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ABSTRACT

A new subclass of EQL languages is introduced. Several
properties of Tanguages in this class are proved and then applied to

provide elegant proofs that some languages are not EOL languages.



INTRODUCTION

The mathematical theory of L-systems constitutes today a
vigorously investigated fragment of formal language theory (see, e.g.,
[Herman and Rozenberg, 1975], [Rozenberg and Salomaa, 1974] and
[Rozenberg and Salomaa, 1975]).

One of the more important research areas in the theory of L
systems is to provide results characterizing the structure of languages
from the given family of L languages (as opposed to, e.g., results
characterizing closure or decidability properties of various families
of L languages). Such results are very much needed when proving that
certain languages do not belong to certain families of L languages.

This paper continues research in this direction. We introduce
the subclass of the class of EOL languages (the so called 0-deter-
ministic EOL languages) and then we prove that if a language belongs
to this subclass then this fact bears quite strong consequences as
far as properties of this language are concerned. Then we provide
applications of our results for a rather difficult in general task
of proving that certain languages are not EOL languages. (For
example we can easily prove that {anbman :m2Zn 21} as well as
{Www : We{a,b}+} are not EOL languages).

We shall use the usual formal language theoretic terminology
and notation. Perhaps only the following points require an explanation:
1) For a word x, |x| denotes its length. If b is a letter then

#bx denotes the number of occurrences of b in x and if B is a

set of letters then #Bx denotes : #bx.
beB
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Let 2 be a finite alphabet and let B = i. Thgn hB,Z denotes
the homomorphism from £ into I* defined by |

a if aeB

h, .(a) =
B2 A 1f aer-B.

Whenever the » is clear from context we write simply hB rather
than hB 5+ Also, in order not to burden the notation too much,
we shall use the same symbol in denoting the extension of the

function hy to languages (thus we have hg (L) =\;Zf/h8(x)).

For a word x, Min(x) denotes the set of letters that occur in

x. For a language L, MIN(L) = {Min(x) : xel}.



I. EQL SYSTEMS AND LANGUAGES
In this section we recall the notions of an E(P)OL system and
of an E(P)OL language. Then we prove a normal form theorem for EPOL

systems which will turn out to be useful in our further considerations.

Definition 1. An EOL system is a construct G = <z, P, w, A>

where
% 1is a finite nonempty alphabet, referred to as the alphabet of G,
A is a subset of 1z, its elements are referred to as terminals of G,

whereas elements of z-a are referred to as nonterminals of G,

w 1is an element of 1*, referred to as the axiom of G,
P is a finite nonempty relation, Pexxz*, its elements are referred

as productions of G.

It is required that (Va). (4a) % L<a,a>eP].
% 5

Remark
1) If in the definition above Pcizxz+, then we call G a propagating

EOL system and abbreviate it as an EPOL system.

2) Productions <a,a> from P are usually written in the form a > a,
and we write a - o as an abbreviation for "a -+ « is in P".
P
3) If A=z and for every a in % there exists exactly one o in z*

such that <a,u>eP then G is called a DOL system. If addi-
tionally G is propagating then G is called a PDOL system.



1.1)

1.2)

Definition 2. Let G = <i, P, w, A> be an EQL system.

ke - gt 2 .
Let XoYEr®, X=ay...a, w1th,a],...,an in z.

We say that x directly derives y in G, denoted as Xﬂ=2=%y, if
' G

there exist Gqanssstp in ©* such that a1 SO ERRRTT: o

p n

.—)-
nop

and y = Opee sty
For a positive integer k, we say that x derives y in G in k

steps, denoted as Xz:§=§y, if there exist Xqsee Xy ino*
G

such that X===p Xy =D Xy . c=2X = . If there exists a k
G G G ‘

such that x::ﬁéby then we write x==i%§y.

G G



1.3) >=;%=> denoted the transitive and the reflexive closure of
c R . ,

: s
the relation =>. If x==>y then we say that x derives y in
G G

G.
2) The set of sentential forms of G, denoted by SENT(G), is

defined by SENT(G) = {xeI* : w=sx}.
G
3) The language of G, denoted by L(G), is defined by

L(G) = {xea*: w:;$x}.
G

Remark:
1) For x in £* and k in N+, we write L(G,x,k) to denote the set
: ' k

{yer*®: X:Eéy}.

+
2) If x=E§y‘then there is a derivation D of y from x in G meaning

the sequence of words Xo> X1s <o0s X such that Xg =X5 X =Y and
X7 Xi41?

sing i i =D X
how a single derivation step X; e Xi41

for 0Sisn-1, together with a precise description of
is done. However, vény
often the sequence XosXys +oesX called the trace of D and
denoted by Trace (D) provides sufficient information about D

and we will use it in the sequel.

 Definition 3. A language K is ca]]ed an EOL language (EPOL

language) if there exists an EOL system (EPOL system) G such that L(G) = K.

It is well-known (see, e.g., [Herman and Rozenberg, 1975] p. 184)



that for every EOL Tanguage K there exists an EPQOL system G such that

L(G) = K-{ A }. For this reason in this paper we will restrict ourselves

to EPOL systems.
Also, because of the type of problems we are concerned with

in this paper we consider, unless stated otherwise, only infinite EOL

languages and EOL systems which generate infinite languages.

Let us recall (see, e.g., [Herman and Rozenberg, 1975]) that

an EPOL system G = <z, P, w, A>is called synchronized if for every a in

A and every o in ¥, if a:%;a then o is not in A*. It is well known,
see, e.g., Theorem 4.4 in [Herman and Rozenberg, 1975] that for every
EPOL system there exists (effectively) an equivalent synchronized
EPOL system. From the proof of this theorem in [Herman and Rozenberg,
1975] it is clear that for every synchronized EPOL system G = <X, P, w, A>
we can assume the existence of a unique symbol F such that if acA then
a > F is the only production for a in P and F ~ F is the only production
for F in P. As a matter of fact we reserve the symbol F to denote in
the sequel this unique "synchronization symbol".

If G =<2, P, w,A> is a synchronized EPOL system such that
weZ-A then we will use W(G) to denote - (AUA{F,w}).

We define now a stronger version of a synchronized EPOL system.

Definition 4. An EPOL system G = <&, P, w,A> is called neatly

synchronized if the following conditions hold:

1) we(Z-A) and w does not appear at the right-hand side of any
production in P.
2) G is synchronized.

: +
D a3, e,



4) (Ya)  (Vk,k') L[MIN(L(G,a,k)) = MIN(L(G,a,k'))].
et _

5) . (\/a) [if a » o then oca(:\'»l(;ﬁ))-l-‘_()_r‘_ o&e:&+'9_k: oc=F]‘.‘
z P

We will prove nOW‘that each EPOL language can be generated by
a neatly synchronized EPOL system.

Theorem 1. There is an algorithm which for every EPOL system
G produces a neatly synchronized EPOL system G such that L(G) = L(G).

Proof.

Let G =<z, P, w,A> be an EPOL system.

It is well known (see, e.g., Theorem 4.4 and its proof in
[Herman and Rozenberg, 1975]) that one can effectively produce an
EPOL system G] satisfying conditions 1) and 2) of Definition 4. Now
if a symbol a in w(G1) - {w} does not satisfy condition 3) from
Definition 4 then, clearly, it can be remoyed\from the alphabet¢0f G]
(together with all productions in G] involving this symbol) and it
will not change the language of G].

Now, by Corollary 1 and its proof in [Rozenberg, 1975] one

1 2)

can use G to produce 62 which will be such that L(G") = L(G]) and

G2 will satisfy conditions 1) through 4).

2 =<, P, w, A> contains a production

Finally it is clear that if G
of the form a -+ o where O¢(W(GZ))+"~-‘='A+4»'{F}»”thérrfone can remove it without
changing the language of the system.

Hence the theorem holds.

Remark

In the sequel we shall always deal with EPOL systems in which



the axiom is a nonterminal which do not occur at the right-hand side of
any production. We reserve the symbol S to denote the axiom of an

EPQL system.

Following [Rozenberg, 1975] we recall now the notion of a
decomposition of an EPOL system.

Definition 5. Let G = <z, P, S, A> be an EPOL system and let

k be a positive integer. A k-decomposition of G, denoted as Dec (G,k),

is the EPOL system Dec (G,k) = <z, P, S, A> where P, is defined as

follows:
1) For a in z-{S}, a » o iff a==§ﬁ$d,
Pk P
2) S+ o iff S=%a for some m in {1,...,k}.
Pk P
It should be clear to the reader that for every EPOL system G:
1) For every k in N+, L(Dec (G,k)) = L(G).
2) If G is neatly synchronized, then, for every k 1in N+,L(Qgg_(G,k))

satisfies conditions 1) through 4) of Definition 4, but it does
not have to satisfy the condition 5) of this definition.
However it suffices to remove productions which do not satisfy
this condition to obtain a neatly synchronized system defining
the same language. We shall use EEE_(G,k) to denote such a

modified system.



II. 0-DETERMINED EPOL SYSTEMS
In this section we introduce a new subclass of the class of
EPOL systems. Then we prove two results on the structure of derivations

in these systems.

Definition 6. Let G = <z, P, S, A> be a neatly synchronized

EPOL system and let © be a nonempty subset of A.
1) For a in W(G), we say that a is o-determined (in G) if

(Vk) [#h, ((L(G,a,k)fWA*) = 1]; otherwise we say that a is
i ,
0-undetermined. -

2) We say that G is o-determined’ if every a in W(G) is

o-determined.

Remark .
We will use Tengthe(G,a,k) . to denote the length of a unique

word in he(L(G,a,k)#%A*

We leave to the reader the easy proof of the following.
Lemma 1. If G is o-determined EPOL system, then, for every
I . ~ .
k in N, Dec (G,k) is o-determined.
We are ready to prove a result on the possibility of a very
suitable slicing of a o-determined EPQOL system. .
Lemma 2. Let G be a o-determined EPOL system. . There exists

£ 2 1 such thatiﬁéﬁ (G,£) satisfies the following:
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(Va) ~ [ ((3c,) (VK [length, (DEc (6, £),a,k) < C,1)
G,2)) N 21

or ((/«) ,[length  (Dec (6,£),a,k) > KI)1.
N

Proof.
let G = <z, P, S, A>,

Let RED(G) = {aeW(G):(E}oc)( Jla 3 «]} and let
A_.

0)

jep)
it

<%, P, S, A> where % = £~ RED(G) and

P

i

{a + a:(aeZ) and ((Fa) +[& = h_ (a) and a + all} .
z z

-
p
Since G is ©-determined, if aeRED(G), then there is no B in A*@A*

such that a g 8. Thus (since G is neatly synchronized):

1) if a:is in RED(G), then for every k in N+, L(G,a,k) contains no

words in A*@Afz consequently, for everygkgim@Nﬁﬁk ength:(G,a,k)=O,

2) if a is in I, then for every k in N',

o (L(Ba,K)ma") = hy(L(Ba,K)mn").

Now let G = <&, P, S, 4>, where P is defined as follows:
- for a in & - W(B), productions in P are precisely these from P,
= for each a~in:W(G)‘wéaéhoose one arbitrary production from B of the
form a >~ o with o fh‘?(W(G))+ (we denote the right-hand side of this
production by nont(a)) and one arbitrary production from P of the form
a > g with g in N (we denote the right-hand side of this production
by term (a)). Now the productions for a in P are a - term (a) and

a -~ nont (a).
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Obviously we have

) ' - * = *
3) (Va) (VK [h(L(Bask)na’) = i (L(B,ask) A a0)].
WE) A A g
Now we are in position to prove the following
Claim 2.1 There exist a finite set U, a finite number of PDOL

systems Hy,....He » f 2 1, and a . A-free homomorphism ¢ such that

L@ = v (Lo ().
'l:

i

Proof of Claim 2.1

Let U be the set of all terminal words that can be derived from
S in E in one step. Let Y be the set of all words over W(E) which
can be derived from S in'E in one step, say Y = {w],...,wf}.

For 1sisf, let Hi be the PDOL system defined by Hi = <V,R,w1,V>

where V = W(E) and R = {a ~ nont (a):acV}.
Finally let ¢ be the A-free homomorphism from V into At
defined by ¢(a) = term (a).
The reader can easily see that, indeed,
L@ = v\ sy
and so the c%;}m holds.
Let us recall now the following result from the theory of DOL
sequences (see, e.g., [Lee and Rozenberg, 1974] or [Nielsen, 1974]):
- if H is a DOL system, then there exists a constant C such that
if a word w is derived in Dec (H,C) in k steps then |w| > k.

Clearly this result together with 1) and Claim 2.1 proves the“lemma.
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Now we will show how. the number of occurrences of elements from
© 1in words generated by a e-determined EPOL system are bounding the
total length of these strings.

Lemma 3. Let G be a @-determined EPOL system. There exist
positive integer constants C,’D such that, for every x in L(G), if
#y(x) > C, . then [x] < D#@(X).

Proof.
let G = <z, P, S, A>. By Lemma 2 we can assume that

(Va)w( [ (3 Ca)N+(Vk).>_1,“e“9““e(G’a"k) <c,1)

8

or (Vk)_[length (G.a,k) < C, 1)
. |

Let BOUND(6) = {acW(G): (A C,) ,(Vk) [length (6,a,k) < C_I}
N 21 — 9 &

and let for every a in BOUND(G), Ca be the smallest positive integer
constant m satisfying the statement (k/k)z][lggggle(ﬁ,a,k)f <m].
Let ONE(G) ='{XESENT(G):SzE$X} and 9 © max{#e(xQ :xeONE(G)aL(G)}.
Let ONE(G) = ONE(G) ~ (BOUND(G))" and Tet
9y = (max{|y|: yeONE(G)) - (max{Ca: acBOUND(G)}).
let C = max{go,g]} + 1.

Let D = max{|a|: o is the right-hand side of a production in P}.

Il

“max{|y|] : yeONE(G)}.
Now Tet us assume that xeL(G).
(i) If xeONE(G), then #O(x)‘ b g, < C» and so the lemma trivially
holds.
(i1) If x¢ONE(G), then let S:yps--es¥y = Xs With 2 2 2, be the trace

of a derivation in G.
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(ii.1) If yieﬁNE(G), then #,(x) £ g, < C, and so the lemma trivially

(ii.2)

nolds.

If Y1 $5NE(G) then it contains an occurrence of an element b
from W(G) such that (k/k)> [length, (G,k,b) > k]. Thus

2] »
#_(x) = £-2. But by the definition of D, |x| < pt-2 and so

]
# (%),
x| <D °

This ends the proof of the lemma.
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III. 6-DETERMINED EOL LANGUAGES

In this section we introduce the notion of a o-determined
language.  We show that the class of ©-determined EOL languages is
precisely the class of languages generated by’e-determined:EPOL )
systems. Then we show how, using the results of the last section, one

can easily prove that some particular languages are not EOL languages.

Definition 7. Let K be a language over an alphabet I and let

© be a nonempty subset of . We say that K is a o-determined

language if
(V k')N““G"k)N*(VX’“V)K

[if x|, |y| > ny and x = x;ux, and y = x;vx, and [ul,|v| <k

then he(y) = hg(v)]

Example

1) Take K = {a"™a" : m 2 n 21} and let o = {a}. Then K is
0-determined.

2) Take K = {anbman :n,m2 1} and let o = {a}. Then K is not

0-determined.

Lemma 4. Let K be a o-determined EOL language. Then there

exists a ©-determined EPOL system G such that L(G) = K.
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Proof.

Let H = <z, P, S, o> be an EPQL system such that L(H) = K.
According to Theorem 1 we can assume that H is neatly synchronized.

Let aeW(H). We call a slim in H if there exists a positive
integer p_ such that if a occurs in a word w.over W(H) which is 1in
SENT(H) then |w| < Py

First we prove the following.

Claim 4.1 Let aeW(H). If a is ©O-undetermined, then it is slim.

Proof of Claim 4.1

R . . . . + .
Since a is  ©-undetermined, there exist d in N and x1,x2 in

A+ such that azggx], a:ggxz, and h@”(x]) # h@(xé)j; If we assume now
H H -

that a is not slim, then for every t in N+ there exists a word z,az, in

SENT(H) with lz]azzi > t. Consequently there exists a positive

integer constant p (take p = max{[x,|, |x,|}) such that, for-every t in

N+,L(H) contains words of the form w]x1W2~and@w1§?y2wWhe£e
Wy xquo | > s [WyXoWs| >ty [X] 2Py [x] S p obut hg(xq) # holx,).

Since L(H) is ©-deterministic, this is a contradiction.
Thus Claim 4.1 holds.

For w in L(H) let D,  denote a fixed derivation of w in H

H,w
which is such that no other derivation of w in H takes less steps

than DH,w'

Claim 4.2 There exists a constant BH in N+ such that for

every w in L(H),if Trace (DH w) = S,y],...,ym =W and ¥ contains-an.

occurrence of a .o-undetermined letter; then i < BH‘“ TH
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Proof of Claim 4.2

This follows from Claim 4.1 and from the fact that in Trace (DH w)
the number of words of the same length, say £, is limited by'(#z)ﬂ.

Now let k be a positive integer such that k > BH where BH is

. be obtained from Dec (H,k) in

AT S
such a way that from the productions (in Dec (H,k)) for every symbol

the constant from Claim 4.2. Let G

with the exception of S one removes these which contain occurrences
of ©-undetermined letters on their right-hand side.
Obviously L(6,) = L(Dec (H,k)) = L(H)
To see that L(H) = L(BEE,(H,k)) = L(Gk) we proceed as follows.
Let xeL(H).
If x can be derived in H in no more than k steps, then x is
derived in Gk in one step.
If every-derivationwof x in H takes more than k steps, then let
us consider DH,x’ Let Trace (DH,x) = S,y1,...,yk,yk+],...,y = X.

m

Note that, for 1 £ i < k, S=E>yi, and (see Claim 4.2), for
k

k+1%4i<m-1, Y; does not contain ©-undetermined letters. Thus
there exists an integer u, 1 = u ® k, such that

S YyYures s Ynake Yok Ym X

is the trace of a derivation in Gk. Consequently X£L(Gk).

But, see Lemma 1, Gk is ©-determined and so the lemma holds.

Thus now we can carry over into ©-determined EOL languages
the result (Lemma 3) on the bound on the length of words in ©6-determined

EPOL systems.
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Theorem 2. Let K be a  eo-determined EOL language. There
exist positive integer constan%$)0 and D such that, for every x in K,
#.(x).
if #,(x) > C, then [x]| <D o,

Proof.
This result follows directly from Lemma 3, Lemma 4 and the
quoted before fact that EPOL systems generate all EOL Tanguages

(modulo A ).

We will show now that in the case that:an EOL Tanguage K over
Ais A-determined it can be decomposed into a finite union of A-free
homomorphic images of PDOL languages.

Theorem 3. Let K be an EPOL language over an alphabet a .
If K is A-determined then there exists a finite set of PDOL systems

HO,H],...,Hf and a A-free homomorphism ¢ such that K =\\f;/ ¢(L(H1))
i=0

Proof.
This follows from:
1) Lemma 3 and Lemma 4,
2) the proof of Lemma 2, see Claim 2.1, where one easily sees

that if © = 4, then L(8) = L(6) = UL/ 4(L(H,)), and
i1 »

3) the simple observation that a finite set is an image under a

A-free homomorphism of a PDOL language.

Based on Theorem 3 we can get a very useful result on the
number of subwords in aA-determined EOL languages. (In what follows
for a language L and a nonnegative integer n,wh(L) denotes the number

of subwords of length n which occur in words of L).
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Corollary 1. Let K be an EQL Tanguage over an alphabet A.

If K is A-determined, then there exists a constant C such that, for

every n in N, 7 (K) < C - ns.

Proof.
First, we recall the following result from [Ehrenfeucht, Lee
and Rozenberg, 1975]:

- If L is a PDOL Tanguage then there exists a constant D such

that, for every n in N, wn(L) < Dn?.

By Theorem 1, K = \;E/ ¢(L(Hi)) where ¢ is a j-free homomorphism and
i=0 |

H{'s are PDOL systems. Hence it suffices to show that if L1, L2 are

languages and g is a A-free homomorphism such that L2 = g(L]) then

if, for every n in N, ﬂn(LT) < C] . n2 for a constant C], then, for

every n in N, wn(Lz) < C2 . n3 for some constant CZ' This is done as

follows.
If Wenn(LZ) then there exists z in nﬂ(L]) for some £ £ n such
that w is a subword of h(z). Llet z = ay...a, with CIPRPR )Y being

single letters. It suffices to consider the following situation:

Hence, for every n in N,
n

C
nn(Lz) Io(#x) 9 . z ﬂn<L]) , Where L] is over the alphabet = and

m=1
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and C, equal twice the maximum length of h(a) with a in z.
Thus n
. C0 2 3 C0
ﬂn(LZ) ? C1k (#1) M‘ m- < C2 *m”, where CZ = C] - (#1)
m=1

Thus the Corollary holds.

We end this section by demonstrating how our results can be
used to get elegant proofs that some languages are not EOL Tanguages.

Application 1. Llet K= {a™®™a" : m 2 n 2 1}. Clearly K is

{a} -determined but it is not true that the number of a's in a word
from K bounds the length of the string. Thus by Theorem 2, K is not
an EOL language.

Application 2. Let £ 2 3.and let Kp = {wz : wefa,b} '}, Clearly

K is {a,b}-determined but-at the same time,-for-every n in N,

nn(K) i Zn;thhus by Corollary 1, Kk is not an EOL language.
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