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ABSTRACT 
 
 
De La Vega, Alejandro Isaac (Ph.D., Psychology and Neuroscience) 
Large-scale meta-analytic cartography of human frontal cortex 
Thesis directed by Professor Marie T. Banich 
 
 

The field of human brain mapping has made immense progress in recent 

years by making tens of thousand associations between the brain and psychological 

states using functional magnetic resonance imaging (fMRI). However, there is a 

growing appreciation of the limited ability to determine the specificity between 

brain-cognition mappings in individual studies. Without surveying a diverse range 

of psychological states, it is difficult to know if a brain region is preferentially 

recruited by a given state, or a more domain-general process that underlies it. In a 

related issue, several recent efforts have attempted to find the fundamental 

computational units of the brain by using statistical learning techniques to identify 

discrete regions on the basis of properties that constrain information processing, 

such as connectivity. However, it’s not clear how well these brain atlases describe 

the high-level functional organization of the brain. 

In this dissertation, I apply relatively unbiased data-driven methods to a 

database of nearly 12,000 fMRI studies to comprehensively map psychological 

states to discrete regions in human frontal cortex– a complex, high-level association 

area of the brain. On the basis of activation patterns across studies, I identify 

functionally distinct whole-brain networks composed of spatially contiguous 

subregions. While each network exhibits distinct functional associations, subregions 
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within each network show much more similar, yet dissociable profiles. In contrast 

with strong localizationist accounts, we find distributed associations between 

psychological states and brain anatomy, suggesting moderate functional selectivity 

in many parts of frontal cortex.  

In the last section, I quantitatively assess various approaches for clustering 

the brain into discrete regions by comparing novel meta-analytic atlases to existing 

brain atlases from other brain modalities. Across a variety of metrics, I find 

evidence that meta-analytic atlases are robust and may provide a better account of 

the task-dependent organization of the brain than atlases from other brain 

modalities. I conclude by discussing future approaches for using large-scale meta-

analysis to better understand how the brain gives rise to psychological function.  
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   CHAPTER I 
 

Introduction 

 

 A fundamental goal of cognitive neuroscience is to precisely map the 

computational processes performed by anatomically discrete regions in the human 

brain. Although a precise ‘cartography’ is not sufficient for understanding brain 

function, it allows researchers to formulate mechanistic theories of information 

processing across the brain (Friston, 2002). Functional cartography, or human brain 

mapping, began by making associations between behavioral changes in response to 

focal brain lesions and has enjoyed great success in revealing specific patterns of 

functional specialization throughout the brain. Further progress was also made by 

systematically mapping the electrical response of neurons in animals using invasive 

electrophysiological methods. For example, in a hallmark study, Hubel and Wiesel 

mapped the structural and functional architecture of cat primary visual cortex, 

discovering orientation selective neurons in V1 (Hubel & Wiesel, 1962).  

 The advent of functional magnetic resonance imaging (fMRI) (Kwong et al., 

1992) enabled an explosion of human brain mapping by allowing researchers to 

measure the whole brain’s response to a relatively unconstrained range of 

psychological phenomena. In the decades since, tens of thousands of studies have 

correlated individual activation foci to carefully controlled psychological states to 

understand the localization of specific psychological states. Moreover, structural 

and functional connectivity imaging methods have precisely characterized the 

anatomical and functional connectivity between brain regions, revealing complex 

whole-brain networks underlying human behavior.  
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The importance of large-scale approaches in cognitive neuroscience 

 Despite the enormous amount of fMRI studies that have been conducted, 

there are several roadblocks that prevent a comprehensive understanding of 

functional-anatomical mappings. A significant limitation inherent to fMRI is a 

relatively low signal to noise ratio (SNR). As a consequence, the majority of 

published fMRI studies are vastly underpowered and report a large number of false-

positives and inflated effect sizes (Button et al., 2013; Wager, Lindquist, & Kaplan, 

2007; Yarkoni, 2009). In fact, the average fMRI study has only around 20% power to 

detect a medium sized effect (Yarkoni, 2009). Moreover, traditional fMRI analysis 

techniques conduct what are called ‘mass univariate’ analyses at the smallest unit 

in imaging: the voxel. After correcting for multiple comparisons, the spatial maps 

resulting from these techniques comprise a small subset of the true underlying 

brain signal correlated with the psychological state of interest.  

 A critical analysis technique that helps overcome some of these shortcoming 

is quantitative meta-analysis (Wager et al., 2007). In meta-analysis, individual peak 

coordinates are extracted from multiple studies that purportedly engaged 

participants in similar psychological states. These peaks quantitatively combined to 

determine the regions significantly associated with the psychological phenomena of 

interest. For example, Shackman et al., 2011 used a meta-analysis to map the 

anatomical overlap between pain, negative affect, and cognitive control. Shackman 

found evidence that these three processes engaged an overlapping section of 

anterior midcingulate cortex (aMCC) and in conjunction with anatomical and 

electrophysiological evidence argued that pain and negative affect signal the need to 

adaptively change motor plans to avoid future negative outcomes. 
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 Although meta-analyses allow for fine-grained testing of functional-

anatomical hypotheses, without surveying a wide range of unrelated psychological 

states, it is possible to fall prey to what has been dubbed the ‘reverse inference’ 

problem (Poldrack, 2006). Traditional fMRI studies are designed to infer the 

probability of brain activity given the psychological states induced in the study– or 

what is known as ‘forward inference’ [P(activity|state)]. In contrast, true ‘reverse 

inference’ requires determining which psychological states are probable given a 

pattern of brain activity [P(state|activity)]. However, to conduct a proper reverse 

inference, it is necessary to survey a wide range of unrelated psychological states to 

determine the specificity between activity in a given brain region and a 

Figure 1.1 Negative affect, 
pain and cognitive control 
activate a common region 
within the aMcc. The map 
depicts the results of a meta-
analysis  of 380 activation foci 
derived from 192 experiments 
and involving more than  
3,000 participants. The 
uppermost panel shows the 
spatially normalized foci for 
each domain. The next panel 
shows thresholded activation 
likelihood estimate (ALE) 

maps for each domain 
considered in isolation. The 
two lowest panels depict the 
region of overlap across the 
three domains. Reproduced 
from Shackman et al. 2011 
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psychological state. This is particularly problematic as the base rate of activation 

varies widely across the brain (Figure 1.2). Certain regions, like anterior 

midcingulate cortex are active in such a large proportion of studies that it is very 

difficult to determine if specific psychological states (such as pain, negative affect 

and cognitive control) preferentially recruit this region.  

 

Figure 1.2. Frequency of activation across the brain. For each voxel across 
the brain, I display the proportion of studies in which it’s active. Regions critical for 
goal-directed cognition, such as medial and dorsolateral prefrontal cortex, exhibit 
high rates of activation, in turn making it difficult to determine which states 
preferentially recruit them. Lighter colors represent greater activation rates.  
 
 Fortunately, there has been a recent growth in the development of large-

scale meta-analysis frameworks, such as Neurosynth (Yarkoni, Poldrack, Nichols, 

Van Essen, & Wager, 2011) and BrainMap (Laird, Lancaster, & Fox, 2005), which 

Dorsolateral 
prefrontal

Medial
prefrontal

Percentage of studies active
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allow researchers to more formally formulate ‘reverse inferences’. This is 

particularly true of the Neurosynth framework, as it was specifically designed to 

scale as the literature grows by automatically extracting activation coordinates and 

semantic meta-data of fMRI studies. As of 2016, Neurosynth includes over 11,000 

fMRI studies, encompassing a diverse range psychological manipulations. By widely 

surveying across the psychological literate, large-scale meta-analysis allows 

researchers to quantitatively determine the specificity of brain-behavior 

relationships.   

 To demonstrate the importance of appropriately modeling reverse inference, 

we recreated Shackman’s (2011) meta-analysis using forward inference– akin to a 

traditional meta-analysis– using Neurosynth. Similar to Shackman (2011), we find 

overlap between pain, negative affect and cognitive control in aMCC (Figure 1.3a; 

overlap shown in white). However, we also find a very similar pattern of overlap 

when we perform a forward inference analysis of three theoretically unrelated 

psychological states: ‘social cognition’, ‘vision’ and ‘long term memory’ (Figure 1.3b). 

This demonstration highlights the importance of large-scale meta-analyses that 

appropriately quantify preferential psychological recruitment across the brain.  

  

Figure 1.3. a) Forward inference meta-analysis of pain, negative affect and 
cognitive control, showing distinct overlap in anterior midcingulate cortex (aMCC). 
b) Forward inference meta-analysis of three theoretically unrelated constructs 
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(social cognition, vision and long term memory) shows similarly striking overlap in 
aMCC. Overlap is indicated in white.   
 
Finding the right brain units 

 A related problem facing cognitive neuroscience is determining how the 

brain’s complex anatomy is spatially organized into units that give rise to 

psychological function. It is of great interest to define functionally dissociable units 

as this can facilitate the formulation of theories linking brain to behavior (Poldrack 

& Yarkoni, 2016). Much progress has been made on this front by using data-mining 

techniques on a variety of brain data from various modalities. For example, a 

particularly popular strategy has been to apply unsupervised learning algorithms to 

connectivity data that describes either the anatomical connections (Beckmann, 

Johansen-Berg, & Rushworth, 2009; Johansen-Berg et al., 2004) or temporal 

correlations in fMRI signal (i.e. functional connectivity; Craddock, James, 

Holtzheimer, Hu, & Mayberg, 2012; Shen, Tokoglu, Papademetris, & Constable, 

2013; Yeo et al., 2011). These methods have greatly informed our understanding of 

the organization of the brain, revealing large-scale brain networks that were not 

previously widely appreciated (Figure 1.4).  

 

Figure 1.4. 
Seven-whole 
brain networks 
estimated from 
intrinsic 
functional 
connectivity in 
resting state 
fMRI. Reproduced 
from Yeo et al., 
(2011).  

 



 

              7 
 
 

  

 However, a shortcoming of these brain-centric methods is that they are 

generally void of functional data linking brain units to distinct psychological states. 

As such, these methods cannot directly speak to the psychological function of these 

brain regions. Moreover, it is not clear if the units derived from these various brain 

measures are necessarily the units that best explain the functional differences 

observed during behavioral performance in task-related fMRI.   

 

Dissertation overview 

 In the present dissertation, I seek to advance large-scale meta-analytic 

techniques by making a link between psychological function and anatomical brain 

units in three investigations. In the first two investigation, I use unsupervised data-

driven techniques to identify spatially distinct regions in medial and lateral frontal 

cortex (Chapter 2 and 3, respectively) on the basis of co-activation patterns across a 

wide variety of fMRI studies. I then use classification techniques to decode the 

psychological states that best predict activity for each region, revealing theoretically 

informative brain-behavior mappings. I chose to study frontal cortex as the topology 

of psychological states is less well understood in higher-level association cortex. 

Moreover, as a consequence of frontal cortex being centrally involved in a wide 

variety of behaviors, the base rate of activation in certain frontal regions is very 

high and particularly vulnerable to the ‘reverse inference’ problem. These two 

studies provide comprehensive and relatively unbiased functional-anatomical 

mappings of human frontal cortex.  

 In the final chapter, I evaluate the quality of various strategies for meta-

analytic parcellation and compare the utility of these meta-analytic brain atlases to 

those derived from other brain modalities. In an effort to objectively choose ‘the 
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right brain units’, I use classification to evaluate how well brain atlases from 

different modalities are able to predict psychological states. In this study, I find 

evidence that meta-analytically derived atlases may provide a more accurate and 

useful representation of the underlying functional-anatomical organization of the 

human brain than those derived from various other modalities. I conclude this 

dissertation with brief concluding remarks summarizing the contributions of the 

present studies.    
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CHAPTER 2 

 

Large-scale meta-analysis of human medial frontal cortex reveals 

tripartite functional organization 

 

 The medial frontal cortex (MFC) is purported to play a key role in a number 

of psychological processes, including motor function, cognitive control, emotion, pain 

and social cognition. However, the precise correspondence of psychological states 

onto discrete medial frontal anatomy remains elusive. Several recent attempts to 

define distinct functional sub-regions of MFC have been based on morphology 

(Palomero-Gallagher, Zilles, Schleicher, & Vogt, 2013; Vogt, 2016) in-vivo structural 

connectivity (Beckmann et al., 2009; Johansen-Berg et al., 2004; Neubert, Mars, 

Thomas, Sallet, & Rushworth, 2014; Sallet et al., 2013) and functional connectivity 

(Andrews Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010). Although such 

studies map key properties which constrain information processing in MFC, it’s 

unclear if these boundaries correspond to patterns of brain activity observed during 

behavioral performance (Amunts & Zilles, 2015; Eickhoff et al., 2007; Mattar, Cole, 

Thompson-Schill, & Bassett, 2015). Moreover, as these methods do not measure the 

brain’s response to various psychological challenges, they cannot directly identify 

the (potentially separable) functional associates of MFC sub-regions. 

To this end, task-based functional MRI (fMRI) has suggested that distinct foci 

of MFC activation may be associated with specific psychological manipulations. For 
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example, the supplementary motor area (SMA) and pre-SMA have been associated 

with the planning and initiation of movements (Kennerley, Sakai, & Rushworth, 

2004; Leek & Johnston, 2009; Roland, Larsen, Lassen, & Skinhøj, 1980), while 

midcingulate cortex (MCC) has been implicated in various aspects of cognitive 

control (Botvinick, Nystrom, Fissell, Carter, & Cohen, 1999; Brown & Braver, 2005; 

Holroyd et al., 2004; Milham et al., 2001; Shenhav, Botvinick, & Cohen, 2013), fear 

(Etkin, Egner, & Kalisch, 2011; Milad et al., 2007; B. A. Vogt & Vogt, 2003), and 

pain processing (Rolls et al., 2003; B. A. Vogt, 2016; Wager et al., 2013). Further 

anterior, medial prefrontal cortex (mPFC) and the rostral anterior cingulate cortex 

(rACC) have been associated with a affective processes, including emotion (Etkin et 

al., 2011; K. A. Lindquist, Wager, Kober, Bliss-Moreau, & Barrett, 2012), autonomic 

function (Critchley et al., 2003), and valuation (Hare, Camerer, & Rangel, 2009), as 

well as internally oriented processes, such as mentalizing (Baumgartner, Götte, 

Gügler, & Fehr, 2012) and autobiographical memory (Spreng & Grady, 2010)  

Despite the large number of neuroimaging studies, there have been few large-

scale efforts to comprehensively map the full range of psychological functions onto 

medial frontal anatomy. Most meta-analyses are restricted to a subset of empirical 

findings relevant to candidate cognitive states hypothesized to be important (e.g. 

negative affect, pain, cognitive control; Shackman et al., 2011) or a specific 

anatomical region of interest (e.g., Palomero-Gallagher et al., 2015). This relatively 

narrow scope limits the ability to address the specificity of activation of 

psychological states across the MFC more broadly. That is, without considering a 
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wide representative range of psychological states, it is difficult to determine 

whether particular psychological processes preferentially recruit specific 

subdivisions of MFC. This limitation, widely known as the reverse inference 

problem (Poldrack, 2006), is particularly acute for portions of MFC which commonly 

activate in a large proportion of fMRI studies, raising questions about whether 

these regions are selectively involved in specific mental functions (Nelson, 

Dosenbach, Cohen, Wheeler, Schlaggar, & Petersen, 2010a; Yarkoni et al., 2011).   

Here we address these issues by creating a comprehensive mapping between 

psychological states and MFC anatomy using Neurosynth (Yarkoni et al., 2011), a 

framework for large-scale fMRI meta-analysis composed of nearly 10,000 studies. 

We first clustered MFC voxels into functionally separable regions at several spatial 

scales based on their co-activation across studies with the rest of the brain (Kober et 

al., 2008; Robinson, Laird, Glahn, Lovallo, & Fox, 2010; S. M. Smith et al., 2009; 

Toro, Fox, & Paus, 2008). In contrast to cytoarchitechtonic and connectivity based 

parcellations, the present analysis identified clusters with distinct signatures of 

activation across a wide range of psychological manipulations. This procedure 

revealed three zones along the rostro-caudal axis that further fractionated into nine 

sub-regions. We then characterized each cluster’s functional profiles using 

multivariate classification, revealing broad functional shifts between the three 

zones, and subtler variations between their corresponding sub-regions. Collectively, 

our results provide a comprehensive functional map of the human MFC using 

relatively unbiased data-driven methods. 
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Materials & Methods 

 
Figure 2.1. Methods overview. A) Whole brain co-activation of MFC voxels was 
calculated and k-means clustering was applied resulting in spatially distinct 
clusters. B) For each cluster, thresholded whole-brain co-activation maps were 
generated. C) We generated functional preference profiles for each cluster by 
determining which psychological topics best predicted their activation. 
 

 Database. We analyzed version 0.4 of the Neurosynth database, (Yarkoni 

et al., 2011), a repository of 9,721 fMRI studies and over 350,000 activation peaks 

that span the full range of the published literature. The studies included human 

subjects of either sex. Each observation contains the peak activations for all 

contrasts reported in a study’s table as well as the frequency of all of the words in 

the article abstract. A heuristic but relatively accurate approach is used to detect 

and convert reported coordinates to the standard MNI space (see: Yarkoni et al., 

2011). As such, all activations and subsequent analyses are in MNI152 coordinate 
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space. The scikit-learn Python package (Pedregosa et al., 2011) was used for all 

machine learning analyses. Analyses were performed using the core Neurosynth 

python tools (https://github.com/neurosynth/neurosynth); code and data to replicate 

these analyses on any given brain region at any desired spatial granularity are 

available  

as a set of IPython Notebooks (https://github.com/adelavega/neurosynth-mfc).  

 Co-activation-based clustering. We clustered individual voxels inside of 

a MFC mask based on their meta-analytic co-activation with voxels in the rest of 

the brain (Figure 2.1A). First, we defined a MFC mask excluding voxels further 

than 10mm from the midline of the brain, posterior to the central sulcus (Y < -

22mm) and ventral to vmPFC (Z < -32mm). Next, we removed voxels with low grey 

matter signal by excluding voxels with either fewer than 30% probability of grey 

matter cortex according to the Harvard-Oxford anatomical atlas, or very low 

activation rates in the database (less than 80 studies per voxel). In general, 

Neurosynth’s activation mask (derived from the standard MNI152 template 

distributed with FSL) corresponded highly with probabilistic locations of cerebral 

cortex, with the exception of portions of precentral gyrus and far ventromedial 

prefrontal cortex– which showed low activation although they were more than 50% 

likely to be in cerebral cortex.  

Next, we calculated the co-activation of each MFC voxel with the rest of the 

brain by correlating the target voxel’s activation pattern across studies with the rest 

of the brain. Activation in each voxel is represented as a binary vector of length 
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9,721 (the number of studies). A value of 1 indicated that the voxel fell within 10 

mm of an activation focus reported in a particular study, and a value of 0 indicated 

that it did not. Because correlating the activation of every MFC voxel with every 

other voxel in the brain would result in a very large matrix (15,259 MFC voxels x 

228,453 whole-brain voxels) that would be computationally costly to cluster, we 

reduced the dimensionality of the whole brain to 100 components using principal 

components analysis (PCA; the precise choice of number of components does not 

materially affect the reported results). Next, we computed the Pearson correlation 

distance between every voxel in the MFC mask with each whole-brain PCA 

component. We applied k-means clustering to this matrix (15,259 MFC voxels x 100 

whole-brain PCA components) to group the MFC voxels into 2-15 clusters. K-means 

was used for clustering as this algorithm is computationally efficient, widely used, 

and shows reasonably high goodness-of-fit characteristics (Thirion, Varoquaux, 

Dohmatob, & Poline, 2014). We used the k-means++ initialization procedure, ran 

the algorithm 10 times on different centroid seeds and selected the output of these 

consecutive runs with the lowest inertia to avoid local minima. 

Since the optimality of a given clustering depends in large part on 

investigators’ goals, the preferred level of analysis, and the nature and 

dimensionality of the available data, identifying the ‘correct’ number of clusters is 

arguably an intractable problem (Eickhoff, Thirion, Varoquaux, & Bzdok, 2015; 

Poldrack & Yarkoni, 2016; Varoquaux & Thirion, 2014). However, in the interest of 

pragmatism, we attempted to objectively select the number of clusters using the 
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silhouette score, a measure of within-cluster cohesion. The silhouette coefficient was 

defined as (b – a) / max(a, b), where a is the mean intra-cluster distance and b is the 

distance between a sample and the nearest cluster of which the sample is not a 

part. Solutions that minimized the average distance between voxels within each 

cluster received a greater score. To estimate the uncertainty around silhouette 

scores, we used a permutation procedure previously employed by our group (Wager, 

Davidson, Hughes, Lindquist, & Ochsner, 2008).  

To understand the anatomical correspondence of the resulting clusters, we 

calculated the probability of voxels in each cluster of occurring in probabilistic 

regions from the Harvard-Oxford atlas (H-O). We refer to H-O’s Juxapositional 

Lobule Cortex as Supplementary Motor Area (SMA) for consistency. We also 

compared the location of clusters to regions from cytoarchitechtonic atlases of 

medial motor areas (Picard & Strick, 1996), mid-cingulate cortex (B. A. Vogt, 2016) 

and vmPFC (S. Mackey & Petrides, 2014). To be precise, sub-regions in the nine-

cluster solution were given alphanumeric labels in addition to descriptive names.   

 Co-activation profiles. Next, we analyzed the differences in whole brain 

co-activation between the resulting clusters (Figure 2.1B). To highlight differences 

between clusters, we contrasted related sets of clusters. For the three-cluster 

solution, we contrasted the co-activation of each cluster (e.g. ‘posterior zone’) with 

the other two clusters (e.g. ‘middle’ and ‘anterior’ zones). For the nine-cluster 

solution, we contrasted the co-activation of each cluster (e.g. ‘SMA’) with spatially 

adjacent clusters that fell within the same zone of the three-cluster solution (e.g. 
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‘pre-SMA’).  To do so, we performed a meta-analytic contrast between studies that 

activated a given cluster and studies that activated control clusters. The resulting 

images identify voxels with a greater probability of co-activating with the cluster of 

interest than with control clusters. For example, voxels in grey in the first panel of 

Figure 2.3B indicate voxels that are active more frequently in studies in which SMA 

[P1] is active than in studies in which pre-SMA [P2] is active. We calculated p-

values for each voxel using a two-way chi-square test between the two sets of 

studies and thresholded the co-activation images using the False Discovery Rate (q 

< 0.01). The resulting images were binarized for display purposes and visualized 

using the NiLearn library for Python.  

 Topic modeling. Although term-based meta-analysis maps in Neurosynth 

closely resemble the results of manual meta-analyses of the same concepts, there is 

a high degree of redundancy between terms (e.g. ‘episodes’ and ‘episodic’), as well as 

potential ambiguity as to the meaning of an individual word out of context (e.g. 

‘memory’ can indicate working memory or episodic memory). To remedy this 

problem, we employed a reduced semantic representation of the latent conceptual 

structure underlying the neuroimaging literature: a set of 60 topics derived using 

latent dirichlet allocation (LDA) topic-modeling (Blei, Ng, & Jordan, 2003). This 

procedure was identical to that used in a previous study (Poldrack, Mumford, 

Schonberg, Kalar, Barman, & Yarkoni, 2012b), except for the use of a smaller 

number of topics and a much larger version of the Neurosynth database. The 

generative topic model derives 60 independent topics from the co-occurrence across 



 

              17 
 
 

studies of all words in the abstracts fMRI studies in the database. Each topic loads 

onto individual words to a varying extent, facilitating the interpretation of topics; 

for example, a working memory topic loads highest on the words 'memory, WM, 

load', while an episodic memory topic loads on 'memory, retrieval, events'. Note that 

both topics highly load on the word “memory”, but the meaning of this word is 

disambiguated because it is contextualized by other words that strongly load onto 

that topic. Out of the 60 topics, we excluded 25 topics representing non-

psychological phenomena– such as the nature of the subject population (e.g. gender, 

special populations) and methods (e.g., words such as “images”, “voxels”)— resulting 

in 35 psychological topics. See Table 1 for a list of topics most associated with MFC.  

Topic definitions 

Topic name Highest loading words 

gaze eye gaze movements eyes visual saccades saccade target  

decision-making decision choice risk decisions choices uncertainty outcomes risky  

episodic memory events imagery autobiographical retrieval episodic memories future  

motor  motor movement movements sensorimotor primary finger control imagery  

social social empathy moral person judgments mentalizing mental theory  
reward reward anticipation monetary responses rewards motivation motivational loss  

switching cues target trials cue switching stimulus targets preparation  

conflict conflict interference control incongruent trials stroop congruent cognitive  

inhibition inhibition control inhibitory stop motor trials nogo cognitive  
fear fear anxiety threat responses conditioning cs extinction autonomic  

WM memory performance cognitive wm tasks verbal load executive 

pain pain painful stimulation somatosensory intensity noxious heat nociceptive  

Table 2.1. Topics most strongly associated with MFC regions used in 
Figure 2.4. Ten strongest loading words for each topic are listed, in descending 
order of association strength.  
 

 Meta-analytic functional preference profiles. We generated functional 

preference profiles by determining which psychological topics best predicted each 

MFC cluster’s activity across fMRI studies (Figure 2.1C). First, we selected two sets 
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of studies: studies that activated a given cluster—defined as activating at least 5% 

of voxels in the cluster– and studies that did not– defined as activating no voxels in 

the cluster. For each cluster, we trained a naive Bayes classifier to discriminate 

these two sets of studies based on psychological topics. We chose naive Bayes 

because (i) we have previously had success applying this algorithm to Neurosynth 

data (Yarkoni et al., 2011); (ii) these algorithms perform well on many types of data 

(Androutsopoulos, Koutsias, & Chandrinos, 2000); (iii) they require almost no 

tuning of parameters to achieve a high level of performance; and (iv) they produce 

highly interpretable solutions, in contrast to many other machine learning 

approaches (e.g., support vector machines or decision tree forests). 

We trained models to predict whether or not fMRI studies activated each 

cluster, given the semantic content of the studies. In other words, if we know which 

psychological topics are mentioned in a study how well can we predict whether the 

study activates a specific region? We used 4-fold cross-validation for testing and 

calculated the mean score across all folds as the final measure of performance. We 

scored our models using the area under the curve of the receiver operating 

characteristic (AUC-ROC) –a summary metric of classification performance that 

takes into account both sensitivity and specificity. AUC-ROC was chosen because 

this measure is not detrimentally affected by unbalanced data (Jeni, Cohn, & la 

Torre, 2013), which was important because each region varied in the ratio of studies 

that activated it to the studies that did not.  
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To generate functional preference profiles, we extracted from the naive Bayes 

models the log odds-ratio (LOR) of a topic being present in active studies versus 

inactive studies. The LOR was defined as the log of the ratio between the 

probability of a given topic in active studies and the probability of the topic in 

inactive studies, for each region individually. LOR values above 0 indicate that a 

psychological topic is predictive of activation of a given region. To determine the 

statistical significance of these associations, we permuted the class labels and 

extracted the LOR for each topic 1000 times. This resulted in a null distribution of 

LOR for each topic and each cluster. Using this null distribution, we calculated p-

values for each pairwise relationship between psychological concepts and regions, 

and reported associations significant at the p<0.001 threshold. Finally, to determine 

if certain topics showed greater preference for one cluster versus another, we 

conducted exploratory, post-hoc comparisons by determining if the 95% confidence 

intervals (CI) of the LOR of a specific topic for a one region overlapped with the 95% 

CI of the same topic for another region. We generated CIs using bootstrapping, 

sampling with replacement and recalculating log-odds ratios for each region 1000 

times.  
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Figure 2.2. Co-activation-based clustering of MFC results. A) Mid-sagittal 
view at three levels at granularity: three broad zones, nine and twelve sub-regions. 
Clusters in nine sub-region solution are given both descriptive and alphanumeric 
names for reference. SMA: supplementary motor area. pre-SMA: pre-supplementary 
motor area; MCC: midcingulate cortex. pgACC: pre-genual anterior cingulate 
cortex; dmPFC: dorsal medial PFC; vmPFC: ventromedial PFC. B) Axial view of 
nine sub-regions. C) Silhouette scores of real (green) and permuted (blue) clustering 
solutions. Clustering was performed on permuted data 1000 times for each k to 
compute a null distribution (p-values for all clusters < .001). Silhouette scores 
reached local maxima at 3 regions and plateaued after 9.   

 

Results 

 Functionally separable regions of medial frontal cortex. We 

identified spatially dissociable regions on the basis of shared co-activation profiles 

with the rest of the brain (Chang, Yarkoni, Khaw, & Sanfey, 2013; Kober et al., 

2008; S. M. Smith et al., 2009; Toro et al., 2008), an approach that exploits the 

likelihood of a voxel co-activating with another voxel across studies in the meta-

analytic database (Figure 2.2). Because structure-to-function mappings can be 

identified at multiple spatial scales, we iteratively extracted 2- through 15-cluster 
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solutions and assessed their validity using the silhouette score—a commonly used 

measure of inter-cluster coherence. Permutation analyses indicated that the null 

hypothesis of random clustering could be rejected for all solutions, with silhouette 

scores reaching local maxima at 3 clusters (Figure 2.2C). The plateauing of 

silhouette scores suggests that there is little objective basis for selecting one 

solution over another past around 9 clusters (Thirion et al., 2014). We have 

therefore opted to focus on the 3-cluster and 9- cluster solutions because they 

provide greater theoretical parsimony than more fine-grained solutions. 

At the coarsest level, MFC divided into three broad bilateral clusters 

organized along the rostral-caudal axis. The nine-cluster solution revealed 

additional fine-grained topographical organization, with each of the three major 

zones fractionating into 2-4 smaller regions (84% of all voxels within each zone 

overlapped with its putative sub-regions). We henceforth refer to the clusters from 

the 3-cluster solution as “zones” to differentiate them from clusters in the 9-cluster 

solution, which we refer to as “sub-regions”.   

To better understand the anatomical location of our clusters, we compared 

them to previously defined sub-regions from the Harvard-Oxford (H-O) probabilistic 

structural atlas and well-known cytoarchitechtonic studies. Although we did not 

necessarily expect our clusters to conform precisely to morphologically derived 

regions, we nonetheless observed moderate correspondence– suggesting 

morphological properties constrain, but not determine function. Within the 

posterior zone, we identified two clusters (Figure 2.2A; SMA [P1] & pre-SMA[P2]) 
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with a high probability of occurring in SMA according to H-O. The two clusters were 

approximately delineated by the vertical commissure anterior (VCA), consistent 

with cytoarchitechtonic delineations (Picard and Strick, 1996). However, SMA [P1] 

spanned multiple cytoarchitechtonic areas– extending ventrally to include portions 

of Picard & Strick’s cingulate zones– suggesting these morphologically distinct 

areas co-activate similarly across tasks.   

In the middle zone, we identified four clusters consistent with midcingulate 

cortex (MCC). In particular, two anterior and two posterior clusters delineated from 

each other a few millimeters anterior to the VCA, consistent with Vogt’s definition 

of anterior and posterior midcingulate cortex (B. A. Vogt, 2016). The two dorsal 

clusters (pdMCC [M1] & adMCC [M2]) showed a high probability of falling within 

H-O’s paracingulate gyrus, whereas the two ventral clusters (pvMCC [M3] & 

avMCC [M4]) showed a high probability of falling in the cingulate gyrus proper. 

Unlike some cytoarchitechtonic studies, we did not identify any regions exclusively 

located in the cingulate sulcus, such as the rostral cingulate zone.  

In the anterior zone, the most dorsal cluster (dmPFC [A1]) included medial 

aspects of H-O’s frontal pole and superior frontal gyrus, and was entirely outside of 

the anterior cingulate gyrus. Ventrally, we identified a second cluster (pgACC [A2]) 

which was primarily located within pregenual aspects of the anterior cingulate 

gyrus, but also included pregenual portions of paracingulate gyrus. Finally, the 

most ventral cluster (vmPFC [A3]) encompassed both pregenual aspects of the ACC 
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and medial OFC, similar to the vmPFC area of interest used in cytoarchtechtonic 

studies (Mackey and Petrides, 2014).  

Next, to provide direct insight into the functions of the clusters we identified, 

we applied two approaches. First, we determined which other brain regions co-

activate with each cluster, in order to reveal their functional networks. Second, we 

used semantic data from Neurosynth to determine which psychological states 

predict the activation of each cluster. 

 

 

Figure 2.3. Meta-analytic co-activation contrasts for (A) three zones and B) nine 
sub-regions. Colored voxels indicate significantly greater co-activation with the seed 
region of the same color (at right) than control regions in the same row. The three 
zones showed distinct co-activation patterns, while sub-regions within each zone 
showed fine-grained co-activation differences. Images are presented using 
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neurological convention and were whole-brain corrected using a false discovery rate 
(FDR) of q = 0.01. Major subcortical structures are labeled; Thal: thalamus, Hipp: 
hippocampus; Amyg: amygdala; DS: dorsal striatum; VS: ventral striatum. 
 

 Meta-analytic co-activation profiles. We directly contrasted co-

activation patterns of the three functional zones– i.e., we sought to identify voxels 

that co-activated to a stronger degree with each zone than with the other two 

(Figure 2.3A). The posterior zone showed greater bilateral co-activation with 

primary motor cortex (PMC) and superior parietal cortex (SPC), anterior 

cerebellum, and posterior insula (pIns) as well subcortical regions such as the 

thalamus and dorsal striatum (DS)—a co-activation pattern consistent with motoric 

function. The middle zone co-activated with anterior aspects of the thalamus as well 

as regions in the frontoparietal control network such as dorsolateral prefrontal 

cortex (DLPFC), anterior insula (aIns) and SPC. Finally, the anterior zone showed a 

qualitatively different pattern, co-activating to a greater extent with default 

network regions such as angular gyrus, hippocampus and posterior cingulate cortex 

(PCC) (Andrews-Hanna, 2012). The anterior zone also showed greater co-activation 

with subcortical regions important for affect– the amygdala and ventral striatum 

(VS).   

To understand the differences in co-activation found within each zone, we 

directly contrasted the co-activation patterns of each zone’s sub-regions (Figure 

2.3B). In the posterior zone, SMA [P1] showed greater co-activation with 

somatosensory cortices and pIns while pre-SMA [P2] showed greater co-activation 

with posterior DLPFC, including the inferior frontal junction (IFJ), as well as 
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aIns— regions associated with goal-directed cognition (Chang et al., 2013; Nelson, 

Dosenbach, Cohen, Wheeler, Schlaggar, & Petersen, 2010b). Within the middle 

zone, we found that all four sub-regions strongly co-activated with various aspects 

of the insula. However, pvMCC [M3] was more strongly co-activated with pIns, SII 

and the brain stem—important regions for pain processing (B. A. Vogt, 2005; Wager 

et al., 2013).  In contrast, avMCC [M4] co-activated more strongly with ventral aIns 

and lateral OFC—regions previously associated with reward-driven 

learning (Stalnaker, Cooch, & Schoenbaum, 2015). In contrast, both dorsal MCC 

[M1 & M2] clusters were more strongly associated with dorsal aIns and 

frontoparietal control regions (e.g DLPFC, SPC). However, adMCC [M2]’s co-

activation extended anteriorly into the frontal pole, whereas pdMCC [M1] more 

strongly co-activated with motor cortices. Subcortically, pvMCC [M3] showed 

greater co-activation with the thalamus and dorsal striatum while avMCC showed 

greater co-activation with the left amygdala. However, daMCC [M2] also showed 

robust co-activation with portions of thalamus and dorsal striatum.  

Within the anterior zone, pgACC [A2] did not show many co-activation 

differences from its neighbors. Surprisingly, both dmPFC [A1] and vmPFC [V3] 

showed greater co-activation with PCC – a key default network region. In addition, 

dmPFC [A1] robustly co-activated with portions of the so-called ‘mentalizing’ 

network, such as the tempo-parietal junction (TPJ) (R. M. Carter & Huettel, 2013) 

and the superior temporal sulcus (STS) (Zilbovicius et al., 2006), as well as lateral 

PFC, including inferior and middle frontal gyri. Finally, vmPFC [A3] showed strong 
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co-activation with subcortical regions, including VS and the amygdala, extending 

into the hippocampus. As a whole, these co-activation patterns demonstrate that 

the regions we identified are involved with distinct functional networks, and 

suggest that there are likely broad functional differences across MFC zones, 

accompanied by fine-grained differences within each sub-region. 

 

Figure 2.4. Functional preference profiles of MFC clusters. Each cluster was 
profiled to determine which psychological concepts best predicted its activation. 
Top) Each of the three functional zones we identified showed distinct functional 
profiles with broad shifts across cognitive domains Bottom) Within each zone, sub-
regions showed fine-grained shifts in function. Strength of association is measured 
in log odds-ratio (LOR), and permutation-based significance (p<0.001) is indicated 
next to each psychological concept by color-coded dots corresponding to each region.  
Meta-analytic functional preference profiles 
 

 Next, we used a data-driven approach that surveyed a broad range of 

psychological states to determine if MFC clusters are differentially recruited by 
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psychological states. For each cluster, we trained a multivariate classifier to predict 

which studies activated the cluster using a set of 35 psychological topics derived by 

applying a standard topic modeling approach to the abstracts of articles in the 

database (Poldrack, Mumford, Schonberg, Kalar, Barman, & Yarkoni, 2012a) (Table 

1). From the resulting fitted classifiers, we calculated a measure of how strongly 

each topic indicated that a study activated a given cluster (measured as the log 

odds-ratio [LOR] of the probability of a each topic in studies that activated a given 

cluster to the probability of the same topic in studies that did not activate the 

cluster). LOR values over 0 indicate that the presence of that topic in a study 

predicts activity in a given region. We restricted interpretation to significant 

associations (p<0.001) and additionally report 95% confidence intervals of LORs 

whenever we comparatively discuss sets of regions. As the latter comparisons are 

post-hoc and exploratory, caution in interpretation is warranted. 

Although the following results demonstrate relatively high loadings between 

specific topics and regions (e.g. ‘motor’ and SMA), classification using all 35 topics 

yielded much better performance (mean AUC-ROC: 0.61) than when using only the 

most predictive topic of each region (mean AUC-ROC: 0.54). The relatively poor 

performance when using only one topic suggests low selectivity between 

psychological states and any one region.  

Across the three broad MFC zones, we observed distinct functional patterns, 

consistent with their divergent patterns of functional co-activation (Figure 2.3). The 

posterior zone was primarily involved with motor function (including gaze), 
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consistent with its co-activation with motor regions. The middle zone was primarily 

associated with various facets of cognitive control, but was also implicated in 

negative affect—pain and fear– as well as decision-making. Consistent with its 

distinct pattern of co-activation, the anterior zone showed a robust shift away from 

goal-directed cognition and was strongly associated with affective processes such as 

reward, fear and decision-making, as well as internally oriented processes such as 

episodic memory and social processing.  

Inspection at a finer spatial scale revealed that sub-regions within each zone 

showed more subtle patterns of psychological function, similar to the fine-grained 

variations in co-activation previously observed for each sub-region. In the posterior 

zone (Figure 2.4, bottom left), activity in both clusters was similarly predicted by 

motor function and switching. However, exploratory post-hoc tests suggested that 

SMA [P1] was more strongly associated with pain, while pre-SMA [P2] was more 

strongly associated with working memory (WM) (95% CI LOR. ‘pain’: SMA [0.6, 

1.1], pre-SMA [-0.1, 0.4]; ‘WM’, SMA [-0.2, 0.1], pre-SMA [0.2, 0.4]).  

In the middle zone (Figure 2.4, bottom middle), activity in all four sub-regions 

was significantly predicted by aspects of cognitive control (i.e. conflict and 

inhibition) and pain. However, post-hoc exploratory tests indicated dorsal MCC (M1 

& M2) was more strongly associated with WM than ventral MCC (M3 & M4) (95% 

CI LOR. ‘pdMCC [0.5, 0.8], adMCC [0.4, 0.6], pvMCC [0, 0.15], avMCC [0, 0.3]) 

whereas ventral MCC showed a stronger association with affect (95% CI LOR. ‘fear’: 

pdMCC [-0.1, 0.4], adMCC [-0.4, 0.2], pvMCC [0.7, 1.2], avMCC [0.4, 0.9]; ‘reward: 
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pdMCC [-0.4, 0.1], adMCC [-0.4, 0.1], pvMCC [0.3, 0.7], avMCC [0.3, 0.8]; ‘pain’: 

pdMCC [0.3, 0.8], adMCC [0.2, 0.7], pvMCC [1.1, 1.5], avMCC [0.6, 1.1]). Finally, 

both anterior clusters showed a greater association with decision-making than their 

posterior counterparts (95% CI LOR. pdMCC [-0.2, 0.3], adMCC [0.3, 0.8], pvMCC [-

0.2, 0.4], avMCC [0.6, 1.1]) 

In the anterior zone (Figure 2.4, bottom right), activity across all three sub-

regions was significantly predicted by episodic memory and social processing; 

however, the association with social processing was maximal for dmPFC [A3] (95% 

CI LOR. dmPFC [1.3, 1.7], pgACC [0.7, 1], vmPFC [0.6, 1]). In contrast, the reverse 

was true for reward and decision-making; we observed a gradient such that the 

association with reward and fear was greatest going ventrally, reaching a maximum 

in vmPFC (95% CI LOR. ‘reward’: dmPFC [-0.4, 0.3], pgACC [0.5, 1], vmPFC [1.2, 

1.7]; ‘fear’: dmPFC [-0.4, 0.3], pgACC [0.2, 0.7], vmPFC [0.8, 1.3]). 

 

Discussion 

In the current study, we identified and functionally characterized regions of 

the medial frontal cortex by applying a data-driven approach to a large-scale 

database of ~10,000 fMRI studies. We defined regions on the basis of differences in 

co-activation patterns across a wide variety of psychological manipulations– a more 

direct measure of function than morphology or connectivity. We identified three 

broad zones arranged along the rostral-caudal axis that further fractionated into 2-

4 sub-regions. Finally, we used multivariate classification analyses to identify the 

psychological topics most strongly predictive of activity in each region, revealing 
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broad shifts in function between the three broad zones and more fine-grained 

differences between sub-regions within each zone. In the following sections, we 

discuss theoretical implications for each zone as well as future challenges.  

 Posterior zone. Posterior MFC spanned various regions previously 

associated with motoric function–such as SMA, pre-SMA, and motor cingulate 

zones. This zone further fractioned into a posterior and anterior cluster similarly to 

cytoarchitectonic (Vorobiev, Govoni, Rizzolatti, Matelli, & Luppino, 1998) and 

connectivity parcellations (Johansen-Berg et al., 2004; Kim et al., 2010). As a whole, 

posterior MFC was primarily associated with motor function and co-activated with 

key motor regions such as primary motor cortex and thalamus. However, SMA [P1] 

showed a greater association with pain processing and greater co-activation with 

key pain regions such as SII and thalamus, suggesting this region may be 

important for initiating movements in response to pain. In contrast, pre-SMA [P2] 

showed a stronger association with cognitive control and co-activated with regions 

important for goal-directed cognition (e.g. DLPFC, aIns). These results are 

generally consistent with a large line of work suggesting that pre-SMA is 

responsible for more complex motor actions that presumably require cognitive 

control (Picard & Strick, 1996).  

 Middle zone. The middle MFC zone spanned portions of the cingulate and 

paracingulate gyri consistent with existing definitions of midcingulate cortex (MCC) 

(Vogt, 2016). In contrast to claims of pain-selectivity in MCC (Lieberman & 

Eisenberger, 2015), all four middle sub-regions were associated with pain and 
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cognitive control. This finding is broadly consistent with adaptive control 

hypotheses, which postulates that MCC integrates negative affective signals with 

cognitive control in order to optimize actions in the face of action-outcome 

uncertainty (Cavanagh & Shackman, 2015; Shackman et al., 2011). However, the 

present results additionally suggest functional differences between sub-regions of 

MCC. Notably, both dorsal MCC clusters were more strongly associated with WM– 

and showed greater co-activation with other cognitive control regions— while 

ventral MCC was more strongly associated with affect and co-activated more 

strongly with subcortical regions, such as amygdala and striatum. Importantly, 

ventral MCC was associated not only with negative affect and pain, but also 

reward. Thus, the present results suggest that ventral aspects of MCC may 

incorporate low-level affective signals into cognitive control, whereas dorsal MCC 

may be more important for aspects of cognitive motor control that require working-

memory or resolving interference. Finally, we also observed that both anterior MCC 

clusters were more strongly associated with decision-making than posterior 

clusters, consistent with theories that incorporate reward-driven decision-making 

processes into the optimization of cognitive control (Alexander & Brown, 2011; 

Brown & Braver, 2005).  

 Anterior zone. Anterior MFC exhibited a distinct functional profile with 

strong associations with affect, decision-making, social cognition, and episodic 

memory, accompanied by co-activation with the default network. Yet, our results 

suggest that anterior MFC zone is not a unitary area, and fractionated into 
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functionally differentiable subregions. DmPFC [A1] was most strongly associated 

with social processing, consistent with studies linking dmPFC to social perception 

and self-referential thought (Mitchell, Banaji, & Macrae, 2005) and consistent with 

its robust co-activation with TPJ– a region hypothesized to be important for 

mentalizing (Baumgartner et al., 2012; Denny, Kober, Wager, & Ochsner, 2012). 

pgACC [A2] showed a less specific functional pattern, showing moderate 

associations with both affective processes and decision-making, perhaps consistent 

with descriptions of a default network ‘hub’ region in mPFC (Andrews Hanna et al., 

2010; van den Heuvel & Sporns, 2013). Finally, vmPFC [A3] was primarily 

associated with affective processes, such as reward and fear, consistent with its 

robust sub-cortical co-activation. Although some have characterized vmPFC as a 

‘valuation’ system (Lebreton, Jorge, Michel, Thirion, & Pessiglione, 2009), our 

results suggest that vmPFC is equally important for other affective processes, such 

as fear. Thus, vmPFC may play a more general role of incorporating sub-cortical 

affective signals into cortex, while more dorsal regions contextualize this affective 

information (Roy, Shohamy, & Wager, 2012). 

 

Future challenges. While the present results provide valuable insights into 

the functional neuroanatomy of MFC, a number of important challenges remain for 

future research. Although the present analyses revealed distinct functional profiles 

for each region in MFC, it is notable that no region was selectively activated by a 

single psychological concept. This functional diversity is evident in that at least two 
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distinct topics were significantly associated with each cluster and our classifier’s 

poor ability to predict activation using only the single most strongly associated topic 

for each region. These results suggest a complex many-to-many mapping between 

brain regions and cognitive processes– in contrast to recent claims of functional 

selectivity in MFC (Lieberman and Eisenberger, 2015; c.f., Wager et al, in press). 

This heterogeneity is consistent with an enormous wealth of electrophysiological 

data demonstrating that virtually all areas of association cortex contain distinct, 

but overlapping, neuron populations with heterogeneous functional profiles 

(Kvitsiani et al., 2013; Shidara & Richmond, 2002; Sikes, Vogt, & Vogt, 2008).  

Although the present results provide a comprehensive snapshot of MFC 

function, many have argued that brain regions dynamically assume different roles 

(Shackman, Fox, & Seminowicz, 2015) and modulate their connectivity as a function 

of task demands (Cole, Bassett, Power, Braver, & Petersen, 2014; Mattar et al., 

2015).  Moreover, MCC is likely to be among the most heterogeneous brain regions 

(Anderson, Kinnison, & Pessoa, 2013) as evidenced by its very high activation rate 

(Nelson, Dosenbach, Cohen, Wheeler, Schlaggar, & Petersen, 2010c; Yarkoni et al., 

2011). Thus, because the functional co-activation profiles presented here represent 

averages across tasks, they may mask task-dependent co-activation structure. For 

example, it’s possible that ventral MCC co-activates more strongly with the 

amygdala during ‘fear’, but co-activates with posterior insula during ‘pain’. An 

interesting avenue of future research will be to precisely characterize how co-
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activation and functional patterns of MFC change as a function of context through 

large-scale meta-analysis. 

Moreover, although our parcellation was moderately consistent with 

boundaries based on cytoarchitecture and connectivity (e.g. the distinction between 

SMA and pre-SMA), we observed several discrepancies. For example, we did not 

identify separate cingulate motor zones (Picard & Strick, 1996), suggesting 

morphologically distinct regions can co-activate similarly to support high-level 

psychological function (e.g. ‘motor function’). Systematic modeling of the 

relationship between anatomy and task evoked activation– similarly to existing 

models linking resting state and anatomical connectivity (Goñi et al., 2014)– are 

needed to better understand the nature of such discrepancies. 

The present report also provides the ability to generate hypotheses that can be 

more carefully tested in future studies using the candidate psychological functions 

discussed here. For example, our result suggests that ventral MCC had a higher 

association with affect than dorsal MCC. However, given the wide inter-subject 

variability in paracingulate anatomy (Paus et al., 1996) it would be prudent to 

explore this suggestion in a single sample with subject-level anatomical 

registration. This hypothesis might also be explored by large-scale meta-analyses 

that combine functional and anatomical data to more precisely localize activity to 

detailed anatomical variation. Moreover, the present findings can be improve the 

development of future multivariate classifiers by providing better prior information 
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as to the regions that may specifically predict psychological states (e.g. Wager et al., 

2013). 

Finally, there are several limitations of Neurosynth that can be addressed in 

future research. First, the topic model we employ is data-derived from the semantic 

content of papers. Although these topics provide a substantial improvement over 

term based meta-analysis (Poldrack, Mumford, Schonberg, Kalar, Barman, & 

Yarkoni, 2012a), these topics are still based purely on the frequency with which 

terms appear in the abstracts of articles and are not able to capture more complex 

semantic structures. The adoption of a standardized ontology of psychological 

concepts and tasks, such as the cognitive atlas (Poldrack et al., 2011), will greatly 

improve the ability of future meta-analyses to discriminate more fine-grained 

theories. Second, the quality of activation data in Neurosynth is inherently limited 

due to its automatically generated nature. Although previous validation analyses 

have shown that these limitations are unlikely to contribute systematic biases 

(Yarkoni et al., 2011), coordinate based meta-analyses are generally limited in 

comparison to their image-based counterparts (Salimi-Khorshidi, Smith, Keltner, 

Wager, & Nichols, 2009). Sharing of statistical images in databases such as 

NeuroVault (Gorgolewski et al., 2015) will greatly improve the fidelity of future 

meta-analyses. 

 Conclusion. In the present study, we provide a comprehensive functional 

map of the human medial frontal cortex using unbiased data-driven methods. 

Although the anatomy of this area has been extensively studied, the present study 
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more directly identified putative sub-regions with distinct functional profiles across 

a wide-variety of psychological states. The present results can serve as a foundation 

to generate and test more fine-grained hypotheses in future studies.  
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CHAPTER 3 

 

Large-scale meta-analysis of human lateral frontal cortex 

 

Flexible behavior is the hallmark of human and nonhuman primates. Such 

flexible behavior enables the navigation of complex, rapidly changing environments, 

the pursuit of goals in the face of various obstacles, planning for hypothetical future 

events and the communication of complex ideas with others using language. 

Decades of research have implicated the lateral frontal cortex (LFC) as critical for 

high-level behavior distal from low-level sensory representations (Goldman & 

Rakic, 1996; Miller at al. 2011).  

However, the mapping between fundamental psychological processes and 

discrete lateral frontal anatomy remains actively debated. In recent years, much 

progress has been made in understanding the LFC’s organization by mapping 

various properties that constrain information processing. For example, more precise 

and detailed maps of the microstructural properties of LFC have suggested 

potentially dissociable regions in lateral frontal cortex (Figure 3.1A) (Petrides, 

2005). In addition, detailed study of anatomical connectivity has revealed 

potentially dissociable regions in human LFC with distinct primate analogues 

(Neubert et al., 2014; Orr, Smolker, & Banich, 2015; Sallet et al., 2013). Although 

such methods have helped carefully characterize important properties of LFC, it is 

unclear to what extent the boundaries derived using these methods correspond to 
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the functional organization observed during behavioral performance (Amunts & 

Zilles, 2015; Eickhoff et al., 2007; Mattar et al., 2015).  

An alternative approach that has helped map the functional correlates of 

distinct behavioral phenotypes is the quantitative meta-analysis of functional MRI 

(fMRI) studies. Such meta-analyses help overcome the low power in most individual 

fMRI studies and have resulted in more precise spatial maps of key processes based 

in LFC, such as working-memory (Nee et al., 2013; Wager & Smith, 2003), 

switching (Derrfuss, Brass, Neumann, & Cramon, 2005a), language (Binder, Desai, 

Graves, & Conant, 2009; Turkeltaub, Eden, Jones, & Zeffiro, 2002), mentalizing 

(Gilbert et al., 2006) and self-referential processing (Northoff et al., 2006). However, 

due to the effort required to compile meta-analyses and because most researchers 

are interested in a particular psychological domain, most meta-analyses are 

typically focused on a particular sub-region of LFC or a subset of domain-specific 

empirical findings.  

Figure 3.1. A) Cyto-architechtonic parcellation of human lateral frontal cortex 
based on Petrides and Pandya (1996). B) Control networks of the human brain 
derived using graph theory in rs-fc MRI based on Power et al., (2012). 
Frontoparietal network (yellow) and cingulo-opercular network (purple). C) Base 
rate of activation for voxels across the brain in Neurosynth. Note that key regions of 
the LFC, such and mid-LPFC, are active in a high percentage of studies.  

A) B) C)
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The narrow scope of most existing meta-analyses necessarily limits the extent of 

their impact for two reasons. First, it is critical to interpret the association of a 

region to psychological states in the broader context of nearby anatomical neighbors 

and regions in the same network to be able to better differentiate subtle functional 

differences between regions. Second, due to a limitation known as the reverse 

inference problem (Poldrack, 2006), without contrasting studies that activate a 

region of interest to a diverse range of studies that do not, it is difficult to determine 

if a psychological function preferentially recruits a region, or if this association is 

due to domain-general functions underlying many psychological states. This 

limitation is particularly acute in regions of the brain active frequently across a 

broad range of tasks (Figure 3.1C). Hence, by the very nature of the LFC being 

involved in a broad range tasks due to its critical role in flexible behavior, 

subregions of this area are particularly difficult to associate with specific mental 

operations (Nelson, Dosenbach, Cohen, Wheeler, Schlaggar, & Petersen, 2010c; 

Yarkoni et al., 2011).  

Here we address these issues by creating a comprehensive mapping between 

psychological states and LFC using Neurosynth (Yarkoni et al., 2011), a framework 

for large-scale fMRI meta-analysis composed of nearly 11,500 studies. First, we 

used a data-driven method that exploits the observation that functionally related 

regions frequently co-activate together across studies to defined functional sub-

regions of LFC (Robinson et al., 2010; S. M. Smith et al., 2009; Toro et al., 2008). In 

recognition that brain-wide functional networks likely supersede LFC as 
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organizational units, we identified regions within LFC at various spatial scales, 

including a broad network-level solution and a finer-grained regionally-specific 

scale. In order to avoid restricting ourselves to an unnecessarily small subset of 

regions and to avoid defining biased or arbitrary boundaries, we clustered the whole 

cortex and selected regions that had a substantial number of voxels in LFC without 

using an explicit mask to mask voxels within LFC. We then characterized the 

functional profile of each resulting region using multivariate classification, 

explicitly contrasting studies that activated each region to those that did not, 

revealing dissociable psychological profiles that were relatively similarly within 

each network. Collectively, we provide a comprehensive and unbiased functional-

anatomical mapping of LFC using the largest meta-analytic database presently 

available.  

Materials & Methods 

Figure 3.2. Methods overview. A) Co-activation across studies with the rest of 
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the brain was calculated for every cortical voxel and whole-brain clustering results 
were obtained using Ward hierarchical clustering. We chose three spatial scales to 
focus on using the silhouette method and selected clusters in LFC from the whole-
brain clustering solutions. B) We contrasted the whole-brain co-activation of 
clusters, grouping clusters for comparison that grouped together at coarser spatial 
scales (i.e. clusters that were in the same network) C) We generated functional 
preference profiles for each cluster by determining which psychological topics best 
predicted their activation across studies in the database.  

Dataset. We analyzed version 0.6 of the Neurosynth database (Yarkoni et 

al., 2011), a repository of  11,406 fMRI studies and over 410,000 activation peaks 

that span the full range of the published neuroimaging literature.  Each observation 

contains the peak activations for all contrasts reported in a study’s table as well as 

the frequency of all of the words in the article abstract. A heuristic but relatively 

accurate approach is used to detect and convert reported coordinates to the 

standard MNI space (see: Yarkoni et al., 2011). As such, all activations and 

subsequent analyses are in MNI152 coordinate space. The scikit-learn Python 

package (Pedregosa et al., 2011) was used for all machine learning analyses. 

Analyses were performed using the core Neurosynth python tools 

(https://github.com/neurosynth/neurosynth).  

Lateral frontal cortex mask. To select clusters from whole-brain clustering 

solutions in lateral frontal cortex, we defined an LFC anatomical mask. Crucially, 

we only used this mask to select clusters that fell within this mask, and not to 

exclude individual voxels. First, we included voxels with a greater than 30% chance 

of falling in the frontal lobes according to the Montreal Neurological Institute 

structural probabilistic atlas (Collins, Holmes, Peters, & Evans, 1995; Mazziotta et 

al., 2001) and excluded medial voxels within 14mm of the midline. To focus on 

lateral frontal cortex, we excluded voxels that were exclusively located on the 
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orbital surface– ensuring to include lateral orbitofrontal voxels– by removing voxels 

in the superior and medial orbital gyri according to the AAL atlas and voxels with a 

greater than 30% probability of falling in ‘Frontal Operculum Cortex’ in the 

Harvard-Oxford atlas. Finally, we also excluded far ventral voxels of OFC (Z < -

14mm) that were not excluded using anatomical atlases.  

Co-activation clustering. Next, we clustered individual grey-matter cortical 

voxels across the whole brain based on their meta-analytic co-activation with the 

whole brain across studies in the database (Figure 3.2A). In order to avoid 

potentially biased or arbitrary cluster boundaries, we clustered the whole cortex 

and selected clusters for further analysis that fell within an anatomically defined 

LFC mask. Critically, we did not mask out voxels that were slightly outside of our 

mask– we either included or excluded entire clusters. This was particularly 

important for clusters near the edge of our LFC mask– as functional boundaries 

may not conform to anatomical boundaries– and at coarse clustering solutions– 

given the well-established finding that at least 4-5 whole-brain networks include 

voxels in lateral frontal cortex (Power et al., 2011; Yeo et al., 2011). For whole-

cortex clustering, we excluded voxels with less than 30% probability of falling in 

grey matter according to the Harvard-Oxford anatomical atlas and those with very 

low activation in the database (less than 100 studies per voxel). In general, 

Neurosynth’s activation mask (derived from the standard MNI152 template 

distributed with FSL) corresponded highly with probabilistic locations of cerebral 
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cortex, with the exception of portions of dorsal precentral gyrus– which showed low 

activation although it was more than 50% likely to be in cerebral cortex.   

We calculated the co-activation between each cortical voxel and every other voxel 

in the brain (including sub-cortex) by correlating the target voxel’s activation 

pattern across studies with the rest of the brain. Activation in each voxel is 

represented as a binary vector of length 11,406 (the number of studies). A value of 1 

indicated that the voxel fell within 10 mm of an activation focus reported in a 

particular study, and a value of 0 indicated that it did not. Because correlating the 

activation of every cortical voxel with every other voxel in the brain would result in 

a very large matrix (112,358 cortical voxels x 171,534 whole-brain voxels) that 

would be very computationally costly to cluster so as to identify distinct LFC 

regions. Hence, we reduced the dimensionality of the whole brain to 100 

components using principal components analysis (PCA; the precise choice of number 

of components does not materially affect the reported results). Next, we computed 

the Pearson correlation distance between every voxel in the MFC mask with each 

whole-brain PCA component, resulting in a matrix that described the frequency 

with which each cortical voxel co-activated with the rest of the brain.  

As an additional pre-processing step, we standardized each cortical voxel’s co-

activation with other brain voxels to ensure clustering would be driven by relative 

differences in whole brain co-activation and not the overall activation rate of each 

voxel. That is, if two voxels co-activated with similar voxels across the brain, we 

should consider them to be relatively similar even if one of those voxels activates 
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more frequently (and thus has slightly stronger correlations with all voxels). This 

adjustment was particularly important as preliminary analyses indicated that 

regions with very high rates of activation (e.g. pre-SMA/mid-cingulate cortex) more 

readily clustered into multiple clusters with few voxels, reflecting base rates in 

activation, although differences in their functional associations were minimal. 

Indeed, preliminary analyses confirmed that standardizing the co-activation matrix 

alleviated this concern. At k = 70, the mean activation rate of each cluster showed 

no correlation with voxel size when Z-scoring was used (r=0.05), as compared to 

when the raw co-activation matrix was used (r = -0.65) at k = 70 (Figure 3.3).  

Additionally, the range of cluster sizes was compressed, resulting in more evenly 

sized clusters. Cluster sizes ranged from 352 to 4546 voxels using the raw 

activation, compared to a range of 560 to 2862 voxels using standardized co-

activation. See Chapter 4 for a more in depth investigation of the implications of 

this preprocessing strategy. 

          
Figure 3.3. Relationship between base rate and cluster size. Standardizing 
the co-activation matrix prior to clustering reduced the relationship between 
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average base rate of a cluster and the size in voxels. 
 

We applied hierarchical clustering with Ward’s linkage to the normalized co-

activation matrix, resulting in a whole-brain linkage matrix. Ward’s clustering was 

selected as this algorithm is recommended as the best compromise between 

accuracy (e.g., fit to data) and reproducibility for clustering fMRI data (Thirion et 

al., 2014). However, this clustering algorithm is seldom used for whole-brain 

clustering because the computational time increases cubically [Θ(N³)] as a function 

of samples. We employed the fastcluster algorithm (Müllner, 2013)—a package of 

libraries that enable efficient hierarchical clustering [Θ(N2)]—to achieve whole-

brain clustering.  

Since the optimality of a given clustering depends in large part on investigators’ 

goals, the preferred level of analysis, and the nature and dimensionality of the 

available data, identifying the ‘correct’ number of clusters is arguably an intractable 

problem (Eickhoff et al., 2015; Poldrack & Yarkoni, 2016; Varoquaux & Thirion, 

2014). However, in order to attempt to objectively guide the choice of choice of 

number of clusters to further analyze, we selected viable solutions using the 

silhouette score– a measure of within-cluster cohesion. Crucially, as we were 

specifically interested in the fit of the clustering to lateral frontal cortex, we only 

calculated the silhouette score with respect to voxels within our lateral frontal 

cortex mask. The silhouette coefficient was defined as (b – a) / max(a, b), where a is 

the mean intra-cluster distance and b is the distance between a sample and the 

nearest cluster of which the sample is not a part. Solutions that minimized the 
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average distance between voxels within each cluster received a greater score. Once 

having selected three k solution sizes to focus on (k = 5, 33 and 70 whole-brain 

clusters), we extracted only those clusters from these solutions that had a 

substantial percentage of voxels in our LFC mask. We varied the percentage of 

voxels within our LFC mask required to include a region across granularities with 

the objective maximizing coverage in LFC without including extraneous clusters 

with little presence in LFC. We arrived at 10% of voxels in a cluster within LFC at 

k=5, 25% of voxels at k=33 and 50% of voxels at k=70.  

To understand the anatomical correspondence of the resulting clusters, we 

consulted a variety of anatomical and cytoarchitechtonic atlases. To locate each 

cluster anatomically, we used the probabilistic Harvard-Oxford atlas (H-O) that is 

packaged with FSL. We also visually compared the location of our clusters to the 

Petrides’ (2005) and Jülich micro-anatomical atlases included in FSL (Eickhoff et 

al., 2007; Mazziotta et al., 2001). Regions were assigned names in accordance to 

Brodmann areas (BA) whenever clusters were sufficient small to correspond to a 

single area (e.g. ‘area 9/46v’). Clusters were given functional names when they 

spanned multiple cytoarchitechtonic areas (e.g. IFJ) or multiple clusters spanned a 

single cytoarchitechtonic area (e.g. PMd & PMv). Note that although names were 

assigned to ease the discussion of these regions, we do not make strong claims of 

correspondence between functionally and anatomically defined regions, as we 

observed several discrepancies throughout LFC. 
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Co-activation profiles. Next, we analyzed the differences in whole brain co-

activation between the resulting clusters (Figure 3.2B) in order to understand the 

patterns of co-activation that differentiates these clusters. To highlight differences 

between clusters, we contrasted related sets of clusters. Related clusters were 

defined as clusters within each network, as defined by each section in our results 

section (e.g. ‘posterior LFC’ clusters). The organization of these clusters was 

informed by the hierarchical structure provided by the clustering dendrogram. For 

example, in Figure 3.10b, we contrast the co-activation of three clusters in the 

default network. To do so, we performed a meta-analytic contrast between studies 

that activated a given cluster, and studies that activated control clusters. The 

resulting images identify voxels with a greater probability of co-activating with the 

cluster of interest than with control clusters. For example, voxels in blue in Figure 

3.10b indicate voxels that are active more frequently in studies in which ‘area 9’ is 

active than in studies in which other default network clusters are active. We 

calculated p-values for each voxel using a two-way chi-square test between the two 

sets of studies and thresholded the co-activation images using the False Discovery 

Rate (q<0.01). In Figure 3.7b, the more liberal threshold of q<0.05 was used as too 

few voxels were significantly different at q<0.01. The resulting images were 

binarized for display purposes and visualized using the NiLearn library for Python.   

Topic modeling. Although term-based meta-analysis maps in Neurosynth 

closely resemble the results of manual meta-analyses of the same concepts, there is 

a high degree of redundancy between terms (e.g. ‘episodes’ and ‘episodic’), as well as 
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potential ambiguity as to the meaning of an individual word out of context (e.g. 

‘memory’ can indicate working memory or episodic memory). To remedy this 

problem, we employed a reduced semantic representation of the latent conceptual 

structure underlying the neuroimaging literature: a set of 60 topics derived using 

latent dirichlet allocation (LDA) topic-modeling (Blei et al., 2003). This procedure 

was identical to that used in a previous study (Poldrack, Mumford, Schonberg, 

Kalar, Barman, & Yarkoni, 2012b), except for the use of a smaller number of topics 

and a much larger version of the Neurosynth database. The generative topic model 

derives 60 independent topics from the co-occurrence of all words in the abstracts of 

fMRI studies in the database. Each topic loads onto individual words to a varying 

extent, facilitating the interpretation of topics; for example, a working memory topic 

loads highest on the words “memory, WM, load”, while an episodic memory topic 

loads on “memory, retrieval, events:”. Note that both topics highly load on the word 

“memory”, but the meaning of this word is disambiguated because it is 

contextualized by other words that strongly load onto that topic. Although the set of 

topics included 25 topics representing non-psychological phenomena– such as the 

nature of the subject population (e.g. gender, special populations) and methods (e.g., 

words such as “images”, “voxels”)—these topics were not explicitly excluded as they 

were rarely the strongest loading topics for any region. For all of our results, we 

focus on a set of 16 topics that strongly loaded onto lateral frontal cortex clusters 

(Table 3.1). These topics were obtained by determining the two strongest loading 

topics for each region.  
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Topic name Top words 
 action action actions motor goal mirror planning imitation execution  

attention attention attentional visual spatial search location orienting target  

conflict conflict interference incongruent stroop congruent selection competition color  

emotion emotional emotion regulation affective pictures emotions arousal affect  

gaze eye gaze eyes movements saccades target saccade visual  

inhibition inhibition inhibitory stop motor sustained nogo transient suppression  

memory memory retrieval encoding recognition episodic items recall words  

mentalizing social empathy moral person judgments mentalizing mental mind  

motor motor movement movements sensorimotor finger somatosensory sensory force  

novelty target targets novelty oddball distractor distractors deception mismatch  

pain pain stimulation somatosensory painful intensity sensory chronic noxious  

reward reward sleep anticipation monetary rewards motivation incentive loss  

semantics semantic words word lexical verbs abstract meaning verb  

speech speech auditory sounds sound perception voice acoustic listening  

switching switching rule executive switch rules flexibility shifting aggression  

WM memory working wm load verbal maintenance delay encoding  
 
Table 3.1. Topics most strongly associated with lateral frontal regions. 
Eight strongest loading words for each topic are listed, in descending order of 
association strength. 

Meta-analytic functional preference profiles. We generated functional 

preference profiles by determining which psychological topics best predicted each 

cluster’s activity across fMRI studies (Figure 3.2C). First, we selected two sets of 

studies: studies that activated a given cluster– defined as activating at least 5% of 

voxels in the cluster– and studies that did not– defined as activating no voxels in 

the cluster. For each cluster, we trained a naive Bayes classifier to discriminate 

these two sets of studies based the loading of psychological topics onto individual 

studies. We chose naive Bayes because (i) we have previously had success applying 

this algorithm to Neurosynth data (Yarkoni et al., 2011); (ii) these algorithms 

perform well on many types of data (Androutsopoulos et al., 2000), (iii) they require 

almost no tuning of parameters to achieve a high level of performance; and (iv) they 
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produce highly interpretable solutions, in contrast to many other machine learning 

approaches (e.g., support vector machines or decision tree forests). 

We trained models to predict whether or not fMRI studies activated each cluster, 

given the semantic content of the studies. In other words, if we know which 

psychological topics are mentioned in a study how well can we predict whether the 

study activates a specific region? We used 4-fold cross-validation for testing and 

calculated the mean score across all folds as the final measure of performance. We 

scored our models using the area under the curve of the receiver operating 

characteristic (AUC-ROC)– a summary metric of classification performance that 

takes into account both sensitivity and specificity. AUC-ROC was chosen because 

this measure is not detrimentally affected by unbalanced data (Jeni et al., 2013), 

which was important because each region varied in the ratio of studies that 

activated it to the studies that did not.  

To generate functional preference profiles, we extracted from the naive Bayes 

models the log odds-ratio (LOR) of a topic being present in active studies versus 

inactive studies. The LOR was defined, for each region, as the log of the ratio 

between the probability of a given topic in active studies and the probability of the 

topic in inactive studies, for each region. LOR values above 0 indicate that a 

psychological topic is predictive of activation of a given region. To determine the 

statistical significance of these associations, we permuted the class labels and 

extracted the LOR for each topic 1000 times. This resulted in a null distribution of 

LOR for each topic and each cluster. Using this null distribution, we calculated p-



 

              51 
 
 

values for each pairwise relationship between psychological concepts and regions, 

and reported associations significant after controlling for multiple comparisons 

using False Discovery Rate with q<0.01. Finally, to determine if certain topics 

showed greater preference for one cluster versus another, we conducted exploratory, 

post-hoc comparisons by determining if the 95% confidence intervals (CI) of the 

LOR of a specific topic for a one region overlapped wit h the 95% CI of the same 

topic in another region. We generated CIs using bootstrapping, sampling with 

replacement and recalculating log-odds ratios for each region 1000 times. A full 

reference figure of the loading between topic and regions, including CIs, is available 

in Appendix I. The ordering of the labels around the polar plot was determined 

using hierarchical clustering with average linkage, resulting in an order that 

concisely conveyed the functional differences between LFC’s sub-regions. 

Results 

    
Figure 3.4. Silhouette scores, a measure of intra-cluster cohesion, for lateral frontal 
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cortex from 4-100 whole-brain clusters. We chose to focus on three levels of 
granularity– 5, 33, and 70 whole-brain clusters– highlighted in red. Although 
silhouette score did not strongly indicate a single optimal solution, solutions from 7-
32 clusters received relatively low scores, and thus were avoided.  

Hierarchical clustering of lateral frontal cortex. We identified spatially 

dissociable regions on the basis of shared co-activation profiles with the rest of the 

brain (Chang et al., 2013; S. M. Smith et al., 2009; Toro et al., 2008), an approach 

that exploits the likelihood of a voxel co-activating with another voxel across studies 

in the meta-analytic database. To avoid defining arbitrary boundaries for regions in 

the lateral frontal cortex, we clustered the entire cortex and selected clusters that 

had a significant number of voxels within an anatomically defined LFC mask– 

allowing clusters to span beyond LFC and excluding clusters that were primarily 

outside of LFC.  

In order to map structure to function across various spatial scales, we extracted 

4– to 100– flat whole-brain clusters and guided the selection of three scales for 

further analysis by evaluating the inter-cluster coherence within LFC using the 

silhouette score (Figure 3.4). Silhouette scores began moderately high from 4-6 

clusters, before dipping from 6-32 whole-brain clusters and rising consistently again 

after 33 clusters. This pattern was consistent with evidence suggesting there are 

around six distributed whole-brain ‘networks’ (Yeo et al., 2011) and previous 

observations that the accuracy of clustering increases monotonically with the 

number of clusters (Craddock et al., 2012; Thirion et al., 2014).  
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Since silhouette scores did not suggest a strong preference for a single dominant 

solution, we focused on three well-spaced levels of granularity– avoiding the trough 

between 6-32 clusters. At the low end, we chose 5 clusters– as this scale had the 

highest silhouette score of network-level solutions– and an intermediary solution of 

33 clusters, as this scale showed a substantial increase in coherence than 32 

clusters. At a finer scale, we chose to focus on the 70- cluster solution, as this 

solution resulted in 15 spatially contiguous clusters in LFC clusters that largely 

separated from distal brain regions in parietal cortex. At coarser scales, clusters 

were not spatially contiguous and resembled “networks”. Importantly, since our 

goal was to identify spatially contiguous regions in LFC, we primarily used the two 

coarser solutions to examine the hierarchical organization of the finer grained 

regions, and organize subsequent analyses accordingly. 
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Figure 3.5. Whole-cortex co-activation based hierarchical clustering 
reveals 4 networks in lateral cluster that fractionate into constituent sub-
regions. From a full cortical parcellation, we selected clusters in lateral frontal 
cortex at three spatial scales. (Left) From five whole-cortex clusters, we identified 
four clusters with voxels in lateral frontal cortex resembling large-scale whole-brain 
networks: task-positive control network (red), default network (purple), 
somatosensory-motor network (green) and the ventral attention network (blue). At 
33 whole-brain clusters, these networks fractionated into 10 LFC clusters and at 70 
clusters two clusters in the fronto-parietal network further fractionated into 3-4 
clusters, resulting in a total of 15 clusters in lateral frontal clusters. At 70 clusters, 
all clusters were spatially contiguous and a majority of their voxels fell in our LFC 
mask, hence our focus on this granularity. Lighter colors indicate voxels outside of 
LFC in the 5 and 33 cluster solutions. 

In the five cluster whole-cortex solution (Figure 3.5), we identified four broad 

networks that showed moderate correspondence to previously described large-scale 

networks (Power et al., 2011; Yeo et al., 2011). Although the functional networks we 

identified were not isomorphic with resting-state networks– in part because our 

measure of fit suggested choosing a coarser solution– these results are consistent 
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with the view that large-scale functional networks supersede the anatomically 

defined area of lateral frontal cortex as organizational units.  

Spanning around half of LFC, primarily in prefrontal cortex, we identified a 

cluster consistent with previous descriptions of the fronto-parietal control network 

(Yeo et al., 2021; dice coefficient (d) = 0.56), which also spanned medial-frontal and 

anterior insular aspects of the ventral attention network (d = 0.21). Also in 

prefrontal cortex, we identified a cluster closely (d = 0.62) matching previous 

extensive previous descriptions of the default network (Andrews-Hanna, 2012). In 

posterior LFC, we identified two clusters primarily situated in primary motor cortex 

(PMC) within LFC. The more dorsal of the two moderately overlapped with Yeo’s 

somatosensory-motor network (dice coefficient (d) = 0.36), encompassing dorsal 

primary motor and somatosensory cortices and the supplementary motor area 

(SMA), while also extending slightly more posterior into lateral aspects of Yeo’s 

dorsal attention network (d=0.31). Immediately ventral, we identified a second 

network with moderate overlap to Yeo’s somatosensory-motor network (d=0.44) that 

also spanned lateral aspects of what is referred to as the ventral attention or 

cingulo-opercular network (d=0.34).  

Each of these networks further fractionated into 1-9 clusters in the k = 70 

solution that were almost entirely located in LFC (Figure 3.6). To better understand 

the organization and function of each of these clusters– for each network 

separately– we describe their anatomical and functional correspondence. Because 

the two posterior networks resulted in only three clusters at k = 70, we have 



 

              56 
 
 

grouped them in subsequent analyses as ‘posterior LFC’. To provide direct insight 

into the functions of the clusters we identified, we applied two approaches. First, we 

determined which other brain regions co-activate with each cluster across studies, 

revealing distinct whole-brain functional networks for each cluster. Second, we used 

semantic data from Neurosynth to determine which psychological states predict the 

activation of each cluster, resulting in a unique meta-analytic functional preference 

profile for each.  

Figure 3.6. Final set of fifteen LFC clusters derived from a k = 70 whole-
brain co-activation based clustering. 

Posterior LFC 

Anatomical correspondence. In the far posterior aspects of lateral frontal 

cortex, we identified two networks, which we refer to as dorsal and ventral 

somatosensory-motor networks (Figure 3.7a). In the dorsal network, we identified 

two clusters that were located almost entirely in LFC: dorsal and ventral lateral 

premotor cortex– PMd and PMv, respectively. Both of these areas were located in 

the dorsal half of BA 6 (Eickhoff et al., 2007), although PMd was located slightly 
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more anterior; PMv slightly encroached into primary motor cortex as a result of its 

slightly more posterior location. Notably, PMd also included a small number of 

voxels outside of LFC in the right primary somatosensory cortex. Investigation at 

finer-grained levels of granularity indicated these voxels remained grouped even 

past 100 whole-cortex clusters, suggesting the co-activation of these regions is 

strongly coupled. At the coarser solution of k=33, PMd grouped with the medial 

supplementary motor area (SMA), suggesting these regions perform relatively 

similar roles in motor function.  

Immediately ventral to these two regions was the only lateral frontal cluster 

associated with the ventral somatosensory network. This center of this cluster was 

located in the fundus of the central sulcus, and extended onto ventral primary 

motor cortex (PMC) and ventral primary somatosensory cortices (SCX); as such, we 

refer to this cluster as “PMC/SCXv”. The lack of a clean boundary between clusters 

within and outside LFC, and across distinct cytoarchitechtonic areas suggests that 

anatomical boundaries do not necessarily reflect task-dependent functional 

boundaries, at least for these sensori-motor regions. 



 

              58 
 
 

 

Meta-analytic co-activation profiles. Next, we examined differences in co-

activation with the rest of the brain across fMRI studies, in order to better 

understand the functional differences between these regions (Figure 3.7b). To do so, 

we directly contrasted co-activation patterns of the three clusters– i.e., we sought to 

identify voxels across the brain that co-activated to a stronger degree with each 

cluster than with the other two (note that each cluster trivially co-activates with 

Figure 3.7. Meta-
analysis of posterior 
LFC. a) Individual 
clusters projected onto 
an inflated surface. 
PMD and area PMv 
belonged to a dorsal 
somatosensory-motor 
network and area 
PM/SCZv to a ventral 
somatosensory-motor 
network b) Differences 
in co-activation. Colored 
voxels activated more 
frequently in studies in 
the seed cluster of the 
same color was also 
active. c) Functional 
preference profiles for 
each cluster, revealing 
distinct psychological 
signatures. Strength of 
association is measured 
in log odds-ratio (LOR), 
and permutation-based 
significance (q<0.05) is 
indicated next to each 
topic by color-coded dots 
corresponding to each 
cluster.  
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itself, as studies that activate a given cluster necessarily show robust activity 

within that cluster). PMd showed greater co-activation across parietal cortex, 

extending from the inter-parietal sulcus (IPS) into the superior parietal lobule 

(SPL), and mid-DLPFC– regions implicated in executive function and goal directed 

cognition. PMv, on the other hand, showed greater co-activation with ventrolateral 

prefrontal cortex (i.e. IFG pars orbitals) and pre-SMA. Although co-activation 

cannot directly speak to the functional role of these regions, these results suggest 

dorsal and ventral premotor cortex perform dissociable roles. Finally, PMC/SCXv 

showed a somewhat more distinct pattern, exhibiting greater co-activation with the 

posterior insula (pIns) and secondary somatosensory cortex (SII), posterior MCC 

and anterior medial prefrontal cortex (mPFC). This more distinct pattern is 

consistent with PMC/SCXv’s grouping into a different network from the two 

premotor clusters.  

Meta-analytic functional preference profiles. Next, we used a data-driven 

approach that surveyed a broad range of fMRI studies to determine which 

psychological states differentially recruited each LFC cluster (Figure 3.7c). For each 

cluster, we trained a multivariate classifier to predict if studies activated the cluster 

using a set of 60 psychological topics derived by applying a standard topic modeling 

approach to the abstracts of articles in the database (Poldrack, Mumford, 

Schonberg, Kalar, Barman, & Yarkoni, 2012a). From the resulting fitted classifiers, 

we calculated a measure of how strongly each topic indicated that a study activated 

each cluster (measured as the log odds-ratio [LOR] of the probability of each topic in 
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studies that activated a given cluster to the probability of the same topic in studies 

that did not activate the cluster). Values over 0 indicate that the presence of that 

topic in a study predicts activity in a given region. We report the results of 16 

psychological topics that loaded strongly onto LFC regions (Table 3.1) and restrict 

interpretation to significant associations using False Discovery Rate (FDR; q < 

0.01). In addition, whenever we comparatively discuss sets of regions, we 

determined significance if the 95% confidence interval (CI) of a given topic did not 

overlap between two regions. As the latter comparisons are post-hoc and 

exploratory, caution in interpretation is warranted. A full reference figure of 95% CI 

for all regions is reported in Appendix I.  

All three sub-regions showed relatively similar functional signatures, justifying 

their grouping. However, PMC/SCXv showed the most distinct signature, consistent 

with the relatively different co-activation pattern exhibited by this region. Notably, 

all three clusters were significantly associated with motor function (e.g. ‘motor’ & 

‘gaze’), although this relationship was stronger for the two pre-motor clusters. 

However, only pre-motor clusters were associated with higher-level motor planning 

(i.e. ‘action’) and working-memory– suggesting these clusters are involved in 

relatively high-level motoric function. Moreover, PMd was significantly associated 

with ‘conflict’ and ‘attention’, consistent with its stronger co-activation with regions 

implicated in attention control such as lateral parietal cortex and DLPFC. In 

contrast, ‘PMC/SCZv’ was significantly associated with language topics (i.e. 

‘semantics’ and ‘speech’), consistent with its relative proximity to the primary 
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auditory cortex. Moreover, this cluster was strongly associated with ‘pain’, 

consistent with its co-activation with pIns and SII– key pain processing regions 

(Rolls et al., 2003; Wager et al., 2013). In sum, although clusters in posterior lateral 

frontal cortex showed relatively similar functional profiles– focused primarily on 

motor function– the present results suggest a dorsal-ventral gradient of function, 

with more dorsal regions being more involved in attentional control, and more 

ventral regions with language and pain processing.  

Fronto-parietal network 

Anatomical correspondence. The majority of lateral frontal cortex 

belonged to a fronto-parietal whole-brain network that additionally spanned the 

lateral parietal cortex (LPC), anterior insula (aI), pre-SMA, mid-cingulate cortex 

(MCC), and the precuneus outside of LFC.  This network resembled previous 

descriptions of the fronto-parietal network in addition to including some regions 

sometimes ascribed to cingulo-opercular (Power et al., 2011) or ventral attention 

networks (Yeo et al., 2011), such as aMCC. This network fractionated into nine LFC 

clusters in the 70 whole-brain solution (Figure 3.8). Four of these clusters grouped 

at k=33 into a single ‘mid’ lateral prefrontal cluster, and three grouped into a 

‘rostral’ lateral prefrontal cluster. Two additional clusters did not group until later 

in the clustering process, but we have organized them into a ‘caudal’ group due to 

their spatial proximity in caudal LPFC.  
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In caudal LPFC, we identified two distinct dorsal clusters (Figure 3.8a). The 

most posterior cluster was located anterior to the premotor cortex– near BA 6 and 

8– extending from lateral superior frontal gyrus, into middle frontal gyrus dorsal to 

the intermediate frontal sulcus (i.e. area 9/46d). This cluster, which we refer to as 

area 6/8, was co-located with the frontal eye fields (FEF)– a region important for 

volitional eye saccades (Paus, 1996). Lying anterior and ventral to ‘area 6/8’, we 

identified a cluster that spanned a small area of caudal area 9/46 (cluster 9/46c), 

extending across the intermediate frontal sulcus into dorsal and ventral 

cytoarchitechtonic sub-divisions. Although this cluster extended well into mid-

DLPFC, as far as area 9/46v, it was notable that this cluster did not group with 

other mid-LPFC clusters in whole-brain clustering, suggesting this cluster may 

exhibit a dissociable functional signature. 

Anterior and ventral to caudal LPFC, we identified four clusters that grouped 

together into a single cluster at 33 clusters of granularity (Figure 3.8b). These four 

clusters spanned most of what many refer to as ‘mid’ lateral prefrontal clusters. 

Most dorsally, we identified a cluster that spanned the majority of area 9/46v 

ventral to the intermediate frontal sulcus, extending well into the fundus of the 

inferior frontal sulcus. Although this cluster was primarily lateralized to the left 

hemisphere, it did include a small number of voxels in right 9/46v. As such, we refer 

to this cluster as ‘9/46v’.  In the right hemisphere, we identified a cluster that 

spanned the entirety of BA45. This cluster, which we refer to as right IFG (IFG [R]), 

extended dorsally into the inferior frontal sulcus near area 9/46v. Notably, the 
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contralateral analogue of this cluster was not a part of the fronto-parietal network.  

This hemispheric asymmetry is consistent with the observation that right IFG 

activation is consistently observed during goal-directed cognition, and hence groups 

with regions in the fronto-parietal network, whereas left IFG is more consistently 

involved in language processing. Anterior to both of these clusters, we identified a 

bilateral cluster located in the caudal end of the inferior frontal sulcus, spanning 

precentral, inferior frontal and middle frontal gyri. The cluster was mostly buried in 

the fundus of the sulci and is consistent with previous reports, and co-activation 

based parcellations, of an IFJ region (e.g. MNI coordinates 48, 4, 33; Brass, 

Derrfuss, Forstmann, & Cramon, 2005; Muhle-Karbe, Derrfuss, Lynn, Neubert, 

Fox, Brass, & Eickhoff, 2015a). Finally, ventral to this cluster in the right 

hemisphere, we identified a fourth cluster (cluster 44 [R]), which was located in the 

posterior end of IFG, spanning BA44 and abutting BA6.  

At the most anterior portion of LFC, we identified three bilateral clusters 

which grouped together in the k = 33 solution into a single fronto-polar cluster (FP) 

(Figure 3.8c). These three clusters spanned the entirety of lateral BA10 and 

fractionated along a ventral-dorsal axis, consistent with a recent DTI parcellation of 

frontal pole (Orr et al., 2015). Notably, none of these clusters extended into medial 

aspects of BA10 or ventrally into orbitofrontal cortex, consistent with recent 

cytoarchitechtonic evidence of a lateral-medial distinction in frontal pole (Bludau et 

al., 2014).  The most dorsal of these three clusters extended well into rostral 

portions of BA 9/46d, bilaterally. As such, we refer to this cluster as 9/46dr. The 
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next two clusters separated along a dorsal/ventral axis in BA 10; as such, as refer to 

these clusters as ‘10d’ and 10v’, respectively.  

 
Figure 3.8. Anatomical location and meta-analytic contrast of lateral 
frontal clusters of the fronto-parietal network. Left) a) Two clusters located in 
caudal frontal cortex. b) Four clusters located in mid-lateral pre-frontal cortex, 
which grouped together into single cluster at 33 whole-cortex clusters of 
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granularity. c) Three clusters located in rostrolateral pre-frontal cortex, which 
grouped together into a single cluster at k = 33. Clusters were assigned labels 
corresponding to cytoarchitechtonic areas whenever possible. In cases where the 
region spanned many cytoarchitechtonic areas, broader anatomical (e.g. inferior 
frontal junction [IFJ]) (inferior frontal junction [IFJ]) labels were assigned. Right) 
Colored voxels indicate significantly greater co-activation with the seed region of 
the same color than other lateral frontal regions in the fronto-parietal network. 
Images are presented using neurological convention and were whole-brain corrected 
using a false discovery rate (FDR) of q = 0.00001 to prevent excessive overlap.  

 

Meta-analytic co-activation profiles. Next, we contrasted the whole-brain 

co-activation of the LFC clusters that fell within the fronto-parietal network, which 

revealed distinct patterns for each region (Figure 3.8, right panel). We observed a 

striking pattern of co-activation differences, such that the majority of clusters co-

activated with distinct sub-portions of other cortical association areas. Across 

parietal cortex, each LFC cluster co-activated most strongly with distinct areas 

across a gradient extending from tempo-parietal junction (TPJ) to the lateral 

parieto-occipital sulcus. For example, clusters ‘9/46c’ and all fronto-polar clusters 

showed greater co-activation with parietal cortex ventral to the intraparietal sulcus. 

In contrast, area ‘6/8 and all four ‘mid’ LPFC clusters showed greater co-activation 

with the intraparietal sulcus itself and areas slightly dorsal to it. This gradient of 

co-activation across LPC is consistent observations from rsfc-fMRI suggesting 

association cortex is composed of parallel interdigitated networks that are highly 

integrative in nature (Yeo et al., 2011).  

 Similarly, all clusters except right IFG co-activated most strongly with 

distinct portions of pre-SMA and MCC. Generally, more anterior clusters co-
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activated more strongly with more anterior portions of pre-SMA/MCC. For instance, 

cluster ‘10d’ co-activated most strongly with a portion of mid-cingulate cortex that 

extended into perigenual ACC. In contrast, cluster ‘44 [R]’ co-activated with a more 

posterior portion in the supplementary motor area (SMA). Given the importance of 

MFC for motoric and executive function, and the strong coupling of these regions at 

a network, these results suggest that distinct areas of lateral frontal cortex work in 

concert with distinct medial areas in support of goal-directed cognition.  

In addition to the differences in co-activation across parietal and frontal 

cortex, we observed strong differences in co-activation with the insula. Cluster 44 

[R] showed the most distinct pattern, exhibiting strong co-activation with posterior 

insula (pI), an important region for pain and sensorimotor processing (Chang et al., 

2013). In contrast, the remaining clusters showed strong co-activation with different 

portions of anterior insula (aI). For instance, IFJ co-activated most strongly with 

dorsoanterior Insula, a sub-region implicated in goal-directed cognition. In contrast, 

areas 10d and 10v generally showed greater co-activation with ventroanterior 

insula, which has been implicated in chemo-sensory processing.  

In sum, the primary differences in co-activation across fronto-parietal regions 

in lateral frontal cortex were within highly active ‘task-positive’ association areas, 

perhaps due to a requirement for different types of multi-modal information 

depending on the type of cognitive control that needs to be exerted by each region. 

This finding is consistent with the hypothesis that association cortex across the 

brain is composed of parallel inter-digitated networks with high levels of cross talk 
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between each other (Yeo et al., 2011). The exceptions to this pattern were area 9/46c 

and the two clusters in BA10, which showed stronger co-activation areas of the 

default network, including vmPFC and PCC. This pattern is consistent with the 

hypothesis that frontal pole may serve as a relay between the task-positive fronto-

parietal network and the internally-oriented default network (Burgess, Dumontheil, 

& Gilbert, 2007). 

Meta-analytic functional preference profiles. Having observed distinct 

patterns of co-activation between fronto-parietal LFC clusters, we probed the 

semantic data in Neurosynth to determine if psychological states differentially 

recruited each cluster (Figure 3.9). Consistent with distributed role for the fronto-

parietal network in goal-directed cognition, all nine clusters were significantly 

associated with working-memory, all clusters except 10d and 10v were associated 

with conflict, and seven clusters were associated with switching. The present 

results are inconsistent with focal anatomical locations for high-level executive 

processes and instead suggest these processes likely rely on distributed firing across 

fronto-parietal network to support goal-directed cognition in the face of interference 

and conflict (Nee & Brown, 2012).  

Caudal fronto-parietal LFC. Despite the overall functional similarities 

between these regions across core aspects of cognitive control, each cluster exhibited 

distinguishing functional characteristics. Consistent with its co-location with the 

frontal eye fields, ‘6/8’ was the only cluster significantly associated with saccadic eye 

movements (i.e ‘gaze’) in the fronto-parietal network, and was also associated with 
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‘attention’. This pattern suggests that the area ‘6/8’ may be important for directing 

attention to relevant stimuli in the external environment to support downstream 

information processing. However, ‘6/8’ was also significantly associated with 

‘action’– a topic representing motor planning– as well as a ‘working-memory’ topic. 

This latter result is notable as a recent lesion study suggests that FEF may play a 

causal role in working memory (Mackey, Devinsky, Doyle, Meager, & Curtis, 2016). 

As such, these present results suggest the region containing the FEF is not merely 

involved in saccadic eye movements, but plays an important role in higher-level 

cognition. 
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Figure 3.9. Meta-
analytic functional 
preference profiles 
for lateral frontal 
regions in the 
fronto-parietal 
network.  
Each cluster was 
profiled to determine 
which psychological 
concepts best 
predicted its 
activation. Each of 
the three functional 
groups we identified 
showed distinct 
functional profiles, 
although appreciable 
variation was 
observed for each 
individual cluster. 
Strength of 
association is 
measured in log 
odds-ratio (LOR), 
and permutation-
based significance 
corrected using false 
discovery rate (FDR) 
of q = 0.01 is 
indicated next to 
each psychological 
concept by color-
coded dots 
corresponding to 
each region. 
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Cluster 9/46 showed the least distinctive functional signature, showing no 

significant associations outside of core EF processes. Given that this cluster did not 

join with other fronto-parietal regions until much later in the clustering process 

suggests this region may be involved in psychological states not well characterized 

by our topic model, or is involved in a domain-general process that supersedes these 

more specific processes.  

Mid fronto-parietal LFC. In mid-LPFC, cluster 9/46v and IFJ showed 

similar functional profiles, exhibiting robust associations with various executive 

functions (e.g. ‘wm’, ‘conflict’, ‘switching’) in addition to semantics. Cluster 9/46v 

showed a particularly strong association with executive control processes, as the 

relationship between this region and ‘conflict’ was significantly greater than all 

other fronto-parietal clusters except IFJ. These results are consistent with a 

hypothesized role for mid-DLPFC as the seat of high-level executive processes, 

although the cluster we identified is more ventral– extending into inferior frontal 

sulcus– than has been suggested previously (Petrides, 2005).  However, the 

association of these regions to ‘semantic’ processing suggests that language and 

executive function are not mutually exclusive processes, consistent with the 

hypothesis that language is relies on core executive function processes. This view is 

in contrast with models in which left ventrolateral PFC is mainly related to 

language function.   

These results are also consistent with the hypothesis that IFJ is involved in 

switching (Brass et al., 2005; Derrfuss, Brass, Neumann, & Cramon, 2005b) and is 
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underappreciated in its contributions to cognitive control. However, many other 

clusters were similarly strongly associated with switching, suggesting IFJ is not 

likely to be focally responsible for this phenomenon. However, IFJ was also 

characterized by its significant association with low and high level motor function 

(i.e. ‘motor’, ‘action’)– an association shared only by 44 [R] in the fronto-parietal 

network.  As the only region strongly associated with both executive processes and 

motor function, IFJ is well positioned as a unique mediator between high-level 

plans and task-sets and low level motoric innervation. This view is consistent with 

the hypothesis that IFJ is important for integrating motor representations with 

high-level abstract aspects of cognitive control (De Baene, Albers, & Brass, 2012). 

The potential ubiquity of such a process across domains may explain its extremely 

high rate of activation across a wide range of studies. In contrast, cluster 44 [R]– 

with its much lower associations with executive functions and a significant 

association with ‘pain’– may be important for introducing negative affective signals 

that may require an immediate change in plans into such a process. Notably, a 

similar role has been attributed to anterior mid-cingulate cortex (Cavanagh & 

Shackman, 2015; Shackman et al., 2011), but present models may overlook area 

44’s contributions to this process. 

Finally, rIFG, showed a relatively distinct functional signature to other mid 

LPFC clusters. This cluster was more weakly associated with conflict, working 

memory and switching– processes not typically attributed to ventrolateral PFC. In 

contrast, rIFG showed a significant association with ‘inhibition’– consistent with an 
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extensive literature on the role of right inferior frontal gyrus in inhibitory processes 

(Aron, Robbins, & Poldrack, 2004; Depue, Orr, Smolker, Naaz, & Banich, 2016; 

Munakata et al., 2011). rIFG was also strongly associated with ‘emotion’, consistent 

the hypothesis that this region is crucial for effective emotion regulation and 

reappraisal (Frank, Dewitt, & Hudgens-Haney, 2014; Opialla et al., 2015; Wager et 

al., 2008). However, the relationship between ‘inhibition’ and rIFG was not 

particularly strong or significantly greater than with other regions, suggesting rIFG 

may play a more general role that is not well encapsulated by the present topics.  

Rostral fronto-parietal LFC. The three most rostral regions of the fronto-

parietal network located within LFC showed relatively similarly functional profiles, 

consistent with their similar pattern of co-activation. Like other clusters in the 

FPN, these fronto-polar clusters showed robust– although not particularly strong– 

associations with various executive processes. Notably, both clusters ‘9/46dr’ and 

‘10d’ showed a robust association with ‘inhibition’, while cluster ‘10d’ was also 

significantly associated with ‘novelty’. This pattern was remarkably similar to that 

shown by ‘rIFG’, suggesting inhibitory control is not the sole provenance of that 

area. However, these regions were not associated with ‘emotion’– in contrast to 

rIFG. This pattern is potentially consistent with hierarchical models of control in 

LPFC, which postulate that more rostral regions represent more abstract goals 

(Badre & D'Esposito, 2009; Botvinick, 2008). This is particularly plausible in light of 

the lack of association between these regions and any low-level processes such as 

motor function or affect. However, it’s not clear the present pattern of results 
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suggests that these rostral areas are more abstract in nature than mid-DLPFC (e.g. 

cluster 9/46v), unless ‘novelty’ detection is construed as a more abstract process 

than conflict processing.  

 Finally, the most ventral fronto-polar region, cluster ‘10v’, showed a more 

distinct pattern, with weaker associations with all executive processes. In contrast, 

this cluster was significantly associated with ‘reward’ (at a lower threshold, q<0.05), 

consistent with its location near orbitofrontal cluster and its co-activation with 

vmPFC. These results are consistent with existing hypotheses that suggest that the 

ventral frontal pole is particularly important for relaying information that 

represents the value of stimuli to effectively guide goal-directed behavior (Orr et al., 

2015).  

Default network 

Anatomical correspondence. The final network we identified in lateral 

frontal cortex showed a strong resemblance to previous descriptions of the ‘default 

network’ (Andrews-Hanna, 2012; Power et al., 2011; Yeo et al., 2011), spanning 

anterior mPFC, and PCC outside of LFC. Within LFC, we identified three distinct 

clusters (Figure 8a). The first two clusters were positioned adjacent to each other in 

ventrolateral prefrontal cortex. The larger of the two spanned the entire left inferior 

frontal gyrus (IFG [L]) while the third cluster was positioned immediately anterior 

to it in lateral orbitofrontal cortex and IFG orbitalis in the right hemisphere. The 

latter region is consistent with cytoarchtechtonic area 47/12. Most dorsally, we 
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identified a third cluster consistent within BA9 (Petrides, 2005) extending from 

superior frontal gyrus to dorsal middle frontal gyrus across the superior frontal 

sulcus. The grouping of IFG and BA9 with the default network instead of fronto-

parietal is highly consistent with various parcellations based on rs-fMRI (Power et 

al., 2011; Yeo et al., 2011). BA9, in particular, has long been noted for its lack of 

input from lateral and medial parietal cortex (Petrides & Pandya 1984, 1999; 

Cavada & Goldman-Rakic 1989; Andersen et al. 1990). Thus, despite the proximity 

of area 9 to area 9/46v, the results of the clustering suggest these regions will 

exhibit a distinct functional profile from fronto-parietal clusters.  

Meta-analytic co-activation profiles. Next, we contrasted the whole-brain 

co-activation of fronto-parietal LFC clusters, revealing distinct patterns for each 

region (Figure 8b). Left IFG showed the most distinct pattern, co-activating with 

portions of the fronto-parietal network such as mid-DLPFC and pre-SMA. This 

pattern is consistent with the fact that this cluster’s contralateral homologue 

grouped with the fronto-parietal network. Hence, although this cluster’s 

connectivity was similar enough to other default network regions to form a part of 

this network, this region may not be fully dissociable from the fronto-parietal 

network. Left IFG also showed stronger co-activation with middle temporal gyrus, 

consistent with a possible role in language. In contrast, cluster 47/12, which is 

located anatomically near left IFG, showed strong co-activation with orbitofrontal 

cortex, vmPFC, PCC and anterior temporal lobe– key regions of the default 

network. Similarly, area 9 showed robust co-activation with the rest of the default 
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network, firmly placing this region within the default network and not fronto-

parietal network.  

 

Meta-analytic co-activation profiles. Having observed distinct patterns of 

co-activation between default LFC clusters, we probed the semantic data in 

Neurosynth to determine if psychological states differentially recruited each cluster 

(Figure 3.10c). Consistent with left IFG’s co-activation with other fronto-parietal 

Figure 3.10. Lateral 
frontal regions of 
the default network 
a) Individual clusters 
projected onto an 
inflated surface. b) 
Differences in co-
activation between the 
three regions. Colored 
voxels activated more 
frequently in studies in 
the seed cluster of the 
same color was also 
active. c) Functional 
preference profiles for 
each cluster, revealing 
distinct psychological 
signatures for each 
sub-region. Strength of 
association is 
measured in log odds-
ratio (LOR), and 
permutation-based 
significance is 
indicated next to each 
topic by color-coded 
dots corresponding to 
each region. 



 

              76 
 
 

regions, this cluster was significantly associated with various executive functions, 

including ‘conflict’, ‘WM’ and ‘switching’.  This finding further highlights the 

distributed nature of core executive processes across frontal regions beyond those 

that group with the fronto-parietal network. However, it is notable left IFG was not 

associated with inhibition, consistent with the strong lateralization of this process 

onto right IFG. Finally, consistent with this region’s overlap with Broca’s area and 

co-activation with the middle temporal gyrus, left IFG was significantly associated 

with language topics. Notably, left IFG was the only lateral prefrontal region 

associated with ‘speech’. However, we did not find an association between left IFG 

and ‘motor’ or ‘action’, despite the long held belief that Broca’s area is important for 

motor function in language. The present functional profile of left IFG is consistent 

with recent electrophysiological data suggesting Broca’s area is involved in the 

generation of novel speech motor plans, but not mere motor function (Flinker et al., 

2015). Left IFG was also notable for it’s robust association with ‘semantic’ function– 

moreso than any other region. This pattern is consistent is consistent with the 

hypothesis that left IFG is a critical higher-level region in a broader ‘semantic’ 

system in the brain (Binder et al., 2009). 

The two other lateral frontal clusters of the default network showed very 

distinct functional profiles, as unlike the other prefrontal clusters, they showed no 

association with any executive processes. This fact is particularly notable for area 9, 

given its anatomical proximity to mid-DLPFC and the ‘area 6/8’. Instead, both 

regions showed robust associations with ‘emotion’ and ‘mentalizing’– consistent 
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with their placement into the default network. These findings are consistent with 

the hypothesis that these regions, as part of the dorsal medial subsystem of the 

default network play a critical role in mentalizing and conceptual processing 

(Andrews Hanna, Smallwood, & Spreng, 2014b; Spreng & Grady, 2010; Spreng, 

Sepulcre, Turner, Stevens, & Schacter, 2013). 

Finally, it was notable that all three clusters that reside within the default 

network were associated with ‘memory’ function. This is consistent with a long line 

of evidence supporting the role of these regions in autobiographical, integrally 

oriented cognition (Andrews Hanna, Saxe, & Yarkoni, 2014a). Moreover, the left 

IFG is purported to play a key role in controlled memory retrieval (Badre & 

Wagner, 2007; Snyder, Banich, & Munakata, 2011)– a hypothesis supported by the 

joint association between executive processes and memory in this region. However, 

it is also notable that memory was associated with many other clusters in the 

fronto-parietal networks (i.e. 9/46v, 10d, 10v, 9/46c and right IFG). As such, memory 

is likely to be widely distributed across lateral frontal cortex and the distinct role 

played by these regions may require more fine-grained modeling of memory sub-

processes. 

Discussion 

 We applied data-driven methods to the largest meta-analytic database 

available to produce a systematic mapping between discrete lateral frontal anatomy 

and psychological function. By taking a broad scope both functionally and 



 

              78 
 
 

anatomically, we provide a comprehensive view of the psychological states that 

predict activity across this complex and heterogeneous area. The present results are 

inline with extensive work suggesting multiple whole-brain networks extend into 

LFC and support a distinct range of psychological functions. Within each network, 

we identified spatially contiguous subregions that exhibited relatively similar, but 

dissociable psychological profiles. However, in contrast to strict localizationism, we 

find that specific psychological states are distributed throughout LFC, consistent 

with the view that association cortex is composed of parallel integrative circuits 

(Friston, 2002; Yeo et al., 2011), rather than highly specialized and isolated 

computational units.  

Distributed lateral-frontal regions support goal-directed cognition. A 

striking pattern evident in our results is the extent to which core executive 

functions required for externally oriented, goal-directed cognition were distributed 

throughout (and in some cases beyond) lateral-frontal sub-regions of the fronto-

parietal network. This is in contrast to models that hypothesize that specific 

executive processes are supported by discrete computational units. For example, 

sustained activity in LPFC during working memory tasks has been hypothesized to 

reflect the active maintenance of a representation in domain-specific buffers 

(Baddeley, 2003). However, in the present study we find that working memory 

preferentially recruits activity across a wide range of regions extending from 

posterior LFC (i.e. dorsal premotor cortex) to the lateral frontal pole. This is 

consistent with a more recent view that suggests sustained activity across these 
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regions reflects domain-general processes which are required to flexibly guide 

behavior in support of the task goals (Curtis & Lee, 2010; Postle, 2016; Riggall & 

Postle, 2012). Similarly, updating task representations when switching task sets 

has been hypothesized the preferentially recruit specific LFC regions such as the 

inferior frontal junction (Brass et al., 2005; Derrfuss, Brass, Cramon, Lohmann, & 

Amunts, 2009; Derrfuss, Brass, Neumann, & Cramon, 2005b; Muhle-Karbe, 

Derrfuss, Lynn, Neubert, Fox, Brass, & Eickhoff, 2015b). However, we find that 

‘switching’ is similarly predictive of activity across all LFC fronto-parietal sub-

regions. As such, the present findings are more consistent with the view that goal-

oriented cognition is supported by distributed ‘controllers’ that rely on highly 

distributed information processing (Power & Petersen, 2013). 

 Although the present results are consistent with the importance of network 

level dynamics, we identified complex multivariate patterns for each sub-region 

that support dissociable roles. For instance, although many individual regions were 

associated with core executive functions, only IFJ showed additionally robust 

associations with high and low level motor function. These results are consistent 

with the recent appreciation of IFJ as a core cognitive control region (Brass et al., 

2005; Muhle-Karbe, Derrfuss, Lynn, Neubert, Fox, Brass, & Eickhoff, 2015b) and 

suggest this region may be particularly important for biasing motoric 

representations in support of high level goals. Put differently, this region may be 

important for resolving response conflict, a role typically ascribed to midcingulate 

cortex (Botvinick et al., 1999; C. S. Carter et al., 1998). In contrast, area 9/46v in 
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mid-DLPFC was the region most strongly recruited by core executive processes, but 

showed no associations with ‘lower-level’ processes such as attention and motor 

function, suggesting this region is more important for the biasing of abstract 

representations in more domain-specific regions of posterior cortex (Badre, 2008; 

Banich, 2009). 

 We also found a distinct pattern of functional associations in rostral regions 

of the fronto-parietal network. Although regions of the lateral frontal pole remained 

significantly associated with core aspects of executive function such as switching 

and working memory, these regions showed markedly weaker associations with 

‘conflict’ and showed strong associations with ‘inhibition’ and– in the case of area 

10d– ‘novelty’ detection. These results are consistent with the ‘gateway hypothesis’ 

(Burgess et al., 2007) which suggests that area 10 is important for re-directing 

current processing to novel environmental and internal cues. This theory is 

compatible with recent theories that suggest that context monitoring (Chatham et 

al., 2012) or attentional capture (Sharp et al., 2010) are important pre-requisites of 

response inhibition and extends these results by suggesting that such a function 

may not be the sole provenance of right IFG.  

Distinct functional signature of lateral-frontal default network. We 

observed three sub-regions that are associations with the so-called default network 

(Andrews-Hanna, 2012) in lateral frontal cortex, consistent with extensive 

characterization of this network using rsfc-fMRI (Buckner, Andrews Hanna, & 

Schacter, 2008; Power et al., 2011; Yeo et al., 2011). Notably, despite the close 
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spatial proximity of these regions to fronto-parietal regions robustly associated with 

executive function, these regions showed very distinct co-activation and 

psychological profiles. Particularly in the case of area 9, which lies immediately 

dorsal to area 9/46, we found no association with executive function topics, 

suggesting the relatively low functional-anatomical selectivity we observed within 

the fronto-parietal network was not due to poor spatial resolution in our approach. 

Instead, areas 9 and 47/12 were preferentially recruited by internally oriented 

processes such as ‘mentalizing’, ‘emotion’ and ‘memory’. This pattern is consistent 

with these regions hypothesized role as part of the dorso-medial subsystem of the 

default network in self-generated conceptual processing (Andrews Hanna et al., 

2014b).  

However, we observed a unique pattern in the left IFG that suggests this 

region may play an intermediary role between the default and fronto-parietal 

networks. Although this region grouped with the default network in coarser 

clustering solutions, and is present in this network in other well-validated atlases 

(Power et al., 2011; Yeo et al., 2011), we observed that this region showed 

significant, although moderate, associations with core executive function topics. 

Additionally, this region showed a very robust association with semantics as well as 

speech– consistent with its co-location in Broca’s area. This intermediate pattern 

suggests language production requires aspects supported by both networks. Speech 

may require both goal oriented motor control– supported by the fronto-parietal 

network– and access to personally relevant semantic information– supported by the 
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default network (Binder et al., 2009; Binder & Desai, 2011). The present results are 

additionally consistent with the recent hypothesis that Broca’s area is important for 

higher-level aspects of language production, such as choosing the appropriate 

words, rather than low-level motor function which is likely executed in other 

regions, such as pre-SMA and SMA (Flinker et al., 2015).  

Future challenges and limitations. A difficult challenge in cognitive 

neuroscience is developing the appropriate psychological constructs that distinguish 

activity in related brain regions. Appropriately modeling the differences between 

nuanced psychological concepts is particularly difficult for large-scale meta-

analyses, as there is no established ontology of psychological constructs, unlike in 

fields such as genetics (Botstein, Cherry, Ashburner, & Ball, 2000). In the present 

study, we used a data-driven set of topics derived from the abstracts of fMRI papers 

to represent major psychological phenomena. Although these topics are a major 

improvement on more simple term based features, due to their data-driven nature 

they are likely to misrepresent psychological dimensions which are hypothesized to 

be important for differentiating regions. For example, in our set of 60 topics, only a 

single topic represented long term memory function, and likely combined memory 

retrieval and autobiographical memory processes. Although the Neurosynth 

framework allows researchers to develop custom meta-analyses that can be used to 

test apriori predictions, the myriad of combinations in which studies can be 

combined is not conducive to establishing the optimal differentiating dimensions of 

psychological function between regions.  
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The classification based approach we employed is a step in the direction of 

quantifying the extent to which a given set of psychological features explains 

variability in brain activity. A promising future direction is to use classification 

based approaches to find the psychological dimensions that best differentiate 

patterns in activity between related regions, such as regions within a network. In 

combination with the adoption of standardized cognitive ontologies, such as the 

Cognitive Atlas (Poldrack et al., 2011; Poldrack & Yarkoni, 2016), such large-scale 

approaches should help the development of novel theories of functional brain 

organization. Moreover, given the limited quality of the summarized coordinate 

based data in Neurosynth (Salimi-Khorshidi et al., 2009) the widespread sharing of 

richer statistical images in databases such as NeuroVault (Gorgolewski et al., 2015) 

will greatly improve the fidelity of future meta-analyses. 

 Conclusion. In the present study, we used relatively unbiased data-driven 

methods to comprehensively psychological states to individual regions in lateral 

frontal cortex. These regions were found to belong to large-scale whole-brain 

networks and generally shared functional properties with other regions in the same 

network. Moreover, we found that various specific psychological processes which 

have been previously hypothesized to map onto specific brain regions were widely 

distributed throughout lateral frontal cortex. However, we identified dissociable 

functional signature for each sub-region, suggesting that lateral frontal cortex 

supports a wide variety of psychological state through a mixture of network-level 

dynamics and moderate degree of functional specialization. 
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CHAPTER 4 

 

Cross-modal evaluation of whole-brain atlases  

  

Dividing the brain into non-overlapping spatially contiguous regions is of 

much interest to the scientific community for both theoretical and pragmatic 

reasons. From a theoretical standpoint, it has been hypothesized that discrete 

regions perform selective computational roles, such as the recognition of faces 

(Kanwisher, McDermott, & Chun, 1997), detection of motion (Martinez-Trujillo et 

al., 2005) and recognition of fear (Adolphs, Tranel, Damasio, & Damasio, 1995) 

among others. Although more advanced analysis techniques suggest that such 

representations are likely to be coded in a much more distributed fashion (Haxby et 

al., 2001; Wager et al., 2013), it is nonetheless theoretically useful as simplifying 

assumption to describe the brain as a series of cortical areas that differ along 

various properties that modulate their information processing abilities– such as 

structure, connectivity and functional associations (Eickhoff et al., 2015).  

From a pragmatic standpoint, in the analysis of functional MRI data– 

especially when the researcher has strong apriori predictions and power is low– it is 

useful to reduce the dimensionality of the brain using a region of interest (ROI) 

approach. In such an approach, instead of conducting a whole-brain analysis across 

thousands of voxels, researchers use independently defined ROIs to extract BOLD 
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signal from brain regions hypothesized to play a role in the task at hand (Poldrack, 

2007). ROIs are typically selected either from previous studies that targeted similar 

psychological processes, or from one of the many existing brain atlases that provide 

comprehensive sets of regional boundaries. These brain atlases are typically 

constructed by grouping together regions with similarities in micro-anatomical 

structure (e.g. cyto-, receptor-, and myelo- architechture; (Amunts & Zilles, 2015; 

Mazziotta et al., 2001; Vogt, 2009), macroanatomical structure (e.g. gyrification; 

(Desikan et al., 2006; Eickhoff et al., 2007), anatomical connectivity (e.g. 

probabilistic tractography; (Beckmann et al., 2009; Johansen-Berg et al., 2004; 

Neubert et al., 2014; Sallet et al., 2013), functional connectivity (e.g. Gordon et al., 

2015; Power et al., 2011; Shen et al., 2013; Yeo et al., 2011) or meta-analytic co-

activation (Eickhoff et al., 2015).  

However, choosing among these atlases is difficult for a variety of reasons. 

First, brain atlases often have inconsistent regional definitions vis a vis each other 

(Bohland, Bokil, Allen, & Mitra, 2009). Second, it is not well established how well 

relatively static properties of the brain– such as anatomy– or functional 

connectivity measured at rest correspond to the pattern of brain activity observed 

during behavioral performance. As such, the choice of an atlas for selecting ROIs, or 

interpreting the functional significance of whole-brain fMRI analysis is typically 

unprincipled and requires making somewhat arbitrary and flexible choices.  

 Improper ROI choice, however, can potentially have detrimental effects on 

the functional significance of the subsequent results. For example, if one were 
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interested in building a classifier to predict if subjects had observed motion in a 

visual paradigm, a useful ROI to include in the analysis would region MT–– an area 

known to respond to motion (Dubner & Zeki, 1971; Maunsell & Van Essen, 1983). 

However, if this ROI was improperly specified and included voxels from regions not 

sensitive not motion, such as area V3, the classifier’s ability to predict is subjects 

experienced motion would suffer.  

This is not merely a pragmatic concern. The proper definition of brain regions 

is critical for theory development. For example, area 9 in lateral prefrontal cortex is 

hypothesized to belong to the default network and play a role in internal mentation, 

while the spatially nearby area 9/46d plays a much different role in externally 

oriented, goal-directed cognition. Properly specifying the boundaries between these 

regions is critical for understanding their functional role. Improperly specifying 

area 9 as a ‘task control’ region in a study could lead to misleading theoretical 

conclusions.  

 For these various reasons, an important but relatively unstudied question is 

the quantitative evaluation of existing brain atlases. In the only such study to our 

knowledge, Thirion et al., 2014 evaluated the impact of algorithm choice on the 

accuracy and reproducibility of fMRI parcellations. Using simulated data with pre-

specified numbers of “true clusters”, Thirion and colleagues demonstrated the 

difficulty of recovering the true number of underlying parcels, underscoring the 

difficulty in choosing an optimal number of clusters. Next, using task contrasts from 

fMRI data in real subjects, they compared the performance of k-means, Ward 
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hierarchical and spectral clustering. They found that although k-means clustering 

produced the most accurate representation of the underlying data, Ward 

hierarchical clustering produced more reliable parcellations. As such, they 

concluded that Ward hierarchical clustering provides a reasonable compromise 

between accuracy and reproducibility for clustering fMRI data. 

 However, several important questions remain. First, it is not known if the 

same recommendations Thirion et al., 2014 put forth apply to summarized 

coordinate based meta-analytic data– such as the data in the Neurosynth database. 

Although they used task-related fMRI to develop and test their parcellations, the 

range of activation patterns represented in their data was necessarily limited, as 

they studied a total set of 19 task contrasts across two studies. As such, a primary 

goal of the present study is to evaluate the external validity of various parcellations 

using a more diverse range of psychological paradigms using large-scale meta-

analytic data. Second, although Thirion and colleagues demonstrated that 

functionally derived parcellations better fit task-fMRI data than anatomical atlases, 

the majority of existing atlases are derived from fMRI at rest. In the present study 

we sought to test if parcellations derived from functional data across various tasks 

demands better represent the underlying functional organization of the brain than 

those defined at rest. We did so in a variety of ways. 

 First, we evaluated the choice of algorithm and preprocessing strategy by 

quantifying the within-cluster cohesion and reproducibility across various spatial 

scales. Second, we present a novel method for evaluating parcellations that assesses 
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their ability to predict a diverse range of psychological states, under the assumption 

that atlases with more functionally homogenous regions will perform better. Using 

this method, we compare the performance of meta-analytic co-activation 

parcellation to five well known anatomical and resting state atlases across various 

spatial scales. We conclude by making recommendations for future researchers and 

propose that regional boundaries derived from large-scale meta-analysis better 

reflect the underlying functional-anatomical structure of the brain than atlases 

from other modalities. 

Materials and Methods 

Dataset. We analyzed version 0.6 of the Neurosynth database (Yarkoni et 

al., 2011), a repository of 11,406 fMRI studies and over 410,000 activation peaks 

that span the full range of the published literature. Each observation contains the 

peak activations for all contrasts reported in a study’s table as well as the frequency 

of all of the words in the article abstract. A heuristic but relatively accurate 

approach is used to detect and convert reported coordinates to the standard MNI152 

coordinate space (see Yarkoni et al., 2011).  

Meta-analytic co-activation clustering. The goal of meta-analytic co-

activation is to group together functionally similar voxels of the brain under the 

assumption that regions with similar function will appear in the same studies, i.e 

co-activate (Eickhoff et al., 2015). As such, a typical approach in meta-analytic 

clustering is to create an array that represents the distance between voxels as the 



 

              89 
 
 

extent to which each voxel in the brain co-activates across studies with every other 

voxel in the brain. This array is generated by computing the pairwise distance 

between a vectorized representation of each voxel’s activation across studies in the 

database– where a value of 1 indicates the voxel was active in a given study, a value 

of 0 indicates it was not, excluding voxels with very low signal (i.e. active in less 

than 100 studies).  However, as this procedure would result in a large, 

computationally intractable matrix (151,527 by 151,527 voxels), we use principal 

components analysis (PCA) to reduce the dimensionality of one axis to 100 principal 

components. Next, we calculate the pairwise Pearson correlation between each 

principal component and every voxel in the brain, resulting in a matrix Cvp (here v 

are voxels to be clustered and p are whole-brain principal components), which 

represents the frequency with which each voxel co-activates with the rest of the 

brain. This matrix Cvp is then entered into the clustering algorithm in order to 

cluster voxels in the brain to a given spatial granularity.  

However, at this step, an additional standardization pre-processing step is 

potentially necessary to ensure neuroscientifically interpretable results. Cvp is 

purported to represent the difference in co-activation between every voxel in a 

manner akin to the resting state functional connectivity. That is, if two voxels show 

a high degree of co-activation with the same set of voxels (e.g. the fronto-parietal 

network) and low co-activation with another set (e.g. default network), these voxels 

are though to show similar differences to the rest of the brain and should be 

grouped together. However, we have anecdotally observed that clustering 



 

              90 
 
 

algorithms are sensitive to the base rate of activation of voxels. Voxels that are 

frequently active across studies, such as the insula, tend to form much smaller 

clusters than regions will a lower rate of activation. This artifact likely arises 

because more frequently active voxels show a greater range of differences with the 

rest of the brain. However, since from a theoretical standpoint we are interested in 

the relative difference in the pattern co-activation between voxels, standardizing 

the co-activation matrix may result in more evenly sized and interpretable clusters. 

An additional goal of this study is to test if standardizing the co-activation matrix 

Cvp within voxels will correct for this artifact without introducing other unwanted 

costs. 

Clustering algorithms.  

K-means. K-means clustering is among the most popular clustering algorithms 

across a variety of domains. K-means groups voxels by minimizing inertia (i.e. 

within-cluster sum-of-squares) between observations (e.g. voxels) and the centroid 

of their corresponding cluster. A potential drawback of this algorithm is that it 

assumes that clusters are convex and isotropic, and performs poorly when the 

underlying structure is not spherical in Euclidean space. K-means clustering 

requires one to specify the number of clusters and recompute at each level of 

granularity desired.  

Ward’s hierarchical clustering. Hierarchical agglomerative clustering is a 

less popular, but plausible alternative clustering method recommended by Thirion 

et al., 2014. Hierarchical clustering groups observations using a bottom-up 
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approach, starting by grouping the two most similar observations, followed by the 

next most similar pair of observations (or clusters) and so on. Hierarchical 

clustering produces a dendrogram, which represents the full linkage tree between 

clusters across levels of granularity. As such, this algorithm does not require one to 

specify the number of clusters apriori and can provide qualitatively useful 

information as to the organization of the brain into networks and regions at various 

spatial scales. Here, we use Ward’s linkage criterion, which minimizes the total 

within-cluster variance similarly to k-means clustering. Notably, Ward’s method is 

seldom used for whole-brain clustering because the computational time increases 

cubically [Θ(N³)] as a function of samples. We employed the fastcluster algorithm 

(Müllner, 2013)—a package of libraries that enable efficient hierarchical clustering 

[Θ(N2)]—to achieve whole-brain clustering.  

Evaluation of parcellations. 

Within-cluster cohesion. We assessed the overall quality of clustering 

solutions using the silhouette coefficient: a measure of how similar each sample is to 

the cluster it was assigned. The silhouette coefficient is defined as: 

  

where a is the mean intra-cluster distance and b is the distance between a sample 

and the nearest cluster of which the sample is not a part. Solutions that minimized 

the average distance between voxels within each cluster received a greater score. 
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Reproducibility. Given the goal of gleaning neuroscientifically useful 

information from parcellations–especially given that the grouping of voxels can be 

interpreted as a plausible computational unit in the brain– it is desirable to choose 

a solution with high reproducibility (Eickhoff et al., 2015; Thirion et al., 2014). We 

assessed the reproducibility of the resulting parcellations across the previously 

outlined various strategy choices by measuring the consistency between pairs of 

bootstrapped clustering solutions (as in Thirion et al., 2014). We generated 

bootstrapped solutions by resampling studies from the database with replacement 

fifty times and applying our previously outlined clustering procedure repeatedly. 

We then computed the reproducibility between each pair of bootstrapped 

parcellations using the adjusted Rand index (ARI)– a measure of the similarity of 

two vectors. Importantly, ARI is impervious to the specific labels assigned to each 

cluster and is adjusted for chance, allowing for apples-to-apples comparisons across 

k. ARI scores range from -1 to 1, with 1 indicating a perfect match (and -1 a perfect 

systematic mismatch) and 0 indicating chance. ARI is defined as: 

 

where  are pairs of matching observation between the two vectors being 

compared.  

Psychological topic prediction. It follows that clusters that better 

represent the computational units that generate BOLD signal should serve as 

better predictors of psychological states as a function of the activation observed in a 
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given study. Put differently, the selection of a preferred clustering solution can be 

thought of as a feature engineering problem, in which the goal is to select brain 

features that best predict psychological states. As such, we assessed the validity of 

our various clustering solutions, as well as existing parcellations from various brain 

modalities, on the basis of their ability to predict the presence of psychological 

states across studies in Neurosynth. Note that in contrast to our previous predictive 

models, we trained the present models to predict psychological topics using activity 

within our clusters, rather than predicting activity using a combination of topics.  

This was done in part to emulate predictive analyses on raw fMRI data, which often 

use the brain to predict psychological outcomes.  

We used a standard set of 100 topics derived using latent dirichlet allocation 

(LDA) topic-modeling (Blei et al., 2003) that represented the latent conceptual 

structure underlying the neuroimaging literature (Poldrack, Mumford, Schonberg, 

Kalar, Barman, & Yarkoni, 2012b). For each topic individually, we selected two sets 

of studies: studies that loaded onto the topic above a threshold and studies that did 

not meet this threshold. We selected a topic loading threshold of 0.001 as this 

resulted on an average of 16% of studies loading onto each topic – a sufficient 

number for training of classifier but not so large that a heterogeneous set of non-

representative studies would load for each. Although we only present results with 

this threshold, results did not qualitatively vary with different thresholds.  

For each cluster, we trained a naive Bayes classifier to discriminate these two 

sets of studies based on the mean activity within each cluster in a given whole-brain 
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parcellation map. We chose naive Bayes because (i) we have previously had success 

applying this algorithm to Neurosynth data (Yarkoni et al., 2011); (ii) these 

algorithms perform well on many types of data (Androutsopoulos et al., 2000), (iii) 

they require almost no tuning of parameters to achieve a high level of performance; 

and (iv) they produce highly interpretable solutions, in contrast to many other 

machine learning approaches (e.g., support vector machines or decision tree forests).  

We used 4-fold cross-validation for assessing the performance of our classifier 

across all topics. Crucially, we nested the parcellation of the brain into our cross-

validation, to avoid optimistically biasing the performance of our classification. In 

other words, we ensure to use training data to generate clusters, and test the 

performance of these clusters of new, unseen data. We generated clusters using the 

3/4 of our studies that were selected for training, fit our naïve Bayes model to the 

training data, and tested the performance on the unseen 1/4 of remaining studies. 

We scored our models using the area under the curve of the receiver operating 

characteristic (AUC-ROC) – a summary metric of classification performance that 

takes into account both sensitivity and specificity. AUC-ROC was chosen because 

this measure is not detrimentally affected by unbalanced data (Jeni et al., 2013), 

which was important because each topic varied in the ratio of studies that loaded 

onto it.  

Cross modal assessment. We compared the predictive performance of our 

meta-analytically defined whole-brain parcellations to those derived from other 

brain modalities. In all of the following comparisons, we ensured our parcellation 
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closely matched the comparison atlas by re-running our clustering using the same 

whole-brain masked used in each atlas. First, we compared our parcellation to two 

widely used anatomical atlases: the AAL and Harvard-Oxford (HO) probabilistic 

atlas. For the HO atlas, we threshold each cluster at 25% probability and combined 

the resulting regions to generate flat cluster maps. 

We also compared our parcellation to three publically available whole-brain 

resting-state functional connectivity fMRI (rsfc-fMRI) atlases. The first atlas was 

produced using a spatially constrained spectral clustering algorithm and computed 

across a wide range of spatial scales (Craddock et al., 2012), allowing us to compare 

our parcels across a wide range of granularity. The second atlas is a well-known 

atlas of large-scale networks across the brain generated by applying k-means 

clustering to a dataset of 1000 subjects (Yeo et al., 2011). The third atlas by Gordon 

et al., 2015, was produced by applying boundary mapping on a large-scale high 

quality resting state dataset (Gordon et al., 2015). This atlas has been previously 

established to exhibit higher within cluster signal homogeneity than other popular 

atlases, suggesting this atlas may serve as a rigorous comparison.  

Results 

Co-activation clustering strategy selection. First, we evaluated various 

possible strategy choices in meta-analytic co-activation clustering, including 

algorithm choice. Across the whole-brain, we extracted clusters across various levels 

of granularity (i.e. 20-180 regions) using k-means and Ward hierarchical clustering. 

For each algorithm, we used the original co-activation matrix as well as a 
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standardized co-activation matrix to attempt to reduce potential artifacts 

introduced by the wide variability in base rate across the brain. In Figure 4.1, we 

display the cluster solutions across the four combination of strategies at k = 100 

clusters. In all of the resulting solutions, most clusters encompassed well-known 

anatomical structures and functional regions. At low granularity, we identified 

whole-brain distributed functional networks such as the default, fronto-parietal and 

visual networks. At higher levels of granularity– despite no explicit spatial 

constraint– we typically observed spatially contiguous clusters that corresponded 

reasonably well to discrete anatomical structures, such as the amygdala, and 

cortical functional regions such as the visual cortex.  However, k-means produced 

smoother, more spherical clusters than Ward hierarchical clustering. The 

smoothness of clusters was not affected by standardizing the co-activation matrix, 

resulting in qualitatively similar clusters within each algorithm.  

Next, we examined if standardizing the co-activation matrix prior to 

clustering reduced the unwanted relationship between cluster size and activation 

rate. In Figure 4.2, we display the correlation between cluster size (number of 

voxels) and the mean base rate of activation of each voxel in the cluster. Across both 

algorithms, clusters with a higher rate of activation were much smaller in size when 

using the original co-activation distance matrix. Although this relationship was 

greatest at coarse scales, peaking at k = 20, it remained substantial even at a finer-

grained levels of resolution. Standardizing the co-activation matrix greatly reduced 

this relationship– and even reversed it at very coarse scales.  At finer-grained scales 

(i.e. 60-180 clusters), this relationship decreased substantially. For example, at 

k=100, the correlation between base rate and cluster size decreased from r = -7 to r 
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= -.49 for k-means and r = -.5 to r = -.33 for Ward. Moreover, the range of cluster 

sizes was substantially compressed; for instance using k-means, cluster sizes 

ranged from 443 to 3918 voxels using the original co-activation at k = 100, but this 

range decreased to 948 to 3277 using standardized co-activation. These results 

suggest standardizing co-activation is an important pre-processing step to assure 

similarly sized clusters. 
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Figure 4.1. Clustering solutions for k-means and Ward clustering with original and 
scaled co-activation at k = 100 clusters. All clustering strategies resulted in 
spatially contiguous clusters that encompassed known functional and anatomical 
regions. 

 
Figure 4.2. Relationship between cluster size (in voxels) and mean activation rate 
across clusters. Using the raw, original co-activation distance matrix, clusters with 
high activation rate were much smaller in size. This artifact was reduced across k-
means and Ward clustering by standardizing the co-activation data prior to 
clustering. 

Within-cluster cohesion. A fundamental way to measure the quality of a 

clustering solution is by the within-cluster cohesion of the resulting clusters. High 

quality solutions will maximize the similarity of the samples that compose each 
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cluster across. In other words, better clustering solutions result in brain clusters 

composed of voxels with more similar whole-brain co-activation.  Here, we use the 

silhouette score to measure within-cluster cohesion across the various combinations 

of clustering strategies (Figure 4.3). Across all strategies, silhouette scores 

increased as the spatial granularity of the clustering increased, plateauing to some 

extent after 80-100 regions. Notably, there were no well-defined local maxima, 

suggesting choosing a spatial granularity is non-trivial and should be done in the 

context of other measures or qualitative, theory-driven judgments. 

Figure 4.3. Within-cluster cohesion, measure by the silhouette coefficient, across 
various levels of granularity and clustering strategies in co-activation based 
clustering. K-means clustering exhibits greater silhouette scores, suggesting 
clusters in those solutions have greater co-activation homogeneity.  
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We observed substantial differences in within-cluster cohesion based on the 

clustering strategy employed. K-means clustering exhibited substantially greater 

within-cluster cohesion than Ward hierarchical clustering at all spatial scales, 

indicating k-means clusters have greater co-activation homogeneity. Across both 

algorithms, standardized co-activation matrices resulted in greater silhouette 

coefficients, suggesting that this important preprocessing step results in higher 

quality clustering. This is consistent with recommendations from the machine 

learning literature that normalization of the input data prior to clustering is often 

beneficial.  

Reproducibility. We examined the spatial reliability of clustering by 

computing the similarly between pairs of bootstrapped solutions for each clustering 

strategy across spatial scales (Figure 4.4a). Across all clustering parameter choices, 

clustering solutions were much more reliable than chance, suggesting meta-analytic 

parcels can be interpreted with some degree of confidence. Moreover, our reliability 

was within the same range of those observed with raw fMRI data (Thirion et al., 

2014). However, in contrast to Thirion et al., 2014, k-means exhibited greater 

reliability than Ward clustering. This finding is consistent with the qualitatively 

smooth nature of k-means clusters and suggests that k-means may be an 

appropriate algorithm if reliability is of particular importance.  

We also observed that reliability peaked near 100 regions for k-means and 40 

regions for Ward, as opposed to near 200 regions in Thirion et al., 2014. Although 

reliability remained high at 180 regions, this discrepancy may suggest that 
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summarized meta-analytic data is inherently lower in resolution than raw fMRI 

data at the subject level. In addition, across both algorithms, standardized co-

activation resulted in less reliable clusters. A possible reason for this may be that 

standardizing introduces an additional data-dependent step to the clustering 

(because the mean of each cluster will be different for each re-sample), making the 

clustering solution more susceptible to over-fitting. However, this decrement was 

lower, and essentially negligible in Ward clustering compared to k-means. 

Figure 4.4. Evaluation of co-activation based clustering strategies across spatial 
granularities. A) Reliability of clustering as measured by the adjusted Rand index 
(ARI). K-means clustering produced more reliable and consistent clustering 
solutions across bootstrapped samples. B) Performance in predicting psychological 
topics across studies in the database. All solutions performed similarly and 
predicted psychological topics above chance, and performed better at finer scaled of 
granularity. 

Psychological topic prediction. An alternative way to evaluate the 

validity of the various clustering solutions is in their ability to predict the 

psychological concepts in the Neurosynth database. The key idea underlying this 

approach is the assumption that regions in the brain represent functionally 
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homogenous computational units. As such, activity in regions underlying specific 

psychological process should predict the presence of that psychological state, to 

some extent. For example, electrophysiological data has indicated that neurons in 

extrastriate area MT are tuned to the speed and direction of moving visual stimuli 

(Dubner & Zeki, 1971; Maunsell & Van Essen, 1983). Thus, activity in this area 

should predict with some degree of accuracy if a subject is observing motion. If a 

single cluster encompassed area MT, it follows that this cluster would be a strong 

predictor of a psychological topic in Neurosynth representing ‘motion’. However, if 

this cluster were poorly formed and only partially encompassed MT in addition to 

voxels that do not respond to motion, the predictive power of such a cluster would 

drop. Whole-brain clustering solutions that respect functional divisions in the brain 

should more accurately predict activity across a wide variety of psychological topic 

than atlases that do not respect these boundaries.  

 To evaluate our clustering solutions, we used regions as features in a naïve 

Bayes model to predict Neurosynth semantic topics that represent discrete 

psychological states and evaluated the performance using the receiver operating 

characteristic area under the curve (ROC-AUC). Critically, we evaluated 

performance using cross validation, and included the clustering step in the cross 

validation loop, generating clusters from training data not used in testing, to avoid 

an optimistic bias in performance. Summing across all topics for each parcellation 

map, Figure 4.4b displays classification performance as a function of spatial 

granularity for each parcellation strategy. Performance was better than chance 

across all algorithms and increased as a function of number of regions. This finding 

is consistent with previous evidence that functional specificity increases as regions 
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become smaller (Poldrack, 2006), suggesting larger regions average distinct 

functional activation patterns. 

K-means clustering performed marginally better than Ward hierarchical 

clustering, suggesting k-means clustering better represents functional boundaries 

in the brain. However, this difference was very small– hierarchical clustering is not 

prohibitively low in performance. Moreover, standardizing the co-activation matrix 

also had a small effect on performance– in k-means clustering it resulted in poorer 

performance whereas it improved performance in Ward clustering. It bears 

repeating that the small differences shown here suggest that other factors, such as 

reliability or interpretability of the solutions, may be more important for choosing 

the appropriate co-activation parcellation strategy.  

Comparison to clustering from other modalities. Having characterized 

the performance of meta-analytic co-activation clustering across various 

parcellation strategies, we sought to compare the performance of our functionally 

defined clusters to brain atlases from brain modalities. We compared our clustering 

solutions to two anatomical atlases: AAL and Harvard-Oxford, in addition to three 

well-validated rsfc-fMRI atlases generated with different algorithms: Yeo et al., 

(2011), Craddock et al., (2012), and Gordon et al., (2015). In order to ensure a fair, 

apples-to-apples comparison, we generated matching co-activation based 

parcellations for each atlas, using the exact same mask. In order to simplify 

comparisons, we only compare these brain atlases to co-activation based clustering 

with the k-means algorithm. 
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Figure 4.5. Psychological topic prediction performance across brain 
atlases from various modalities. We compared the performance of predicting 
psychological topics using co-activation based parcels as features to the performance 
using resting-state and anatomical atlases. Left) Co-activated based parcellation 
consistently outperformed a resting-state atlas generated using spectral clustering 
(Craddock, 2013). Right) Co-activation based clustering outperformed anatomical 
atlases (AAL & Harvard-Oxford) and two well-validated resting state atlases at 
different scales (Yeo, et al., 2011; Gordon, 2015).   

Co-activation based clustering was better able to predict psychological topics 

compared to all other atlases we used for comparison (Figure 4.5). Across a wide 

range of spatial granularities, co-activation based clustering achieved greater 

classification performance (mean roc-auc:  0.549) compared to the Craddock (2013) 

atlas (mean roc-acu: 0.543). Notably, the difference between the two atlases in 

performance was similar across all level of granularity. Co-activation based 

clustering also outperformed both the Harvard-Oxford and AAL anatomical atlases, 

although the difference between Harvard-Oxford and co-activation based clustering 

was the smallest across all comparisons. Finally, co-activation based clustering also 

outperformed both the Yeo and Gordon resting state atlases. The Yeo atlas provided 
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a particularly fair comparison as this atlas was generated using the same algorithm 

(k-means) as the co-activation parcellation here. On the other hand, the Gordon 

atlas was a rigorous test as it was specifically tested for high resting state signal 

homogeneity, besting many competing atlases. The Gordon atlas was additional 

relatively high in spatial resolution (334 regions), suggesting co-activation based 

parcellation outperforms resting state atlases even when clusters are relatively 

small.  

Discussion 

We assessed the performance of co-activation based parcellation across 

various spatial granularities using three distinct metrics: within-cluster 

homogeneity, bootstrapped reproducibility and ability to predict psychological topics 

across studies in Neurosynth. We used these metrics to compare the performance of 

various clustering strategies employed for co-activation based clustering, suggesting 

performance varies based on the strategy employed. Finally, we compared co-

activation based clustering to atlases from other brain modalities on the basis of 

their ability to classify the presence of psychological topics across studies in 

Neurosynth, finding that co-activation based clustering outperforms them across 

spatial scales. Below we discuss in more depth the implications of our results.  

Co-activation parcellation strategies and tradeoffs. We compared two 

clustering algorithms, k-means and Ward hierarchical clustering, and evaluated the 

impact of standardizing the co-activation matrix prior to clustering. However, to 
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properly understand the implications of these results, it is important to consider 

that there is no clear ‘winning’ strategy, as every choice introduces various 

tradeoffs. The appropriate clustering solution and granularity chosen will vary 

depending on the individual researcher’s goals. For example, standardizing the co-

activation matrix resulted in more evenly sized clusters that were less impacted by 

differences in activation rate across the brain. Moreover, standardized co-activation 

resulted in greater within-cluster cohesion of the resulting clusters, suggesting this 

strategy results in cohesive and interpretable clusters. However, standardization 

resulted in less reproducible clusters, suggesting caution must be taken in 

interpreting the precise boundaries of regions. Moreover, standardized co-activation 

led to a slight cost in classification performance when using k-means clustering. As 

such, if the researcher’s goal is to choose ROIs that will best predict a given 

psychological state (e.g. predicting pain given brain activity), it may be prudent to 

use k-means clustering with the unaltered co-activation matrix.  

 Similarly, choosing the appropriate algorithm for clustering depends on the 

researcher’s priorities. K-means clustering exhibited smoother clusters and 

outperformed Ward hierarchical clustering with respect to within-cluster cohesion 

and reproducibility. As such, k-means clustering is a reasonable choice for many 

applications. However, hierarchical clustering may provide greater interpretability, 

as the relationship between clusters at various levels of granularity can be 

visualized using a dendrogram. As such, Ward clustering may be preferable when 

trying to understand the large-scale organization of a spatially large area of the 
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brain. As long as one does not make strong, deterministic arguments about the 

hierarchical organization of the resulting clusters, and simply uses them to guide 

the exploration of functional-anatomical brain organization, hierarchical clustering 

remains a viable strategy. However, if one is less concerned about interpretability, 

perhaps because one is interested in a smaller area of the brain that is easier to 

qualitatively understand, or the goal is to maximize the accuracy of a multivariate 

classifier to predict psychological states, k-means may be a better choice.  

Comparison to atlases from other brain modalities. Meta-analytic co-

activation parcellation consistently outperformed atlases from other modalities in 

the ability to predict psychological topics across studies in Neurosynth. Taken at 

face value, this finding suggests that brain atlases derived from meta-analytic fMRI 

data best capture the functional organization of brain activity (Eickhoff et al., 2015). 

This was relatively unsurprising when compared to anatomical atlases, as it is 

generally well accepted that functional boundaries often supersede gross anatomical 

boundaries, such as gyri and sulci. For example, in Chapter 3, we found that voxels 

from primary motor and sensory cortices grouped together into a single cluster 

despite being in anatomically distinct regions.  

In contrast, rsfc-fMRI derived atlases are unconstrained by anatomy and are 

hypothesized to reflect functional organization of the brain. However, these more 

functional atlases were similarly outperformed by co-activation based parcellations, 

despite the well documented similarly between resting state and meta-analytic co-

activation networks (S. M. Smith et al., 2009). One reason why rsfc-fMRI atlases 
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performed more poorly than meta-analytic parcellation is that– by definition– 

resting state signal is recorded when the subjects are resting without task in the 

scanner. As such, the organization of the brain when it is unchallenged, or perhaps 

in the specific state of mind wandering, may be different than the activity pattern 

observed across a wide range of psychological states. 

 Consistent with this hypothesis, recent efforts have demonstrated that 

functional connectivity is constrained by anatomical connections (Goñi et al., 2014) 

and dynamically changes when measured during task performance (Cole et al., 

2014; Mattar et al., 2015). As such, connectivity signal at rest may more strongly 

reflect static anatomical differences than meta-analytic co-activation, suggesting 

that the parcels derived from such data less directly reflect the functional, task-

dependent organization of the brain. Computational modeling of functional 

connectivity as a functional of task demands is a promising future direction to 

better understand the nature of this signal (Mattar et al., 2015). However, this 

approach is inherently limited by the functional diversity (or lack thereof) that can 

be measured in a single population. In contrast, meta-analytic based parcellation 

surveys a broad range of psychological states and as such may serve as the best 

estimate of functional organization presently available. 

Pragmatic advantages of meta-analytic co-activation atlases. The 

present results suggest that meta-analytically derived parcellations may provide 

several pragmatic advantages. Often, fMRI researchers are interested in defining a 

priori ROI’s to extract brain signal in an effort to reduce the number of statistical 
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comparisons made in a study. The present results suggest that meta-analytic co-

activation parcellation may provide a better source of a priori ROIs than atlases 

from other modalities that less directly measure functional brain signal. As co-

activation based parcellations are derived from a very diverse set of behavioral 

manipulations, the resulting parcels are likely to be useful when researchers do not 

have strong a priori predictions as to the predicted pattern of brain activity. If 

researchers have strong a priori beliefs– for example, if researchers are inducing 

pain and wish to measure pain related signal– they may be better served by 

deriving topics specific ROIs using reverse inference maps in Neurosynth or from a 

targeted manually constructed meta-analysis. Conversely, the rigorously tested 

resting-state atlases, such as the recently released Gordon (2015) atlas, are likely to 

provide better a priori ROIs for rsfc-fMRI studies, in which the interest is to extract 

homogenous signal for each ROI at rest.  

Limitations and future challenges. There are several limitations to our 

approach that may limit the generalizability of our results. In particular, the 

Neurosynth database is composed of summarized statistics (i.e. activation peaks) 

that are reported in tables of fMRI studies. Moreover, although unlikely, it is 

possible that the automated heuristic conversion of Talairach to MNI coordinates 

may contribute systematic bias to the database. As such, a possible reason why 

meta-analytic co-activation parcellation outperforms atlases from other modalities 

may be due to some degree of over fit to idiosyncratic peculiarities of Neurosynth. 

To truly demonstrate meta-analytic atlases more accurately reflect functional 
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boundaries, it will be interesting to compare the performance of various atlases in 

their ability to predict psychological states in raw fMRI data across individual 

subjects. If co-activation based parcels are better able to predict the intensity across 

specific psychological states across people, such as pain or working-memory load, it 

would provide strong evidence that meta-analytic atlases better reflect the 

underlying functional-anatomical organization of the brain. 

 It is also important to recognize that the definition of a computational unit in 

the brain will vary depending on the level of analysis and will greatly benefit from 

converging evidence across modalities. For example, although co-activation based 

parcellation grouped together portions of the primary motor and somatosensory 

cortices into a single cluster, it is well known from decades of electrophysiological 

studies that these areas differ in the specific computational role they play. Primary 

somatosensory cortex receives and process afferent information while primary 

motor cortex, through efferent cortico-spinal projects, actuates movements. At this 

level of analysis, it is self-evident these two regions play distinct computational 

roles. However, it is also informative that these regions strongly co-activate and 

thus are grouped into a single cluster at coarser scales, effectively forming unit at a 

higher level of analysis. Precise computational modeling of the relationship between 

different modalities across levels of abstraction is necessary to understand dynamic 

information processing in the brain. 

Conclusion. We assessed various strategies for meta-analytic co-activation 

clustering using metrics that measure distinct qualities that researchers may want 
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to maximize. Moreover, we have demonstrated that meta-analytic parcellations may 

more accurately reflect the brain’s underlying functional-anatomical organization 

than brain atlases from other modalities and suggest future directions to objectively 

evaluate the plethora of existing organizational schemes of the brain.  

Summary. Across three studies in this dissertation, I have used large-scale 

meta-analysis to study the functional-anatomical organization of the brain. In two 

of these studies, I applied relatively unbiased data-driven methods to the largest 

existing database of neuroimaging studies to comprehensively map psychological 

states to discrete anatomical units in frontal cortex. The results of these studies 

extend upon the existing literature by providing a reference of the most robust 

associations between psychological semantic meta-data and frontal cortex anatomy. 

I have outlined various findings that suggest novel brain-cognition associations that 

can be tested more focused follow up studies. However, I have also tried to argue 

the importance of large-scale neuro-informatics in the cognitive neuroscience 

ecosystem by quantitatively demonstrating that such approaches can lead to unique 

insights and potentially result in better formal representations of functional-

anatomical organization in the human brain. 
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