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Abstract

WiFi access points that provide Internet access to users have been steadily increasing in urban
areas. Different access points differ from one another in terms of services that they provide, in-
cluding available upstream and downstream bandwidths, overall network capacity, open/blocked
ports, security features, and so on. However, there is no reliable service available at present that
can aid a user in selecting an access point from the many that are available. This paper presents
xylophone, a WiFi locator service that enables users to select commercial hotspots in accordance
with the current quality of service of hotspot access points. The primary research challenge in
xylophone is how to accurately estimate current quality of service of various access points in an
efficient manner without requiring any installation of special software on the access points, and
not burdening the WiFi subscribers to perform any communication or computation intensive task.
Xylophone has been extensively evaluated via a prototype implementation in an indoor testbed
and in the Amazon’s EC2 platform. The evaluation demonstrates low latencies experienced by
WiFi subscribers to measure DHCP connectivity, authentication and association process, and dis-
cover open/blocked ports. Also, the bandwidth measurement component of xylophone exhibits
high measurement accuracy, low latency, high scalability, and minimal intrusiveness.

Keywords: wireless access point selection, bandwidth measurement, scalability, cloud

1. Introduction

Commercial hotspots that offer Internet access over a wireless local area network through
the use of a router connected to an ISP have been increasingly becoming popular in most public
areas. These hotspot WiFi services are fully-featured and time-tested. However, the New York
Times and The Wall Street Journal reported in 2005 that these commercial hotspots may not
be able to satisfy clients’ connectivity requirements. Consider the following scenario. When a
business traveler checks into a hotel, connects to a WiFi network in the hotel and attempts to
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upload financial statements to a centrialized file server, he realizes that his WiFi device is expe-
riencing poor connectivity due to limited Access Point (AP) backhaul bandwidth1 and firewall
restrictions. So, the traveler decides to use a WiFi locator service to search for alternative WiFi
networks nearby. Generally, he can find several alternatives with ease as commercial hotspots
are available in abundance in most locations in urban areas. However, apart from location and
navigation information, current locator services do not provide any other information. As a re-
sult, the traveler has no way to find out in advance, i.e. before he pays for a connection, which
AP provides the best quality of service as per his needs.

To address this problem, [3] introduced a collaborative service called WiFi-reports that pro-
vides WiFi clients with historical information about hotspot AP performance before the clients
decide to pay for an access. However, [3] depends on voluntary collaboration among users, re-
quiring users to report hotspot AP performance. It requires that volunteer users measure hotspot
AP performance (connectivity capacity, bandwidth etc.) by running a third-party measurement
software on their mobile devices while accessing the Internet for their computing needs. The
users then need to report their measurement results to a central server that maintains a history
of performance of various APs. Utility of such a historical based mechanism is based on the
assumption that either the volunteer users report hotspot AP performance quite regularly or the
hotspot AP performance remains approximately constant. Unfortunately, in the absence of any
incentives, it is unlikely that users will voluntarily report hotspot AP performance quite regu-
larly. Furthremore, hotspot AP performance, particularly bandwidth can change quite frequently
in general. Finally, bandwidth measurement is a communication and computation intensive task,
and so, only a few users will be willing to run such software. When only a few clients participate,
such collaborative services fail to provide an accurate and up-to-date perfomance characteristics
of various APs.

This paper introduces xylophone – a system prototype for commercial hotspot services –
that operates as an extension to hotspot WiFi locator service. Like a hotspot WiFi locator
service[4][5][6], xylophone allows a hotspot subscriber to search for available hotspots in a given
area. In addition, xylophone enables hotspot subscriber to select commercial hotspots based on
their current quality of service. Xylophone addresses the limitations of WiFi-reports by mov-
ing the computation and communication intensive tasks such as bandwidth measurement to a
separate cloud platform. This is done by introducing a novel method for estimating the current
bandwidth of APs. Specifically, xylophone has several unique features. First, it provides the
current quality of service of hotspot APs in terms of current bandwidth as well as connectivity
capacity, open/blocked ports, etc. Second, unlike [3], xylophone does not require clients to per-
form any compute or communication intensive tasks to measure bandwidth. Third, xylophone
introduces a novel methodology for estimating hotspot AP backhaul bandwidth that does not re-
quire voluntary user participation or hotspot APs to run any special software. Fourth, xylophone
is highly scalable in terms of simultaneously providing up-to-date performance information of a
significantly large number of APs by utilizing cloud services. Finally, xylophone utilizes efficient
techniques to estimate current performance, resulting in performance measurements completed
within a few seconds.

While the goal of xylophone is to enhance selectivity for commercial hotspot APs, it can also
be operated as a part of hotspot management system to monitor hotspot AP performance and
diagnose network faults. The contributions of the paper are listed as follows.

1Unless otherwise stated, bandwidth refers to the available bandwidth as defined in [1][2].
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(1) A novel bandwidth estimation methodology is presented. This methodology not only es-
timates the upstream and downstream bandwidths accurately, but also it is efficient (low latency),
scalable and less-intrusive.

(2) A prototype of xylophone has been implemented on Amazon’s EC2 platform and its client
component on a mobile device.

(3) An extensive evaluation of xylophone in terms of measurement accuracy, latency, scala-
bility and intrusiveness has been done.

The rest of the paper is organized as follows. In Section 2, we summarize related work
in the areas of wireless AP selection and bandwidth measurement. In Section 3, we present
an overview of xylophone and in Section 4, we describe xylophone in detail. In Section 5, we
present a detailed evaluation of xylophone. Finally, in Section 6, we conclude the paper.

2. Related Work

There are two areas of research that xylophone builds on: improving wireless network selec-
tion and bandwidth estimation.

Improving Wireless Network Selection. Several researchers have explored wireless network
selection in recent years. From Judd and Steenkiste’s load-sensitive AP selection algorithm[7]
to WiFi-Reports[3], the objective has been to enable WiFi clients to choose hotspot APs that
provide better performance. Virgil[8] exploits applications mounted on reference servers and
clients to collaboratively measure end-to-end bandwidth between a client and a reference server.
It then uses this end-to-end bandwidth to choose the best hotspot AP that can be detected on
a scan. However, Virgil does not allow users to evaluate hotspot APs that are not within their
signal range. [9] relies on a passive bandwidth measurement to select optimal hotspot APs. How-
ever, this passive measurement requires modifications in the wireless driver to estimate upstream
bandwidth. Furthermore, it also does not help a client to evaluate hotspot APs that are not within
their signal range.

WiFi-Reports[3] harnesses user-submitted historical information about hotspot AP perfor-
mance to help users determine which hotspot APs will be sufficient to run their applications. It
enables users to search for the best performance hotspot AP in a certain geographical region from
a centralized database. WiFi-Reports improves upon earlier approaches in that it allows users to
evaluate APs that may not be within the signal range of the users. However, WiFi-Reports suffers
from several limitations. First, WiFi-Reports relies on voluntary participation of users. The key
issue is that there is no direct incentive for users to participate. Why will users run computation
and communication-intensive tasks to measure the bandwidth on their devices? Indeed, it has
been shown that selfish (rational) users tend not to share their resources or time unless there is an
external incentive. Second, this lack of incentives will likely result in very few users participating
voluntarily. As a result, the central database that contains performance information of various
APs will very likely contain outdated information. This is problematic because performance fac-
tors such as bandwidth can change quite frequently. Finally, because WiFi-Reports relies on user
participation, it needs to deal with the difficult issues of privacy of the users, and security and
trustworthiness of the information submitted by the users.

Xylophone is designed to address the limitations of these earlier approaches. Like some of
the earlier approaches, xylophone does not require participation of APs (in terms of running
any special software) to estimate their current performance. Also, like WiFi-Reports, xylophone
adopts the strategy of a central database that users can query to obtain the performance of an
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AP that may not be within their signal range. However, unlike WiFi-Reports, xylophone does
not require a WiFi client to perform computation and communication-intensive tasks. Instead,
it runs computation and communication-intensive tasks on a cloud platform. Also, unlike [9],
xylophone does not require any modification to the wireless driver.

Bandwidth Estimation. There have been several methodologies and tools developed over the
last ten years for estimating bandwidth along a path. Most prior work requires installing special
software at both ends of the path to be measured [10][11][1] [2][12][13]. This requirement sig-
nificantly limits their applicability for our system, because it is unrealistic to install measurement
software on each hotspot AP. Our design options are confined to a non-cooperative environ-
ment where measurement software is mounted solely on a cloud platform. To the best of our
knowledge, only a few measurement methodologies[14][15] can be utilized in a non-cooperative
environment.

Abget[14] exploits the properties of TCP, forces a remote host to generate a traffic flow at
a certain rate and thus approximately estimates a range of end-to-end bandwidth. However,
our previous study[15] indicates that Abget usually suffers from irreparable weakness especially
when the storage locations of large files alter. In addition, the applicability of Abget is greatly
dependent upon large accessible files and it is impractical to crawl a large accessible file from
each hotspot AP. Therefore, Abget is not suitable for xylophone. Abode[15] exploits ICMP
messages to probe hotspot AP backhaul bandwidth. However, it suffers from two fundamental
limitations. First, several empirical-based studies have shown that most ISPs block or constrain
ICMP messages. This can cause a serious bandwidth underestimate. Second, Abode is designed
for only upstream bandwidth estimation.

Bandwidth measurement methodology of xylophone addresses these limitations. It does not
require any software installation on APs, does not involve crawling large files from APs, and
does not rely on ICMP messages. Furthermore, it can accurately estimate the bandwidth in both
upstream and downstream directions in relatively smaller time periods.

3. Xylophone Overview

3.1. Challenges

To obtain performance metrics of each commercial hotspot AP, there are several unique chal-
lenges confronting xylophone.

(1) Computation and communication-intensive measurement tasks: One of the most signif-
icant tasks for xylophone is to estimate hotspot AP backhaul bandwidth. Though a WiFi user
is able to perfrom bandwidth measurement by running a bandwidth estimation software [14][1]
on his mobile device, continuous bandwidth measurement severely depletes user’s computation
and communication resources. This may give rise to a situation where a hotspot subscriber may
not be willing to sacrifice his limited resources to perform computation and communication-
intensive bandwidth measurement. Furthermore, bandwidth measurement may fail if two hotspot
subscribers simultaneously estimate bandwidth via a same hotspot AP[16]. Finally, bandwidth
measurement launched by hotspot subscribers may involve potential security threats, because the
inbound traffic to clients’ mobile devices may compromise clients’ security.

(2) Measurement intrusiveness: While some measurement tasks such as SNR measurement
and security measurement can be performed passively, others such as bandwidth estimation have
to be performed actively. Bandwidth estimation usually involves some probe messages. When
measurement latency increases, this may significantly impact hotspot subscribers’ connectivity
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Figure 1: The xylophone architecture.

performance. Therefore, bandwidth estimation has to be efficient with low measurement latency
and sampling rate of bandwidth measurement cannot be high.

(3) Interference from middleboxes: Middleboxes, such as load balancers, intrusion detection
systems and web proxies have an impact on the latency and flow of probe traffic sent as part
of bandwidth measurement and the corresponding response messages. As a result, they intro-
duce inaccuracy in the bandwidth being measured[17]. Thus, the bandwidth measurement must
account for these middleboxes, and compensate for the inaccuracies introduced.

(4) Scalability: According to a recent survey from Jiwire[6], there may be hundreds of
hotspots in a certain region, e.g. there are 877 of hotspots in New York. Since xylophone assigns
bandwidth measurement task to a centrialized infrastructure, it becomes challenging to estimate
bandwidth of these large number of hotspot APs simultaneously. Simply using one single server
to perform bandwidth measurement can be problematic due to limited outbound bandwidth and
computation resources.

3.2. The xylophone architecture
There are three logical entities in the xylophone architecture (see Figure 1): (1) a centralized

database; (2) wireless hotspot subscribers; and (3) one or more bandwidth measurement servers
in the cloud. The centralized database stores a history of performance characteristics of all APs.
It exports two sets of interfaces: one interface that bandwidth measurement servers and hotspot
subscribers can use to update its content with new performance values of various APs; and the
other interface that clients may use to query the current and past performance of various APs.
The centralalized database of xylophone is built using standard database techniques, and we will
not discuss it anymore in the paper.

Performance characteristics of APs provided by xylophone are classified into two categories:
collaborative and non-collaborative. Performance characteristics in the collabortive category
are those that require low communication and computation for measurement, and whose values
remain relatively stable, e.g. set of blocked TCP ports, DHCP acquisition latency, authentication
and association latency, and wireless factors2. A subscriber generates a measurement report

2A number of tools[18] exist to estimate these wireless factors. These tools are outside the scope of this paper.
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containing the values of these performance characteristics, and automatically submits it to the
centralized database. This design ensures that hotspot subscribers do not have to run computation
or communication intensive software on their mobile devices. Furthermore, since they report
only those performance characteristics whose values are relatively stable, xylophone does not
require frequent reports from these subscribers, or even a participation from a large number of
subscribers.

We have developed a client module to run on mobile devices. This module initiates a mea-
surement when a mobile device launches a connection to a hotspot WiFi network. Performance
information about wireless factors, DHCP acquisition latency, authentication and association la-
tency is collected passivley during the process of connection establishment. No intrusive traffic
is injected into hotspot WiFi network to collect these information. In addition, information about
connectivity capacity – Block/Open ports – is collected by sending probes to several application
ports on the cloud under our control. Our current implementation sends probes to 127 common
application ports in parallel. These include FTP, SSH, IMAP, BitTorrent, World of Warcraft etc.
The basic operation of port scan is as follows. A SYN packet is sent to our cloud. Since all
the common application ports are open in the cloud, the cloud should respond with a SYN-ACK
packet. However, the client module will receive a RST packet, if the corresponding hotspot AP
filters packets sent to a certain port. Since port scan requires connecting to the cloud, this can be
done only after the mobile device has successfully connected to the Internet.

Performance characteristics in the non-collaborative category are those that require high com-
munication and computation for measurement, and whose values change frequently. These in-
clude upstream and downstream bandwidths. Bandwidth measurement servers reside on a cloud
and run xylophone’s bandwidth measurement software. They update the contents of the central-
ized database with new bandwidth measurements of various APs. We discuss the design and
implementation of these bandwidth servers in detail in Section 4.

3.3. Trust assumption
Xylophone assumes that hotspot subscribers do not submit fraudulent measurement results.

We expect this trust to result from an existing falsification detection scheme [3]. By using this
scheme, xylophone can identify fraudulent submissions as well as corresponding counterfeiters,
and thus blacklist the counterfeiters. In addition, we further assume that hotspot subscribers
cannot masquerade other subscribers to submit fraudulent measurements, as commercial hotspot
providers usually assign their subscribers a unique user name and password to control their ac-
cess.

3.4. Network model
Most commercial hotspots use ADSL technique to connect their local wireless networks to

the Internet3. As a result, IP addresses assigned to hotspot APs can change frequently. ISPs
usually use SessionTimeout to limit the maximum lifetime of an IP address and typically sets
it to 24 hours[19]. In a commercial hotspot scenario, commercial hotspots usually belong to a
certain ISP. So, even though a hotspot AP has dynamic IP address, xylophone that is deployed by
an ISP can still track its current address.

[20] illustrates that the bandwidth bottleneck of the Internet is usually on the edge of the
Interenet (i.e. 2-hop away) and relatively persistent. This observation was further verified in

3AT&T hotspots where we conducted our experiments use ADSL technique to connect to the Internet.
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Figure 2: RTT variation with varying TCP ACK data rate.

the context of wireless networks in [15]. With this observation, xylophone estimates hotspot AP
backhaul bandwidth instead of wireless throughput. Another reason that we estimate hotspot
AP backhaul bandwidth is that the ADSL-support maximum throughput is far less than wireless
throughput, even after taking the potential wireless signal interference into consideration. Addi-
tionally, the distinguishing characteristic of ADSL technology is that bandwidth is greater in the
downstream direction than the reverse[21].

Behind hotspot APs, ISP usually deploys a firewall to block unauthorized access. We assume
that this firewall does not block our probe messages. In all of our experiments, this assumption
has been true. In case xylophone is deployed by an ISP, the ISP may set firewall rules to ensure
that these messages are not blocked.

4. Bandwidth measurement servers in the cloud

The design, implementation and evaluation of the bandwidth measurement servers are major
contributions of this paper. Recall that one major goal is to build a bandwidth measurement
module that is highly accurate and scalable, and has low latency and minimal intrusiveness. We
first describe the methodology used to measure the upstream and the downstream bandwidths
and then describe a prototype implementation in the Amazon’s EC2 platform.

4.1. Bandwidth measurement methodology

Bandwidth measurement in xylophone is based on TCP protocol behavior. In general, when a
host sends a TCP acknowledgement (TCP ACK) packet to another host and if a TCP connection
has not been established between them, a TCP reset (TCP RST) message with the fixed length
of 40 bytes is sent in response regardless of the size of the TCP ACK packet. Since TCP ACK
and RST packets traverse the network in two different directions (i.e. TCP ACK packets are
transmitted from the bandwidth measurement server to hotspot APs - downstream link; TCP
RST packets are transmitted in the reverse direction - upstream link), we can saturate either
downstream or upstream link by adjusting the size of the TCP ACK packet or the interval between
back-to-back ACK packets. Bandwidth measurement methodology consists of increasing the
sending data rate either by increasing the ACK packet size or the interval between back-to-back
ACK packets, and observing the round-trip time (RTT). Here, we define RTT of a TCP ACK
packet as the time elapsed between the time when the ACK packet is sent and the time when
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Figure 3: Remainder Distribution of modulo operation over uniformly, normally, exponentially distributed
random variable.

the corresponding RST packet is received. The key idea is that when none of the links are
saturated, RTT does not change with increase in the data rate. On the other hand, when one of
the links is saturated, RTTs between successive TCP ACK packets will have an overall increasing
trend. This is because queuing delays start increasing when one of the link has been saturated.
The bandwidth of the saturated link is then estimated as the sending data rate when RTT starts
increasing from being same.

As an example, Figure 2 illustrates the variation in RTT for a sequence of ACK packets for
different data rates. In this experiment, a bandwidth measurement server in the cloud sends 100
TCP ACK packets at different data rate on a 75 KB/s link. As shown in the figure, when sending
rate is lower than 75 KB/s, i.e. for data rate 40 KB/s, the RTT of each TCP ACK packet is same
for ACK packets. On the other hand, RTTs increase for each successive ACK packet when data
rate is above 75 KB/s, i.e. for data rates 80, 100 and 130 KB/s. Furthermore, this increase in
RTT is higher for higher sending data rates.

As mentioned earlier, upstream link bandwidth is lower than downstream link bandwidth.
So, to measure the upstream link bandwidth, we saturate that link by increasing the rate at which
40B ACK packets are sent. As this rate is increased, the rate at which RST is sent also increases.
Since upstream link bandwidth is lower than the downstream bandwidth, it saturates before the
downstream link. On the other hand, to saturate the downstream link bandwidth, we saturate that
link by increasing the size of the ACK packet sent at some predetermined rate. This ensures that
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the data rate on the upstream link doesn’t change, but the data rate on the downstream link keeps
increasing.

In practice, a traffic flow may not follow the following two assumptions that most bandwidth
measurement tools make: (1) FIFO queuing is adopted at all routers along a path, and (2) a
traffic flow follows a single routing path between the two end hosts. If the communication path
between two hosts varies significantly in a short space of time, e.g. flow splitting and merging
incur message out-of-order, we may see unexpected fluctuations in RTT. To address this, we
adopt the concept of time centroid.

Assume a TCP RST stream, generated at a certain rate, contains n + 1 TCP RST messages:
m0,m1,m2, ...,mn. Let ti(i = 0, ..., n) denote the absolute time stamp of TCP RST message mi.
Hence, ∆ti = ti − t0 is the relative time stamp of mi from the time instance of the first TCP RST
message m0. In addition, ∆ti also represents the offset of TCP RST message mi from the starting
point of the TCP RST stream.

Given any particular sequence of relative time stamps of TCP RST messages ∆t0,∆t1,∆t2, ...,∆tn
and a random interval length T (T > 0 and T � ∆tn − ∆t0), ∆′ti = ∆ti mod T represents TCP
RST message mi’s offset from the starting point of its interval. Further, ∆′ti is approximately
uniformly distributed in the range (0,T ). For example, Figure 3 shows the empirical distribu-
tions of the remainders of modulo 1000 operations over uniformly, normally and exponentially
distributed random variables respectively. As we can see from Figure 3, the remainder of modulo
operation over random variables of different distributions is approximately uniformly distributed.
Consequently, for a TCP RST stream with sufficiently large number of TCP RST messages, at
any interval length T which has T > 0 and T � tn − t0, the relative positions of TCP RST
messages within their respective intervals (∆′ti) are uniformly distributed.

Since a TCP stream experiences queuing delays when sending rate of the TCP stream goes
above maximum bandwidth, estimating bandwidth is to determine whether a TCP stream expe-
riences queuing delays. Hence, we define the centroid of a time interval as follow:

cent(T j) =
1
n j

∑
∆′ti (1)

where T j is the jth time interval and j = 1, ..., ∆tn
T

4; n j is the number of TCP RST messages in the

jth time interval and
∑ ∆tn

T
j=1 n j = n. Furthermore, ∆′ti ranges from 0 to T . In case there is no TCP

RST messages in the interval T j, we define cent(T j) to be T
2 . Extending the concept of centroid

to a complete TCP RST stream, we then have

cent =
T

∆tn

∆tn
T∑

j=1

cent(T j) (2)

Due to the fact that each interval T j is uniformly distributed when queuing delays do not occur
and a TCP stream follows a single routing path, the centroid of any time interval is approximately
in the middle of the interval, i.e. cent(T j) = T

2 . Furthermore, the centroid of a complete TCP
RST stream is equal to T

2 . This property is stated and proved as follows.

Theorem 1. If the sending rate of a TCP ACK stream R0 is less than maximum bandwidth A (i.e.
R0 ≤ A), then cent = T

2 .

4We tune the value of T and make ∆tn divisible by T .
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Figure 4: A bandwidth measurement server in the cloud sends a TCP ACK stream to a hotspot AP, and then the hotspot
AP responds back to the server with a TCP RST stream, when R0 ≤ A.

Proof. Suppose that tk is the absolute time stamp of TCP ACK message k and δk is the RTT
of the TCP ACK message. Thus, the arrival time of the corresponding TCP RST message t′k =

tk + δk. When R0 ≤ A, δk = d0 for k ∈ 1, 2, .... Since the sending interval for back-to-back
TCP ACK messages is τ = tk+1 − tk, the arrival interval for back-to-back TCP RST messages is
t′k+1 − t′k = tk+1 + δk+1 − tk − δk = τ. Furthermore, we assume time interval T . Over the interval
[t′k, t

′
k + T ), n TCP RST messages arrive (see Figure 4) and so,

cent(T ) =
1
n
·

n−1∑
j=0

t′k+ j =
1
n
·

n · (n − 1)
2

· τ =
(n − 1) · τ

2
=

T
2

(3)

Consequently, the centroid of a TCP RST stream is

cent =
N · cent(T )

N
=

T
2

(4)

where N is the number of interval in a TCP RST stream.

Recall the assumption that we makes in Theorem 1: a TCP stream follows a single routing
path. However, this assumption is not always true in a real network [17]. A TCP stream may
be split or merged, which causes slight transmission delays are imposed upon some packets in
the TCP stream. The following theoretical proof illustrates that the centroid of a stream approx-
imately remains T

2 even though stream splitting and merging happen.

Theorem 2. When the sending rate of a TCP ACK stream R0 is less than maximum bandwidth
A (i.e. R0 ≤ A), stream splitting and merging will not skew the centroid of a TCP RST stream.

Proof. Suppose the centroid of an interval fluctuates, the centroid of the interval becomes T
2 + o

where o is the offset of the expected centroid. Then the centroid of a TCP RST stream is

cent =
T
2

+
T

∆tn
· o (5)

If ∆tn
T is large enough, the value of T

∆tn
· o approaches zero.
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Figure 5: A bandwidth measurement server in the cloud sends a TCP ACK stream to a hotspot AP, and then the hotspot
AP responds back to the server with a TCP RST stream, when R0 > A.

Intuitively, when a bandwidth measurement server saturates either upstream or downstream
channel of a hotspot AP, a queuing delay is imposed upon a TCP stream. Therefore, there is an
obvious centroid offset for a TCP RST stream. This property is stated and proved formally as
follows.

Theorem 3. When the sending rate of a TCP ACK stream R0 is greater than maximum band-
width A (i.e. R0 > A), the centroid of a TCP RST stream skews from T

2 to T
2 + d, where d is an

offset of the centroid.

Proof. In this case, the arrival time t′k for TCP RST message k is the sum of the absolute time
stamp of corresponding TCP ACK message k and RTT of the TCP ACK δk, i.e. t′k = tk +δk where
tk is the absolute time stamp of corresponding TCP ACK message k (see Figure 5). Different from
Theorem 1 where δk is a constant (i.e. δk = d0 for k ∈ 1, 2, ...), δk is a variable when R0 > A,
since each TCP message may experience a variable queueing delay. Therefore, the arrival time
for back-to-back TCP RST messages is denoted as follow

t′k+1 − t′k = tk+1 + δk+1 − tk − δk = τ + (δk+1 − δk) = τ + αk (6)

where τ = tk+1 − tk and αk = δk+1 − δk with αk > 0. Over the interval [t′k, t
′
k + T ), the centroid for

m TCP RST messages is

cent(T ) =
1
m
·

m−1∑
j=0

t′k+ j =
1
m
· [

m · (m − 1)
2

· τ +

m−1∑
j=1

α j] =
τ · (m − 1)

2
+

1
m
·

m−1∑
j=1

α j =
T
2

+ di (7)

where di = 1
m ·
∑m−1

j=1 α j and d =
∑N

i=1 di

N (N denotes the number of intervals in a TCP RST stream).
Consequently, the centroid of a TCP RST stream is

cent =
N · T

2 +
∑N

i=1 di

N
=

T
2

+ d (8)

4.1.1. Verification
To verify our theorems, we investigate two hotspot APs that have the same downstream band-

width (450 KB/s) and different upstream bandwidths (130 KB/s and 65 KB/s). Two measurement
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Figure 6: Centroid skew when bandwidth is 130 KB/s.
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Figure 7: Centroid skew when bandwidth is 65 KB/s.

servers in the Amazon’s EC2 platform send TCP ACK packets of size 40 bytes to the two hotspot
APs respectively with the varying data rate, ranging from 10 KB/s to 100 KB/s. Figure 6 and 7
show the fluctuation of the centroid of the TCP RST stream around the time centroid for the AP
with 130 KB/s and 65 KB/s upstream bandwidths respectively. We notice that this fluctuation
is on both sides of the time centroid for 130 KB/s upstream link, where the sending rate is less
than the bandwidth. On the other hand, for the 65 KB/s upstream link, when the sending rate
is increased to 70 KB/s, the centroid of the TCP RST stream experiences a sudden jump. In
addition, the centroid skew continues an upward trend beyond this sending rate. Therefore, to
estimate the bandwidth, the measuremet servers monitor the variation of the centroid of the TCP
RST stream and locate the point of sudden jump.

To locate the point of sudden jump in centroid, we use a binary search algorithm. Initially, we
set lower and upper bounds (Rlower and Rupper) and a termination condition (Rupper − Rlower ≤ R0,
where R0 is the measurement resolution, which is the nearest bounding range between the lower
and upper bound). The specific values for R0, Rlower and Rupper are discussed in the next section.
The search process iteratively adjusts the lower and upper bounds until Rupper−Rlower is less than
the measurement resolution R0. The measurement server sends a TCP ACK stream at a certain
rate R(n) = (Rupper + Rlower)/2. If a centroid skew appears, the server adjusts the upper bound to
Rupper = (Rupper + Rlower)/2. On the other hand, if no centroid skew appears, the server adjusts
the lower bound to Rlower = (Rupper + Rlower)/2. This process is repeated until the termination
condition is satisfied. The sending rate at this time is the estimated bandwidth.

4.2. Prototype implementation
We have implemented and experimented with two different prototypes of our bandwidth mea-

surement servers. The first one is implemented in an indoor testbed at McGill University. We
have used this prototype to evaluate the accuracy of our measurement methodology and estimated
the value of measurement resolution, R0. Next, to test the scalability of our methodology, we
have implemented a prototype in the Amazon’s EC2 platform [22]. Current EC2 platform offers
250 Mbps bandwidth for each instance (virtual machine), which guarantees that the bandwidth
estimation component running on each instance can obtain a large enough outbound bandwidth.
Since the outbound bandwidth of an instance is far larger than the outbound and inbound band-
width of a hotspot AP (250 Mbps vs. 12 Mbps), an instance is capable of estimating hotspot AP
backhaul bandwidth.

Our xylophone system in the cloud consists of three components: the hardware infrastruc-
ture, a distributed framework and a bandwidth estimation component. The hardware infrastruc-
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ture serves as the underpinning of the cloud, providing support for computing, networking and
storage. EC2 is employed in our implementation as the hardware infrastructure. We harness 11
medium High-CPU instances (one instance serves as master, the other ten serve as slaves), each
of which serves as a measurement server in the cloud. Each instance is a 32-bit platform with
5 EC2 Compute Units5 (2 virtual cores with 2.5 EC2 Compute Units each), 1.7 GB of Memory,
350 GB of local instance storage and 250 Mbps network capability [23]. To organize and manage
these computing resources, we need a distributed framework to connect them together. Thus, our
prototype implementation chooses Hadoop [24] to serve as our distributed framework. Finally,
the bandwidth measurement component runs on each instance.

At a high level, our xylophone system in the cloud works as follows. We first assign mea-
surement tasks to instances. In our prototype implementation, measurement tasks are described
in a set of text files. Each of the files contains the IP addresses of hotspot APs and correspond-
ing measurement parameters (e.g. measurement sampling rate and measurement resolution etc.).
The master instance in the cloud (Hadoop’s JobTracker) uniformly assigns the text files (i.e.
measurement tasks) to those slave instances in the cloud (Hadoop’s TaskTrackers). Following
the description in the text file that the master instance assigns, a Hadoop’s TaskTracker runs
the bandwidth measurement component, collects hotspot AP backhaul bandwidth and outputs
estimation results to another text file, in which bandwidth estimation results and estimation la-
tencies are listed. Since output files are stored in Hadoop Distributed File System (HDFS), the
Hadoop’s JobTracker is able to access these output files, incorporate them into a measurement
report and store the report into our centralized database. While the operation process is relatively
straightforward, several important practical issues must be taken into consideration.

(1) Automatic task assignment in Hadoop platform is dependent upon the size of the input
file. By default, HDFS cuts a huge file into 128 MB chunks. Each chunk is automatically
assigned to one TaskTracker. However, xylophone cannot utilize automatic task assignment.
Recall that the purpose of our xylophone system is to estimate hotspot AP backhaul bandwidth.
Assume that tens of thousands of measurement tasks are described in a single file. The size
of the file is at most several megabytes. This can give rise to a curious situation where all the
measurement tasks are assigned to one TaskTracker to handle. To address this problem, we
manually divide all the measurement tasks into a set of files. Thus, Hadoop platform can treat
these files as separate HDFS chunks and distribute the files (i.e. measurement tasks) to multiple
TaskTrackers. As a future work, we will automate this process.

(2) Since our measurement tasks are performed by instances in the cloud, it is possible that
multiple instances share a single physical machine. Hence, instances may experience suspend-
ing and resuming. Once an instance is suspended, the measurement component running on the
instance will be interrupted until the instance resumes. In practice, we observe that inter-instance
suspension times for EC2’s small default instances are large enough to invalidate our bandwidth
estimation results, whereas medium High-CPU instances have much shorter suspension times.
Consequently, we choose medium High-CPU instances, rather than the small default ones.

(3) The NICs (Network Interface Cards) in EC2 instances are also virtual devices. Therefore,
the driver and the networking protocol stack in EC2 might be slightly different from those regular
driver and networking stack in physical machines. According to our experiment, we observe
that a virtual NIC driver does not timestamp incoming packets. This can cause the incoming
packets stay at the system buffer for a long time without time stamps. To address this problem,

5One EC2 Compute Unit equals 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.
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Figure 8: Bandwidth estimation.
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Figure 9: Calibrated bandwidth estimation.

we implement dual threads – one thread for sending outgoing TCP ACK packets and the other
for receiving incoming TCP RST packets. This enables us to timestamp each incoming packet
instantly and precisely.

(4) To enhance reliability of xylophone system, some environment parameters of Hadoop
platform must be set properly. In particular, mapred.task.timeout should be set to 300, indicating
that a measurement task should be canceled by the TaskTracker if it cannot output measurement
results within 300 seconds. Note that a measurement task contains at most 5 hotspot APs in our
current deployment and estimating bandwidth of one hotspot AP at most takes 60 seconds. In
addition, we further set setNumMapTasks to 1. It indicates that at most one measurement task
runs on a TaskTacker simultaneously. This is because if multiple measurement tasks run on one
instance simultaneously, they may experience interference with each other.

5. Evaluation

We have evaluated xylophone extensively using our two prototype implementations. We have
evaluated the following aspects – measurement accuracy, latency, scalability, intrusiveness and
sampling rate.

5.1. Testbed

We have deployed an indoor testbed in McGill university to experiment with and evaluate
the bandwidth estimation component of xylophone system in terms of accuracy, latency and
intrusiveness. In addition, we have used this testbed to derive optimal values of some of the
parameters used. The testbed consists of a Cisco Aironet 1131 AG series wireless AP, a Linux
box and a Dell OptiPlex 980 Mini Tower. The wireless AP is used as a hotspot AP in our
experiments and a virtual machine running on the Mini Tower is used to run the bandwidth
estimation task. To emulate an asymmetric connection, we used the linux box as a traffic shaper.
It bridges the wireless AP and the Mini Tower. The traffic passing through the Linux box is
shaped using the Linux bandwidth (tbf) and latency (netem) shaping modules. In addition, we
also experimented with 50 AT&T commercial hotspot APs in Denver, CO area to examine the
performance of xylophone system in the context of real commercial hotspot environment.
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Resolution (r = α) Correlation coefficient ar=α br=α (Mbps)
α = 0.1 1.000000 0.9447 0.0755
α = 0.5 1.000000 0.9375 0.2344
α = 1.0 1.000000 0.9463 0.0891
α = 1.5 1.000000 0.9375 0.4687
α = 2.0 0.990300 0.9572 0.3409
α = 4.0 0.953400 0.9572 0.3409

Table 1: The corelation coefficients between the actual bandwidth and estimation and calibration coefficients for different
values of measurement resolution.

5.2. Measurement accuracy

We investigate the accuracy of bandwidth estimation using our indoor testbed. By using the
bandwidth shaping module (tbf), we emulate different hotspot AP backhaul bandwidth. In this
experiment, we set up upstream bandwidth of the AP to 500 Kbps and vary downstream band-
width of the AP from 1 Mbps to 12 Mbps. The bandwidth estimation component running on
the Mini Tower sends probes to estimate downstream bandwidth with different measurement re-
sultions. Figure 8 plots our estimated bandwidth as a function of actual bandwidth for different
values of measurement resolution. Overall, higher the measurement resolution is, less accurate
our estimation is. In addition, we make an interesting observation from this figure. The estima-
tion errors for each measurement resolution are consistent over bandwidth variation. Thus an
interesting question is: Are the estimations linearly correlated with each other? To answer this
question, we take the actual bandwidth in this experiment as the reference and calculate Pearson
product-moment correlation coefficients between the actual bandwidth and our estimation for dif-
ferent values of measurement resolution. The calculation results are shown in the second column
of Table 1, which validates that estimation results are highly correlated with actual bandwidth.
Taking the actual bandwidth as reference, we can thus calibrate our estimation results through
linear transformations. Let B′r=α and Br=α denote the calibrated estimation result and original
estimation results for measurement resolution r = α respectively. The linear transformation from
Br=α to B′r=α is

B′r=α = ar=α · Br=α + br=α (9)

called calibration formula, where ar=α and br=α are the calibration coefficients for measurement
resolution r = α. Using linear regression, we can calculate the value of ar=α and br=α. The last
two columns of Table 1 list the calibration coefficients. Figure 9 shows the estimated bandwidth
using this calibration.

For further comparison, we calculate the mean square error (MSE). Figure 10 plots the cumu-
lative distribution of MSE before and after calibration. We can see that our estimation accuracy
is significantly improved through calibration. These calibration formulas that we obtain from
our indoor testbed will be further utilized in our real deployment. In addition, we can see that
the calibrated results do not indicate a great improvement when the measurement resolution goes
above 1.5. Therefore, our prototype implementation uses measurement resolution=1.5.

To further investigate the accuracy of our bandwidth estimation component, we have experi-
mented with measuring the bandwidths of several commercial hotspot APs that are not under our
control. Since these APs are not under our control, we have no way of knowing the actual hotspot
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Figure 10: Mean square error of bandwidth estimation
before and after calibration.
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Figure 11: Comparison between bandwidth measured
using MRTG and xylophone.

AP backhaul bandwidths that we can compare with our measurements. Instead, we compare our
measurement results with bandwidth measured using another popular tool, MRTG[25]. We run
MRTG behind a hotspot AP. MRTG measures hotspot AP backhaul bandwidth by monitoring
incoming and outgoing traffic within a 5-minute time slot. Notice that bandwidth estimation
component of xylophone takes far less estimation latency. To compare these short-term estimates
with MRTG measurement, we continuously perform bandwidth estimation from an instance in
the cloud for 5 minutes. Based on these measurements over a 5-minute time slot, we calculate
an average 5-minute-bandwidth, R̄ as follows:

R̄ =

K∑
i=1

Ti

5
× Ri (10)

where K is the number of times the bandwidth is estimated in the 5-minute interval; Ti and Ri

are the estimation latency and the estimated bandwidth respectively in the ith time during the
5-minute interval.

Figure 11 shows the bandwidth estimated using MRTG during a 5-minute interval and the
average 5-minute bandwidth during the same 5-minute interval for 12 different 5-minute intervals
for one commercial hotspot AP. The main observation is that xylophone is able to accurately
estimate AP backhaul bandwidth. MRTG measures the bandwidth right behind the hotspot AP,
while our estimation probe messages traverse the Internet and finally arrive at the hotspot AP. The
observation that these two measurements match fairly well confirms the result that the bandwidth
bottleneck of a hotspot AP is usually located at the edge of the Internet [26][20].

5.3. Latency

5.3.1. Latency at WiFi subscribers end
We first evaluate the latency experienced by the hotspot subscribers when they measure per-

formance values such as DHCP connectivity latency, open/blocked ports, and authentication
and association times. Figure 12 shows the measured DHCP latency for 16 AT&T commercial
hotspot APs in the Boulder, CO region over a week. The main observation is that the maximum
latency for DHCP connectivity measurement is below 15 seconds for all APs except one. The
average DHCP measurement latency is about 5 seconds. Also, we notice that some hotspot APs
(hotspot AP 8 and 16) usually experience some DHCP problems. To measure the latency of
port scans, we performed port scan of 127 common application ports in parallel. It took at most
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Figure 12: DHCP measurement on 16 hotspot APs
over a week.
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Figure 13: Measurement latency at varying transmis-
sion delays.

170 milli-seconds to complete this port scan for the 16 commercial AT&T hotspot APs. Finally,
we also investigated the latency of the authentication and association mechanisms for different
802.11 security mechanisms as part of a previous project, see [27]. The maximum latency for
authentication and association is about 2.49 seconds. Overall, we observe that the latencies for
collecting the performance values on the WiFi hotspot subscribers end are quite low. Considering
that these measurements require only minimal communication and computation, our conclusion
is that xylophone design on WiFi hotspot subscribers end is quite reasonable.

5.3.2. Latency at bandwidth measurement servers
The Internet is highly dynamic in terms of transmission latency, bandwidth between the cloud

and a hotspot AP, etc. In general, there is no way to predict bandwidth estimation latency.
Instead of investigating overall latency for bandwidth estimation, we examine several factors
that cause bandwidth estimation latency variation. By using latency shaping module (netem) in
our indoor testbed, we emulate different transmission delays between the cloud and a hotspot AP.
In one set of experiments we measure the upstream bandwidth by setting upstream bandwidth
equal to 3.5 Mbps, and in another set of experiments, we measure the downstream bandwidth by
setting downstream bandwidth equal to 3.5 Mbps. Figure 13 shows the estimation latency for
estimating upstream and downstream bandwidths as a function of transmission delay between
the measurement server and the hotspot AP varies from these two sets of experiments. The
first observation here is that the estimation latencies are reasonably low, less than 27 seconds
for round trip times as high as 150 ms. Second, we notice that the measurement latency shows
approximately a linear increase with respect to increase in RTT. Based on this, we can say that
the measurement latency will remain reasonably low even when the RTT goes beyond 150 ms.

Finally, we notice that measurement latency is significantly different for upstream bandwidth
estimation and downstream bandwidth estimation. The main reason for this is that the TCP
ACK packets that the instance sends out have different packet sizes while measuring upstream
and downstream bandwidths. Recall that the instance uses 40-byte ACK packets to estimate
upstream bandwidth but larger ACK packets (>>40 bytes) to estimate downstream bandwidth.
Thus it takes much longer to send the same number of ACK packets while measuring downstream
bandwidth than upstream bandwidth.

To understand the impact of packet size on bandwidth estimation latency, we conducted
another set of experiments. In these experiments, the downstream bandwidth was set to three
different values: 3.5 Mbps, 5.5 Mbps and 7.5 Mbps. By using different size of TCP ACK packets
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TCP ACK packet.
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Figure 15: Measurement latency at different resolu-
tions.

to estimate downstream bandwidth in our indoor testbed with a fixed RTT, we can observe in
Figure 14 that the bandwidth estimation latency shows a linear increasing trend. The reason is
that less delays are involved when an instance sends out a TCP ACK stream at a certain data
rate using smaller TCP ACK packets. Another interesting observation in Figure 14 is that lower
bandwidth shows higher estimation latency when an instance uses same size of TCP ACK packets
to estimation bandwidth. The reason for this is quite straightforward – an instance spends less
time in sending the same number of TCP ACK packets if these packets are transmitted through
a high-speed link. This explanation is also validated in Figure 15.

Finally, we examine the effect of measurement resolution on bandwidth estimation latency
(See Figure 15). In this experiment, we vary measurement resolution from 0.1 to 4.0. Note that
the estimation latency exponentially decreases as resolution value increases. To understand this,
recall that measurement resolution is part of the termination condition of our bandwidth esti-
mation. Since bandwidth estimation is the process of a binary search, larger the resolution is,
faster the search process will terminate. Therefore, we can easily reduce bandwidth estimation
latency by choosing a greater value of measurement resolution. As we discussed in Section 5.2,
choosing a greater value of resolution, however, may harm the accuracy of our bandwidth esti-
mation. In order to balance this tradeoff between estimation accuracy and latency, the prototype
implementation of xylophone uses the configuration – measurement resolution = 1.5.

5.4. Scalability

One practical issue with xylophone is how well will it scale when the number of APs is very
high, e.g. 1000 APs? Clearly, we need multiple instances to handle such a large number of
APs. To evaluate this, we implemented the bandwidth estimation component on Amazon’s EC2
platform. In this experiment, we first perform our measurement task (i.e. estimating hotspot
AP backhaul bandwidth of 50 AT&T hotspot APs in Denver and Boulder region) from a single
instance. Then, we increase the number of instances and evenly divide bandwidth measurement
tasks of 50 AT&T hotspot APs. Figure 17 shows the latency of measuring upstream and down-
stream bandwidths of all 50 APs for three different configurations: 1 instance, 5 instances and 10
instances. We notice that the measurement latency is significantly reduced when the number of
instances in the cloud is increased from 1 to 10. This result is quite encouraging. In particular,
with 10 instances, we can measure the upstream and downstream bandwidths of all 50 APs in
less than 100 seconds. So, if we have to update the bandwidths of APs every 30 minutes, ten
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crossing traffic.

instances can manage as many as 900 APs. The issue of how frequently the bandwidths should
be measured is discussed in Section 5.6.

Another observation from Figure 17 is that though the number of instances are increased
to 5 times and 10 times, the bandwidth estimation latency is not decreased by 5 times and 10
times. Two major factors contribute to this. The first is the overhead of managing all instances in
the cloud. The other is the RTT between an instance and hotspot AP are not equal for different
hotspot APs, so the actual distribution of which set of APs is assigned to different instances can
impact the latency.

5.5. Intrusiveness

Since bandwidth estimation of xylophone system is based on the concept of self-induced
congestion (i.e., an instance saturates hotspot AP backhaul bandwidth in the process of the band-
width estimation.), an important question is how does the bandwidth estimation of xylophone
impact the performance of ongoing user computations? For example, does it result in increase in
transmission delays for hotspot subscribers? To quantitatively investigate this potential impact
on transmission delays, we conducted an experiment in our indoor testbed. A client uses hping2
to generate a TCP packet every 100 milliseconds through the AP we deployed in our testbed.
Over this peroid of time, the instance probes the AP backhaul bandwidth. Figure 16 shows the
transmission delays for some TCP packets from the client side increases. Furthermore, we can
see that overall transmission delays show an obvious increasing trend when the TCP stream from
the client side passes through a low-bandwidth link. The reason is that when TCP packets are
buffered in a queue, lower bandwidth routers need longer time to empty the packet buffered in
the queue. Another important observation from Figure 16 is that there are no drop-off packets.
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Figure 19: Time series plot of bandwidth at a hotspot AP in Boulder region, Colorado.
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To examine the overall impact of bandwidth estimation on a TCP stream sent from a client side,
we investigate what percentage of TCP packets from the client side experience longer transmis-
sion delays. Figure 18 indicates that only 10%–20% TCP packets generated from the client side
experience longer transmission delays. The reasons for this relatively lower percentages are: (1)
bandwidth estimation does not cause a persistent increase in queue size because a probe stream
is never sent before the previous probe stream has been acknowledged; and (2) the process of
bandwidth estimation is a process of binary search, and therefore, not every probe stream will
saturate hotspot AP backhaul bandwidth.

5.6. Sampling frequency

As we discussed in Section 5.5, bandwidth estimation impacts the performance of hotspot
subscribers in terms of increasing the transmission delays for a relatively small percentage of
packets. Therefore, xylophone must reduce the frequency of bandwidth estimation of an AP.
However, lower frequency may degrade the applicability of our system. For instance, suppose
xylophone probes hotspot AP backhaul bandwidth every 60 mintues. During this period of time,
hotspot AP backhaul bandwidth may vary significantly. Therefore, it is important to choose an
optimal sampling frequency for bandwidth estimation. To do this, we need an understanding of
how bandwidth changes over a given time period. So, we conducted a long-term experiment to
analyze the temporal stability of bandwidth. The purpose of this analysis is to (1) explore how
the bandwidth observed at a hotspot AP varies as a function of time; and (2) identify the relative
stability of bandwidth over different time scales.
Data collection: We collected hotspot AP backhaul bandwidth information from 50 commercial
hotspot APs in Denver and Boulder region. These hotspot APs were accessed and used daily by
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hotspot subscribers. They vary widely from one another in terms of the number WiFi subscribers.
Some of them are used by hundred and even thousand of hotspot subscribers daily (e.g. airport
hotspot), while some others are used by less than 10 subscribers, e.g. a coffee shop. We estimated
bandwidth B(t) of these hotspot APs every 30 seconds. To describe the temporal stability of
bandwidth, we select one of the most dynamic hotspot AP in terms of bandwidth variation. A
snapshot of the time series plot of bandwidth from this hotspot AP is shown in Figure19 for a
70-hour time period.
Persistence: We first take a look at the amount by which successive bandwidth samples change.
If many abrupt changes over short time scales occur, the bandwidth is unstable. We compute the
Cumulative Distribution Function (CDF) of the amount of bandwidth change between successive
samples and analyze it. Figure 20 shows the CDF of persistence for the measured hotspot AP,
whose time series plot is shown in Figure 19. We find that successive samples of the hotspot AP
vary by less than 8 Mbps over the entire trace period. However more than 90% of the successive
bandwidth samples vary by less than 0.8 Mbps. Therefore, we can conclude that the measured
bandwidth B(t) is relatively persistent.
Time scales of stability: A persistent stable bandwidth B(t) might not be stationary stable, where
the mean and variance do not change over time or space. For example, consider a stochastic
process X(t) in which variable Xi keeps increasing by a small amount with increase in i. In this
case, X(t) is persistent, but not stationary stable. If we take a close look at the time series plot
in Figure 19, we notice that the bandwidth varies quite a lot over the entire observation period.
Indeed, B(t) is not stationary stable in general. We need to verify whether B(t) is piecewise
stationary, i.e. whether B(t) is stationary stable over shorter time scales.

To check the piecewise stationary stability of B(t), we set a time window w of some length,
and slide this window over the measurement interval over the entire trace period. For each in-
stance of slide window, we calculate mean and relative deviation. Figure 21 shows the percentage
of slide windows in which the relative deviation is less than 10%, 20% and 30% for different win-
dow sizes ranging from 5 minutes to 60 minutes. For example, when we set time window w = 20
minutes, 81% windows on the trace have a relative deviation less than 20%. This means that the
chance that the bandwidth varies by more than 20% with in a 20-minute period is about 19%.
As expected, we note that the bandwidth is less stationary stable for larger window sizes. These
results show that B(t) is piecewise stationary for time intervals of the order of 20 to 30 minutes.

The results reported here are from a snapshot of the most dynamic hotspot AP in our ex-
periment, and so this observation cannot be generalized to all the hotspot APs. However, other
hotspot APs, especially for those hotspot APs with less dynamic behaviors in terms of bandwidth
variation, show more stable behaviors. With this observation, our prototype implementation of
xylophone uses 30 minutes as our bandwidth estimation interval, i.e. duty cycle for estimating
hotspot backhaul bandwidth is 30 minutes.

6. Conclusion

This paper introduces xylophone, a hotspot WiFi locator service that allows a hotspot sub-
scriber to search for available hotspots in a given area and enables hotspot subscriber to select
commercial hotspots based on their current quality of service. The quality of service parameters
include upstream and downstream bandwidths, connection delays in terms of DHCP connectiv-
ity latency, authentication and association latencies, and open/blocked ports. A novel bandwidth
estimation methodology is introduced. Extensive evaluations of xylophone are provided which
include evaluation from a prototype implementation in an indoor testbed as well as a prototype
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implementation in the Amazon’s EC2 platform. Evaluation results demonstrate low latencies
experienced by WiFi subscribers to measure DHCP connectivity, authentication and associa-
tion process, and discover open/blocked ports. Also, the bandwidth measurement component
of xylophone exhibits high measurement accuracy, low latency, high scalability, and minimal
intrusiveness.
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