WHAT IS A MODEL?

A CONSUMER'S PERSPECTIVE ON SEMANTIC THEORY
by

Jon Shultis

CU-CS-303-85 July, 1985

University of Colorado, Department of Computer Science,
Boulder, Colorado.

What is a Model?
A Consumer’s Perspective on Semantic Theory

Jon Shultis
Department of Computer Science
University of Colorado
Boulder, CO 80309

Abstract

Much of semantic theory, as currently practiced, is of little use to the working pro-
gramming language designer and implementor. Language designers want constructive
methods for semantic modelling, so that the semantics provides mechanical design
assistance. We argue that the gap between theory and practice can be bridged by
adherence to a simple principle, viz. syntax should express constructions in the model

2.
and nothing more.

WHAT IS A MODEL?
A CONSUMER’S PERSPECTIVE ON SEMANTIC THEORY
Jon Shultis
Department of Computer Science
University of Colorado
Boulder, Co 80309, USA

Introduction

By a "consumer” of semantic theory, I mean anyone who, like myself, is not
primarily concerned with proving new results or otherwise contributing directly to
the theory of semantics, but who finds (or could find) the concepts and methods of
semantics useful for doing other work. Currently, consumers include programming
language designers and, to some extent, language implementors. The results and

methods of semantics could serve a much wider audience.

Insofar as everyday programming is a process of (language) specification and
implementation, why should semantics seem so irrelevant to programmers? When-
ever | treat semantic theory in my graduate programming languages class, the stu-
dents listen patiently for about a week, and then begin asking: "What is this stuff
good for?" I am getting better at finding answers to pacify my students, but the
question nags at me more all the time. Take money, for example. How many cases
can we point to where a result from semantic theory has saved someone a penny?

No‘t one.

A thing is useful if it solves a problem that someone wants solved. So far,
semantics has solved problems that are of interest mainly to semanticists: How
can this kind of language be modelled? When are two programs equivalent? What
do all models of this language have in common? When does a language have a rela-
tively complete theory? And so forth. The answers that have been found for these

and many other questions have unquestionably improved our understanding of the

basic issues and methods of semantic theory.

Should I then tell my students that these concepts and techniques are good for
doing more semantic theory? In other words, "this stuff is good for solving prob-
lems that most of you don’t care about". If that's the best 1 can do, 1 shouldn’t be

teaching semantics to computer scientists.

Semantic theory can be far more relevant and useful to the practically-
oriented computer scientist than it is at present. To see how, we need to take a
careful look at the kinds of problems faced by consumers of semantics, and under-
stand why the theory somectimes helps solve those problems, and sometimes

doesn’t.

1. Metalanguage Semantics and Constructivity

The controversy and confusion over how to interpret the definition of Algol 60
posed a problem that computer scientists wanted solved: some means had to be
found of defining the meaning of a programming language in a precise and unambi-

guous way.

Strachey’s solution [21] was to associate a mathematical denotation with each
phrase of a language. In order to do this, he faced a subsidiary problem: how to
write down the denotations, and how to write down the mapping from language
structures to their denotations. He settled on Church's A-notation for writing
down the denotations, and syntax-directed translation for writing down the map-
ping. A third problem, noticed by Scott, is that the metalanguage used to specify
the semantics also needs a semantic definition; reflexive domains provided the solu-
tion for A-calculus. The method of denotational semantics is now routinely used to

define small languages and study their properties. Several examples of such

applications are contained in these procecdings.

The similarity between the specification of a denotational semantics and a
model has led to the identification of the two. Recall that, in mathematical logic, a
domain together with a homomorphism from the syntax to that domain is called an
interpretation. Given a notion of truth in the domain, an interpretation is a model
of a logic (theory) if all Hof the axioms are true and all of the inference rules
preserve truth. In the case of programming languages, we can think of a denota-
tional semantics as giving a model of the language's Floyd-Hoare theory. In the

case of A-calculus models, we might use realizability as our notion of truth, in

which case all that really needs to be checked is that the conversion rules are valid.

The identification of denotational semantics with models is unfortunate, how-
ever, because it misses a point of paramount importance to consumers. The suc-
cess of denotational semantics is largely due to the fact that the A-calculus seman-
tics we use is constructive, in the sense that writing down the semantic equations

for a language gives an effective way of computing the meaning of any phrase.

To illustrate the importance of this point, consider the denotational semantics
for Communicating Secuential Processes given by Brookes et al. in [5]. The
metalanguage used there is the language of classical first-order logic and set theory.
Ignoring the philosophical issues, one thing is clear: whatever semantics we give to
this metalanguage, it will not be eflective. There is nothing "wrong" with this,
unless we want to use the semantics as a basis for an implementation, or use some
theorems about the semantics to manipulate actual programs. Because these are
precisely the things that consumers want semantics for, however, a non-effective

semantics is less useful to them than it might be.

Among other things, the non-effectiveness of the semantics causes trouble
when operations for combining processes are defined. For example, Brookes et al.’s
Theorem 2 asserts that the intersection of an arbitrary family of processes is a pro-
cess. In order to understand why this is so from a computational standpoint, one
needs a proof that yields a construction of the intersection, showing why the result
is again a process. Unfortunately, the proof offered uses the method of contradic-
tion, which is not effective. The burden of devising a constructive proof is there-
fore laid squarely on the shoulders of anyone who might wish to use the result as
part of a computer program. Since there is no guarantee a priori that such a proof

can be found, the "result” might just as well have been stated as a conjecture.

By contrast, consider the theorem that for every nondeterministic finite auto-
maton there is an equivalent deterministic one. The usual proof of this gives a
direct construction of the deterministic automaton from the nondeterministic one,
and shows that the construction leaves invariant the language accepted. The
theorem is useful to consumers of automata theory because its proof supplies an

algorithm.

By analogy, denotations (for programming semantics, at least!) should be
effective objects, effectively given, and effectively reasoned about. In short, a deno;
tational semantics should provide an effective model, not just any model. For a
discussion of effectiveness, see [24]. Adherence to this principle would go a long

way toward making semantic theory more useful. But is it enough?

2. What is a Model?

Consider the category N=< having the natural numbers as objects, the arrows

being given by the usual ordering. It is easy to model addition using N< as the

domain. Let the numeral n denote the corresponding arrow 1:0 < n, where n is
the (semantic) natural number corresponding to the (syntactic) numeral n. The
semantics of addition is given by the following equation.

[n+tm = [n]o(trans([m] ,n))
where

trans:(7<7, F) = (iFE)<(7FEF)

Imagine now that we have been given a machine (the N=< machine) with a
screen that displays two numerals separated by the symbol "<", and several but-
tons. There is a button for each digit, and buttons labelled "from", "to", and "com-
pose”. To operate the machine, we type in a sequence of digits, followed by
"from”, followed by a second sequence of digits, followed by "to". The digit
sequences are displayed on either side of the "<" on the screen. Next, we press
"compose”, then enter a second pair of digits. After the last digit has been entered
and the "to" button pressed, one of two things happens. If the second sequence of
digits of the first pair is the same as the first sequence of the second pair, then the
first sequence of the first pair and the second sequence of the second pair are

displayed on the screen. Otherwise, the screen displays the word "error".

The semantics given above tells how to model the language of addition expres-
sions in N=, but does this mean that we can use the N=< machine as an adding
machine? Clearly not. The semantics is certainly effective, but it depends on a
construction, viz. trans, that has no counterpart in N=< (and hence is not an opera-

tion of the machine).

The example of the N= machine illustrates a common source of frustration
with the methods of denotational semantics. Programimers constantly have to

define the semantics of languages (i.e., software interfaces) in terms of (hardware

and software) devices with limited capabilities, such as disk controllers, report gen-
erators, and so forth. For such purposes, the fact that the device is an effective
model in some general sense of "effective” is not enough. The semantics has to be

effective with respect to the capabilities of the device.

If we restrict ourselves to general-purpose programming languages, this prob-
lem is never apparent, as long as we use A-calculus or some other constructive
notation for our metalanguage. In many situations, however, it is important to
recognize the problem and avoid it by adhering to the following principle: the
semantics of a language should use constructions from the semantic domain(s) of
the model, and nothing else. In the parlance of topos theory, the semantics should

be defined entirely in terms of the internal structure of the domains.

Insofar as a model is supposed to capture the "meaning” of a language,
shouldn’t we always avoid shifting any of that meaning into a metalanguage the
semantics of which is not explicitly represented in the model? Perhaps we should
revise our definition of "model” to include the metalanguage somehow. In order to
avoid confusion, however, we shall continue to use "model” in its conventional

sense, and we shall refer to internally constructed models as “internal models".

To a large extent, interest in categories that admit universal objects [23] is
motivated by the need to consider the semantics of the metalanguage when
developing the semantics of a subject language. A universal domain, coupled with
a language in which to express constructions in that domain (as in, e.g., ML [10]),
allows one to focus on the details of a specific subject language (or, more generally,
program). The problem of metalanguage semantics can be ignored because the
metalanguage is fixed and predefined. Of course, this is exactly what we do when

we use N-notation and domain equations to give semantics to ordinary sequential

programming languages.

Learning the structure of a universal domain such as Pw [22] requires a
significant investment of time and effort. Unless the return on that investment is a
great increase in practical problem-solving ability, consumers will not be motivated
to make it. If the metalanguage is a powerful problem-solving tool, they are more

likely simply to use it, and take the theory behind it for granted.

As with a first programming language, however, one’s ability to conceive of
alternative solutions to a problem may be limited by taking the universal domain
for granted. This problem can become acute if the universal domain is inappropri-

ate to a problem, e.g. Pw is inadequate for studying nondeterministic programs.

Suppose that, instead of a specific universal domain construction, the consu-
mer were offered tools for effectively constructing (universal) domains, and shown
some powerful applications of those tools. Such tools would make the study of
domain constructions more appealing to consumers, because the results of such
constructions would be perceived as having immediate practical application. We

will return to this point in §4.

3. Cartesian Closure and A-calculus Models

How does restricting attention to internal models affect the results of semantic
investigations? To illustrate the difference between internal and external models,
we reconsider Albert Meyer’s question, "What is a Lambda-Calculus Model?" [19],

taking the work of Berry [3] as a starting point.

Berry's thesis is that "the cartesian closure 1s really the key property for

semantic model constructions” (Berry's emphasis). The main result supporting this

claim is his theorem 5.2.9, which states that "Any categorical model defines a
model of A." (We shall explain these terms presently.) To what extent is this

thesis upheld when we replace "model” by "internal model™?

We begin by summarizing some definitions. (Caveat: we write both composi-
tion and application in diagrammatic order! So, for example, zf denotes f applied
to z, which we prefer to enunciate as "z supplied to f'. This perversity is the sorry
result of having been brought up to read programs from left-to-right and top-to-

bottom.)

A is the syntactic domain of N-expressions. A model of A consists of the fol-

lowing data.

- Three domains D, V, Env, of denotations, values, and environments, respectively.
- A semantic functor [J:A - D
[] must preserve (syntactic) a- and B-conversion,
and semantic equivalence must imply syntactic substitutivity.
- An evaluation operator eval:EnvX D - V
- An application operator ®: VX V - V

The environment domain is defined by the equation Env = IIV. When no confu-
w

sion is possible, we write pd for (p,d)eval. These data must satisfy the following

conditions.

(var) plz] = pom,
(app) plec’ 1= (plel. pe'])®
(lambda) (p[Nz.e], v)® = (plev/e])]e]

(free) Pl]rv(e) = P’!/,,(C) = P{Ien = P'ﬂeﬂ

where pI/U(e) denotes the projection of p on the set of free variables of e.

A calegorical modelis given by the following data.

- A Cartesian-closed category C with terminal object T and evaluation arrow ev.
[denotes the exponential adjoint of f.
Veeos(c)

. C . -1 . .
- Avretraction @:Vy - V. with © the corresponding section
Enve = V.
@

Updating in Envg is accomplished by the collection of arrows {s,:EnvgX Vo =
Envg | 2€w}, one for each "variable” z, defined by the equations 8,0m, = m,, and

SIO’ITy = ’ﬂ'}

om, for z# y.

We now attempt to prove that from every categorical model a model of A can
be constructed internally. The problem is: internal to what? The statement that
C is a Cartesian-closed category implies, for example, a bifunctor m:CXC - C

which is a binary Cartesian product on C. Berry makes free use of m, which is

external to C, but internal to the world in which C is defined.

Berry's thesis is ambiguous on this point; is the key property the property df
being a Cartesian-closed category (with some additional structure), or is it the pro-
perty of contaming such a category? If we choose the second interpretation, then
Berry's proof suffices. In that case, we interpret the theorem as saying that "any
domain in which a categorical model can be defined is an internal model of A". If,
on the other hand, we choose the first interpretation, then we need a new proof,

and tnterpret the theorem as "every categorical model is an internal model of A",

Since there is nothing to do otherwise, we shall choose the first interpretation,
and see how far we get. To start, we must choose objects of C for the domains.
(For convenience, we shall henceforth drop the subscript C from the names of C-

. Env
objects where no confusion is possible.) For denotations we take V', for values

we take V, and for environments we take Enu.

10

For eval we take ev:DX Env - V. The restriction of ev to domain DX Env
emphasizes that eval is a C-morphism, and so is internal to C; we do not at any
time assume that the full unit of the exponential adjunction is available when con-
structing meanings. For ® we take (@wlx 1)oeval, also a C-morphism. It is vital
that both of these be defined in advance as fixed C-morphisms, so that when they
are used later in the semantic clauses no external constructions are inadvertently

introduced.

The semantic clauses must associate with each syntactic phrase an element
&:T - VEM of the semantic domain. ¢ must be specified either by a fixed C-
morphism, or as a composition of such morphisms. The product and exponentia-
tion functors are part of the external description (or specification) of C and so can-
not be used except as a means of ngxming a particular C-morphism as in our
definition of ® above. We start with the semantics of variables.

[z] = ™,
Notice that the use of exponentiation is apparently allowed under the rules cited

above, but we will find cause to object to it later. The "obvious" semantics of

application is expressed as follows.

4 ! 1 A
lee' | = (Mg, ol((1pele’ [X 1L,)eevale® ") X ((1e[e]X 1L, Joeval))oeval)
where A, :Env - EnvX Env is the diagonal on Env, !,:D -7 is the unique mor-

phism, and 1 is the identity on Env, all of which are fixed C-morphisms. How-

Env
ever, the clause makes explicit use of both exponentiation and product, which is

disallowed. Though we have no formal proof to offer, we believe that they cannot

be eliminated, in which case Berry's thesis is denied internally.

One could argue that the clause 1s merely a finite presentation of an indefinite

sequence of associations of specific syntactic phrases to specific C-morphisms, and

11

as such the use of the functors should be allowed. After all, isn't the use of exter-
nal functors in this way implicit in the semantics of variables? It is; hence our
objection to that clause. Berry considers the closure of C under w-products a mere
convenience, stating that "...it simply avoids counting variables...". If we wish to
have effective models, we must interpret w as representing the process of counting,
not a completed whole. If we wish to have counting internally, we must have a
natural numbers object in C. In short, counting variables is something we cannot

really avoid!

We conclude that the second interpretation of Berry's theorem is the correct
one, viz. that every domain in which a categorical model can be defined is an inter-
nal model of A. For the consumer, this means that if a device is capable of
defining a categorical model, then it is capable of doing A-calculus. A device which
merely is a categorical model could be used by some more powerful device to

represent the denotations of N-expressions, but is not itself capable of being a \-

calculator.

Incidentally, the converse of Berry's theorem is also true; a categorical model
can be defined in every internal model of A. The easiest way to prove this is to
construct a categorical model using pure X-calculus. The necessary A-expressions

for pairing, projection, exponentiation (Currying), evaluation, etc., can be found in

any standard treatment of X-calculus, e.g. [1].

4. Domains for Doing Semantics

Our program for making semantic theory more relevant to computing requires
us, first, to make explicit the domain in which any construction is being carried out

and, second, to ensure that all constructions (proofs) are effective. In this section

12

we sketch a plan for effectively realizing these goals. In particular, we consider the

design of a universal metalanguage within which to do semantic theory.

Semantics draws on many branches of mathematics: algebra, topology, sct
theory, logic, category theory, and so forth. Any language for doing semantics
must therefore be capable of expressing concepts and results in all of these
domains, as well as others that have not yet been invented. All of these areas
share three things, however: the ability to define new structures, to quantify over
those structures, and a set of basic rules for reasoning about them. Using these
three tools - definition, quantification, and logic - all of modern mathematics is

built up from some initial theory, e.g. set theory.

These three ingredients for the synthesis of mathematics therefore serve also
as the basic ingredients of our language. Definition serves to specify new domains
(externally), quantification serves to limit consideration to those domains {i.e., to

their internal structure), and logic is the key to effectiveness.

Higher-order intuitionistic logic (or "intuitionistic type theory") provides all
three ingredients. The use of intuitionistic logics for programming has been stu-
died by several authors, notably [18], [20], [7]. Since we are concerned here pri-
marily with semantic theory, and because categorial methods are becoming more
popular in the semantics community, we are interested in finding a version of intui-
tionistic logic which can provide an eflective basis for doing category theory in a

straightforward way.

We therefore take as our basic system an axiomatization of the logic of partial
elements, due to Fourman and Scott (8], which we will call FS. The syntax of the

terms and formulae of FS is given by the following grammar.

13

<term> = <var> | <const> |1 <wvar > <formula >
<formula> 1= <var> | E <term> | <term > = <term >
| <term>(<term>,---,<term>)| <formula >A <formula>

| <formula>-<formula> |V <var><formula >

The logic is couched in terms of schemata for the axioms and inference rules
rather than actual formulae. A schema is just like a term or formula except that
certain subterms and subformulae are replaced by metavariables standing for arbi-

trary terms or formulae.

As it happens, it is easier to give semantics to these schemata than it is to res-
trict ourselves to actual terms and formulae. In fact, instantiation of a schema has
no effect on the "code” that realizes that schema, because the code given for the

schema always works, for all instances; it is "universal”.

Because we want proofs to be effective, we are primarily interested in realiza-
bility semantics [13] The important difference between our semantics and, for
example, the -Set semantics originally proposed by Fourman and Scott is that
the latter lacks "computational content” (D. Scott, in response to my question
posed at the conference). In other words, the Q-Set semantics is precisely the kind

of semantic theory which is of no use to consumers.

Here, the realization of a formula (schema) is (the program denoted by) some
A-expression. For concreteness, we take for our X-calculus semantics Berry and
Curien’s sequential algorithms on concrete data structures [4]. An alternative
would be to calculate a Godel number from the N-expressions, giving a more tradi-

tional realization, along the lines of Scott’s recent work.

Certain formula schemata (the axioms) are given realizations ab initio. The

inference rules transform formula schemata into new formula schemata, and their

14

realizations into corresponding new realizations. The axiom schemata are listed
below. The name of each schema is given first, followed by the formula, with the

realization written on the following line.

4.1. Propositional Axioms

KilFé-~(y-9d)

Az Ay.x

S:F (¢~ (¥=8)~((d~¥)~(¢~0)

Nz Ay hz(z 2)(y z)

T (OAY) -

Naz,y).z

T E(OAY) - o

Mz,y)y

pair: ¢ =~ (4 = (6 AY)

Az hy.(z,y)

The propositional axioms define a quasi-Cartesian-closed structure that is
internal to the logic. K specifies the existence of all exponent objects, and S
defines a kind of internal evaluation functor; the last three axioms specify the

binary projections and pairing functor.

4.2, First-Order Axioms

Some preliminary remarks may help to clarify the semantics of the first-order
axioms. Notice that all computation is essentially propositional. In particular, it

is well-known that the combinators S and K are a sufficient basis for the partial

15

recursive functions. First-order logic deals with the concept of element, thereby
adding an infrastructure to the propositions. In terms of programs, first-order
statements "merely” allow us to give more detailed interpretations to what are

essentially propositional combinations.

In order to speak of elements, we must postulate for them a source, which we
shall denote by "()" (or "nil"). () has the property that there is a unique arrow from
any object to () (i.e., it is terminal). In the category of sets, for example, any sin-
gleton can be used as (). An element is defined as any arrow from () to any other
object. Again, in the category of sets, we can identify the "elements” of any set .S
with the collection of functions e:() = S. In keeping with categorial terminology,
we shall refer to arrows with domain () as elements. The "value" of an element e,

denoted by e(), will be called an item.

Conceptually, the formula 7= 0 represents an equivalence class of items. The
realization of such an equivalence class will be a representative item. If Fo=r,
then o and 7 denote indistinguishable items. We are now ready to present the

first-order axioms.

substitutivity: | &[y/z] A y=z ~ d[2/1]

NV

Given that y and z are indistinguishable, a realization of $[y/z] is equally satisfac-

tory as a realization of ¢{z/x].

[

extensionality: FVz(z=y —~222) - y

4

Ne.e()

Given an element e, we can produce the corresponding item e().

instantiation: FVzd AEz - &

N/2)(f 2)

16

This is just the law of functional application (essentially the evaluation functor),
which asserts that a function can be applied to any existing element (of the
appropriate sort - F'S is a many-sorted logic, but the details of sorts are not needed

for the current discussion. The interested reader is referred to [8].)

description: FVy(y=l2d —Va(d ~ 2=y))

Ay.(Ae.Xz.e, hr.z())

This axiom asserts that we can convert freely between the equivalence class of an

item specified uniquely by the formula ¢ and the corresponding element.

4.3. Higher-Order Axiom

comprehension: = Ely VZ(é — y(I))

A7)

Higher-order logic deals with collections of elements, or "sets". The axiom of
comprehension asserts that all specifiable collections exist or, more precisely, that
all structures have characteristic terms (which can then be quantified over). The
justification for this is that Az () exists. That is, we specify the unique map from
any collection (including the empty collection) to (), the "terminal object"; every-

thing else follows.

Incidentally, the original formulation of F'S included an additional axioms of
predication. Its effect is to give the logic strict semantics for predication. We do
not include it here, however, because in order to realize it we would need to retain
the entire history of a computation so that from any result we could recover the
operator and operands which produced it. In practice, the absence of the axiom of

predication is hardly noticed.

17

4.4, Inference Rules

There are four inference rules, each of which transforms formula schemata
and their realizations into new formula schemata and realizations. In the rules, the
realization of a formula is written beside it in set braces, "{ }".

4.4.1. Modus Ponens

¢ {z} (& ~U){f}

¥ {fa}

4.4.2. Curry (V-introduction)

YAEz -4 {f}

b - Vzd {(Az.hy.f(z,y))}

(2 not free in §)

4.4.3. Substitution

¢ {f}

b[w/z] {/}

(z a term variable)

4.4.4. Elaboration

¢ {/}

18

blw/z] {f}

(z a formula variable)

Fourman shows how FS defines a free (elementary) topos E(). A topos is a
Cartesian-closed category with a subobject classifier - an object Q@ with the pro-
perty that for every subobject s:a = b there is a unique morphism x,:6 -~ { such
that X es factors uniquely through T (i.e., nil). In terms of our semantics, the fac-
torization is given by trueo(Az.()), where true is a distinguished element of , the

domain of "truth values”.

Elementary topoi were discovered by Lawvere and Tierney in the late 60’s (see
[14] [15]). The early development of the theory, and its relationship to intuitionis-
tic logic, is recorded in conference proceedings from the early 70's, especially [16],
[17]. A good introduction to topos theory, which concentrates on the relation of
topoi to logic, is Goldblatt [9]. A more technical treatment is given by Johnstone
[11], but is less accessible to the non-specialist. MacLane has recently completed a
book on the subject, as well, but I do not have an exact reference for it, nor have I

seen it.

Elementary topoi are essentially versions of set theory. The fact that E() is
free in the "category” of elementary topoi means that there is a unique functor
from E() to any other topos; it is the least constrained set theory there is. Since
the semantics of FS is effective, E() is an effective domain. By building up
mathematics, especially semantic theory, within E(), we can guarantee (Church-
Turing) eflectiveness. To do this, we can use the logic F'S itself, or we may prefer

a more purely categorial, but equivalent, notation.

An enhanced version of our FS realizability model is incorporated in a com-

puter program called Intuit. Intuit supports natural deduction proofs, and actu-

19

ally works on a syntactic representation of the realization of a formula, which it
optimizes extensively. A small library of theorems has been compiled, but so far

no significant theories have been developed.

We must emphasize that a great deal of groundwork has to be done before we
could hope even to start doing semantic theory with the Intuit system. An enor-
mous body of mathematics has first to be reconstructed essentially "from scratch”,
a project of essentially the same scope and magnitude as Bourbaki, requiring con-
tributions from many mathematicians over a period of decades. We envision a
massive on-line library of definitions, theorems, and proofs, to be a repository of
constructive mathematical knowledge in the public domain. Any qualified person
could contribute to the library or draw from it for further work. If programming
in this manner became sufficiently popular, one might even expect to see the for-
mation of private libraries of proprietary theorems and proofs that can be used fdr

a fee.

A major problem for such a project would be the organization of the library of
definitions, theorems, and proofs into a coherent and easily-referenced whole. The
PRL systems [2] support an organization based on simple lists of theorems, func-
tions, definitions, and some primitive recursive utilities. This falls far short of
their goal (inspired by Kenneth Wilson) of a "library of results organized into
books, chapters, sections, and so on.” We sketch one possible alternative organiza-

tion in the following section.

5. Branches and Categories

C'onventional libraries are surprisingly inefficient databases. They are highly

redundant, badly cross-indexed, and do not support shared access to information.

20

Much of the information is out-of-date, difficult to place in its proper context, and
the relationships among data that are perceived by the expert in an area are
nowhere apparent. Perhaps worst of all, knowledge is packaged by author, rather
than by topic. We therefore reject the paradigm of a conventional library, and
consider instead an organization of mathematical knowledge into branches, topics,
results, and proofs (to which authorship may be appended as a footnote). At the
highest level, all of the branches are organized under category theory, which cap-
tures knowledge about relationships among the various branches. (Books, written
by various authors for a variety of approaches and styles, will of course continue to

be useful as guides to using the library.)

As mentioned earlier, FS provides an effective language for doing "free set
theory” {actually, topos theory). In order to work in other branches of mathemat-
ics, we need to introduce theories for them. Traditionally, a theory is defined by a
set of sorts and constants, and a set of formulae (axioms). To prove a formula ¢ in
a theory T' is essentially the same as to prove the ventailment I' ¢ in the base
logic. If I' is defined as an extension to FS in this way and the proof uses FS

freely, then we say that ¢ holds erternally to T within FS.

We generalize this terminology in the obvious way. Given a theory A, a
theory I'=AUE is an extension of the base theory A. If EF¢ in A, then ¢ holds

externally to E within A.

In order to support internal reasoning, we need to add a mechanism for encap-
sulating theories. To accomodate this new concept, we change the traditional
definitions slightly. We define a theory to be any set I' of definitions, formulac,
and inference rules. A theory A is an extension of T if A includes T, and any new

inference rules in A are derived from those in I' together with the axioms of A. A

21

is a branch of T if AUT is an extension of I'. The important point here is that A
may discard ("hide") parts of I'. To continue with arboreal terminology, FS is the
root theory; all other theories are either extensions or branches of F'S (or its exten-

sions and branches).

The concept of branch captures the notion of "internal theory”; a branch may
be isolated from its base, though it may also inherit things from the base. Any for-
mula proved in a branch, however, gives a construction that is completely internal
to that branch. (Note that topoi are not the only structures having internal
theories, though one might hesitate to call the internal theory of anything but a

topos an internal logic.)

Branches enable us to define and work within various areas of mathematics,
but they don’t provide any means of relating one branch to another, except as base
and extension. The goal of category theory, of course, is precisely to define and
study relationships and transformations among the various branches of mathemat-
ics. Moreover, the search for universals is properly conducted within category
theory. If category theory is simply added as another branch to the great tree of

mathematics, however, it will be isolated from all of the other branches!

The resolution of this quandary is beyond the scope of the current work, but
essentially involves the notion of indered categories [12]. Briefly, the theory of
indexed categories is a theory about the tree of mathematics. Its objects are
"indexed categories” - families of morphisms "enumerated” by some object of a
base topos. Iustead of working directly with branches of FS, we can work with
those branches as defined within the branch of indexed categories. (An alternative
which will suggest itself readily to language designers would be to use multiple

inheritance instead of the simple tree proposed here. We do not know how to

22

le inheritance in a clean way in this context, however.)

introduce multip

1n order tO avoid needless duplication, W€ propose to provide, a3 our universal
domain for doing semantics, the branch of indexed category theory. 1n short, we
" by (inde,\'ed) category theory as the "initial object”

ot theory’

cs would be deriv

ose to replace s
y, we can encourage all

prop
ed. In this wa

all of mathematl
ategorial climate, SO

ach

from which
branches of mathematics 10 be developed in the appropriate ¢
they can inherit categorial results directly instead of proving those results in e
special case and later exhibiting them a8 "examples of the general concept’
At the outermost level, then, W€ would have a language for defining various
categories and functors between them. Among those functors would be some basic

extend, restrict, com-

s, along the lines of Clear [6l:
ory of indexed

ning categorie
categories,

ways of combi
The categories, together with the base the
h branch would be

bine, etc.
ledge within eac

neath each branch that

would be the pranches of mathematics. Know
catalogued according 1o topic, theorem, and proof. Be
would be sub-branches, with their owi topics.

growing functors

) sub-branches.

udes branch-
al scope rules arising

incl
The natur

(possibly

proofs, and
ich any con-

theoreims,
1 would effectivel

y indicate the branch within wh

from this orgr_m’\zutiox

struction is carried out.

23

References

1.

10.

11.

12.

H. P. Barendregt, The Lambda-Calculus: Its Syntar and Semantics, North-

Holland, 1981.
J. L. Bates and R. L. Constable, Proofs as Programs, ACM Trans. Prog. Lang.

and Systems 7, 1 (January 1985), 113-136.

G. Berry, Some Syntactic and Categorical Constructions of Lambda-Calculus
Models, INRIA Rapport de Recherche No. 80, June 1981.

G. Berry and P. L. Curien, Sequential Algorithms on Concrete Data
Structures, Theoretical Computer Science, , 1982.

S. D. Brookes, C. A. R. Hoare and A. W. Roscoe, A Theory of Communicating
Sequential Processes, J. ACM 31, 3 (July 1984), 560-599.

R. M. Burstall and J. A. Goguen, Putting Theories Together To Make
Specifications, 5th International Joint Conference on Artificial Intelligence, ,

1977, 1045-1058.

R. L. Constable and D. R. Zlatin, The Type Theory of PL/CV3,>ACM Trans.

Prog. Lang. and Systems 6, 1 (January 1984), 94-117.

M. P. Fourman, The Logic of Topoi, in Handbook of Mathematical Logic, J.

Barwise (ed.), North-Holland, 1977, 1054-1090.
R. Goldblatt, Topoi: the Categorial Analysis of Logic; North-Holland, 1979.

M. J. Gordon, A. J. Milner and C. P. Wadsworth, Edinburgh LCF, in Lecture

Notes in Computer Science, Vol. 78, Springer, Berlin, 1979.
P. T. Johnstone, Topos Theory, Academic Press, 1977.

P. T. Johnstone and R. Pare, eds., Indexed Categories and Their Applications,

Springer Lecture Notes in Mathematics, 1978.

13.

14.

16.

17.

18.

19.

21.

22.

23.

24

S. C. Kleene, On the Interpretation of Intuitionistic Number Theory, J.

Symbolic Logic 10, (1945), 109-124.
F. W. Lawvere, Adjointness in Foundations, Dialectica 23, (1969), 281-296.

F. W. Lawvere, Quantifiers and Sheaves, in Actes des Congres International

des Mathematiques, tome [, 1970, 329-334.

F. W. Lawvere, ed., Toposes, Algebraic Geometry, and Logic, Springer Lecture

Notes in Mathematics, 1972.

F. W. Lawvere, C. Maurer and G. C. Wraith, eds., Model Theory and Topot,

Springer Lecture Notes in Mathematics, 1975.

P. Martin-L$umlautof, Constructive Mathematics and Computer
Programming, 6th Int’l. Congress for Logic, Methodology, and Philosophy of

Science, Hannover, Aug. 1979.

A. R. Meyer, What is a Lambda-Calculus Model?, MIT LCS/TM-171, August

1980.
D. Scott, Constructive Validity, in Proc. Symposium on Automatic Deduction,

Lecture Notes in Mathematics 125, Springer-Verlag, 1970, 237-275.

D. 8. Scott and C. Strachey, Toward a Mathematical Semantics for Computer
Languages, in Proc. Symposium on Computers and Automata, J. Fox (ed.),

Polytechnic Institute of New York, New York, 1971, 19-46.
D. Scott, Data Types as Lattices, STAM J. Comput. 5, 3 (Sept. 1976), 522-587.

M. B. Smyth and G. D. Plotkin, The Category-Theoretic Solution of
Recursive Domain Equations, Proc. 18th Symposium on Mathematical

Foundations of Computer Science, , 1977, 13-17.

25

24. M. B. Smyth, Effectively Given Domains, Theoretical Computer Science 5,

(1978), .

