Forests, Frames and Games:
Algorithms for Matroid Sums and Applications

Harold N. Gabow and Herbert H. Westermann

CU-CS-446-89 October 1989

%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Forests, Frames and Games:

*

Algorithms for Matroid Sums and Applications

Harold N. Gabow! Herbert H. Westermann?

Department of Computer Science
University of Colorado at Boulder

Boulder, CO 80309

Abstract.

This paper presents improved algorithms for matroid partitioning problems, such as finding a
maximum cardinality set of edges of a graph that can be partitioned into &k forests, and finding as
many disjoint spanning trees as possible. The notion of a clump in a matroid sum is introduced,
and efficient algorithms for clumps are presented. Applications of these algorithms are given to
problems arising in the study of the structural rigidity of graphs, the Shannon switching game and

others.

* This is a revised and expanded version of a paper appearing in the Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, 1988.
! Research supported in part by NSF Grant Nos. M(CS-8302648, DCR-851191.

1. Introduction.

Matroid theory provides a unifying framework for many diverse areas of combinatorics. The
matroid sum has been called one of the most successful notions in matroid theory [A, p. 294]. In
large part this is due to the theorems of Edmonds on covering and packing, and Edmonds’ matroid
partitioning algorithm [Ed65a-b].

This paper investigates matroid partitioning algorithms, both on the general matroid level
and for specific matroids. Our general matroid algorithm incorporates several ideas that should
make it more efficient than Edmonds’ algorithm (and other partitioning algorithms) on any specific
matroid. We support this claim by applying the algorithm to a number of matroids, the most
important being graphic matroids. Our main results for specific matroids are summarized in Table
I. (The expressions in Table I are asymptotic, e.g., m represents O(m).) Before explaining the table
we introduce some notation and terminology.

All of the specific matroids in this abstract are derived from undirected graphs. The given
graph is denoted G = (V,F). We use several parameters for the size of G. As usual, n and
m denote the number of vertices and edges, respectively. In problems involving the parameter k

(which indicates the size of the desired solution) it is convenient to define
n' = min{n,2m/k}, m' =m +n'logn’.

(If a problem is not stated in terms of k yet our time bound involves n’ or m/, there is no harm in
assuming 7’ = n, but the text gives a better choice.)

A matroid counsists of a finite set S and a family of subsets of S, called independent sets.
The independent sets are closed under taking subsets, and they satisfy an enlargement axiom: For
any independent sets [and J with |I| < |J|, I can be enlarged to a bigger independent set by
adding some element of J — I. A base of a matroid is a maximum cardinality independent set.
For example the graphic matroid of a graph G, denoted G(G') (or G when the graph is obvious)
has elements the edges of &G, independent sets the forests of G, and bases the spanning trees. For
matroids M;, i = 1,...,k on the same set .S, the matroid sum \/f:1 M; is a matroid M on S, whose
independent sets are all sets I C § that can be partitioned into disjoint subsets I;, ¢ = 1,...,k
with I; independent in M;. For such I and corresponding I;, we say I = Uf__:l I; is a partitioned
independent set of M. (An independent set can have more than one valid partition.) A partitioned
base of M is defined similarly. As an example, an independent set in G(G)V G(G) is a subgraph
that can be partitioned into two forests. The matroid partitioning problem is to find a partitioned

base B of \/f:1 M; for given matroids M;. An important special case is when all summands are

2

identical — the k-fold sum of a matroid N, denoted N*, is \/f:1 N.

The first entry in Table I is for the k-forest problem: Given a graph G and an integer k, find
k edge-disjoint forests collectively containing as many edges as possible. (Equivalently this is the
matroid partitioning problem of the k-fold sum of a graphic matroid.) This problem has many
applications: In the analysis of electrical networks, the solution for k = 2 (called extremal trees
[KK]) is central to hybrid analysis (it gives the minimum fundamental equations of the network
[OIW, IF]). The k-forest problem also arises in the study of rigidity of structures. For k = 2 it
determines if a graph is rigid as a bar-and-joint framework on the surface of a cylinder in three-
dimensional space R [Wh]. For k = d(d + 1)/2 it determines if a graph is rigid as a bar-and-body
framework [Tay] and also as a body-and-hinge framework [Wh] in R9. For arbitrary k it determines
rigidity of bar-and-joint frameworks on the flat torus in R¥ [Wh] and also rigidity of k-frames [WW].

We give two k-forest algorithms. The first, giving the first line of Table I, applies our general
matroid algorithm. It improves the previous algorithms over all ranges of parameters. The second
k-forest algorithm has better dependence on k than the first. (A third algorithm gives a minor
improvement.) To explain the second algorithm we introduce another matroid on graphs.

The bicircular matroid of a graph G, denoted B(G) (B, when the graph is understood) was
studied in [Ma]. It is related to the graphic matroid but seems to have simpler structure (see e.g.,
[GT88a]). A set is independent in the bicircular matroid if it is a pseudoforest, i.e., each connected
component has at most one cycle. The k-pseudoforest problem is the analog of the k-forest problem.
This problem arises in the theory of structural rigidity; e.g., for & = 2 it determines the rigidity of
bar-and-joint frameworks on the surface of a regular tetrahed:rén [Wh]. The mized-forest problem is
to find a maximum cardinality set of edges that can be partitioned into f forests and p pseudoforests,
along with its partition, i.e., a partitioned base of G/ v BP. This problem determines the rigidity
of bar-and-joint frameworks on the surface of a 3-dimensional cone (f = p = 1); rigidity on higher
dimensional surfaces has been conjectured to be determined by the problem with higher values of
f and p [Wh].

Our k-pseudoforest algorithm is another implementation of the general algorithm. It is faster
than the k-forest algorithm because of the simpler structure of the bicircular matroid. Some
techniques from network flow theory [ET] are used in the analysis. Our algorithm for the mixed-
forest problem combines the two algorithms in a way that simplifies the computation on the more
difficult, graphic matroids. (The time bounds for these algorithms are in Theorems 3.2 and 3.5.
We know of no previous work.)

Our second k-forest algorithm is based on an interesting fact: &k pseudoforests can always be

3

converted into k + 1 forests. This observation is due to Picard and Queyranne [PQ] who phrased it
in terms of the arboricity of a graph (defined below). Our second algorithm uses this observation
recursively in a divide-and-conquer scheme. We call this the stepping stone approach. The stepping
stone approach extends to weighted problems. For example it gives the table entry for the weighted
k-forest problem, i.e., finding a maximum weight set of k edge-disjoint forests.

We turn to covering and packing problems. The covering problem for a matroid M is to
find cov(M), the fewest number of independent sets that contain all elements, together with the
independent sets. For example cov(G) is the arboricity of the graph, the fewest number of forests
that contain all edges. The packing problem is to find pack(M), the greatest number of disjoint
bases contained in 5, along with the bases themselves. The packing problem on a graphic matroid
gives spanning trees that can be used for fault tolerant communication (up to pack(G) — 1 edge
failures can be tolerated without disrupting communication) [Gu83, IR].

We present algorithms for covering and packing on a general matroid M. The algorithms use
a balanced binary search. This speeds up ordinary binary search, as follows: Each probe gathers
slightly less than complete information; after the search, postprocessing closes the knowledge gap.
This technique is used in [GT88b] for bottleneck matching. The bounds for graphic matroids are in
Table I. The bound for arboricity solves a problem left open in [GGT]. For bicircular matroids, the
“pseudoarboricity” was investigated in [PQ, GGT] (they do not use matroids); our bound (Theorem
4.1) improves them; we know of no previous work on packing bicircular matroids.

We introduce the notion of clump in a matroid sum. This term was invented by Roskind and
Tarjan [RT], who defined a clump in a graph algorithmically. We generalize their notion and use
it to analyze our algorithms. We also define the top clump. This leads to a family of invariants
of matroids (a fortiori, invariants of a graph). It generalizes two other matroid invariants, the
principal partition of [KK] and its generalization, the r-minors of [BW71]. We introduce another
useful notion, the preclump (essentially a maximal set not containing a clump).

The next problem is to find a top clump. Here are three applications: (i) Lovdsz and Yemini
[LY] give an algorithm to determine if a graph is generic independent (minimally rigid) in the plane.
It involves solving m 2-forest problems (for m the number of edges). Using the top clump, our time
bound is the time to solve one 2-forest problem. (i¢) White and Whitely [WW] define k-irreducible
graphs, related to rigidity of bar-and-body frameworks. We can recognize a k-irreducible graph,
essentially by finding a top clump. The time is the time for one k-forest problem. (There does not
seem to be an obvious algorithm for k-irreducibility; [WW] do not give an algorithm.) (i) The

Shannon switching game can be solved by finding a top clump and doing simple postprocessing, as

4

indicated below.

We present a related algorithm to find the decomposition of a graph into maximal preclumps.
This decomposition determines the number of degrees of freedom of a bar-and-joint framework in
the plane; in fact it can be used to give a complete description of the motions of such a framework.
(The algorithm presented here is for the 2-fold graphic sum. This is the case needed for degrees of
freedom and the switching game application below. The general version of our algorithm for &-fold
sums is similar.)

The Shannon switching game (defined in Section 7) has been greatly studied (see e.g., [La]).
We improve previous solutions in two ways. First, our solution to the 2-forest problem gives the
best-known bound for the simple form of the game investigated by most researchers [e.g. RT, KK,
BW70]. Second, we give a more general analysis of the switching game. We assume a fixed graph
and allow the goal vertices to vary. We show that the top clump and preclumps determine the
winner of a switching game; furthermore they give the trees and cotrees necessary to execute a
winning strategy. This leads to various algorithms for finding the winner of the game (classification
and tree queries, defined in Section 7). For instance, we can find the winner of each of the (72‘)
possible switching games on a given graph, in time O(n?logn).

In summary, the main contributions of our work are using pseudoforest algorithms as a stepping
stone to tree algorithms; showing the applicability of balanced binary search; using top clumps
and preclumps to solve rigidity problems and the Shannon switching game. The stepping stone
approach and the notions of top clump and preclump generalize to other matroids, although this
is not discussed here.

The remainder of this paper is organized as follows. Section 2 presents our general matroid
partitioning algorithm. Section 3 describes our algorithms for the k-forest problem and related
problems, Section 4 algorithms for covering and packing problems. Section 5 discusses the top
clump, giving a general algorithm to compute it. Section 6 solves rigidity problems for bar-and-
joint and bar-and-body problems. Section 7 presents our analysis of the Shannon switching game.
The rest of this section gives some notation. .

If §is a set and e an element, S + e denotes S U {e}, S — e denotes S — {e}. We use the
following notation for matroid concepts; detailed definitions can be found in [A, La, Wel]. Let M
be a matroid on a set S, and A a set of elements of §. The rank of A in M is denoted p(A, M). Its
span is sp(A, M). (Recall the definition sp(4, M) = AU {ele U C is a circuit for some C C A}). If
A is independent and spans an element e, the fundamental circuit of e in A is denoted C(e, A, M).

In all these notations we drop the last argument M when it is clear from context. The restriction

5

of M to A is denoted M|A; its elements are A. The contraction of M by A is denoted M/A; its
elements are § — A, and T C 5 — A is independent in M/A if T U A’ is independent in M, for A’
a maximal independent subset of A. The dual matroid of M is denoted M*; its independent sets
are all A C § such that sp(S — A, M) = S. A partition matroid M is given by a partition of
into r sets Sy,...,5, and nonnegative integers dy,...,d,; A C S is independent if |[AN S5,| < d, for

g=1,...,7.

2. Clumps and augmenting paths.

This section sketches our algorithm for the matroid partitioning problem on general matroids.
The section starts by introducing clumps, which help analyze the algorithm. Throughout this
section M denotes an arbitrary matroid sum M = \/ik:1 M; on a set S, unless stated otherwise.

Any independent set L of M obviously satisfies |L] < E,ﬁ;l p(L,M;). A set L is a clump of
M if it is independent in M and the previous inequality holds with equality. Equivalently, a set of
elements L is a clump of M if it can be partitioned into sets L;, ¢ = 1,...,k with L; independent
in M; and L C sp(L;, M;) fori=1,...,k. A useful property of clumps is that L+ e is dependent in
M for any element e € ﬂle sp(L,M;) — L. Another property, not true for arbitrary independent

sets, is the following.
Theorem 2.1. Let L be a clump of M, a matroid sum on §. Then M/L = \/f:1 M;/L.

Proof. We show that a set A C 5 — L is independent in M /L if and only if it is independent
in \/f?:1 M;/L. If Ais independent in M/L then AU L is independent in M and thus can be
partitioned into sets A; U L;, ¢ = 1,...k, where each A; C A, L; C L, and A; U L; is independent
in M;. Since L is a clump, L; is a maximal independent subset of L in M;. Hence A is independent
in V%, M;/L.

The converse statement — independence in \/f:1 M;/L implies independence in M/L — holds

for any independent set L, not necessarily a clump. n

The main algorithmic tool for matroid partitioning is the augmenting path, introduced by
Edmonds [Ed65a) for matroid sums. Consider an partitioned independent set I = Ule I of M.
An augmenting path for I is a sequence of elements e;, j = 0,...,s with e; € I precisely when
J >0, that enables ey to be added to I. Specifically, inserting ey into some partition set I, creates
a circuit, which is broken by removing e; from I,; inserting ey into a different partition set creates a

circuit which is broken by removing es; this pattern continues until e, is inserted into a partition set

6

and does not create a circuit. The process described above is called augmenting I along e, ..., es.
The formal definition of an augmenting path is as follows. eq,...,es is an augmenting path if and
only if e; € I precisely when j > 0; for all j < s, choosing ¢ so that e;4 € I, I, + €; is dependent
in My and ej41 € C(ej, 14, My); for some index r, e, ¢ I,. and I, + e, is independent in M,; lastly,
augmenting [along eg,...,es gives a new independent set. (Strictly speaking we should include
the above index 7 in the specification of the augmenting path but for convenience we shall not do
$0.) The crucial last condition is not implied by the others. However it is implied if the path has
no shortcuts, i.e., there are no indices 7,k with j+1 < k and e; € C(ej, Iy, M) (here ¢ is the index
with e), € I,; we give another proof of this well-known fact in Lemma 2.1 below.) A prefix of an
augmenting path is a partial augmenting path. If I is not a base an augmenting path exists, and
can be used to enlarge the independent set as above [Ed65a].

We use three different algorithms to find augmenting paths in a matroid sum M. In the first
two algorithms, all knowledge of M is supplied by two subroutines that solve the static-base circuit
problem. This problem was introduced in [GS] for matroid intersection. Given is a partitioned
independent set Ule I;. The problem is to process a sequence of intermixed operations called start
and ¢(e,i). The operation c(e, i) outputs “independent” if I; + ¢ is independent in M;; otherwise
it outputs all elements in the fundamental circuit C'(e, I;, M;) that have not been output (by any
¢ operation) since the last start operation.

The first two algorithms find one augmenting path. They are given a partitioned independent
set [= Ule I; and an element ey ¢ I. They either find an augmenting path that starts with ¢y or
discover that none exists. The latter is called an unsuccessful search.

The first algorithm is breadth-first scanning. It starts at ep and grows partial augmenting
paths breadth-first. This is accomplished with two data structures: Any element that has been
placed on a partial path gets labeled, and there is a queue of labeled elements to be scanned. To
scan an element e € [, the algorithm executes ¢(e, i) for every index i # j; it labels all elements
that are output and adds them to the queue. The algorithm stops when an augmenting path is
found (i.e., some ¢(e,?) returns “independent”) or when the queue becomes empty. The latter is
an unsuccessful search.

The last detail of breadth-first scanning concerns the initialization. Breadth-first scanning be-
gins by doing a start operation, unless the previous call to breadth-first scanning was an unsuccessful

search. In this case no start is done.

Lemma 2.1. Breadth-first scanning is correct.

Proof. Correctness amounts to two properties: If an augmenting path is found, augmenting I
along that path gives a new partitioned independent set I + ¢5. If no augmenting path is found
then I + ey is dependent in M.

To prove the first assertion, it is obvious that the algorithm finds paths that satisfy all con-
ditions of the definition of augmenting path except possibly the last; in addition, the paths have
no shortcuts (by the breadth-first nature of the search). Call such a path an “a-path”. An easy
induction shows that augmenting along an a-path eg,...,es gives a partitioned independent set:
This is obvious if s = 0. Suppose s > 0. Then eg,...,e5_1 is an a-path for I — ey (because the
original path has no shortcuts). Now complete the augment by inserting ey into the appropriate
set [, (only the last insertion of an augmenting path changes a span sp(l;, M;)).

To prove the second assertion, for j = 1,...,k define L; C I; to contain all elements that were
output by operations ¢(-,7) since the last start operation. The rule for scanning an element implies
that L; C sp(L;, M;) for 1 < 4,5 < k. Thus the set of labeled elements [= Ule L; is a clump of
M. If the unsuccessful search started with eg, clearly eg € ﬂf‘zl sp(L,M;) — L, whence L + eq is
dependent in M.

Now we justify the fact that breadth-first scanning does not do a start after an unsuccessful
search. Note that a call to breadth-first scanning is actually searching for an augmenting path in
matroid M/L (since L is already in the independent set which is to be enlarged by an augmenting
path). Since L is a clump, M/L = \/f:1 M;/L (Theorem 2.1). This implies each matroid M; can
be replaced by M;/L. Equivalently, the elements of L need never be output by ¢ again. This is

just what omitting the start operation accomplishes. L]

Omitting starts after unsuccessful searches makes the algorithm efficient. Consider é§ consec-
utive unsuccessful searches that are followed by a successful search. The worst-case time bound
for these 6 + 1 searches is O(6k) plus the worst-case time bound for one successful search. This
is obviously true if the bound for a successful search allows time for every element to be labeled.
(The latter holds for all bounds used in this paper. It could only fail in circumstances where we
can guarantee many elements will not be labeled, which is not usually the case.) The terms O(ék),
summed over all unsuccessful searches, amount to O(mk) (there is at most one unsuccessful search
per element). This is the same bound as the size of the input when we use breadth-first scanning,
i.e., the k& matroids on S are distinct. Hence the overhead is insignificant. (This is the case in all
applications in this paper. If necessary more careful bookkeeping can often decrease the overhead

to O(m) if, as with graphic matroids, we can test if an element is in the span of a clump in O(1)

8

time.) We summarize this principle by saying “unsuccessful searches are free”.

The labels used by breadth-first scanning indicate how to carry out the augmentation of the
independent set. Specifically, the label of an element f output by the operation ¢(e,7) is the pair
(e,). To augment along the path e;, 7 = 0,...,s, il e;41 has label (e;,%) then e; is moved into
partition set [; (replacing ejiy). Note that the routine calling breadth-first scanning performs the
augment operation.

Breadth-first scanning gets less efficient as k, the number of matroids in the sum, gets larger
(since it takes (k—1) c operations to scan an element e). Our second algorithm to find an augmenting
path avoids this inefficiency. It is cyeclic scanning, introduced in [RT] for graphic matroids. Cyclic
scanning is applicable to k-fold sums but not general matroid sums. Cyclic scanning is similar to
breadth-first scanning except it calls ¢ fewer times. Specifically to scan a labeled element e € I;,
it only calls ¢(e,j + 1). (When discussing cyclic scanning we make the convention that k4 1 = 1.
Hence when e € I we call ¢(e,1).) Cyclic scanning, like breadth-first scanning, omits the start

operation if the previous search was unsuccessful.
Lemma 2.2. Cyclic scanning on a k-fold sum is correct.

Proof. The argument is similar to breadth-first scanning, Lemma 2.1. To show that any augmenting
path P found by cyclic spanning is valid, note that P has no “cyclic shortcuts”, i.e., indices j, k
with 7 +1 < k and ex € C(ej,1j+1). (We omit the third argument from C, since all component
matroids of a k-fold sum are identical.) The rest of the argument is unchanged.

Now we analyze unsuccessful searches. Define L; C I; as in Lemma 2.1. The cyclic scanning
rule implies that L; C sp(L;yy1). This implies L; C sp(L;) for all 1 < 4,7 < k. The rest of the

argument is the same. "

As in breadth-first scanning, unsuccessful searches are free. (Here the total overhead for un-
successful searches is O(m), again the same bound as the input.) Also as in breadth-first scanning
augments are performed by the calling routine.

The third augmenting path algorithm batch finds more than one augmenting path. This
algorithm is the matroid intersection algorithm of [GS], adapted for matroid sums. It uses the
approach of Dinic [D] for network flow: At any point in the algorithm let ¢ denote the length of a
shortest augmenting path. The algorithm finds batches of disjoint augmenting paths, where each
path in a batch has length £. Unlike network flow, the paths in a batch must be augmented in

the correct order. The batch algorithm augments the independent set for each path it finds (this

9

contrasts with the first two algorithms, which do not augment). The batch routine works using the
static-base circuit problem, and also the dynamic-base circuit problem [GS]. The inner workings of
batch are unimportant here. (A lengthy discussion would carry us too far afield. For details see [GS,
Wes].) We need only two properties, analogous to the cardinality matching algorithm of Hopcroft
and Karp [HK]: First after a call to batch, the length of a shortest path ¢ increases. Second, let A
denote the number of paths that remain to be found. Equivalently the current independent set has

p(S, M) — A elements. Then
A< p(S, M). (1)

We now state our algorithm to find a base of a matroid sum. It starts by calling batch a
number of times. We use ¢ to denote this number (no confusion will result, since from now on ¢
has this meaning). After the (th call, at most p(.S, M)/{ paths remain to be found. These paths
are found one at a time, using breadth-first scanning if the component matroids are different and
cyclic scanning if they are the same. The running time depends on {; we choose { to balance the

time for the two parts of the algorithm.

3. Matroid partitioning algorithms.

This section presents our algorithms for the k-forest, k-pseudoforest and mixed-forest prob-
lems. It concludes with our algorithm for the weighted k-forest problem.

For all problems in this section we do the following preprocessing and postprocessing: Delete
all vertices from the graph that have degree at most k (for the mixed-forest problem k = f + p);
solve the problem for this smaller graph; add the edges incident to each deleted vertex to the
solution, at most one per forest or pseudoforest. Clearly the preprocessing and postprocessing uses
linear time. The smaller graph has at most »’ = min{n,2m/k} vertices. Hence assume that in

each of our algorithms, the number of vertices is n’.
Lemma 3.1. Cyclic scanning uses O(kn') time and space on matroid G*,

Proof. The operation c(e,1) of the static-base circuit problem is performed as follows. Let the
current partitioned independent set be Ule I;, where each [; is a forest. At the start of the
search root every tree in each I;. Let e = wv. If u and v are not in the same tree of I;, answer
“independent”. Otherwise output the edges of C(e, ;) that have not been output yet. Cycle

C(e, I;) consists of the paths from u and v to their nearest common ancestor.

10

The following data structure is used to implement the algorithm. Consider a forest I;. To
decide if two vertices are in the same tree assign a tree number to each vertex. To find the paths
to the nearest common ancestor assign a preorder number and parent pointer to each vertex. To
avoid outputting an edge more than once do set merging on the vertices. In addition, each vertex
has a pointer from its information in 7; to that for ;4.

Rooting the trees, assigning tree numbers, preorder numbers and parent pointers uses O(kn')
time. Since the trees are initially given the linear-time, static-tree set merging algorithm of [GT85]
can be used. Thus start (which initializes the data structure for the static-base circuit routines of
all & copies of G) uses O(kn') time and space, and ¢(e, i) uses O(1) (amortized) time per call and

edge output.]

Theorem 3.1. The k-forest problem can be solved in the first of the two time bounds of Table I

and O(m) space.

Proof. Use the algorithm of Section 2 to solve the matroid partitioning problem for G*: Execute
batch { times, obtaining a partial solution I. Then for each edge e not in I do cyclic scanning, and
add e to I if the search is successful.

To estimate the resources note that batch is executed once in O(km') time and O(m) space.
(The data structure is a simple application of dynamic trees; see [GS, Wes].) By Lemma 3.1 cyelic
scanning uses O(kn') time and space. These observations give the desired space bound. They also
imply that the total time is O(km'C + (kn'/C)kn"). (The second term is the total time for cyclic
scanning, since unsuccessful searches are free and by inequality (1).) Now choose ¢ = n’ \/W .

| |
Lemma 3.2. B* is a matroid sum of partition matroids.

Proof. (see also [Ma,A]) For each vertex v define M, to be a partition matroid with two sets in
the partition. One set contains all edges incident to v; an independent set can contain up to k of
its edges. The other set contains all edges not incident to v; an independent set cannot contain any
of its edges. We show that B* = Voev M.

First assume & = 1. A set [is independent in B if and only if each of its connected components
contains at most one cycle. The latter holds if and only if the edges of I can be directed so each
vertex v has at most one outgoing edge. This implies the desired equality, since we can associate

v’s outgoing edge with M,. This argument easily generalizes to arbitrary k. L

11

Using the lemma it is simple to show that breadth-first scanning can be implemented in time
and space O(kn'). (The main observation is that if the independent set I has partition set I, in
M, and e is an edge incident to v, then |I,| < k implies I, + e is independent and |I,| = k implies
C(e,I,, M,) = I,.) We wish to show the same bound for one execution of batch. For this and other
properties of B¥ it is convenient to switch to a graph model. The lemma shows that an independent
set of B can be viewed as a degree-constrained subgraph [La] as follows. Let G = (V, E) be the
given graph. Let B be the bipartite graph with vertices V U F and edges ve, where v is an end
of F in GG. Let vertex z of B have degree constraint k if 2 € V and 1 if 2 € F. The proof of the
lemma shows that a set is independent in B* if and only if it is a degree-constrained subgraph of B.
Furthermore it is simple to construct the parititioned independent set for a given degree-constrained
subgraph. So we can work with degree-constrained subgraphs of B.

Now we sketch how batch can be implemented in O(kn') time and space. Let D be the current

degree-constrained subgraph. The idea is to do O(1) work for each edge of D. Define
F = {2 | 2 is a vertex of B on fewer edges of D than its degree constraint}.

We search for augmenting paths by starting from the vertices of I'NV. (batch searches for shortest
augmenting paths, so it starts the search from all possible vertices in one side of the bipartite graph
B. Clearly starting from the vertices of F'N I uses too much time.) We always stop a search as
soon as the first edge completing an augmenting path is found. Careful programming achieves this
rule. The rule allows all work to be charged to the edges of D, giving the desired time bound. (This
procedure can be interpreted in terms of the matroid representation of Lemma 3.2 — it amounts to

finding augmenting paths in reverse order. This approach is discussed further in Section 5.)

Theorem 3.2. The k-pseudoforest problem can be solved in time O(m + min{(kn')3/?, k(n')3/3}).

The space bound is O(m).

Proof. Use the algorithm of Section 2 to solve the matroid partitioning problem for B*: Execute
batch (times, obtaining a partial solution I. Then for each edge e not in I do breadth-first scanning,
and add e to [if the search is successful.

To analyze the time, recall that batch and breadth-first scanning each use O(kn') time and
space. Let A denote the number of edges [is short of a base. Since unsuccessful searches of
breadth-first scanning are free the total time is O(kn/({ + A)). A can be bound using inequality
(1) or, as we will show,

A< (20//0), (2)

12

In either case choose { = A. This gives the desired time bound.

Inequality (2)is derived using the ideas of [ET]. We sketch the argument. Consider the current
degree-constrained subgraph D of bipartite graph B. Let n; denote the number of vertices of V
whose shortest alternating path from some vertex of F'NV contains ¢ edges of D. Since D has
A edge-disjoint augmenting paths, it is easy to see that n;n;y; > A. This implies (f/‘Z)\/K < n,
which gives (2). "

Our second k-forest algorithm is based on an observation that follows from [PQ]: A set of
edges that can be partitioned into k& pseudoforests can be partitioned into k + 1 forests. This can
be proved as in [PQ] using Nash-Williams’ formula for the arboricity of a graph [NW]; alternatively
it is easily derived using clumps [Wes]. We call this the stepping stone observation, for reasons

apparent from the algorithm:
Pseudoforest Step. Solve the k-pseudoforest problem.

Convert Step. Convert the k pseudoforests into k + 1 forests. Initialize F' to contain all but one of

these k& + 1 forests.
Complete Step. Insert as many edges of G — I into [as possible, keeping F' a set of k forests.m

Correctness follows from the stepping stone observation. Now we give further implementation
details.

The Convert Step is done by the following divide-and-conquer scheme: The case k = 1 is
trivial, so suppose k > 1. Divide the k pseudoforests into two halves (containing [k/2] and |k/2]
pseudoforests). Recursively convert both halves into forests. This gives k 4 2 forests total. Pick
any one of these forests, and insert its edges into the remaining k + 1 forests. Do this using cyclic
scanning.

The Complete Step is done using cyclic scanning as well.

To analyze the time, first observe that the timing function 7" for the Convert Step obeys the
recurrence,

T(k) = T(k/2]) + T([k/2]) + k(n')*;
T(1)=n'.
This follows from Lemma 3.1 and the fact that a forest has at most n’ — 1 edges. Hence the Convert

Step uses O(k(n')? logk) time.

13

The Pseudoforest Step uses time O(m + (kn')3/?) by Theorem 3.2. Clearly the largest k-
pseudoforest has at least as many edges as the largest k-forest. Thus the Complete Step adds at
most n’ — 1 edges to F'. Since unsuccessful searches are free and by Lemma 3.1, the Complete Step

uses time O(k(n')?). The time for the Convert Step clearly dominates.

Theorem 3.3. The k-forest problem can be solved in the second of the two bounds of Table I and

O(m) space. "

Our third k-forest algorithm also uses the stepping stone observation. First solve the k-
pseudoforest problem. Then solve the k-forest problem for the graph whose edges are the k pseud-
oforests just found. Finally add as many edges of ¢ as possible to k-forest just found.

Using Theorem 3.1, the time to find the first k-forest is O(k3/?n'\/kn’ + n’logn). The rest of

the analysis follows the previous algorithm.

Theorem 3.4. The k-forest problem can be solved in time O((kn')*/? + k3/2n!\/kn” + n'logn +

k(n')?) time and O(m) space. .

For k,n and m in a small region, this bound becomes O(k(n')?). This is superior to the other
two bounds in this region.

We turn to the mixed-forest problem. We are given a graph with integers f and p, and we
seek a maximum cardinality set of edges partitioned into f forests and p pseudoforests. Recall that

we preprocess the graph so it has only n’ vertices.
Theorem 3.5. The mixed-forest problem can be solved in O((f+p)n’y/fm’) time and O(m) space.

Proof. The task is to solve the matroid partitioning problem for M = Gf v BP. The overall
approach is to use the algorithm of Section 2 on M, treating it as the sum of f 4 p matroids: First
execute batch [times, obtaining a partial solution /. Then enlarge I to the desired solution by
finding augmenting paths one at a time.

The batch routine for M is implemented as in Theorems 3.1 and 3.2. To find single augmenting
paths we treat M as the sum of two matroids G/ and BP, and use breadth-first scanning. To
implement breadth-first scanning we must solve the static-base circuit problem in each matroid. In
G’ we find fundamental circuits using cyclic scanning. In BP we find fundamental circuits using

breadth-first scanning.

14

Now we estimate the time for this algorithm. The time to find a single augmenting path is
O((f 4+ p)n'). (Lemma 3.1 shows cyclic scanning on G/ uses time and space O(fn'); the discussion
after Lemma 3.2 shows breadth-first scanning on BP uses time and space O(pn').) By the proofs of
Theorems 3.1 and 3.2 algorithm batch runs in O(fm') time. (The time on all graphic matroids is
O(fm'). The time on all bicircular matroids is clearly linear in the total number of edges, O(m).)

Choosing (to balance the times gives the desired bound. "

This result is best for small values of f and p, for example, the rigidity applications mentioned
in Section 1. We can use the stepping stone approach to get more efficient algorithms for large
values. Details are in [Wes].

The stepping-stone approach can be used to solve weighted problems. To illustrate, consider
the weighted k-forest problem: This problem is to find a maximum weight base of G*. Equivalently
we are given an integer k > 1 and a graph G, where each edge e has a real-valued weight w(e).
The weight of a set of edges is the sum of the weights of all its edges. The problem is to find
k edge-disjoint forests with the largest total weight possible. We start with a relation between

maximum weight bases of graphic and bicircular sums.
Lemma 3.3. A maximum weight base of B*~! can be enlarged to a maximum weight base of G¥.

Proof. Let B be a maximum weight base of B*~!. Choose T as a maximum weight base of G*
containing as many edges of B as possible. The argument is by contradiction: Assume there is an
element e € B —T. Let B’ consist of the elements of B — e having weight at least w(e). We will
show that e € sp(B',B%1), contradicting the independence of B.

Consider the fundamental circuit C' = C(e,T,G*). Observe that C' — e C sp(B',B¥1). To
see this consider any element f € C' — e. The choice of T implies that either w(f) > w(e), or
w(f) = w(e) and f € B. In either case, f € sp(B',B71) (for the first case, observe that the
maximality of B implies B’ spans all elements of weight larger than w(e)).

Because of the observation, to complete the argument we need only find a set D C C' — e with
e € sp(D,B*1). The definition of circuit implies that C' — e consists of & trees, each spanning
the same set of vertices W. Clearly |W| > k, since the trees contain k(|I¥| — 1) edges. So we can
dismantle one tree, placing one of its edges in each of the remaining k — 1 trees, to get a (k — 1)

pseudoforest D spanning W. Clearly D spans e, as desired. 1

The algorithm to find a maximum weight base of G k works as follows. Find a maximum weight

base B of B¥~1. Convert B to a k-forest (use the Convert Step of Theorem 3.3). Then run the

15

greedy algorithm to enlarge B to a base of G¥. (The greedy algorithm attempts to add each edge
of G — B to B, processing edges in nonincreasing order of weight.)

Now we analyze the time. The main observation is that at most n edges need be added to B
to get the desired base. This follows since a base of B¥~! has at most n — k fewer edges than a
base of G*.

The Convert Step takes time O(k(n')*logk). The greedy algorithm takes time O(mlogm)
to sort the edges, plus O(k(n')?) time to enlarge B to a base. Now we show that the time for
the Convert Step dominates. We find B using the algorithm of [GT88¢] for finding a maximum
weight, maximum cardinality degree-constrained subgraph of a bipartite graph. When executed on
a bipartite graph with bipartition Vo, Vi, where each vertex of V; has degree O(1), and the weights
are integers of magnitude at most NV, this algorithm runs in time O(n*/3plog(nN)); here n is the
number of vertices and y is the number of edges in the desired subgraph. Since B! is a matroid,
we can replace the given weights by integers between 1 and m, so N = m. Hence the time to find

B is O(k(n")*/3logn).

Theorem 3.6. The weighted k-forest problem can be solved in the bound of Table I and O(m)

space. ‘ n

4. Covering and packing.

This section gives algorithms for the covering and packing problems for an arbitrary matroid
M. Applying the algorithms to graphic and bicircular matroids gives improved time bounds. The
algorithms use the balanced binary search technique of [GT88b].

A balanced binary search works in two steps. The Search Step finds a “good” value close to
the desired optimum. The Postprocessing Step finds the exact optimum.

We start with an algorithm for the covering problem on an arbitrary matroid. To define
“good”, let A be a parameter. (The value of A is determined by the specific matroid, using efficiency
considerations.) The covering problem seeks the smallest value k& such that $ is independent in M*.
Call the value k good if there is a set I that is independent in M* and has |[I| > |S| - A. The Search
Step finds a good value k, with corresponding set 7, such that k& < cov(M); the Postprocessing Step
adds elements to /, possibly increasing k, until all elements are in I and cov(M) has been found.
The details are as follows.

The Search Step is a binary search organized in probes. It maintains an interval [¢, h] that

contains the desired value k. The value h is always a good value; (is always a value less than

16

cov(M). (Clearly when h = £+ 1 the desired value k = h has been found.) To probe the midpoint
k of the current interval, execute batch |S|/A times. If the final independent set I found by batch
has at least |S| — A elements then & is good, with corresponding set I. Hence assign h the value k.
In the remaining case, |I| < |S| — A. Inequality (1) implies that a base of M* has fewer than |S|
edges, i.e., k < cov(M). Hence assign (the value k.

The Postprocessing Step must add at most A elements to the solution /. For each element e
it either finds an augmenting path for I + e, or if unsuccessful, it increases k by one (cov(G) is at
least this large) and adds e into the new copy of M.

The correctness of this algorithm follows from the above discussion. On a specific matroid, the
value of A is determined by balancing the times for the binary search and postprocessing.

The most well-known covering problem is to find the arboricity of a graph. Let I' denote the
arboricity cov(G) and p the pseudoarboricity cov(B). The time for a probe in the Search Step
depends heavily on the the probe value k. For arboricity and pseudoarboricity, good bounds are

available. The following bounds are derived using clumps, and give slight improvements of [CN].
Lemma 4.1. T < (5 + +/8m — 7)/4; a similar bound holds for p.

Proof. For I' = 1 the lemma is true by inspection. Let I' > 1. The proof uses the fact that
M = GF~! has at least one circuit C. Thus €' — e is a (connected) clump in M (see Lemma 5.1). If
7 is the number of vertices in C' then |C| = (I'=1)(r—1)+1. This implies (I'=1)(r—1) < r(r—1)/2,
whence 7 > 2I' — 2. Thus m > |C| > (I' = 1)(2' = 3) + 1. The desired bound for m follows. ®

Theorem 4.1. The pseadoarboricity p can be found in O(m min{y/mlogn, (nlogn)?*/3}) time and
O(m) space.

Proof. By the proof of Theorem 3.2 the Search Step can be done in time O((m/A) mlogn). By
Lemma 3.2 the Postprocessing Step can be done in time O(Am). Choosing A = /mlogn gives
the first time bound.

For the second bound do each probe in the Search Step by running batch Qn/\/x times.
Inequality (2) shows this is correct. Hence the Search Step runs in O((n/v/A)mlogn) time; the

Postprocessing Step is O(Am). Choosing A = (nlogn)?/? gives the desired time bound. ®

This improves the best previous bound for pseudoarboricity, O(nmlog(n*/m)) [GGT] (their

algorithm actually solves the more general problem of finding a maximum density subgraph).

17

To find the arboricity the stepping stone observation implies that p < T < p 4+ 1 [PQ]. Hence
first compute the pseudoarboricity p; then test if the arboricity is p; otherwise it is p + 1.

We implement this algorithm as follows. Let po = (mlogm)?//(m")1/3. If p < po use Theorem
3.1 to test the arboricity. In this case the arboricity is found in time O(m+/pm’) (substitute m/p
for n'). If p > po use Theorem 3.3 to test the arboricity. In this case the arboricity is found in
time O((m?/p)logp) time (substitute m/p for n'). In both cases the time is at most the first of
the two time bounds in Table I. (Note that the algorithm can easily calculate pg to within a factor
of two, which is adequate for the time bound. Note also that Theorem 4.1 shows the time to find
the pseudoarboricity is a lower order of magnitude.)

For dense graphs the first bound in Table I is an overestimate. That is, any graph has p > m/n,

so if m/n > pg, a better estimate for the time of Theorem 3.3 is O(mnlogn).
Theorem 4.2. The arboricity can be found in the time bounds of Table T and O(m) space.®

Now we give an algorithm for the packing problem on an arbitrary matroid M. It uses balanced
binary search. To define “good”, let A be a parameter to be determined later; let p be the rank
of M (i.e., the size of a base). Call the value k good if there is a set I independent in M* with
[l > kp— A.

The Search Step does a binary search to find a good k (with corresponding I) such that
k > pack(M). In the search interval [(,h], h is always a value bigger than pack(M); £ is always a
good value. A probe for k executes batch kp/A times. If the final independent set I found by batch
has at least kp — A elements, & becomes the new value (; otherwise, by (1) we can make k the new
value h.

The Postprocessing Step repeats the following until the “deficiency” kp—|I|is zero. Repeatedly
try to enlarge I by an element e, by searching for an augmenting path. If no such element exists
and |I| < kp, we know pack(G) < k. Discard the smallest of the k sets that I is partitioned into,
and decrease k by one.

For the correctness simply observe that after the Search Step, k > pack(M).

The time is estimated as follows. After the Search Step the deficiency kp — |I] is at most A.
If I is enlarged by an element e, the deficiency decreases by one. If the smallest of the k sets is
discarded, the deficiency decreases at least by one (the smallest set has at most p — 1 elements).
Thus the Postprocessing Step is repeated at most A times. Note that since unsuccessful searches
are free, the time for postprocessing is the same as the time for A searches. Choose A to balance

both steps of the algorithm.

Theorem 4.3. Packing bicircular matroids can be done in time

O(mmin{/mlog(m/n), (nlog(m/n))*/*}) and space O(m).

Proof. The Postprocessing Step is done using breadth-first scanningon \/, o\, M, (see Lemma 3.2).

By the proof of Theorem 3.2 and since pack(B) < m/n, the Search Step runs in time
O((m/A)ymlog(m/n)). By Lemma 3.2 the search for an augmenting path for a given element
e is O(m). Since unsuccessful searches are {ree, each iteration of the Postprocessing Step runs in
O(m) time. So postprocessing is O(mA). Choosing A = \/mlog(m/n) gives the first time bound.

Alternatively do each probe in the Search Step by executing batch 2n/ VA times. Inequality
(2) shows this is correct. Thus the Search Step runs in O((n/v/A)mlog(m/n)) time. Choosing

A = (nlog(m/n))*/3 gives the second time hound. u
Our first graphic packing algorithm is the above matroid algorithm.

Theorem 4.4. Graphic packing can be done in the first time bound stated in Table I and O(m)

space.

Proof. Use Theorem 3.1 for the Search Step. Use cyclic scanning for the Postprocessing Step.
By the proof of Theorem 3.1 the Search Step runs in time O((m/A)(m/n)m'log(m/n)). Using
Lemma 3.1 and the same reasoning as in Theorem 4.3 each iteration of the Postprocessing Step

runs in O(m) time. Choose A to balance the two terms for the time. n

The relation between graphic and bicircular matroids for packing is weaker than covering; we
only have pack(G) < pack(B)+1. To see this assume G contains k spanning trees. The kth spanning
tree can be used to turn the remaining k& — 1 spanning trees into bases for B, since k — 1 < n — 1.
The same reasoning applies to graphs that are not connected.

The algorithm first does bicircular packing, and then converts the solution to k = pack(B) +
1 forests. Then it does the Postprocessing Step of the general packing algorithm, using cyclic

scanning.

Theorem 4.5. Graphic packing can be done in the second bound stated in Table I and O(m)

space.

Proof. The correctness of the algorithm follows from the stepping stone observation together with

pack(G) < pack(B) + 1.

19

By Theorem 4.3 bicircular packing can be done in in time O(my/mlog(m/n)). Using the
Convert Step of Theorem 3.3, the conversion to forests can be done in time O(nmlog(m/n))
(substitute n for n’ and m/n for k). By Lemma 3.1 and the same reasoning as in Theorem 4.3 each
iteration of the Postprocessing Step runs in O(m) time.

Let k = pack(B)+ 1. If pack(B) = 1 the problem is trivial so assume the opposite. Thus a base
of B contains n edges (even if GG is not connected). Since the solution for B has (k — 1)n edges, the
deficiency after the Convert Step is at most k(n — 1) — (k — 1)n = n — k. Thus the Postprocessing

Step runs in time O(nm). The Convert Step dominates. 1

5. Top clumps.

This section proves a number of facts about clumps, the top clump and dual matroids. These
facts shed light on the structure of matroid sums and are used in Sections 6-7.

Throughout this section M denotes a matroid sum M = \/f‘:1 M; on S unless stated otherwise.
Recall the basic definition: L is a clump of M if and only if it is independent in M and |L| =
Ele p(L,M;). An equivalent condition is that L can be partitioned into sets L; independent in
M; with L C sp(Li, M;), i =1,...,k; equivalently, L is independent and any partition into sets L;
independent in M; has L C sp(L;,M;),i=1,... k.

Clumps make a matroid sum interesting. If M has no clumps then it has no circuits, i.e., every

set is independent. This is shown in the following lemma.
Lemma 5.1. If element e is in a circuit C' of M then C' — e is a clump.

Proof. Try to add element e to the independent set C' — ¢, using breadth-first scanning. Every
element gets labeled but the search is unsuccessful. As shown in Lemma 2.1 the labeled elements

C — e form a clump. .

For an arbitrary set A, a top clump of A is a clump of M that is maximal in A. A top clump
of M is a top clump of §.

Suppose A is independent in M. Then the clumps contained in A are closed under union.
(This follows since if clumps K and L have ' U L independent, say as a partitioned independent
set Ule K;UL;, then LUM C sp(I;, M;)Usp(L;, M;) C sp(I;U L;, M;).) Hence an independent
set A has a unique top clump. (The clumps of an independent set are also closed under intersection.
This and other properties are in [Wes].) Now we show that a top clump of a set determines its

span. First note a related fact, a clump L has sp(L, M) = ﬁle sp(L, My).

20

Theorem 5.2. An arbitrary subset A of .S, with a top clump L, has sp(A, M) = AUsp(L, M).

Proof. Let B be a maximum cardinality independent subset of A that includes L. Clearly
sp(A, M) = sp(B,M). The elements of sp(B, M) — B are actually spanned by L (Lemma 5.1).

This implies the theorem. L]

The theorem implies that the top clump L of any base B of M is a top clump of M (since any
element not in B is in sp(L, M)).

We pause for some terminology. It is useful to enlarge the matroid M with a copy of an
element. More precisely fix an clement ¢ € S and let € be a new element not in S, parallel to e in
each M;. Let M; denote the corresponding matroid on S + €. The matroid sum M = \/f:1 M; is
called the matroid M with e duplicated (by €). If a set A contains e then certainly e € sp(A4, M),
but we may not have @ € sp(A, M) (recall the definition of span, reiterated in Section 1).

Recall that in any matroid, a bridge is an element that is in every base; a circuit element is an
element that is in some circuit. It is easy to see that the circuit elements are exactly the nonbridges.
Any top clump L consists of bridges and circuit elements, where the circuit elements of L span all

circuit elements of M. Define
T = {e | duplicating e doesn’t increase p(M)};

more exactly, the matroid M with e duplicated has the same rank as M. This set relates all top

clumps:
Theorem 5.3. Any top clump L of M has sp(L, M) =T.

Proof. Consider any element e € S and form the matroid A with e duplicated by €. Note that e

is spanned by L if and only if € is spanned by L. (For e € L this uses the definition of clump.)
Obviously e € sp(L, M) implies e € T'. Conversely if ¢ € T then, letting B denote a base of

M containing L, the fundamental circuit C(g, B, M) exists. Lemma 5.1 implies that € is spanned

by L. n

As a corollary note that if Ly, Ly are two top clumps of M, then sp(L1, M;) = sp(L2, M;) for
v=1,...,k. This follows since Ly C T = ﬂle sp(Lo, M;)
The theorem gives the following algorithm to find a top clump. Suppose that we have a

partitioned base B = Uik:1 I of M.

21

Test Step. For each element e € B, check if B + € is independent in M. The top clump consists of

the elements that check out dependent. L]

The algorithm is correct since B contains a top clump L, and L = BN sp(L,M) = BNT.
Clearly the Test Step tests membership in 7.

We give two implementations of the Test Step. The first uses breadth-first or cyclic scanning
on M. Tor each e € B search for an augmenting path for € using the static-base circuit routines
(see Section 2). The search for an augmenting path may label all elements of B. Thus in the worst
case, the static-base circuit routines output B, |B| times. ’

The second implementation avoids outputting elements multiple times. It accomplishes this
by finding augmenting paths in reverse. To do this we introduce a matroid that will be studied in

the remainder of this section. Corresponding to M = \/f’:1 M; we have the matroid
k:
M =\/ M,
=1

We now show that augmenting paths in M are essentially the reverse of such paths in M’.

Consider a partitioned independent set / = Uf:] I; of M with a shortcut-free partial augment-
ing path eg,...,e;. Define J; = sp(I;, M;) — I;, so J; is independent in M. Define independent
set J = Ule Ji of M'. Then the reverse path es,..., e is a shortcut-free partial augmenting path
for J in M'. (Strictly speaking J = Ule Ji 1s not a partitioned independent set, since the sets J;
are not necessarily disjoint. We could correct this by introducing multiple copies of elements that
are in more than one J;.) This observation can be used to find augmenting paths by working with
matroid duals, when this is more efficient.

To implement the Test Step, let A be the set of all elements of e € B such that for some ¢,
e ¢ I; and I; + e is independent in M;. Let J be the above independent set of M’ corresponding to
B. Do breadth-first scanning on M' with independent set J, starting by labeling not one element
as usual, but rather all elements of A. It is easy to see that the top clump of M consists of all
elements that do not get labeled in the search.

Now consider the special case of a k-fold sum matroid M = N¥. We can find augmenting
paths using cyclic scanningon M. Thus we can use cyclic scanning on M'. For increased efficiency
note that in M; the only elements that get used in augmenting paths are in I;_y U I;. Thus we can
restrict the ith component matroid of M’ to these elements, i.e., use cyclic scanning on matroid

M" = \/f:1 N*|(I;—1 U I;), with partitioned independent set Ule iy 0 osp(Ly).

22

Theorem 5.4. Given M = G* with a partitioned base B, a top clump can be found in time

O(knlogn) and space O(m).

Proof. Use the cyclic scanning implementation of the Test Step. In M" the ith matroid has

|I;—1 U I;] = O(n) elements. The static-base circuit routine for G*

uses time O(m + nlogn) for a
graph with n vertices and m edges [GS]. So each of the £ matroids composing M" uses O(nlogn)

time, giving the time bound. §

The rest of this section proves some useful facts about the matroid sum M = \/f:1 M;on S
and its corresponding sum M'. We first relate the bases of M and M'.

Start with the case k = 2. By, By is an extremal pair of bases if B; is a base of My, 1 = 1,2
and their intersection is as small as possible. The bases of M and the extremal pairs correspond as
follows: An extremal pair By, By gives a partitioned independent set By U(Bs — By). A partitioned
base B = I; U I; gives a pair of bases By, By if we enlarge I; to B; by adding elements of I5_;.
(This can be done since B is a base.) This correspondence actually takes an extremal pair to a
partitioned base and vice versa. To see this let n; be the rank of M;, let b be the size of a base of
M and let ¢ be the cardinality of the intersection for an extremal pair. The constructions imply
the relation b + ¢ = ny + ny, which gives the desired conclusion.

Next observe that an extremal pair By, By of M corresponds to an extremal pair S — By, S — Bs
of M'. This follows since if the first pair has intersection cardinality ¢ then de Morgan’s law shows
the second pair has intersection cardinality m — (ny + ng — ¢).

We have validated the following construction.

Theorem 5.5. Let B = I} U I, be a partitioned base for M = M, V M,. Enlarge I; to a base
B; of M; by adding elements of I3_;. Then B' = (5 — B1) U (By — Bz) is a partitioned base for
M’ = M}V M.]

The construction generalizes to k > 2 as follows. Bases By, i = 1,...,k are extremal for M if
B; is a base of M; and their intersection ﬂf:l B is as small as possible. Let S denote the set §
with each element e duplicated k — 2 times, i.e., there are a total of k — 1 copies of e. Let M denote
the corresponding matroid sum over 5. The bases of M and the extremal bases of M correspond,
as above. The new relation is that if n; is the rank of M;, b the size of a base of M and c the

o . . . k
cardinality of the intersection for an extremal set, b +c¢ = Y, n;.

23

The extremal sets of M and the bases of M’ correspond in the obvious way. The relation is
that if ¢ is the cardinality of the intersection for an extremal set and d is the size of a base of M’
then m = ¢+ d.

Now we relate several sets. Take M, M’ as above (k arbitrary). Let C be the set of all circuit
elements in M. Choose any top clump L of M and define T" as above. Clearly C' C T'. Similarly for

M' define circuit elements C’, top clump L' and set T'; ¢’ C T". We first analyze the case k = 2.

Theorem 5.6. For k& = 2, sets 7" and C’ are complements (in .9); similary 77 and C are comple-

ments.

Proof. By duality it suffices to show the first relation. We show that an element e ¢ T if and
only if e € C'. Consider a base B of M. Clearly e ¢ T if and only if B + € is independent in the
matroid M with e duplicated. Equivalently, B can be partitioned into sets Iy, I, with e € Iy and
I + e independent. Theorem 5.5 shows this amounts to M’ having a base not containing e. This

is equivalent to e € (', "

The above results are what is needed for the applications in the next two sections. We conclude

by generalizing Theorem 5.6 to arbitrary k.
Theorem 5.7. For k > 2, sets T and C' are disjoint, as are 7" and C.

Proof. We prove the first relation; the second follows by duality. Consider any element e € T.
Recall the correspondence between bases of M , extremal bases of M, and bases of M’. Clearly any
base of M contains at most one copy of e. Thus e is not in the intersection set of any extremal

bases. This is equivalent to e in every base of M'. Thus e ¢ C'. u

The last two theorems generalize previous work. Bruno and Weinberg [BW71] define the
(augmented) k-minor of a matroid N as the minimal (maximal) set X C S maximizing | X| —
kp(X,N). Clumps generalize these notions in the following sense. If M = N* then C (T) is
the (augmented) k-minor of N [Wes]. For the case k = 2, Kishi and Kajitani [KK] introduced
the principal partition (Dy, G, Hy) of a graph G. Bruno and Weinberg generalized the principal
partition to an arbitrary matroid N, showing S partitions into the 2-minor of N, the 2-minor of
N* and the rest of 5 further, G5 is the 2-minor of matroid G, Hs, is the 2-minor of matroid G* and

Dy is the remaining elements. Theorem 5.6 generalizes this to an arbitrary matroid sum with two

24

component matroids, implying that .S partitions into €', C’ and the remaining elements; further in

the special case M = N V N, C is the 2-minor of N and €’ is the 2-minor of N*.

6. Frameworks and rigidity.

This section discusses rigidity problems that arise in the study of frameworks modeled by
graphs. A number of these problems, listed in Section 1, are equivalent to problems treated in
Section 3. Here we discuss some less obvious applications. Specifically for two-dimensional bar-
and-joint frameworks, efficient algorithms are given to test a framework for redundant bars and to
compute the number of degrees of freedom. An efficient algorithm is given to test for k-irreducibility,
a notion relating to stresses in a bar-and-body framework of arbitrary dimension. The algorithms
of this section are based on top clumps and a related notion, preclumps.

We briefly summarize bar-and-joint frameworks and related concepts; a complete discussion
is in [LY]. A bar-and-joint framework consists of rigid bars connected with universal joints, in
some dimension space R%. It is in general position if the coordinates of the joints (points) are
algebraically independent. A framework corresponds to a graph G = (V, E) (vertices correspond
to the joints, edges correspond to the bars). If a framework is in general position in the plane, its
rigidity properties are completely determined by its graph alone. Lovédsz and Yemini [LY] describe
the graph properties that correspond to various rigidity properties. We present algorithms for the
two most important of these.

The first property, generic independence, is the absence of redundant bars (for a planar frame-
work). Put another way, a set of edges A is generic independent if each edge of A takes away
one degree of freedom of motion (a more precise definition is in [LY]; also see below). Lovdsz and
Yemini show that A is generic independent if and only if |A'| < 2|V(A")] — 3 for every nonempty
set A" C A.

A set of elements is clumpless for a matroid sum M if it does not contain any (nonempty)
clump of M. (Obviously a clumpless set is independent.) A set A is generic independent if and
only if it is clumpless for GV G. To see this, note that a set A is independent in GV G if and only if
|A'] < 2|V(A")| -2 for every nonempty A’ C A. (This follows casily from Lemma 5.1.) A connected
clump of GV G is an independent set A with |4| = 2|V(A)| ~ 2. Since a set contains a clump if and
only if it contains a connected clump, the desired condition follows.

This gives a way to test if a graph is generic independent: Check m < 2n — 3; if so check it is
independent in G V G; if so use the partitioned base found in this check to test if the top clump is

empty. Implementing this with the procedures of Theorems 3.1 and 5.4 gives the following.

25

Theorem 6.1. A graph can be tested for generic independence in time O(ny/nlogn + m) and
space O(m). n

The second rigidity property is the number of degrees of freedom. Intuitively a framework has
d degrees of freedom if it has d independent nontrivial motions. (Any planar framework has three
independent trivial motions ~ translation in the 2 and y directions and rotation. These are not
counted as degrees of freedom.) Let f(A) denote the number of degrees of freedom of a set of edges
A; f(E) is the number of degrees of freedom of the framework G. For any set of edges A of a planar
framework, f(A) = 2n—3—|B|, where B is a maximum cardinality generic independent subset of A
[LY]. (Hence for a generic independent set A, f(A) = 2n —3 —|A|, justifying the intuitive definition
above.) Thus computing the number of degrees of [reedom of a planar framework amounts to
finding a maximum cardinality generic independent set.

So consider the problem of finding a maximum cardinality generic independent set. The generic
independent sets form a matroid [LY]. Thus we seek a matroid base. As in Section 3, our algorithm
builds up a base by considering edges one by one, adding those that preserve generic independence
and rejecting the others. To make this eflicient we need another concept to facilitate rejecting
edges. In what follows, sp(A) denotes the span of A in the graphic matroid G.

A set of edges P is a preclump if it is generic independent and has |P| = 2|V(P)| — 3. Equiv-
alently, P is a preclump if it is clumpless in G V G and |P| = 2|V(P)| — 3. (As a trivial example,
any single edge forms a preclump.) A preclump has a property similar to clumps: If e € sp(P) — P
then P + e is not generic independent. Also a preclump is connected — as an independent set of
G V G, P partitions into a spanning tree of V() and a spanning forest of V(P) with two trees.

Let Py, P, be preclumps contained in a generic independent set. In general their union is not
a preclump. This is so even for two preclumps with a common vertex. (Thus a given vertex can
be in any number of preclumps.) However il P, and P, have a common edge e then Py U P, is a
preclump. To prove this we need only check [P N Py| = 2|V(P; N Py)| — 3. Construct a new edge
¢ parallel to the common edge e. Clearly € € sp(F;) for ¢ = 1,2. Thus P; +¢isaclumpin GV G.
Therefore Py U Py + € is a connected clump. Hence P, U Py has the correct number of edges.

Now we give our algorithm to find a maximum cardinality generic independent set B. Let
M be the matroid GV G. The algorithm maintains a partition of the edges of B into preclumps.
Initially both B and its edge partition are empty. The algorithm executes the following steps for

each edge e in turn.

26

Preclump Test Step. If some preclump of B contains both vertices of e, reject e and continue by

processing the next edge.

Independence Test Step. Let M denote matroid M with e duplicated by 2. If B+e+¢ isindependent
in M then add e to B, make e a singleton preclump of B, and continue by processing the next

edge.

New Preclump Step. Reject e. Merge all preclumps containing an edge of C(2, B + ¢, M) — {e, €},

into one set P. Continue by processing the next edge. L]

Now we prove that the algorithm is correct. This amounts to showing that B is always generic
independent, an edge e is rejected only if B + e is not independent, and the edge partition is
maintained according to its definition.

Consider the Preclump Test Step. Clearly e € sp(P') for some preclump P’ C B. Thus P'+ e
is not generic independent and e should be rejected.

Consider the Independence Test Step. If B + ¢ + @ is independent in M, then clearly B + e
does not have a clump containing e. Thus B + e is clumpless (since B is clumpless). Hence adding
e to B preserves independence.

Finally consider the New Preclump Step. In this step, B+ e+ is dependent in M. By Lemma
5.1, C(¢,B + e, M) —2is a clump in M. Hence ¢ should be rejected, and C(2,B + e, M) — {e,&}
is a preclump. Since the union of nondisjoint preclumps is a preclump, the set P of this step is a
preclump. We conclude the entire algorithm is correct.

The algorithm is implemented as follows. It maintains a partition of B into two forests F;, i =
1,2. The Independence Test and updating this partition are done using cyclic scanning.

The other main data structure is for the preclumps. Recall that the preclumps partition the
edges of B but not the vertices. Also a preclump P is split by the above forests F}; into two forests
spanning V(P) ~ a spanning tree of V/(P) in I} (j = 1 or 2) and a forest of two trees in F3_;. Call
index j “the tree side” of P.

We use an algorithm for disjoint set merging [Tar]. Fach edge of B is in a unique set, its
preclump. Each set has a name, defined as follows. Ior ecach forest F}, i = 1,2 root each tree F; at
an arbitrary vertex. The name of a preclump P is (j,v), where j is the tree side of P and v is the
root of P’s spanning tree in F.

The Preclump Test for an edge e = uv is implemented by performing the following test for

each forest Iy, © = 1,2. Let x, be the name of the set containing the edge from u to its parent in

27

Iy @y = (4,u) if u is a tree root. Define @, similarly. Then w and » are in a common preclump if
Ty = Xy OF Ty, = (4,v) Or T, = (4,u). If neither test indicates a common preclump, v and v are not
in a common preclump.

Now we show that the time is O(n?). Note that an efficient set merging algorithm performs
O(m) find operations and O(n) union operations in time O(ma(m,n)) which is within this bound
[Tar].

An execution of the Preclump Test Step uses O(1) time plus the time for O(1) finds (these
operations compute set names for the test). This gives total time O(m) plus O(m) finds.

Next observe that each time the Independence Test Step is executed, either B is enlarged or
at least two preclumps are merged (in the New Preclump Step). Thus the Independence Test Step
and New Preclump Step are executed O(n) times.

The Independence Test Step is done with cyclic scanning which uses O(n) time. If e is added
to B, the partition of B into forests is updated, along with the preorder numberings and names of
preclump sets, all in O(n) time. If e is rejected, recall that cyclic scanning marks the fundamental
circuit C(e, B +e, M) The New Preclump Step merges preclumps by union operations, maintaining

appropriate set names. This gives O(n) unions total.

Theorem 6.2. A maximum cardinality generic independent set can be found in time O(n?) and

space O(m). L

A bar-and-body framework consists of rigid bars attached to rigid bodies with universal joints.
Let G = (V, E') be a multigraph representing a bar-and-body framework in general position. White
and Whiteley [WW] call a bar-and-body framework k-irreducible if and only if |E| = k(|]V] = 1)
and |E'| < k(|V'| = 1) for every nonempty proper subgraph (V’/, E'). The intuitive meaning of
this property is that any stress put on a k-irreducible structure (in n-space, where k = n(n +
1)/2) propagates to all bars in the structure. There seems to be no obvious algorithm to test
k-irreducibility (White and Whiteley do not give one).

Clearly a bar-and-body framework is k-irreducible if and only if G* has a unique nonempty

clump, . This can be tested as follows.

k-forest Step. Solve the k-forest problem for . If ' does not partition into k spanning trees it is

not k-irreducible.

28

Top Clump Step. Remove any edge e from G and compute the top clump of G —e. If the top clump

is nonempty G is not k-irreducible.

e - —k
Clircuit Step. Create a new edge € parallel to e. Compute the fundamental circuit C = C(e, E,G).

If C — €= F then G is k-irreducible else it is not. |

Correctness of this algorithm is proved as follows. Suppose it reaches the Circuit Step. So F is
a clump in G¥ and E — e is clumpless. Thus any clump contains e. The smallest clump containing
e is €' — €. This justifies the Circuit Step.

The time is estimated as follows. The k-forest Step runs in time O(k*/?ny/m!) by Theorem
3.1. The Top Clump Step uses time O(knlogn) by Theorem 5.4. The Circuit Step, using cyclic

scanning, runs in time O(kn).

Theorem 6.3. A graph can be tested for k-irreducibility in time O(k3/?nyv/m/) and space O(m).

7. The Shannon switching game.
This section analyzes the structure of the Shannon switching game in terms of top clumps
and preclumps. This leads to efficient algorithms for two types of queries.

A Shannon switching game is specified by a triplet G, u,v where G = (V, F) is an undirected
graph with u,v € V. Two players join and cut are to take turns claiming an edge of G. Initially
each edge is unclaimed. Each edge can be claimed just once. Join wins if his edges contain a path
from u to v. Cut wins if he prevents join from doing so. Any Shannon switching game is either
a join game (join can win against all possible strategies of cut), cut game (cut can win against all
possible strategies of join) or neutral game (whoever plays first can win). In all three cases it is
easy to execute a winning strategy, if we are given two appropriate trees or cotrees [Wel]. (The
reader may enjoy showing that, using dynamic trees, the winning strategy can be executed in time
O(logn) per move for join and O(log?n) for cut. Our original solution achieving this time for cut
used topology trees; Bob Tarjan pointed out the elegant solution using dynamic trees.)

We introduce the problem of Shannon switching game queries: TFix the graph G. A classi-
fication query cousists of two vertices w,v. The answer classifies the game G, u,v as join, cut or

neutral. A tree query outputs the trees or cotrees that enable the winning strategy to be played.

29

Previous work analyzes the Shannon switching game by concentrating on a single query; chang-
ing w or v necessitates rerunning the algorithm. Bruno and Weinberg [B,BW70] allow changing u
and v and give an efficient solution, but wv is restricted to being an edge of G and it cannot be
claimed — it is a “nonplayable” edge. Our algorithm works for any pair w, v. It takes advantage of
a fixed graph — after the first query the algorithm is significantly faster.

We analyze the game using two cases: first, uv € [V but is nonplayable; then the “natural” case
of no nonplayable edges (i.e., either uv € F and is playable or uv ¢ E). In the current context the
nonplayable case may be considered an artifact of the analysis (although it is the case considered
by other researchers).

Consider the nonplayable case. Throughout the discussion of this case fix uv as a nonplayable
edgeof E. Let M = GV G and M' = G*V G*. Let C' be the union of all circuits in M, C' the union
of all circuits in M'.

The analysis of the Shannon switching game as developed collectively in [Le, Ed65b, BW70; see
also La] solves the nonplayable case. We restate the results in terms of clumps. The condition for
G, u,v to be a join game is that there is a clump L in M such that wv € sp(L, M) — L; equivalently,
uv € C (recall Lemma 5.1). Cut and neutral games are similar: The condition for G,u,v to be a
cut game is that there is a clump L' in M’ such that wv € sp(L', M') — L'; equivalently, uv € C".
The condition for G',u,v to be a neutral game is that G u,v is not a join game and there is a
clump L in M containing uv; equivalently, Z,u,v is not a cut game and there is a clump L’ in M’
containing wv. (If it is not immediately clear why the three alternatives are mutually exclusive,
recall Theorem 5.6.) In each case a winning strategy can be executed if we have the above clump

L (L') as a partitioned independent set.

Lemma 7.1. Let G be a fixed graph. Assume uv is always an edge of G but not playable. Then
a sequence of classification (tree) queries GG, u, v can be answered in O(nv/'m') preprocessing time,

O(m) space and O(1) (O(n)) query time.

Proof. Consider classification queries. Clearly once the sets C' and C” are known, a query can be
answered in O(1) time (and O(m) space). The sets are found as follows. Compute a base B of
M using Theorem 3.1. The edges labeled in unsuccessful searches of cyclic scanning form the set
C (see Lemma 5.1). Next compute the top clump L of B. Finally compute C' using the relation
C'=FE—sp(L,M)=FE~(LUC), which follows from Theorem 5.6.

This preprocessing uses time O(nyv/m’). In prool by Theorem 3.1, B and C are found in time

O(nvm'). By Theorem 5.4, L is found in time O(nlogn).

30

Next consider tree queries. The preprocessing consists of finding base B and circuit elements
C for M, as above. In doing this some additional information is recorded: Each edge e € BN C' is
labeled with a “cocircuit edge” f that can replace itin B, i.e., B—e+ [is a base. (In constructing B,
edge e was labeled in an unsuccessful search from some edge f, since e € C'. Hence the preprocessing
can record the desired label f for e.)

Now consider a tree query wu,v. Suppose uv € (' so the game is join. Let e be the cocircuit
edge of uv if uv € B, otherwise e = wv. Attempt to add wv to B using cyclic scanning. The
search is unsuccessful and marks a clump L of B. If wv ¢ B, L spans uv, so output L. If uv € B,
L — uv + e is a clump that spans uv, so output it. (Note that in both cases the clump is returned
as a parititioned independent set.)

Now suppose uv ¢ C. Thus the game is cut or neutral; also clearly uv € B. Attempt to add
a copy uv to B using cyclic scanning. If the search fails it marks a clump L containing uv. The
game is neutral; output L to answer the query for the join strategy of the neutral game. If the
search succeeds we will show below that the game is cut. I'or both cut and neutral games we must
output an appropriate clump of M’. We show how to do this in time O(m). Then we reduce the
time to the desired bound O(n).

*The search gives a partitioned base Iy U Iy of M (ignore the copy wn). Use it to find a base B’
for M', following Theorem 5.5. Note that the extremal pair of Theorem 5.5 is found in time O(n),

from which B’ is constructed in time O(m). Then find the top clump L' of B' using the relation
L'=B-C. (3)

This holds since L' = B' N T'; now apply Theorem 5.6. Using (3), L' is found in time O(m).
Note that L' is found as a partitioned independent set. The algorithm outputs L’. To see this
is correct note that if the original search succeeded then wo ¢ B'. Thus wv € C’, the game is
cut, uv € sp(L',M') and L' can be output. If the original search failed then the game is neutral.
Then since uv is in some clump of M’ but not C”, it is a bridge and in every top clump of M'. In
particular I/ can be output.

Now we reduce the time to O(n). L' has O(n) elements, since (3) shows each element of L' is
a bridge of M, and M has at most 2n — 2 bridges. We need only avoid explicitly constructing the
base B’ (which can have ©(m) elements). Note from (3) and Theorem 5.5 that L' = (§ — By —
C)YU(By— By = C). The first set can be constructed by examining S — C rather than all of C.

This allows L' to be easily found in time O(n). n

Now we reduce the “natural” case for queries to the nonplayable case. Consider a sequence

31

of games G,u,v where G is fixed and wv is arbitrary (and playable if it is in G). This game is
equivalent to the game G + uv,u,v with wv nonplayable. (If uv is an edge of G, the graph G + uv
corresponds to adding a second copy of uv. In the following discussion wv refers to this second
copy.) We shall discuss tree queries for this case (classification queries use just a subpart of the

algorithm described). In the rest of this section let

My, = guv \Y guua M, = Gow V G:Z,U,

uv ~uy

where G, is the graphic matroid of G + wv.

The preprocessing consists of finding the base B and circuit elements C' for matroid M.

A classification query for wv is processed as follows. Attempt to add uv to B using cyclic
scanning. Observe that the search fails if and only if the game is join. (If the search succeeds
the game is not join since B 4 uv is a base of M, and clearly uv is a bridge of M,,, not a
circuit element.) If the search fails output the clump of M., that was marked by cyclic scanning.
Otherwise attempt to add a second copy @v to B + uv using cyclic scanning. Observe that this
second search fails if and only if the game is neutral. (If the search succeeds the game is cut because
B + uv is a base of My, and uwv is not in its top clump, i.e., uv € ¢’ by Theorem 5.6.) Note also
that if uv is originally in G this search must fail, i.e., the game cannot be cut.) If the second search
fails output the clump of M, that was marked by cyclic scanning. This answers the classification
query for a neutral game for join.

Now for cut games and for the cut strategy for neutral games, we follow the lemma to output
an appropriate clump of M/ : Use the partitioned independent set (from after the second search)
to find a base B’ of M,,’. Note that B’ contains the nonplayable edge uv if and only if the game
is neutral. Also note that if uv was originally in G, the game is neutral and B’ also contains the
original edge uv.) Mark the top clump L' of B" in O(n) time following the procedure of the lemma.
(To do this observe that the set of circuit elements in M, is C, the set computed in preprocessing.
The reason is that uv is not a circuit element in M,,, since the game is not join.) Note that uv € L'

if and only if the game is neutral. Hence L' can be returned.

Theorem 7.2. Let G be a fixed graph, and let u,v range over arbitrary pairs of vertices. Then a
sequence of classification or tree queries G/, u, v can be answered in O(nvm') preprocessing time,

O(m) space and O(n) query time. n

Now we show how to improve the query time of Theorem 7.2, doing slightly more preprocessing.

32

The following algorithm achieves O(1) time per classification query. Assume the query u,v is

“natural”, i.e., no nonplayable edges (otherwise Lemma 7.1 applies).

Preprocessing Step. Find a maximum cardinality generic independent set A for G'. Find all maximal

preclumps P in A. Enlarge A to a base B for M. Find the top clump L of B in M.

Query Step. If uwv € sp(L,G) the game is join. Otherwise if uwv € sp(P,G) for some maximal

preclump P of A the game is neutral. Otherwise the game is cut. L]

The correctness of the algorithm is proved as follows. If uv € sp(L,G) then uv is in a circuit
of My,. Hence G' + uv,u, v, where uv is not playable, is a join game, and the algorithm is correct.
If uv ¢ sp(L,G) but wv € sp(P,G) for a maximal preclump P of A, then B + uv is independent
in My, and P + uv is a clump contained in B + uv. Thus uwv is in the top clump of B + uwv.
Hence G + uv,u, v, where uwv is not playable, is a neutral game, and the algorithm is correct. If
wv ¢ sp(Q,G) for @ = L or any maximal preclump ol A, then wv is not in the span of any top
clump in M,,. Hence G 4 wv, u,v, where uv is not playable, is a cut game. Correctness follows.

Consider next the implementation of the Preprocessing Step, starting with finding all maximal
preclumps in A. For an edge e € A, let € be a new copy of e. Let L be the top clump of A + €.
Then the maximal preclump containing e is L — €. (For instance if the top clump is {e, €} then {e}
is a maximal preclump.) Hence to find the maximal preclump containing e, run cyclic scanning
to add € to A; then use Theorem 5.4 to find the top clump of 4 + . The time for n top clump
computations is O(n? logn). This dominates, giving total time O(n®logn) to find the maximal
preclumps.

The rest of the Preprocessing Step can be done in time O(n?) as follows. By Theorem 6.2,
A can be computed in time O(n?). Similarly B and [are found in time O(n?). The last part
of this step is to preprocess the top clump and preclumps for the Query Step. For the top clump
this amounts to marking its connected components. This uses time O(n). For the preclumps we
use the data structure based on the partition of edges by preclumps, described for the algorithm of
Theorem 6.2. This uses time O(n?). Note that there is no need to use the set merging algorithm
in this data structure, since the preclumps do not change. Thus the find operation in the Query

Step uses O(1) time.

Theorem 7.3. Let G be a fixed graph and let u,v be arbitrary. Then a sequence of classification
queries G, u,v can be answered in O(n? logn) preprocessing time, O(m) space and O(1) time per

query.]

Problem

Previous Bounds

New Bounds

k3/2ny/mlogn, if m < nlogn

320!/ m!

k-forests k32 my/n, otherwise [GS] k(n')* log k
(kn)? [I, RT)
weighted O((kn)? + mlogm) [RT] O(k(n')* logk + mlogm)
k-forest
cov(G) m? [1, RT) m(mm! logn)'/3, if m < n3/*logn
mnlogn, otherwise
pack(Q) m? [RT] my/(mm!/n)log(m/n)

mnlog(m/n)

top clump

ny/m'

degrees of n?

freedom

Shannon nvm’, preprocessing time
switching n, query time

game

Table I. Main results (notation: n' = min{n,2m/k}, m' = m + n'logn’).

References.

[A]
[B]

[BW70]

[BW71]

[CN]

[Ed65a]

[Ed65b]

[GTS5]

[GT88a)

[GT88b]

M. Aigner, Combinatorial Theory, Springer-Verlag, New York, 1979.

J. Bruno, “Matroids graphs and resistance networks”, Ph.D. dissertation, Dept. Elec.
Eng., City College of New York, New York, 1967.

J. Bruno and L. Weinberg, “A constructive graph-theoretic solution of the Shannon
switching game”, IEEE Trans. Circuit Theory, CT-17, 1, 1970, pp. 74-81.

J. Bruno and L. Weinberg, “The principal minors of a matroid”, Linear Algebra and Its
Applications 4, 1971, pp. 17-54.

N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms”, SIAM J.
Comput., 14, 1, 1985, pp. 210-223.

E.A. Dinic, “Algorithm for solution of a problem of maximum flow in a network with
power estimation”, Sov. Math. Dokl. 11,5, 1970, pp. 1277-1280.

J. Edmonds, “Minimum partition of a matroid into independent subsets”, J. Res. Na-
tional Bureau of Standards 69B, 1965, pp. 67-72.

J. Edmonds, “Lehman’s switching game and a theorem of Tutte and Nash-Williams”,
J. Res. National Bureau of Standards 698, 1965, pp. 73-77.

S. Even and R.E. Tarjan, “Network flow and testing graph connectivity”, STAM J.
Comput., 4, 4, 1975, pp. 507-518.

G. Gallo, M.D. Grigoriadis and R.E. Tarjan, “A fast parametric maximum flow algo-
rithm and applications”, SIAM J. Compul., 18, 1, 1989, pp. 30-55.

H.N. Gabow and M. Stallmann, “Efficient algorithms for graphic matroid intersection
and parity”, Automata, Languages and Programming: 12th Colloguium, Lecture Notes
in Computer Science 194, W. Brauer, ed., Springer-Verlag, 1985, pp. 210-220.

H.N. Gabow and R.E. Tarjan, “A linear-time algorithin for a special case of disjoint
set union”, H.N. Gabow and R.E. Tarjan, .J. Comp. and System Sci., 30, 2, 1985, pp.
209-221.

H.N. Gabow and R.E. Tarjan, “A linear-time algorithm for finding a minimum spanning

pseudoforest”, Inf. Proc. Letters, 27, 5, 1988, pp. 259-263.

H.N. Gabow and R.E. Tarjan, “Algorithms lor two bottleneck optimization problems”,

J. Algorithms, 9, 3, 1988, pp. 411-417.

36

[GT88¢]

[Gu83]

[HK]

(1]

[1F]

[IR]

[KK]

[OTW]

H.N. Gabow and R.E. Tarjan, “Almost-optimum speed-ups of algorithms for bipartite
matching and related problems”, Proc. 20ih Annual ACM Symp. on Theory of Comp.,
1988, pp. 514-527.

D. Gusfield, “Connectivity and edge-disjoint spanning trees”, Inf. Proc. Letters, 16,
1983, pp. 87-89.

J. Hoperoft and R. Karp, “An n°/? algorithm for maximum matchings in bipartite
graphs”, SIAM J. Comput., 2, 4, 1973, pp. 225-231.

H. Imai, “Network-flow algorithms for lower-truncated transversal polymatroids”, J.
Op. Res. Soc. of Japan, 26, 3, 1983, pp. 186-210.

M. Iri and S. Fujishige, “Use of matroid theory in operations research, circuits and
systems theory”, Int. J. Systems Seci., 12, 1,1981, pp 27-54.

A. Itai and M. Rodeh, “The multi-tree approach to reliability in distributed networks”,
Proc. 25th Annual Symp. on Found. of Comp. Sci., 1984, pp. 137-147.

G. Kishi and Y. Kajitani, “Maximally distant trees and principal partition of a linear
graph”, IEEFE Trans. Circuit Theory, CT-16, 3, 1969, pp. 323-330.

E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rhinehart and

Winston, New York, 1976.

A. Lehman, “A solution to the Shannon switching game”, J. Soc. Indust. Appl. Math.
12, 1964, pp. 687-725..

L. Lovdsz and Y. Yemini, “On generic rigidity in the plane”, SIAM J. Alg. Disc. Meth.,
3, 1982, pp. 91-98.

L.R. Matthews, “Bicircular matroids”, Quarterly J. Math. Ozford, 28, 2, 1977, pp.
213-228.

C. St. J. A. Nash-Williams, “Edge-disjoint spanning trees of finite graphs”, J. London
Math. Soc., 36,1961, pp. 445-450.

T. Ohtsuki, Y. Ishizaki and H. Watanabe, “Topological degrees of freedom and mixed
analysis of electrical networks”, IEEFE Trans. Circuit Theory, CT-17, 4, 1970, pp. 491—
499.

J.-C. Picard and M. Queyranne, “A network {low solution to some nonlinear 0-1 pro-
gramming problems, with applications to graph theory”, Networks, 12, 1982, pp. 141-

159.

37

[Tu]

[Wel]
[Wes]

[Wh]

[WW]

J. Roskind and R.E. Tarjan, “A note on finding minimum-cost edge-disjoint spanning

trees”, Math. Op. Res. 10,4, 1985, pp. 701-708.

D.D. Sleator and R.E. Tarjan, “A data structure for dynamic trees”, J. Comp. and
System Sei., 26, 1983, pp. 362-391.

R.E. Tarjan, Data Structures and Network Algorithms, STAM Monograph, Philadelphia,
Pa., 1983.

T-S. Tay, “Rigidity of multi-graphs. I. Linking rigid bodies in n-space”, J. Comb. Th.
B, 36, 1984, pp. 95-112.

W. T. Tutte, “On the problem of decomposing a graph into connected factors”, J.

London Math. Soc. 36, 1961, pp. 221-230.
D. J. A. Welsh, Matroid Theory, Academic Press, New York, 1976.

H. H. Westermann, “Efficient algorithms for matroid sums”, Ph.D. Dissertation, Dept.

Comp. Sdi., Univ. Colorado at Boulder, 1987.

W. Whiteley, “The union of matroids and the rigidity of frameworks”, SIAM J. Disc.
Math., 1, 2, 1988, pp. 237-255.

N. White and W. Whiteley, “The algebraic geometry of motions of bar-and-body frame-
works”, STAM J. Alg. Disc. Meth., 8, 1, 1987, pp. 1-32.

38

