate drive signal g and DCM comparator signal sDCM (fs,max =80 kHz; fs,min =20 kHz;
30 W).
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efficiency improvements compared to the adaptive switching CCM/DCM current controller. The

results are summarized in Table 4.1.

In comparison of the system complexity, Table 4.2 lists the total equivalent gate count of

the controllers. The DCM feed-forward term, which requires a square root operation, increases

the number of gate count in both CCM/DCM predictive current controller and adaptive switching

CCM/DCM current controller in Chapter 3. Although adaptive frequency CCM/DCM current

controller always uses the CCM feed-forward term, it requires some multiplication operations to

calculate the switching period in DCM. Nevertheless, with some extra complexity (DCM compara-

tor) and less than 1/3 extra area in digital circuitry (Table 4.2), it can achieve high efficiency and

low harmonic distortion over wide range of loads.
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Figure 4.10: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive frequency CCM/DCM current controller (fs,max =80 kHz; fs,min =20 kHz; 15 W).
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Figure 4.11: Current harmonic distortion comparison (vg−rms=115V; fs = 80 kHz).
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Power Efficiency Power
Factor

THD

CCM Predictive Current Control 300W 95.3% 0.999 2.2%

CCM/DCM Predictive Current Con-
trol

300W 95.3% 0.999 2.2%

Adaptive Switching CCM/DCM Cur-
rent Control

300W 95.3% 0.999 2.2%

Adaptive Frequency CCM/DCM
Current Control

300W 95.3% 0.999 2.2%

CCM Predictive Current Control 150W 94.7% 0.999 2.8%

CCM/DCM Predictive Current Con-
trol

150W 94.5% 0.999 2.8%

Adaptive Switching CCM/DCM Cur-
rent Control

150W 95.1% 0.999 2.8%

Adaptive Frequency CCM/DCM
Current Control

150W 95.1% 0.999 2.8%

CCM Predictive Current Control 50W 93.6% 0.987 15.9%

CCM/DCM Predictive Current Con-
trol

50W 93.8% 0.994 7.3%

Adaptive Switching CCM/DCM Cur-
rent Control

50W 94.6% 0.994 5.9%

Adaptive Frequency CCM/DCM
Current Control

50W 94.7% 0.996 5.0%

CCM Predictive Current Control 15W 88.6% 0.950 21.2%

CCM/DCM Predictive Current Con-
trol

15W 88.6% 0.933 15.6%

Adaptive Switching CCM/DCM Cur-
rent Control

15W 91.0% 0.937 10.7%

Adaptive Switching CCM/DCM
Current Control

15W 92.5% 0.944 12.0%

Table 4.1: Performance comparison of experimental CCM predictive current controller, CCM/DCM
predictive current controller, adaptive switching CCM/DCM current controller, and adaptive fre-
quency CCM/DCM current controller (vac,rms = 115V; fs = 80kHz)(transistor: STP25NM60N;
diode: CSD04060).
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Total Equivalent Gate Count

CCM Predictive Current Control 9.2k

CCM/DCM Predictive Current
Control

11.0k

Adaptive Switching CCM/DCM
Current Control

11.2k

Adaptive Frequency CCM/DCM
Current Control

12.1k

Table 4.2: Total equivalent gate count of experimental CCM predictive current controller,
CCM/DCM predictive current controller, adaptive switching CCM/DCM current controller, and
adaptive frequency CCM/DCM current controller (vac,rms = 115V; fs = 80kHz).



Chapter 5

Current Error Estimation

In addition to the dual mode operation over wide load range, the need for current sampling

and analog to digital conversion (ADC) is another importnat issue to be addressed in digital

controllers for power factor correction (PFC) rectifiers. For universal input operation, since the

duty ratio changes from about 5% to 100%, an ADC with relatively short conversion time is required

to obtain the corresponding digital current value. In order to achieve low conversion time, a high

speed ADC is required for current sensing. On the other hand, inductor current varies a lot over

the line period (TL) in boost PFC rectifiers. PFC rectifiers process high current at peak of the line

voltage and almost no current at the line voltage zero crossings. For wide load range operation,

medium to high resolution is necessary for current sensing ADC to achieve low current harmonic

distortion. Therefore, high speed and medium resolution ADCs are the common choices for current

sensing in digital PFC controllers.

In order to reduce sampling rate of the current sensing, digital boost PFC controllers often

sample current once per switching period with precise timing of sampling. It is possible to have

some current sensing offset due to the sampling time shift. Besides, when the duty ratio is close

to 0% or 100%, current sampling and hold may be affected by the switching noise. Alternatively,

sampling on either transistor conduction interval or diode conduction interval is one solution [13,58].

However, continuity in current sensing values between alternative conduction intervals is highly

dependent on the sampling timing, which can be affected by the gate drive delay and the transistor

turn-on/turn-off delay [58].



69

In order to achieve a wide load range operated boost PFC rectifier and relieve all of the current

sampling issues mentioned above, a new current error estimation approach in both continuous

conduction mode (CCM) and discontinuous conduction mode (DCM) is proposed in this chapter.

This chapter is organized as following: Sec. 5.1 describes the principle of the new current error

estimation approach. A small signal discrete model of the current dynamics based on current

error estimation is shown in Sec. 5.2. A low design effort current controller based on current

error estimation is introduced in Sec. 5.3. Implementation issues in the digital current controller

combining the current error estimation and the adaptive approaches of Chapters 3 and 4 are

discussed in Sec. 5.4, followed by experimental results and discussion in Sec. 5.5.

5.1 Principle of Current Error Estimation

To design a digital controller for universal-input boost PFC rectifier over a wide range of

loads, a new current error estimation approach in both CCM and DCM is proposed in this chapter.

The proposed approach uses a digital to analog converter (DAC) and a single current comparator

to measure the timing information, which can indicate the difference between reference current and

average inductor current (Fig. 5.1). The hardware of the current error estimation is similar to

that of the one bit voltage and current sensing in [59–63]. By using comparator signals, current

comparator signal and DCM comparator signal shown in Chapter 3, inductor error current can

be estimated and applied in the digital control algorithm, as shown in Fig. 5.1. The current

comparator signal (sL) compares the inductor current (iL) and the reference current (iref ), where

current reference signal is the output of DAC fed from the digital controller.

5.1.1 Current Error Estimation in CCM

The idea of current error estimation in CCM is based on 50% duty ratio of sL signal when

current error is zero. The current error is estimated using the duty ratio of sL, the inductance value

(L) and the input/output voltages (vg, Vo). Operation waveforms of the current error estimation

in CCM are shown in Fig. 5.2.
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Figure 5.1: Block diagram of boost PFC rectifier using current error estimation.

iref
iL Inductor Current

ToffTon

DT1 DT2

Di

sL

g

TL2TL1
TH

iL  Ts

Figure 5.2: Waveforms illustrating current error estimation in CCM.
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As Fig. 5.2 shows, current error (∆i), which is the current difference between iref and average

inductor current over a switching period 〈iL〉TS
, is related to the time intervals (∆T1, ∆T2) and

inductor rising and falling slopes,

∆i = ∆T1 ·
vg

L
= ∆T2 ·

Vo − vg

L
. (5.1)

Let the sum of the two time intervals (∆T1, ∆T2) be ∆T , which is proportional to ∆T1, ∆T2,

∆T = ∆T1 ·
Vo

Vo − vg
= ∆T2 ·

Vo

vg
. (5.2)

In CCM, when iref equals to 〈iL〉Ts
, ∆T is exactly zero. The sum of sL logic-low intervals at

transistor or diode conduction periods, TL1 + TL2, equals to one half of the switching period (Ts).

Therefore, ∆T is

∆T = TL1 + TL2 −
Ts

2
. (5.3)

By combining Eq. 5.1 to Eq. 5.3, in CCM, the current error (ei) can be estimated using Eq.

5.4, as

ei ≈ ∆i =

(

TL1 + TL2 −
Ts

2

)(

Vo − vg

Vo

)(

vg

L

)

. (5.4)

5.1.2 Current Error Estimation in DCM

Current error can also be estimated in DCM, as illustrated in Fig. 5.3. Current error (∆i)

in DCM is also related to the time intervals (∆T1, ∆T2) and the inductor rising and falling slopes

(Eq. 5.1).

In DCM, the average inductor current 〈iL〉Ts
is equal to one half of the peak inductor current

iL,peak times the current sensing correction factor (κ),
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Figure 5.3: Waveforms illustrating current error estimation in DCM.

κ =
〈iL〉Ts

iL,peak/2
=

(

1 −
Tdcm

Ts

)

, (5.5)

which has been introduced in Chapter 3.

From Eq. 5.5, the relationship between iL,peak and 〈iL〉Ts
can be expressed as a function of

the conduction period (Tcond), as

2κ =
〈iL〉Ts

iL,peak
=

1

2

(

Tcond

Ts

)

. (5.6)

Based on the geometry of the waveforms shown in Fig. 5.3, it is known that desired TL is

proportional to the ratio between the average inductor current and the peak inductor current,

〈iL〉Ts

iL,peak
=

1

Tcond
(TL1 + TL2)ref , (5.7)

where (TL1 + TL2)ref is the desired value of TL.

From Eq. 5.6 and Eq. 5.7, ∆T can be described as

∆T = TL1 + TL2 − (TL1 + TL2)ref = TL1 + TL2 −
T 2

cond

2Ts
. (5.8)
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Therefore, estimated current error (ei) in DCM can be expressed as.

ei ≈ ∆i =

(

TL1 + TL2 −
T 2

cond

2Ts

)

(

Vo − vg

Vo

)(

vg

L

)

. (5.9)

Eq. 5.4 and Eq. 5.9 show that a current reference DAC and two comparators can be used to

estimate the current error in both CCM and DCM. Current error estimation in CCM (Eq.5.4) is a

special case of estimate in DCM (Eq. 5.9), when Tcond is equal to Ts.

5.1.3 Resolution Considerations In Using Current Error Estimation

Current error estimation trades time resolution for current sensing ADC resolution. The

relationship between current sensing resolution and time resolution is depended on inductor current

ramp up/down slopes, as illustrated in Fig. 5.2. There is a linear relationship between current error

(∆i) and time intervals (∆T = ∆T1 + ∆T2). Eq. 5.1 can be rewritten as

∆i = (∆T )

(

veq

L

)

, (5.10)

where veq is the equivalent voltage across the inductor to produce corresponding ∆T . The equivalent

voltage is

veq = (vg)

(

Vo − vg

Vo

)

, (5.11)

which is always a positive number.

To make the current resolution equal to the time resolution, the following equation has to be

valid,

Imax

2NADC
=

(

veq

L

)(

Ts

2NDPWM

)

, (5.12)
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where NADC and NDPWM are the number of bits in ADC and DPWM respectively, and Imax is

maximum possible inductor current at maximum power.

The equivalent number of bits in current sensing (NADC) can be expressed as

NADC = NDPWM + log2

[(

2 · Pmax

VM,min

)

(

1

Ts

)

(

L

veq

)]

, (5.13)

where Pmax is the rated power and VM is line peak voltage.

Eq. 5.13 shows that the current sensing resolution using current error estimation varies with

vg, and the worst case happens when vg is one half of Vo. Ideally, by selecting large L, the sensing

resolution increases. However, due to the small inductor current ripple, interval detecting will be

affected by the offset in comparator. This is a tradeoff in selecting the inductor value.

5.2 Current Dynamics Using Current Error Estimation

Current error estimation senses the timing information based on inductor current comparator

signal, which is different from the regular discrete-time current feedback system. Small signal

discrete-time model of the current dynamics using current error estimation is also different from

the regular discrete-time current dynamics discussed in Chapter 3. For the stability consideration

and current controller design purpose, the discrete current dynamic model using current error

estimation in both CCM and DCM are presented in this section.

5.2.1 Current Dynamics Using Current Error Estimation in CCM

In CCM, operation waveforms related to current error estimation are shown in Fig. 5.4. It

is shown that the inductor valley current (iLv) can be expressed as a function of switching period

(Ts) and transistor conduction period (Ton), as

iLv[n] = iLv[n − 1] + Ts ·
(vg − Vo)

L
+ Ton[n] ·

Vo

L
. (5.14)
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Figure 5.4: Waveforms to illustrate sampling in small signal discrete model in CCM using current
error estimation.

iLv can also be expressed as a function of the sL logic low period during transistor/diode

conduction (TLL = TL1 + TL2) and TL1, which is part of TLL. The difference equation is

iLv[n] = iLv[n − 1] + TLL[n] ·
(vg − Vo)

L
+ TL1[n] ·

Vo

L
. (5.15)

By combining Eq. 5.14 and Eq. 5.15, Eq. 5.16 shows the difference equation, as

Ts · (vg − Vo) + d[n] · Ts · Vo = TLL[n] · (vg − Vo) + TL1[n] · Vo. (5.16)

Applying z-transform to Eq. 5.16, the small signal discrete-time relationship is

Ts · (vg − Vo) + D(z) · Ts · Vo = TLL(z) · (vg − Vo) + TL1(z) · Vo. (5.17)

Since TLL and TL1 are depended variables, their relationship can be expressed as

(TLL[n − 1] − TL1[n − 1]) (Vo − vg) = TL1[n] · vg. (5.18)

Applying z-transform to Eq. 5.18, the small signal discrete-time relationship between TLL

and TL1 can be found as



76

iref

iL Inductor Current

ToffTon[n-1]

sL

g

TL1[n]TH

TL[n]

TL2[n-1]

TLL[n-1]

Toff
Ton[n]

TH

Figure 5.5: Waveforms to illustrate zero effect in small signal discrete model in CCM using current
error estimation.

(Vo − vg) · TLL(z) = [vg · z + (Vo − vg)] · TL1(z). (5.19)

From Eq. 5.17 and Eq. 5.19, small signal discrete transfer function from duty ratio d to TLL

in CCM can be expressed as

TLL(z)

D(z)
=

Vo

(vg − Vo)
· Ts ·

[

z +
(Vo−vg)

vg

]

[z − 1]
. (5.20)

The small signal discrete-time model changes the gain based on the slopes of the transis-

tor/diode turned-on intervals. The small signal discrete transfer function from d to TLL has the

maximum gain when input voltage (vg) is exactly one half of the output voltage (Vo). Eq. 5.20

also shows an integration effect, which is the same as the average model from d to iL. However,

d to TLL transfer function, Eq. 5.20, has an extra zero at high frequency. Fig. 5.5 illustrates an

example of the zero effect, which illustrates the period doubling in duty ratio.

5.2.2 Current Dynamics Using Current Error Estimation in DCM

In DCM, on the other hand, TLL becomes a constant with duty ratio perturbation, as il-

lustrated by the waveforms in Fig. 5.6. The only term affected by duty ratio perturbation is
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the conduction interval (Tcond) and the discontinuous conduction interval (Tdcm). The relationship

between Tdcm and d is

Ts − Tdcm[n] = d[n] · Ts ·
Vo

(Vo − vg)
. (5.21)

Applying z-transform to Eq. 5.21, the small signal discrete-time transfer function from d to

Tdcm is

Tdcm(z)

D(z)
= −Ts ·

Vo

(Vo − vg)
. (5.22)

d to Tdcm transfer function forms a sample gain relationship which varies with rectified input

voltage vg. When rectified line voltage vg is close to output voltage Vo, there is a large gain form

d to Tdcm.

5.3 Current Controller Design Based on Current Error Estimation

The proposed digital controller using current error estimation is based on the predictive

current mode control, which is an average current mode controller with an additional feed-forward

term. The block diagram of the proposed current controller is shown in Fig. 5.7. A proportional

and integral (PI) current compensator to reduce estimated current error (ei) and a feed-forward

term are added together to form a simple current controller. A set of the operation equations is:

Ton[n] = Ton[n − 1] + α · ei[n − 1] · Ts + β · α · ei[n − 2] · Ts + Ton,ff , (5.23)

α · ei[n] =

(

TLL[n] −
T 2

cond[n]

2Ts

)

(

Vo − vg

Vo

)(

vg

Vo

)(

1

Ts

)

, (5.24)

α =
L

VoTs
, (5.25)
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Figure 5.6: Waveforms to illustrate sampling in small signal discrete model in DCM using current
error estimation.
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Figure 5.7: Block diagram of current controller (using current error estimation).
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where α and β are the PI compensator parameters described in Chapter 3.

Note that current control rule (Eq. 5.23 and Eq. 5.24) does not require precise inductor value

(L) estimation. The proposed current controller rule requires voltage information (Vo and vg) and

timing information (TL, Ts and Tcond) only, which is different from the usual average current mode

control. Therefore, the proposed current control rules using current error estimation (Eq. 5.29 and

Eq. 5.30) form a current controller that requires low design effort and has improved robustness.

From the control rules, in CCM, Tcond is always equal to switching period (Ts). As a result,

small signal discrete transfer function of the current controller in CCM (Gicz CCM ) can be expressed

as Eq. 5.26. Applying Gicz CCM , the current loop bandwidth in CCM is fixed and is independent

of the inductor value, as

Gicz CCM (z) =
D(z)

TL(z)
=

(

Vo − vg

Vo

)(

vg

Vo

)(

1

Ts

)

(z + β)

z (z − 1)
. (5.26)

In DCM, assuming the current reference (iref ) is a constant over the entire switching period,

TL is always a constant. Eq. 5.24 is a function of discontinuous conduction period (Tdcm), as

α · ei[n] =

[

TL −
(Ts − Tdcm[n])2

2Ts

]

(

Vo − vg

Vo

)(

vg

Vo

)(

1

Ts

)

. (5.27)

Neglecting the higher order terms in Eq. 5.27, small signal discrete transfer function of the

current controller in DCM (Gicz DCM ) can be expressed as

Gicz DCM (z) =
D(z)

Tdcm(z)
=

(

Vo − vg

Vo

)(

vg

Vo

)(

1

Ts

)

(z + β)

z (z − 1)
. (5.28)

From Eq. 5.20 and Eq. 5.26 in CCM and Eq. 5.22 and Eq. 5.28 in DCM, the corresponding

current loop gain magnitudes and phase responses for CCM and DCM operations are shown in Fig.

5.8. As mentioned in Chapter 3, it can be observed that the gain and the cross-over frequency are

much lower in DCM than that in CCM.
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The modified compensator gain in Chapter 3 requires both the inductor and the load infor-

mation. In order to simplify the current loop and achieve low design effort in current controller,

a modified PI compensator is applied to maintain relatively high current loop bandwidth. The

compensator parameter, β, in Eq. 5.29 is adjusted based on the operating mode, CCM or DCM. In

DCM, the compensator gain βdcm is set to be zero to increase bandwidth in DCM. Fig. 5.9 shows

that the modification results in much improved bandwidth of the current control loop.

5.4 Adaptive CCM/DCM Controller Based on Current Error Estimation

In order to operate the boost PFC over a wide range of loads and to eliminate sampling issues

on current sensing ADC, the proposed digital controller combines the current error estimation and

the adaptive switching for DCM operation. The controller takes advantage of two slow ADC sensing

information (vg, Vo) and two fast comparator information (sL, sDCM ) to shape inductor current,

and combines the adaptive CCM/DCM approach (Chapter 3) to increase light load efficiency and

current error estimation (Sec. 5.1) to relieve the current sensing ADC requirement. This section

shows the implementation of the proposed digital controller.

The state machine of the proposed current controller is built on a digital counter (counter)

based trailing edge digital pulse width modulator (DPWM), which is implemented using field

programmable gate array (FPGA) with 100 MHz clock frequency. The switching period starts

from transistor turned-on state (SQon); after the transistor is turned off, the system is in the diode

conduction state (SDon). If the DCM comparator signal (sDCM ) does not flip on before the end

of the nominal operation period (Ts), the system operates in CCM and starts another switching

period right at the end of Ts. On the other hand, if sDCM flips on before the end of Ts, the system

enters state SV xL and starts DCM mode. Depending on sDCM , the state machine toggles between

SV xL and SV xH to measure Tosc. Before starting another switching period, the system waits for one

half of Tosc to achieve valley voltage switching at minimum vds, which extends the actual switching

period to be Tsw. Due to the addition of the adaptive switching, the whole set of the current control

rules are modified from Eq. 5.29- Eq. 5.32, and are shown as the follows:
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Ton[n] = Ton[n − 1] + α · ei[n − 1] · Ts + β · α · ei[n − 2] · Ts + Ton,ff , (5.29)

α · ei[n] =

(

TLL[n] −
T 2

cond[n]

2Ts

)

(

Vo − vg

Vo

)(

vg

Vo

)(

1

Ts

)

, (5.30)

Ton,ff = min

[

(

1 −
vg

Vo

)

· Ts,

√

(

1 −
vg

Vo

)

·
2Lu

Ts

]

, (5.31)

β =















−7/8 CCM

0 DCM

. (5.32)

There are some possible fault conditions. First, when inductor current is away from the

reference current, the controller is out of the linear region. It makes the current error estimation

inaccurate and slows down the current tracking. To enforce the controller to operate in linear

region, the system sets one limitation, as illustrated in Fig. 5.10. The state machine will not start

another switching period until the inductor current iL is lower than the reference current iref . On

the other hand, due to the control of the transistor turn-on timing, there is no guarantee that the

inductor current will pass the reference current during the transistor turn-on interval. Nevertheless,

keeping relatively high bandwidth and proper current ripple usually results in linear operation of

the controller. However, around input voltage zero-crossings, close-to-one duty ratio is expected. It

is possible that the transistor turn-off noise accidentally flips sL low and sets the current loop out

of the linear region. Blinding sL to have multiple low states prevents this fault condition around

the line voltage zero crossing.

5.5 Results and discussion

The same boost PFC power stage designed as in Chapter 3 and Chapter 4, a 300W boost

PFC rectifier (fs ≈ 80 kHz; L= 0.5 mH; C = 220µH), is built as shown in Fig. 5.1, using FPGA
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Figure 5.10: Waveforms illustrating a fault condition in current error estimation.

development platform to implement the digital controller with 100 MHz clock as time resolution.

The experimental setup is shown in Fig. 5.11.

Using the current error estimation, proposed digital current controller regulates the inductor

current by having sL with 50% duty ratio in CCM operation, as illustrated in Fig. 5.12. In DCM

operation, the proposed digital current controller estimates current error using the comparator

signals, sL and sDCM , and regulates the inductor current. Fig. 5.13 shows a functional operation

of the current error estimation in DCM with the adaptive switching technique.

At heavy load, when the converter operated in CCM over the entire line period, the current

controller using current error estimation operates at constant frequency and achieves low current

harmonic distortion (Fig. 5.14).

At medium load, when the converter operates in mixed mode (CCM and DCM), there is

more current distortion (Fig. 5.15 at low line voltage; Fig. 5.16 at high line voltage). The current

distortion is caused by the mode detection error, since the DCM detection comparator is using

the voltage mode instead of the current mode detection, DCM detection comparator is not able to

decide the correct operation mode around the light DCM operating mode.

At light load, when the converter operates in DCM over the entire line period, due to the

modified current compensator, the current loop still has relatively high bandwidth. Current dis-

tortion happens around input voltage zero-crossing (Fig. 5.17 at low line voltage; Fig. 5.18 at high

line voltage).
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Figure 5.11: Evaluation board and experiment setup (current error estimation).

Figure 5.12: Experimental boost PFC converter waveforms in CCM using current error estimation,
inductor current iL, inductor current comparator signal sL, gate drive signal g and DCM comparator
signal sDCM (fs = 80 kHz).
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Figure 5.13: Experimental boost PFC converter waveforms in CCM using current error estimation,
inductor current iL, inductor current comparator signal sL, gate drive signal g and DCM comparator
signal sDCM (fs ≈ 80 kHz).
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Figure 5.14: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive switching CCM/DCM controller using current error estimation (fs = 80 kHz; 300 W).

Figure 5.15: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive switching CCM/DCM controller using current error estimation (fs ≈ 80 kHz; 100 W).
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Figure 5.16: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive switching CCM/DCM controller using current error estimation (fs ≈ 80 kHz; 200 W).

Figure 5.17: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive switching CCM/DCM controller using current error estimation (fs ≈ 80 kHz; 30 W).
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At very light load, the conduction period (Tcond) shrinks, while the clock resolution (10 ns)

is still the same. Therefore, the error of the current error estimation approach grows, which results

in increased current distortion (Fig. 5.19).

Fig. 5.20 illustrates the total harmonic distortion (THD) performance of the adaptive switch-

ing CCM/DCM current controller using current error estimation at both high line and low line input

voltages. The corresponding high efficiency over wide load range is shown in Fig. 5.21.
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Figure 5.18: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive switching CCM/DCM controller using current error estimation (fs ≈ 80 kHz; 75 W).

Figure 5.19: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive switching CCM/DCM controller using current error estimation (fs ≈ 80 kHz; 15 W).
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Chapter 6

Passive Power Sharing in Interleaved Boost PFC

In order to increase power processing capability, paralleling of phase interleaved modules has

been developed in DC-DC converters [64]. By applying phase interleaving among converter modules,

the overall inductor current ripple is reduced. Phase interleaved converters with identical converter

modules achieves the lowest overall current ripple without increasing inductor size or increasing

switching frequency. Fig. 6.1 shows an example of a two-phase buck converter; phase interleaved

operation minimizes output voltage ripple and reduces the size of the output capacitors [64].

Paralleling of phase interleaved modules has been adopted in power factor correction (PFC)

rectifiers to increase power system modularity [38–40,65–77]. In order to extend power range, this

chapter focuses on digital control for interleaved boost PFC rectifiers. Proposed controller combines

passive power sharing approach and adaptive approaches in interleaved boost PFC rectifiers. This

chapter starts from an introduction of interleaved boost PFC rectifiers in Sec. 6.1. Issues related to

active power sharing approach and passive power sharing approach are discussed in Sec. 6.2. Sec.

6.3 discusses efficiency improvement and current mismatch in the passive power sharing approach. It

is followed by an introduction of a new over current protection in Sec. 6.4. Sec. 6.5 discusses issues

related to light load efficiency improvements, including phase interleaving and phase shedding. The

final section shows experiment results.
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6.1 Introduction of Interleaved Boost PFC Rectifiers

Parallelling power converter modules has been developed in DC-DC converters. Multiple

modules stack up the power level without changing the selected components and power stage design.

Phase-interleaved operation reduces the inductor current ripple or the capacitance size. Voltage

regulation module (VRM) in microprocessor power supplies is one of the important applications for

multiple modules. For AC-DC rectifiers, interleaved PFC rectifiers starts from the idea of reducing

overall inductor current ripple and input filter size. It is originally designed for multiple phase-

shifted boost PFC modules operated in discontinuous conduction mode (DCM) [38]. An interleaved

boost PFC rectifier, which is operated in continuous conduction mode (CCM), uses two current

loops to shape overall inductor current and to achieve current sharing [40]. Furthermore, attention

has been given to transition mode (TM) interleaved boost PFC rectifiers [39,65,68–71,75,76]. Due

to the varying frequency operation in TM PFC rectifiers, different types of phase latch control

strategies are applied to keep converter modules phase-interleaved.

Recently, digital controllers, which can easily build precise phase interleaving, have been

developed in interleaved boost PFC rectifiers to increase system power modularity [66,67]. Digital

controllers can easily add some other extra features, such as phase shedding, without much extra

cost [67].

It can be concluded that interleaved boost PFC rectifiers offer a number of benefits. They

reduce the overall inductor current ripple without increasing inductor value or switching frequency;

they increase power level without changing component selection. However, there are also some

drawbacks of interleaved boost PFC rectifiers. The total number of components increases. It

becomes more difficult to sense inductor current and to design the pulse width modulator (PWM).

6.2 Active Power Sharing and Passive Power Sharing

Power sharing becomes an issue in parallel converter modules when they are operated in

CCM. Different power sharing techniques have been developed in past years. In the approaches
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reported so far, power sharing among the paralleled modules operating in CCM has been based on

active current sharing control that requires individual current sensing in each module, as shown in

a two-phase example in Fig. 6.2.

However, since the modules share a common ground terminal, typically at the negative ter-

minal of the output filter capacitor, and they are all supplied from the same ac line input voltage,

current sensing of the separated inductor current values is not available. Generally, two current

sensing transformers are applied together with peak current mode control, which results in some

current distortion around medium to light load operation [73]. Another common approach is to

sense the total inductor current based on input-side sensing resistance, and to add an extra cur-

rent sharing control loop and extra current sensing on the switch or the diode legs, as shown in

Fig. 6.3 [66, 67]. These active power sharing approaches either require extra current sensing or

compromise current distortion.

An alternative, simpler approach based on passive power sharing is proposed here. It uses

only one current sensing circuit (as shown in Fig. 6.4) and a digital controller driving the power

MOSFETs with phase shifted control signals having identical duty ratios. Such passive power

sharing approach has earlier been proposed for multi-phase DC-DC microprocessor power supplies

[78], where it was shown to yield minimum overall conduction losses and improved efficiency (at

heavy loads) at the expense of unequal distribution of currents among the modules. The passive

power sharing approach can only be precisely applied using digital control techniques to optimize

efficiency for heavy loads; other approaches are applied to extend high efficiency operation to light

load, such as phase shedding and adaptive approaches discussed in previous chapters [79].

A discussion of efficiency and current mismatch tradeoffs for passive power sharing in multi-

phase PFC rectifiers such as the two-phase example shown in Fig. 6.4, is given in the next section.

6.3 Efficiency Improvement and Current Mismatch in Passive Power Sharing

A digital controller can produce perfectly matched phase shifted control signals for each

module. This property has enabled effective passive current sharing in multi-phase DC-DC con-
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verters [78]. This section examines the outcomes in terms of conduction losses and current mismatch

of the passive power sharing approach when the paralleled PFC modules are operated with identical

(but phase shifted) switch control signals.

6.3.1 Reduction of Conduction Losses Due to Passive Power Sharing

An ideal single-phase PFC presents a resistive load to the ac line [8]. As shown in Fig. 6.5, a

two-phase PFC rectifier is modeled as two emulated resistances (Re1, Re2) on the input side with

corresponding controlled power sources Pac1 and Pac2, respectively. To simplify the analysis of

passive power sharing, conduction losses are approximately modeled as equivalent series resistances

RLeq1 and RLeq2. Furthermore, the simplified analysis assumes that the inductors are well matched,

L1 = L2.

In CCM operation, under small ripple assumption and RLeq � Re, the conduction loss (Pcond)

can be found as

Pcond ≈

(

1

R2
e1

RLeq1 +
1

R2
e2

RLeq2

)

· V 2
ac,rms, (6.1)

where Vac,rms is the root-mean-square (RMS) value of the input ac line voltage. It follows that the

conduction loss (Eq. 6.1) is minimized if the PFC module emulated resistances satisfy the following

condition:

Re1

Re2
=

RLeq1

RLeq2
. (6.2)

In Fig. 6.6, the normalized conduction loss, which is the conduction loss with respect to the

minimum conduction loss over different Re and RLeq ratios, illustrates how the minimum conduction

loss occurs when Eq. 6.2 is satisfied.

In multi-phase PFC rectifiers with active equal power sharing, current controllers for each

module are implemented to make the current split evenly among the modules. With evenly shared
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power, the emulated resistances are the same for all modules, Re1 = Re2. As a result, in the

presence of conduction loss mismatches (RLeq1 6= RLeq2), equal current sharing does not achieve

minimum conduction loss. If the controller drives the power switches with identical duty ratios,

while controlling the total input current, it can be shown that the resulting emulated resistances

meet Eq. 6.2, which means that the passive power sharing approach minimizes the total conduction

losses. A more detailed analysis can be performed based on the models averaged over a switching

period Ts, as shown in Fig. 6.7.

In the PFC rectifier with active power sharing, each phase shares equal current (Fig. 6.7(a)).

Assuming the inductor values are the same in all phases, and taking into account only conduction

losses, overall efficiency of the PFC rectifier with active power sharing can be found by integrating

the power loss over the line period, as

ηactive = 1 −
RLeq

2Re
, (6.3)

where RLeq = (RLeq1 + RLeq2)/2 is the nominal equivalent series resistance, and Re is the total

emulated resistance.

In the passive power sharing PFC rectifier, each phase operates at the same duty ratio (Fig.

6.7(b)). Assuming the inductor values are the same in all phases and that the time constant of

the inductor (τL = L/RLeq) is much shorter than one half of the line period (TL), overall efficiency

of the passive power sharing PFC rectifier becomes a function of the equivalent series resistance

mismatch (∆RLeq = |RLeq1 − RLeq2|), as

ηactive = 1 −
RL

2Re
+

∆R2
Leq

8ReRLeq
. (6.4)

From Eq. 6.3 and Eq. 6.4, the reduction in conduction loss by passive power sharing is shown

in Fig. 6.8 as a function of the relative RLeq mismatch ∆RL/RLeq. One may note that, although

the reduction in conduction losses due to passive power sharing is relatively small, the approach
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Figure 6.8: Reduction of conduction loss using passive power sharing in the two-phase boost PFC
rectifier in CCM.

can result in efficiency improvements at heavy loads where conduction losses dominate. A detailed

analysis of converter efficiency with active and passive power sharing is presented in Appendix B.

6.3.2 Current Mismatch Due to Passive Power Sharing

In the presence of component mismatches, passive power sharing helps to reduce conduction

losses. A disadvantage is that each phase processes different amount of power, and the resulting

current mismatch increases the current stresses on the components. With passive power sharing,

the current mismatch can be related to a mismatch in the equivalent series resistances, a mismatch

in the inductance values, and the phase shift between the PFC modules. This section presents

an approximate analysis of each of these three effects separately. From the model in Fig. 6.7(b),

considering the RLeq mismatch only, the maximum relative current difference can be found as

max [∆iL] ≈
VM

2Re
·
∆RLeq

RLeq
, (6.5)

where VM is the peak ac line voltage. The current-mismatch penalty is illustrated in Fig. 6.9,

which shows the maximum current mismatch as a function of the RL mismatch.

Considering the inductance mismatch only, the maximum current difference can be found as
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Figure 6.9: Maximum current mismatch using passive power sharing in two-phase boost PFC
rectifier in CCM.

max [∆iL] ≈
VM

2Re
· (τLωL) ·

∆L

L
, (6.6)

where L is the nominal inductance (mean value of all the inductance) and τL is the nominal inductor

time constant. Under an assumption that the inductor time constant τL is much shorter than one

half of the line period TL, the maximum current mismatch due to inductor mismatch Eq. 6.6 is

much smaller than the current mismatch due to RL mismatch, as Eq. 6.5. This conclusion is

in contrast to the case when PFC rectifiers operate in DCM or in transition mode (CCM/DCM

boundary) [68, 69], when the current mismatch is caused mainly by the inductor value mismatch.

Even in the case when the modules are perfectly matched, a current mismatch occurs in PFC

rectifiers with passive power sharing due to phase-shifted control signals in combination with time-

varying input voltage. By noting that the large-signal models averaged over a switching period

(Fig. 6.7(b)) are linear, an s-domain approach based on the closed-loop model shown in Fig. 6.10

can be applied to examine this effect. The phase shift between the phases is modeled by a transfer

function Gd(s). The total inductor current iL is well regulated by the current controller Gc to track

the reference current (iref = vg/Re).

From the model in Fig. 6.10, the current mismatch can be found as
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∆iL(s) =
vg(s)

Re
·





(Gd(s) − 1) · (2Gig(s) · Re − 1)
1

Gid(s)·Gc(s)
+ (1 + Gd(s))



 , (6.7)

From Eq. 6.7, it can be observed that the current mismatch is due to the phase shift (Gd(s) 6=

1), and the time-varying input voltage vg(s). Assuming a well-regulated input current, a first-order

approximation for the delay transfer function Gd(s), and a sinusoidal ac input voltage at 60 Hz,

the maximum current mismatch is shown in Fig. 6.11 as a function of RL/Re for several values

of the input voltage Vac,rms, and inductance L. For heavy loads with dominant conduction loss,

the current mismatch due to phase shift is relatively small. A more detail analysis of the current

mismatch in passive power sharing is shown in Appendix B.

6.4 Over Current Protection

Although passive power sharing minimizes the conduction losses, as described in Sec. 6.3.1,

the resulting current mismatch discussed in Sec. 6.3.2 may result in additional current stresses.

Therefore, it is of interest to consider ways to provide per-module over-current protection without

compromising the current-sensing simplicity and modularity of the passive power sharing approach.

An over-current detection circuit proposed in this chapter is based on monitoring the charge-up

time for the switching node capacitance (Cx) as an indication of the peak inductor current. Upon

transistor turned-off interval, it takes time to charge Cx and lift switching node voltage vds up

to the output voltage after the diode turns on. For a given vg and Cx, the total required charge

Qc supplied by the inductor to charge Cx from 0 to vg is a fixed value. The charge up time tc is

therefore inversely proportional to the inductor peak current iL,peak, as

iL,peak · tc = Qc =

∫ vg

0
Cx(vds) dvds. (6.8)

As shown in Fig. 6.4, the DCM detection comparators are included to detect polarity change

of the voltage across the inductor [79]. The same comparators can be used to determine the time

when vds reaches vg after the boost transistor is turned off, as shown in Fig. 6.12.
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The digital controller simply counts the time interval td between the gate signal g high-to-low

transition and the corresponding transition in the DCM comparator signal SDCM . It should be

noted that td is a sum of the switching node charge-up time (tc), gate drive delay (td,GD), and

the comparator delay (td,COMP ). The last two terms are highly dependent on the component

selections and their variations, so a calibration is required in a practical implementation of the

proposed over-current protection. Fig. 6.13 shows examples of vds waveforms for different inductor

peak currents.

Most of td is when vds is low, which is due to the larger transistor drain to source capacitance

at low vds. When vds is high, the charging-up slope is much steeper. The peak current occurs

around the peak line voltage vg = VM , which corresponds to a lower capacitance as vds reaches vg.

Therefore, td increases only slightly with increasing input voltage, which means that the calibration

can be performed at just one voltage. Time resolution of the digital controller system clock (10 ns

in the experimental prototype) is too low for precise current detection. In order to measure td

more precisely, a delay line based timer has been constructed as shown in Fig. 6.14, improving the

timing resolution to about 2 ns.

Experimental results showing td as a function of iL,peak at vg = 100 V are shown in Fig. 6.15.

This result can be used to to calibrate the proposed over-current protection function.

6.5 Phase Interleaving and Phase Shedding

In order to improve overall efficiency, phase shedding approaches have been developed for

multi-phase interleaved PFC rectifiers [67, 77]. The main idea of phase shedding is to reduce the

switching loss when PFC rectifier is processing less power. Most phase shedding PFC rectifiers

reduce the number of active phases based on the power command (u), which makes the number of

active phases be constant over the line period. Programmability of a digital controller makes the

required scaling of the power command and the current loop gain adjustment easy. In addition

to phase shedding, since the power processed by the PFC rectifier changes within a line period,

approaches based on varying the switching frequency within a line period have been proposed in
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Figure 6.13: Experimental waveforms during transistor turn-off interval.
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Chapter 3 and Chapter 4. For high efficiency over wide load range, the passive power sharing and

adaptive approaches are combined together. In this section, issues related to light load efficiency

improvement are discussed in more detail.

6.5.1 Phase Shifting with Adaptive Frequency Operation

The adaptive frequency approach changes the operating frequency to reduce switching loss at

light loads. A constant time shift between the phases would result in additional current ripple. The

approach implemented in the experimental prototype is based on a digital pulse-width modulator

(DPWM) in a master phase operating as described in Chapter 3, while DPWM’s in the slave

phases replicate the master phase turn-on/turn-off intervals with an adaptive phase shift. The

slave phases adjust turn-off time to achieve the required phase shift. The operation is illustrated

by the waveforms in CCM and in DCM shown in Fig. 6.16 and Fig. 6.17, respectively.

6.5.2 Current Sensing

As shown in Fig. 6.4, the current analog-to-digital converter (ADC) samples the total induc-

tor current in the middle of the transistor conduction interval. In CCM, with an even phase shift,

the sensed current represents the total average current, as the two-phase example shows in Fig.

6.18. With an uneven phase shift, there would be an offset between the average inductor current
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Figure 6.16: Experimental interleaved boost PFC converter waveforms in CCM, gate drive sig-
nals (g1, g2) and inductor currents (iL1, iL2) , adaptive frequency CCM/DCM current control
(fs,max =100 kHz).
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Figure 6.17: Experimental interleaved boost PFC converter waveforms in DCM, comparator signals
(sDCM1, sDCM2) and transistor drain voltages (vds1, vds2) , adaptive frequency CCM/DCM current
control (fs,max =100 kHz).
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Figure 6.18: CCM current sense in passive power sharing approach (two-phase interleaved example).

and the sensed current, which would increase the current harmonic distortion.

In DCM, the current sensing correction factor, which is presented in Chapter 3, cannot be

applied directly in the multi-phase configuration. In deep DCM, the sensed current may only

represent part of the inductor current as shown in the example of Fig. 6.19. With an uneven phase

shift in DCM, even larger current sensing errors can be expected.

However, it should be noted that the effects of the current sensing correction and the current

sensing error in DCM are in the same direction, which means that the overall error between the

real average current and the sensed current can be relatively small. Furthermore, most current

distortion happens in deep DCM around zero-crossing of the line voltage, so that the overall effect

on the input current distortion is small. Finally, as noted above, phase shedding reduces the

number of active phases at light loads, and digital controller can make phase shedding be smooth,

as illustrated in Fig. 6.20. Once the system operates with a single active phase, the DCM current

correction described in Chapter 3 applies, and the light-load current harmonic distortion is reduced.

A final comment relates to application of the adaptive switching, which adjusts the switching

period slightly to achieve switching at the lowest vds in DCM . In the multi-phase configuration, if
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Figure 6.19: DCM current sense in passive power sharing approach (two-phase interleaved example).
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all DPWM’s are performing adaptive switching, the phase shift between the phases can be slightly

off. Similar phenomena happen in transition mode interleaved PFC rectifiers, which have been

addressed and discussed in [68, 69]. A phase lock loop (PLL) approach may not apply because

of the discrete nature of the timing related to an integer number of DCM oscillation periods,

resulting in sudden jumps in the switching periods. Fig. 6.21 shows how current sensing can be

highly dependent on the discontinuous conduction period (Tdcm) in the previous switching period.

This effect may cause some oscillations in the current loop, and a slight increase in input current

distortion.

6.6 Results and Discussion

A 600W two-phase boost PFC rectifier (fs =100 kHz, L1 =L2 =320µH, C =440µF) has been

built with a field programmable gate array (FPGA) platform implementing the digital controller.

The experimental prototype is shown in Fig. 6.22.

For heavy load operation, the controller operates at constant frequency with two active phases

interleaved and evenly phase-shifted by 180 degrees. The operating waveforms are shown in Fig.

6.23.

For moderate loads, two active phases operate in both CCM and DCM over a line period.

The controller starts to reduce the switching frequency (Fig. 6.24) following the adaptive frequency

approach. Because the DCM current sensing error discussed in Sec. 6.5.2 cannot be fully corrected,

some additional current distortion can be observed. When the controller drops one phase, the

remaining active phase operates in CCM as shown in Fig. 6.25.

Once phase shedding results in a single active phase, both adaptive switching and adaptive

frequency are activated with DCM current correction as described in Chapter 3 and illustrated by

the waveforms in Fig. 6.26. Compared to the two-phase constant frequency interleaved case (Fig.

6.27), the current distortion is reduced.

Efficiency improvements are illustrated in Fig. 6.28. The adaptive switching and the adaptive

frequency approaches reduce switching losses at light loads, while phase shedding further improves
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Figure 6.20: Experimental inductor current waveforms in master and slave phases (two-phase
interleaved example) (≈ 300 W).
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Figure 6.21: DCM current sense in passive power sharing approach(two-phase interleaved example)
(Master - adaptive switching DPWM; Salve - follower DPWM).
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Figure 6.22: Experimental setup for 600W digitally controlled two-phase boost PFC rectifier.

Figure 6.23: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive frequency approach (fs,max = 100 kHz; 600 W; two active phases interleaved).
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Figure 6.24: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive frequency approach (fs,max = 100 kHz; 270 W; two active phases interleaved).

Figure 6.25: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive frequency approach (fs,max = 100 kHz; fs,min = 40 kHz; 270 W; single active phase).
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Figure 6.26: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, adaptive frequency approach (fs,max = 100 kHz; fs,min = 40 kHz; 30 W; single active phase).

Figure 6.27: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, predictive current current approach (fs = 100 kHz; 30 W; two active phases interleaved).
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Figure 6.28: Experimental efficiency comparison (vg−rms =115 V; fs,max = 100 kHz; fs,min =
40 kHz).

the light load efficiency. The experimental efficiency results indicate that phase shedding should be

activated when the power drops below 270 W, leaving one phase active. At very light load (30 W),

efficiency is improved by about 3% compared to the conventional two-phase system operating at

constant switching frequency.



Chapter 7

Conclusions

Low current harmonic distortion, low cost and high efficiency are always the targets for

power factor correction (PFC) rectifiers. Today, driven by economic reasons and concerns about

the environment, maintaining high efficiency and good power factor over wide load range has become

the main demand in PFC rectifiers. Instead of using high performance components to reduce loss or

adding many extra components to achieve soft switching with complicated controllers, this thesis

proposes simple low cost digital control techniques to maintain high efficiency and low current

harmonic distortion over a wide range of loads in single-phase boost PFC rectifiers.

The next section summarizes the original contributions of this thesis followed by future related

research directions.

7.1 Summary of Contributions

(1) Development of current sensing correction factor using measured discontinuous

conduction period:

Generally, digital boost PFC controllers sense inductor current at the middle of the transis-

tor or diode conduction period to represent average inductor current in continuous conduc-

tion mode (CCM). This is no longer valid in discontinuous conduction mode (DCM). With

the estimated current sensing correction factor, the single controller can operate in both

CCM and DCM in boost PFC rectifiers [48]. Instead of applying the estimated current

sensing correction factor, a measurement based current sensing correction factor is intro-
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duced in Chapter 3, which takes advantage of a DCM comparator and a counter in the

digital controller to measure the discontinuous conduction period. Using the measured dis-

continuous conduction period, the current sensing correction factor can be easily calculated

and applied to boost PFC rectifiers [79, 80].

(2) Development of adaptive switching CCM/DCM current control:

Adaptive switching CCM/DCM current control applies the current sensing correction factor

and the adaptive switching technique in DCM to a predictive current control law [79, 80].

The adaptive switching approach runs the same as the predictive current control in CCM

and adjusts transistor turn-on timing to achieve low voltage switching in DCM (Chapter

3). Using the information from the DCM comparator, which senses voltage polarity change

across the inductor, adaptive switching approach turns the transistor on at the lowest drain

voltage in DCM saving part of the discharge energy loss due to switching node capacitance.

In addition, it also reduces the current harmonic distortion due to the DCM oscillation

described in Chapter 2.

(3) Development of adaptive frequency CCM/DCM current control:

Adaptive frequency CCM/DCM current control is based on adaptive switching CCM/DCM

control with additional switching frequency adaptation in DCM [79, 80]. The adaptive

frequency technique shapes the inductor current by changing the switching period instead

of changing the duty ratio in DCM (Chapter 4). Since the power processed across the

line period changes a lot in PFC rectifiers, the adaptive frequency technique adjusts the

switching frequency over the line period. This further reduces switching loss at light load

and improves current shaping in DCM. A minimum switching frequency setup prevents

audible noise but introduces some current harmonic distortion at very light load operation.

(4) Development of current error estimation for boost PFC rectifiers in both CCM

and DCM:

Current error estimation technique estimates the current error in both CCM and DCM



121

using a slow digital to analog converter (DAC) and a single inductor current comparator

(Chapter 5). The existing analog to digital converter (ADC) for current sensing requires

high speed and high resolution, and it could be affected by the switching noise since boost

PFC rectifiers have the duty ratio from almost 0% to 100%. Current error estimation

trades the time resolution for the ADC resolution and removes the needs for precise current

sampling. The combination of current error estimation and predictive current controller

form a current controller independent of inductor value, which reduces design effort and

improves robustness of the current loop. The current error estimation can also be applied

in combination with adaptive CCM/DCM controller to achieve high efficiency over wide

load range.

(5) Analysis of passive power sharing in interleaved boost PFC rectifier:

Passive power sharing can be adopted in interleaved boost PFC rectifiers to increase system

power modularity [81]. It can reduce total inductor current ripple without extra current

sensing circuits. Chapter 6 examines the tradeoff between reduction of the conduction loss

and inductor current mismatch when the simple passive power sharing technique is applied.

(6) Development of over current protection technique for passive power sharing:

Based on the possible current mismatch in passive power sharing, a new over current

protection circuit is introduced in Chapter 6. The circuit measures the switching node

charge-up time as an indication of inductor peak current [81]. Based on the gate drive

signal and the DCM comparator signal, switching node charge up time can be counted by

the delay line enhanced digital counter.

7.2 Related Future Research Directions

This thesis addressed operation and digital control of boost PFC rectifiers operating over

wide load range. Some of the potential research directions related to this work include:

(1) Current error estimation in interleaved boost PFC rectifiers:
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The proposed current error estimation could be implemented in interleaved boost PFC

rectifiers. For interleaved boost rectifiers, the current control algorithm using current error

estimation is no longer independent of inductor values. This requires more investigation

related to the inductor mismatch.

(2) Resolution of current error estimation:

Current error estimation trades time resolution for the ADC resolution. However, most

digital signal processors (DSP) are running at lower frequency clocks. Using multiple

comparators for current error estimation could be applied to relieve time resolution re-

quirements.



Appendix A

DCM Switch

In order to reduce discontinuous conduction mode (DCM) oscillation in boost power factor

correction (PFC) rectifiers, the DCM switch approach is proposed in Chapter 3. The main idea is

to store DCM oscillation energy from the switching node capacitance to the inductor. A secondary

winding is added on the inductor with a switch (QDCM ) across the secondary winding, as shown in

Fig. A.1. During discontinuous conduction interval (Tdcm), when switching node voltage rings to the

rectified input voltage (vg), the proposed controller sets the gate signal of the DCM switch (gDCM )

high to make DCM oscillation energy stored in the magnetic inductance (LM ) and to circulate

current through QDCM . In order to switch QDCM on at the correct time, a DCM comparator

is added to measure inductor voltage (vL) polarity. DCM comparator signal (sDCM ) also helps

to detect the CCM/DCM boundary and to measure Tdcm, which can reduce current harmonic

distortion in DCM (Fig. A.2).

Detailed design of the dead-time between the DCM switch (QDCM ) and the boost transistor

(Q) is shown in Sec. A.1. It is followed by a discussion of DCM switch implementation in Sec. A.2.

The final section shows the experimental results and discussion.

A.1 Dead-Time Analysis

When the boost transistor starts to conduct, energy stored in the switching node capacitance

(Cx) is discharged immediately through the transistor (Fig. A.3). Adding some dead-time (TD)

between boost gate drive signal (g) and DCM switch gate signal (gDCM ) recycles some energy
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Figure A.1: Block diagram of a boost PFC rectifier using DCM switch.
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Figure A.2: Operation waveforms illustrating DCM switch approach.
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Figure A.3: Circuits of DCM switch.

stored in Cx, as illustrated in Fig. A.2.

Adding some dead-time helps to move some energy from Cx to the input capacitor. During

the dead-time, there is no circulation current flowing through the DCM switch; however, there

is still energy stored in the magnetizing inductance (LM ). Before the boost transistor conducts,

energy stored in Cx is transferred to LM , which reduces the switching node voltage vds. Applying

proper dead-time enables the boost power transistor to turn on at low voltage. The dead-time can

be analyzed by using state plane analysis.

In state plane analysis, as shown in Fig. A.4, the ideal dead-time is to follow the dash

line, which turns the boost main switch on at the lowest switching node voltage (vds). By finding

a constant equivalent capacitance at the switching node, constant dead-time can be applied to

achieve low voltage turn-on.

A.2 Switch Implementation

From the circuit implementation point of view, the DCM switch has to be able to block both

positive and negative voltages and allow the current to flow in one direction. Two topologies can

functionally work for the DCM switch (Fig. A.5): one is using back-to-back n-channel transistors

with their sources tied together; the other is using a transistor in series with a diode.
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Figure A.5: Topologies of DCM switch implementation.
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In the diode approach, by assuming the voltage drop due to the transistor on-resistance is

smaller than the diode voltage drop (VD), inductor current equation can be simplified as

LM ·
d iLM

dt
=

1

a
· VD, (A.1)

where a is the turns-ratio between secondary winding and primary winding of the inductor.

With the discontinuous conduction interval (Tdcm) passing, the circulation current in the

magnetic inductor decreases as

LM (Tdcm) = iLM (0) −
VD · Tdcm

a2 · LM
. (A.2)

Applying similar analysis on a back-to-back transistors case, it becomes a simple LR damping,

where the damping resistance is twice the on-resistance (Ron) of the transistors. The inductor

current equation is

LM ·
d iLM

dt
= iLM ·

2Ron

a2
. (A.3)

The inductor current at the end of the switching can be expressed as

LM (Tdcm) = iLM (0)− e
−2Ron·

Tdcm
a2

·LM . (A.4)

By taking the derivative of Eq. A.3 and Eq. A.4 with respect to Tdcm, it can be observed that

the slope of current reduction is related to the device parameters and the inductor initial current,

iLM (0). For the low iLM (0) case, diode approach always makes more damping compared to the

back-to-back transistors approach. The turns-ratio (a) of the inductor is related to the damping and

the component selection. The lower the turns-ratio is, the higher the component voltage ratings are

required, which may lead to higher on-resistance. The parasitic capacitance of the large devices is

usually higher than that of the smaller devices. On the other hand, a higher turns-ratio makes the

circulation current higher, which increases the effective damping. The selection of the turns-ratio
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Power Efficiency Power

Factor
THD

CCM Predictive Current Control 100W 95.3% 0.991 9.3%

CCM/DCM Current Control
with DCM Switch

100W 95.4% 0.999 2.3%

CCM Predictive Current Control 15W 90.1% 0.976 18.3%

CCM/DCM Current Control
with DCM Switch

15W 91.4% 0.978 6.8%

Table A.1: Performance comparison of experimental CCM predictive current controller and pre-
dictive CCM/DCM current controller with DCM switch (vac,rms = 110V; fs = 80kHz)(transistor:
STP25NM60N; diode: CSD04060).

and the damping loss is a design tradeoff. Lower voltage rating components have lower cost and

can be combined with the DCM comparator circuits easily. Hence, a =1/10 ratio with back to back

transistors (NDT3055) are selected for the DCM switch implementation.

A.3 DCM Switch Results and Discussion

First, experimental waveforms that illustrate the DCM switch operation are shown in Fig

A.6. The DCM switch dramatically reduces the DCM oscillation. Applying the proper dead-time

between DCM switch turn off and boost switch turn on, the DCM switch can achieve low voltage

turn-on, as shown in Fig. A.7.

The DCM switch starts to operate at medium to light load range when the boost power

stage is operated in DCM for part of the line period. Experimental waveforms, ac line current iac

and rectified line voltage vg, are shown in Fig. A.8 and Fig. A.9, which illustrate the low current

harmonic distortion in boost PFC rectifier achieved by using the DCM switch. However, due to the

on-resistance damping and extra capacitance at the switching node, efficiency improvement with

the DCM switch is relatively small. Results are summarized in Table A.1.
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Figure A.6: Experimental waveforms of the DCM switch with dead-time, gate control signal
(g), drive signal for DCM switch (gDCM ), transistor drain voltage (vds) , and inductor current
(iL)(fs =80 kHz)..
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Figure A.7: Experimental waveforms of the DCM switch with dead-time, gate control signal
(g), drive signal for DCM switch (gDCM ), transistor drain voltage (vds) , and inductor current
(iL)(fs =80 kHz)(zoom-in at transistor turn on interval).
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Figure A.8: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, with the DCM switch (fs = 80 kHz; 100 W).

Figure A.9: Experimental boost PFC converter waveforms, rectified line voltage vg and line current
iac, with the DCM switch (fs = 80 kHz; 15 W).



Appendix B

Passive Power Sharing Analysis

This appendix contains an analysis of the interleaved boost power factor correction (PFC)

rectifier discussed in Chapter 6. The first section presents the efficiency analysis with active power

sharing, or with passive power sharing when considering conduction losses only. Then, the second

section discusses current mismatches in passive power sharing, including component mismatch

effects and phase interleaving effects.

B.1 Efficiency in PFC rectifier with Active or with Passive Power Sharing

In boost PFC rectifiers, the conduction loss in the boost power stage can be modeled as shown

in the averaged circuit model in Fig. B.1 [8]. The model contains losses due to inductor winding

resistance (RL), losses due to transistor turn-on resistance (Ron), and losses due to diode forward

voltage drop (VF ) under the condition that rectified line voltage (vg(t)) and duty cycle (d(t)) vary

with time. Based on the model illustrated in Fig. B.1, system efficiency can be calculated. However,

since duty ratio is coupled with Ron and VF terms, analytical solution is complicated. To simplify

the analysis, the conduction loss can be modeled as an equivalent resistor (RLeq) in series with a

lossless emulated resistance (Re), which transfers power to the output, as shown in Fig. B.2 for

the two-phase boost PFC rectifier example.

This section discusses the efficiency difference between active power sharing and passive power

sharing in a two-phase interleaved boost PFC rectifier example, based on the model in Fig. B.2.

To verify reduction of the conduction loss in passive power sharing, a numerical analysis will be
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shown in the final part of this section.

B.1.1 Efficiency with Active Power Sharing

Active power sharing regulates the average inductor current (〈iL〉Ts
) at each phase to be the

same and gives the required duty ratio (di = 1 − d′i) for each phase, i = 1, 2. For investigating

the current loop dynamics only, the output voltage can be regarded as a constant (Vo) as long as

the output voltage variation is much smaller than the output voltage DC value. Inductor current

dynamics, therefore, depends only on averaged rectified input voltage (〈vg〉Ts
), Vo and RLeq. Based

on the assumption, the averaged switch model of a two-phase boost PFC rectifier with active power

sharing is shown in Fig. B.3.

RLeq1

+
� +

�
d2

�(t)Vo

L1

L2

+
�

d1
�(t)Vo

vg(t) Ts

iL(t)  
Ts

iL(t)  
Ts

RLeq2

Figure B.3: Averaged switch model in boost PFC rectifier with active power sharing (two-phase
example).

Here, 〈vg〉Ts
is rectified from the ac side input voltage, as

〈vg(t)〉Ts
= VM · |sin(2πfLt)| , (B.1)

where VM is the peak line voltage and fL is the line frequency. Ideally, active power sharing

equalizes the current processed in each phase. Inductor currents in each phase are

〈iL1(t)〉TS
= 〈iL2(t)〉Ts

=
VM

Re
· |sin(2πfLt)| . (B.2)
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In active power sharing, the inductor currents are only decided by the current controller

but not decided by the inductor value (L) or the conduction loss resistor (RLeq). One important

assumption is that time constant of the inductor (τL = L/RL) is much smaller than half of the line

period (TL). Hence,

〈vg(t)〉Ts

2Re
· RLeq i ≈ 〈vg(t)〉Ts

− d′i(t) · Vo. (B.3)

Duty ratio in each phase can be calculated as

1 − di(t) = d′i(t) =
〈vg(t)〉Ts

Vo
·

(

1 −
RLeq i

2Re

)

. (B.4)

The total average output current (Io) can be written as the sum of the two diode average

currents (〈id1〉Ts
, 〈id2〉Ts

), as

Io = 2
TL

[∫ TL/2

0

(

〈id1(t)〉Ts
+ 〈id2(t)〉TS

)

dt

]

=
V 2

M

2ReVo

[

(

1 −
RLeq1

2Re

)

+
(

1 −
RLeq2

2Re

)

] . (B.5)

Total input power (Pin) and output power (Pout) can be found as

Pout = Vo · Io =
V 2

M

4Re

[(

1 −
RLeq1

2Re

)

+

(

1 −
RLeq2

2Re

)]

, (B.6)

Pin =
V 2

M

2Re
. (B.7)

Let RLeq,cm = (RLeq1 + RLeq2)/2 and ∆RL =| RLeq1 − RLeq2 |. Therefore, the efficiency in

active power sharing is shown as

ηactive = 1 −
RLeq,cm

2Re
. (B.8)
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Figure B.4: Averaged switch model in boost PFC rectifier with passive power sharing (two-phase
example).

B.1.2 Efficiency in Passive Power Sharing

Passive power sharing gives the same duty ratio for each phase, and allows the inductor

currents to be as they are. The averaged switch model of the two-phase boost PFC rectifier using

passive power sharing is shown in Fig. B.4.

Total inductor current (〈iL〉TS
) is shaped by the current controller, which can be expressed

as

〈iL(t)〉Ts
=

〈vg(t)〉TS

Re
= 〈iL1(t)〉Ts

+ 〈iL2(t)〉TS
. (B.9)

From the average model in passive power sharing (Fig. B.4), the voltage across inductor (L)

and the conduction loss resistor (RLeq) in all the phases are the same. The voltages across the

inductor are

〈vg(t)〉TS
− d′(t) · Vo = L1

d 〈iL1(t)〉Ts

dt
+ 〈iL1(t)〉TS

· RLeq1, (B.10)

〈vg(t)〉TS
− d′(t) · Vo = L2

d 〈iL2(t)〉Ts

dt
+ 〈iL2(t)〉TS

· RLeq2. (B.11)

Eliminating one of the variables from the previous two equations, the inductor current can

be expressed as a first order ordinary differential equation, as
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(L1 + L2)
d〈iL1(t)〉Ts

dt + 〈iL1(t)〉Ts
· (RLeq1 + RLeq2) =

L2
Re

(2πfL) VM · cos(2πfLt) +
RLeq2

Re
VM · sin(2πfLt)

. (B.12)

With the initial condition at input voltage zero-crossing, 〈iL1(0)〉Ts
= 〈iL2(0)〉Ts

= 0, the

average output current (〈io〉Ts
) becomes

〈io(t)〉TS
= A1

Vo

VM

Re

[

RL1 − L1
(RLeq1+RLeq2)

(L1+L2)

][

e
−t·

(RLeq1+RLeq2)
(L1+L2)

][

sin(2πfLt)

]

− VM

ReVo

[

B1L1 · 2πfL + A1RLeq1

][

sin(2πfL) · cos(2πfLt)

]

+ VM

ReVo

[

VM + A1L1 · 2πfL − B1RLeq1

][

sin2(2πfLt)

]

, (B.13)

where

A1 =
2πfLVM

Re

[(RLeq1 + RLeq2)L2 − (L1 + L2)RLeq2]
[

(RLeq1 + RLeq2)
2 + (L1 + L2)

2 (2πfL)2
] , (B.14)

B1 =
VM

Re

[

(RLeq1 + RLeq2) RLeq2 + (L1 + L2) (2πfL)2 L2

]

[

(RLeq1 + RLeq2)
2 + (L1 + L2)

2 (2πfL)2
] . (B.15)

The total input power and output power can be described as

Pout = Vo ·

∫ TL/2

0
〈io(t)〉Ts

dt, (B.16)

Pin =
V 2

M

2Re
. (B.17)

Therefore, the efficiency with passive power sharing is

ηpassive = 8π·A1L1
VM

[

(L1+L2)

(RLeq1+RLeq2)
2
+(L1+L2)2(2πfL)2

]

×

[

RL1 − L1 ·
(RLeq1+RLeq2)

(L1+L2)

][

1 + e
−TL·

(RLeq1+RLeq2)
2(L1+L2)

]

+ 1
VM

[

VM + A1L1 · 2πfL − B1RLeq1

]

. (B.18)
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Let τL = (L1+L2)
(RLeq1+RLeq2) and ωL = 2π

TL
, the efficiency in passive power sharing can be described

as

ηpassive = 8π·L1
Re

ωLτL

(RLeq1+RLeq2)

[

1 + e
−

TL
2τL

]

×

[

L2τL·RLeq1−τ2
L

RLeq2RLeq1−L1L2+τL·RLeq2L1

(1+τ2
L
·ω2

L)
2

]

+1 +

[

L1L2·ω2
L
−τL·L1RLeq2·ω

2
L
−RLeq1RLeq2+τ ·L2RLeq1·ω

2
L

Re·(RLeq1+RLeq2)·(1+τ2
L
·ω2

L)
2

·

]

. (B.19)

With the assumption ωL · τL � 1, and letting RLeq,cm = (RLeq1 + RLeq2)/2 and ∆RLeq =

|RLeq1 − RLeq2|, the efficiency with passive power sharing is approximately

ηpassive ≈ 1 −
RLeq,cm

2Re
+

∆R2
Leq

8ReRLeq,cm
. (B.20)

From Eq. B.8 and Eq. B.20, it is shown that with some RL mismatch, the passive power

sharing reduces the total conduction loss compared to active power sharing approach.

B.1.3 Numerical Example of Efficiency Comparison

In active power sharing, current in each phase (iL,i) is equal, so

iL,i(t) =
vg(t)

2Re
i = 1, 2. (B.21)

By following the analysis in B.1.1 and considering the RL and VF effects, the duty ratio in

each phase is

di(t) =

[

RL,i

2Re
− 1

]

vg(t) + (Vo + VF,i)
[

Vo + VF,i −
Ron,i

2Re
vg(t)

] . (B.22)

The conduction loss can be calculated as

Ploss,i = 2
TL

∫ TL/2

t=0

{

iL,i(t)
2 · RL,i + iL,i(t)

2 · di(t) · Ron,i

+ [1 − di(t)] · iL,i(t) · VF,i

}

dt

. (B.23)
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In passive power sharing, both phases have identical duty ratio (d(t)), and the sum of the

inductor currents is

iL1(t) + iL2(t) =
vg(t)

Re
. (B.24)

Both phases are connected to the same input/output. The voltage across the inductor in

each phase is

Li
diL,i(t)

dt = vg(t) − iL,i(t) · RL,i

−iL,i(t) · di(t) · Ron,i − [1 − di(t)] · (VF,i − Vo)

. (B.25)

From Eq. B.24 and Eq. , the inductor current in each phase is

iL,i(t) = Ci · e
−t·

RL1+RL2+d(t)·[Ron1+Ron2]

(L1+L2)

+Aicos(2πfLt) + Bisin(2πfLt) + Di

. (B.26)

where Ai, Bi, Ci, and Di are the coefficients, which are functions of d(t). An example is

listed here:

A1 = VM

Re

2πfLL2[RL1+RL2+d(t)·(Ron1+Ron2)]

(2πfL)2(L1+L2)2[RL1+RL2+d(t)·(Ron1+Ron2)]2

−VM

Re

2πfL(L1+L2)[RL2+d(t)·Ron2]

(2πfL)2(L1+L2)2[RL1+RL2+d(t)·(Ron1+Ron2)]2

, (B.27)

B1 = VM

Re

(2πfL)2L2(L1+L2)

(2πfL)2(L1+L2)2[RL1+RL2+d(t)·(Ron1+Ron2)]
2

+VM

Re

[RL1+RL2+d(t)·(Ron1+Ron2)][RL2+d(t)·Ron2]

(2πfL)2(L1+L2)2[RL1+RL2+d(t)·(Ron1+Ron2)]2

, (B.28)

C1 = −A1 − D1 , (B.29)

D1 =
− [1 − d(t)] (VF1 − VF2)

[RL1 + RL2 + d(t) · (Ron1 + Ron2)]
. (B.30)
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Figure B.5: Reduction of conduction loss using passive power sharing in the two-phase boost PFC
rectifier (numerical example: vg−rms = 115V ; L = 0.3 mH; Ron ≈ 0.1 Ω; RL ≈ 0.08 Ω; VF ≈ 1 V ;
600 W).
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From iL,i(t) and Eq. B.1.3, d(t) can be solved numerically. By applying Eq. B.23, the

power loss in active power sharing and passive power sharing can be compared. The reduction

of conduction loss can be plotted with different types of mismatches, as illustrated in Fig. B.5.

The numerical example shows how the reduction in conduction losses depends on different types of

mismatches.

B.2 Current Mismatch in Passive Power Sharing

Passive power sharing processes the current in each phase to be inversely proportional to the

impedance, including the inductor (L) and the conduction loss resistance (RLeq). If there are some

impedance mismatches between the phases, there are some current mismatches between the phases.

In addition, phase interleaving may also causes some current mismatch. Details of the analysis are

shown in this section, including component mismatch effects in Sec. B.2.1, and phase interleaving

effects in Sec. B.2.2.

B.2.1 Current Mismatch Due to Component Mismatches

Based on the averaged switch model shown in Fig. B.4, inductor current can be expressed

as a first order differential equation (Eq. B.12). Using the passive power sharing, inductor current

in each phase can be expressed as

〈iL1(t)〉Ts
= −A1

(

e
−t·

RLeq1+RLeq2
L1+L2

)

+ [A1 cos(2πfLt) + B1 sin(2πfLt)] , (B.31)

〈iL2(t)〉Ts
= −A2

(

e
−t·

RLeq1+RLeq2
L1+L2

)

+ [A2 cos(2πfLt) + B2 sin(2πfLt)] , (B.32)

where

A1 =
2πfL · VM

Re

[(RLeq1 + RLeq2) · L2 − (L1 + L2) · RLeq2]
[

(L1 + L2)
2 (2πfL)2 + (RLeq1 + RLeq2)

2
] , (B.33)
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B1 =
VM

Re

[

(RLeq1 + RLeq2) · RLeq2 + (L1 + L2) · (2πfL)2 · L2

]

[

(L1 + L2)
2 (2πfL)2 + (RLeq1 + RLeq2)

2
] , (B.34)

A2 =
2πfLVM

Re

[(RLeq1 + RLeq2) · L1 − (L1 + L2) · RLeq1]
[

(L1 + L2)
2 (2πfL)2 + (RLeq1 + RLeq2)

2
] , (B.35)

B2 =
VM

Re

[

(RLeq1 + RLeq2) · RLeq1 + (L1 + L2) · (2πfL)2 · L1

]

[

(L1 + L2)
2 (2πfL)2 + (RLeq1 + RLeq2)

2
] . (B.36)

Let τL = (L1+L2)
(RLeq1+RLeq2) and ωL = 2π

TL
, the current mismatch in passive power sharing can be

written as

〈iL1(t)〉Ts
− 〈iL2(t)〉Ts

= − (A1 − A2) ·

(

e
− t

τL

)

+ (A1 − A2) · cos(ωLt) + (B1 − B2) · sin(ωLt)

. (B.37)

Let Lcm = (L1 + L2)/2 and ∆L = |L1 − L2| . Eq. B.37 can be re-written as

〈iL1(t)〉Ts
− 〈iL2(t)〉Ts

= VM

Re
· 1

2RLeq,cm
· 1

(1+τ2
L

ω2
L)

×

{

(τLωL · ∆RLeq − ωL · ∆L)

[

cos(ωLt) − e
− t

τL

]

+
(

−τLω2
L · ∆L − ∆RLeq

)

· sin(ωLt)

}

, (B.38)

〈iL1(t)〉Ts
− 〈iL2(t)〉Ts

= VM

2Re
· 1

(1+τ2
L

ω2
L)

×

{

∆RLeq

RLeq,cm
· [τLωL · cos(ωLt)]

−
∆RLeq

RLeq,cm
·

[

τLωL ·

(

e
− t

τL

)

+ sin(ωLt)

]

+ ∆L
Lcm

·

[

τLωL · cos(ωLt) + τLωL ·

(

e
− t

τL

)]

− ∆L
Lcm

·
[

τ2
Lω2

L sin(ωLt)
]

}

. (B.39)

Based on the assumption made in the previous section, ωL ·τL � 1, and considering the RLeq

mismatch only, maximum inductor current mismatch can be written as

max [∆iL] ≈
VM

2Re
·

∆RLeq

RLeq,cm
. (B.40)
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By considering the L mismatch only, maximum inductor current mismatch can be written as

max [∆iL] ≈
VM

2Re
· (τLωL) ·

∆L

Lcm
. (B.41)

From Eq. B.40 and Eq. B.41, based on the assumption ωL · τL � 1, the maximum current

mismatch due to the inductor mismatch is much smaller than the mismatch due to RLeq mismatch.

B.2.2 Current Mismatch Due to Phase Interleaving

Current mismatch is not only affected by the component mismatch, but also by the phase

shift. To analyze the phase interleaving effect in current mismatch, an s-domain current loop

model is constructed, as shown in Fig B.6. The difference between master and slave phases is

the phase delay function (Gd(s)) in the gate drive signal. The rest of the current loop blocks are

the same in each phase, including current controller (Gc(s)), input voltage to inductor current

dynamics (Gig(s)), duty ratio to inductor current dynamics (Gid(s)), and the emulated resistance

(Re) modeled as the relationship between the input voltage (vg) to the total inductor reference

current (iref ).

Gc(s)

Gid1(s)

Gid(s)Gd(s)

d

iL1

iL2

iref

iL

Gig1(s)

Gig(s)

vg

Gig2(s)

Gid2(s)

iL

1/Re

+

_

Gig(s)

Gid(s)

Figure B.6: Two-phase interleaved PFC rectifier model, including phase shift modeled by Gd(s).

Although input voltage (vg) of the boost PFC rectifiers is a time varying signal, the averaged
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switch model shown in Fig. B.4 is a linear system. Therefore, s-domain current loop model can

help to study the current mismatch due to the phase shift.

Based on the model in Fig. B.6, inductor current in each phase can be expressed as a function

of vg, as

iL1(s) =
vg(s)
Re

·

(

Gc(s)·Re

1+Gid(s)Gc(s)[1+Gd(s)]

)

×

[

Gig(s)
Gc(s)

+ Gd·Gid(s)
Re

+ Gid(s)Gig(s) (1 − Gd(s))

] . (B.42)

iL2(s) =
vg(s)
Re

·

(

Gc(s)·Re

1+Gid(s)Gc(s)[1+Gd(s)]

)

×

[

Gig(s)
Gc(s)

+ Gid(s)
Re

− Gid(s)Gig(s) (1 − Gd(s))

] . (B.43)

The current mismatch is

∆iL(s) =
vg(s)

Re
·





(Gd(s) − 1) · (2Gig(s) · Re − 1)
1

Gid(s)·Gc(s)
+ (1 + Gd(s))



 . (B.44)

Eq. B.44 shows that the current mismatch is affected by the input voltage dynamics and by

the phase shift between the master and the slave phases.
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