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ABSTRACT

Telomeres, the protective caps of eukaryotic
chromosomes, are maintained by the enzyme telo-
merase. This telomere-specific reverse transcriptase
(RT) uses a small region of its RNA subunit as
template to synthesize telomeric DNA, which is
generally G/T rich in the strand that contains the 3’
end. To further our understanding of why telomeres
are usually G/T rich, we screened Saccharomyces
cerevisiae telomerase RNA (TLCT) libraries with
randomized template sequences for complement-
ation of a tic1 deletion and decapping of existing
telomeres. Surprisingly, the vast majority of the
60000 different mutant telomerase templates tested
showed no activity in vivo. This deficiency was not
due to impaired assembly with the catalytic subunit
(Est2p) nor could it be alleviated by enforced
telomerase recruitment to the telomeres. Rather, the
mutant templates reduced the nucleotide addition
processivity of telomerase. The functional RNA
template sequences recovered in our screens pre-
ferentially contained two or more consecutive rC
nucleotides, reminiscent of the wild-type template.
Thus, in contrast to retroviral RTs that can reverse
transcribe any RNA sequence into DNA, the budding
yeast telomerase RT is specialized for its C-rich
RNA template.

INTRODUCTION

In most organisms, telomere sequences are rich in guanine and
thymine nucleotides in the DNA strand that runs 5" to 3’
towards the chromosome end (1). Furthermore, telomere
repeats usually contain runs of several adjacent deoxyguano-
sine nucleotides. This sequence feature allows the formation
of a stable DNA secondary structure, the G-quadruplex,
in vitro [reviewed by Williamson (2)]. The high degree of
telomere sequence conservation suggests some functional
importance. However, the precise molecular events in which
sequence-specific functions of the telomere are involved have
not been identified so far.

The essential function of telomeres is to prevent chromo-
some end-to-end fusions and extensive nucleolytic degrad-
ation [reviewed by McEachern et al. (3)]. Loss of end
protection could be provoked by changes in the telomeric
DNA sequence (4-7). Presumably, the mutant telomere
sequences interfere with the formation of an essential
telomeric chromatin and DNA structures such as the
G-quadruplex. G-rich DNA secondary structures have also
been proposed to participate in the telomerase reaction cycle
(8). Specifically, the folding of newly synthesized telomeric
repeats into G-G hairpins or G-quadruplex structures may
facilitate the product dissociation and translocation steps by
lowering the energy difference between the extended,
base-paired telomere—template hybrid and the dissociated
individual strands (9,10).

Whether the telomerase RNA template participates in a
sequence-specific manner in the reaction or serves only as a
passive template has been discussed controversially in the
past. Several completely non-telomeric RNA templates can be
reverse transcribed by Tetrahymena thermophila telomerase
(11), and limited incorporation of mutant telomere sequences
specified by ectopically expressed mutant telomerase RNA
templates occurred in human tumor cells (12,13). On the other
hand, changes in the product dissociation pattern, reduced
fidelity and lowered processivity have been described for
template mutant Tetrahymena telomerases (14-16). A tem-
plate mutant yeast telomerase was inactive in mutant enzyme
homomultimers but active in wild-type/mutant heteromulti-
mers (17,18). So far, no general rule for the RNA template’s
role in the telomerase reaction has emerged from the published
experiments.

In this study, we chose a genetic approach to define the
template sequence requirements of budding yeast telomerase
and gain insight into the reasons why telomeres are generally
G/T rich. A telomerase RNA template library, in which 10 of
the 16 templating nucleotides were randomized, was screened
for complementation of a flc/ deletion and, in a separate
screen, for the induction of growth arrest. This unbiased
analysis of a large number of template sequences revealed that
telomerase can reverse transcribe only a minor fraction of all
possible templates in vivo. Mutant template RNAs that
complemented a tlcl deletion preferentially contained at
least two consecutive rC nucleotides, similar to the central part
of wild-type TLC1. To verify the functional importance of this
sequence, we constructed several telomerase RNA template
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libraries with five or six randomized template nucleotides,
thus spanning the entire RNA template region. The number of
complementing templates was especially low in a library
where the central ¥7CCCACY5 template sequence was
randomized, emphasizing the importance of this region. The
deficiency conveyed by the template mutations was a reduced
telomerase nucleotide addition processivity, indicating that
the Saccharomyces cerevisiae TERT enzyme has a functional
dependence on the C/A-rich RNA template sequence.

MATERIALS AND METHODS
Library construction

Mutagenesis of TLCI was carried out as previously described
(19) by ligating a PCR product obtained with oligonucleotide
primers carrying random nucleotides at the desired positions
(sequence of the mutagenesis primer: 5-TAATTATCAT-
GAGAAGCCTACCATCACCACCCACACACAAATGTTA-
CAG-3’; the underlined sequence corresponds to the template
region and was changed according to the desired library
design) with a plasmid vector containing the rest of the 7LCI
gene. The ligation products were transformed into competent
Escherichia coli cells for amplification. For the short libraries
(Library483_478, Library477_473 and Library472_468), the number
of transformants was considerably higher than the theoretical
complexity of these libraries. For Library,go 471, approxim-
ately 200 000 bacterial transformants were obtained, which
corresponds to one-fifth of the theoretical complexity. Indi-
vidual clones from each library were sequenced to confirm
randomization of each nucleotide position in the desired
region.

Screen for complementation of flcI-A

YKF19 [Mat a ade2 his3-11 canl-Aleu2 trpl ura3-52 DIAS-1
(ADE2 telomere VR) tlcl::HIS3 rad52::LEU2] was re-
streaked progressively until senescence. The second from
last streak was used to inoculate a liquid culture for
transformation, and the cells were incubated until no further
growth was detectable. The transformation efficiency was
determined by counting the number of colonies obtained with
wild-type TLC1 (pSD107). Control transformations with the
empty vector (pRS314) gave rise to no or very few colonies.
Colonies obtained upon transformation with the library
plasmids were re-streaked at least twice. The tlc] template
region from plasmid library-harboring colonies was PCR
amplified using the two oligonucleotides 5’-TLC1_long
5’-GGCCCGGGAATAAAACTAGAGAGGAAGATAGG-3
and 3’-TLC1_short 5’-GGCCCGGGACAGTGTCAGAAAA-
AATACTAGG-3'. The PCR product was digested with Ncol
to exclude contaminating wild-type plasmids, which were
present in Librarysgg_47; at a frequency of 0.5%. The template
region was sequenced either directly from the PCR product or
from the plasmid after recovery in E.coli.

Screen for growth arrest

Yeast strain YKF20 [Mat a ade2 his3-11 can-1A leu2 trpl
ura3-52 DIA5-1 (ADE2 telomere VR) tlcl::HIS3 pTLCI-
URA3] was transformed with Library,go_47; and grown under
conditions that selected for both the wild-type pTLCI-URA3
and the mutant #lc/ from Librarysgo_47;. The colonies were
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replica-plated onto 5-fluoro-orotic acid (FOA)/-Trp medium
to select for loss of the plasmid containing wild-type TLC1 but
retention of the mutant flc/ plasmid. The library plasmids
were recovered from candidate TLC1/tlcl colonies and re-
transformed into a #lc1-A yeast strain well before the onset of
senescence. Growth arrest-inducing flc/ alleles were identi-
fied by reduced transformant colony size and number relative
to pRS314.

IP-RT-PCR experiments

Yeast strain YKF103 (Mat a ura3-52 ade2-101 lys2-Al
trpl-Al his3-A200/CF* ProteinA-EST?2) (20) was transformed
with either pKF5 (19) or Librarysgg_47;. Individual colonies
were picked and 10 ml cultures were grown to an ODggo of
0.3-0.5. The cells were harvested, washed and lysed by bead
bashing in 300 pl of immunoprecipitation (IP) buffer high salt
[10 mM Tris—HCI pH 7.5, 150 mM NacCl, 150 mM KCI, 1 mM
MgCl,, 1 mM phenylmethylsulfonylfluoride, 0.1 mM dithio-
threitol (DTT), 10% glycerol, 0.1% Tween-20, 0.1% NP-40,
0.1 U/ul of RNase inhibitor]. The extracts were cleared by
centrifugation, and 500 pLg of total protein were incubated with
50 ul of a 50% slurry of rabbit serum agarose beads (Sigma) to
bind the protein A-tagged Est2p and 20 U of DNase I (Roche
Molecular Biochemicals) for 120 min at 4°C. The beads were
washed twice with 1 ml of IP buffer high salt, once with 1 ml
of IP buffer low salt (10 mM Tris—HCI pH 7.5, 50 mM NaCl,
1 mM MgCl,, 0.1 mM DTT, 10% glycerol) and resuspended
in 30 ul of IP buffer low salt. The reverse transcriptase
reactions were carried out with Superscript II RT (Life
Technologies) according to the manufacturer’s instructions
using 10 pl of the resuspended beads as template and oligo
3’-TLC1_short (see above) to prime cDNA synthesis. PCR
amplification and Ncol digestion were performed as described
above.

Telomere length analysis

Telomere length was analyzed by telomere-PCR (21) or
Southern blotting. Telomere PCR products were separated on
3% agarose gels and the size was determined using AIDA
image quantification software (Fuji). For Southern blotting,
restriction fragments were separated on 0.7% agarose gels,
transferred to nylon membrane and subsequently hybridized
with a Y’-probe (22) and a probe for the 1 kb DNA size
standard (Life Technologies). Autoradiographs were acquired
with a Fuji BAS Phosphorlmager and analyzed with AIDA
software (Fuji).

Telomerase assays

Telomerase extracts were prepared and reactions performed as
described (19,23). The amount of TLCl1 RNA in each
preparation was determined by northern hybridization, and
equal amounts were used in the reactions. For the preparation
without TLC1 RNA (empty vector), the same amount of
protein as for the wild-type preparation was employed.

RESULTS

Functional telomerase RNA templates are highly
enriched in C and A nucleotides

To increase the likelihood of mutant telomerases adding
multiple repeats to the telomeres, we randomized only the
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WT TLC1 3'-XCACACACCCACAC CAE?;-S'
Library g.471 ACAC“I?;NNNNNNNNECAC
Library g, 475 A;EISNNNN%;CCCACAC CAC
Library,;; 47 ACACACA;II7 NNN;‘?AC CAC
Library,;, 465 ACACACACCCAC“IIIZNNN:;

Figure 1. Schematic representation of the different 7LC/ template libraries
used in this study. All telomerase RNA template sequences in the figures
and text of this manuscript are written in the 3" to 5" direction, reflecting
the order in which the template nucleotides are reverse transcribed by the
telomerase reverse transcriptase.

central 10 nt of the wild-type TLCI template region
(Librarysgo_471, Fig. 1). This library design should enable all
mutant telomerases to base pair to the existing wild-type
telomeres. In addition, the conservation of 3 nt at either end of
the template should allow re-alignment of the telomeres after
reverse transcription of a mutant template up to the template 5
boundary.

To select for templates that complemented a deletion of the
TLC1 gene, we transformed YKF19 (flcI-A rad52-A) with
Librarysgg_47; as the cells underwent senescence. The colonies
obtained were re-streaked at least twice before further
analysis. Out of an estimated 60 000 transformants (see
Materials and Methods), 40 different mutant templates
complemented the tlc/ deletion (Table 1). Two template
mutations were isolated twice (23 + 24 and 72 + 78), and one
template mutation was isolated three times independently (4 +
17 + 33). Five mutant templates were shorter than the wild-
type TLC1 template region and were not taken into account in
deriving the consensus sequence. Most telomerase RNA
template mutations that complemented the tlc/ deletion
nevertheless resulted in slow growth, various degrees of
temperature sensitivity and short telomeres. Sequence com-
parison of complementing full-length mutant templates
revealed little similarity in positions close to the template 3’
boundary, while the region close to the template 5" boundary
showed a strong bias for C and A as templating nucleotides
(Fig. 2, nucleotide composition over mutant region different
from 25% each: P > 99.9, y? analysis). This sequence bias was
not present in the library before the screen (data not shown).

The sequence 3’-CCCCA-5’ (indicated below the bar graph)
is proposed as a consensus since these nucleotides are present
in more than half of the template sequences at the respective
positions. Together with the invariant positions due to the
library design, this suggested that the sequence 3’-CCC-
CACAC-5’, reminiscent of the central portion in the wild-type
TLCI template sequence, can fulfill the sequence-specific
requirements for S.cerevisiae telomere maintenance. Since
this consensus represents the most frequent nucleotide at each
position but not the most frequent template sequence, the full
consensus is found in only one of the mutant templates. The
slightly shorter sequence 3’-CCCACAC-5’ is present in six

Table 1. Complementing templates from Library,go 47

telomere  23°C  25°C  30°C 36°C

pLib-  template sequence

3 105) length
(nt TG.3)
WT  CACACACCCACACCAC 280 —+ T+ T+ —+
| cacamaccceeAAcAC  nd. nd. nd. +  nd
3 CACCGUACCCACCAC nd. nd.  nd ¥ nd
4 caccoamaccacacac  nd. nd. nd +  nd
7  CACGUUAUCCCACCAC 130 + + /- _
9  CACCGCAUACCCGCAC 170 + - e
11  CACCACAGCCCCGCAC 130 + + +- R
14  CACCGCGUCCCAACAC 150 + 4 B B
17 ~ CACCUAAACCACACAC 230 o
22  CACAUCGACCCUACAC 140 + - B )
23  CACCGCAAGACCACAC 200 T T + T
24  CACCGCAAGACCACAC 140 + + +/- _
28  CACCACAGCCCGACAC 150 + +- R R
29  CACCACAGCCCGACAC 160 + + +- B
33 CACCUAAACCACACAC 310 -+ + -+ 4+
47  CACAUUMACCACACAC 170 +  nd  nd  nd
48  CACACCACGGAGACAC 140 + nd.  nd  nd
50  CACUAACAGGCACAC 150 + nd nd nd
5)  CACGGUUCAGUCCAC 130 + + + +
54  CACAUCUGCGGCACAC 150 + + +/- -
55  CACAUAAUCACCACAC 270 + + + -
56  CACUGUAACAGGCCAC 180 ¥ + 4. 3
59  CACGAUGCACACGCAC 160 T+ + + +
60  CACACUACGGCACCAC 150 + T T+ +
61  CACUUAAGUCCCACAC 150 +/- +/- /- _
62  CACGACUCUCCCACAC nd. +/- +/- +/- .
63  CACCGGCGCCCCACAC 230 T . Tt _
65  CACAAACACAUAACAC 180 +/- +/- /- .
66  CACAUCGUCCACCCAC nd. + + + R
67  CACCGAAUCACACAC 210 + + + ;
68  CACUGCGUCCACACAC 190 + + T+ _
70  CACACAGACCCAC 180 + + Tt +-
71  CACUACUCCACCACAC nd. T+ T+ + +/-
7)  CACUCUCUACCCACAC 180 + + + B
73  CACGACCAAGCGACAC 180 /- /- v _
74  CACGGCGGUCGAGCAC 180 /- /- - R
76  CACGGGUCCACAACAC 160 + + + R
78  CACUCUCUACCCACAC 160 + + + :
79  CACAAAGCUAAACCAC 160 /- - +/- R
80  CACCACAACAAUACAC 150 +/- +/- +- 4/-
81  CACUGCUAUCCCACAC nd. +/- + + 4/
82  CACUUGGUCCCACCAC 130 + + + +-
83  CACUACACAUCUCCAC 200 + + Tt +
84  CACACUUCCAUACAC 120 + + + T
85  CACACAUCACCCACAC 170 T+ it -+ T+

480 amn
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Figure 2. Nucleotide frequencies at the randomized positions in
Librarysgo_47; of those alleles that complemented a tic] deletion. The color-
coded bars show the frequency of the four nucleotides found at the
respective position. The consensus indicated at the bottom represents
nucleotides that are present in more than half of the complementing
template mutations at the indicated positions.
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mutant templates, and the relaxed consensus C, 4(AC);_3 is
found in 18 of the full-length and two of the non full-length
mutant templates (see Table 1). It should be noted, however,
that at least the short versions of this consensus (e.g. 3’-
CCAC-5") are not sufficient for telomere maintenance; they
presumably require additional sequence features within the
template (see, for example, the results with Librarys;7_473
below).

The template positions 3’ of 477C make no essential
contributions to the sequence-dependent function of
telomerase

In wild-type telomerase, >70% of the alignment events take
place between positions 4*A and 4°C (19). However, no
sequence conservation was apparent for positions 480-476 in
complementing clones from Librarysgg_47;. To directly test
the sequence requirements in this region, we designed a library
in which the nucleotides 3’ of #77C were mutagenized
(Library4g3_478, Fig. 1). The majority of the templates from
Library,g3_478 rescued the cells from senescence (95 £ 11%,
average * SD, n = 3), arguing that this region either does not
contribute significantly to sequence-dependent telomerase
functions or that substrate annealing 5 of 4’7C can be
sufficient for in vivo telomere maintenance.

Consecutive rC template nucleotides mediate a
sequence-dependent function of TLC1

The consensus template sequence derived from the comple-
menting clones of Librarysgo_47; resembles the central
4TTCCCAC*73 sequence of wild-type TLC! but is found closer
to the template 5" boundary. To further test whether the region
at the template 5° boundary contributes to the sequence-
dependent function, we designed a library in which only the
five template positions adjacent to the 5’ template boundary
were randomized (Librarys;75_4¢68, Fig. 1). Only about half of
the template sequences from this library could complement
the 7lcl deletion (40 = 12%, n = 3). Since Librarys7, 468
contained fewer complementing template RNAs than
Librarysgs 478, even though the complexity of Library,7, 463
is lower, we propose that part of the sequence-dependent
function resides within positions 472-468 of TLCIl. We
cannot exclude, however, that some templates of
Library,75_46g are non-functional because mutant nucleotides,
once incorporated into the telomere, impair the translocation
or re-annealing step during the next round of telomere
extension.

We next analyzed whether the central 47’CCCAC*7 is
important for TLC! function. Templates from Library,;7_473
could complement the tlc/ deletion to roughly the same extent
as those from Librarys7, 468 (32 £ 3%, n = 4). Thirty-two
complementing templates were recovered and sequenced
(Table 2). Four templates were recovered twice (4 and 45,
17 and 33, 18 and 47, and 20 and 23), and all of these
contained at least a CC dinucleotide in the mutant region.
Considering the entire set of the recovered templates, 22 out of
the 28 distinct sequences contained a CC dinucleotide or a
CCC trinucleotide in the mutagenized region (78% of the
complementing templates). This bias is significantly higher
than the random frequency of a CC dinucleotide in a Smer
sequence [25% expected: P = (0.25)* X 4 = 0.25] and was not
found in the library before selection (data not shown).

Nucleic Acids Research, 2003, Vol. 31, No.6 1649

Table 2. Complementing
templates from Library,77_473

pL5cmp- Template sequence
(3 to5)

WT CACACACCCACACCAC
2 CACACAGUGCCACCAC
3 CACACACCUCAACCAC
4 CACACACCACAACCAC
5 CACACAAUACCACCAC
6 CACACACAUGCACCAC
7 CACACAGUUCCACCAC
8 CACACAGACCCACCAC
9 CACACAAACCGACCAC
12 CACACAUGGCCACCAC
17 CACACACCUCCACCAC
18 CACACAGUUCCACCAC
20 CACACAUCUCCACCAC
21 CACACACGCCCACCAC
23 CACACAUCUCCACCAC
27 CACACACCCGCACCAC
28 CACACAUGCUCACCAC
29 CACACACGCCCACCAC
31 CACACACAGCGACCAC
32 CACACAUAACCACCAC
33 CACACACCUCCACCAC
35 CACACAUCCCAACCAC
38 CACACACUCCCACCAC
40 CACACAUGUCCACCAC
45 CACACACCACAACCAC
47 CACACAGUUCCACCAC

'S
3

CACACAGCCAUACCAC
CACACAUUCCGACCAC
CACACAGGCUAACCAC
CACACAGCCUCACCAC
CACACAUAGCCACCAC
CACACACUGACACCAC
CACACAUUACCACCAC

[V RNV RTINN
AORO =30

Furthermore, the consensus *”’NNNCC*”? could be derived.
Taken together with the results from Librarysgg 471, this
indicates that at least two consecutive rC template nucleotides
are important for efficient telomerase function. Two separate
blocks of consecutive rC nucleotides, as found in the wild-type
template sequence, were clearly selected for in the context of
Library,77_473 and therefore appear to enhance telomerase
efficiency further.

Few mutant telomerase RNA templates induce a growth
arrest in S.cerevisiae

The incorporation of mutant sequences at the 3’ end of a
telomere can interfere with its capping function and can lead
to cell death (5,6,12,13,24). Since an inducible expression
system for mutant 7LCI genes using the GAL;_;o promotor
did not give satisfactory results (data not shown), we
employed a plasmid shuffling technique to recover mutant
library plasmids. This approach allowed us to screen for tic/
alleles that were recessive to wild-type TLCI but lethal
when expressed on their own. From a total of 60 000
transformants with Library,gg 47;, we obtained only two
candidates that reproducibly induced growth arrest in the
context of equilibrium-length telomeres (Fig. 3). This corres-
ponds to a frequency of 0.003%, even lower than that
determined in the complementation screen with Library,go_47;
(0.07%).

Since the applied selection scheme depends on a recessive
phenotype of the rlcl template mutation with respect to the
wild-type TLCI plasmid, we also determined the proportion of
Librarysg9_47; plasmids that show a dominant phenotype.
We observed no reduced viability upon transformation of
12 randomly chosen template library plasmids into 7LCI
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A

GA426 tic1-A

+ pRS314 @ + pSD107

il + pLET-2

WT TLC1 3-ACACACACCCACACCAC-5'
pLET-1  ACACGCACGCCGCGCAC
pLET-2  ACACACUACGCUUACAC

Figure 3. (A) Growth arrest can be induced by template mutant telomerase.
tlcI-A cells were transformed with the indicated plasmids well before the
onset of replicative senescence. (B) Two template sequences of death-
inducing template RNAs. The tetranucleotide 3’-ACGC-5’ is present in both
lethal templates, but also in complementing RNA templates from
Librarys77_473 (21, identical with 29) and Library,gg 471 (59). It is therefore
not solely responsible for the lethal effect.

wild-type cells. Thus, the level of mutant rlc/ genes in
Library,gg_47; with a dominant lethal growth phenotype is
likely to be <10% and can therefore not explain the low
frequency of plasmids in this library that complemented a tic!
deletion.

Template mutant telomerase RNAs are efficiently
assembled into telomerase enzymes

We examined whether mutant telomerase RNAs were effi-
ciently assembled into telomerase ribonucleoprotein com-
plexes with an IP-RT-PCR strategy. Since in all template
library plasmids an Ncol restriction site close to the T7LC!
template region is deleted, the mutant template RNAs can be
distinguished from wild-type TLC1 RNA in a mixed popu-
lation by digestion with Ncol. We transformed a strain
carrying a fusion gene of the telomerase catalytic subunit
(EST2) and protein A with Library,go_47;. The protein A-
tagged telomerase was immunoprecipitated from protein
extracts with IgG-coated beads (20,25) and the associated
RNA was reverse transcribed. A fragment around the TLC/
template region was amplified by PCR, digested with Ncol and
analyzed by gel electrophoresis (Fig. 4A). The wild-type
TLC1 RNA present in this strain served as a positive control
for the efficiency of the IP. We found that eight randomly
chosen template mutants were incorporated into telomerase
enzymes as efficiently as wild-type TLC1 (Fig. 4B). Thus, the
assembly of telomerase does not show sequence specificity

with regard to the template region. This is consistent with the
finding that the TLCI template region is dispensable for
assembly with the catalytic subunit, Est2p (26).

Enforced interaction of telomerase with the telomeres
does not increase the frequency of functional template
RNAs

Telomerase is recruited to or activated at telomeres through
the interaction of Estlp with Cdc13p (27-31). Fusions of the
open reading frames of telomerase components and CDCI3 or
its DNA-binding domain (CDC13pgp) force the interaction of
telomerase with the telomere and lead to vigorous telomere
elongation (27,32,33). We included two such fusion proteins,
Cdc13-Est2p (27) and Cdc13pgp—Est3p (32), in our screen for
growth arrest. If the mutant telomerases were inactive due to
an access defect, the CDCI3 fusion proteins should have
alleviated this problem.

In the presence of either Cdcl3 fusion protein, the
frequency of colonies that did not grow after counterselection
of the wild-type TLCI plasmid varied only slightly between
the empty vector (3.1 = 0.75%, n = 2), the wild-type plasmid
(23 * 03%, n= 2) and the Library480_47] (53 + 16%, n= 2)
Twenty-four colonies without an apparent growth defect after
counterselection of the wild-type TLCI plasmid were re-
streaked successively, and all showed senescence at the same
time as control clones with the empty vector (data not shown).
In addition, the overall transformation efficiency of the library
was not reduced by the introduction of the fusion proteins,
indicating that the frequency of dominant lethal template
mutations also did not increase.

The presence of the Cdcl3-telomerase fusion proteins
therefore does not rescue the in vivo incorporation defect seen
with the majority of the mutant templates in Library,go_471.
Telomere elongation in the presence of the Cdc13—telomerase
fusion proteins did occur in the presence of a wild-type TLC!
gene (Fig. 5, compare lane 1 with lanes 2-10). However, the
elongated telomeres became shortened in cells with the empty
vector or library plasmids after the wild-type TLC1 plasmid
had been shuffled out (Fig. 5, lanes 14-19).

Most templates in Librarysgo_47; do not lead to
incorporation of mutant sequences into the telomeres

The frequency at which candidate templates were obtained in
either of the two screens was <0.1% of Library,gg_47;. Since
the mutant tlcI RNAs were efficiently assembled into
telomerase enzymes and most likely not limited in their
access to the telomeres, we examined whether the telomeres
had acquired mutant sequences. We employed telomere-PCR
(21) to compare the telomere length of cells that contained
either a wild-type TLCI gene, an empty vector or a plasmid
from Library,go_47;. While the presence of wild-type TLCI
allowed normal telomere length maintenance (266 *= 18 nt,
n = 20), cells that had received an empty vector lacked
telomerase activity and consequently had significantly shorter
telomeres (179 = 34 nt, n = 20, shorter than wild-type TLCI
P < 0.001, r-test) 25 generations after a plasmid containing
wild-type TLCI had been shuffled out. The telomere length of
cells that contained a plasmid from Library,go 47, showed the
same extent of telomere shortening (188 = 34 nt, n = 20,
shorter than wild-type TLC1 P < 0.001, and shorter than empty
vector P > 0.4, t-test), and these mutant yeast cells senesced
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Figure 4. Template mutant RNAs are associated with Est2p. (A) Outline of the IP-RT-PCR experiment to assess the association of template mutant
telomerase RNAs with the telomerase catalytic subunit, Est2p. All yeast strains contained a wild-type TLC/ gene, which serves as internal control for IP
efficiency and as competitor for the assembly of the template mutant RNAs with Est2p in vivo. (B) All eight randomly chosen template mutants (mutants
1-8) from Librarysgg 471 are efficiently assembled into telomerase enzymes. Upper panel, PCR products can be obtained for both the endogenous wild-type
TLC1 RNA (cut with Ncol) and the template mutant TLC1 RNAs (larger, uncut fragment). TLC1 WT ANcol refers to a control mutation where the Ncol site
was abolished but the template sequence was left unchanged. Lower panel, PCR amplification of the immunopurified RNA without prior RT treatment to

reveal products due to DNA contamination.

upon further re-streaking. To rule out the possibility of very
low levels of mutant sequence incorporation, 12 telomeres
from four different template mutants were cloned but no
mutant sequences were recovered.

Non-functional template mutations affect the nucleotide
addition processivity of telomerase

We compared the in vitro telomerase activities of comple-
menting and non-complementing template mutants obtained
from Librarys;7_473. The candidates were taken from this

library because the same DNA oligonucleotide substrate,
d(TG);, can be used for all mutants. It presumably anneals
within the sequence “¥*ACACACA*’® which is present in all
mutant templates [note that in the context of a wild-type
template sequence, the nucleotides 4’°CAC*’7 and 473CAC*"!
are excluded for initial substrate annealing in vivo (19)].
Telomerase was prepared from cells carrying either the
wild-type TLCI gene, an empty vector, one of three non-
complementing telomerase RNA template mutants (chosen
from a random collection of individual mutant templates from
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Figure 5. Telomere length analysis by Southern blotting of cells expressing
a Cdc13ppp—Est3 fusion protein and various template mutant telomerase
RNAs. Except for the wild-type strain, three independent colonies were ana-
lyzed for each genotype. Genomic DNA was prepared 50-75 generations
after introduction of the Cdc13pgp—Est3 fusion protein. The library can-
didates were chosen at random. Lane 1, GA426 WT; lanes 2-4, YKF20 +
pVL1292 + pTLCI-URA3 + pSD107; lanes 5-7, YKF20 + pVL1292 +
pTLCI-URA3 + pRS314; lanes 8-10, YKF20 + pVL1292 + pTLC1-URA3 +
candidates from Library,gg 47;; lanes 11-13, YKF20 + pVL1292 + pSD107,
pTLCI-URA3 shuffled out; lanes 14-16, YKF20 + pVL1292 + pRS314,
pTLCI-URA3 shuffled out; lanes 17-19, YKF20 + pVL1292 + candidates
from Librarysgg 47;, pTLCI-URA3 shuffled out. Terminal restriction
fragments of the Y’-telomeres are indicated by the bracket on the right.

Library,;77_473) or one of three complementing telomerase
RNA template mutants. Strikingly, all three non-complement-
ing template mutants showed a reduced activity compared with
wild-type and complementing mutant telomerases (Fig. 6).

The low activity levels detected might have been caused by
the changed template sequence, resulting in a lower incorpor-
ation rate of the labeled nucleotide [compare, for example,
complementing mutant 2 in Figure 6 with labeled dTTP
(second panel) and labeled dGTP (third panel)]. We tested this
hypothesis by including labeled dATP in the reaction. The
non-complementing mutant templates tested in our assay all
contain an rU nucleotide at the first mutant position, which
should direct the incorporation of the labeled dATP. No
increased activity for the non-complementing mutants was
detected in these reactions (Fig. 7A), confirming an impaired
enzymatic activity.

Despite their reduced activity, the non-complementing
template mutant telomerases could add a single nucleotide
to the substrate DNA oligonucleotide (TG); (e.g. see Fig. 6,
second panel) and up to 3 nt to the substrate oligonucleotide
(GT); (Fig. 6, bottom panel). This activity was RNase
sensitive (Fig. 7B), absent in extracts from cells that had
received an empty vector instead of a TLC/ gene (e.g. Fig. 6,
second panel, first lane) and weak when labeled dGTP was
used in the reaction with the substrate (TG), (Fig. 6, third
panel). We therefore conclude that it represents bona fide
template-directed telomerase activity, strongly suggesting that
the processivity is perturbed in the mutant enzymes. This may
result either from an inefficient incorporation of dATP and
dCTP by telomerase or from an inability of the mutant
enzymes to perform structural transitions necessary to
advance to the next template position. It is unlikely that the
templating nucleotide 477U is solely responsible for the
enzymatic defect, as many complementing mutants from
Library,77_473 also contain the mutation 477U (Table 2).
Furthermore, we have shown previously that a *®A—U
mutation leads to the incorporation of dA into telomeres in vivo
(19), arguing that dATP can be a substrate for yeast
telomerase. The low frequency of functional template RNAs
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Figure 6. In vitro telomerase activity assays. The DNA oligonucleotide sub-
strate and the labeled dNTP are indicated on the left. TLCI template
mutants were selected from Library,;;7_473. The reactions contained all un-
labeled dNTP substrates at 50 uM and labeled dNTP substrates at 5 uM. The
template sequences were (mutant stretches underlined): random b “$*ACA-
CACAUGGAGACCAC*S, random h *“CACACAUAGUGACCAC*,
random L “*CACACAUCUAGACCAC*®, complementing 2 **CACACA-
GUGCCACCAC*8, complementing 6 *S*CACACACAUGCACCAC*® and
complementing 8 “*CACACAGACCCACCAC*8,

contained in Library,;7_473 and, most probably, Library,go_47;
therefore appears to be due to an impact of mutant template
sequences on telomerase nucleotide addition processivity.
While this reduced processivity is the most striking phenotype
of the template mutant telomerases, we cannot exclude
additional effects on, for example, the DNA substrate affinity
or the fidelity of the telomerase enzyme.

DISCUSSION

Functional requirements on the telomerase RNA
template sequence

Our template library screens reveal for the first time that only
a minor fraction of all possible template sequences will
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Figure 7. In vitro telomerase activity assays. (A) Control reactions contain-
ing both labeled dTTP and labeled dATP. No increased activity could be
detected for the non-complementing telomerase RNA template mutations
(random b, random h and random L). (B) The +1 band obtained in the
reactions with the non-complementing telomerase RNA template mutations
is RNase sensitive.

reconstitute active telomerase in S.cerevisiae. Functional
templates from Library,go_47; often contained the sequence
3’-C,_4(AC),_3-5" positioned at or near the template 5
boundary. This motif resembles the central *”’CCCAC*”3
and the 5’ template boundary *7'CCAC*8 of wild-type
TLC]I, indicating that these sequences play arole in telomerase
biochemistry that goes beyond their function as a passive
template for nucleotide addition. Analysis of template mutant
telomerases in vitro revealed that non-complementing tem-
plate mutations lead to reduced nucleotide addition proces-
sivity. Similar results were reported previously for
T.thermophila telomerase based on a series of site-specific
RNA template mutants (14-16). The present study not only
extends this notion to budding yeast, but also explores 60 000
different template sequences in parallel.

In wild-type TLCI, the nucleotides 4°?CAC*7 and
4BCAC*! are not available for telomere alignment but
become available for base pairing during reverse transcription.
In addition, the central 4’7CCC*’> trinucleotide is reverse
transcribed in a processive manner, while product dissociation
can occur 3" or 5 of this motif (19). Thus, the biochemical
properties of telomerase vary with the template position that is
being reverse transcribed. Also, defined changes in the
sequence of the RNA template could influence telomerase
activity. For example, the mutation 4°CCA**—GUG in
S.cerevisiae telomerase RNA gave rise to an inactive enzyme
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(18) when it was the only telomerase RNA species in the cell.
However, telomerase activity was restored even for the mutant
template in the context of wild-type/mutant enzyme hetero-
multimers. It is unclear at this point which enzymatic defect is
conveyed by this mutation. Whatever the rules governing the
properties of yeast telomerase may be, the reduced in vitro
processivity of the three template mutant telomerases tested in
our study indicates that the threading of subsequent template
nucleotides through the active site is very sensitive to changes
in the RNA template sequence. A previous study has shown
that a mutant yeast telomerase RNA specifying human
telomeric repeats is functional in vivo and leads to the
incorporation of human telomere repeats onto yeast chromo-
some ends (34). This mutation corresponds roughly to our
derived consensus as it contains several CCC trinucleotides.
However, since the putative total length of the template region
is longer, this mutant template sequence cannot be super-
imposed without prior assumptions onto the results obtained in
our study. Several point mutations in the budding yeast
telomerase catalytic subunit (Est2p) resulted in reduced
nucleotide addition processivity in vitro (35,36). It is not
clear whether these est2 mutations affect the same mechanism
as our RNA template mutations, especially since the
deficiency conferred by RNA template sequence changes is
far more pronounced.

Our screen also demonstrates that a stretch of successive rC
template nucleotides is not absolutely required for telomere
maintenance (see, for example, template 65 in Table 1)
and that the sequence 42CCAC*3 is not sufficient for
telomerase activity in vivo (complementation <100% with
Library477_473). The sequence requirements on the budding
yeast RNA template therefore must be more complex than the
minimal consensus found in our study. It is noteworthy that in
the context of the very long telomerase RNA template regions
of certain yeasts, the telomerase RNA templates do not need to
be particularly C/A rich (4,37).

The active templates identified in our screen may have been
subject to a further selection for telomerases that synthesize
DNA with binding sites for essential telomere-binding
proteins such as Raplp, Cdc13p and Estlp. While Cdc13p
provides essential end-protecting functions and recruits or
activates telomerase via its interaction with Estlp
(28,29,31,38-40), the binding of Raplp to the telomeres
negatively regulates extension (41-43). Thus, a fully func-
tional telomerase that does not incorporate Raplp-binding
sites into the telomere is predicted to lead to strong telomere
elongation. Mutant telomerase enzymes with this phenotype
can be obtained through single nucleotide substitutions in the
telomerase RNA template region (4,7,44), leading to rapid
telomere elongation by >2 kb within 50 generations (7,44). In
contrast, almost all of the complementing template mutations
identified in our screen of Library,go_471 resulted in shortened
telomeres. Since it is unlikely that all the corresponding
mutant telomere sequences result in increased Rap1p binding,
we propose that the mutant telomerases do not obtain the full
activity of the wild-type enzyme. This hypothesis is cor-
roborated by the reduced in vitro nucleotide addition
processivity of non-complementing template mutant telo-
merases. On the other hand, incorporated mutant telomere
sequences that lead to reduced binding of Cdc13p (a complete
lack of Cdc13p binding should be lethal) may decrease the
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recruitment or activation of telomerase. Even in the context of
a Cdcl3pgp—telomerase fusion protein, this could have
prevented the generation of long stretches of mutant telomeric
DNA and thus may have limited the number of complement-
ing RNA template sequences recovered in our screens.

Has the need for C/A-rich template RNAs contributed to
the conservation of the telomeric repeat sequences?

The relatively strong conservation of the telomeric repeat
sequence during evolution is an unusual feature for non-
coding DNA. The propensity of single-stranded telomeric
DNA from most species to form stable secondary structures
based on G—G pairing has been proposed to play a protective
role at the chromosome end. Loss of the telomeric 3" single-
stranded extensions correlates with loss of end protection (45),
and experimentally induced chromosome end-to-end fusions
occurred preferentially at telomeres replicated by the leading
strand machinery (46), which leaves blunt ends after replica-
tion. This putative protective function of the telomere
sequence could certainly explain its conservation.

On the other hand, the template sequence dependence of
telomerase activity described here may also limit the diver-
gence of telomeric sequences during evolution. Consistent
with this hypothesis, the telomeres of Drosophila melano-
gaster, which are maintained by retrotransposition rather than
telomerase, are not G/T rich [reviewed by Pardue et al. (47)
and Louis (48)]. Their chromosome ends nonetheless are
specifically recognized and protected since mutations in a
telomere-binding protein lead to chromosome end-to-end
fusions (49). This indicates that telomere capping can be
achieved without the help of G-rich DNA secondary structures
and that telomere sequences can, in principle, deviate from the
T/G-rich consensus. Our template library screen has revealed
that extensive changes of the budding yeast telomerase RNA
template sequence most probably result in non-functional
telomerase enzymes. If this specialization of the TERT
enzyme for a C/A-rich RNA template is conserved in other
telomerases, it may give an alternative explanation for the
conservation of the telomere sequence.
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