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 High-brightness light-emitting diodes (HB LEDs) provide many advantages over other 

existing electric light sources, including high efficacy, long lifetime and small form factor. 

However, the overall lifetime of off-line LED applications is limited by the low-quality 

electrolytic capacitors utilized for energy storage. In order to use long-life capacitors while 

limiting cost increase, the required energy-storage capacitance should be reduced, which can be 

achieved with several techniques addressed in this thesis. The constant input current approach 

can achieve a power factor (PF) of 0.9, which meets ENERGY STAR requirements, while 

reducing required energy storage by one-third compared to unity-PF case. When ripple is 

allowed on the LED current, the trapezoidal LED current approach minimizes energy storage 

with small control effort. A second stage can significantly reduce required capacitance by 

allowing large voltage variation on the capacitor, while bidirectional structure helps limit 

additional power loss. The small form factor of LEDs offers flexibility for diverse and 

sophisticated design. In order to take this advantage, LED drivers should have a small size or 

thickness. Series-input structure provides a possibility to apply low-voltage components in high-

voltage circuits, while the common duty cycle approach achieves automatic input voltage sharing 

and LED current copying, which can significantly simplify system design. With reduced rated 

voltage, integration of semiconductor devices becomes much easier and converters are able to 

operate at high switching frequencies with small components, both of which lead to high-level 

monolithic integration. All of the principles and control approaches are verified in experiments, 

with the results provided in this thesis. 



 

 

iv

 
 
 
 
 
 

CONTENTS 
 
 

CHAPTER 
 
 I.     INTRODUCTION ....................................................................................1 
   
 II. POWER ELECTRONICS IN LED LIGHTING ......................................7 
 
   LEDs ...................................................................................................7 
 
   Switching Converters ..........................................................................9 
 
   Power Electronics in LED Lighting ..................................................12 
 
   Research Motivations........................................................................16 
 
   Reported Efforts to Eliminate Electrolytic Capacitors in 
    LED Drivers ................................................................................17 
    

III.  DC LED DRIVER BASED ON SERIES-INPUT MODULAR 
  STRUCTURE ...................................................................................19 

 
   Series-input Modular Structure .........................................................22 
 
   Common Duty Cycle Approach........................................................23 
 
    Steady State of Series-input Modular System with 
     Common Duty Cycle ............................................................24 
     
    Small-signal Model of Series-input System with  
     Common Duty Cycle ............................................................26 
 
    Mismatch of Component Values between Series-input 
     Modules ................................................................................31 
 
   Additional Considerations for Series-input System Design .............33 
 
    Start-up of Series-input System ..................................................33 
 



 

 

v

    Response to LED Open-circuit Failure .......................................34 
 
   Experimental Results ........................................................................36 
 
   IC Implementation and Communication Circuitry ...........................45 
    
   Conclusion ........................................................................................49 
 

IV.  OFF-LINE LED DRIVER WITH REDUCED  
  ENERGY-STORAGE CAPACITANCE..........................................50 
 
  Energy-storage Capacitance for Off-line Applications.....................51 
  
  Reduction of Energy Storage ............................................................52 
 
   Reducing Input Power Ripple with Constant Input 
    Current ..................................................................................53 
 
   Allowing Ripple on LED Current ...............................................56 
 
  Reduction of Energy-storage Capacitance by Manipulating 
   Capacitor Voltage .......................................................................59 
 
   Decoupling Energy-storage Capacitor from LEDs .....................59 
 
   Reducing Power Loss on the Second Stage with 
    Bidirectional Structure ..........................................................61 
   
  System Design ..................................................................................63 
 
   Control Loops .............................................................................63 
 
   Realization of the Bidirectional Second Stage............................66 
 
   Reducing Switching Loss on the Second Stage ..........................68 
  
   Reducing Transient Ringing with Initial Duty Cycle 
    Estimation .............................................................................70 
 
  Experimental Results ........................................................................74 
 
  Conclusion ........................................................................................87 
 
V. MODULAR AC-DC LED DRIVERS BASED ON  
  SERIES-INPUT STRUCTURE WITH REDUCED 
  ENERGY STORAGE .......................................................................88 



 

 

vi

 
  Off-line LED Driver Based on the Series-input Structure ................89 
 
  Reduction of LED Current Ripple ....................................................92 
 
   Reducing Input Power Ripple with the Constant Input 
    Current Approach .................................................................92 
 
   Reducing Energy-storage Capacitance with Bidirectional 
    Second Stages .......................................................................94 
 
  System Control Loops.....................................................................101 
 
  Experimental Results ......................................................................105 
 
  Conclusion ......................................................................................110 
 
VI. CONCLUSION .....................................................................................111 
 
  Contributions...................................................................................112 
 
  Future Research Directions .............................................................114 

 
BIBLIOGRAPHY……………………..……………… ....…………………………119 
 
APPENDIX 
 

A. ESTIMATION OF REQUIRED ENERGY-STORAGE  
  CAPACITANCE IN SINGLE-STAGE OFF-LINE 
  LED DRIVERS ...............................................................................125 

 
B. ENERGY STORAGE AND LED CURRENT RIPPLE ......................130 
 
C. ESTIMATION OF SWITCHING-FREQUENCY RIPPLE 
  ON LED CURRENT AND REQUIRED FILTER  
  CAPACITANCE.............................................................................137 
 
 
 



 

 

vii

 
 
 
 
 
 

TABLES 
 
 

Table 
 
 3.1 Canonical Model Parameters for Ideal Buck, Boost, and 
   Buck-boost Converters............................................................................26 
 
 3.2 Component Parameters Used in SPICE Simulation .....................................32 
 

3.3 Worst-case Variations of LED Currents Due to Mismatch of 
  Duty Cycles .............................................................................................33 

 
 3.4 Devices Used in Experiment .........................................................................38 
 
 3.5 Efficiency of Series-input Converters for Experiment .................................45 
 
 4.1 Major Devices Used in Experiment ..............................................................75 
 
 4.2 Major Components Used in Experiment.......................................................75 
 
 4.3 Required Energy-storage Capacitance with Various Techniques .................87 
 
 5.1 Major Devices Used in Experiment ............................................................105 
 
 5.2 Major Components Used in Experiment.....................................................105 
 

6.1 Harmonics, PF and Energy Storage for Constant and Trapezoidal 
 Input Current .........................................................................................115 

 
 



 

 

viii  

 
 
 

 
 
 

FIGURES 
 

 
Figure 
 
 1.1 (a) Incandescent lamp, (b) fluorescent lamp, (c) HID lamp, and 
   (d) HB LED devices..................................................................................2 
 
 1.2 Typical configurations of LEDs: (a) incandescent lamp  
   replacement, (b) fluorescent lamp replacement, (c) LED  
   strip, and (d) LED plate. ...........................................................................4 
 
 2.1 (a) Symbol and (b) electric model for an LED device ....................................8 
 
 2.2 Non-inverting buck-boost converter .............................................................10 
 
 2.3 Steady-state model for a switching converter ...............................................11 
 
 2.4 Inductor current waveforms of converters in CCM and DCM .....................12 
 
 2.5 Typical structure for LED drivers. Rectifier and PFC stage are 
   unnecessary when dc power source is available .....................................13 
 
 2.6 A PFC boost converter with average current control....................................14 
 
 2.7 Input current waveform of a boost converter operating in CRM..................15 
 
 3.1 An LED application based on series-input converter modules .....................20 
 
 3.2 An LED driver based on series-input buck-boost modules in DCM ............23 
 

3.3 Steady-state model of an LED driver based on series-input  modules 
 with common duty cycle .........................................................................25 
 
3.4 Small-signal models for (a) a series-input modular system, and 
 (b) a single converter, both in CCM. The parameters of the  
 model for typical converters are shown in Table 3.1. .............................27 
 
3.5 Simulated control-to-output current transfer functions for a 
  series-input system with large input capacitor and for a 



 

 

ix

  single converter .......................................................................................29 
 
3.6 Small-signal model of a series-input system without input capacitor ..........30 
 
3.7 Simulated control-to-output current transfer functions for 
  series-input system with different input capacitor values .......................32 
 
3.8 Switch behavior during LED failure response procedure: (a) 

  S1, S3 on, charging L, (b) S1, S2, S4 on, input port shorted,  
iL charging Co, (c) S1, S2 on, input port shorted ......................................36 

 
3.9 Experimental setup, including 3 buck-boost converters with 

   2, 3, and 4 LEDs as load, respectively. FPGAs are used  
   for control and communication. Cin = 0.4 µF, L = 10 µH,  
   Co = 1 µF, fs = 800 kHz ...........................................................................37 
 

3.10 Waveforms of (a) input voltages and (b) output LED currents for 
 the three cells during LED current reference transient test. 
 The reference current for the master cell changes from 
 500 mA to 600 mA, and then back to 500 mA .......................................39 

 
3.11 Waveforms of (a) input voltages and (b) output LED currents  

 for the three cells during line transient test. Line voltage 
 increases from 35 V to 45 V ...................................................................41 

 
3.12 Input voltage waveforms of the three cells during system 

   Start-up ....................................................................................................42 
 

3.13 (a) Input voltage, inductor current and output voltage waveforms  
 for a cell with LED open-circuit failure, (b) zoom-in of (a) 
 at the instant when LED failure occurs, (c) zoom-in of (a) 
 when the output capacitor is recharged ...................................................44 

 
3.14 Block diagram of buck converter modules for series-input system ..............46 

 
3.15 (a) Circuits for communication between series-input modules,  

   and (b) required bias signals. Sin and Sout represent the input 
   and output signal. T = 1 when the corresponding module is  
   transmitting signal, while R = 1 when receiving.  
   For a specific module, T + R = 1 .............................................................47 
 

3.16 Effective circuit for communication from (a) lower to upper 
  module, and (b) upper to lower module .................................................48 

 
4.1 An off-line LED driver with PFC stage and buck energy-storage 
  capacitor ..................................................................................................54 



 

 

x

 
4.2 Input and output power waveforms for (a) an LED driver with  
  PF = 1 and constant LED current, and (b) an LED driver  
  with constant input current (PF = 9) and constant LED current .............55 
 
4.3 (a) Input and output power waveforms for an off-line LED driver 
  with PF = 1 and trapezoidal LED current; (b) required 
  percentage energy storage (Estored/Ecycle, Ecycle is the total input  
  energy within one half-line cycle) for different LED current 
  ripple values ............................................................................................57 
 
4.4 (a) Input and output power waveforms for an off-line LED driver 
  with constant input current and trapezoidal LED current; 
  (b) required percentage energy storage (Estored/Ecycle, Ecycle is  
  the total input energy within one half-line cycle)  for different  
  LED current ripple values .......................................................................58 
 
4.5 Off-line LED driver with PFC first stage and dc-dc second stage ...............60 
 
4.6 Normalized capacitance reduction with additional second stage 
  for different percentage LED current ripples. C0 is the required  
  energy-storage capacitance for single-stage LED driver with  
  50% LED current ripple ..........................................................................61 
 
4.7 LED driver with PFC first stage and bidirectional second stage ..................62 
 
4.8 Control loops for the proposed two-stage off-line LED driver, 
  including PFC, LED current regulation, energy-storage 
  capacitor voltage regulation and input power control .............................64 
 
4.9 Simplified control loops for the proposed two-stage off-line 
  LED driver, including PFC, LED current regulation, 
  energy-storage capacitor voltage regulation ...........................................65 
 
4.10 (a) Reference transition by detecting vESC and iLED; (b) iLED controller 
  with ripple control to implement trapezoidal LED current .....................66 
 
4.11 (a) A synchronous buck converter, and (b) a synchronous 
  boost converter as bidirectional second stage .........................................67 
 
4.12 (a) Synchronous buck converter and (b) switching control signal,  
  inductor current and switching node voltage for soft  
  switching .................................................................................................70 
 
4.13 Waveforms of input power and LED power, net input current   
  of second stage, and voltage on energy-storage capacitor ......................71 



 

 

xi

 
4.14 Waveforms of second-stage inductor current (a) without and  

 (b) with additional half-time conduction period indicated 
 as (1-d)Ts/2 ..............................................................................................73 

 
4.15 Experimental setup: including boost first stage with PFC and 
  synchronous boost second stage .............................................................74 
 
4.16 Waveforms of rectified line voltage, ac line current, LED string  
  voltage and LED current for PFC stage experiment. 
  Additional bulk capacitor is used to reduce LED current  
  ripple .......................................................................................................76 
 
4.17 Waveforms of (a) rectified line voltage, ac line current,  
 energy-storage capacitor voltage, LED current and  
 (b) inductor currents for the two-stage LED driver ................................78 
 
4.18 Waveforms of rectified line voltage, inductor current of second 
  stage, energy-storage capacitor voltage and LED current 
  for the two-stage LED driver with 30% LED current ripple. 
  The final duty cycle of last regulation period is directly  
  adopted as initial duty cycle for a new regulation period in (a).  
  The intial duty cycle is further adjusted according to LED  
  string voltage variation in (b). .................................................................79 
 
4.19 Start-up waveforms of rectified line voltage, ac line current,  
  energy-storage capacitor voltage and LED current for the 
  two-stage LED driver ..............................................................................81 
 
4.20 Waveforms of (a) rectified line voltage, ac line current,  
 energy-storage capacitor voltage, LED current and  
 (b) inductor currents for the two-stage LED driver with  
 constant input current on the first stage ..................................................82 
 
4.21 Waveforms of rectified line voltage, ac input current,  
  energy-storage capacitor voltage and LED current for the 
  two-stage LED driver with constant input current and 
  30% LED current ripple ..........................................................................83 
 
4.22 Waveforms of rectified line voltage, ac input current,  
  energy-storage capacitor voltage and LED current for  
  the two-stage LED driver with constant input current and 
  30% LED current ripple. A 2.2-µF film capacitor is used 
  for energy stoage .....................................................................................84 
 
4.23 Waveforms of rectified line voltage, ac input current, energy- 



 

 

xii

  storage capacitor voltage and LED current for the two-stage 
  LED driver with modified constant input current and  
  30% LED current ripple. A 2.2-µF film capacitor is used  
  for energy storage ...................................................................................86 
 
5.1 An off-line LED driver based on series-input structure ................................90 

 
 5.2 Steady-state model of modular converters with series-input 

  configuration and common duty cycle ....................................................91 
 

5.3 Input and output power waveforms for (a) an LED driver with 
  PF = 1 and constant LED current, and (b)an LED driver with 
  constant input current (PF = 0.9) and constant LED current ..................93 
 
5.4 A non-inverting buck-boost converter with input current 
  regulation ................................................................................................94 
 
5.5 An LED driver with PFC first stage and bidirectional second 
  stage ........................................................................................................96 
 
5.6 (a) Input and output power waveforms for an off-line LED driver 
  with constant input current and trapezoidal LED current; 
  (b) required percentage energy storage (Estored/Ecycle, Ecycle is  
  the total input energy within one half line cycle)  for different  
  LED current ripple values .......................................................................97 
 
5.7 (a) A bidirectional buck converter operating in DCM as second stage; 
  (b) buck mode; (c) reversed boost mode; (d) operation model  
  alternation within one half-line period ....................................................98 
 
5.8 LED current controller for the bidirectional buck second stage with 
  mode selection and ripple control ...........................................................99 
 
5.9 LED current control diagram: (a) buck mode and (b) boost mode. 

 The two controllers are integrated together ..........................................100 
 
5.10 Off-line LED driver based on series-input structure built with  
  two-stage modules ................................................................................101 
 
5.11 Control loops for the two-stage LED drive modules, including  
  LED current regulation, energy-storage capacitor voltage  
  regulation and input power control. The input power 
  control is for master module only .........................................................102 
 
5.12 Control loops for (a) slave modules and (b) master module in a  
  seris-input modular LED driver ............................................................103 



 

 

xiii  

 
5.13 (a) Experimental setup. Input voltage vg is rectified ac input signal. 
  FPGAs are used to control the modules and transmit duty cycle. 
  Three modules are used, driving eight LEDs  
  respectively. (b) Non-inverting buck-boost first stage used in  
  experiment. (c) Bidirectional buck second stage used  
  in Experiment ........................................................................................104 
 
5.14 Input voltage, input current, LED string voltage and LED 
  current of a buck-boost first stage with constant input 
  current regulation ..................................................................................106 
 
5.15 Input voltage, input current, voltage on energy-storage 
  capacitor and LED current of an LED driver with 0.9 PF 
  first stage and bidirectional second stage. The LED current  
  is set to be 150±50 mA .........................................................................107 
 
5.16 (a) Input voltages and (b) LED currents of the series-input LED  
  driver built with two-stage LED drive modules. The LED  
  current is set to be 150±50 mA.. ...........................................................109 
 
6.1 Trapezoidal input current ............................................................................116 
 
A.1 A single-stage LED driver with PFC and bulk filter capacitor ...................126 
 
A.2 Input and output power waveforms for a single-stage LED 
  driver .....................................................................................................127 
 
B.1 Input and output power waveforms for passive filtering ............................131 
 
B.2 Percentage energy storage for various percentage LED current 
  ripple .....................................................................................................132 
 
B.3 Input and output power waveforms with time shift of td ............................133 
 
B.4 Input and output power waveforms without time shift for (a) 
  sinusoidal and (b) trapezoidal output current........................................134 
 
B.5 Percentage energy storage for various percentage LED current 
  ripple. Black line is for trapezoidal output current case.  
  Red line is for passive filtering case .....................................................136 
 
C.1 An LED driver with PFC first stage and bidirectional second 
  stage ......................................................................................................138 
 
C.2 Output current waveform of boost PFC first stage .....................................139 



 

 

xiv

 
C.3 (a) Inductor current without double-line-frequency component, 
  triangular waveforms with (b) infinite increasing slope and 
  (c) identical increasing and decreasing slops. All three  
  waveforms have identical amplitude and frequency fs = 1/ts.. ..............140 

 



 

 

 

CHAPTER I 

 
INTRODUCTION 

 

Light-generating equipments play a very important role in human lives. From large 

outdoor display panels, to general lighting products like street lighting, back lighting for 

monitors, or even the small power-on indicators, lighting applications penetrate almost every 

corner of the modern world. The broad utilization of lighting products can be reflected by its 

electricity consumption as well. For instance, more than 20% of the total electricity usage in 

United States is consumed by lighting [1, 2]. Due to their extreme importance, lighting products 

are expected not only to generate high-quality luminance output but also to be power efficient 

and cost effective.  

With continuous technological improvement and innovations, the efficiency of electrical 

lighting applications has improved significantly. The first major contributor to this efficiency 

improvement is the advancement of light sources, or light-emitting materials, and the second is 

the development of power electronic technologies that are necessary to utilize these light sources. 

The efficiency of light sources can be indexed by efficacy, which represents how much light is 

developed per unit power consumed by the devices, with the unit of Lumens/Watt. The common 

electric light sources can be divided into several categories, including incandescent, fluorescent, 

high intensity discharge (HID), and solid state, as shown in Fig. 1.1. Incandescent lamps, which 

have been in use for a long time, generate light through blackbody radiation. As a large portion 
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of energy is transferred to heat, the efficacy of incandescent bulbs is only about 10-18 

Lumens/Watt. Fluorescent lamps provide much higher efficacy, in the range of 70-90 

Lumens/Watt, and have replaced incandescent lamps in many applications. Concerns with 

fluorescent lamps include their fragile tubes and their mercury-based materials, which are not 

environmentally friendly. The efficacy of HID lamps is even higher than fluorescent lamps. 

Similar to fluorescent lamps, some HID lamps lead to concerns about safe disposal. Both 

fluorescent lamps and HID lamps require ballasts to start and maintain their operation. Solid-

state light (SSL) source normally refers to light-emitting diode (LED). For many years, LEDs 

were utilized majorly in applications requiring small light output, such as signal indicators. With 

recent advancement in materials and manufacturing process, high-brightness LEDs are attracting 

 

  
 

(a)                 (b) 

 
                                                    (c)                                            (d) 

Figure 1.1: (a) Incandescent lamp, (b) fluorescent lamp, (c) HID lamp, and (d) HB LED devices. 
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more and more interest from both academia and industry, as they provide great potential for 

future lighting applications.  

Compared to incandescent or discharge lamps, LEDs produce luminance output on a 

fundamentally different principle. They are semiconductors that convert electrical energy 

directly into luminous output. The “cold” generation of light by LEDs leads to high efficacy 

because most of the energy radiates in the visible spectrum. The present commercial high-

efficiency LED lamps provide efficacy of 60~100 Lumens/Watt, while the technology is still 

under development. In addition to high efficacy, LED devices are safe for the environment, and 

their compact size provides more flexibility for applications. Another great advantage of LEDs is 

the very long lifetime (more than 50,000 hours expected), which can largely reduce the cost for 

maintenance. 

Drive electronics are necessary to utilize LEDs. As LEDs are normally low-voltage dc 

devices, high-voltage ac power from the grid has to be converted to be suitable for LEDs. 

Meanwhile, drive electronics also provide power regulation and protection to the LED devices. 

In addition to these basic functionalities, special designs of drive electronics are necessary to 

make full use of the advantages of LEDs. 

Compared to other electric light sources, LEDs offer much more flexibility in lighting 

system design, majorly due to their small form factor. Since the light output of a single LED is 

limited, normally a number of LEDs are included in a system in order to generate sufficient 

luminance. These small LEDs may be distributed in almost any form, which may leads to 

improvement of overall systems. For instance, although some present LED products are designed 

with the shape of bulb or tube in order to fit the existing retrofits, which are shown in Fig. 1.2, 

strip or plate configurations are more suitable for LED applications. The resulted small thickness 
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offers more flexibility for usage, and can even be integrated to building fixtures. Meanwhile, the 

distributive configurations improve thermal dissipation, which is helpful to achieve high efficacy. 

In order to take advantage of the small form factor of LED devices, the drive electronics 

should have small sizes or thickness as well. One approach is to reduce voltage stress on the 

devices in LED drivers. With lower rated voltage, the integration of semiconductor devices 

becomes much easier and lower in cost, and the drive circuits can operate at higher frequency 

and with low-profile components. All these benefits lead to high-level monolithic integration, 

which matches well with the small package of LED devices. 

 

 
                                   (a)                                                         (b) 

   
                                             (c)                                                    (d) 

Figure 1.2: Typical configurations of LEDs: (a) incandescent lamp replacement, (b) fluorescent 
lamp replacement, (c) LED strip, and (d) LED plate. 
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Another research focus is to make full use of the long lifetime of LED devices. Although 

LED devices can last a very long time, drive electronics often fail much earlier, primarily due to 

short-life electrolytic capacitors. For off-line applications, standards like ENERGY STAR 

program place requirements of high power factors [3], which lead to large double-line-frequency 

ripples on input power. In order to filter these power ripples, bulk electrolytic capacitors are 

normally utilized with the advantage of high power density at low cost. However, the lifetime of 

low-quality electrolytic capacitors is normally much shorter than LED lifetime, which can be 

even worse due to high operating temperature. The combination of low-quality capacitor, large 

power ripple and high temperature often leads to early failure of electrolytic capacitors, and thus 

the failure of LED lamps. As a result, energy storage approaches other than low-quality 

electrolytic capacitor should be developed in order to achieve long lifetime and competitive cost. 

Cost reduction is another important target for LED system design. At present, one major 

obstacle for LED utilization is the high initial cost, which needs to be addressed to encourage the 

adoption of LED techniques. The projected cost for LED lighting is 2~3 dollars per kilo lumen 

($/klm) of light output by 2015, as planned by the Department of Energy [4]. With a share of 

about 20% of the total budget, the cost for drive electronics is expected to be approximately 0.1 

dollar per Walt ($/W) of power output, which places a significant challenge for driver design. 

This thesis focuses on the techniques to improve the performance of LED drive 

electronics, including the lowering of voltage stress for high-level integration and the reduction 

of energy-storage capacitance to extend overall lifetime. A review of LED characteristics and 

existing drive electronics are provided in Chapter II, with the motivations for the research 

presented in this thesis. Chapter III introduces the series-input modular structure to reduce 

voltage stress on devices, and the common duty cycle approach to achieve automatic input 
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voltage distribution and output current copying. The techniques to reduce energy-storage 

capacitance are presented in Chapter IV, including the constant input current approach to achieve 

sufficient PF while reducing input power ripple, and a bidirectional second stage to reduce 

required capacitance with relatively small power loss. The approaches to combine series-input 

structure and reduction of energy-storage capacitance are presented in Chapter V. Chapter VI 

summarizes the contributions and concludes this thesis. 

 



 

 

 

CHAPTER II 

 
POWER ELECTRONICS IN LED LIGHTING 

 

This chapter provides an overview of the concepts related to power electronics in LED 

lighting. The basic electric characteristics of light-emitting diodes (LEDs) are summarized in 

Section 2.1, followed by the introduction of switching power converters in Section 2.2. 

Section 2.3 summarizes some popular power electronics techniques applied in present LED 

lighting applications, with the emphasis on power factor correction (PFC). The motivations 

driving the research in this thesis are presented in Section 2.4, while Section 2.5 summarizes 

some related efforts reported recently.  

 

2.1 LEDs 

Light-emitting diodes (LEDs) are predicted to be the dominating electric light source in 

the future. Compared with other light sources, LEDs provide several advantages, which are still 

improving. One of the most important advantages is the high efficacy, which is very useful for 

energy savings. In addition, unlike fluorescent lamps or high intense discharge (HID) lamps, 

LEDs are environmentally safe. Another main advantage of LEDs is the very long lifetime. The 

commercial high-brightness white LEDs are expected to have a lifetime over 50,000 hours for 

the output to degrade to the 70% lumen maintenance level, which allows more than 10 years 
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operation, assuming 8 hours operation per day. Furthermore, LEDs provide flexibility for 

utilization compared with fluorescent and HID lamps, and their small form factor is very useful 

for applications with limited size.  

Similar to ordinary diodes, LEDs are based on p-n junctions, which are built with “p” and 

“n” materials. When sufficient voltage is placed on a p-n junction, the holes in “p” material and 

the electrons in “n” material combine, releasing energy in the form of light. As the combination 

rate is proportional to current density, LEDs are considered “current-driven” devices, whose 

brightness depends largely on current. In order to operate an LED, a threshold voltage has to be 

reached. Around the nominal operation condition, the dynamic resistance of an LED is typically 

small. The common symbol and electric model for an LED are shown in Fig. 2.1, with the 

voltage source representing the threshold voltage Vth in series with the dynamic resistance RLED 

of LED. As the variation on an LED current is much larger than that on voltage, drive circuits 

normally regulate LED current rather than voltage. When multiple LEDs are utilized, they are 

usually connected in a string so that their current can be regulated at the same time. 

 

 

Vth

RLED

 
 
                                                     (a)                               (b) 
Figure 2.1: (a) Symbol and (b) electric model for an LED device. 
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2.2 Switching converters 

Switching converters have become the most popular drive electronics for LED 

applications, mainly due to their high power efficiency. With switching on and off of transistors 

and diodes, pulsated voltage and current signals are generated, and then filtered by inductors and 

capacitors to achieve specific outputs. As the transistors and diodes conduct with small voltage 

drops, the conduction loss in switching converters can be much smaller compared to linear 

regulators. 

With different topologies, switching converters can provide various functionalities and 

features. For example, buck converters can generate low output voltage from high input voltage, 

while boost converters can only step up voltage. Buck-boost and Cuk converters, which are 

based on the cascaded connection of buck and boost converters, can theoretically provide any 

conversion ratio. When additional devices are added, such as transformers, many more types of 

converters are feasible for applications. 

Take the non-inverting buck-boost converter as an example to demonstrate the operation 

of switching converters. The schematic of the converter is shown in Fig. 2.2, with two transistors 

Sh and Sl, and two diodes Dl and Dh. The converter is controlled by adjusting the conducting time 

of the high-side transistor Sh and low-side transistor Sl within one switching period, i.e., duty 

cycle D. When both Sh and Sl are conducting, input voltage source vin charges inductor L. When 

Sh and Sl are off, the two diodes Dh and Dl conduct the inductor current, which charges the output 

capacitor. The total volt-seconds applied on the inductor over one switching period can be 

calculated as  

 ( ) ( )( ) soutsin

T

L TDvDTvdttv
s

−−+=∫ 1
0

, (2.1) 
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where Ts is the switching period and D is the duty cycle. When the converter operates in a steady 

state, the total volt-seconds on the inductor over one switching period should be zero, yielding  

 ( ) 01 =−− DvDv outin , (2.2) 

or  

 inout v
D

D
v

−
=

1
. (2.3) 

The conversion ratio M(D) is the ratio of output to input voltage of a converter. Eq. 2.3 

demonstrates that the conversion ratio of non-inverting buck-boost converter is given by  

 ( )
D

D

v

v
DM

in

out

−
==

1
. (2.4) 

Note that this conversion ratio depends on duty cycle only. Similarly, the conversion ratio for 

other converters can be derived with this approach [5]. The ratio of output to input current of a 

converter is just the inverse of voltage conversion ratio M(D) when all power loss is neglected. 

According to Eq. 2.4, the steady-state behavior of a converter is similar to a “dc” 

transformer, which converts a dc input voltage to a dc output voltage. The voltage conversion 

ratio of the transformer is 1:M(D), where M(D) is the conversion ratio of the converter. The 

steady-state model of a switching converter is shown in Fig. 2.3. 
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Figure 2.2: Non-inverting buck-boost converter. 
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 The above analysis is based on the assumption that the inductor current never reaches 

zero, i.e., continuous. In other words, either the two transistors or the two diodes are conducting 

throughout each switching period. If the inductor current reaches zero during the subinterval of 

diode conducting, the two diodes will go off, and the inductor is disconnected from both input 

and output ports with zero inductor current until the transistors are turned on again. Under this 

situation, the converter is said to enter the discontinuous conduction mode (DCM). In contrast to 

DCM is the continuous conduction mode (CCM), which means the inductor current is not 

pulsated. The inductor current waveforms in CCM and DCM are shown in Fig. 2.4. When one 

converter operates in DCM, the volt-second balance indicated by Eq. 2.2 is invalid. Thus the 

relation between output and input voltage, or conversion ratio of the converter does not only 

depend on duty cycle. 
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Figure 2.3: Steady-state model for a switching converter. 
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2.3 Power electronics in LED lighting 

Power electronics are critical contributors to high-performance LED lighting applications. 

As the interface between power source and LED load, drive electronics should convert the input 

power, which is often ac and high-voltage, to dc and low-voltage for LEDs, while provide 

current regulation and other necessary protections at the same time. The typical structure for 

LED driver is shown in Fig. 2.5. For off-line applications, normally two stages are included in 

the circuit, with a power factor correction (PFC) stage followed by a dc-dc stage. The PFC stage 

is necessary as high power factors are required by standards like ENERGY STAR program, 

while the second stage provides regulation of LED current. The second stage may not be 

included in some applications where bulk capacitors are parallel with the LED load to limit LED 

current ripple. In applications where dc source is available, only the dc-dc stage is necessary to 

power LED load. 
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Figure 2.4: Inductor current waveforms of converters in CCM and DCM. 
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Power factor (PF) is a measurement indicating the quality of energy transmission on the 

grid. The higher PF achieved, the less power loss occurs on the grid. PF is defined as the ratio of 

the average input power delivered to an equipment divided by the magnitude of the complex 

power (or apparent power), as represented by Eq. 2.5. In general, PF improves when input 

current gets closer to the shape and phase of input voltage. For grid-powered applications, the 

maximum value of PF = 1 is achieved when input current is pure sinusoidal and in phase with 

line voltage.  

 
( )( )currentrmsvoltagerms

poweraverage
factorpower =  (2.5) 

For off-line LED lighting applications, high PF is required by standards. For instance, the 

PF for commercial solid-state lighting applications is required to be higher than 0.9 by the 

ENERGY STAR program, while the minimal PF requirement for residential products is 0.7 [3]. 

Many approaches are feasible to achieve high PF for off-line circuits. The basic idea is to 

shape input current so that it becomes sinusoidal and in phase with input voltage. One popular 

approach, which is called the average current control, utilizes a scaled input voltage waveform as 

the reference for average input current, as shown in Fig. 2.6. Two control loops are included in 
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Figure 2.5: Typical structure for LED drivers. Rectifier and PFC stage are unnecessary when dc 
power source is available. 
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the circuit. A current control loop regulates the input current to a reference that is proportional to 

input voltage, while a voltage loop adjusts the scale between the input current reference and 

input voltage to stabilize the output voltage. If the voltage loop is slow enough, the current 

reference signal will be very close to sinusoidal and in phase with input voltage, and thus a good 

PF can be achieved.  

Other control approaches are developed to achieve high PF without input voltage sensing 

[6-9]. For instance, the non-linear carrier control approach utilizes a special reference signal 

instead of scaled input voltage, i.e., non-linear carrier, as the reference for input current [8]. With 

a suitable carrier signal, a high PF can be achieved. 

Some other approaches are feasible for specific topologies and conduction mode. For 

example, it is easy to achieve high PF with boost converters in critical conduction mode (CRM), 

which means the converter operates right at the boundary between CCM and DCM. With CRM, 

the low-side transistor of a boost converter is turned on right at zero crossing of inductor current, 

resulting in an input current waveform shown in Fig. 2.7. In this case, the average input current 
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Figure 2.6: A PFC boost converter with average current control. 
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within each switching period is approximately half of peak inductor current, as indicated by 

Eq. 2.6. It can be seen that input current ig,avg is proportional to input voltage vg under this 

condition. Thus, when the conduction time of low-side transistor ton is constant within every half-

line cycle, the input current waveform will be a scaled version of input voltage waveform, and a 

high PF can be achieved. 

 g
on

peakLavgg v
L

t
ii

2

1

2

1
,, ==  (2.6) 

With approaches mentioned above, a PF close to unity can be achieved. However, as the 

input voltage and input current are sinusoidal and in phase, the resulted input power contains a 

very large ripple, which can lead to large variations on LED current. As a result, significant 

filtering is required in order to limit the low-frequency LED current ripple. This is also one 

reason to include second stages in off-line LED drivers. 

Regulation of LED current can be achieved with second stages in LED drivers. In off-line 

applications, buck converters are a common choice for the second stages, as normally the bus 

voltages are higher than LED string voltages. The major concern about the second stage is the 
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Figure 2.7: Input current waveform of a boost converter operating in CRM. 
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additional power loss. With the cascaded structure in Fig. 2.5, input energy has to be processed 

by both stages to reach the LED load. As a result, significant effort is required to achieve high 

power efficiency.  

In order to avoid the cost and power loss associated with the second stage, the second 

stage is not included in some off-line applications. However, bulk capacitors have to be used to 

limit LED current ripple in these circuits. 

 

2.4 Research Motivations 

One major issue of many existing off-line LED drivers is the short lifetime, which is 

much less than the expected long lifetime of LED devices. As the drive circuits are often 

packaged together with the LED devices within lamps, failure of a drive circuit requires 

replacement of a whole lamp, which wastes the long lifetime of LEDs. Past studies show that the 

aluminum electrolytic capacitors in the drive circuits are the major reason for early failure. The 

wear-out of electrolytic capacitors is primarily due to evaporation and deterioration of 

electrolytes, which processes can be accelerated by elevated ambient or internal temperature. As 

an electrolytic capacitor degrades, its capacitance drops and its equivalent series resistance (ESR) 

increases, both of which cause increases in capacitor voltage ripple, which finally lead to the 

failure of the circuit [10]. 

In order to extend the lifetime of LED drivers, aluminum electrolytic capacitors have to 

be removed [11]. One option is to replace them with long-life capacitors, such as ceramic or film 

capacitors. However, these capacitors are much more expensive compared to electrolytic 

capacitors. Thus, in order to utilize ceramic or film capacitors while maintaining reasonable cost, 

the required energy-storage capacitance should be reduced. 
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Besides high efficacy and long lifetime, another advantage of LED devices is the 

miniature size, which offers flexibility for diverse and sophisticated design. For instance, LED 

applications with small size or thickness will be suitable for space-limited situations or 

integration with building fixtures. However, in high-voltage applications, the drive electronics 

normally operate at relatively low switching frequencies to limit power loss, which results in 

large components. Meanwhile, semiconductor devices with high rated voltage, which are 

required due to high voltage stress, are difficult to integrate. All of these disadvantages hinder 

the size shrinking of high-voltage LED applications. 

A series-input structure provides a possible method to reduce the voltage stress on the 

devices in high-voltage applications. When several cells in a system are series-connected from 

the input port, the input voltage of the system is distributed among them. If the system is well 

designed and balanced, the input voltage of each cell is the input voltage divided by the number 

of cells. The more cells connected, the less voltage rating is required for each cell. The 

integration of the semiconductor devices becomes much easier with reduced rated voltage. 

Meanwhile, the circuits can operate at higher switching frequencies with low-profile inductors 

and capacitors. As a result, it is possible to achieve high-level integration with series-input 

structure [12].  

 

2.5 Reported efforts to eliminate electrolytic capacitors in LED drivers 

Recently, many approaches have been proposed to eliminate electrolytic capacitors in 

off-line LED applications. The purpose of electrolytic capacitors in off-line applications is for 

energy storage, so as to balance the energy between input power with large variations and the 
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constant output power. To reduce the capacitance so that long-life but expensive capacitors can 

be adopted, the first attempt is to reduce the required energy to be stored in each line cycle. 

As the LED applications are allowed to have PF less than one, it is possible to reduce the 

input power ripple with the trade-off of a lower PF, which can be realized by manipulating the 

shape of input current. In [13, 14], specific harmonic signals are injected into the input current 

reference to reduce the peak-to-average ratio of input power. Similarly, distorted sinusoidal 

references are utilized for PFC converter in [15, 16] to reduce input power ripple. 

Although the required energy storage can be reduced with input current shaping, very 

large energy-storage capacitance is still necessary if the capacitors are directly parallel with the 

LED strings, as proved in Appendix A. The required capacitance can be further reduced by 

decoupling the capacitors from the LEDs. With additional stages placed following energy-

storage capacitors and followed by LED load, high dc value and/or large ripple on capacitor 

voltage are adopted to reduce capacitance in [17, 18]. Although the electrolytic capacitors can be 

eliminated from these circuits, the drawback is low efficiency as the entire energy is processed 

by two stages to reach the LEDs. Some integrated LED drivers are also reported in [19-21], in 

which a single controller is utilized for both stages. However, the issues of energy storage and 

power loss are not tackled by integration. The active filter technique is also adopted to reduce 

energy-storage capacitance in [22], where a three-port converter with a dedicated power ripple 

port is proposed. 

Magnetic energy storage is also proposed as a replacement of capacitance in [23, 24]. 

However, although magnetic components provide much longer lifetime compared with 

electrolytic capacitors, the required large inductance becomes a significant issue, when 

considering size and cost. 



 

 

 

CHAPTER III 

 
DC LED DRIVER BASED ON SERIES-INPUT MODULAR STRUCTURE 

 

Although some trends in commercial high-brightness LEDs are towards high-power, high-

current devices, most applications still require a large number of LEDs to be used in a single 

system [25-29]. Typical solutions, especially when operating from a high voltage supply or the ac 

grid, place many LEDs serially in a string and regulate the string current [30]. Such solutions 

require use of high-voltage components operating at a relatively low switching frequency from 

tens of kilohertz to low hundreds of kilohertz in order to limit switching loss. Both high voltage 

and low frequency result in bulky inductors designed for large volt-seconds. The integration of 

components, such as power transistors and gate driver circuits, also becomes difficult and 

expensive due to high rated voltage. At the same time, these solutions also risk losing an entire 

string of LEDs with the failure of a single element.  

As an alternative, a series-input modular structure, as shown in Fig. 3.1, enables use of 

low-voltage integrated circuits (ICs) and components over a scalable range of high dc input 

voltage buses [12]. The low-voltage cells can operate efficiently at high switching frequencies in 

the megahertz range using low-profile, light-weight components that match well to the miniature 

packages typical of LEDs. It also becomes more feasible to achieve a high level of monolithic 

integration. Furthermore, this structure provides a possible method to respond to individual LED 

failure by automatically detecting and shorting the affected cell from the series system. The dc 
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input line voltage bus may be the output of a power factor correction (PFC) stage in an off-line ac 

application or a direct connection in a dc system (e.g. stand-alone solar, aircraft, naval ships or 

potential future dc wiring in buildings).  

One critical issue for the modular structure is distribution of line voltage, which has been 

investigated for series-input parallel-output converters in [31-40]. However, most approaches 

require an additional control loop for the line voltage sharing, which complicates system design. 

The common duty cycle approach, introduced in [36] and inherited in [37-40], achieved good line 

voltage distribution.  

The modular LED driver structure with converters operating in discontinuous conduction 

mode (DCM) was reported in [12]. The presented approach uses two control loops in each module 

and relies on communications between the cells to tune the control loops based on relative cell 

power levels and also achieves proper input voltage sharing. 
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Figure 3.1: An LED application based on series-input converter modules. 
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This chapter introduces a series-input modular structure implemented by converter cells 

operating in continuous conduction mode (CCM), with common duty cycle control approach to 

automatically distribute line voltage between the cells. More efficient operation can be achieved 

with lower peak currents by operating in CCM as opposed to DCM. In addition, only one local 

feedback loop is necessary in the entire system using the proposed method to achieve well-

regulated output LED currents. The control-to-output transfer function of the proposed system is 

close to that of a single converter and thus easy for system design and compensation. Two 

drawbacks to the proposed system include an increase in the number of components that scales 

with the number of modules and the requirement for communications between the series modules. 

These effects are partially mitigated by reduced voltage ratings that scale down with the number 

of modules and low isolation requirements, since communications occur only between 

neighboring modules. 

The chapter is organized in the following way. Section 3.1 introduces the series-input 

system and the reported design solution in DCM. Analyses of the common duty cycle approach 

are provided in Section 3.2, including the steady-state behavior, small-signal transfer function for 

the system and compensator design. Some special considerations for system design, including 

responses to LED open-circuit failure and start-up issues, are presented in Section 3.3. 

Experimental results for a 25-W 3-cell system with 9 Luxeon K2 high-brightness LEDs are given 

in Section 3.4, demonstrating line voltage sharing, output current copying and LED failure 

response. A block diagram of integrated buck modules for series-input system, including 

schematic for communication blocks, is proposed in Section 3.5, while Section 3.6 concludes this 

chapter. 

 



 

 

22

3.1 Series-input modular structure 

The proposed system is composed of several converter cells, which are serially connected 

from input ports and have independent output ports, as shown in Fig. 3.1. Each cell drives a sub-

string of LEDs, whose numbers can be different between strings. The target behaviors of this 

system include input voltage distribution and LED current regulation of all the cells. When the 

system is well balanced with proper design, the high input voltage evenly distributes between the 

cells. Consequently, the voltage rating of each module can be significantly smaller than the high 

input voltage of the system. The low-voltage modules can operate at high switching frequencies 

with low-profile, low-weight components, making it more feasible for monolithic integration. 

In order to achieve the desired system behavior, a special control approach has to be 

applied on the series-input modular system. One solution reported in [12] adopts buck-boost 

converters in DCM for the converter modules, as shown in Fig 3.2. The input impedance of a 

buck-boost converter operating in DCM can be emulated as a resistor whose resistance is 

controllable with the converter duty cycle. Thus, the system input voltage is distributed among the 

modules according to the ratio of input impedances, which can be adjusted by varying the duty 

cycle of the converters. In order to implement this control approach, communication between the 

modules is necessary to share information of power consumption. As the modules take turns to 

communicate and calculate the duty cycle, the response of this system is limited by the speeds of 

communication and calculation. 
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3.2 Common duty cycle approach 

In order to reduce the complexity in control and to improve performance, a common duty 

cycle approach can be applied to series-input modular systems. Different from the approach in 

[12], the converters should operate in CCM in order to apply the common duty cycle approach. A 

proposed system is composed with the converters with the same topology, while one of the cells 

is the master and the others are slaves. The master cell regulates its own output current and 

generates a duty cycle, which is adopted by all the slave cells to drive their transistors. Many 

options are feasible for realizing distribution of the common duty cycle in the series structure, 

including isolated analog and digital communications and direct gate drive transformer coupling. 

One solution using digital communications between neighboring cells with very low isolation 

requirements is presented in Section IV of [12].  
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Figure 3.2: An LED driver based on series-input buck-boost modules in DCM. 
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3.2.1 Steady state of series-input modular system with common duty cycle 

A steady-state equivalent model for the proposed system is shown in Fig. 3.3. The output 

LED current for each converter cell, Io_i, can be calculated with 

 ni
DM

I
I

i

g
io ,,2,1,

)(_ ⋅⋅⋅== , (3.1) 

where Ig is the system input current, Di is the duty cycle of cell i and M(Di) is the conversion ratio 

of the cell. 

When the system is operating in steady state, the input currents for all converters are the 

same and equal to Ig. The output LED currents are identical only if the conversion ratios M(Di) of 

all the cells are identical, which can be achieved approximately when all the converters share the 

same topology, operate in CCM and are driven by identical duty cycle. Under this condition, the 

conversion ratios for all cells are equivalent and given by 
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where D is the common duty cycle of all cells. In steady state Vo_i, the output voltage of cell i, is 

approximately mi 
. VLED, where VLED is the rated voltage of one LED and mi is the number of 

LEDs in the cell i. 

Under the common duty cycle condition in Eq. 3.2, the input voltage Vg automatically 

distributes among the cells. The ratio between input voltages of the converters can be solved from 

Fig. 3.3 as 
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Based on Eq. 3.1 and 3.3, with Di = D given by Eq. 3.2, all output currents are identical 

and the input voltage Vg naturally distributes according to the ratio of the output voltages. As a 

result, regulation of only the LED current of the single master cell results in good matching of all 

LED currents for an arbitrary number of cells and an arbitrary number of LEDs per cell. The 

resulting LED current regulation in all cells is also independent of characteristic differences 

among the LEDs and forward voltage variations during the LED lifetime. Hence, the system has 

only one master cell at any time, while communication is necessary to transmit the duty cycle to 

the slave cells. In practical applications, all the cells may be identical and have the ability for 
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Figure 3.3: Steady-state model of an LED driver based on series-input modules with common 
duty cycle. 
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output current regulation while only the master cell is authorized for control. The authority for 

control may be transferred from one cell to another for averaging of any regulation errors or only 

transferred in the event of a failure. Furthermore, the slave cells may be allowed to modify or 

offset the cell duty cycle incrementally to improve accuracy of the output current or to allow 

LEDs with different current specifications on each cell. Communications can be performed 

without significant isolation requirements by transferring the duty cycle command between 

neighboring series cells, similar to the method used in [12]. The extensions mentioned above for 

transferring control authority among cells or modifying output currents of each cell may be 

developed in further research.  

 

3.2.2 Small-signal model of series-input system with common duty cycle 

One benefit of the common duty cycle approach is that only one single control loop is 

required. The behavior of this loop is primarily based only on the dynamics of the master cell and 

is relatively independent of the slave cells. The small-signal model of the series-input system is 

shown in Fig. 3.4(a), where canonical model for converters is used [5]. The canonical model 

parameters for basic converters are shown in Table 3.1.  

The input capacitor Cin places significant impact on the control-to-output-current transfer 
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function of series-input modular system. As frequency goes high, the impedance of Cin gradually 

decreases and the input port becomes short-circuited. If Cin is sufficiently large, the small-signal 

model for the system can be reduced to that in Fig. 3.4(b), where the component values are 

identical to those of the master cell. Thus, the high-frequency small-signal model of a series-
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Figure 3.4: Small-signal model for (a) a series-input modular system, and (b) a single converter, 
both in CCM. The parameters of the model for typical converters are shown in Table 3.1. 
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input-connected system is close to the model of the master cell. With large enough input 

capacitors, mismatches in component values and loads between the cells have a small effect on 

the transfer function, including some variation in the dc gain. However, the effective dominant 

poles induced by output capacitor Co and equivalent inductor Le and the cross-over frequency of 

the transfer function of master cell are not affected. As a result, it is simple to design the 

compensator for a series-input system with large Cin according to the single converter model. 

A comparison is given in Fig. 3.5 of the simulated control-to-output transfer function for a 

master cell in a four-cell buck-boost system with large input capacitors against that of a single-cell 

model. For the four-cell system, the master cell has 20 V input voltage, driving 6 LEDs, and the 

values of its input capacitor, inductor and output capacitor are 20 µF, 10 µH and 1 µF, 

respectively. The slave cells have 50% less load and a variation of +/− 20% in component values 

compared to the master cell. The single converter, selected for comparison, has the same value of 

load and components as the master cell in the four-cell system. In the Bode plots in Fig. 3.5, 

Gsystem and Psystem are the magnitude and phase of the control-to-output transfer function for the 

master converter of the system while Gsingle and Psingle are the amplitude and phase of the control-

to-output transfer function for the single buck-boost converter. There is a slight difference 

between the transfer function of the master cell and that of a single converter, but the divergence 

is insignificant for control loop design. 

When small input capacitors are used, they do not behave short-circuited until a very high 

frequency. Thus, the small-signal model of the system can no longer be estimated as a single 

converter model, and the dynamics associated with interactions between the master and slave cells 

become more pronounced. One extreme condition is zero input capacitance, or when input 

capacitor becomes open-circuited at very low frequency. The small-signal model for the series-
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input system in this case is shown in Fig. 3.6. The control-to-output-current transfer function for 

cell j can be derived as 
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For comparison, the control-to-output current transfer function for a single converter is  
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Figure 3.5: Simulated control-to-output current transfer functions for a series-input system with 
large input capacitor and for a single converter. 
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The transfer functions shown in Eq. 3.4 and 3.5 are very similar, except that the former is 

determined by the “average” of the component parameters. Thus the control-to-output current 

transfer function of a series-input system without input capacitors is close to that of a single 

converter, while the transfer function is determined by the average component parameters of the 

whole system rather than by only the parameters of the master cell. 
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Figure 3.6: Small-signal model of a series-input system without input capacitor. 
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In order to verify the impact of input capacitors on system transfer function, SPICE 

simulations are performed for a four-cell system with different input capacitor values, 0, 0.2 µF 

and 20 µF. Variations on component values are included in the simulation, while the parameters 

are intentionally selected to make the transfer function with average component parameters have 

split poles (low Q), while the transfer function with master parameters has complex poles (high 

Q). The final parameters for simulation are shown in Table 3.2. The simulated Bode plots for 

control-to-output transfer functions are shown in Fig. 3.7. The transfer function for a zero input 

capacitor gives a well-damped response. The transfer function for 20 µF input capacitor gives the 

resonant behavior of two complex poles. The transfer function for 0.2 µF input capacitor shows a 

higher order pole/zero pair resonance, but it is close to the small input capacitor case at low 

frequency and close to the large input capacitor case at high frequency. For all three cases, a slow 

PI compensator is suitable for stable operation function of the master cell. 

 

3.2.3 Mismatch of component values between series-input modules 

Mismatches in component values, discrepancies in actual duty cycles and communication 

delays may have an effect on the cross regulation of cell output currents. However, the accuracy 

of output current copying from master to slave cells is expected to be quite high for realistic 

tolerances and delays. As long as all cells operate in CCM, differences in filter component values 

between cells only affect the current ripple but do not affect the average output current. Thus, 

filter component values do not affect matching of LED currents among the cells. Differences in 

actual duty cycle due to mismatch in drivers may cause the output current of slave cells to deviate 

from that of the master. The output current divergence of slave cells from that of the master cell 

may be calculated by  
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where D is the duty cycle of the master cell and d is the difference between the duty cycle of the 

slave cell and the master cell. Table 3.3 shows the worst-case deviation of the output LED current 
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Figure 3.7: Simulated control-to-output current transfer function for series-input system with 
different input capacitor values. The detail component values are shown in Table 3.2. 
 
 

TABLE 3.2 COMPONENT PARAMETERS USED IN SPICE SIMULATION  

 D  LEDI (A) inV (V) oV (V) LEDsR (Ω) L (µH
) oC (µF) inC (µF) 

Slave×3 0.5 0.7 10 10 5 12 0.8 0 0.16 16 
Master 0.5 0.7 20 20 10 8 1.2 0 0.24 24 
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in a slave cell, valid when the master cell duty cycle is 0.25 < D < 0.75. Although both analog and 

digital solutions for transmitting the duty cycle command should result in acceptable variations, 

an advantage of the digital solution is the ability to achieve less-than-0.1% matching in duty cycle 

despite analog variations in the circuitry used in the data transmission. The difference of gate 

drivers and gate-to-source capacitors of power transistors between cells may also lead to 

discrepancies in the effective duty cycle driving the cells, resulting in mismatches of output 

currents, according to Table 3.3. The delay for duty cycle communication may lead to some 

variation during transitions in the duty cycle command. The accumulated delay may reduce the 

phase margin of the loop gain, but should not present a problem if the number of cells is limited 

or the cross-over frequency for the closed-loop gain is sufficiently low. 

 

3.3 Additional considerations for series-input system design 

3.3.1 Start-up of series-input System 

Start-up can be a significant issue for the series-input-connected modular structure. When 

the system is powered up, the input voltage of some cell may grow to a high value and cause 

damage. Another possible problem is that one cell may start operation earlier than others and 

immediately pull a high input current. The input voltage of this cell decreases to a low value and 

turns it off before other cells start to work. This process can take turns happening in the cells. If 

TABLE 3.3 WORST-CASE VARIATIONS OF LED CURRENTS DUE TO M ISMATCH OF DUTY 
CYCLES 

Difference in Duty Cycle Worst Difference in Output Current 
1 % 5 % 

0.4 % 2 % 
0.1 % 0.5 % 
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the operations of cells do not coincide, the system cannot enter steady state. It is necessary to limit 

the input voltages of all cells to be within a safe range and also to distribute the line voltage so 

that all the cells can start operation before the master cell is selected. To meet these requirements, 

a default start-up duty cycle of D = 0.2 is introduced, which is used by all the cells immediately 

after they are powered up. The low duty cycle keeps all the converters in DCM and maintains 

both the input current and voltage at acceptable values to guarantee a successful start-up. 

 

3.3.2 Response to LED open-circuit failure 

One benefit of the series-input-connected modular structure is the possibility to respond 

locally to LED failures. This advantage reduces the effect of a single LED failure on the total 

system light output. If a single LED fails and becomes short-circuited, the cells will continue to 

operate and input voltage sharing is inherently adjusted according to Eq. 3.1 and 3.3. If a single 

LED fails open-circuited, the corresponding cell with the LED failure, or “failed cell,” can 

respond by applying a short circuit to its input port. The remaining cells continue to operate and 

share the input voltage. In order to utilize this benefit, the system has to be designed with some 

margin on rated voltage. If the system is required to keep operating when more cells fail, either 

the number of cells or the rated voltage of each cell has to increase. Circuitry is also required for 

each cell to measure its output voltage or output current in order to detect the open-LED failure. 

This circuitry can be coarse in quantization and only has to detect thresholds that indicate a 

failure. 

In order to hold the input port short-circuit and to keep the communications channel open 

between other cells, a small amount of power must be maintained for the controller of the failed 

cell. This is achieved by using the output port as the power supply for the controller under the 
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failure condition. The failed cell operates in a pulse mode by periodically injecting a single pulse 

in the cell to charge the output capacitor and maintain sufficient voltage at the output port. 

Resonance at the input port is used in the pulse mode to achieve zero-voltage switching when 

shorting the input port and thus avoid high currents in the power switches.  

The algorithm to respond to LED open-circuit failure is described below. The 

corresponding switch behavior of a non-inverting buck-boost converter is shown in Fig. 3.8. 

When LED failure is detected, the corresponding cell holds the power switches S1 and S3 on to 

transfer energy from the input capacitor to the inductor, as shown in Fig. 3.8(a). When zero input 

voltage is reached, the cell shorts its input port and begins to charge its output capacitor with the 

inductor current until the inductor current goes to zero, as shown in Fig. 3.8(b). To prevent over-

current in the inductor and excessive output capacitor voltage, this process may be finished in 

several intervals. When the inductor current reaches zero, the output port is disconnected from the 

inductor while the input port is kept shorted as shown in Fig. 3.8(c). If switch S4 is realized as a 

diode, then transition from Fig. 3.8(b) to 3.8(c) is automatic. The failed cell continues to short its 

input port and power its controller from the output capacitor until the output voltage drops to a 

low threshold voltage. Then the input port is opened as in Fig. 3.8(a) again and the input capacitor 

and inductor begin a resonant cycle, and the sequence of Fig. 3.8 is repeated. 
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3.4 Experimental results 

A prototype has been developed to verify performance of the proposed modular 

architecture and control approach experimentally.  The circuit has separable converters and load 

stages to employ modularity of the architecture.  Each cell is controlled via an on-board floating 

FPGA and corresponding sensing circuitry and ADCs. Communication of the digital duty cycle 

command is implemented though the FPGAs and isolator chips. A four-switch buck-boost 

topology, as shown in Fig. 3.9, is implemented for the experiments described below. The devices 
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Figure 3.8: Switch behavior during LED failure response procedure: (a) S1, S3 on, charging L, (b) 
S1, S2, S4 on, input port shorted, iL charging Co, (c) S1, S2 on, input port shorted. 
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used are shown in Table 3.4. The values of input capacitor, inductor and output capacitor are 

0.4 µF, 10 µH and 1 µF, respectively. The switching frequency is about 800 kHz. Three cells were 

used in experiment, with two, three and four LEDs as load, respectively, to verify operation with 

unbalanced loads. FPGAs are utilized only for experimental verification of the principle. The 

simple control algorithm can be realized with a small number of logic gates in a customer IC. 

Four-switch buck-boost converters are used for convenience in experimental development to 

operate under various conditions including buck, boost or buck-boost modes with a wide range of 

input voltages, number of cells and LEDs per sub-string. In practice, only a single topology is 
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required based on the specific system requirements and operating conditions, resulting in fewer 

switches and lower cost. 

During experimental verification, float voltage supplies are generated with additional 

converters with isolation for FPGAs and control circuitries. When series-input modules are 

implemented in custom ICs, the supply voltages can be generated within each module. 

 

A. Reference transient response test 

During the test, the target output LED current for the master cell is set to switch from 500 

mA to 600 mA and then back to 500 mA. Fig. 3.10 shows the waveforms of input voltages and 

output currents for the three cells. The three output currents track the reference current change 

with good cross- regulation as expected. The ratio between the three input voltages is about 2:3:4, 

which is proportional to the output voltages that are set by the different number of LEDs in each 

cell. The input voltages do not change significantly during the transition. Thus, the same ratio is 

maintained.  

TABLE 3.4 DEVICES USED IN EXPERIMENT PROTOTYPE 

Device Part Number Description 
FPGA XC3S500E Xilinx Spartan 3E 
Diode PDS540 Schottky, 40 V, 5 A 
MOSFET STN3NF06L N_channel, 60 V, 4 A 
ADC AD7825 8 bit 4 channel Multiplexed 
HB Driver LM5101 Half Bridge Driver 
Isolator ISO7221 Dual Digital Isolator 2MSPS 
LED Luxeon K2 700 mA 
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Figure 3.10: Waveforms of (a) input voltages and (b) output LED currents for the three cells 
during LED current reference transient test. The reference current for the master cell changes 
from 500 mA to 600 mA, and then back to 500 mA. 
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B. Line transient response test 

During the test, the line voltage increases from 35 V to 45 V. The input voltages and 

output currents of the three cells are shown in Fig. 3.11. The ratio of the three input voltages is 

about 2:3:4 before the transition occurs. When the line supply voltage increases, the three input 

voltages rise proportionally, and settle at about the same ratio. A small disturbance is seen in the 

LED currents during the transition, but the currents are regulated to the same value before and 

after the transition. 

 

C. System start-up test 

In order to limit the input voltages of all cells to be within a safe range and also distribute 

the line voltage at start-up so that all the cells can start operation before the master cell is selected, 

a default duty cycle of D = 0.2 is introduced, which is used by all the cells immediately after they 

are powered up. Fig. 3.12 shows experimental input voltage waveforms for the three cells during 

start-up. The line voltage is roughly distributed among the cells almost immediately after the 

power up. The ratio of the input voltages does not correspond to the load ratio for a short period 

because the cells are operating in DCM. The line voltage is redistributed when the master cell is 

selected and begins to control the system. Then the ratio of input voltages becomes the same as 

that of the loads during normal operation.  
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Figure 3.11: Waveforms of (a) input voltages and (b) output LED currents for the three cells 
during line transient test. Line voltage increases from 35 V to 45 V. 
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D. LED failure response test 

An emulated LED failure response test was performed experimentally by abruptly 

disconnecting the LED board from cell 2 during operation. Fig. 3.13 shows the behavior of the 

failed cell, including the waveforms of its input voltage vin2, inductor current iL2 and output 

voltage vo2. The detail waveforms of vin2, iL2 and vo2 at the instant of LED failure are shown in 

Fig. 3.13(b), which is a zoom-in on Fig. 3.13(a). When the LED failure is detected, iL2 continues 

integrating, while vin2 decreases rapidly. The input port is shorted when vin2 reaches zero, at which 

point the charging of output capacitor begins. The inductor current iL2 keeps decreasing until zero 

current is reached. The recharging process begins when vo2 reaches a threshold voltage of 5 V. A 

zoom-in view of the waveforms for vin2, iL2 and vo2 during the pulse recharging period is shown in 

Fig. 3.13(c). The input port of the cell is open briefly to enable the charging pulse. The input 

voltage vin2 resonates to zero after half of a resonance period, at which point iL2 reaches its peak 

 

vin1 (10V/div)

vin2 (10V/div)

vin3 (10V/div)

vin1 (10V/div)

vin2 (10V/div)

vin3 (10V/div)

 
Figure 3.12: Input voltage waveforms of the three cells during system start up. 
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value. The input port is shorted again and the inductor current is used to charge the output 

capacitor until iL2 becomes zero. When this type of failure occurs, the total input voltage will be 

shared by the other cells according to their load ratio. If desired, the master cell could detect the 

change in input voltage and modify the LED current to maintain total light output of the system, 

within the limitations of the LED specifications. 

 

E. Efficiency of series-input-connected converters 

The measured efficiency of the series-input-connected converter circuits for experiment is 

shown in Table 3.5, which includes values after the LED failure in cell 2 occurs. Similar 

efficiency is achieved before and after the LED failure. The result is in contrast to typical 

approaches, where either the entire LED string fails or parallel Zener diodes are used for each 

LED or sub-set of LEDs. In the case of using parallel Zener diodes, significant loss associated 
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Figure 3.13: (a) Input voltage, inductor current and output voltage waveforms for a cell with 
LED open-circuit failure, (b) zoom-in of (a) at the instant when LED failure occurs, (c) zoom-in 
of (a) when the output capacitor is recharged. 
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with the diodes results in low efficiency when LEDs fail in the system.  

 

3.5 IC Implementation and Communication Circuitry 

With series-input modular structure, the voltage stress on each converter module is 

significantly reduced, which make it feasible for high-level integration. A block diagram of buck 

converter modules for series-input system is shown in Fig. 3.14, with the circuitry within broken 

line to be integrated in ICs. Besides the typical function blocks for digital buck converters, a 

communication block is necessary to transmit duty cycle information between modules, which is 

indicated as the Comm. block in Fig. 3.14. 

Within a series-input system, converter modules are series-connected from input port, thus 

voltage levels between the modules can be quite different. Communication between neighboring 

modules, rather than a general communication bus connecting all modules, may significantly 

simplify related circuits.  However, special design is still necessary to realize signal transmission 

between different voltage levels. One solution is to utilize current signal for communication, 

while a proposed circuit schematic is shown in Fig. 3.15. 

TABLE 3.5 EFFICIENCY OF SERIES-INPUT CONVERTERS FOR EXPERIMENT 

 Pin (W) Po1 (W) Po2 (W) Po3 (W) Efficiency 
Normal operation 24.28  4.80  6.94  9.13  85.96 % 
LED failure 16.25 4.79 0 9.09  85.42 % 
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The circuitry in Fig. 3.15 can accomplish communication between two neighboring 

modules serially connected from input port. The ground for upper module, GNDh, is at the same 

time the rail voltage for lower module. The top portion of the circuit is within the upper module, 

while the bottom portion is for the one with lower voltage level, as indicated in Fig. 3.15(a). The 

circuit to generate required bias signals is shown in Fig. 3.15(b). Signals T and R are the enable 

flag of transmitting or receiving for the corresponding module. The effective circuit for signal 

transmission from the lower module to upper one is shown in Fig. 3.16(a), while the circuit for 

opposite-way transmission is in Fig. 3.16(b). 
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Figure 3.14: Block diagram of buck converter modules for series-input system. 
 
 
 



 

 

47

 

 

+
_

dVp&T l

Sinl&T l

Vn1

Vn2&Rl Vp1(l)

Soutl

GNDl

GNDh

Sinh|Rh

Vp1(h)

South

GNDl+dVDD

GNDh+dVDD

for upper module

for lower module

 
(a) 

+
_Vref +

_
dVp

Vp1

Vn1

Vn2

R

R

GND

GND+dVDD

 
(b) 

Figure 3.15: (a) Circuits for communication between series-input modules, and (b) required bias 
signals. Sin and Sout represent the input and output signal. T = 1 when the corresponding module 
is transmitting signal, while R = 1 when receiving. For a specific module, T + R = 1. 
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Figure 3.16: Effective circuit for communication from (a) lower to upper module, and (b) upper 
to lower module. 
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3.6 Conclusion 

This chapter presents a series-input modular architecture with the common duty cycle 

control approach for LED drive circuits. When converters with the same topology operate in 

CCM with identical duty cycle, their conversion ratios are equal, thus their output currents are 

matched and the input voltage is automatically distributed among the cells according to the ratio 

of their output voltages. Consequently, only one feedback loop is necessary to control the entire 

system regardless of the number of modules, which significantly simplify system design and 

compensation. With the series-input structure and the common duty cycle approach, low-voltage 

cells and components can be utilized in a high dc bus voltage system with localized control 

capability of LEDs. Additionally, a special LED failure mode is capable of maintaining efficient 

operation of the system in the presence of open-circuit LED failures. The performance of this 

architecture is verified by experiments.  

Compared to the single high-voltage converter circuit, more components are required by 

the proposed modular structure, especially when more modules are designed to leave some 

margin for LED failure response, which may lead to a higher cost. This drawback is partially 

mitigated by reduced voltage ratings that scale down with the number of modules. Each low-

voltage module can be integrated on a single IC and operated at high frequencies for low-profile 

and high-power-density applications. 



 

 

 

CHAPTER IV 

 
OFF-LINE LED DRIVER WITH REDUCED ENERGY-STORAGE CAPACITANCE 

 

LED applications whose drivers are directly connected to the ac line, often termed “off-

line” applications, contribute to a large share of LED lighting market. For these LED 

applications, standards and regulations place limitations on the input power factor (PF), e.g. 0.9 

for commercial products and 0.7 for residential products [3]. Achieving a high PF results in a 

large input power ripple at twice the line frequency. If this ripple is passed directly to the LED 

load, it generates significant variation in LED current and may lead to visible flicker [39] and life 

degradation of LED devices through thermal cycling. Low-quality bulk capacitors are often used 

in off-line LED drivers to filter the input power ripple at low costs. Unfortunately, the 

combination of low quality, large ripple and high temperature in lighting applications result in 

low lifetimes of the bulk capacitors and thus the LED drivers [10]. 

In order to achieve longer lifetimes for LED applications, it is of significant importance 

to remove the short-life electrolytic capacitors from the drivers. Magnetic energy storage is 

suggested in [23, 24] instead of capacitance, with the trade-off of large size, weight and high cost. 

Another popular topic is the reduction of required energy-storage capacitance, so that high-

quality capacitors with long lifetime can be used while maintaining reasonable cost. Methods are 

reported in [13-16] to reduce the input power ripple with specific input current shaping. Energy 
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storage capacitors are decoupled from the LED string to make full use of the capacitance in [17, 

18].  

This chapter introduces and combines multiple techniques to reduce the required energy-

storage capacitance in off-line LED drivers. The concept of energy-storage capacitance and the 

general methods to reduce it are introduced in Section 4.1. Section 4.2 presents the approaches to 

reduce the energy to be stored and released within each half-line cycle, including constant input 

current approach to reduce input power ripple, and the trapezoidal LED current waveform 

approach to minimize storage requirement when certain ripple is allowed on LED current. A 

special bidirectional second stage is introduced in Section 4.3. With the decoupling from LED 

load by the second stage, the energy-storage capability of the capacitor can be fully used. 

Meanwhile, the bidirectional structure reduces the percentage of energy processed by the second 

stage, leading to relatively small power loss. Section 4.4 presents more details on system design, 

including control loops, independent regulation of the LED current ripple, and techniques to 

reduce switching loss on the second stage. All these concepts are verified in experiment, with the 

experimental set-up and results presented in Section 4.5. Section 4.6 concludes this chapter. 

 

4.1 Energy-storage capacitance for off-line applications 
 

For off-line LED applications, high power factor (PF) is required, which leads to large 

input power ripple. For example, when PF = 1, the input power swings between zero and the peak 

value which is twice of the average input power. This large variation in power leads to very large 

current ripple if directly applied onto the LED string. In order to avoid flicker or life degradation 

associated with large LED current variation at low frequency, energy storage is necessary to filter 

the input power ripple. The simplest filter is to parallel a capacitor with the LED string. However, 
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with this approach, very large capacitance may be necessary to achieve small LED current ripple. 

The required capacitance can be calculated from   
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where Estored is the required energy to be stored within one input power cycle, while VESC,peak, 

VESC,valley, VESC and ∆VESC are the peak, valley, dc value and ripple of the energy-storage 

capacitor voltage, VESC,peak = VESC + ∆VESC, VESC,valley = VESC − ∆VESC. When the energy-storage 

capacitor is directly parallel with the LED string, very small ∆VESC is allowed, as a small 

variation on LED voltage leads to large change on the current. As a result, the required 

capacitance can be very large, and electrolytic capacitors become the only practical choice, thus 

limiting the lifetime of LED lamps. 

According to Eq. 4.1, required energy-storage capacitance can be reduced by decreasing 

energy storage Estored, increasing dc capacitor voltage VESC or capacitor voltage ripple ∆VESC. To 

reduce Estored, either a smaller input power ripple or larger output power ripple should be adopted, 

which will be discussed in Section 4.2. Manipulation of the capacitor voltage is another 

important approach to reduce energy-storage capacitance, which will be discussed in Section 4.3. 

 

4.2 Reduction of energy storage 
 

One approach to reduce required energy-storage capacitance is to decrease Estored, the 

energy needed to be stored in each input power cycle. In order to reduce Estored, either a smaller 

input power ripple or larger output power ripple should be adopted. As the LED applications are 

allowed to have input PF less than unity, it is possible to reduce input power ripple by shaping 
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the input current, with the trade-off of lower PF [13-16]. On the other hand, allowing certain 

LED current ripple at double-line frequency also helps reduce Estored. 

 

4.2.1 Reducing input power ripple with constant input current 

The power factor of a circuit can be calculated by 
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where Vin,rms and I in,rms are the rms value of input voltage and input current, and Pin,avg is the 

average input power of the circuit. In order to achieve near-unity PF, normally a power factor 

correction (PFC) stage followed by a bulk capacitor is placed between the ac source (line) and 

the application circuit, as shown in Fig. 4.1. The PFC stage often requires input voltage and 

current sensing and can be realized using a wide range of control approaches [5]. For the solid-

state lighting industry, ENERGY STAR requirements place limits on the power factor at 

PF ≥ 0.7 for residential lighting products and PF ≥ 0.9 for commercial lighting. The drawbacks 

to achieving high-quality PF with very low total harmonic distortion (THD) include increased 

circuit complexity, reduced efficiency and increased requirement for either bulk energy storage 

or large double-line-frequency current ripple in the LED load. These drawbacks provide 

motivation to minimize the PF to just meet the requirements in the specification. 

The ideal off-line LED driver should achieve input PF = 1 and constant LED current, 

resulting in the input and output power waveforms shown in Fig. 4.2(a). The corresponding input 

voltage, current and power may be represented as 
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The shadowed area in Fig. 4.2(a), or Estored, represents the energy to be stored in a half-line cycle 

Tline/2, and it can be shown that   

 )1(.%322/%32 0 =×=×≈ PFETPE cyclelinestored  (4.4) 

Equation 4.4 means that about 32% of the total input energy within one half-line cycle has to be 

stored to achieve constant output power. 

When the input current is regulated to be a constant value, Eq. 4.2 becomes  
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This leads to a relatively simple controller that meets the PF requirements for lighting products 

and minimizes the input power ripple at double line frequency. Fig. 4.2(b) demonstrates the input 

and output power waveforms for an off-line LED driver with constant input current (PF = 0.9) 

and constant LED current, with input voltage, current and power represented as 
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Figure 4.1: An off-line LED driver with PFC stage and bulk energy-storage capacitor. 
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It can also be proved that   

 )9.0(.%212/%21 0 =×=×≈ PFETPE cyclelinestored  (4.7) 
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Figure 4.2: Input and output power waveforms for (a) an LED driver with PF = 1 and constant 
LED current, and (b) an LED driver with constant input current (PF = 0.9) and constant LED 
current. 
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Comparing Eq. 4.7 to Eq. 4.4, it can be seen that the required energy storage is reduced from 

32% to 21% of the total input energy, which helps the reduction of the energy-storage capacitor. 

Another advantage of the constant input current approach is the relatively easy realization, as the 

input voltage sensing is unnecessary. 

 

4.2.2 Allowing ripple on LED current 

In order to avoid flicker and LED life degradation due to thermal cycling, an ideal LED 

driver should provide constant LED current. However, a small percentage ripple on LED current 

may be acceptable in practical applications. Allowing certain ripple on LED current helps reduce 

energy storage, which is very useful when the available capacitance is limited. Keeping ripple 

under certain limits, the LED current should be manipulated in a special way to minimize the 

required energy storage. 

The waveforms of input and output power for a unity-PF LED driver with certain LED 

current ripple are shown in Fig. 4.3(a), with the shadowed areas indicating the energy stored in 

and released from the capacitor within one half-line cycle. As the LED string voltage is almost 

constant, the waveform of LED current has the similar shape of LED string power pLEDs, which is 

close to “trapezoidal” and in phase with input power. It can be seen that the input power 

waveform is “chopped” only around its peak or valley, resulting in an LED string power stay at 

the regulation boundaries for most of the time. In this way, the minimum energy storage is 

achieved for certain LED current ripple, which is proved in Appendix B. Fig. 4.3(b) demonstrates 

the percentage energy storage, Estored/Ecycle, for different percentages of LED current ripple, where 

Ecycle is the total input energy within a half-line cycle. The maximum required energy storage, 

which happens with zero LED current ripple, is approximately 32% of the total input energy. 
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When 30% ripple is allowed on LED current, the required energy storage decreases to about 18%, 

in which case the required energy-storage capacitance is significantly reduced. 

The waveforms of input and output power for an off-line LED driver with constant input 

current and trapezoidal LED current are shown in Fig. 4.4(a), with the shadowed areas indicating 

the energy to be stored in and released from the capacitor. Similarly, the required energy storage 

is minimized with this trapezoidal waveform, for each percentage LED current ripple. Fig. 4.4(b) 
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Figure 4.3: (a) Input and output power waveforms for an off-line LED driver with PF = 1 and
trapezoidal LED current; (b) required percentage energy storage (Estored/Ecycle, Ecycle is the total 
input energy within one half-line cycle) for different LED current ripple values. 
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demonstrates the percentage energy storage, Estored/Ecycle, where Ecycle is the total input energy 

within a half-line cycle for different percentages of LED current ripple. The required energy 

storage reaches the peak of approximately 21% of total input energy, and decreases significantly 

when ripple is allowed on LED current. For instance, with 30% LED current ripple, the required 

energy storage is only about 10% of total input energy.  
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Figure 4.4: (a) Input and output power waveforms for an off-line LED driver with constant input 
current and trapezoidal LED current; (b) required percentage energy storage (Estored/Ecycle, Ecycle is 
the total input energy within one half line cycle) for different LED current ripple values.  
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4.3 Reduction of energy-storage capacitance by manipulating capacitor 
voltage 
 
4.3.1 Decoupling energy-storage capacitor from LEDs 

According to Eq. 4.1, the required energy-storage capacitance can be reduced by 

increasing the dc value or ripple of capacitor voltage. However, very limited voltage variation is 

allowed when the energy-storage capacitor is directly parallel with the LED string due to the 

small dynamic resistance of LED devices. In order to manipulate the capacitor voltage with more 

freedom, a common approach is to include a second stage in the driver to decouple the capacitor 

from the LED string. As shown in Fig. 4.5, a dc-dc second stage is placed following the energy-

storage capacitor CES and followed by the LED string. As CES is decoupled from the LED string, 

larger voltage ripple is allowed. Furthermore, the capacitor voltage can be boosted higher than 

the LED string voltage. As a result, the capacitance can be significantly reduced compared to the 

case of single-stage LED driver. 

A comparison is conducted between the required energy-storage capacitances for single-

stage and two-stage LED drivers for different LED current ripple, with the result shown in 

Fig. 4.6. It is assumed that PF = 1 and the LED current is trapezoidal, as shown in Fig. 4.3(a). 

The required capacitances are normalized based on C0, the required capacitance for a single-

stage LED driver with 50% LED current ripple. The other assumed parameters for this 

comparison include single LED voltage of 3 V, LED current of 500 mA and small-signal 

resistance of 0.8 Ω for single LED. Meanwhile, the energy-storage capacitor voltage for the two-

stage LED driver is assumed to swing between 120% and 180% of VLEDs, where VLEDs is the LED 

string voltage. As shown in Fig. 4.6, the required energy-storage capacitance is largely reduced 

with the additional second stage. For example, when 30% LED ripple is allowed, the required 

capacitance for the two-stage driver is less than 10% of that for the single-stage driver, and it can 
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be seen that the capacitance reduction is even more significant when LED current ripple is small. 

This comparison is based on an assumption of capacitor vESC higher than VLEDs, which is the case 

for a buck second stage. When a boost converter is used in the second stage, vESC has to be lower 

than VLEDs always. When a converter with large conversion ratio range, such as a buck-boost 

converter, is used, a larger swing on vESC is allowed, and the energy-storage capacitance can be 

further reduced. 

With the cascaded two-stage structure in Fig. 4.5, the efficiency of the second stage is 

critical, as all the LED power goes through this stage, even when current ripple is allowed on the 

LED string. As shown in Fig. 4.3 and Fig. 4.4, the maximum required energy storage is 32% of 

the total input energy when PF = 1, and is 21% when PF = 0.9. However, even when the required 

energy storage is further reduced with non-zero LED current ripple, 100% of the output energy 

must be processed by the second stage, resulting in considerable power loss. 
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Figure 4.5: Off-line LED driver with PFC first stage and dc-dc second stage. 
 
 
 



 

 

61

 

4.3.2 Reducing power loss on the second stage with bidirectional structure 

An alternative two-stage structure is to switch the positions of the energy-storage capacitor 

and the LED string, as shown in Fig. 4.7. With this structure, only the excess power goes through 

the second stage to the energy-storage capacitor CES when the input power is higher than the 

desired LED power. When the input power is less than the required amount, portion of the LED 

string power comes from CES. Thus, only Estore, the shadowed areas in Fig. 4.3(a) and Fig. 4.4(a), 

is processed by the second stage. The energy processed by the second stage may be largely 

reduced with this structure, especially when current ripple is allowed on LED string, as shown in 

Fig. 4.3(b) and Fig. 4.4(b). For example, when 30% ripple is allowed on LED current, only about 

18% (for PF = 1) and 10% (for PF = 0.9) of the input energy is processed by the second stage, 

thus the power loss on the LED driver can be reduced compared with the traditional cascaded 

structure. 
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Figure 4.6: Normalized capacitance reduction with additional second stage for different 
percentage LED current ripples. C0 is the required energy-storage capacitance for single-stage 
LED driver with 50% LED current ripple. 
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The efficiency of a two-stage LED driver with bidirectional second stage in Fig. 4.7 can 

be derived as    

 ( )2
2

2
2

2
21

1 bb

bb
b

ηλη

ηη
η

−+
= , (4.8) 

where η1b and η2b are the respective efficiencies of the first and second stage, and λ is the 

percentage of LED energy processed by the second stage, or Estored/Ecycle, which is shown in 

Fig. 4.3(b) and Fig. 4.4(b). For comparison, the efficiency of a traditional two-stage LED driver, 

which is shown in Fig. 4.5, is represented as     

 ttt 21ηηη = , (4.9) 

where η1t and η2t are respective efficiencies of the first and second stage. In order to simplify the 

comparison, it is assumed that η1b = η1t and η2b = η2t. With this assumption, it can be proved that 

the overall efficiency ηb is larger than ηt when  
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As shown in Fig. 4.3(b), for 0 to 100% LED current ripple when PF = 1, it is always valid that 

λ < 0.32, thus λ/(1-λ) < 0.47. As a result, when the second stage efficiency η2b is larger than 0.47, 
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Figure 4.7: LED driver with PFC first stage and bidirectional second stage. 
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Eq. 4.10 is always valid, and the efficiency of the two-stage LED driver with the bidirectional 

second stage is larger than that of traditional cascaded driver. Similarly, when PF = 0.9 is 

achieved with constant input current approach, λ < 0.21, thus λ/(1-λ) < 0.27, and it is even easier 

to achieve better overall efficiency with the bidirectional structure. 

 

4.4 System design 
 
4.4.1 Control loops 

Compared with the traditional cascaded two-stage structure, more interactions occur 

between the two stages in proposed LED drivers, thus the system control loops require carefully 

design. One configuration for the system control is shown in Fig. 4.8. The purpose of the 

bidirectional second stage is to filter the double-line-frequency power ripple. This function can 

be realized by regulating the LED current with the second stage. When the LED current, thus 

LED power, is regulated, the excess input power ripple automatically goes through the second 

stage to the energy-storage capacitor. Besides the LED current control loop, one additional loop 

is required to regulate the voltage on the energy-storage capacitor, so as to equalize LED power 

to average input power. The balance between input and LED power can be achieved by adjusting 

the average LED current, which can be the reference signal for the LED current regulation. 

Additionally, the average LED current should be compared to the LED current command, which 

is the external input signal for this system. The comparison result is fed back to the first stage to 

control the input power. In all, four loops are necessary, shown in Fig. 4.8, including the PFC, 

LED current regulation, energy-storage capacitor voltage control and the power control loops. 
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It is possible to simplify the control loops of the system to those shown in Fig. 4.9. The 

external LED current command is directly used to regulate the LED current in the second stage. 

One other loop regulating energy-storage capacitor voltage directly generates the input power 

signal for the PFC stage. With this configuration, three loops are necessary for the whole system, 

which simplifies the design. Furthermore, better regulation on LED current is expected. 

The function of LED current ripple control is also included in this system. In order to 

achieve trapezoidal LED current, two reference values are necessary. The high and low current 

references are calculated with the average LED current signal iLED,avg in Fig. 4.8, and a ripple 

current command as shown in Fig. 4.10. The reference transition is realized by detecting energy-

storage capacitor voltage vESC and LED current iLED. As shown in Fig. 4.10(a), the LED current is 

regulated with high reference during period rh when input power is large and with low reference 

during period r l when input power is small. The LED current controller is disabled during 
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Figure 4.8: Control loops for the proposed two-stage off-line LED driver, including PFC, LED 
current regulation, energy-storage capacitor voltage regulation and input power control. 
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transition periods thl and tlh, during which intervals all the input power is directly consumed by 

the LED load. During period rh, vESC keeps increasing, indicating excess input power. At 

instant 1, the peak of vESC is detected, indicating input power equal to LED power. After this 

instant, iLED controller is disabled and iLED decreases following the input power. At instant 2, iLED 

reaches the low reference, at which point the iLED controller is enabled with low reference value. 

The current regulation is stopped again when minimum vESC is detected at instant 3, and starts at 

instant 4 when iLED hits the high reference value. With this control procedure, the trapezoidal 

LED current is achieved, thus the required energy storage is minimized. 
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Figure 4.9: Simplified control loops for the proposed two-stage off-line LED driver, including 
PFC, LED current regulation, energy-storage capacitor voltage regulation. 
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4.4.2 Realization of the bidirectional second stage 

With the proposed two-stage structure in Fig. 4.7, the second stage has to be bidirectional, 

as the energy-storage capacitor has to be able to store energy from the first stage and to supply 

energy back to the LED string according to instant input power level. Several converters are 
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Figure 4.10: (a) Reference transition by detecting vESC and iLED, (b) iLED controller with ripple 
control to implement trapezoidal LED current. 
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feasible for this function. One option is synchronous converters. One synchronous buck converter 

as bidirectional second stage is shown in Fig. 4.11(a), while a synchronous boost second stage is 

in Fig. 4.11(b). For both converters, their high-side and low-side transistors switch on and off 

complementally within every switching period. As they always operate in continuous conduction 

mode (CCM) while the inductor current can become negative, energy can be delivered in both 

directions. 
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Figure 4.11: (a) A synchronous buck converter, and (b) a synchronous boost converter as 
bidirectional second stage.  
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4.4.3 Reducing switching loss on the second stage 

According to Eq. 4.1, it is possible to reduce required energy-storage capacitance by 

increasing voltage on the capacitor. However, high voltage leads to significant increase of power 

loss, especially switching losses. In order to limit power loss on the bidirectional second stage, 

techniques like soft switching may be employed. 

 Switching loss is normally a major power loss concern for high-voltage applications [5, 

42, 43]. This type of loss occurs at the instants of switches turning on. Besides the power loss 

due to charging or discharging parasitic capacitance at the switching node, reverse recovery 

effect of diodes may also cause a huge loss. When a conducting diode is forced to go off, it takes 

a short period to remove the charge stored in the diode semiconductor junction, namely, reverse 

recovery charge. During this period, the diode stays forward biased, and thus large voltage is 

placed across the switch/switches turning on, resulting in significant power loss. This type of loss 

can be eliminated with operation in DCM. When a converter operates in DCM, the inductor 

current reaches zero before any switch is turned on, thus no diode has to be forced off. Although 

operation in DCM eliminates power loss associated with diode reverse recovery effect, the 

remaining switching loss, which is related to the parasitic capacitance at the switching node, still 

exists. When one switch, across which the voltage is non-zero, is forced to turn on , energy is 

wasted to reduce this voltage difference, either by charging or discharging parasitic capacitance. 

Thus, switching loss with converters in DCM can still be large, especially for large parasitic 

capacitance, high voltage or high switching frequency situations.  

One popular solution to eliminate switching loss entirely is the soft switching technique, 

which employs the resonance between inductors and parasitic capacitors to manipulate the 

switching-node voltage, thus to achieve zero-voltage turn-on of the switches [5]. Take the 
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synchronous buck converter as an example of a soft switching operation. The schematic of the 

converter is shown in Fig. 4.12(a), and the waveforms of high-side MOSFET gate-to-source 

voltage vGSh, low-side MOSFET gate-to-source voltage vGSl, inductor current iL and switching-

node voltage vs are shown in Fig. 4.12(b). During time interval th, the high-side MOSFET Sh is 

conducting, and the inductor current gradually increases. During the interval th2l, when Sh has 

been turned off while Sl has not been turned on, the inductor L resonates with the switching node 

capacitor Cs, which decreases the switching-node voltage vs down to zero. Consequently, the 

low-side MOSFET Sl may be turned on with zero across voltage, thus with no switching loss. 

Similarly, resonances may be utilized to achieve zero-voltage turn-on for the high-side MOSFET. 

To guarantee that vs can reach input voltage by resonance, the inductor current has to reach a 

certain negative value in order to charge Cs to VLEDs. As shown by the waveforms in Fig 4.12(b), 

the inductor current has to be positive for high-side to low-side soft switching and negative to 

achieve soft switching for low-side to high-side transition. As a result, the ripple on inductor 

current has to be larger than the average inductor current. 

 Although with the capability to remove switching loss, the soft switching technique 

enlarges inductor current ripple, and thus results in larger conduction loss. This drawback, 

however, is not a big issue for LED lighting application, whose load and inductor currents are 

normally small. 
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4.4.4 Reducing transient ringing with initial duty cycle estimation 

 As shown in Section 4.4.1, the ability of the LED current ripple control is included in this 

off-line LED driver. In order to minimize required energy storage, a trapezoidal LED current 

waveform is targeted, meaning that LED current is regulated to a high reference when input 

power is large and to a low reference when input power is small, as shown in Fig. 4.13. Between 

these regulation periods are the transition periods, during which the second stage is off to reduce 
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Figure 4.12: (a) Synchronous buck converter and (b) switching control signal, inductor current 
and switching node voltage for soft switching.  
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power loss and the input power is directly applied to LED load, as indicated by periods tlh and thl 

in Fig. 4.13.  

 When the second stage operates in CCM, ringing on LED current may occur at the 

beginning of each regulation period, which is due to inrushing inductor current, including large 

variation and/or non-zero average value on inductor current.  

The inductor current is under control in quasi-steady state, which means the second stage 

operates very close to a steady state during every short period when voltages on the LED string 

and the energy-storage capacitor are almost constant. In this case, the integral of volt-seconds on 
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Figure 4.13: Waveforms of input power and LED power, net input current of second stage, and 
voltage on energy-storage capacitor.  
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the inductor is approximately zero; thus, no large variation occurs on the inductor current under 

this condition. Otherwise, a non-zero integral of volt-seconds causes continuous increase or 

decrease of inductor current and may result in large spikes on the LED current. With volt-second 

balance on the inductor, the relation of duty cycle and voltages on the LED string and energy-

storage capacitor can be derived. The corresponding relation for the boost second stage is shown 

in Eq. 4.11, which coincides with the conversion ratio of boost converter in CCM. 

 
LEDs

ESC

v

v

d
≈

−1
1

 (4.11) 

Thus, a proper initial duty cycle is necessary for each regulation period to prevent inrush 

inductor current and ringing. As shown in Fig. 4.13, the voltage on the energy-storage capacitor 

stays unchanged during the transition periods. Hence, the final duty cycle of one regulation 

period seems a good choice to be the initial duty cycle for a following regulation period. 

However, an adjustment on the duty cycle is necessary, since the LED string voltage does 

change, which is due to different LED currents for two sequential regulation periods. From 

Eq. 4.11, it can be derived that the adjustment on duty cycle of boost second stage is equal to  
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 Although a proper initial duty cycle achieves volt-second balance on the inductor, thus 

preventing large inductor current variation, an unsuitable initial inductor current can still cause 

spikes on LED current, especially when large ripple is designed to be on the inductor current. As 

shown in Fig. 4.13, the net input current of the second stage should always start from zero in 

each regulation period. However, when an initial duty cycle complying with Eq. 4.11 is applied, 

a non-zero average inductor current results and leads to spikes on LED current, as indicated in 

Fig. 4.14(a). In order to tackle this issue, a half-time conduction period is added before the 
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normal operation in each regulation period, as shown in Fig. 4.14(b). With this approach, the 

average inductor current is set to be zero for the first switching period of each regulation period; 

thus, no spike results on LED current. 
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Figure 4.14: Waveforms of second-stage inductor current (a) without and (b) with additional 
half-time conduction period indicated as (1-d)Ts/2.  
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4.5 Experimental results 

A prototype was developed to verify the performance of the proposed techniques and 

control approach experimentally, with the schematic shown in Fig. 4.15.  A two-stage system 

was implemented for the experiments, with a boost converter operating in CRM as the PFC first 

stage and a synchronous boost converter as the bidirectional second stage. A commercial PFC 

control chip is used in the first stage, while the second stage is controlled via FPGA and 

corresponding sensing circuitry and analog-to-digital converters (ADCs). A simple RC filter is 

used to convert digital output from FPGA to analog signal vfb, which is fed back to the PFC 

controller to manipulate the input power. The major devices used in the experiment are shown in 

Table 4.1, and the major component values are shown in Table 4.2. Two different PFC control 

ICs are used to achieve PF = 1 and PF = 0.9, respectively. It can be seen that no electrolytic 

capacitor is used. The energy-storage capacitor CES is only 8 µF thanks to the bidirectional 
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Figure 4.15: Experimental setup: including boost first stage with PFC and synchronous boost 
second stage. 
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second stage. Although the double-line-frequency ripple is filtered by CES with the second stage, 

another capacitor CLEDs is parallel with the LED string to filter the switching frequency ripple. 

The estimation of required capacitance for CLEDs is provided in Appendix C. The average 

switching frequency for the first stage is around 100 kHz, while the frequency for the second 

stage is approximately 400 kHz. The line voltage is 120 Vac at 60 Hz, and the load is a 200 V 

LED string with current of 0.5 A. 

 

First stage operation 

Only the PFC stage is included in this test, with an additional 600 µF bulk capacitor 

parallel to the LED string to limit the LED current variation. The waveforms of rectified line 

TABLE 4.1 MAJOR DEVICES USED IN EXPERIMENT 

Device Part Number Description 
FPGA XC3S500E Xilinx Spartan 3E 
S1, S2h, S2l FDD5N50F N-channel MOSFET, 500 V, 3.5 A 
D1 ES3G Diode, 400 V, 3 A 

PFC controller 
FAN6961 Constant on time CRM 

L6562AT 
Transition mode with input current 
control 

ADC AD7825 8-bit 4-channel multiplexed 
HB driver FAN7382 Half bridge driver, 600 V 
LED Luxeon K2 700 mA 

 

TABLE 4.2 MAJOR COMPONENTS USED IN EXPERIMENT 

Component Description Parameter 
Lf Input filter inductor 560 µH 
Cf Input capacitor 0.47 µF, 250 V, film 
Ll First stage inductor 330 µH 
L2 Second stage inductor 100 µH 
CES Energy storage capacitor 8 µF, 700 V, film 
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voltage vrect, ac input current iac, LED string voltage VLEDs and LED current iLED are shown in 

Fig. 4.16. It can be seen that ac line current is sinusoidal and in phase with the ac voltage, 

indicating good PF, which is measured to be 0.998. The power loss of PFC stage with 200 V 

0.5 A load is measured to be approximately 3.5 W. 

 

Two stage operation 

A bidirectional boost second stage is then tested together with the PFC stage, while the 

600 µF capacitor is removed and the energy storage is finished by CES shown in Fig. 4.15. An 

capacitor CES = 8 µF is large enough for energy storage to remove the entire double-line-

frequency power ripple from LED current, while limiting the capacitor voltage to less than 400 V. 

The waveforms for rectified line voltage vrect, ac input current iac, energy-storage capacitor 

vrect (100V/div)

iac (1A/div)

iLED (500mA/div)

VLEDs (100V/div)

vrect (100V/div)

iac (1A/div)

iLED (500mA/div)

VLEDs (100V/div)

 

Figure 4.16: Waveforms of rectified line voltage, ac line current, LED string voltage and LED 
current for PFC stage experiment. Addition bulk capacitor is used to reduce LED current ripple.  

 
 
 



 

 

77

voltage vESC and LED current iLED are shown in Fig. 17(a) for zero LED current ripple case, and 

the corresponding waveforms for inductor currents are in Fig. 17(b). The first-stage inductor 

current iL1 shows a sinusoidal envelop which is in phase with the rectified ac voltage, indicating 

good PF and large input power ripple. With the operation of the bidirectional second stage, there 

is no double-line-frequency ripple on the LED current, as the low frequency power ripple is 

filtered. The voltage on the energy-storage capacitor vESC increases around peak input power, as 

the excess power is being stored in the capacitor, and vESC decreases around zero input power, 

indicating energy in the capacitor is released to the LED string. Fig. 17(b) also demonstrates the 

inductor current for the second stage iL2, whose average value is in phase with the input power. It 

can also be seen that iL2 crosses zero within every switching period, which is due to soft 

switching. The measured power loss is 6 W for the entire system when the output power is 

100 W. 

 

LED current ripple control 

The function of ripple control is also experimentally tested, with a command of +/- 30% 

ripple on LED current. The corresponding waveforms are shown in Fig. 4.18, including the 

second-stage inductor current iL2 and the LED current iLED. The second stage operates only when 

the input power is around its upper and lower values, during which intervals the LED current is 

regulated to either high or low reference values and vESC, the voltage on energy-storage capacitor, 

increases or decreases correspondingly. When the second stage stops operation, the input power 

is directly applied on the LED string and vESC stays unchanged. When the final duty cycle of the 

last regulation period is adopted as the initial duty cycle of a new regulation period, ringing 

occurs on LED current, as indicated in Fig. 4.18(a). Ringing can be removed, as shown in 
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vESC(100V/div)

 
(b) 

Figure 4.17: Waveforms of (a) rectified line voltage, ac line current, energy-storage capacitor 
voltage, LED current and (b) inductor currents for the two-stage LED driver with zero LED 
current ripple at double-line frequency. 
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(b) 

Figure 4.18: Waveforms of rectified line voltage, inductor current of second stage, energy-
storage capacitor voltage and LED current for the two-stage LED driver with +/- 30% LED 
current ripple at double-line frequency. The final duty cycle of last regulation period is directly 
adopted as initial duty cycle for a new regulation period in (a). The intial duty cycle is further 
adjusted according to LED string voltage variation in (b). 
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Fig. 4.18(b), when the initial duty cycle is further adjusted by ∆d according to LED string oltage 

variation as defined in  Eq. 4.12 and the additional half-time conduction period,. Compared to 

the waveforms in Fig. 4.17, the voltage swing of vESC in Fig. 4.18 is smaller, indicating reduction 

of energy storage; thus, a smaller energy-storage capacitor can be adopted by allowing larger 

ripple on LED current. Calculations predict a 5-µF film capacitor would be sufficient for energy 

storage when 30% ripple is on the LED current, while keeping vESC at less than 400 V. 

 

Start-up 

The start-up waveforms are shown in Fig. 4.19, including rectified line voltage, ac line 

current, LED current and energy-storage capacitor voltage. It can be seen that the ac current 

increases gradually until the LED current reaches the target value during the start-up period. This 

soft start behavior is realized by giving the PFC stage a slow-increasing power command after 

power up.  

 

Experiment with constant input current approach 

Similar experiments are conducted when a constant input current is achieved for the first 

stage. A commercial transition-mode PFC control IC is utilized, while a constant voltage, rather 

than scaled input voltage, is used to shape the input current. The resulting rectified input voltage 

vrect, ac input current iac, voltage on energy-storage capacitor vESC, LED current iLED and inductor 

currents for the two stages iL1 and iL2 are shown in Fig. 4.20. It can be seen that the input current 

for the first stage is constant within each double-line-frequency period. The measured PF is 

approximately 0.91, which matches well with the theoretical prediction and meets the 

requirement by standards. Ringing occurs on ac input current iac around zero crossing of input 
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voltage, which is due to the sharp transition of iac and could be removed if a function of 

maximum on time is included in the control IC.  

As shown in Fig. 4.20, with the operation of the bidirectional second stage, the double-

line-frequency ripple is removed from the LED current as the ripple power goes to the energy-

storage capacitor. The capacitor voltage vESC increases when input power is large and decreases 

when input power is small, indicating the storing and releasing of energy. Compared to the 

waveforms in Fig. 4.17, the variation on vESC is smaller, which is the result of reduced energy 

storage. 

vrect (100V/div)

iac (1A/div)

iLED (500mA/div)

vESC(100V/div)

vrect (100V/div)

iac (1A/div)

iLED (500mA/div)

vESC(100V/div)

 

Figure 4.19: Start-up waveforms of rectified line voltage, ac line current, energy-storage 
capacitor voltage and LED current for the two-stage LED driver. 
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(b) 

Figure 4.20: Waveforms of (a) rectified line voltage, ac line current, energy-storage capacitor 
voltage, LED current and (b) inductor currents for the two-stage LED driver with constant input 
current on the first stage and zero LED current ripple at double-line frequency. 
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When ripple is allowed on the LED current, the reduction of energy storage is even more 

significant. The waveforms of rectified line voltage, ac line current, voltage on the energy-

storage capacitor and LED current are shown in Fig. 4.21, with constant input current for first 

stage and 30% ripple on the LED current. As the variation of LED string voltage is considered to 

adjust the initial duty cycle of each regulation period, there is no transient ringing on the LED 

current. It can be seen that the swing on vESC is largely reduced, resulting in vESC less than 300 V 

all the time. As a result, a smaller energy-storage capacitor could be adopted. Fig. 4.22 shows the 

waveforms when a 2.2 µF film capacitor is used for energy storage. It can be seen that vESC is 

kept less than 400 V in this case. 
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Figure 4.21: Waveforms of rectified line voltage, ac input current, energy-storage capacitor 
voltage and LED current for the two-stage LED driver with constant input current and +/- 30% 
LED current ripple at double-line frequency.  
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 Although the constant input current approach provides a simple solution to achieve 

sufficient PF and reduced energy storage, this approach leads to large ringing on ac input current. 

The input current, which is constant after the diode bridge, contains hard transitions from the ac 

side. As a result, large oscillation occurs at every transition of ac input current, as shown in 

Fig. 4.20 and 4.22. These oscillations can be eliminated by mitigating the ac current transition, 

which can be achieved by reducing input current around zero crossing of line voltage. For a 

transition-mode PFC controller, a scaled rectified line voltage is utilized to shape input current in 

order to achieve a high power factor. When a constant voltage is utilized rather then the scaled 

input voltage, the resulting current is constant, which can achieve PF = 0.9 with reduced energy 
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Figure 4.22: Waveforms of rectified line voltage, ac input current, energy storage capacitor 
voltage and LED current for the two-stage LED driver with constant input current and 30% LED 
current ripple at double-line frequency. A 2.2-µF film capacitor is used for energy storage. 
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storage. In order to remove the oscillation on ac input current, the constant input current 

reference should be modified. 

 In order to achieve a modified constant input current reference, a voltage divider is 

utilized to generate the scaled input voltage signal for input current reference, while a Zener 

diode is parallel with the bottom resistor. With this configuration, the input current is clamped 

with a constant value when line voltage is high, and reduces around zero crossing of line voltage. 

Hence the shape of the input current becomes close to “trapezoidal.” The resulting waveforms 

are shown in Fig. 4.23. It can be seen that the oscillations in the ac line current are removed. 

Meanwhile, this approach also improves input PF, which is measured to be 0.96. However, the 

required energy storage is slightly increased as a trade-off. With the same energy-storage 

capacitor of 2.2 µF and 150 mA LED current ripple, in order to limit vESC below 400 V, the 

average LED current with trapezoidal input current approach cannot exceed 450 mA, which is 

slightly smaller than the 500 mA average current in Fig. 4.22. 

 In the method shown above, a voltage divider and a Zener diode are utilized to generate a 

trapezoidal input current reference, thus avoiding ac input current oscillation for the constant 

input current approach. The oscillation can also be removed when an ability of maximum on-

time is included in the PFC controller. Hence, a controller with inductor current control ability 

and maximum on-time (duty cycle) is capable to implement the proposed PFC with trapezoidal 

input current. 

A comparison of required energy-storage capacitance with various techniques is 

presented in Table 4.3, with the assumption of 200 V LED string at 500 mA current. The 

techniques considered here include constant input current approach, allowing LED current ripple 

and bidirectional second stage. As show in Table 4.3, the proposed techniques are able to 
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effectively reduce required capacitance. Although the rated voltage of energy-storage capacitor 

increases as a trade-off, the reduction of capacitance is significant enough to limit cost increase 

for utilizing long-life capacitors. Compared with the cases when electrolytic capacitors are 

necessary, those drivers with film capacitors are expected to provide much longer life time which 

is compatible to LED devices. 
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Figure 4.23: Waveforms of rectified line voltage, ac input current, energy-storage capacitor 
voltage and LED current for the two-stage LED driver with modified constant input current and
30% LED current ripple at doulbe-line frequency. A 2.2-µF film capacitor is used for energy 
storage. 
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4.6 Conclusion 

This chapter presents several techniques to reduce energy-storage capacitance in off-line 

LED drivers, so as to replace the electrolytic capacitors with high-quality alternates for longer 

lifetime at reasonable cost. The constant input current approach reduces the required energy 

storage by one-third when compared to the unity-PF case, while meeting the PF requirement for 

lighting products. When certain ripple is allowed on LED current, the current waveform is 

manipulated to be trapezoidal, thus minimizing required energy storage. The required energy-

storage capacitance is significantly reduced by decoupling the capacitor from LEDs with a 

second stage, whose power loss is limited with the bidirectional structure. All these techniques 

are combined and verified experimentally, with the result provided in this chapter. For a 200-V 

500-mA LED string, when PF = 1, energy-storage capacitance is less than 8 µF to achieve 

constant LED current, while the capacitor voltage is smaller than 400 V. With constant input 

current and 30% LED current ripple, the capacitance is further reduced to 2.2 µF for the same 

system. 

TABLE 4.3 REQUIRED ENERGY-STORAGE CAPACITANCE WITH VARIOUS TECHNIQUES* 

PF 
∆ILED 

/ILED 2nd Stage Requirement 
CES 

(µF) 
Typical CES** 

Type  Vrated (V) Size (mm3) 
1 30% No 120 Electro. 250  
0.9 30% No 79 Electro. 250  
1 0 Yes, vESC: 250~400 V 7.4 Film 450 31.5×22×36.5 

0.9 0 Yes, vESC: 250~400 V 4.5 Film 450 26.3×13.8×21.1 

0.9 30% Yes, vESC: 250~400 V 2.2 Film 450 26.33×10.6×18 

* ILED = 500 mA, VLEDs = 200 V 

**based on component information on digikey.com 
 
 
 



 

 

 

CHAPTER V 

 
MODULAR AC-DC LED DRIVERS BASED ON SERIES-INPUT STRUCTURE WITH 

REDUCED ENERGY STORAGE  

 

The series-input structure provides an opportunity to apply low-voltage integrated circuits 

(ICs) and components in high-voltage applications. With proper design, a high input voltage may 

distribute evenly between several modules that are serially connected from input ports. With 

reduced rated voltage, integration of semiconductor devices becomes much easier. Meanwhile, 

the low-voltage cells can operate at high switching frequencies with low-profile, light-weight 

inductors and capacitors. All these advantages lead to high-level monolithic integration, which 

matches well with the miniature LED devices.  

It is of significant interest to extend the application of series-input techniques to off-line 

LED systems. For off-line LED applications, standards require a high power factor (PF), which 

normally leads to bulk electrolytic capacitors to filter input power ripple. The short-life 

electrolytic capacitors, although providing large capacitance at low price, place a hard limit on 

the overall lifetime of LED lamps. On the other hand, if the input power ripple is directly passed 

to LED load, the resulting large current ripple leads to problems such as flickering or degradation 

of LED lifetime, neither of which is desirable. 

In order to avoid electrolytic capacitors in off-line LED applications while limiting the 

LED current ripple at the same time, several techniques can be applied to reduce required 
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energy-storage capacitance. The constant input current approach achieves PF = 0.9, which meets 

requirements while reducing the required energy storage by approximately one-third when 

compared to the case of PF = 1. The bidirectional second stages reduce the energy-storage 

capacitance by decoupling the capacitors from LEDs, and provide a possibility to limit power 

loss on the second stages, which process only less than one-third of the LED energy.  

This chapter presents an approach to combine the series-input structure and reduction of 

energy-storage capacitance in off-line LED drivers. The concepts of the series-input structure 

and the common duty cycle approach are reviewed in Section 5.1. Section 5.2 presents the 

approaches to reduce energy-storage capacitance, including the constant input current approach 

to reduce input power ripple and the bidirectional second stages to reduce capacitance. More 

details on the design of system control loops are provided in Section 5.3. The experimental set-

up and results are presented in Section 5.4, and Section 5.5 concludes this chapter. 

 

5.1 Off-line LED driver based on series-input structure 
 

Series-input structure provides an approach to reduce voltage stress on devices in high-

voltage applications. The system diagram of an off-line LED driver based on series-input modules 

is shown in Fig. 5.1. The system is composed with several modules, which are serially connected 

from the input ports and share the same input filter and rectifier. Each module has an individual 

output port and drives a sub-string of LEDs. Although the numbers of LEDs in the modules do 

not have to be identical, it is good to balance the power on each module by evenly distributing the 

LEDs. The ideal behaviors of this system in steady state include distribution of the input (line) 

voltage and the regulation of all the LED currents. 
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The common duty cycle approach described in Chapter III provides a simple solution to 

distribute input voltage and to achieve output current copying. In steady state, a converter 

operating in continuous conduction mode (CCM) behaves like a “dc transformer”, whose 

conversion ratio is determined by the topology and duty cycle. Consequently, converters with the 

same topology operating in CCM with identical duty cycle have the same conversion ratio. The 

steady-state model of these converters in series-input configuration is provided in Fig. 5.2. With 

identical conversion ratios and the same input current in steady state, their output currents are 

naturally equal. Meanwhile, the input voltage is distributed among the modules according to the 

ratio of output voltages, which, in this case, are the LED sub-string voltages. As a result, only one 

control loop is necessary for this system, leading to a master-slave configuration. As shown in 

Fig. 5.2, the single master cell regulates its own LED current and generates a duty cycle. All the 
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Figure 5.1: An off-line LED driver based on series-input structure. 
 
 
 



 

 

91

slave cells adopt the same duty cycle from the master, achieving the automatic input voltage 

distribution and output current copying. 

 The common duty cycle approach can be applied to series-input structure in off-line LED 

drivers as well, given that certain requirements are met: they must possess the same converter 

topology, operation in CCM with an identical duty cycle. Although it is easy to guarantee same 

converter topology and an identical duty cycle, the converters may enter discontinuous conduction 

mode (DCM) when the input voltage is very low. This problem, however, should not disturb the 

input voltage distribution too much if the system is well balanced and the DCM period is short 

enough. Furthermore, when high PF is achieved, the input power is typically very small around 
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Figure 5.2: Steady-state model of modular converters with series-input configuration and 
common duty cycle. 
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the zero crossing of input voltage, which helps reduce the disturbance due to DCM operation 

during this period. 

 

5.2 Reduction of LED current ripple 
 

As described in Chapter IV, off-line LED applications are required to achieve high PF, 

which leads to large ripple on input power. Meanwhile, small ripple on LED power is preferred 

in order to avoid problems such as flickering or LED lifetime degradation due to thermal cycling. 

Hence, energy storage is necessary to filter the input power ripple, and is often realized with 

capacitors. In order to utilize long-life capacitors while maintaining reasonable cost, required 

energy-storage capacitance should be reduced. All the techniques presented in Chapter IV can be 

applied to series-input structure. Adjustments are necessary, however, to maintain the merit of 

low voltage rating for series-input modules.  

 

5.2.1 Reducing input power ripple with the constant input current approach 

As described in Chapter IV, it is possible to reduce input power ripple of off-line LED 

applications with the trade-off of lower PF. By regulating the input current to be constant, a PF = 

0.9 is achieved, which can still meet the requirement from Energy Star program. The input and 

output power waveforms for PF = 1 and PF = 0.9 are shown in Fig. 5.3, in which the shadowed 

areas Estored represent the required energy storage within each half-line cycle to achieve constant 

LED current. By adopting the constant input current approach, Estored is reduced from 32% to 

21% of total input energy.  
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A non-inverting buck-boost converter is selected to implement the constant input current 

approach due to its wide range of conversion ratio. The schematic of the circuit is shown in 

Fig. 5.4. In order to meet the requirements for the common duty cycle approach, the inductor L1 

should be large enough to guarantee CCM operation within the major period of each half-line 

cycle. A sensing resistor Rs1 converts the inductor current signal to a voltage signal. The mid-

point of this signal is sampled to represent the average inductor current, which is multiplied with 

the duty cycle to generate input current information. A control loop is built to regulate the input 
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(b) 

Figure 5.3: Input and output power waveforms for (a) an LED driver with PF = 1 and constant 
LED current, and (b) an LED driver with constant input current (PF = 0.9) and constant LED 
current. 
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current to a reference signal I in,ref, which should be constant within each half-line cycle in order 

to achieve a PF of 0.9. With this approach, sufficient PF for LED drivers is achieved while 

required energy storage is reduced by one-third compared to unity-PF case. The input power is 

controlled by adjusting I in,ref.   

 

5.2.2 Reducing energy-storage capacitance with bidirectional second stages 

Although the constant input current approach is capable of reducing input power ripple 

by a large portion, the remaining LED current ripple is still considerable. To further reduce the 

LED current ripple, a second stage can be adopted to make full use of energy-storage capacitance, 

as described in Chapter IV.  

The required capacitance for energy storage can be calculated from   
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Figure 5.4: A non-inverting buck-boost converter with input current regulation. 
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where Estored is the required energy storage within one input power cycle, VESC,peak, VESC,valley, 

VESC and ∆VESC are the peak, valley, dc value and ripple of the energy-storage capacitor voltage, 

VESC,peak = VESC + ∆VESC, VESC,valley = VESC − ∆VESC. When the energy-storage capacitor is directly 

parallel with the LED string, very small ∆VESC is allowed because a small variation on LED 

voltage leads to a large change on its current. As a result, the required capacitance can be very 

large. When the capacitor is decoupled from the LED string, much larger ∆VESC is allowed, 

which can reduce the required capacitance significantly. 

In order to limit the disturbance of second stages on the series-input system, a 

bidirectional structure is adopted, which keeps the LED strings at the output of PFC stages and 

places the energy-storage capacitor at the output of second stages, as demonstrated in Fig. 5.5. 

With this configuration, the common duty cycle approach is still applicable, given that the PFC 

stages operate in CCM for most of the time and the input voltage will still distribute according to 

the ratio of LED sub-string voltages. This bidirectional structure also helps limit the power loss 

associated with the second stages, as only the ripple power is processed by the second stages. 

Although an ideal LED driver is assumed to achieve constant LED current, a small 

percentage ripple on LED current may not cause too much trouble. Allowing certain LED 

current ripple helps reduce energy storage, which is very useful when the available capacitance is 

limited. Under some requirements of ripple percentages, the LED current should be manipulated 

in a certain way to minimize the required energy storage. 

The waveforms of input and output power for an LED driver with PF = 0.9 and LED 

current ripple are shown in Fig. 5.6(a), with the shadowed areas indicating the energy stored in 

and released from the capacitor within one half-line cycle. As the LED string voltage is almost 

constant, the waveform of LED current has the similar shape of LED string power pLEDs, which is 
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close to “trapezoidal” and in phase with input power. It can be seen that the input power 

waveform is “chopped” only around its peak or valley, resulting in the LED string power at the 

regulation boundary for most of the time. In this way, the minimum energy storage is achieved for 

certain LED current ripple. Fig. 5.6(b) demonstrates the percentage of energy storage, Estored/Ecycle, 

for different LED current ripple values, where Ecycle is the total input energy within one half-line 

cycle. The maximum required energy storage, which happens with zero LED current ripple, is 

approximately 21% of the total input energy. When 30% ripple is allowed on LED current, the 

required energy storage decreases to about 10% of the total input energy. 

As the energy-storage capacitor has to be able to absorb energy from the first stage when 

input power is high and to supply energy back to the LED string when input power is low, the 

second stage has to be bidirectional. Several converters with different topologies are capable to 

realize this function. In order to remain low rated voltage, which is the purpose to use series-input 

structure, a bidirectional buck converter is selected, with the schematic shown in Fig. 5.7(a). As 

switching loss is not a major issue for low voltage circuits, the second stage converter is 

determined to operate in DCM. When the input power is larger than the required value, the excess 
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Figure 5.5: An LED driver with PFC first stage and bidirectional second stage. 
 
 
 



 

 

97

power goes through the second stage to the capacitor. As shown in Fig. 5.7(b), the low-side 

transistor S2l is kept open, and the second stage operates as a buck converter. When the input 

power is less than required, the high-side transistor S2h is kept open, and the second stage operates 

as a boost converter from a reversed direction to transfer energy from the energy-storage capacitor 

to the LED string, as shown in Fig. 5.7(c). The buck and boost operation modes within one half-

line cycle are indicated in Fig. 5.7(d).  
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(b) 

Figure 5.6: (a) Input and output power waveforms for an off-line LED driver with constant input 
current and trapezoidal LED current; (b) required percentage energy storage (Estored/Ecycle, Ecycle is 
the total input energy within one half line cycle) for different LED current ripple values.  
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The purpose of the bidirectional second stage is to filter the double-line-frequency power 

ripple. This function can be realized by regulating the LED current with the second stage. When 

the LED current, thus LED power, is regulated, the excess input power ripple naturally goes 
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Figure 5.7: (a) A bidirectional buck converter operating in DCM as second stage; (b) buck mode; 
(c) reversed boost mode; (d) operation mode alternation within one half-line period.  
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through the second stage to the energy-storage capacitor. As the second stage operates in either 

buck or reverse boost mode with the potential for different LED current reference, the ability for 

mode selection should be included in the second stage controller, whose block diagram is shown 

in Fig. 5.8. The high and low references for the LED current are calculated with LED current 

command ILED,cmd and ripple command ILED,ripple. The mode selection can be realized by detecting 

and analyzing LED current err ierr and duty cycle d, which together carry the information of 

instant input power level. When input power is large enough, buck mode is selected with the 

high LED reference signal. The duty cycle is generated for high-side transistor while low-side is 

off. Boost mode is applied with low LED reference signal when input power is low. High-side 

transistor is kept off while low-side is driven with the duty cycle vGSl. The detail circuit diagram 

for buck and reverse boost mode are shown in Fig. 5.9. 
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Figure 5.8: LED current controller for the bidirectional buck second stage with mode selection 
and ripple control. 
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Figure 5.9: LED current control diagram: (a) buck mode and (b) boost mode. The two controllers 
are integrated together. 
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5.3 System control loops 
 

The system diagram of an off-line LED driver based on series-input-connected two-stage 

modules is shown in Fig. 5.10. The modules are serially connected from the input ports, and 

share the same input filter and rectifier. Each module contains two stages: a PFC first stage and a 

bidirectional second stage.  

In order to achieve automatic input voltage distribution and LED current copying, all the 

PFC stages use the same duty cycle, which is generated by the single master module and then 

adopted by all the slave modules. Different from the common duty cycle in the PFC stages, the 

control loops associated with the second stages are conducted locally within each module. At 

least two local control loops are included in each module. One of them is to regulate the LED 

current, while the other is to balance the stored and released energy through the second stage, 

which can be realized by adjusting the average LED current to stabilize the voltage on energy-
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Figure 5.10: Off-line LED driver based on series-input structure built with two-stage modules. 
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storage capacitors. One additional loop is necessary for the master module to control the average 

input power, which can be realized by regulating average LED current according to the external 

LED current command. These control loops are demonstrated in Fig. 5.11, where the dashed 

lines indicate the power control loop that is specific for the master module. 

As indicated in Fig 5.11, four control loops are utilized for the master module, including 

PFC, LED current regulation, energy-storage capacitor voltage regulation and input power 

control. It is possible to simplify the control loops for the master module by regulating LED 

current with external current command directly. Meanwhile, the input power reference is 

generated by regulating voltage on energy-storage capacitor. The resulting control loops for 

slave and master modules are shown in Fig. 5.12, where three control loops are required for the 

master cell.  
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Figure 5.11: Control loops for the two-stage LED drive modules, including LED current 
regulation, energy-storage capacitor voltage regulation and input power control. The input power 
control is for master module only. 
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Figure 5.12:  Control loops for (a) slave modules and (b) master module in a series-input 
modular LED driver. 
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Figure 5.13: (a) Experimental setup. Input voltage vg is rectified ac input signal. FPGAs are used 
to control the modules and transmit duty cycle. Three modules are used, driving eight LEDs 
respectively. (b) Non-inverting buck-boost first stage used in experiment. (c) Bidirectional buck 
second stage used in experiment. 
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5.4 Experimental results 

A prototype was developed to verify the performance of the proposed techniques and 

control approach experimentally, with the schematic shown in Fig. 5.13. The circuit has separable 

converters and load stages to employ the modularity of the architecture.  Each cell is controlled 

via an onboard floating FPGA and corresponding sensing circuitry and ADCs.  A two-stage 

structure, with four-switch non-inverting buck-boost first stage and a bidirectional buck second 

stage, was implemented for the experiments. The major devices used are shown as Table 5.1, and 

the component values are shown in Table 5.2. The first stages operate in CCM while the second 

stages are in DCM. The switching frequency is approximately 780 kHz for all converters. Three 

cells were used for the experiment, with eight LEDs as load for each. 

TABLE 5.1 MAJOR DEVICES USED IN EXPERIMENT 

Device Part Number Description 

FPGA XC3S500E Xilinx Spartan 3E 
Diode PDS540 Schottky, 40 V, 5 A 

MOSFET STN3NF06L N channel, 60 V, 4 A 
ADC AD7825 8-bit 4-channel Multiplexed 
HB Driver LM5101 Half Bridge Driver 
Isolator ISO7221 Dual Digital Isolator 2 MSPS 
LED Luxeon K2 700 mA 

 
 
 

TABLE 5.2 MAJOR COMPONENTS USED IN EXPERIMENT 

Component Description Parameter 

Cin Input capacitor 0.47 µF, 40 V, ceramic 
L1 First stage inductor 22 µH 

CLEDs First stage output capacitor 10 µF, 40 V, ceramic 
L2 Second stage inductor 10 µH 
CES Energy storage capacitor 10 µF × 5, 25 V, ceramic 
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Constant Input Current Regulation 

The first experiment is to test the constant input current regulation. A single buck-boost 

first stage with constant-input-current regulation, as shown in Fig. 5.4, is used in the experiment. 

The waveforms of the rectified input voltage vin, input current i in, output voltage vLEDs and LED 

current iLED are shown in Fig. 5.14. The input current is regulated to 250 mA over the majority of 

the ac line cycle, and reaches zero when the input voltage goes to zero and the duty cycle 

saturates. The measured power factor of this circuit is between 0.93 and 0.95 when the input 

voltage is between 20 Vac and 40 Vac, and the average current of an 8-LED string is between 

100 mA and 300 mA. The efficiency of this circuit is measured at approximately 85%. 
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Figure 5.14: Input voltage, input current, LED string voltage and LED current of a buck-boost 
first stage with constant input current regulation. 
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Two-stage LED Driver with 0.9 PF First Stage and Bidirectional Second Stage 

An LED drive module with a constant-input-current first stage and bidirectional buck 

second stage is tested in the second experiment. A selection of the experimental results is given 

here. The experimental results use a module that drives 8 LEDs at 150±50 mA current, with first 

stage output capacitor CLEDs = 10 µF and energy-storage capacitor CES = 50 µF. Waveforms of 

rectified input voltage vin, energy-storage capacitor voltage vESC and the LED current iLED are 

shown in Fig. 5.15, demonstrating reduced 120-Hz LED current ripple compared to single stage 

case. For comparison, a ten times higher capacitance (approximately 500 µF) is necessary to 

achieve the same LED current ripple reduction without the second stage, in which case 
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Figure 5.15: Input voltage, input current, voltage on energy-storage capacitor and LED current of 
an LED driver with 0.9 PF first stage and bidirectional second stage. The LED current is set to be 
150±50 mA. 
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electrolytic capacitors are the only practical choice. The required energy-storage capacitance 

would increase to 760 µF when the single-stage driver achieves PF = 1. The efficiency of this 

two-stage driver is measured at approximately 80%. With an overall efficiency of 80%, first stage 

efficiency of 85% and 10% energy processed by the second stage, the efficiency for second stage 

is calculated to be about 77%. When a traditional cascaded two-stage structure is used, the second 

stage efficiency has to be 94% to achieve the same overall efficiency when the first stage remains 

the same. 

 

Series-input Connected Modules with Second Stages 

A series-input system with three modules was implemented in this experiment. The master 

module utilizes the simplified feedback loop in Fig. 5.12(b) to regulate LED current and generate 

first-stage duty cycle. The slave modules use the duty cycle from the master for the first stage, and 

adopt the self-balance method in Fig. 5.12(a) to regulate their own energy-storage capacitor 

voltage and LED current. The target LED current is 150±50 mA. The input voltages and LED 

currents of the three modules are shown in Fig. 5.16. The three input voltages are roughly 

identical, demonstrating input voltage distribution, as shown in Fig. 5.16(a). The three LED 

currents are also identical with reduced double-line-frequency ripple, demonstrating output 

current copying, as shown in Fig. 5.16(b). The efficiency of the series-input system is 

approximately 80%. 
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Figure 5.16: (a) Input voltages and (b) LED currents of the series-input LED driver built with 
two-stage LED drive modules. The LED current is set to be 150±50 mA. 
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5.5 Conclusion 

An approach to combine the series-input structure and the techniques to reduce energy 

storage is presented in this chapter. An off-line LED driver is built with several two-stage LED 

drive modules which are serially connected from input ports. For each module, LEDs are 

connected to the output of PFC first stage, followed by a bidirectional second stage with an 

energy-storage capacitor. The common duty cycle approach is applied on the first stages to 

achieve automatic input voltage distribution and LED current copying. The constant input 

current approach achieves PF = 0.9 with small input power ripple, while the bidirectional second 

stages reduce required energy-storage capacitance without disturbing the input voltage 

distribution. With the required energy-storage capacitance significantly reduced, the LED current 

ripple is reduced without using bulk electrolytic capacitors. 



 

 

 

CHAPTER VI 

 
CONCLUSION 

 

 Two major topics are included in this thesis. The first one is to reduce the size or 

thickness of LED drivers, so as to take advantage of the small form factor of LED devices and to 

offer flexibility for diverse applications. The series-input modular structure with the common 

duty cycle approach provides a relatively easy method to achieve this target, by reducing voltage 

stress on the components. With smaller rated voltage, integration of semiconductor devices 

becomes much easier while converters can operate with low-profile and light-weight components, 

both of which lead to high-level integration. Another major target is to achieve long lifetimes for 

off-line LED drivers, mainly by eliminating short-life electrolytic capacitors. In order to utilize 

long-life but expensive capacitors, the required capacitance should be reduced to limit cost 

increase. Several techniques are addressed in this thesis to minimize required energy-storage 

capacitance, while limiting additional cost, power loss and control effort.  

All of these principles and control approaches are verified experimentally, with the 

results provided in this thesis. 

 The next section summarizes the contributions of these work followed by potential future 

research directions. 
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6.1 Contributions 

(1) Development of the common duty cycle approach for series-input modular systems 

The common duty cycle approach can significantly simplify the design of series-input 

modular systems. The advantage of series-input system is reduced voltage stress on each module. 

The resulted circuit can operate at a high frequency with small-sized and light-weight 

components even in high-voltage applications, leading to high-level integration and flexibility 

for diverse applications. With the common duty cycle approach, input voltage distribution and 

output current copying can be automatically achieved in a series-input system, and the control-

to-output transfer function is very close to that of a single converter, and is therefore easy for 

system design and compensation. Detail analyses with small-signal model are provided, which 

are also verified with simulation and experiment. 

 

(2) Development of the response procedure to LED open-circuit failure for series-input modular 

systems 

When a number of LEDs are series-connected in a long string, the entire string will be off 

when a single LED fails and becomes an open circuit. To deal with this risk, series-input 

structure provides an approach by shorting the input port of the module with open-circuited LED, 

so as to keep other LEDs in operation. With this approach, the effect of LED open-circuit failure 

on system efficiency is mitigated. In order to keep the controller of the “failed” module in 

operation so as to short its input port and provide a communication channel, the controller is 

powered from the output capacitor, which is charged by occasional pulses of power injection. A 

response procedure is designed and verified to deal with LED open-circuit failure and implement 

occasional power injections. 
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(3) Development of the constant input current approach to achieve PF = 0.9 with reduced energy 

storage 

In order to replace electrolytic capacitors with high-quality capacitors while limiting cost 

increase for off-line LED applications, the required energy-storage capacitance should be 

reduced. As LED products are allowed to have PF less than unity, it is possible to reduce energy 

storage with the trade-off of lower PF. The constant input current approach provides a simple 

solution to reduce required energy storage by one-third compared to the case of PF = 1, while 

achieving PF = 0.9 which meets the PF requirement on lighting products. Converters achieving 

constant input current, one in CRM (Chap. IV), another in CCM (Chap. V), are presented in this 

thesis. 

 

(4) Development of bidirectional second stages to reduce energy-storage capacitance 

When an energy-storage capacitor is directly parallel with an LED string, very large 

capacitance is required due to the limited capacitor voltage variation. With a second stage to 

decouple the capacitor from the LEDs, large variations and high dc value are allowed on the 

capacitor voltage, leading to significant reduction of required capacitance. Furthermore, the 

special bidirectional structure helps limit power loss, as less than one-third of the LED energy is 

processed by the second stage. Bidirectional second stages are also utilized in off-line LED 

driver based on series-input structure, without any disturbance on the common duty cycle 

approach. The corresponding design and control approaches are presented in Chap. IV and 

Chap. V. 
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(5) Development of the trapezoidal LED current ripple control approach 

The required energy storage is reduced when ripple is allowed on LED current. With 

certain percentage of ripple, the energy storage is minimized when LED power is in phase with 

input power. This can be achieved with relatively small effort by implementing a trapezoidal 

LED current waveform. With this approach, the LED current is regulated to either high or low 

reference according to input power level, and input power is directly applied on LEDs between 

regulation periods. The transitions of control modes are determined according to voltage on the 

energy-storage capacitor and LED current. Proper initial duty cycles are generated to avoid 

ringing at the beginning of each regulation period. 

 

6.2 Future research directions 

(1) Trapezoidal input current approach to meet both PF and THD requirements while reducing 

energy storage 

As described in Chapter IV, with sinusoidal input current in phase with ac line voltage, 

PF = 1 is achieved, while Estored, the energy to be stored and released in order to achieve constant 

output power, is 32% of total input energy. With constant input current, the achieved PF = 0.9 

meets ENERGY STAR requirement, while Estored is reduced to 21% of total input energy, which 

helps the reduction of capacitance. However, this constant input current approach cannot meet 

harmonics requirement on lighting products with power greater than 25 W, which is defined by 

IEC 61000-3-2 [44], as shown in Table 6.1. 

 In order to meet the requirements on both PF and THD, while reducing the Estored, the 

advantages of sinusoidal and constant input current should be combined, which leads to a 

“trapezoidal” input current approach. With this trapezoidal i in approach, the input current follows 



 

 

115

sinusoidal envelop i in,env at low input voltage, and is clamped to a constant value Iclamp when input 

voltage is high, as shown in Fig. 6.1, where I in,peak is the peak value of iin,env. In general, as the 

clamp value Iclamp gets closer to I in,peak (or clamp period t2-t1 decreases), a higher PF and a larger 

Estored result, while THD is reduced. The threshold to meet THD requirements is Iclamp ≥ 

0.4 × I in_peak (same as the case if i in is clamped when vin ≥ 0.4×Vin_peak when i in,env is scaled line 

voltage vin), which results in 74% clamp time within each half-line period (t2-t1 ≤ 74%×Tline/2). 

The corresponding percentage harmonic currents are shown in the fourth column of Table 6.1. It 

can be seen that all the harmonic currents are under the limits placed by IEC 61000-3-2, while a 

PF = 0.96 is achieved with 23% of total input energy to be filtered. 

 This trapezoidal input current approach provides an opportunity to meet the PF and THD 

requirements, while reducing required energy storage at the same time compared to the unity PF 

case. The key point is to select a proper clamp threshold for input current. One option is to 

generate a specific trapezoidal envelop for input current, which can be a scaled input voltage 

clamped at a certain level. In order to make this method a general solution for universal input 

TABLE 6.1 HARMONICS, PF AND ENERGY STORAGE FOR CONSTANT AND TRAPEZOIDAL INPUT 
CURRENT 

Harmonics 
[n] 

Maximum harmonic currents limit * 
[% of fund] (by IEC 61000-3-2) 

Constant i in 
[% of fund] 

Trapezoidal i in **  
[% of fund] 

2 2 0 0 
3 30×PF 33.3 26.4 
5 10 20 9.1 
7 7 14.3 1.6 
9 5 11.1 1.5 

11≤n≤39 3 100/n ≤1.9 
 Power factor (PF) 0.9 0.96 
 Percentage Estored  0.21 0.23 

 

* for lighting products with power greater than 25 W 
** for the case of i in clamped when vin ≥ 0.4 × Vin_peak 
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voltages, the clamp voltage should be variable according to peak input voltage, which might 

require additional circuitry, such as peak detecting blocks and voltage dividers. Additional 

research is necessary to find a simple solution to implement this trapezoidal input current 

approach. 

 

(2) Application of energy storage reduction techniques to flyback converters 

 The flyback converter is a popular choice for industrial applications, due to its simplicity 

to achieve isolation and wide conversion ratio. Hence, it is of practical interest to apply the 

constant or trapezoidal input current approach on flyback converters to reduce required energy 

storage. However, for flyback converters, a constant input current is much more difficult to 

achieve, primarily due to the discontinuity of input current. Analysis is necessary to find a simple 

solution for reduction of energy storage in a flyback converter. 

 

(3) Critical conduction mode (CRM) operation of the bidirectional second stages 
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Figure 6.1: Trapezoidal input current. 
 
 
 



 

 

117

When a bidirectional second stage is utilized to reduce energy-storage capacitance, the 

capacitor voltage might be boosted high, which potentially increase switching loss. In order to 

avoid high switching loss, soft switching techniques can be adopted, as discussed in Chap. IV. 

However, the resultant large current ripple increases conduction loss, which might be an issue for 

high-power applications. Operation in CRM might be a good compromise between conduction 

and switching loss; however, additional research is required to apply this technique to 

bidirectional second stages. 

 

(4) Individual output current control in series-input modular systems 

 Within a system with multiple LEDs, it is possible that different drive currents are 

required, for instance, for LEDs with different colors. A common approach is to connect the 

LEDs in several strings according to their types, and then control the currents string by string. 

These LED strings might be paralleled and powered by a single converter in order to reduce cost. 

With this configuration, individual current control can be realized by approaches like 

independent regulators in series with each string. As LEDs of different types require various 

forward voltages, the single converter normally generate the output voltage for the string with 

highest voltage. As a result, large voltage drop might result on the regulators in other strings, 

leading to a considerable power loss. 

 The series-input structure can be applied in this situation to reduce power loss, with each 

module powering an LED sub-string. Since different currents are required for the sub-strings, 

these modules should no longer utilize a common duty cycle, but various values according to 

necessary conversion ratios. In order to maintain system stability, a master-slave configuration 

may still be feasible, which means a master cell has the authority to increase or decrease the duty 
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cycle of all of the modules. Meanwhile, the slave cells will be able to adjust their own duty 

cycles with a slower speed. Future research is necessary to investigate system stability and 

control approach for this configuration. 
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APPENDIX A 

 
ESTIMATION OF REQUIRED ENERGY-STORAGE CAPACITANCE IN SINGLE-STAGE 

OFF-LINE LED DRIVERS 

 

A high power factor (PF) leads to a large double-line-frequency input power ripple, 

which results in a huge variation of LED current, if directly applied on LED strings. The large 

ripple on the LED current not only limits the maximum average LED power under ratings of 

components, but also causes problems like flicker and LED life degradation. In order to limit 

LED current ripple, energy storage is necessary for filtering the power ripple. The simplest 

method of filtering is to parallel a capacitor with the LED string, as show in Fig. A.1. However, 

very large capacitance might be required with this configuration.  

In order to simplify the estimation of required energy-storage capacitance for single-stage 

LED driver shown in Fig. A.1, all power loss is neglected, while PF = 1 is assumed. The input 

voltage and current can be expressed as  

 ( ) ( )tVtv acac ωsin= , (A.1) 

 ( ) ( )tIti acac ωsin= , (A.2) 

where ω = 2πfline, fline is the line frequency. Then, the input power can be derived as 

 ( ) ( ) ( ) ( )( ) ( )tPPt
IV

titvtp acac
acacac ωω 2cos2cos1

2 00 −=−== , (A.3) 
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where P0 = VacIac/2 is the average input power, which is equal to LED power.  

The voltage on the energy-storage capacitor CES can be expressed as   

 CCC vVv ˆ+= , (A.4) 

where VC is the dc value and Cv̂ is the ripple. The ripple on capacitor voltage is normally small 

due to the small dynamic resistance of LED devices in nominal operation. 

The waveforms of input power pac and output LED-string power pLEDs are demonstrated 

in Fig. A.2. With the assumption of perfect efficiency, pac and pLEDs have an identical average 

value, and the peak and valley of pLEDs locate at the intersections of the two waveforms. 

Assuming the valley of pLEDs occurs at time td, the ripple on pLEDs is    

 ( )dLEDs tPP ω∆ 2cos0= . (A.5) 

With small ripple on LED string voltage, the LED current ripple is approximately    

 ( )d
LEDsLEDs

LEDs
LED t

V

P

V

P
I ω

∆
∆ 2cos0== . (A.6) 

Assuming pLEDs is sinusoidal with dc value P0, the waveform of pLEDs is   

 ( ) ( )( )dLEDsLEDs ttPPtp −−= ω∆ 2cos0 . (A.7) 

 

CESVac

+

_
PFC m LEDsVLEDs

 
Figure A.1: A single-stage LED driver with PFC and bulk filtering capacitor. 
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So, the energy stored into the capacitor CES within one half-line cycle, the Estored in Fig. A.2, can 

be expressed as   

 

( ) ( )( )

( ) ( )( ) ( )( )

( ).2sin

2cos2cos2cos
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 (A.8) 

The storage of Estored causes the voltage increase on capacitor CES, yielding  

 ( ) ( ) LEDsLEDsESLEDsLEDsESLEDsLEDsESstored VVCVVCVVCE ∆∆∆ 2
2

1

2

1 22 =−−+= . (A.9) 

The combination of Eq. A.6, A.8 and A.9 leads to  
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Figure A.2: Input and output power waveforms for a single-stage LED driver. 
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where γ = ∆ILED/ILED is normalized LED current ripple and RLEDs is the equivalent dynamic 

resistance of LED string. When LED current ripple is small, i.e., γ is small, Eq. A.10 can be 

further simplified to be   

 
γπ LEDsline

ES Rf
C

4

1
≈ . (A.11) 

With line frequency of 60 Hz, LED string resistance of several tens ohms, and 10~30% LED 

current ripple, Eq. A.11 predicts required energy-storage capacitance of several hundred micro 

farads. As a result, electrolytic capacitors become the only reasonable choice, considering the 

large capacitance and cost. 

 Considering the general situation, where the required energy storage can be expressed as   

 
ω

α 0
,

P
E gnlstored = . (A.12) 

The parameter α is included to indicate possible reduction of energy storage, which can be the 

result of input current shaping or ripple on the LED current. 

 With Eq. A.9 and Eq. A.12, the required capacitance becomes   
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 (A.13) 

It can be seen that Eq. A.13 is very similar to Eq. A.11, except for the parameter α. According to 

Eq. A.13, even when energy storage is reduced, the required capacitance can still be very large, 

especially when small current ripple is targeted. 

 The large capacitance is mainly due to the ∆VLEDs in the denominators of Eq. A.10 and 

Eq. A.13, which brings RLEDs×γ in the final formulas. When the energy-storage capacitor is 

directly parallel with the LED string, the allowed voltage ripple on the capacitor is very limited 
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due to the small dynamic resistance of LEDs, especially when LED current ripple reduces. As 

the capacitor has to store and release energy without significant voltage variation, its capacitance 

has to be very large. 



 

 

 

APPENDIX B 

 
ENERGY STORAGE AND LED CURRENT RIPPLE 

 

When a high input power factor (PF) is achieved, a large ripple at double-line frequency 

is included in input power. As low-frequency LED current ripple is preferred to be small, energy 

storage is necessary to filter input power ripple. Different ripple control strategies result in large 

differences in energy storage, even when resulting LED current ripples are identical. 

The typical input and output power waveforms for passive filtering are shown in Fig. B.1, 

with the assumptions of PF = 1 and no power loss. The input and output powers can be described 

as 

 ( ) ( ) ( )tPPtptp acin ω2cos00 −== , and (B.1)  

 ( ) ( ) ( )( )dLEDsLEDsout ttPPtptp −∆−== ω2cos0 , (B.2)  

where P0 is the average power, ω=2π/Tline, Tline is the line period and td is the time shift between 

input and output powers. 

The peak and valley of LED power occur at the intersections of two power waveforms, so 

the LED power ripple equals to     

 ( )dLEDs tPP ω2cos0=∆ . (B.3) 

With small ripple on LED string voltage, the LED current ripple is approximately       

 ( ) ( )dLEDd
LEDsLEDs

LEDs
LED tIt

V

P

V

P
I ωω 2cos2cos0 ==

∆
=∆ , (B.4) 
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and the percentage LED current is 

 ( )d
LED

LED t
I

I
ωλ 2cos=

∆
= . (B.5)  

The energy storage can be derived as 

 

( ) ( )( )

( ) ( )( ) ( )( )

( ).2sin

2cos2cos2cos

0

4/

00

4/

d

tT

t

dd

tT

t

LEDsacstored

t
P

dttPtttP

dttptpE

dline

d

dline

d

ω
ω

ωωω

=

−−=

−=

∫

∫
+

+

 (B.6) 

The total input energy within one half-line period equals to 

 
ω
π0

0 2

PT
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cycle =×= . (B.7)  

So the percentage energy storage is 
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Figure B.1: Input and output power waveforms for passive filtering. 
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 The relation of percentage energy storage and percentage LED current ripple is shown in 

Fig. B.2. The peak energy storage is approximately 32% of total input energy, which occurs at 

zero current ripple. The energy storage is reduced when ripple increases. However, the decrease 

is relatively slow when ripple is small.  

The relatively large energy storage at low current ripple is due to the large time shift 

between input and output powers. For the following proof, the output power is assumed to have a 

fixed ripple but arbitrary time shift compared to input power, as shown in Fig. B.3. In this case, 

the intersections of input and output powers, which occur at times t1 and t2, are not guaranteed to 

coincide with the peak and valley of output power. However, t1 and t2 hold the relation of  

 12 4
t

T
t line += . (B.9)  

 

 
Figure B.2: Percentage energy storage for various percentage LED current ripple. 
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In this case, the energy storage can be derived as 
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The input and output powers are identical at time t1, thus  

 ( ) ( )( ).2cos2cos 110 dLEDs ttPtP −∆= ωω  (B.11) 

With Eq. B.11, the energy storage becomes  

 
( ) ( )( )( )dLEDs

LEDs
stored ttPtP

PP
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−∆+
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=
110

22
0

2sin2sin ωωω
 (B.12) 

When the phase shift of output to input power is less than π, it can be shown that 

0<2ωt1<π/2, and –π/2<2ω(t1-td)<π/2. Thus, energy storage becomes larger when td increases, and 

the minimum energy storage occurs at zero phase shift, as shown in Fig. B.4(a). 
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Figure B.3: Input and output power waveforms with time shift of td. 
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 However, a special reference is necessary to achieve LED current waveform like 

Fig. B.4(a), which complicates the design. Instead, a “trapezoidal” LED current waveform 

results in zero time shift between input and output powers, and is relatively easy to achieve. As 

shown in Fig. B.4(b), two reference values are necessary to achieve trapezoidal waveform. When 

input power is larger than the high reference value, the excess power is stored in capacitor. When 
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(b) 

Figure B.4: Input and output power waveforms without time shift for (a) sinusoidal and (b) 
trapezoidal output current. 
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input power is smaller than the low reference value, energy is supplied back to the LED string 

from the capacitor. The shadowed area in Fig. B.4(b) represents the energy to be stored and 

released in each cycle. As there is no time shift between input and output powers, the energy 

storage is minimized for a fixed LED current ripple. 

 The energy storage for trapezoidal LED current can be derived as 
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And the percentage energy storage is  
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π
λλλ
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which is plotted in Fig. B.5 with a black line. For comparison, the percentage of energy storage 

for passive filtering is also plotted with a red line. It is obvious that energy storage is smaller for 

the LED current with trapezoidal waveform.  
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Figure B.5: Percentage energy storage for various percentage LED current ripple. Black line is 
for trapezoidal output current case. Red line is for passive filtering case. 
 
 
 



 

 

 

APPENDIX C 

 
ESTIMATION OF SWITCHING-FREQUENCY RIPPLE ON LED CURRENT AND 

REQUIRED FILTER CAPACITANCE 

 

The circuit diagram of a two-stage off-line LED driver is shown in Fig. C.1, with a first 

stage for power factor correction (PFC) and a bidirectional second stage to filter double-line-

frequency power ripple. Although the energy-storage capacitance can be significantly reduced 

with the bidirectional second stage, resulting in a small film capacitor CES, another capacitor is 

necessary to filter the high-frequency LED current ripple due to the switching behavior of the 

converters. As indicated in Fig. C.1, the filter capacitor CLEDs is parallel with the LED string, 

with the purpose of bypassing the high-frequency components on PFC-stage output current and 

second-stage input current. Estimation of these high-frequency components is necessary in order 

to select sufficient capacitance to limit LED current ripple. 

Assuming double-line-frequency component of input power is perfectly filtered by the 

second stage and CES, the filter capacitor CLEDs only has to deal with the high-frequency ripple, 

of which the harmonic at switching frequency is the most important for filter design. When the 

PFC stage with PF = 1 operates in critical conduction mode (CRM), its switching frequency 

varies throughout half-line periods, achieving minimum frequency at peak line voltage, which 

coincides with maximum inductor current ripple. The combination of low frequency and large 

ripple results in worse-case LED current ripple. On the other hand, the second stage may operate 
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with soft switching at relatively high frequency. Consequently, the switching-frequency ripple on 

LED current is considered primarily due to PFC stage. 

The longest switching period of PFC stage happens at peak input voltage. As shown in 

Fig. C.2, the output current waveform of PFC stage is pulsated and triangular and with zero 

value during ton, which is the low-side transistor conduction period. Of all the switching 

harmonics of iout, the one at switching frequency fs = 1/ts is of the most interest for the estimation 

of the high-frequency ripple on LED current. 

The parameters of the waveform in Fig. C.2, including amplitude and periods, can be 

calculated with Eqs. C.1 ~ C.3.  Note that these equations are specifically for boost converters 

operating in CRM and with PF = 1. 
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Figure C.1: An LED driver with PFC first stage and bidirectional second stage. 
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 Around peak line voltage vg is normally close to VLEDs, thus ton period is comparably 

small within ts period according to Eq. C.3.  Hence, the target harmonic component of iout at fs 

can be estimated with waveform of iL in stead of iout. Note that this step leads to overestimation 

of switching-frequency harmonic of iout. 

 The target harmonic component can be estimated from the waveform shown in 

Fig. C.3(a), which is the triangular inductor current without double-line-frequency component. 

With concrete parameters, like voltages and inductance, the harmonics can be calculated with 

numerical method. However, a general approach for estimation will be provided here rather than 

a specific answer. 

 With peak-to-peak amplitude identical to the waveform in Fig. C.3(a), Fig. C.3(b) 

demonstrates a triangular waveform with infinite increasing slope, while Fig. C.3(c) shows one 

with identical increasing and decreasing slopes. For triangular waveforms with a fixed peak-to-

peak value, the two in Figs. C.3(b) and C.3(c) contain minimum and maximum magnitudes of 

the harmonic component at fs, which are iL,pk/π ≈ 0.32iL,pk and iL,pk×4/π2 ≈ 0.4iL,pk, respectively. As 
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Figure C.2: Output current waveform of boost PFC first stage. 
 
 
 



 

 

140

a result, the switching-frequency harmonic for iL has a magnitude between 0.32iL,pk and 0.4iL,pk. 

The lower value is selected here, as it will compensate the overestimation due to utilizing iL 

rather than iout for estimation. 
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Figure C.3: (a) Inductor current without double-line-frequency component, triangular waveforms 
with (b) infinite increasing slope and (c) identical increasing and decreasing slopes. All three 
waveforms have identical amplitude and frequency fs = 1/ts. 
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With the above two steps, the harmonic component of iout at switching frequency fs is 

estimated to be    

 pkLfout ii
S ,@ 32.0 ×≈ . (C.4)  

A portion of this harmonic component goes to the LED string, which can be calculated as    
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With Eq. C.2 to Eq. C.5, the switching-frequency LED current ripple can be derived as   
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 In order to meet certain limits on high-frequency LED ripple, the required filter 

capacitance can be calculated from   
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When a smaller high-frequency LED current ripple is required, a larger filter capacitor CLEDs 

should be used. A smaller inductor can help reduce CLEDs by increasing switching frequency. 

Reduction of peak inductor current can also help, e.g., by adopting the constant input current 

approach in PFC stage. 

 

 

 


