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Ogren, Philip Victor (Ph.D., Computer Science)
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Thesis directed by Prof. Prof. Lawrence Hunter

One of the most difficult and least studied sources of structural ambiguity in text is syntactic

coordination. Coordination resolution, for this dissertation, is the task of determining the correct

conjuncts of the coordinating conjunctions “and” and “or” and is explored here for biomedical

scientific literature. It is a challenging problem because conjunctions are highly promiscuous with

respect to the kinds of words and phrases that they are willing to coordinate. For example, a

conjunct may consist of a single word such as an adjective or a much longer verb phrase. The main

contribution of this work is an efficient and accurate coordination resolution algorithm that outper-

forms the previous state-of-the-art on this task and a state-of-the-art syntactic parser when applied

to this task. The algorithm uses binary classifiers to predict conjunct boundaries. One of the more

interesting features that improved the performance of these classifiers leverages probabilities gener-

ated by a language model which is built using large quantities of readily available unlabeled data.

The language model derived features exploit the intuition that sentences containing coordinating

conjunctions can often be rephrased as two or more smaller sentences derived from the coordina-

tion structure. Candidate sentences corresponding to different possible coordination structures are

generated and compared using the language model to help determine which coordination structure

is best. Performance is further improved by first predicting the syntactic type of the coordination

structure and using this type prediction to help train and classify conjunct boundaries. Finally,

a system that integrates the new approach with a syntactic parser is shown to outperform either

approach in isolation.
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Chapter 1

Introduction

One of the most difficult and least studied sources of structural ambiguity in biomedical

text is syntactic coordination. Coordination in this dissertation will refer to the coordinating

conjunctions and and or and the conjuncts that they coordinate. Coordination resolution is

the task of identifying the correct conjuncts of one of these two coordinating conjunctions. The

following sentence contains the coordinating conjunction and twice:

• Examination of [embryonic and adult ] [germ cells and gonads] in Dppa3-deficient animals

did not reveal any defects.

The two conjunctions in this example sentence are shown in bold font while their corresponding

conjuncts are shown in italics. Biologists have little difficulty reading and understanding this sen-

tence because they would know that germ cells and gonads can both be modified by “embryonic”

and “adult” and so the most likely interpretation is that the following subjects of study were ex-

amined: embryonic germ cells, adult germ cells, embryonic gonads, and adult gonads. Machines,

in contrast, have difficulty performing coordination resolution on examples like these because they

are confronted with a large number of possible conjuncts, many of which look structurally similar

from a syntactic point of view. Table 1.1 shows all of the possible conjuncts for the second con-

junction found in the example sentence above. In total, there are seven possible left conjuncts and

nine possible right conjuncts which gives a total of sixty-three possible coordination structures for

that conjunction. Such a large number of candidate coordination structures is quite common and
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represents a search space through which a machine must effectively navigate to perform well on

this task.

Table 1.1: A listing of all possible conjuncts for the second conjunction in the sentence “Examination
of embryonic and adult germ cells and gonads in Dppa3-deficient animals did not reveal any defects.”
An asterisk (*) indicates a correct conjunct.

Conjunct Possible Values

left cells

left germ cells*

left adult germ cells

left and adult germ cells

left embryonic and adult germ cells

left of embryonic and adult germ cells

left Examination of embryonic and adult germ cells

right gonads*

right gonads in

right gonads in Dppa3-deficient

right gonads in Dppa3-deficient animals

right gonads in Dppa3-deficient animals did

right gonads in Dppa3-deficient animals did not

right gonads in Dppa3-deficient animals did not reveal

right gonads in Dppa3-deficient animals did not reveal any

right gonads in Dppa3-deficient animals did not reveal any defects

Automatic coordination resolution is an interesting challenge because there exists a large

disparity between how well modern syntactic parsers and humans perform on this task. This

is particularly unfortunate in the biomedical domain because coordinating conjunctions are very

common in biomedical text. In fact, Tateisi et al.[51] found that coordinating conjunctions occur

nearly twice as often in biomedical abstracts as in newswire text. The prevalence of coordinating

conjunctions in biomedical text presents a challenge to syntactic parsers and information extractions

systems which require successful coordination resolution in order to perform well.

This dissertation focuses on automatic coordination resolution in biomedical texts. Two ap-

proaches are compared: a syntactic parser based approach and a “parser-free” approach which

performs coordination resolution as an isolated task from syntactic parsing. The parser-free ap-

proach is shown to outperform the parser-based approach on several corpora at a much faster speed.
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The two approaches are shown to be complementary and when integrated produce the highest per-

forming coordination resolution system. The main contribution of this work is the presentation of

a simple algorithm that the parser-free approach employs and the use of novel features that exploit

language models built from large quantities of readily available unlabeled data. A secondary con-

tribution of this work is a new corpus that consists of coordination structures for 5,000 randomly

selected sentences from the biomedical domain and inter-annotator agreement numbers for the test

set of the corpus. Also, a method for deriving coordination structures from the output of a syntactic

parser or Penn Treebank style annotations is presented.

The remainder of this chapter presents related work. Chapter 2 describes the corpora that

contain gold-standard coordination structures used for training and evaluating coordination resolu-

tion systems. Chapter 3 details features used by a machine learning classifier for the coordination

resolution system described in Chapters 4 and 5. Chapters 4 and 5 introduce the novel “parser-free”

coordination resolution system and compare its performance with a state-of-the-art syntactic parser

on this task. Chapter 6 presents results of the coordination resolution system on three different

corpora and provides detailed error analysis. Chapter 7 provides a summary and conclusions of

this work and discusses future research directions for coordination resolution.

1.1 Related Work

There have been two main approaches for performing automatic coordination resolution. One

approach considers coordination resolution within the broader task of syntactic parsing. In this

approach evaluation of coordination resolution per se is seldom done. Rather, the evaluation criteria

of interest is usually the overall syntactic parsing performance and the effect of coordination-specific

considerations on it. The other main approach considers coordination resolution as an isolated

task in which a system is built specifically to perform coordination resolution. In this approach,

coordination resolution is typically narrowly defined and evaluation is conducted on small data

sets. For the sake of brevity I have excluded a literature review of work done in the early 1990’s,

the 1980’s, and earlier. Suffice it to say that the papers are few in number, are heavily influenced



4

by linguistic formalisms, describe systems that can generally be characterized as heuristic-based

search, and report results on a small number of examples. One interesting anecdote about several of

the papers reviewed in this chapter is that they emphasize in their introductions how little studied

coordination resolution is despite the fact that it is a major source of system errors.

1.1.1 Coordination Resolution in the Context of Syntactic Parsing

Any syntactic parser that produces a full syntactic analysis of a sentence must perform coor-

dination resolution as a part of that syntactic analysis because coordination resolution is typically

considered primarily a syntactic phenomena. Typically, a syntactic parser will have a single, cen-

tral algorithm that is used to determine all syntactic categories and relationships contained in a

sentence. However, this does not preclude parsers from giving special attention to coordination

resolution by adding coordination resolution specific rules and features.

Nivre and McDonald[37] show that the MSTParser[32] and MaltParser[35] perform worse on

dependencies related to conjunctions (both coordinating and subordinating) than for most other

parts-of-speech by a wide margin (as much as 10% worse compared to verbs and nouns.) To address

this disparity Nilsson et al.[34] show that giving special attention to the structure of coordination

dependencies improves overall parsing performance on the Prague Dependency Treebank (PDT).

The PDT makes conjunctions the head of their conjuncts. Nilsson et al. automatically transform

the training data from this structure to one that chains coordination dependencies from the first

conjunct and then train on this transformed data. The resulting parse of this model is transformed

back into the structure used by the PDT to provide an overall performance gain when evaluated

on the test data in its original form.

The constituent parser described in Charniak and Johnson [9] is a reranking parser that uses

two features which focus on coordination when mapping each generated parse to a set of features.

The first measures parallelism in the labels of conjunct constituents and their children and the

second measures the lengths of the conjunct constituents. However, they do not report what effect

these two features have on overall parsing performance or on coordination resolution. The work
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done by Hogan[21] focuses directly on coordination of noun phrases in the context of the Collins

parser[13]. After the parser has determined the structure of the first conjunct, features derived

from that conjunct are used when building the structure of the second conjunct. The overall

results of this work resulted in an increase of performance of 69.9% to 73.8% in F-score (a 13%

error reduction) for coordinate noun phrases. This resulted in a small but statistically significant

performance gain for overall parser performance from 89.4% to 89.6%. The parser-free coordination

resolution system introduced in Section §5.3 similarly uses features from existing conjuncts to help

determine the remaining conjuncts.

McClosky et al.[31] report improvements in syntactic parsing performance using self-training

on unlabeled data with their two-phase reranking parser. One of the surprising results from this

study is that sentences in the test set for which parsing performance improved as a result of the self-

training were more likely to have conjunctions than sentences for which there was no improvement,

i.e. the self-training improved coordination resolution of the parser. The authors point out that

they had expected improvement to correspond to the presence of unknown words or prepositional

phrases and were reluctant to make conclusions about this counter-intuitive result. They conjecture

that the self-training helps the parser learn what sentences and verb phrases look like which helps

for parsing conjunctions that coordinate these two constituent types. One of the telling quotes

from this paper is “Conjunctions are about the hardest things in parsing, and we have no grip on

exactly what it takes to help parse them.”

1.1.2 Coordination Resolution as an Isolated Task

An example of coordination resolution approached as an isolated task is that of Chantree et

al.[8] who make use of word distribution information to disambiguate modifiers involved with co-

ordination. They focus on conjunctions that have only two conjuncts (typically two noun phrases)

and a single ambiguous modifier (typically a noun, adjective, or preposition) as in the phrase “old

boots and shoes”. Their system judged such phrases to be coordination-first (i.e. “old” modifies

“boots and shoes”), coordination-last (i.e. the conjuncts are “old boots” and “shoes”), or “ambigu-
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ous so that it might lead to misunderstanding.” They collected 138 such coordination examples

from requirements specifications documents that were syntactically ambiguous and had them re-

viewed by human judges who rated them as one of the three categories. Their system makes use of

three types of word distribution information derived from the British National Corpus: “relative

frequency of the coordination . . . , the distributional similarity of the coordinated words, and the

collocation frequency between the coordinated words and a modifier.” Each of these were used

effectively by their system to produce a significant performance gain.

In related work, Nakov and Hearst[33] use the web to disambiguate coordinations of the form

“noun conjunction noun head-noun”. Their task corresponds directly to the coordination-first and

coordination-last classification described above. They leveraged web data to create paraphrase

features and surface features that involve use of punctuation. The surface features using punc-

tuation had little effect, but using paraphrase features was found to be effective. For example,

the phrase “car and truck production” would more likely be classified as coordination-first if there

are many paraphrases from the web such as “truck and car production” and “car production and

truck production.” Paraphrases such as “truck production and car” would push the classifier to-

wards a coordination-last classification. Their overall accuracy improved from a baseline (always

choose coordination-first) of 56.5% to the best system which used, among other things, paraphrase

features and achieved 80.6% accuracy. In section §3.2, language model features that echo the para-

phrase strategies used here and the word distribution information used in [8] described above are

introduced.

In another study, Resnik[44] makes use of semantic similarity using WordNet for resolving

the ambiguity found in coordinating conjunctions with the patterns “noun conjunction noun noun”

and “noun noun conjunction noun noun.” Instead of measuring semantic similarity between two

concepts using a distance metric based on taxonomical structure, similarity is measured using the in-

formation content of the “most informative subsumer” of two concepts. This measure relies heavily

on the probabilities associated with each concept in the taxonomy of seeing a mention of a concept

in text. While this similarity measure is theoretically elegant this particular study is crippled by the
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very small amount of data in the training and test sets (200 and 178 phrases, respectively, for the

two patterns examined) and the extent to which WordNet provided concept-recognition coverage

for words in the data sets. Even still, there were encouraging results that indicated that the use of

semantic similarity shows promise for coordination resolution. In section §4.2.3, the use of related

semantic similarity measures for coordination resolution is explored.

An interesting observation from the work summarized in this subsection is that the authors

do not attempt to compare their results with previous results other than in the broadest and

most-qualified way. This is because, according to Resnik[44], there is no common data set or

task definition for comparative evaluation. A decade later, this remains true for coordination

resolution. In this work, I provide a data set that can be shared and a coordination resolution

task definition along with evaluation metrics that will hopefully promote further research that is

directly comparable to what is presented in this dissertation.

1.1.3 Biomedical Coordination Resolution in the Context of Syntactic Parsing

Very little attention has been given to coordination resolution in the context of syntactic

parsing of biomedical texts. One study performed by Clegg and Shepherd [10] looked at the perfor-

mance of two constituent-based syntactic parsers on coordination resolution evaluated on GENIA

treebank data[47]: the Bikel parser (version 0.9.8)[4] and the Charniak-Lease parser[26]. They con-

verted the GENIA treebank data and the output of these parsers into dependency graphs using the

Stanford Parser’s constituent-to-dependency conversion tool which is based on the work of Marn-

effe et al.[29]. Coordination resolution was evaluated as F-score by evaluating the dependencies in

the subgraphs of the dependency trees whose roots are at either end of a conjunction dependency.

They argue that simply measuring accuracy of the dependencies corresponding to conjunctions

and conjuncts ) does not take into account the overall effect of errors that are caused by erroneous

conjunction and conjunct dependencies. By measuring performance on these subgraphs they are

attempting to show the overall effect of error propagation caused by mistakes on the conjunction

dependencies. The two parsers performed at 75.5 and 75.0 F-score, respectively, on the conjunction
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subgraphs compared with an overall performance of 77.0 on all dependencies (including the con-

junction subgraphs.) While the the performance on the conjunction subgraphs is not dramatically

lower than overall performance it does indicate that coordination structures are more difficult to

parse. However, the rather low over-all performance of the dependency graphs generated from the

output of these parsers may reflect underlying fundamental problems with this study. For exam-

ple, both parsers were trained on newswire text rather than on biomedical text. Furthermore, the

process of converting constituent-based trees to dependency-based trees is error prone and so the

true performance of the parsers may not be well reflected in the dependency-based evaluation.

1.1.4 Biomedical Coordination Resolution as an Isolated Task

Buyko et al.[5] study the large number of named entities in the GENIA corpus that are

coordinated in such a way that one of the named entities has elided material. For example, the words

dependent transcription are elided from the named entity NFAT-dependent transcription in the

phrase NFAT- and interleukin-2-dependent transcription. They define an elliptical entity expression

(EEE) to be those named entities in GENIA in which such coordinations are explicitly captured.

The task they performed was to identify the correct conjuncts for a given EEE and then correctly

identify the locations of ellipses and their corresponding antecedents (i.e. the ellided words.) For

the EEE given above, the correct conjuncts would be NFAT- and interleukin-2- with an ellipsis

occurring between NFAT- and and whose corresponding antecedent is dependent transcription. The

training and test sets were drawn from the 1,578 EEEs found in GENIA. These EEEs account for

3.5% of the named entities annotated in GENIA. The F-score for finding the correct conjuncts

was 0.93 using a linear-chain Conditional Random Field. The accuracy for overall EEE resolution

(getting the correct conjuncts and identifying the location of the ellipses and the antecedents

that satisfy them) was 86%. This very high performance may be due to a task definition that

is unrealistically easy because gold-standard EEEs are provided. That is, the system is given

an EEE such as NFAT- and interleukin-2-dependent transcription and what remains to be done is

determine the conjuncts and the antecedents. Unfortunately, their system’s ability to identify EEEs
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automatically was a disappointing 0.55 as F-score (personal communication.) One interesting result

of this study is that the performance numbers suggest that resolution of ellipses can be done with

very high accuracy if the conjuncts are correctly identified. To illustrate, a näıve interpretation of

their results is to assume that conjunct errors are evenly distributed throughout the EEEs and that

there are two conjuncts per EEE (a conservative estimate). Using the conjunct-level performance

of 0.93, the overall performance of EEE resolution would be approximately .932 = .865 if the ellipsis

resolution performance is 100%. This result is very close to their reported overall accuracy of 86%.

This dissertation does not address recovering elided materials found in coordination structures.

However, this result suggests that it can be done with high accuracy.

Shimbo and Hara[45] apply several algorithms to the task of conjunct bracketing and co-

ordination bracketing. They look at sentences that have one instance of the word and that is

coordinating noun phrases. Only one instance of a conjunction is allowed because their system

does not handle nested coordination structures and they assume an oracle that provides the sys-

tems with only sentences that contain coordinated noun phrases and gold-standard part-of-speech

tags. They apply several baselines to the task for comparison with their own algorithm: the Bikel

parser version 0.9.9c, the Bikel parser using the Collins (Bikel/Collins) parser emulation mode,

Charniak and Johnson’s (CJ) reranking parser, and a chunker based on linear-chain Conditional

Random Fields (CRF) using a Begin-Inside-Outside (BIO) labeling scheme. Their algorithm is

based on sequence alignment modified for coordination resolution in which an edit graph is em-

ployed to assign the highest score to a set of edit operations that translates one conjunct into

another. This approach exploits the intuition that coordinated conjuncts often exhibit structural

similarities.

In a follow-up study, Hara et al.[18] provide a much more comprehensive treatment to the

problem of coordination resolution on biomedical texts. The work by Hara et al. is the most

similar to the work presented in this dissertation and a direct comparison between their work and

the approaches presented here is reported in detail in Section §6.3. Their approach involves a

grammar tailored for coordination structures that is coupled with a sequence alignment algorithm
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that uses perceptrons for learning feature weights of an edit graph. Again, this approach exploits

the intuition that coordinated conjuncts often exhibit structural similarities. In contrast to the

Shimbo and Hara study, here coordinations are not confined to be non-nested coordinated noun-

phrases but rather all instances of the conjunctions and and or and the disjunction but are handled

by their system regardless of the types of constituents that are coordinated or whether or not the

coordination structure is nested inside another coordination structure. Similarly, in this work all

coordination structures involving the conjunctions and and or are analyzed.

1.2 UIMA and ClearTK

All of the software created to support the research performed in this dissertation was built

on top of the Unstructured Information Management Architecture (UIMA)[15]. Briefly, UIMA

provides a set of interfaces for defining components for analyzing unstructured information and

provides infrastructure for creating, configuring, running, debugging, and visualizing these com-

ponents. In the context of natural language processing (NLP), the focus is on UIMA’s ability to

process textual data. All UIMA components are organized around a type system which defines the

structure of the analysis data associated with documents.1 This information is instantiated in a

data structure called the Common Analysis Structure (CAS). There is one CAS per document that

UIMA components can access and update. I chose UIMA for a number of reasons including its open

source license, wide spread community adoption, strong developer community, elegant APIs that

encourage reusability and interoperability, helpful development tools, and extensive documentation.

While UIMA provides a solid foundation for processing text, it does not directly support

machine learning based NLP. ClearTK[39, 40] aims to fill this gap. ClearTK provides a framework

for creating UIMA components that use statistical learning as a foundation for decision making and

annotation creation. This framework provides a flexible and extensible feature extraction library

and wrappers for several popular machine learning libraries. One of the goals of the ClearTK

framework is to facilitate the creation of NLP components that make use of classifiers in such

1 The term document is used to refer to any unit of text that is analyzed
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a way that the details particular to a specific machine learning classifier library are abstracted

away. This promotes best-of-breed solutions in which multiple classifier libraries can be directly

compared when used for the same component. As an example, results for a parser-free coordination

resolution approach, which is described in Section §5.3 and was built using ClearTK, are reported

in Table 5.3 for five different classifier libraries. Additionally, ClearTK provides a number of useful

components that were used in this dissertation including a sentence segmenter, tokenizer, stemmer,

and part-of-speech tagger.



Chapter 2

Corpora

To train and evaluate the coordination resolution approaches described in subsequent chap-

ters, gold-standard coordination structures are required. Each coordination structure should consist

of a conjunction and the conjuncts it coordinates. Optionally, a coordination type may also be as-

signed to a coordination structure which corresponds, roughly, to the syntactic categories of the

conjuncts that are coordinated. Such structures can be obtained from texts annotated with syn-

tactic structures. Two corpora annotated with the Penn Treebank (PTB) format[2] are used in

this dissertation: CRAFT and GENIA. Coordination structures can also be directly annotated

with high consistency without annotating a full syntactic analysis of each sentence. A new corpus

annotated in this way called BIOCC is introduced.

Because coordinating conjunctions are very promiscuous with respect to the constituents,

phrases, or words they are willing to coordinate, coordination structures are very diverse. In

addition to describing the corpora for the purposes of explaining the experimental setup for training

and evaluation used in subsequent chapters, this chapter highlights the diversity of coordination

structures by providing many examples and by quantifying differences across several characteristics.

Coordination structures are shown to differ with respect to the number of conjuncts, length of

conjuncts, and type. These data along with the provided examples underscore the difficulty of

accurately performing coordination resolution. However, the results reported in Section §2.2.3

show that humans, despite the complexity of the task, can perform coordination resolution with

high agreement.
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Basic counts for CRAFT, BIOCC, and GENIA are shown in Table 2.1 along with a subset

of the GENIA corpus referred to here as the Hara corpus which is described in Section §2.3. It is

interesting to note that the total number of conjunctions in CRAFT and GENIA is 23,300 which is

more than the PTB[28] which has 22,888 conjunctions even though the 31,014 sentences in CRAFT

and GENIA is far less than the 49,208 sentences in the PTB. It is not surprising then that the

percentage of sentences that contain a coordinating conjunction is much higher for CRAFT (49.7%)

and GENIA (54.8%) than for PTB (36.6%). Similarly, the ratio of conjunctions to tokens is much

higher for the biomedical corpora (2.86% and 2.93% for CRAFT and GENIA, respectively) than

for the PTB (1.95%.) These facts suggest that coordination resolution may be more important

for biomedical texts than for newswire texts simply because coordinating conjuncts occur more

frequently in the former. Incidentally, the word “and” is the third most frequent non-punctuation

token in the full-text open-access articles used in Section §2.2.1 behind the words “the” and “of”.

The word “or” ranks nineteenth.

Table 2.1: Summary of corpora used in this dissertation. The columns labeled ‘Sent.’ and ‘Conj.’
correspond to the total number of sentences and conjunctions, respectively. The number of con-
junctions equals the number of coordination structures. The column labeled ‘S%’ is the percentage
of sentences that have at least one coordinating conjunction. The column labeled ‘T%’ is the ratio
of conjunction counts to token counts as a percentage. The values for the last two columns are not
shown for BIOCC because sentences not containing conjunctions were excluded from BIOCC.

Corpus Genre Sent. Tokens Conj. S% T%

CRAFT full-text articles 12,473 316,294 9,045 49.7% 2.86%

BIOCC sentences 5,000 156,746 7,384

GENIA abstracts 18,541 486,489 14,255 54.8% 2.93%

Hara abstracts 4,529 123,170 3,598 55.4% 2.92%

PTB newswire 49,208 1,173,766 22,888 36.6% 1.95%

2.1 CRAFT

The Colorado Richly Annotated Full-Text (CRAFT) corpus is being developed at the Univer-

sity of Colorado Denver. The corpus consists of ninety-seven full-text open-access scientific articles
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that have been annotated by the Mouse Genome Institute1 with concepts from the Gene Ontol-

ogy2 and Mammalian Phenotype Ontology3 . Each article is annotated with PTB-style syntactic

trees, biomedical named entities, and coreference chains. At the time this research was conducted

forty-six articles had been syntactically annotated. Thus, the CRAFT corpus consists of only these

forty-six articles for the purposes of this dissertation.

2.1.1 CRAFT Training and Test Sets

The CRAFT corpus was split into a training set consisting of thirty-six articles and a test set

consisting of the remaining ten articles. The training set was further split into ten folds consisting

of three or four articles each. These folds were used for cross-validation during development of

the coordination resolution approaches described in subsequent chapters. Sentences within a given

article may contain repeated words, phrases, or sentence fragments with other sentences within

the same article at a higher rate than with sentences from a different article. This follows from

the intuition that the discourse structure of a typical scientific article lends itself to repetition in

order to emphasize crucial facts or observations or simply because the objects of study (e.g. specific

genes) appear in many sentences. If this is true, then it follows that the coordination structures

within an article are more similar to each other than with coordination structures in other articles.

For this reason, it is important to avoid training and testing a coordination resolution system on

different portions of the same article because this may inflate performance results. This is why the

training and test sets and the folds within the training set are delimited at the article level.

One problem with delimiting training and test sets at the article level is that it removes

any hope that the conjunctions within the two sets are independent and identically distributed

(i.i.d.) In fact, under the assumption that coordination structures within the same article are more

similar than those that are not, grouping the training and test sets (as well as the folds) at the

article-level guarantees that the coordination structures are not i.i.d. across both sets. For this

1 http://www.informatics.jax.org/
2 http://geneontology.org/
3 http://www.informatics.jax.org/searches/MP_form.shtml
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reason, it is not safe to assume that a statistically significant difference between the performance

of two coordination resolution systems when evaluated on the training set will hold when the same

two systems are evaluated against the test set. Because most significance tests assume that the

data are i.i.d. it is problematic to report statistical significance for results reported on the CRAFT

corpus. As a proxy for statistical significance, performance results reported on the training set (via

cross-validation) or the test set are given with the standard deviation of the performance of the

individual articles within the set.

2.1.2 Coordination Structure Production Algorithm

One might hope that given a PTB-style syntactic tree for a sentence, that it would be

straightforward to determine the coordination structures found in that sentence. For example,

consider the following noun phrase in CRAFT marked up with PTB-style syntactic structure:

(NP (UCP (NN brain) (CC and) (JJ striatal)) (NN volume))

A simple algorithm that will recover the correct coordination structure for the conjunction repre-

sented by the node “(CC and)” is to identify the sibling nodes “(NN brain)” and “(JJ striatal)”

and choose the corresponding texts for these two nodes “brain” and “striatal” as the conjuncts.

Unfortunately, this simple approach is incorrect in many cases. For example, consider the following

verb phrase and noun phrase:

(VP (VB map) (CC and) (VB characterize)

(NP (NP (NNS members))

(PP (IN of) (NP (NP (DT the) (NN subset))))))

(NP (NP (DT the) (NN production) (CC and) (NN survival))

(PP (IN of) (NP (JJ striatal) (NNS neurons))))

The coordination structure produced by simply choosing siblings of the conjunction node would

produce the following conjuncts for the conjunction in the verb phrase: “map”, “characterize”,
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and “members of the subset”. This is a poor choice of conjuncts compared with choosing only

“map” and “characterize”. Similarly, the conjuncts for the conjunction node in the noun phrase

would be “the”, “production”, and “survival” which is a poor choice compared with choosing only

“production” and “survival”. Fortunately, both of these examples can be handled by adding simple

rules to the proposed approach. Unfortunately, these represent some of the easier cases to handle.

An example of a constituent that is a bit trickier is the following list node:

(LST (-LRB- -LRB-)

(LS B) (, ,) (LS E) (, ,) (LS H) (, ,) (CC and) (LS K)

(-RRB- -RRB-))

For this example, the desired conjuncts are “B”, “E”, “H”, and “K”. To obtain these conjuncts,

two nodes corresponding to parentheses and three nodes corresponding to commas must be pruned.

A coordination structure production algorithm (CSPA) for producing coordination structures

from syntactic parse trees that handles both easy and difficult cases was developed as follows. First

a conjunction node such as “(CC and)” or “(CC or)” or a conjunction phrase such as “(CONJP

(CC and) (RB so))” is identified with priority given to the latter (i.e. conjunction nodes nested

inside a conjunction phrase are not considered separately.) Next, the parent of the conjunction

node (or conjunction phrase) is obtained by traversing one node up the tree. The type of the

parent node is used as the type of the resulting coordination structure. Next, the children of the

parent node are considered as conjunct candidates. The candidates are then subjected to a series

of rules which determine the correct conjuncts by either removing and/or merging candidate nodes.

Once the conjuncts are identified they are added to the coordination structure and it is complete.

The rules for determining the correct conjuncts were developed in parallel with a suite of

unit tests in an iterative fashion. First, a number of unit tests were created to make sure that easy

examples such as the first example given above are handled correctly. Next, the CRAFT corpus

was passed through the CSPA with the current set of rules (beginning on the first iteration with

no rules.) The results were used to produce an HTML rendering of the training corpus which was
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then manually examined. In cases where the coordination structure appeared to be incorrect, the

corresponding syntactic structure was examined and a new rule was added to the algorithm (if

possible). Coordination structures were evaluated as correct or incorrect according the the manual

annotation guidelines discussed in Section §2.2.2. New unit tests were then added to the test suite

to ensure that the updated CSPA worked correctly and continued to work correctly as the set of

rules expanded for the examples tested. The CRAFT corpus was passed through the updated CSPA

and the process was repeated until no more fixable errors were found. All rules that were added

address a class of phenomena rather than one specific coordination structure, i.e. there were no rules

added that were specific to a single coordination structure instance. In some cases, coordination

structures that were incorrect were not fixable by adding a rule. This happened in cases where two

rules conflicted or when the treebank data appeared to have mistakes in it. Therefore, there exist

known errors in the final set of coordination structures that was used though no attempt was made

to quantify them. Likewise, the entire corpus was not manually inspected on each iteration of the

development of the rules or even after the last iteration, so it may be possible that this algorithm

could be improved with further effort.

While care was taken to make sure the resulting corpus of coordination structures looks to be

of high quality using manual inspection, no attempt was made to measure the accuracy of the CSPA.

However, the quality of the resulting coordination structures can be inferred indirectly in two ways.

In Section §6.3 results of the Berkeley Parser applied to the task of coordination resolution are

given and are shown to be better than the previous state-of-the-art on the Hara corpus (described

in Section §2.3.) The output of the Berkeley Parser is syntactic trees in PTB format and the CSPA

is applied to this output to give the coordination structures which are then evaluated against the

coordination structures in the Hara corpus. The high performance of this system suggests that the

CSPA is consistent with the approach taken by Hara et al. to determine coordination structures

from PTB-style syntactic structures. A second way of indirectly measuring the quality of the CSPA

is to consider results given in Section §6.2 which gives coordination resolution results for several

systems on the BIOCC corpus (described in Section §2.2.) One of the highest performing systems
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was trained on the coordination structures provided by CRAFT via the CSPA. This again suggests

that the CSPA produces coordination structures that are consistent with yet another approach for

obtaining coordination structures that was employed for the BIOCC corpus.

2.1.3 Coordination Types

As described in the previous section, the node type of the parent node of each conjunction

node was designated as the coordination type for the corresponding coordination structure. Ta-

ble 2.2 gives an example of a coordination structure for each type. These examples demonstrate the

diversity of the coordination structures found in the CRAFT corpus. Table 2.3 shows the distri-

bution of the different coordination types in CRAFT. The most frequent coordination type, “NP”

accounts for 41.4% of all coordination structures. The next most frequent type, “NML” which is

also closely related syntactically to the “NP” type, accounts for 19.5% and together they account for

60.9% of all coordination structures. In contrast, the eleven least frequent types, grouped together

under “OTHER”, account for only 3.4%. These types correspond to citations (89 occurrences), sub-

ordinate clauses (66), quantifier phrases (54), list markers (37), adverb phrases (34), parentheticals

(19), fragments (9), captions (1), particles (1), yes/no questions (1), and unknown constructions

(1). The final column of Table 2.3 shows the average length, in words, of the conjuncts of the

coordination structures for each type. The conjuncts of coordination structures of type “ADJP”

are, on average, 1.7 words long. In constrast, the conjuncts of coordination structures of type “S”

are 14.1 words long. This suggests that coordination structures of certain types can be found within

a comparatively smaller context than others.

2.2 BIOCC

A new corpus consisting of coordinating conjunctions and their respective conjuncts were

manually annotated for training and evaluation of the coordination resolution methods presented

in this dissertation. The corpus is named BIOCC because it contains biomedical coordinating

conjunctions and their respective conjuncts. This corpus was built to demonstrate how coordination
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Table 2.2: Examples of coordination structures in CRAFT for each type. Square brackets are used
to clarify conjunct boundaries when two conjunctions appear (see the “VP” row) or extra context is
provided (see the “ADJP” row). The example given for the “OTHER” category is of type “SBAR”
which corresponds to subordinate clauses.

Type Description Example

NP noun motor activity and higher cognitive function

NML nominal Chr 10 and Chr 19

VP verb
[has already been processed and regenotyped] and
is now part of the Mouse Brain Library

S sentence
Our comparisons are based on five strains,
and one consequence of this modest sample size . . .

ADJP adjective
the optic chiasm are [malformed]
or [absent] in Vax1 knockout mice.

PP preposition in the striatum and in many other regions . . .

UCP unlike constituents pigmented or albino

OTHER
subordinate clause, that CLN2 is a tripeptidase, and
quantifiers, etc. that this inhibitor it represents the . . .

Table 2.3: The distribution of coordination types in CRAFT. Each row gives for each coordination
type the name, the number of coordination structures of the type, the percent of all coordination
types that have the type, and the average length in words of the conjuncts of the coordination
structures of the type. For example, the first row indicates that 3,746 (41.4%) coordination struc-
tures have the type “NP” and the average length of the conjuncts of those coordination structures
is four words.

Type Count % Len.

NP 3746 41.4% 4.0

NML 1760 19.5% 2.0

VP 1448 16.0% 8.6

S 657 7.3% 14.1

ADJP 598 6.6% 1.7

PP 266 2.9% 8.4

UCP 258 2.9% 2.7

OTHER 312 3.4% 4.5

Total 9045 100.0% 5.0

resolution techniques perform on randomly selected sentences from the biomedical literature. In

contrast, the sentences in CRAFT and GENIA belong to articles that were carefully selected to meet

specific criteria. Therefore, performance of coordination resolution systems measured using these

corpora may not be as generalizable. The BIOCC corpus also provides insight into how coordination
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resolution can be accomplished without full-syntactic markup. In Section §5.3, a parser-free method

(i.e. a method that does not utilize a syntactic parser) is described. The annotation of BIOCC

described here along with the parser-free approach, presents the possibility of quickly porting

this coordination resolution approach to a new domain (e.g. clinical data or legal documents)

without requiring availability of full-syntactic markup. Finally, the BIOCC corpus provides inter-

annotator agreement results which allows comparison of coordination resolution between humans

and machines.

BIOCC consists of 5,000 sentences which contain a total of 7,384 coordination structures.

Four thousand sentences were annotated once by myself and make up a training data set which was

used for algorithm development and error analysis. The remaining 1,000 sentences were annotated

twice and differences were adjudicated. These sentences make up a hold-out evaluation data set.

The annotation scheme used is very simple and consists of two annotation types: “conjunction”

and “conjunct”. The conjunction annotation type has a single one-to-many relationship with

the conjunct annotation type so that conjunction annotations are unambiguously linked to their

respective conjunct annotations. Both conjunction and conjunct annotations were restricted to

covering a single contiguous span of text.

2.2.1 Sentence Selection and Pre-Annotation

The sentences used for BIOCC were randomly selected from full-text open-access scientific

articles provided by a bulk download available from PubMed Central.4 The articles are provided in

XML format and so a simple script was created to strip out XML tags as well as sections that are of

no interest here such as references, authors, glossaries, etc. The resulting corpus consists of 83,128

plain text files. Next, the OpenNLP sentence segmenter5 was run over the entire corpus with each

generated sentence added as a line to a single file which consisted of 12.9 million sentences. From this

file 5,000 sentences containing the word “and” or “or” were randomly selected for annotation. In a

4 http://www.ncbi.nlm.nih.gov/pmc/about/ftp.html. Downloaded on September 9th, 2008
5 http://opennlp.sourceforge.net/
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few cases the acronym “OR” was found instead of an actual conjunction. As such, twelve sentences

in the corpus do not have a conjunction in them. The 5,000 sentences were automatically pre-

annotated such that all occurrences of the tokens “and”, “or”, and “and/or” were annotated with

the conjunction annotation type. Additionally, if the two words on either side of the conjunction had

matching part-of-speech assignment (using the part-of-speech tagger described in Section §3.1.1),

then the two words were annotated as two conjunct annotations of the conjunction annotation.

About 37% (or 2,709) of all the conjunctions were annotated this way. Of these, 73.9% proved

to be the correct conjuncts of the conjunction. More sophisticated automatic pre-annotation was

avoided to limit the amount of bias towards specific coordination resolution approaches in the data

set and to limit the amount of noisy (i.e. incorrect) annotations presented to the human annotator.

Figure 2.1: A screenshot of Knowtator as employed for the coordination annotation task. In this
example, a single conjunction annotation is shown with its corresponding conjunct annotations.

2.2.2 Manual Annotation

Manual annotation was performed using Knowtator[38] as shown in Figure 2.1. All 5,000

sentences were annotated by myself. While annotating the first 1,000 sentences, annotation guide-

lines were developed for the annotation task. An underlying assumption of these guidelines is that

humans have a good intuitive sense of what the correct coordination structure is and that a rich

linguistic formalism is not required to understand and consistently perform the task. As such, the
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guidelines are mostly procedural in nature and consist of specific rules, helpful strategies, and many

examples. The first rule in the guidelines is heuristic in nature and is given here:

Maximize parallel structure rule. The over-arching goal of selecting the spans
of a conjunct is to maximize the “parallelness” of the conjuncts. The rules below
do not cover all possible situations that you will encounter. So, when in doubt, try
to choose conjuncts that look like each other or exhibit parallel structure.

The remaining rules cover such details as whether to include conjunct delimiting punctuation (e.g.

commas and semi-colons) in the span of a conjunct (answer is “no”), how to handle parenthetical

material, and whether conjunct boundaries must correspond to token boundaries (answer is “no”).

The strategies provided give suggestions for effective annotation such as restating a sentence with

a candidate conjunct removed. For example, a sentence that starts with:

• To characterize how modulatory and stimulus-driven changes in . . .

can be restated as:

• To characterize how stimulus-driven changes in . . .

to test the plausibility of assigning “modulatory” as the first conjunct. Other strategies discussed

include annotating nested conjunctions first (conjunctions which appear in the conjunct of another

conjunction), annotating the conjunct that follows the conjunction first (as it is sometimes easier

to identify), and looking for words such as “between”, “either”, and “both” which often precede

the first word of a conjunct. The guidelines allow for referring to the source document from which

the sentence was extracted as well as any other resources on the Internet such as Wikipedia,6

search results, and PubMed.7 In many cases, the choice of the annotated coordination structure

was directly influenced by seeing the surrounding context of the sentence being annotated. For

example, sentences corresponding to a figure or table caption were much easier to interpret after

examining the table column headings or the figure’s labels. Similarly, consulting with domain

6 http://www.wikipedia.org/
7 http://www.ncbi.nlm.nih.gov/pubmed/
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experts was also allowed for. In particular, because I have very little formal training in Biology,

there were many sentences which were structurally ambiguous to me with respect to the contained

coordination structures. When I came across a sentence that I could not confidently interpret after

consulting various Internet resources I would consult a Biology domain expert for help. This often

brought clarity to understanding the sentence. After completing the annotation guidelines, which

were about 3,100 words long, the first 1,000 sentences were reviewed to ensure they were annotated

consistently with the guidelines. These sentences were added to the training set.

The remaining 4,000 sentences were annotated as follows. I annotated 1,000 sentences which

were used for the evaluation set. I then annotated the remaining 3,000 sentences which were

added to the 1,000 sentences annotated during annotation guideline construction. These 4,000

sentences became the training set. After completing the training set, I then re-annotated the first

500 sentences in the evaluation set in an effort to increase the consistency of the annotations. The

intra-annotator agreement of this effort is shown in Table 2.4. Approximately six months transpired

between the two annotation efforts for these 500 sentences. The second half of the evaluation set

was annotated by a Computer Science graduate student with education background in both Natural

Language Processing and Molecular Biology. She is referred to as “Elizabeth” in Table 2.4 below.

Her training for the annotation task consisted of two one-hour meetings and several hours of anno-

tation practice. In the first meeting, the task was introduced, the annotation guidelines provided

and summarized, and annotation exercises provided from the first 1,000 annotated sentences. At

the second meeting, the annotation exercises were reviewed and questions were answered. After

the second meeting she annotated the 500 sentences in the second half of the evaluation set with

minimal interaction with me. Thus, all 1,000 sentences in the evaluation set were annotated twice.

All differences between the two sets of annotations for the respective sets of 500 sentences were

adjudicated by myself so that all differences were resolved.

After all annotation was complete a script was run to examine the annotation data for likely

errors. For example, the script checked that all conjunction annotations were annotated with at

least two conjunct annotations: one of which precedes and one that follows the conjunction. It
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checked for matching parentheses and quotation marks (i.e. if a conjunct annotation contains a left

parenthesis, then it should probably contain a right parenthesis) and looked for inconsistent nested

conjunctions (i.e. if a conjunct contains a conjunction, then the conjuncts of the nested conjunction

should be constrained by the extent of the nesting conjunct.) This script uncovered dozens of errors

in the data that were manually fixed.

2.2.3 Annotator Agreement

The 1,000 sentences that comprise the evaluation data set were all double annotated to

increase the consistency of the data and Inter-annotator agreement (IAA) and Intra-annotator

agreement were calculated. Inter- and Intra-annotator agreement was calculated as positive-specific

agreement[22] at the conjunct and conjunction levels. Conjunct level agreement measures agreement

of conjuncts in two annotated coordination structures. Two conjunct annotations agree if they

have the same spans (i.e. they have the same begin and end offsets in the text) and they are

attached to the same conjunction. Conjunction level agreement is much stricter and measures the

complete agreement of two coordination structures. Agreement at the conjunction level requires

that both coordination structures have the same number of conjuncts and the respective conjunct

annotations agree. Measuring agreement on both levels was simplified by the fact that there was

perfect agreement as to what words were conjunctions so that agreement was always measured by

comparing two coordination structures, one from each annotator.

Table 2.4 provides the IAA results for BIOCC. The IAA between Elizabeth and myself

(labeled as “Philip”) was 83.88 which measures how consistently two individuals can perform this

annotation task when working independently. It is interesting to note that the agreement between

Elizabeth and the final adjudicated annotations is higher (94.26) than that of Philip (89.34). This is

presumably because Elizabeth, who holds a bachelor’s degree in Molecular Biology, was better able

to interpret the sentences correctly. This result is somewhat suspect, however, since I performed the

adjudication and it may reflect my own willingness to accept her judgment in the face of my own

uncertainty. Even still, there were many cases in which I came to understand why my annotation
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was incorrect after conversing with Elizabeth. Intra-annotator agreement was measured for the

second half of the evaluation data set and the agreement numbers are quite comparable to that of

the inter-annotator agreement.

Table 2.4: Inter- and intra-annotator agreement on the hold-out evaluation set are shown. IAA for
500 sentences annotated individually by both Philip (myself) and Elizabeth and then adjudicated
by myself are shown in the first three rows. Intra-annotator agreement for the 500 sentences of the
evaluation set that were annotated twice by myself and then adjudicated by myself are shown in
the next three rows. “Philip I” refers to annotations created the first time I annotated these 500
sentences while “Philip II” refers to the annotations created during re-annotation.

Annotator 1 Annotator 2 Conjunct Level Conjunction Level

Philip Elizabeth 91.81 83.61

Philip Adjudicated 94.89 89.34

Elizabeth Adjudicated 96.93 94.26

Philip I Philip II 91.99 85.34

Philip I Adjudicated 94.98 90.87

Philip II Adjudicated 96.83 93.50

It is informative to examine IAA in greater detail across a number of features characterizing

conjunctions. For example, Table 2.5 shows IAA for conjunctions that have two, three, and four or

more conjuncts. The data show that when there are four or more conjuncts agreement is higher.

This is presumably because when there are more conjuncts it is easier to identify them because they

generally read as a listing of clearly related and enumerated items that are delimited by punctuation

(usually commas.)

Table 2.6 shows conjunction level IAA for differing sizes of the largest conjunct measured

by number of words. Not surprisingly, coordination structures with shorter conjuncts have higher

agreement than those with longer conjuncts. Agreement is even higher (94.69) for conjunction

structures that have only two one-word conjuncts. Resolving such one-word conjunct pairs is the

subject of Chapter 4.

Table 2.7 shows conjunct level IAA for different part-of-speech tags for the first word of a

conjunct. BIOCC was not annotated with coordination types. This is an important deficiency of the

BIOCC corpus as it will be shown that coordination type in the CRAFT corpus will be effectively
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Table 2.5: Conjunction level IAA is shown for the 500 sentences of the evaluation data set annotated
by Philip and Elizabeth for conjunctions grouped by the number of conjuncts they have. The
number of conjuncts for a given pair of coordination structures was chosen (arbitrarily) to be what
was annotated by Philip. The first row of this table can be read as “The agreement of conjunctions
annotated with two conjuncts was 83.28 for 634 coordination structures.

Conjuncts IAA Total

2 83.28 634

3 82.61 69

4+ 93.10 29

Total 83.61 732

Table 2.6: Conjunction level IAA is shown for the 500 sentences of the evaluation data set annotated
by Philip and Elizabeth for conjunctions grouped by the number of words of the longest conjunct.
The number of words for the longest conjunct for a given pair of coordination structures was
chosen (arbitrarily) to be what was annotated by Philip. The first row of this table can be read as
“The agreement of conjunctions whose longest conjunct is one word was 91.39 for 267 coordination
structures.”

words IAA Total

1 91.39 267

2 87.50 80

3− 4 85.06 87

5− 9 78.17 142

10+ 73.72 156

Total 83.61 732

exploited in Section §5.3.4. However, the part-of-speech tag of the first word of a conjunct can give

a rough approximation of the coordination types. Table 2.7 shows that conjuncts that begin with a

“NN” (for noun) and “CD” (for cardinal number) are annotated more consistently than conjuncts

that begin with other part-of-speech tags. This may be because conjuncts beginning with these two

tags may tend to be shorter than conjuncts that begin with, for example, “VB” (for verb.) These

data do not give any intuition about the annotation consistency of conjuncts for one coordination

type that is shown to be quite difficult to correctly resolve: the sentence type.
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Table 2.7: Conjunct level IAA is shown for the 500 sentences of the evaluation data set annotated
by Philip and Elizabeth for conjuncts grouped by the part-of-speech tag of the first word of each
conjunct. The tags are grouped together into families such that, for example, all part-of-speech
tags beginning with “NN” are counted together. The part-of-speech tag for the first word of the
conjunct for compared conjuncts was chosen (arbitrarily) to be what was annotated by Philip.
The first row of this table can be read as “The agreement of conjuncts whose first word had a
part-of-speech tag of ‘NN’ was 94.91 for 687 coordination structures.”

POS IAA Total

NN 94.91 687

JJ 90.61 277

VB 88.84 242

DT 85.82 134

CD 96.70 91

IN 89.53 86

OTHER 86.17 94

Total 91.81 1,611

2.3 Hara Corpus

The work described in Section §1.1.4 by Hara et al. was performed on the beta version of

the GENIA corpus[24]. This version of GENIA consists of five hundred syntactically annotated

abstracts in a format similar to that of PTB. The full corpus consists of 1,999 abstracts. One

important modification to the GENIA annotation schema from the PTB annotation schema of

relevance here is that coordination structures are explicitly annotated with a “COOD” label. Nodes

with this label that surrounded “and”, “or”, and “but” were converted into coordination structures

by Hara et al. for their experimentation. This data set was given to me for use in this research by

Kazuo Hara via email and is therefore referred to as the Hara Corpus in order to distinguish it from

GENIA. This corpus allows direct comparison with their work to be reported (see Section §6.3.)

The corpus consists of 4,529 sentences that contain 3,598 coordination structures and is split into

five folds to facilitate cross-validation.
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2.4 Evaluation

The automatic coordination resolution systems explored in this dissertation are evaluated

such that the results are directly comparable with the IAA metrics described in Section §2.2.3.

Evaluation results are reported either at the conjunct or conjunction levels. A conjunct is counted

as correct if it has the same span as a conjunct in the gold-standard data and it is attached to

the same conjunction. Conjunct level evaluation is reported as F-measure because the number of

conjuncts produced by a coordination resolution system will vary from the number of conjuncts in

the gold-standard data and thus precision and recall will differ. A coordination structure produced

by a coordination resolution system is counted as correct if it has the same number of conjuncts

as the gold-standard coordination structure and all of the conjuncts exactly match. This is a very

exacting criteria because it is possible to have a system-generated coordination structure that is

very close to the gold-standard coordination structure and no partial credit is given for having

most of it correct. Conjunction level evaluation measures how many coordination structures are

correct as accuracy. Because the coordination resolution system will always generate (or should

be expected to generate) the same number of coordination structures as the gold-standard data it

is not useful to distinguish incorrect coordination structures as being either false positives or false

negatives. That is, precision and recall are identical for conjunction level evaluation. All results

presented in this dissertation should be assumed to be for the conjunction level unless otherwise

noted.

In most of the experimental settings found in this dissertation gold-standard conjunctions

are provided as input to the coordination resolution system. This is justified because “and” and

“or” can be reliably identified as coordinating conjunctions. This was empirically shown to be true

during the annotation of the BIOCC corpus. As discussed above, the simple sentence selection

mechanism which selected only sentences containing the words “and” and “or” did this without

case sensitivity. This process generated only twelve out of 5,000 sentences which did not contain a

conjunction. Had sentence selection used case sensitive matching it would not have selected any of
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these twelve sentences. Furthermore, subsequent experimentation with a conjunction finder on the

BIOCC corpus was 100% accurate.

Providing gold-standard conjunctions simplifies evaluation because accuracy can be used

instead of F-measure. Accuracy is simply the total number of system generated instances that are

correct divided by the total number of gold-standard coordination structures. This is equivalent

to recall and is directly comparable to how evaluation was performed by Hara et al. The CRAFT

corpus contains a total of 9,045 coordination structures, 7,176 of which are in the training set and

1,869 the test set. Thus the denominator for accuracy when measured against CRAFT will always

be 7,176 and 1,869 when evaluated on the training and test sets, respectively. When cross-validation

is performed, the results are micro-averaged across the folds.

In some cases, precision, recall, and F-measure will be calculated. For example, in Chapter

4, the gold-standard conjunctions are not provided because only one-word conjunct pairs are con-

sidered, i.e. coordination structures consisting of exactly two conjuncts, each of which consist of

one word. Precision is different than recall in cases where a coordination resolution approach does

not generate a coordination structure for each provided gold-standard conjunction. For example,

the parser-based approach discussed in Section §5.1 does not generate coordination structures for

sentences that it fails to parse.

2.5 Discussion

CRAFT was chosen as the primary corpus used for driving research and development of

the coordination resolution approaches explored in this dissertation. This choice was based on a

number of factors. Having the type of coordination structure turns out to be very important (see

Section §5.3.4.) Unfortunately, BIOCC does not provide coordination types. Furthermore, having

full syntactic annotation of the data allows for a fair comparison of the traditional approach of

applying a syntactic parser to the task of coordination resolution with an alternate approach intro-

duced in Section §5.3. CRAFT was chosen in preference to GENIA or the Hara subset somewhat

arbitrarily, though the latter is considerably smaller than the CRAFT corpus. However, because
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of an increasing interest in the Biomedical Natural Language Processing community in analyzing

full-text articles as evidenced in recent competitive evaluations such as the TREC Genomics[19] and

BioCreative[20, 25] competitions, the CRAFT corpus is attractive because it consists of full-text

articles. Though CRAFT was the primary corpus utilized in this dissertation, all three corpora

were used to some extent to develop and evaluate the coordination resolution systems described

here.



Chapter 3

Features

In Chapters 4 and 5 three coordination resolution approaches are introduced and analyzed.

Each approach leverages statistical classifiers that use a variety of features described in this chapter.

Most of the features used can be considered as lexical or “shallow” features that are derived from

surrounding words. These are described in Section §3.1. A major contribution of this work is a

novel way of employing language models to improve coordination resolution. In Section §3.2, a

technique for creating features from language model probabilities is described. Careful attention

to how the language model is built and used is crucial to its performance. A metric for directly

measuring the fitness of a language model for coordination resolution is introduced and used to

determine the features chosen for building and using the language model. Other classifier features,

such as the word-level orthographical and semantic similarity features described in Section §4.2,

will be introduced and discussed in the contexts where they are used.

3.1 Lexical Features

The lexical features used throughout this dissertation are summarized in Table 3.1. These fea-

tures have been widely used for a variety of natural language processing tasks. In fact, most of these

features have been employed for coordination resolution by others (c.f. [45].) All of these features

require either preprocessing or presence of gold-standard labeled data. For example, the “word”

feature requires either gold-standard tokens or the output of an automatic tokenizer. Throughout

this dissertation, the following gold-standard data is used unless otherwise noted: sentence bound-
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aries, token boundaries, and conjunctions. Sentence and token boundaries are provided under

the assumption that both tasks can be done with very high accuracy for the biomedical domain

if given enough attention. However, in Section §6.2 BIOCC is evaluated with no gold-standard

data provided except conjunctions. Gold-standard conjunctions can be found automatically with

near perfect accuracy and so they are provided simply for processing convenience. Part-of-speech

tags may be provided or computed depending on the context. All other features are computed.

Stems, for example, are computed using the English Snowball Stemmer.1 Most of the features in

Table 3.1 are simple binary features. For example, the feature type “numeric type” is used to de-

scribe a string (usually a word) with respect to whether or not the string contains digits. Similarly,

“contains hyphen” is a simple binary feature that determines whether a word contains a hyphen or

not.

Table 3.1: This table summarizes the word-level features that are common to many of the classifiers
used in this dissertation.

feature type feature description

word the spanned text of a token

lower case word a word lowercased

POSgold tag gold-standard part-of-speech tags

POScraft tag CRAFT-trained part-of-speech tagger tags

POSgenia tag GENIA-trained part-of-speech tagger tags

stem the stem of the word using the English Snowball stemmer

feature n-grams the concatenation of features from n contiguous words

n-char prefix the first n characters of a word

n-char suffix the last n characters of a word

capital type
all uppercase, all lowercase, initial uppercase,
mixed case, or N/A

contains hyphen indicates if word contains a hyphen

numeric type
digits, year digits (e.g. 2010), alphanumeric,

some digits*, roman numeral, or N/A

distance
the distance in words between two words one of which
may be the conjunction of focus

∗The feature “alphanumeric” means that all characters are either digits or letters while “some
digits” includes any token containing a digit character.

1 http://snowball.tartarus.org/
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3.1.1 Part-of-Speech Tags

As mentioned above, part-of-speech tags can either be computed using an automatic part-

of-speech tagger or provided directly from gold-standard data. Both the CRAFT and GENIA

corpus provide gold-standard part-of-speech tags which can be used for training a part-of-speech

tagger. For both corpora it may be advantageous to use a part-of-speech tagger that is trained on

either corpus when using part-of-speech tags as features for coordination resolution. However, it

is important to avoid training and then later running a part-of-speech tagger on the same data.

When evaluating coordination resolution approaches using the Hara corpus, the part-of-speech

tagger that is used will be trained on all of GENIA excluding the Hara corpus. POSgenia refers

to GENIA-trained tagger tags. The CRAFT corpus is somewhat more problematic for performing

cross-validation of coordination resolution when using the training data set. To address this issue,

leave-one-file-out training for each of the 36 files in the training data set (i.e. a tagging model for

each file was trained on the other 35 files) was performed. Each file was then tagged using the

part-of-speech model that was built excluding the tagged file. The predicted part-of-speech tags

were stored for subsequent use. Because the part-of-speech tags were stored, it was not necessary

to invoke thirty-six separate part-of-speech taggers each time CRAFT-trained tagger tags, i.e.

POScraft tags, were used in a cross-validation experiment on the CRAFT corpus. For the CRAFT

test data set, a part-of-speech tagging model trained using the entire training data set is used.

When gold-standard part-of-speech tags are used the label POSgold is used. However, POSgold may

refer to GENIA tags or CRAFT tags depending on which corpus is being used.

The part-of-speech tagger used was one that I created and is available in ClearTK and is

described in [39]. The part-of-speech tagging models that were built make use of OpenNLP’s

maximum entropy library and perform at 96.3% and 98.3% accuracy for CRAFT and GENIA,

respectively. Because this tagger was built with ClearTK, several other classifier libraries could

be experimented with which may find a better performing tagger model. However, this part-of-

speech tagger compares favorably with state-of-the-art performance on the GENIA corpus which
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is 98.6% as reported in [48] and is tolerably fast for tagging large amounts of data. For example,

part-of-speech tagging the nearly 13 million sentences for the language model described below was

completed in less than seven hours at a rate of about 10,000 words per second.

3.2 Language Model Features

As discussed in Section §2.2.2, a simple sentence re-write strategy was found to be useful for

consistently determining the conjuncts of a conjunction. For a candidate conjunct simply remove

the candidate conjunct along with the conjunction and examine the fitness of the resulting sentence.

For example, consider the following sentence:

• Subsequent measurements of striatal volume and neuron packing density were corrected

for volumetric shrinkage.

When applying the rewrite strategy to the correct conjunct “striatal volume” the resulting sentence

is:

• Subsequent measurements of neuron packing density were corrected for volumetric shrink-

age.

This sentence looks much better than a re-write corresponding to the incorrect conjunct candidate

“measurements of striatal volume” which results in the following sentence:

• Subsequent neuron packing density were corrected for volumetric shrinkage.

This sentence is much less coherent than the result of the rewrite corresponding to the correct con-

junct given above. Because this heuristic is useful for reliably determining coordination structures,

the hypothesis that it could be exploited to improve automated coordination resolution is explored.

The remainder of this section describes how this heuristic was exploited to improve coordination

resolution and reports experimental results that support the approach taken.

For each conjunction there is always a fixed number of candidate left conjuncts corresponding

to the number of tokens to the left of the conjunction. For the sentence given above each of the
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possible left conjuncts are given in Table 3.2 along with their corresponding sentence rewrites. A

set of candidate right-hand-side conjuncts along with corresponding sentence rewrites can also be

generated in a very similar way. The relative “fitness” of these sentences can be compared using a

language model. Ideally, the sentence rewrite corresponding to the correct conjunct candidate will

have the highest probability returned from a language model than the other candidate sentences.

If so, then this strategy could be employed directly to the task of coordination resolution by simply

choosing the conjunct corresponding to the highest probability sentence rewrite. Unfortunately, as

described below, experimentation did not demonstrate this to be a feasible approach. Even so, if

the candidate sentence corresponding to the correct conjunct has a higher probability than most

of the other candidate sentences, then this information can be used to create an effective feature

for a classifier. Experimentation described in later chapters shows this to be true.

Table 3.2: All five possible left conjuncts are given along with the sentence rewrites for the following
sentence: “Subsequent measurements of striatal volume and neuron packing density were corrected
for volumetric shrinkage.” Each row a candidate conjunct (labeled e.g. “1c”) and the corresponding
sentence rewrite for that conjunct (labeled e.g. “1s”).

Candidate Conjunct and Sentence

1c Subsequent measurements of striatal volume
1s Neuron packing density were corrected for volumetric shrinkage.

2c measurements of striatal volume

2s
Subsequent neuron packing density were corrected for volumetric
shrinkage.

3c of striatal volume

3s
Subsequent measurements neuron packing density were corrected for
volumetric shrinkage.

4c striatal volume

4s
Subsequent measurements of neuron packing density were corrected
for volumetric shrinkage.

5c volume

5s
Subsequent measurements of striatal neuron packing density were
corrected for volumetric shrinkage.

One difficulty with simply passing each sentence rewrite to a language model and comparing

the resulting probabilities is that the sentences differ in length. Comparing sentences of different

length will give undesired preference towards shorter sentences (i.e. shorter sentences generally have
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higher probability than longer ones.) One way to normalize for the differing sentence length is to

divide the resulting probabilities by the respective length (in words) of the candidate sentence.

While this normalization technique is better than none at all, a better approach is to incorporate

the probability of the candidate conjunct (as a phrase) in addition to the probability of the sentence

rewrite. Note that the number of words in the candidate conjunct plus the number of words in

the corresponding candidate sentence will be the same for each candidate conjunct for a given

conjunction and laterality (i.e. left or right). For the working example above, the number of words

in the candidate conjunct plus the number of words in the sentence rewrite is always thirteen

(excluding the period at the end of the sentence.) The probability of a candidate conjunct is

calculated with Equation (3.1):

p(c) = elmsentence(cs)+lmphrase(cc) (3.1)

Here, cs refers to the candidate sentence and cc refers to the candidate conjunct. The function

lmphrase returns a probability (as a logprob) from the language model for a phrase. Similarly, the

function lmsentence returns a probability (as a logprob) from the language model for a sentence.

The distinction between these two functions is that the latter incorporates beginning-of-sentence

and end-of-sentence markers which help determine how likely the beginning and end of the sentence

is, respectively.

The probabilities produced by Equation (3.1) tend to be vanishingly small and difficult to

interpret as proper probabilities per se. They are only meaningful in relationship to each other.

As such, the probability of each candidate is calculated using this simple metric and then rank

ordered.2 Because the number of candidate conjuncts varies from one sentence to the next (as

determined by the token index of the conjunction) the absolute rank of a correct conjunct candidate

is rather meaningless (e.g. a rank of 3 out of 6 candidates is much different than a rank of 3 out

of 30 candidates.) For this reason, it is useful to translate the rank into a percentile such that

the highest rank of 1 is translated to 100 and the lowest rank (the total number of candidates) is

2 In fact, only the sum of the logprobs returned from lm functions is needed here.
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translated to 0. This is accomplished by Equation (3.2):

rp(r, c) = (1− r − 1

c− 1
)× 100 (3.2)

Where rp stands for rank percentile given r (the rank) and c (the count of candidates.) Subtracting

one from the numerator and the denominator accounts for the fact that the rank and count are

indexed from 1 instead of 0 and allows for a rank of 1 to correspond to a rank percentile of 100.

To illustrate, the rank percentile of rp(1, 6) = 100, rp(2, 6) = 80, rp(3, 6) = 60, rp(4, 6) = 40,

rp(5, 6) = 20, and rp(6, 6) = 0. The value for rp(1, 1) is defined to be 100. The rank percentiles of

the candidate conjuncts will be applied to the task of coordination resolution by adding them as a

features. However, it is informative to directly evaluate how good the rank percentile scores of the

correct conjuncts are.

3.2.1 Description of Language Models

One reason that leveraging a language model is attractive is because there exists large

amounts of readily available unlabeled biomedical text. The language models that were built

here utilize a corpus of more than 80,000 full-text open-access scientific articles that were obtained

from PubMed Central.3 The articles are provided in a simple XML format which was parsed to

produce plain text documents using only sections of the articles containing contentful prose (i.e. by

excluding sections such as e.g. acknowledgments and references.) The plain text documents were

automatically sentence segmented and tokenized and then optionally stemmed and part-of-speech

tagged using either POScraft or POSgenia tags. This resulted in six sets of sentences consisting

of either words, stems, POScraft tagged words, POSgenia tagged words, POScraft tagged stems, or

POSgenia tagged stems. Each set of sentences consists of nearly 13 million sentences and over

250 million words. A language model for each set of sentences was then built with the SRILM

toolkit[46]. Default options were used for creating the language model except that the order of

the model was set to four. Thus, a 4-gram model with Good-Turing discounting and Katz backoff

3 http://www.ncbi.nlm.nih.gov/pmc/about/ftp.html. The corpus was downloaded in September of 2008.
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for smoothing was built. A language model can be built with or without the “-tagged” option

depending on whether the input sentences were part-of-speech tagged or not.

3.2.2 Evaluation

For each token to the left of a conjunction a candidate conjunct and sentence rewrite pair is

derived. The generated conjunct candidates and sentence rewrites are produced to be consistent

with the target language model. For example, if the language model was trained with sentences

consisting of POScraft tagged stems, then the candidate conjunct will also consist of POScraft tagged

stems as will the corresponding sentence rewrite. For each pair, a probability is calculated, and

a rank percentile score is assigned to it relative to the other candidates. The same is done for

tokens on the right-hand-side of the conjunction. Because multiple conjuncts can appear on the

left-hand-side of the conjunction, the left border of the leftmost conjunct is considered here. All of

the rank percentile scores are then averaged to give a single metric that can be used to approximate

the “fitness” of a language model’s use for the task of coordination resolution. Table 3.3 shows

the average rank percentile for the correct left and right conjunct boundaries for all coordination

structures in CRAFT and BIOCC for the six language models that were built. The worst performing

language model is the one trained on sentences consisting of words only and gives overall average

rank percentiles between 74.06 and 75.50. The remaining language models perform at roughly the

same level giving overall average rank percentiles between 80.06 and 82.77 with a trend towards

better performance when part-of-speech tags are used regardless of whether words or stems are used.

The average rank percentile is calculated excluding trivial cases that occur when the conjunction is

the penultimate word on either side of the sentence. Such cases will always have a rank percentile

of one hundred because there is only one possible conjunct. Adding these cases inflates the average

rank percentile by a small amount. For example, the score of 82.77 given for left conjuncts in

CRAFT when using the language model trained with sentences consisting of POScraft tagged words

is improved to 83.16 when the trivial cases are counted.

Figure 3.1 shows a histogram of the percent of correct left conjunct candidates that occur
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Table 3.3: Language model performance using different features. Each row gives the performance
of a language model as the average rank percentile of the correct conjuncts as measured by the
language model using Equation (3.2). The first two columns characterize the sentences that were
used to build the language model as discussed in Section §3.2.1. The letters “L” and “R” in the
headers for the remaining columns specify whether left or right conjuncts are being evaluated for
the named corpus. Thus, the third column of the fourth row says that the average rank percentile
for left conjuncts in the CRAFT corpus was 82.77 when a language model was built using POScraft

words.

Tokens POS tags CRAFT L CRAFT R BIOCC L BIOCC R

words none 74.74 74.06 75.50 74.84

stems none 81.03 81.07 80.09 81.04

words POScraft 82.77 82.19 81.96 82.22

stems POScraft 82.00 82.23 80.84 82.34

words POSgenia 82.69 82.00 82.00 82.01

stems POSgenia 81.85 82.25 80.86 82.30

in a given rank percentile range when using the language model trained with sentences consisting

of POScraft tagged words. Most notably 49.7% of the correct conjunct candidates have a rank

percentile of 90 or higher. This includes 32.1% of correct left conjunct candidates that have a rank

percentile of 100 (i.e. the model predicted the correct conjunct.) By adding the last five columns

together, 89.6% of the correct left conjunct candidates have a rank percentile of 50 or higher.

The overall average rank percentile for all of the correct left conjunct candidates was 82.77%. The

median number of candidates (c) in Equation (3.2) on the left-hand-side is 17 (i.e. the median token

index of the conjunction is 17). Very similar results were obtained for the right-hand-side data but

were withheld for space considerations. The overall average rank percentile for right-hand-side

conjuncts was 82.19% with a median number of 12 candidates. These data suggest that the rank

percentile of the candidate conjuncts calculated as described above could be an effective feature to

use for coordination resolution.

One could imagine many different variations of the approach described above for leveraging

a language model for this task. Several alternate approaches to measure the fitness of a candidate

conjunct boundary using a language model were attempted. In particular, instead of comparing

entire sentence rewrites along with their corresponding conjunct candidates, comparison of n-gram
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Figure 3.1: Percentage (y-axis) of correct left conjunct candidates at different rank percentiles
(x-axis). The first column can be read as “The correct conjunct candidate had a rank percentile
between 0 and 10 1.7% of the time.” The columns add to one.
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phrases consisting of words immediately preceding the candidate left conjunct boundary and words

following the conjunction with differing values of n was conducted. Also, rather than adding the

probability of the candidate conjunct as a phrase to the probability of the sentence rewrite, the sen-

tence rewrite probabilities were instead divided by the number of words. Finally, experimentation

with not using sentence boundary markers was also conducted. All of these alternate configurations

resulted in worse system performance than the approach described and used above.

3.2.3 Error Analysis

Informal error analysis was performed on cases where the language model gave the correct

candidate conjunct a rank percentile of 30 or lower. The cases examined fell under three broad

categories. The first class of “errors” are those in which smarter candidate sentence construction

could help. For example, consider the sentence:

• The MBL is both a physical and Internet resource.

The corresponding candidate sentence corresponding to the correct left conjunct is “The MBL is

both a Internet resource.” The sentence received a rank of 6 out of 6 (i.e. it ranked the worst

out of the six possible left conjunct candidates.) It is likely that the phrase “both a Internet”

is giving the sentence a low probability. This leads to two possible modifications to candidate

sentence construction: remove “both” and “either” from candidate sentences and make instances

of the words “a” and “an” consistent with the word to the right of the conjunction (when the left

conjunct candidate begins immediately after one of these determiners.) A similar change resulted

from noticing that when the left boundary of the left conjunct was the beginning of the sentence,

then the candidate sentence for that conjunct candidate was not capitalized. So, candidate sentence

construction was modified to make sure that all candidate sentences begin with a capitalized word.

Table 3.4 summarizes the effect of these changes on overall rank percentile performance on the

language model trained with sentences consisting of POScraft tagged words for the left conjuncts

in CRAFT. Of the three changes, making sure the first word is capitalized had the largest positive
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Table 3.4:

Modification Average Rank Percentile ∆

none 81.37

“a” or “an” agreement 81.38 .01

remove “both” and “either” 81.61 .24

capitalize first 82.52 1.15

all modifications 82.77 1.4

impact.

Further error analysis might reveal more ways to preprocess candidate sentences so that the

language model does a better job of predicting the correct candidate. However, the remaining

errors that were examined fall into one of two broad categories: the coordination structure in the

gold-standard data is incorrect or the language model approach described above appears to have

failed. An example of the incorrect coordination structure is:

• The authors thank Sandeep Raghow and Aldan Shank for technical assistance with the

behavioral studies and Robert Lane for useful discussions.

To correct this example, the word “thank” should be removed from the left conjunct. It is not

surprising that the corresponding candidate sentence for the left conjunct is given a rank of 15 out

of 15 possible left conjuncts:

• The authors Robert Lane for useful discussions.

The rank produced by the language model for the corrected left conjunct was 2 out of 15. Examining

the treebank annotation for this sentence reveals that it is annotated correctly but the translation

from treebank structures to coordination structures does not correctly handle this sentence. The

gold-standard sentence is annotated as follows:

( (S (NP-SBJ (DT The) (NNS authors)) (VP

(VP (VBD thank) (NP=1 (NP (NNP Sandeep) (NNP Raghow)) ...
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(PP=2 (IN for) (NP (NP (JJ technical) (NN assistance)) ...

(CC and)

(VP (NP=1 (NNP Robert) (NNP Lane))

(PP=2 (IN for) (NP (JJ useful) (NNS discussions)))))

(. .)) )

In this example, the verb phrases are coordinated rather than the noun phrases because the

verb is modified by a prepositional phrase once for each respective noun phrase. However, the

coordination structure production algorithm described in Section §2.1.2 that creates coordination

structures from treebank structures did not handle this case correctly.

The other broad category of errors produced by the language model can be described as

failures of the approach. One such coordination structure that was poorly ranked is given in the

following sentence:

• Add and Dom are estimates of the additive and dominance effects of genetic variation.

Here the candidate sentence corresponding with the correct left conjunct seems like a perfectly

fine sentence but was ranked 6 out of 8.

3.3 Conclusions

In this chapter, a number of lexical features were itemized and described. In particular,

special attention was given to part-of-speech tag features because they will prove to be important

features to consider when comparing the coordination resolution approaches evaluated in subsequent

chapters. A novel feature was described for performing coordination resolution that leverages a

sentence rewriting heuristic by applying a language model to large amounts of unlabeled biomedical

text. The language model feature was evaluated directly by measuring the average rank percentile

for the correct conjuncts for both CRAFT and GENIA. This metric was shown to be useful for

comparing different language models and for comparing different strategies for using the language

model. Similarly, the rank percentiles given by the language model feature provides support to the
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intuition that this feature will be of utility for coordination resolution. For example, as mentioned

above, 89.6% of the correct left conjunct candidates were shown to have a rank percentile of 50 or

higher. This suggests that for all but 10.4% of the examples, half of the candidate conjuncts can

be safely excepted from consideration. In subsequent chapters the direct impact of the language

model feature will be directly measured and shown to have a positive impact on performance.



Chapter 4

One-Word Conjunct Pairs

A large percentage of coordination structures can be described by a pair of one-word con-

juncts. The following sentence contains two examples that illustrate this phenomenon:

• Add and Dom are estimates of the additive and dominance effects of genetic variation.

In the CRAFT corpus 2,528 (27.9%) out of the 9,045 coordination structures consist of two one-

word conjuncts which will be referred to as one-word conjunct pairs (OWCPs). Correctly identifying

coordination structures that are described by OWCPs is an important sub-task within the broader

task of coordination resolution because there are a large number of them and because they are

comparatively easy to correctly resolve than other coordination structures. By tackling OWCPs

separately, overall coordination resolution performance is shown to improve. This is presumably

because a large number of easy coordinations no longer need to be considered by downstream

classification models allowing them to concentrate on the harder coordinations. In this chapter,

an OWCP classifier is introduced and evaluated. Adding features that use orthographic similarity

are shown to provide a small increase in classifier performance while adding the language model

features described in Section §3.2 give a larger, though still modest, increase in performance. The

best performing OWCP classifier is shown to outperform the Berkeley Parser when it is employed

for this task though is still far below human inter-annotator agreement on the task.

An additional benefit of concentrating on OWCPs separately is that it provides a focused

subtask for exploring the effectiveness of competing classifiers with various learning parameters and
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measuring the effectiveness of different features. For example, in Section §4.2.3 semantic similarity

features are explored and shown to be ineffective on correct classification of OWCPs which suggests

they are not likely to be effective on the broader task of full coordination resolution. For this task

each conjunction corresponds to either a positive or negative instance in the training data which

means that there are only 9,045 training instances divided among the 10-fold cross-validation and

the holdout evaluation. Such small training sets allow for rapid experimentation. A typical OWCP

experiment takes a few minutes to complete rather than an hour or more for a typical experiment

for the full coordination resolution system described in subsequent chapters.

4.1 One-Word Conjunct Pairs Classifier

The OWCP classifier takes as input for each conjunction the word to its left, wL, and the

word to its right, wR. If the token immediately to the left of a conjunction is a common conjunct

delimiter, i.e. a comma or semi-colon, then wL will be the token to the left of the conjunct delimiter.

Similarly, if the token immediately to the right of a conjunction belongs to a set of “trailing skip

words”, then wR is the next token to the right. The set of trailing skip words was empirically derived

using the most common words found in treebank nodes of type CONJP and includes the following

words: then, therefore, thus, also, even, hence, so, not, rather, only, and instead. Throughout this

dissertation this set of skip words was used to identify words to “skip” over when determining the

left boundary of the right of the conjunction (i.e. they were not included as the first word of the

right-hand conjunct.) For example, the word “not” is excluded from the second conjunct in this

sentence:

• The angle recess . . . was open and not occluded.

Feature extraction is performed on wL and wR and a boolean classifier predicts “true” or “false”

using the resulting features. The classifier returns a boolean prediction that says whether or not

the coordination structure for the conjunction is a OWCP corresponding to wL and wR.
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4.2 Features

4.2.1 Lexical Features

Table 4.1 lists the lexical features used by the OWCP classifier. While many different sets of

lexical features were experimented with, thorough feature selection experimentation was not con-

ducted for the OWCP classifier and the final set used here may be somewhat arbitrary. Intuitively,

these simple lexical features should go a long way towards adequately characterizing OWCPs for

classification because there are many local surface cues that can be exploited. For example, know-

ing whether a delimiter sits between wL and the conjunction will likely be an important feature for

negative examples (i.e. coordinations that are not OWCPs) and is captured by the word feature

for wL+1. To illustrate, the comma in the following example may be indicative of a coordination

structure that is not a OWCP.

• . . . were taken from the Mouse Brain Library, and point counting was . . .

Table 4.2 shows the results of the OWCP classifier performance for 10-fold cross-validation on the

training set of the CRAFT corpus. Classification models were trained using a number of different

classifiers including three classifiers provided by Mallet[30] (Näıve Bayes, MCMaxEnt, and Max-

Ent), the OpenNLP implementation of maximum entropy,1 SVMlight[23], and LIBSVM[7]. These

classifiers were chosen because ClearTK supports them. For the SVMlight and LIBSVM classifiers

models were trained using linear and polynomial kernels. Grid search for learning parameter se-

lection for both the polynomial (for degree three) and radial-basis function kernels was performed

and the highest performing combination found (polynomial kernel with c=10, g=1, and r=1) is

reported. Not surprisingly, the polynomial models outperform the corresponding linear models by

1.23 points and 1.24 points for LIBSVM and SVMlight, respectively. It is interesting to note that the

three implementations of maximum entropy differ by as much as 3.76 points (between MCMaxEnt

and the Mallent MaxEnt).

1 http://maxent.sourceforge.net/
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The final column of Table 4.2 shows the sample standard deviation of file-level performance

as previously discussed Section §2.1.1. For the CRAFT training set, which is used here, there are

thirty six data points used to calculate the standard deviation corresponding to the F-measure

performance for each file. The standard deviations shown are relatively high when compared with

the absolute F-measure differences between the different classifiers. In fact, the largest performance

difference of 4.13 points (between the third row and first row) is smaller than the smallest standard

deviation of 5.38. This indicates that while overall performance can fluctuate considerably from

one classifier to another, overall performance is not a good indicator of which classifier will work the

best for any given file. This conclusion is further reinforced by examining the standard deviation

of the difference of two systems’ performances on the thirty six files. For example, the standard

deviation of the file-level performance differences (e.g. Näıve Bayes gives an F-measure of 80 for the

first file and Mallet’s MaxEnt gives an F-measure of 85, then the file-level performance difference

is five points) for the first and third rows is 5.87.

Table 4.1: Baseline features for the one-word pairs classifier. The letters wL and wR refer to the
words to the left and right of the conjunction, respectively.

feature name feature taken from

word
wL-2, wL-1, wL, wL+1, wL+2,
wR-2, wR-1, wR, wR+1, wR+2

lower case word wL, wR

POScraft tag
wL-2, wL-1, wL, wL+1, wL+2,
wR-2, wR-1, wR, wR+1, wR+2

3 character suffix wL, wR

3 character prefix wL, wR

capital type wL, wR

contains hyphen wL, wR

numeric type wL, wR

word bigram
wLwR,
wL-1wL, wL-2wL-1, wLwL+1, wL+1wL+2,
wR-1wR, wR-2wR-1, wRwR+1, wR+1wR+2

part-of-speech bigram
wLwR,
wL-1wL, wL-2wL-1, wLwL+1, wL+1wL+2,
wR-1wR, wR-2wR-1, wRwR+1, wR+1wR+2

stem bigram wLwR
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Table 4.2: Performance of OWCP classifier using only lexical features on the training set of the
CRAFT corpus. The columns labeled “TP”, “FP”, and “FN” correspond to the number of true
positives, false positives, and false negatives, respectively. The columns labeled “P”, “R”, and
“F” give the precision, recall, and F-measure, respectively. The final column labeled “σ” gives the
sample standard deviation of the file-level F-measure performance.

Classifier TP FP FN P R F σ

Näıve Bayes 1648 353 392 82.36 80.78 81.56 5.86

MCMaxEnt 1635 316 405 83.80 80.15 81.93 6.14

MaxEnt (Mallet) 1733 272 307 86.43 84.95 85.69 5.96

MaxEnt (OpenNLP) 1686 296 354 85.07 82.65 83.84 5.38

SVMlight (linear) 1716 312 324 84.62 84.12 84.37 6.17

SVMlight (polynomial) 1717 257 321 86.99 84.26 85.61 5.70

LIBSVM (linear) 1699 300 341 84.99 83.28 84.13 6.21

LIBSVM (polynomial) 1717 266 323 86.59 84.17 85.36 5.91
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4.2.2 Orthographical Similarity Features

In some cases, the two words that make up a OWCP are quite similar. In this section the

hypothesis that that word similarity can be exploited to improve classification performance on

OWCPs is explored. In particular, experiments using both orthographical and semantic similarity

were conducted. The idea is to capture examples of OWCPs where the two words are very similar

orthographically or semantically but were missed by the classifier when trained on only the lexical

features given in Table 4.1.

Error analysis of the OWCP classifier trained on only lexical features revealed false negatives

where the OWCP consisted of two orthographically similar words. The following are some examples:

• . . . receptors in skeletal patterning, BMPR1A and BMPR1B.

• . . . in two different ligands in the BMP family, Gdf5 and Gdf6,. . .

• . . . p50 and p32 are absent in protein extracts of . . .

• . . . that interacts with infertility factors DAZ and DAZL

Admittedly, such examples constitute a relatively small percentage of the total number of false

negatives (though this ratio was not actually calculated.) Even still, they look like examples that

could be easily handled by simple orthographical similarity analysis.

Two metrics that calculate orthographical word similarity were explored. The first is based

on Levenstein edit distance given in Equation (4.1) which will be referred to here as Levenstein

similarity.

levsim(s1, s2) = 1− levenstein(s1, s2)

size(s1) + size(s2)
(4.1)

The function “levenstein” returns the Levenstein edit distance which is described in [17]. The

intuition behind this equation is the calculation of similarity as a ratio of the total number of edits

to the total number of characters in both strings. This is divided by the total number of characters

to give a ratio of edits to characters. This ratio will be between 0 and 1 with smaller numbers
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corresponding to more similar words. Subtracting this from one will give a score of 1.0 for two

identical words and 0 for words that have no similarity. For example, Equation (4.1) will return

0.875 for the words “aaaa” and “baaa” and 0.67 for the words “aaaa” and “aa”.

The Levenstein similarity score for the words wL and wR was added as a feature to the

OWCP classifier model in addition to the lexical features given in Table 4.1. Two modifications

of the Levenstein similarity calculation were experimented with. The first treats all digits as

being the same character (i.e. so that “Gdf5” and “Gdf6” would have a Levenstein similarity

of 1.0) for the Levenstein similarity calculation. The second treats capital letters as being the

same character (i.e. so that “BMPR1A” and “BMPR1B” would have a Levenstein similarity of

1.0). The results of adding the Levenstein similarity features are shown in Table 4.3. Here the

results are reported for the LIBSVM classifier using a polynomial kernel with a degree of 3. While

Mallet’s MaxEnt performed slightly better for these features, results from LIBSVM are shown here

because this classifier ultimately gives the best performance on this task as shown in Table 4.6.

The first row shows the performance of the OWCP classifier using lexical features and the second

row the performance when the unmodified Levenstein similarity between wL and wR is added as a

feature. Performance improves slightly by 0.45 points between rows one and two. Treating digits

as being the same in the Levenstein similarity calculation results in a negligible difference of 0.03

points. Treating capital letters as being the same gives another slight improvement of 0.32 points

over using the unmodified Levenstein similarity and 0.77 points over the classifier that does not

use the Levenstein similarity feature at all. Again, while the overall performance increased, the

comparatively high sample standard deviations for file-level performance indicates that this feature

does not reliably increase performance at the file-level.

The following examples are true positives that were added by the classifier as a result of

adding Levenstein similarity features:

• Similarly, 6 to 9 month old males and females that are homozygous . . .

• preimplantation and postimplantation embryos using . . .
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Table 4.3: Performance of OWCP classifier using lexical features and Levenstein Similarity. The
results are from the LIBSVM classifier using the polynomial kernel with degree 3. The label “digits”
refers to treating all digits as being the same. Similarly, the label “caps” refers to treating all capital
letters as being the same.

Features TP FP FN P R F σ

lexical features only 1717 266 323 86.59 84.17 85.36 5.91

+ levsim 1726 257 314 87.04 84.61 85.81 6.04

+ levsim + digits 1725 254 315 87.17 84.56 85.84 5.74

+ levsim + caps 1730 247 310 87.51 84.80 86.13 5.86

+ levsim + digits + caps 1728 250 312 87.36 84.71 86.01 5.79

• by which Snail expression and proliferation may be coupled

• (comprising axial mesoderm and mesenchyme cells).

• The tissues were then prepared for paraffin embedding and sectioning

It is interesting to note that these examples are a lot less orthographically similar to each other

than the examples that motivated using orthographical similarity presented above. This may be

symptomatic of a classifier that has been perturbed by a new feature such that some instances

that were false negatives are now true positives and vice versa by random chance. The last three

examples given above seem to reflect this kind of behavior rather than actually benefiting from the

orthographically similar feature.

Because a simple orthographical similarity based feature gave a modest improvement in

performance, it seems possible that using a much more sophisticated orthographical similarity

metric might work even better. The second orthographical similarity metric explored was Lin’s

information-theoretic definition of similarity taken from [27] and is given by Equation (4.2).

linsim(s1, s2) =
2×

∑
t∈tri(s1)∩tri(s2) logP (t)∑

t∈tri(s1) logP (t)
∑

t∈tri(s2) logP (t)
(4.2)

This equation provides a definition of similarity based on the character trigrams that two

words share. The trigrams are weighted based on how frequently they occur in a large corpus
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Table 4.4: Performance of OWCP classifier using lexical features and Lin Similarity. The results
are from the LIBSVM classifier using the polynomial kernel with degree 3. The label “(wb)” refers
to the use of two extra trigrams that incorporate beginning and end word boundaries. The label
“digits” refers to treating all digits as being the same. Similarly, the label “caps” refers to treating
all capital letters as being the same.

Features TP FP FN P R F σ

lexical features only 1717 266 323 86.59 84.17 85.36 5.91

+ linsim 1717 260 323 86.85 84.17 85.49 5.99

+ linsim(wb) 1715 255 325 87.06 84.07 85.54 6.24

+ linsim(wb) + digits 1717 251 323 87.25 84.17 85.68 6.16

+ linsim(wb) + caps 1720 249 320 87.35 84.31 85.81 5.98

+ linsim(wb) + digits + caps 1720 249 320 87.35 84.31 85.81 5.59

of text which is captured by P(t). In this way, frequently occurring trigrams that two words

share are not as important as infrequently occurring trigrams that they share. The function “tri”

returns a list of character trigrams for a word. One modification that was made to this function

is to add two additional trigrams corresponding to a beginning-of-word marker and the first two

characters of the word and the last two characters of the word and an end-of-word marker. With

this modification, for example, the token “Gdf5” would have the following trigrams: <B>Gd,

Gdf, df5, and f5<E >. This change emphasizes the importance of the beginning- and end-of-word

characters. As with Levenstein similarity, the Lin similarity score for the words wLand wR was added

as a feature to the model. Similarly, treating all digits and capitalized letters as being the same was

also explored. Trigram probabilities were calculated using the PMC corpus used for building the

language model as described in Section §3.2.1. The number of trigram types counted using word

boundary information, equated capital letters, and equated digits was 118,419 out of a total of 1.42

billion trigram instances. The performance of the resulting classifier is shown in Table 4.4. The

best performing variation of the Lin similarity feature improved classification results by a modest

.45 points (from 85.36 to 85.81).

Adding both the Levenstein and Lin similarities to the classifier results in a performance of

86.21 which is .08 points higher than the highest score shown in Table 4.3. Because of this very
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small improvement in performance and because the Lin similarity metric requires more memory

and CPU cycles this feature was abandoned.

4.2.3 Semantic Similarity Features

The two words that make up an OWCP are often semantically similar. The following exam-

ples are false negatives from the OWCP classifier that uses the Levenstein similarity as described

above and the language model features as described below (see Section §4.2.4) that show two words

that are semantically similar:

• . . . to obtain cell counts accurately and efficiently . . .

• . . . the leptin receptor gene (Leprdb) that causes obesity and diabetes . . .

• . . . than their heterozygous age and sex matched littermates.

• . . . The PCR products we purified and sequenced as described.

This observation supports the hypothesis that word-level semantic similarity could be exploited

to improve performance of the OWCP classifier. As a preliminary study a list of word pairs cor-

responding to wL and wR for each conjunction was produced and given to Dr. Ted Pedersen

who has done extensive work on semantic word similarity (see [42] or [41].) He ran these lists

through three graph-based semantic similarity algorithms using programs created in his research

lab: Lesk measure using UMLS-Similarity,2 Lesk measure using WordNet-Similarity,3 Wu and

Palmer similarity measure using WordNet-Similarity.4 The Lesk measure adapted for the UMLS

and WordNet[1] compares the definitions of words to judge their similarity. The Wu and Palmer

similarity measure[50] calculates similarity using the hierarchical depth of “lowest common sub-

sumer” of the two words along with the depth of the words themselves. Each of these measures

are graph-based, i.e. they measure distance between terms in a graph defined by some lexical or

2 http://search.cpan.org/dist/UMLS-Similarity
3 http://www.d.umn.edu/~tpederse/similarity.html
4 http://search.cpan.org/dist/UMLS-Similarity/lib/UMLS/Similarity/wup.pm
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Table 4.5: Performance of OWCP classifier using lexical and semantic similarity features. The
results are from the LIBSVM classifier using the polynomial kernel with degree 3. The label “WN”
refers to the use of WordNet while the label “WUP” refers to the Wu and Palmer measure.

Features TP FP FN P R F σ

lexical features only 1717 266 323 86.59 84.17 85.36 5.91

Lesk + UMLS 1736 659 304 72.48 85.10 78.29 7.18

Lesk + WN 1752 469 288 78.88 85.88 82.23 7.08

WUP + WN 1732 262 308 86.86 84.90 85.87 5.98

terminological resource (e.g. UMLS or WordNet.) This requires that compared words actually map

to entries in the resource. Unfortunately, the word pairs mapped to entries in UMLS and WordNet

33.7% and 43.8% of the time, respectively. Even still, the similarity scores that were generated

for pairs of words that did map were added as features to the classifier with the hope that the

mappings are more frequent for positive examples (i.e. when wL and wR corresponds to a OWCP.)

Table 4.5 shows the effect of adding the semantic similarity features.

All three measures give a small increase in recall with the largest being that of the Lesk

measure using the UMLS which gives a 1.71% absolute increase in recall. However, both features

derived from the Lesk measurement have much larger decreases in precision. Only the Wu and

Palmer measure provides an increase for both precision and recall resulting in a gain in F-measure

by .51 points. Due to the “one-off” nature of this experiment and the modest performance gains,

this feature was not subsequently used and further exploration of using semantic similarity was not

done. However, the modest increase in performance is promising and suggests that further work

incorporating semantic similarity might be fruitul. The low percentage of mappings suggest that a

distributional semantic similarity approach might be better suited for this task.

4.2.4 Language Model Features

Features that make use of language model probabilities corresponding to competing candidate

conjunct borders were described in Chapter 3. Specifically, the rank percentile of the candidate

sentence corresponding to wL and wR were added as features. The performance of the OWCP
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Table 4.6: Performance of OWCP classifier using lexical features and Language Model features.
The results are from the LIBSVM classifier using the polynomial kernel with degree 3. The label
“LM” refers to “Language Model” features.

Features TP FP FN P R F σ

lexical features only 1717 266 323 86.59 84.17 85.36 5.91

+ LM 1764 222 276 88.82 86.47 87.63 4.55

+ LM + levsim 1779 205 261 89.67 87.21 88.42 4.21

classifier with this feature is shown in Table 4.6. Adding the language model feature improves per-

formance of the classifier 2.27 points to an F-measure of 87.63. When the language model feature

and the Levenstein similarity feature are both added to the classifier model, then performance is

bumped up to 88.42, an increase of 3.06 points. It is also interesting to note that this highest

performing OWCP classifier also has the lowest sample standard deviation of the file-level perfor-

mance of 4.21. This is considerably lower than 5.91, the standard deviation of OWCP classifier

using the LIBSVM classifier with only lexical features. The features used for this classifier resulted

in the highest performing OWCP classifier on the cross-validation data set and was therefore the

preferred configuration for subsequent experimentation.

The following examples are true positives that were added by the classifier as a result of

adding these features:

• . . . between the cornea (C) and iris root (I) was open and not occluded.

• . . . but increased aqueous humor production or flow occurs during the . . .

• . . . is not dependent on functional rod and cone photoreceptors since these . . .

• All mice were bred and maintained at The Jackson Laboratory.
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Table 4.7: Best performing OWCP classifier compared with baseline classifier.

Features TP FP FN P R F

lexical + LM + levsim 1779 205 261 89.67 87.21 88.42

baseline classifier 1856 1287 184 59.05 90.98 71.63

4.3 Analysis of Results

4.3.1 Comparison with a Baseline Classifier

Of the 2,040 OWCPs in the training data set, wLand wR have the same part-of-speech tag

(using gold-standard tags) for 1,856 (90.98%) of them. A very simple OWCP baseline classifier

could always return true when wLand wR have the same part-of-speech tag. This classifier has a

recall of 90.98 which is the highest recall of any of the classifiers reported above. Unfortunately,

this classifier has much lower precision. Table 4.7 compares this proposed baseline system with the

best performing system described above.

The OWCP classifier described above performs at 16.89 points above this simple baseline

classifier, a 60% error reduction. Error analysis of the baseline classifier reveals that 928 of the

true positives (exactly half) employ the part-of-speech tag “NN”. Similarly, 876 of the false posi-

tives (68.1%) employ the part-of-speech tag “NN”. This suggested that modifying the baseline by

choosing only matching pairs of part-of-speech tags for certain tags will not be fruitful.

4.3.2 Comparison with Inter-Annotator Agreement

Positive-specific agreement was computed for the OWCPs in the BIOCC corpus. In the subset

of BIOCC annotated by Elizabeth and myself, we annotated 238 and 230 OWCPs, respectively. We

agreed on 214 which gives a positive-specific agreement of 94.69. In the subset of BIOCC annotated

twice by myself I annotated 213 and 223 OWCPs, respectively on separate passes, and agreed with

myself on 205 of them. This gives a positive-specific agreement of 95.79. These two subsets were

subsequently adjudicated and were used as the holdout test set which contains 433 OWCPs. When
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the best performing OWCP classifier is run on the BIOCC corpus, the performance as F-measure is

85.36. This performance improves to 86.63 when the full coordination resolution system (described

in the next chapter) is evaluated because of an increase in recall. This represents an error rate that

is about 2.5 times the disagreement rate for this data. This suggests that the OWCP classification

task is far from a “solved” problem and would likely benefit from further research.

4.3.3 Comparison with Berkeley Parser

Section §5.1 describes a parser-based approach to coordination resolution that uses the Berke-

ley Parser. While this parser-based approach does not separate out OWCPs for separate classifi-

cation, it nevertheless handles OWCPs as part of its parsing and thus performance on this task

can be measured. Table 4.8 shows the performance of the Berkeley Parser applied to the OWCP

classification task. The best performing configuration for the Berkeley Parser is, not surprisingly,

when it is given POSgold tags as input to the parser. However, it is not realistic to assume that

gold-standard part-of-speech tags will be available for most use cases and so of greater interest is

how the parser performs when it is given POScraft tags for input. The F-measure for the Berkeley

Parser when it is trained on POSgold tags and given POScraft tags is 83.24 which is 5.18 points

lower than the best OWCP classifier.

Table 4.8: OWCP classifier compared with the Berkeley Parser. The first row repeats the best
results from Table 4.6. The remaining rows show performance on the OWCP classification task
using different combinations of part-of-speech tags for training and using the parser. For example,
the row labeled “Berkeley (POSgold, POScraft)” indicates that the parser was trained with POSgold

tags and when it was run it was provided POScraft tags.

Features TP FP FN P R F σ

lexical + LM + levsim 1779 205 261 89.67 87.21 88.42 4.21

Berkeley (POSgold, POSgold) 1715 271 325 86.35 84.07 85.20 5.02

Berkeley (POSgold, POScraft) 1656 283 384 85.40 81.18 83.24 5.37

Berkeley (POScraft, POScraft) 1641 284 399 85.25 80.44 82.77 5.97
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4.3.4 Effect of Separating the One-Word Conjunct Pair Classification Task

One of the motivating reasons for separating the OWCP classification task from the rest of the

broader coordination resolution task was to improve overall system performance. The intuition is

that by handling OWCPs separately, performance on those coordination structures would improve.

Additionally, if downstream processing does not have to concern itself with these “easy” instances,

then it can perform better by concentrating on only the remaining and more difficult instances.

In fact, this does seem to be the case. In Table 5.4 results for a coordination resolution system

that uses lexical and language model features using a linear SVMlight model are given as 54.17%

accuracy. This system was run with the best performing OWCP classifier given in Table 4.6

“upstream” of it. That is, the OWCP classifier was run and those conjunctions given a OWCP

coordination structure by the OWCP classifier were not considered further by the full coordination

resolution system. When this system is run without the OWCP classifier, the system must consider

all conjunctions and the performance drops 2.05% to 52.12% accuracy. The drop in performance

when the OWCP classifier is removed suggests that it is helpful when it is used.

4.3.5 Error Analysis

The errors that remain from the best performing OWCP classifier can be characterized in a

number of ways. While no attempt was made to quantify the prevalence of the different kinds of

errors being made, it is informative to present examples of some of the more frequent error types.

Easily the most prevalent kind of error is caused by syntactic structural ambiguity related to e.g.

noun modification or prepositional attachment. An example of the former is:

• . . . information on gene expression profiles of whole brain and striatum.

The classifier incorrectly classified the words “brain” and “striatum” as a OWCP. An example

involving prepositional attachment ambiguity is:

• . . . highlighted a number of genes that influence neuron proliferation and differentiation of

the striatum and other neighboring forebrain structures.
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Here the classifier incorrectly classified the words “proliferation” and “differentiation” as a OWCP.

Another class of errors involve errors (or at least ambiguities) in the gold-standard data. That is,

there are cases where it appears the treebank data generates a poor coordination structure. The

following is an example:

• . . . was chosen to minimize sampling variance by ensuring an equitable sampling of striatal

patch and matrix.

Here the classifier incorrectly classified the words “patch” and “matrix” as a OWCP according to

the gold-standard data. However, a OWCP may be a more appropriate coordination structure here

than the one given by the gold-standard data.

4.4 Conclusions

In this chapter an OWCP classifier was presented that far out-performs a simple baseline

classifier and is better than a state-of-the-art syntactic parser. Features that make use of lexical

similarity and language modeling improve performance on this task. It was shown that separating

this task out from the rest of the coordination resolution analysis overall system performance

increases. Analysis of the remaining errors reveals that multiple kinds of syntactic structural

ambiguity make this task difficult and that similar attention may need to be applied to these

challenging phenomena in order to increase performance on this task.



Chapter 5

Full Coordination Resolution

In Chapter 4 a very specific subset of coordination structures were analyzed: one-word con-

junct pairs. In this chapter the broader task of coordination resolution is explored for all of the

coordination structures in the targeted corpora regardless of their size. A major contribution of

this work is a novel yet simple algorithm for performing syntactic coordination resolution that

does not employ deep syntactic parsing. This “parser-free” approach is compared and contrasted

with the traditional approach of performing coordination resolution; employing a syntactic parser

and extracting coordination structures from the resulting parse trees. The parser-free approach is

shown to benefit from the language model features described in Chapter 3 and can perform better

than the parser-based approach. Furthermore, the two approaches are shown to be complementary

to each other and can be integrated to produce a higher performing system. All of the performance

results reported in this chapter are from ten-fold cross-validation on the training portion of the

CRAFT corpus.

5.1 Coordination Resolution using the Berkeley Parser

Syntactic parsers perform coordination resolution as an integrated part of their syntactic

analysis. As such, performing this task with a state-of-the-art syntactic parser provides an impor-

tant benchmark to compare other approaches against. The Berkeley Parser[43] was chosen for this

task because of its competitive performance compared with other syntactic parsers, its ease of use,



62

and availability.1 The Berkeley Parser is a constituent-based parser, i.e. it produces syntactic trees

that consist of relationships between syntactic constituents such as noun phrases, verb phrases, and

nominals, to name a few. The parser uses expectation maximization to learn probabilistic context-

free grammars which can subsequently be used to assign the most likely parse tree to a sequence

of words in a sentence. It excels at producing compact grammars that have very high accuracy.

Performing coordination resolution with the Berkeley Parser is fairly straightforward. The

first step is to train a parsing model using the “GrammarTrainer” class provided by the Berkeley

Parser library. The input to the trainer is a treebank file containing one sentence per line. The

required format of treebank data is the Penn Treebank (PTB) format[2]. Because CRAFT is

provided in PTB format, the Berkeley Parser can be trained directly on CRAFT data. The output

from the trainer is a model which contains a learned grammar. The parser model, which is stored as

a file, can be used to instantiate a “Parser” class object which can parse one sentence at a time. The

input to the parser is a list of tokens and corresponding part-of-speech tags for a single sentence.

The output of the parser is a full syntactic parse of the sentence. To produce coordination structures

from the resulting syntactic parses, the coordination structure production algorithm described in

Section §2.1.2 is used. The resulting coordination structures are then evaluated against gold-

standard coordination structures.

Using the coordination structure production algorithm on the resulting parser trees may give a

slight advantage to the parser-based approach over the parser-free approach described in section §5.3

because it is less vulnerable to possible mistakes in the coordination structure production algorithm.

That is, if an error in the coordination structure production algorithm causes a mistake in the

gold-standard data, then a perfect parse from the parser will produce matching gold-standard data

because the same coordination structure production algorithm is applied. For example, during error

analysis it was discovered that the conjunction in “. . . (Valius and Kazlauskas 1993)” was given the

conjuncts “Valius” and “Kazlauskas 1993” in the gold-standard data as a result of a deficiency

1 The Berkeley Parser is licensed under the General Public License and is available at http://berkeleyparser.
googlecode.com
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in the coordination structure production algorithm. The parser-free approach (described below)

got this example wrong because it gave the conjuncts “Valius” and “Kazlauskas”. The parser-

based approach got this example right because it correctly parsed the parenthetical and so running

the coordination structure production algorithm resulted in the same gold-standard coordination

structure. After the coordination structure production algorithm was fixed to handle this case,

both approaches got this example correct.

When the parser is trained with unmodified CRAFT treebank data, POSgold tags are used.

However, it is interesting to compare coordination resolution results when the parser is also trained

using POScraft and POSgenia tags (these tagger-generated tags are described in Section §3.1.1.) This

is accomplished by modifying the CRAFT treebank files so that they contain those tags and then

training the parser on the modified treebank file. Similarly, the parser can parse sentences using

POSgold, POScraft, or POSgenia tags. Table 5.1 provides the results of the Berkeley Parser on the

coordination resolution task using ten-fold cross-validation on the CRAFT training data set. For

each fold, the remaining nine folds were used to train the Berkeley Parser. Each row of the table

gives a different configuration of part-of-speech tags used. The first column displays which part-

of-speech tags were used to train the parser and the second column displays which part-of-speech

tags were passed into the parser. For example, the first row gives the results when the parser is

trained with POSgold tags and POSgold tags are again provided to the parser for parsing sentences.

Not surprisingly, this configuration provides the best results. However, it is unrealistic to expect

that gold-standard tags will be available in most usage scenarios and so of greater interest is how

the parser performs when using tagger-generated tags. These results are shown in the remaining

four rows. The highest performing configuration is 57.00% and is shown in the last row.

Table 5.1 also gives the failure rate of the parser as the percentage of sentences for which

no parse was returned. A large failure rate will have a negative impact on accuracy because the

parser will not get any coordination structures correct for any of the sentences it fails to parse. It

is not surprising then, that the configuration with the highest failure rate (see the second row) has

the worst performance. What is most striking about the results in Table 5.1 is the performance
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Table 5.1: Performance of Berkeley parser on coordination resolution on the CRAFT corpus using
different part-of-speech tags. The column labeled “Train Tags” gives the part-of-speech tags used
for training the parser. The column labeled “Input Tags” gives the part-of-speech tags used at run-
time that were given to the parser when parsing the sentences. The columns labeled “+” and “−”
correspond to the number of coordination structures that were correct and incorrect, respectively.
The column labeled “FR” gives the failure rate as the percentage of sentences for which no complete
parse was returned by the parser. The column labeled “A” gives the accuracy of the parser on the
coordination resolution task. The final column labeled “σ” gives the sample standard deviation of
the file-level F-measure performance.

Train Tags Input Tags + − FR A σ

POSgold POSgold 4277 2899 1.94% 59.60 6.00

POSgold POSgenia 2509 4667 26.35% 34.96 6.82

POSgenia POSgenia 3613 3563 1.83% 50.35 6.46

POSgold POScraft 4042 3134 3.73% 56.33 5.44

POScraft POScraft 4090 3086 1.79% 57.00 5.51

disparity between using POSgenia and POScraft tags as input to the parser. The large failure

rate of 26.35% explains, at least in part, the poor performance (34.96% accuracy) when POSgold

tags are used for training the parser and POSgenia tags are used for parsing. This large failure

rate is probably due to structural differences between texts in the GENIA and CRAFT corpora

because the former consists of abstracts and the latter consists of full-text articles. Cohen et

al.[11] studied structural differences between article abstracts and bodies and found, for example,

that parenthetical materials are three times more frequent in article bodies than in the abstracts.

Furthermore, the distribution of the types of parenthetical materials vary widely and are much

more likely to contain items like citations, captions, and references to tables or figures. Such

structural elements are probably not tagged correctly when POSgenia tags are used and this has a

detrimental effect on the parser by increasing the failure rate. However, when the parser is trained

using POSgenia tags, then the failure rate plummets to 1.83%. This drop in failure rate corresponds

to a large gain in accuracy of 15.39 percentage points to 50.35%. However, this is still well below

the performance of either configuration using POScraft tags as input to the parser (5.98 and 6.65

percentage points, respectively.) These results highlight the sensitivity of the Berkeley Parser to

part-of-speech tags that are used.
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5.2 Coordination Resolution using a Dependency Parser

Another widely employed parsing paradigm, dependency parsing, requires syntactic trees

whose structures consist of dependency relationships between individual words. Initial exploration

with performing coordination resolution using a state-of-the-art dependency parser, the MaltParser

described in [36], proved to be not very promising. The first challenge is to obtain suitable training

data. Because two of the target corpora of this dissertation are provided in PTB format the data

must first be converted from constituent-based syntactic trees to dependency structures. Unfortu-

nately, the conversion from constituent-based trees to dependency-based trees is error prone. Also,

converting dependency relationships to the coordination structures found in the gold-standard data

proved to be much more complicated than converting the output of constituent-based parser as de-

scribed in Section §2.1.2. For these reasons, full treatment to exploring a dependency parser based

approach for coordination resolution was not given.

5.3 Parser-free Coordination Resolution

Every conjunction has at least two conjuncts: one on the left and one on the right of the

conjunction. The token to the left of a conjunction, wL, makes up the right border of the left

conjunct and can be reliably determined. Similarly, the word to the right of a conjunction, wR,

makes up the left border of the right conjunct and is usually the word immediately adjacent to

the right of the conjunction. As previously discussed in Section §4.1, wL may not be the token

immediately to the left of the conjunction if that token is a comma or semi-colon. Similarly, wR

may not be the token immediately to the right of the conjunction if that token corresponds to a

word in a set of “trailing skip words” such as “then”, “therefore”, and “thus”, among others. Since

the right boundary of the left conjunct is given by wL and the left boundary of the right conjunct

is given by wR, what remains is to find the correct left border of the left conjunct, find the correct

right border of the right conjunct, and find any additional conjuncts that may exist to the left of the

left conjunct. Framing the task in this way provides the intuition for the coordination resolution
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algorithm described next.

5.3.1 Algorithm Description

The parser-free coordination resolution algorithm starts by first invoking a OWCP classifier

as described in Chapter 4. If the classifier returns a prediction of true, then a OWCP is created as

the coordination structure of the conjunction and it is done. If the classifier returns a prediction

of false, then the following is performed. First a decision is made regarding whether to find the

left boundary of the left conjunct or the right boundary of the right conjunct by choosing a side of

the conjunction. Each token on the chosen side of the conjunction is evaluated as being a conjunct

boundary or not by a binary classifier. There are two classifiers: one for classifying tokens on the

left side and another for classifying tokens on the right side. Because the tokens are classified one at

a time, it is possible for more than one token to be classified as a boundary token (i.e. the classifier

returns a prediction of “yes” for more than one token.) ClearTK classifier wrappers may implement

a score method which allows some numeric value to be associated with the classification prediction

such that a higher score corresponds to a higher confidence in the classification prediction. So, the

token with the highest scoring “yes” prediction will be chosen as the boundary of a conjunct. Once

the boundary of a conjunct has been determined a conjunct annotation is created and added to the

coordination structure for the conjunction. If none of the tokens are classified with a prediction

of “yes”, then the least confident “no” prediction is chosen as the conjunct boundary. The same

logic is then applied to the tokens on the opposite side of the conjunction. After both the left and

right conjuncts have been created, what remains to be done is determine if there are any additional

conjuncts to the left of the left conjunct. This is accomplished by examining each token to the left

of the left conjunct in reverse order (i.e. right to left) and classifying it as either a left boundary of

an additional conjunct or not. If a token is classified as a left boundary of an additional conjunct,

then a conjunct is created that spans from the classified token to the token adjacent to the left of

the leftmost conjunct (excluding conjunct delimiter tokens.) In total there are three classifiers: one

for finding the left boundary of the left conjunct, one for finding the right boundary of the right
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conjunct, and another for finding left boundaries of additional left conjuncts.

Getting the first conjunct correct may be advantageous because it can be used for deriving

features for determining the conjunct boundary on the opposite side of the conjunction. Presum-

ably, an otherwise difficult to determine conjunct may be easier to identify if the conjunct on the

other side of the conjunction is known. Therefore, the method of choosing which side to start on

may have some impact on system performance. Experimentation was performed on three ways

of choosing which side of the conjunction to start on. The first is to always choose the left-hand

side first and the second is to always choose the right-hand side first. The third is to choose the

side that has fewer tokens. The intuition for this third approach is that the side with fewer tokens

will be easier to get correct than the side with more tokens because there are fewer options from

which to choose the correct conjunct boundary. Performance of the parser-free approach was nearly

identical between always choosing the left-hand side first and always choosing the right-hand side

first. Choosing the side that has fewer tokens first gave a slight advantage (about .4 percentage

points) and so this heuristic was used.

The parser-free approach described above is just one of many possible ways to tackle coor-

dination resolution. Initial experimentation with two other approaches was also performed. One

approach was to frame the problem as a chunking task using a “B-I-O” labeling scheme for identify-

ing a token’s role in a conjunct as beginning, inside, or outside a conjunct, respectively. The other

approach performs pairwise classification by predicting the left boundary of the left conjunct and

the right boundary of the right conjunct at the same time by looking at every possible combination

of two words, one from each side of the conjunction. Neither of these approaches seemed promising

from initial experimentation and so were not explored further.

5.3.2 Lexical Features for Parser-Free Approach

As before with the OWCP finder, a number of lexical features were employed for the classifiers

used in the parser-free approach. The features used for the classifiers that find the left and right

conjuncts are listed in Table 5.2. The classifier that finds additional conjuncts has an additional
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feature corresponding to whether or not a conjunct delimiter (i.e. ’,’ or ’;’) precedes the leftmost

conjunct and another feature that corresponds to whether or not a conjunct delimiter precedes the

token being classified. The features involving POS tags are assumed to be POScraft tags unless

otherwise noted. The features involving the conjunction (features shown in Table 5.2 that use

wC) do not involve the word (wi) which is being classified as a conjunct boundary and so are

constant for each token that is considered. Using these conjunction-specific features was found to

incrementally improve performance. While many different sets of lexical features were experimented

with, thorough feature selection experimentation was not conducted for the parser-free approach.

Table 5.3 shows the performance of the parser-free approach on CRAFT using only lexical

features for a number of different classifier libraries. The same classifiers that were used for OWCP

classification as shown in Table 4.2 are used here except that LIBSVM is not compared here because

its performance on the OWCP task was very similar to that of SVMlight and because the ClearTK

wrapper for this library does not provide a score method which the algorithm requires. Instead,

LIBLINEAR[14] is used because the ClearTK wrapper does provide a score method. In fact,

LIBLINEAR was the classifier library used in the top performing coordination resolution system

reported in this chapter and is also quite fast for both training and classification. Results for Mallet’s

MCMaxEnt learner are not provided because it failed to converge on the second fold. As before with

the OWCP classifier, the choice of classifier library is quite important to the performance of the

parser-free algorithm. The lowest performing learner, Näıve Bayes, is nearly 15 percentage points

below the best performing learner, SVMlight which performs at 54.03% accuracy. It is interesting

to note that the parser-free approach using only lexical features and the SVMlight learner using a

polynomial kernel is just shy of three percent less than the parser-based approach which has an

accuracy of 57.00.

5.3.3 Language Model Features

As before with the OWCP finder, the rank percentile produced by the language model as

described in Section §3.2 is added as a feature to the OWCP classifier and each of the three
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Table 5.2: Lexical features for the parser-free coordination resolution approach. The label wi refers
to the word being classified, wC refers to the conjunction, wcf and wcl refer to the first and last
word, respectively, of the conjunct on the opposite side of the conjunction (if available), and wao

refers to the word that is adjacent to the conjunction on the opposite side of the conjunction from
wi - i.e. wao will either be wL or wR depending on which side of the conjunction wi is on.

feature name feature taken from

word
wi, wi-1, wi-2, wi-3, wi+1, wi+2, wi+3

wC, wC-1, wC-2, wC-3, wC+1, wC+2, wC+3

POS tag
wi, wi-1, wi-2, wi-3, wi+1, wi+2, wi+3

wC, wC-1, wC-2, wC-3, wC+1, wC+2, wC+3

distance wi, wC

3 character suffix wi

3 character prefix wi

capital type wi

contains hyphen wi

numeric type wi

lower case word wi

word bigram
wi-2wi-1, wi-1wi, wiwi+1, wi+1wi+2, wiwcf, wiwcl, wiwao

wC-2wC-1, wC-1wC, wCwC+1, wC+1wC+2

POS bigram
wi-2wi-1, wi-1wi, wiwi+1, wi+1wi+2, wiwcf, wiwcl, wiwao

wC-2wC-1, wC-1wC, wCwC+1, wC+1wC+2

stem bigram wiwcf, wiwcl, wiwao
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Table 5.3: Performance of the parser-free coordination resolution system using only lexical features.
The final row shows the best performing configuration using the Berkeley Parser from Table 5.1
that uses part-of-speech tags from a tagger.

Classifier + − A σ

Näıve Bayes (Mallet) 2818 4358 39.27 5.43

MaxEnt (OpenNLP) 3143 4033 43.80 5.94

SVMlight (linear) 3716 3460 51.78 5.79

MaxEnt (Mallet) 3749 3427 52.24 6.04

LIBLINEAR 3857 3319 53.75 6.22

SVMlight (polynomial) 3877 3299 54.03 5.70

Parser-Based 4090 3086 57.00 5.51

conjunct boundary classifiers described above. In addition to adding the language model feature to

these classifiers the language model is also employed to directly find conjuncts with high precision.

As described in Section §3.2 a probability is assigned by the language model to each candidate

sentence corresponding to every candidate conjunct border for a given side of the conjunction.

These probabilities tend to be vanishingly small and are only useful when compared relative to each

other which is why the rank percentile is used as a feature instead of the probability itself. However,

another way to compare the probabilities generated from the language model is to normalize them

such that they add to one. These normalized probabilities were also added as features to the

classifiers but were not found to be as effective as the rank percentiles and so they are not used for

this purpose. However, they do provide a mechanism to find conjuncts with very high precision.

For example, if the normalized probability of the highest ranking candidate sentence is 95% or

higher, then the corresponding conjunct is correct 88.55% of the time with 3.24% recall. This

high precision language model conjunct finder is run directly after the OWCP classifier. The

best performing configuration creates conjuncts when the the highest ranking candidate conjunct

boundary corresponds to a single word conjunct and has normalized probability greater than 45%.

This language model conjunct finder has a precision of 90.10% and a recall of 30.84% for one-word

conjuncts. If a conjunct exists on either side of the conjunction, then the parser-free approach

simply uses that conjunct and proceeds to the opposite side of the conjunction if necessary.
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Table 5.4 gives the performance of the parser-free approach using the language modeling

features and the high-precision language model conjunct finder. In each case, the performance

increases from 2 to 3 percentage points which is shown in the column labeled “∆”. The highest

performing classifier library shown in Table 5.4 is again the SVMlight classifier with an accuracy of

56.59 which is just .41 percentage points less than the parser-based approach which has an accuracy

of 57.00.

Table 5.4: Performance of the parser-free coordination resolution system using lexical and language
model features. The final column gives the difference as percentage points of the previous column
with the corresponding results given in Table 5.3.

Classifier + − A ∆ σ

SVMlight (linear) 3887 3289 54.17 2.39 5.27

MaxEnt (Mallet) 3957 3219 55.14 2.90 4.59

LIBLINEAR 4000 3176 55.74 1.99 4.93

SVMlight (polynomial) 4061 3155 56.59 2.56 5.05

Table 5.5 shows the performance of the parser-free approach by coordination type using the

SVMlight classifier library. Coordination types are discussed in Section §2.1.3. The performance

on every node type excepting OTHER improves when the language model features are applied.

However, stratifying the system’s performance by coordination type reveals large performance dis-

parities. For example, the highest performing coordination type, ADJP, performs at an accuracy

of 77.69 which is 54.02 percentage points higher than the worst performing coordination type, S,

whose accuracy is 23.67. This suggests that the parser-free approach simply doesn’t work very

well for certain types of coordination structures. One possible explanation for the performance

disparity is that the parser-free approach is doing a better job of learning coordination types with

short conjuncts. The last column of Table 5.5 provides the average conjunct length in words for

each type. The average length correlates quite well with coordination resolution performance. In

fact, if the types UCP and OTHER are excluded, then the average conjunct length almost perfectly

predicts performance rank. For example, the type with the shortest conjuncts, ADJP, performs the

best while the type with the longest conjuncts, S, performs the worst. One possible explanation
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for this phenomena is the misuse of the distance feature in the classifier models. The distance

feature’s value is the distance in words of the word being classified (i.e. wi) and the conjunction.

The intuition is that by learning all coordination types with the same set of classifiers the distance

feature will generally favor words that are closer to the conjunction than words that are further

away because, on average across all types, conjuncts are short. This will adversely effect the cor-

rect selection of words that are conjunct boundaries for coordination structures of type S and VP

because these conjuncts are, on average, much longer. As expected, when this feature is removed

system performance on shorter coordination types (e.g. ADJP, NML, and NP) worsens while per-

formance on longer coordination types (e.g. S and VP) improves. However, large disparities in

performance between coordination types remain, e.g. even though performance on ADJP worsens

and S improves when the distance feature is removed, the accuracy for the former is still much

higher than that of the latter. This suggests a broader problem with the parser-free approach; it

can not handle some coordination types very well.

Table 5.5: Performance of the parser-free coordination resolution approach stratified by type when
run with SVMlight using a polynomial kernel. The column labeled “Type” refers to the type of
the coordination structure derived from the CRAFT tree from which it was obtained. The column
labeled “Count” gives the total number of coordination structures of that type are found in the
CRAFT training set. The column labeled “Lexical” shows the performance as accuracy for a given
type when the parser-free system is trained on only the lexical features given in Table 5.2. Similarly,
the column labeled “LM” shows the performance as accuracy for a given type when the parser-free
system is trained on both the lexical features and the language model features. The column labeled
“∆” gives the positive difference between the preceeding two columns. The final column labeled
“Len.” gives the average length (as the number of words) of conjuncts for the given type.

Type Count Lexical LM ∆ Len.

S 528 21.40 23.67 2.27 14.14

UCP 203 39.90 47.29 7.39 2.57

PP 206 48.00 49.03 1.03 8.53

VP 1124 47.69 50.00 2.31 8.61

NP 2976 56.00 57.80 1.80 4.17

NML 1388 60.23 64.70 4.47 1.96

OTHER 258 68.68 68.22 -0.46 4.36

ADJP 493 73.63 77.69 4.06 1.77

Total 7176 54.03 56.59 2.56 5.04
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5.3.4 Type-Specific Conjunct Boundary Classifiers

A broader explanation for the performance disparities between different types could be that

trying to learn conjunct boundaries for all coordination types with a single set of classifiers (one for

each of the left conjunct, the right conjunct, and additional conjuncts) is simply too confusing for

the classifiers. One way to test this hypothesis is to train the parser-free coordination resolution

system on specific coordination types and observe the performance for the given type. This exercise

points towards an oracle-based system in which an oracle gives the system the correct coordination

type before attempting to find conjunct boundaries. This allows the system to triage to a set

of conjunct boundary classifiers that performs the best on the provided coordination type. For

example, if the oracle says that the type of a coordination structure for a given conjunction is

ADJP, then the system can use the classifiers trained on the coordination structures of type ADJP.

For this oracle-based system classifiers were trained for the following types; ADJP, NML, NP, PP,

S, SBAR (one of the types grouped under OTHER), and VP. As expected, the highest performing

system for each of these types was the corresponding set of classifiers trained on that type. For the

remaining types, UCP and the the remaining types grouped under OTHER, a set of classifiers was

chosen for each type that performed the best on that type out of all the systems built including

the systems given in Table 5.4 and Table 5.8. Table 5.6 gives the results of this oracle-based

system when all sets of classifiers are built with LIBLINEAR. These results are compared with the

performance of the parser-free system trained with LIBLINEAR given in Table 5.4. LIBLINEAR

is used here because the oracle system using LIBLINEAR classifiers has higher results (by one

percentage point) than for SVMlight.

Table 5.6 demonstrates that knowing the coordination structure type in advance gives the

system a large advantage. It also demonstrates that the parser-free approach is not necessarily

ill-suited for certain kinds of coordination types like S and VP. In fact, the oracle-based system

performs at 60.61 for the S type which is higher than the accuracy of 59.95 for the NP type. Of

course, having the luxury of an oracle that provides the coordination type is nice but, unfortunately,
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Table 5.6: Performance of the parser-free approach when an oracle provides the coordination type
allowing the system to triage to a set of conjunct boundary classifiers for which the type is best
suited. The column labeled “LM” gives the type-specific performance for the parser-free approach
trained with lexical and language model features using the LIBLINEAR model. The column labeled
“Oracle” gives the performance of a system aided by an oracle that provides the correct type of the
coordination structure. The column labeled “∆” gives the positive difference between the previous
two columns.

Type Count LM Oracle ∆ Len.

S 528 7.95 60.61 52.66 14.14

VP 1124 45.28 56.14 10.86 8.61

PP 206 47.09 47.09 0.00 8.53

UCP 203 51.23 56.65 5.42 2.57

NP 2976 57.96 59.95 1.99 4.17

OTHER 258 67.44 81.01 13.57 4.36

NML 1388 68.73 74.21 5.48 1.96

ADJP 493 80.12 82.35 2.23 1.77

Total 7176 55.74 63.99 8.25 5.04

unrealistic to expect. This raises the question of how well can the coordination type be predicted?

To answer this question, a classifier was built that predicts the coordination type given a conjunction

and features derived from the surrounding context. The features used are very similar to those

used for the OWCP classifier and so will not be repeated here. The best performing classifier

was a LIBSVM classifier using a polynomial kernel which has an overall performance 74.95% as

F-measure. Table 5.7 shows the F-measure of the type classifier for each type. The types grouped

together as OTHER were treated as separate types and the results are aggregated together for

compactness. One promising result from this table is the high performance on the VP type. This

suggests that using the classifier for providing the coordination type may compare favorably with

using the oracle. Unfortunately, the type classifier’s performance on the type S, which would likely

benefit the system the most to know, is relatively poorly. Generally speaking, types that occur less

frequently (e.g. S, SBAR, and ADVP) perform with higher precision than recall. Correspondingly,

the type that occurs the most often, NP, has much higher recall (86.69) than precision (71.93). As

such, many instances are confused as NP’s. For example, 526 (or 37.90%) of NMLs are confused

as NPs.
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Table 5.7: Performance of the coordination type classifier by type.

Type Count P R F

ADJP 493 86.98 81.34 84.07

NML 1388 66.69 58.72 62.45

NP 2976 71.93 86.69 78.62

PP 206 70.16 87.86 78.02

S 528 75.17 41.86 53.77

UCP 203 57.61 26.11 35.93

VP 1124 89.92 87.92 88.91

OTHER 258 84.48 54.65 66.37

Total 7176 74.95 74.95 74.95

The parser-free algorithm was expanded to leverage the type classifier introduced above.

For each conjunction, the type classifier determines the coordination type of the corresponding

coordination structure. This result is used to triage coordination resolution to a set of conjunct

boundary classifiers trained on the type predicted by the type classifier. Two ways of training

this augmented system were attempted. The first uses the gold-standard coordination types to

determine which set of type-specific conjunct boundary classifiers a training instance should be

sent to. The second uses the results of the type classifier to determine which set of type-specific

conjunct boundary classifiers a training instance should be sent to. Table 5.8 gives the results for

the type-classifier-augmented parser-free system using both training strategies with the SVMlight

and LIBLINEAR classifiers. The top performing system that uses LIBLINEAR and the type

classifier generated types for training has an accuracy of 58.33% which is 1.33 percentage points

higher than the parser-based approach which performs at 57.00% accuracy. For this top performing

system, performance on the type VP improved substantially to 52.27% accuracy from 45.28% which

is 3.87 points shy of the 56.14% performance given by the oracle-based system whose results are

reported in Table 5.6. Unfortunately, this system still performed very poorly on the type S with

an accuracy of 27.08% for the best performing system given in Table 5.8 which is far below the

oracle enhanced system reported in Table 5.6 of 60.61%. These two results together suggest that

high type classification accuracy is a key to improved performance using the type classifier and that
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further work on the type classifier may prove fruitful.

Table 5.8: Performance of parser-free approach using type-specific classifiers. The second column
labeled “Types” provides the types that were used to determine which training examples were sent
to type-specific classifiers for learning. The value “gold” means that a coordination structure’s
gold-standard coordination type was used. The value “system” means that the type assigned by
the type classifier was used.

Classifier Types + − A σ

SVMlight gold 4144 3032 57.75 5.03

SVMlight system 4181 2995 58.26 5.27

LIBLINEAR gold 4169 3007 58.10 5.22

LIBLINEAR system 4186 2990 58.33 5.28

LIBLINEAR POSgenia system 4110 3066 57.27 5.70

The final row of Table 5.8 shows how the system works when trained and tested using POSgenia

tags instead of POScraft tags. While the accuracy goes down to 57.27% this is considerably higher

than the accuracy of the Berkeley Parser based approach when it uses POSgenia tags which is 50.35%.

This result indicates that the parser-free approach is much less sensitive to the part-of-speech tags

that are used compared to the parser-based approach.

5.4 Integrated Coordination Resolution

Given the very similar overall performances of the Berkeley Parser based approach described

in Section §5.1 and the parser-free approach described in Section §5.3, one might think that the two

approaches are learning to correctly resolve the same coordination structure instances. This would

be a disappointing result because it would suggest that while the two approaches are conceptually

quite different they are ultimately doing essentially the same thing at about the same performance.

Additionally, this would mean that there would be no way to combine the two approaches to create

an integrated system that performs better. Fortunately, this is not the case as there are many true

positives given by both systems which are not found by the other. Table 5.9 shows the breakdown

of conjunctions that are correctly resolved by these two systems. The parser-based system used

here is the best performing system shown in Table 5.1 using POScraft tags. The parser-free system
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used here is the best performing system shown in Table 5.8 which uses LIBLINEAR. There are

5,183 coordination structures that were correctly resolved by at least one of the systems of the 7,176

conjunctions in the training data. Therefore, an integrated system could achieve an accuracy of

72.73% if an oracle was available to choose which system should provide coordination structure for

a given conjunction. This is a dramatic performance gain over either system by itself and suggests

that it may be possible to automatically integrate these two systems. In contrast, a comparison

of the results generated by the two best parser-free systems from Table 5.8 (one using SVMlight

and the other LIBLINEAR) shows that only 4,559 (or 63.53%) of the coordination structures were

correctly resolved by at least one of these two systems.

Table 5.9: The distribution of correctly resolved coordination structures between the parser-based
approach and the parser-free approach. Each coordination structure in the training set is counted
once in one of the first four rows. If both systems correctly resolved the coordination structure then
it is counted as “Both correct”. If only the parser-based approach got it right, then it is counted as
“Parser-based only”. If only the parser-free approach got it right, then it is counted as “Parser-free
only”. Otherwise, it is counted as “Neither correct” because neither system got it right.

Both correct 3,109 43.32%

Parser-based only 981 13.67%

Parser-free only 1,077 15.01%

Neither correct 2009 28.00%

total 7,176 100%

The results in Table 5.1 are reported using accuracy because each conjunction can be counted

as correct or incorrect as discussed in Section §2.4. This makes perfect sense for the parser-

free approach introduced in Section §5.3 because a coordination structure is proposed for each

conjunction it processes. However, for the parser-based approach, using accuracy is somewhat

problematic because for the sentences that fail to parse, no coordination structures are produced.

These instances can be considered as false negatives but not false positives which means that

precision and recall will not be equivalent, i.e. the former is higher than the latter. This means that

for the Berkeley Parser, F-measure will be higher than accuracy (which is calculated the same as

recall here.) For example, when POSgold tags are used for training the parser and POScraft tags are
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used for parsing, the precision is 59.69, the recall is 56.33, and the F-measure is 57.96. The higher

precision of the parser-based approach will be exploited when the two approaches are integrated in

this section.

One simple way to integrate these two systems is to accept coordination structures that are

produced by the Berkeley Parser for types that it performs better on and have the parser-free

approach handle the remaining coordination structures. Because coordination structures produced

by the Berkeley Parser are derived from a full syntactic parse, coordination types (i.e. the type of

node that is the parent of the conjunction) are also predicted by the parser. Coordination structures

that are not assigned a type by the parser that the parser performs better on are dismissed and the

conjunction is passed on to the parser-free approach. Again, because the parser-based approach

always has higher precision than recall, the precision of the parser-based approach is compared with

the accuracy of the parser-free approach when choosing which types the Berkeley Parser should

handle. Table 5.10 shows for each type the precision of the parser-based approach compared with

the accuracy of the parser-free approach. By adding up the true positives predicted by the higher

performing system for each type a simplistic prediction of the accuracy of the proposed integrated

system gives 60.81%.

The integrated system implemented here works as follows. First, the OWCP classifier classi-

fies each conjunction. If it returns a preciction of “true”, then a OWCP coordination structure is

created and that coordination structure is complete and no further processing is necessary. Next,

the Berkeley Parser performs coordination resolution. If the coordination type given by the parser

is one of the following types, then the coordination structure is kept otherwise it is discarded:

ADVP, CIT, LST, PP, PRN, S, SBAR, SQ, UCP, VP, X. Next, the high-precision language model

conjunct finder is run. Next, the parser-free approach is run on any remaining conjunctions for

which there are no coordination structures. Table 5.11 shows the results of the top performing

integrated systems. The performance of 60.91% accuracy is the highest accuracy reported in this

chapter on the CRAFT training data set and is 3.91 and 2.58 percentage points higher than the

best performing parser-based and parser-free systems, respectively. The integrated system is 11.62
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Table 5.10: Performance of the parser-based and parser-free coordination resolution approaches by
type. The column labeled “PB (P)” gives type-specific performance as precision for the parser-
based system trained with POSgold tags and run with POScraft tags. The column labeled “PF (A)”
gives the type-specific performance as accuracy for the parser-free system that gave the highest
results in Table 5.8. The column labeled “I (A)” gives the performance of the best-performing
integrated system in Table 5.11.

Type Count PB (P) PF (A) I (A)

PP 206 48.40 42.72 49.51

UCP 203 56.08 48.28 54.19

VP 1124 55.00 52.27 54.45

NP 2976 56.11 57.44 56.12

S 528 64.39 27.08 61.93

NML 1388 61.80 70.05 69.33

ADJP 493 76.86 79.11 77.28

OTHER 258 80.05 77.28 80.23

Total 7176 57.00 58.33 60.91

percentage points less than the oracle-based system in which the oracle chooses for each conjunc-

tion the system that gets the corresponding coordination structure correct if one exists. This result

suggests that there is room for further improvement using an integrated approach for coordination

resolution.

Table 5.11: Performance of the integration of the parser-based and parser-free approaches compared
with an oracle-based system. Each system integrates the Berkeley Parser trained on POSgold tags
with parsing performed with POScraft tags. The parser-free systems are those reported in the
first four rows of Table 5.8. For example the system labeled “Integration 4” uses LIBLINEAR, is
augmented with a type classifier, and the type-specific classifiers were given coordination structures
based on the types that were predicted by the type classifier.

System + − A σ

Integration 1 4314 2862 60.12% 5.40

Integration 2 4338 2838 60.45% 5.55

Integration 3 4339 2837 60.47% 5.30

Integration 4 4371 2805 60.91% 5.34

Table 5.10 shows the performance of the best performing integrated system for each coordi-

nation type in the final column. Because there is no way to know which system will actually end up

handling a particular conjunction the respective performances of the two systems cannot reliably
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predict the performance of the integrated system. For the ADJP type, the accuracy of 77.28%

is lower than the performance given by the parser-free system given in Table 5.10 of 79.11% but

slightly higher than the parser-based approach. This trend is continued for the NML type except

that the performance is much closer to the parser-free system rather than the parser-based system.

The types NP and PP performed lower than either system in isolation. The performance of type

S of 61.93 for the integrated system was much closer to the parser-based system (64.39) than the

parser-free system (27.08). This fortunate result largely explains the improvement of the integrated

system over the parser-free approach which performs much lower for this type.

5.5 Conclusions

In this chapter parser-based, parser-free, and integrated coordination resolution systems were

presented and they were compared on the CRAFT training data set using ten-fold cross-validation.

The parser-free approach benefits from the same language model features used for the OWCP

classifiers described in Chapter 4. Additionally, a coordination type classifier can be employed to

further improve performance by facilitating the training and selection of sets of classifiers that are

trained for specific coordination types. With these two improvements, the parser-free approach out

performs the parser-based approach on the CRAFT training data set. Furthermore, when POSgenia

tags are used the performance gap between the two approaches gets much larger, i.e. the parser-

free approach works much better than the parser-based approach. In the next chapter, these two

approaches are compared on the CRAFT holdout evaluation, the BIOCC corpus, and the GENIA

corpus.
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Results

In Chapter 5 the parser-based and parser-free approaches were described and compared using

ten-fold cross-validation using the training portion of the CRAFT corpus. In this chapter, both

approaches are evaluated against the CRAFT holdout evaluation test set, the BIOCC corpus, and

the GENIA corpus. The holdout evaluation test set represents data from the CRAFT corpus that

is “unseen”. That is, there was no error analysis performed using this portion of CRAFT while

developing the two approaches and so performance results may better reflect the true performance

of the two approaches. The BIOCC corpus, described in Section §2.2, represents sentences found

“in the wild” where no gold-standard tokens or sentences are given and there is no treebank data

for which to train a parser. Additionally, the sentences in BIOCC were chosen at random from

a very large corpus of biomedical texts and as such should better represent “average” sentences

in the biomedical domain. The coordination resolution results on BIOCC, therefore, may present

the most realistic performance that can be expected when these two approaches are applied to

any sentences found in the biomedical literature. The parser-free approach is shown to outperform

the parser-based approach on this corpus. Evaluation of both approaches is performed on the

Hara subset of the GENIA corpus (see Section §2.3) which provides a direct comparison with the

previous state-of-the-art in biomedical coordination resolution. These results show that both the

parser-based approach using the Berkeley Parser and, to a greater extent, the parser-free approach

outperform the work by Hara et al.[18] which is described in Section §1.1.4.
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6.1 Results on CRAFT Test Set

As described in Section §2.1, the forty-six articles in the CRAFT corpus were split into a

training set consisting of thirty-six files and a test set consisting of the remaining ten files. This test

set was not used in any way to develop the two approaches described in Chapter 5. For example,

all error analysis that informed improvements to the two approaches was conducted exclusively on

results obtained from ten-fold cross-validation on the thirty-six files in the training set. Similarly,

the configurations of the two approaches that were evaluated and reported here were chosen based

solely on the performance results obtained during ten-fold cross-validation. Therefore, the results

reported in this section may give a more realistic measure of how well these two approaches could

be expected to perform on other full-text articles that meet the selection criteria for inclusion in

the CRAFT corpus.

Table 6.2 shows the performance of a number of coordination resolution system configurations

that are described in Chapter 5. The reported systems are listed in Table 6.1. In general, the results

on the CRAFT holdout evaluation test set are consistent with the results reported in Chapter 5

using cross-validation on the training portion of the CRAFT corpus. The final column in Table 6.2

shows the performance difference between the holdout evaluation and cross-validation. Nearly

every row (excepting one) shows a drop in performance on the holdout evaluation data. This result

suggests that the coordination resolution systems are overfitting to the training data set. However,

this result may instead be a reflection of the fact that the coordination structures in the CRAFT

corpus are not i.i.d. as discussed in Section §2.1.1 and, therefore, differences in performance (in this

case, negative) should be expected because, possibly, the ten files in the holdout data set are more

difficult.

One mildly disappointing finding is that the positive impact of using the language model

features was less for the holdout evaluation than it was for cross-validation. For example, the

performance gain between LIBLINEAR-1 and LIBLINEAR-2 is 1.23% for the holdout evaluation

where for cross-validation it was 1.99% (as shown in Table 5.4.) Similarly, the performance gain
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Table 6.1: Listing of coordination resolution systems whose results are reported in this chapter.
The untitled second column will have one of three values: ‘PB’ for parser-based approach, ‘PF’ for
parser-free approach, and ‘IN’ for an integration of the parser-based and parser-free approaches.
The third column titled “CV Results” provides a reference to the table and row from Chapter 5
that displays performance of the system using cross-validation on the CRAFT training data set.

System Name CV Results Description

Berkeley-1 PB Table 5.1, row 4
Trained with POSgold tags
and tested with POScraft tags.

Berkeley-2 PB Table 5.1, row 5
Trained with POScraft tags
and tested with POScraft tags.

SVM-1 PF Table 5.3, row 6 SVMlight (polynomial) + lexical features

SVM-2 PF Table 5.4, row 4
SVMlight (polynomial) + lexical
and language model features

SVM-3 PF Table 5.8, row 1
SVM-2 using type-specific models
trained with gold coordination types.

SVM-4 PF Table 5.8, row 2
SVM-2 using type-specific models
trained with classifier-generated types.

LIBLINEAR-1 PF Table 5.3, row 5 LIBLINEAR + lexical features

LIBLINEAR-2 PF Table 5.4, row 3
LIBLINEAR + lexical and
language model features

LIBLINEAR-3 PF Table 5.8, row 3
LIBLINEAR-2 using type-specific models
trained with gold coordination types.

LIBLINEAR-4 PF Table 5.8, row 4
LIBLINEAR-2 using type-specific models
trained with classifier-generated types.

Integration-1 IN Table 5.11, row 1 SVM-3 & Berkeley-1 integrated

Integration-2 IN Table 5.11, row 2 SVM-4 & Berkeley-1 integrated

Integration-3 IN Table 5.11, row 3 LIBLINEAR-3 & Berkeley-1 integrated

Integration-4 IN Table 5.11, row 4 LIBLINEAR-4 & Berkeley-1 integrated
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Table 6.2: Performance of the parser-based and parser-free approaches on the CRAFT holdout
evaluation set. The column labeled ‘∆’ gives the performance difference in absolute percentage
points between the performance reported in the column to the left labeled “A” with the performance
reported in Chapter 5 using cross-validation.

System + − A ∆ σ

Berkeley-1 1065 804 56.98 0.65 4.38

Berkeley-2 1052 817 56.29 -0.71 8.58

SVM-1 992 877 53.08 -0.95 6.84

SVM-2 1025 844 54.84 -1.75 6.37

SVM-3 1054 815 56.39 -1.36 7.49

SVM-4 1044 825 55.86 -2.42 6.25

LIBLINEAR-1 984 885 52.65 -1.10 6.67

LIBLINEAR-2 1007 862 53.88 -1.86 7.42

LIBLINEAR-3 1062 807 56.82 -1.28 7.14

LIBLINEAR-4 1068 801 57.14 -1.19 6.56

Integration-1 1118 751 59.82 -0.30 6.33

Integration-2 1106 763 59.18 -1.27 5.01

Integration-3 1119 750 59.87 -0.60 6.63

Integration-4 1117 752 59.76 -1.15 6.35
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between SVM-1 and 2 is 1.76% for the holdout evaluation compared with 2.56% for cross-validation.

Another mildly disappointing finding is that performing coordination resolution with type-specific

classifiers as discussed in Section §5.3.4 gives an additional performance gain that is less than or

matches the performance of the parser-based approach rather than surpassing it as it did for cross-

validation. For example, SVM-4 outperformed Berkeley-1 by 1.95% in the cross-validation but

was 1.12% worse for the holdout evaluation. Similarly, LIBLINEAR-4 outperformed Berkeley-1 by

2.00% in the cross-validation but was only 0.16% better for the holdout evaluation. This result is

somewhat surprising because the accuracy of the coordination type classifier was no worse on the

test data than it was on the training data. In fact, it actually improved incrementally from 74.95

(as shown in Table 5.7) to 75.29. These results together suggest that the parser-based approach

using type-specific classifiers and the parser-free approach perform at roughly the same level overall

on the CRAFT corpus.

Integration of the two approaches provides additional gains when evaluated on the test set

that are similar to the results on cross-validation. The accuracy of the best-performing integrated

system, 59.87%, on the holdout evaluation data set is about one percent less that reported for cross-

validation of 60.91%. The performance gain over either approach individually was about 3.0% in

both cases (2.89% and 2.73% for the parser-based and parser-free approaches, respectively.)

6.1.1 Error Analysis

Table 6.3 shows coordination resolution performance results by the number of conjuncts

in a coordination structure. Each system performs better on coordination structures that have

only two conjuncts. This is not a surprising result given the fact that 86.8% of the training

examples have only two conjuncts1 because there is a lot more training data for left and right

conjuncts than there is for additional conjuncts to the left of the left conjunct. However, it is

disappointing that performance declines with the number of conjuncts because inter-annotator

1 The proportion of two-conjunct coordination structures happens to be nearly identical (86.82 vs. 86.78) for both
the training and testing data.
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agreement actually increases for the BIOCC corpus when there are four or more conjuncts. The

higher IAA is presumably due to the fact that the structure of coordination structures containing

four or more conjuncts are easier to recognize because there exists a readily recognizable pattern

of items in a list that make up these coordination structures. Automatic coordination resolution

performance on these structures is likely worse because there are far fewer training examples.

However, examination of a few errors by the “Integration-4” system reveal how easy it is to get

very close to the correct coordination structure but still get counted as wrong because of the

exacting evaluation criteria which requires all conjuncts to be correct (see Section §2.4 for more

details on evaluation.) For example, consider the following three examples shown respectively with

the gold-standard coordination structure followed by the erroneous coordination structure produced

by “Integration-4”:

• . . . the [extraembryonic mesoderm], [allantois] and [chorion] . . .

• . . . [the extraembryonic mesoderm], [allantois] and [chorion] . . .

• . . . [XRCC1 ], [ERCC5 ], [GSTP1 ], . . . , [CAT ] and [ERCC2 ] . . .

• . . . XRCC1, [ERCC5 ], [GSTP1 ], . . . , [CAT ] and [ERCC2 ] . . .

• . . . [serum glucose], [fatty acid ], [organic acid ], and [carnitine] experiments . . .

• . . . [serum glucose], [fatty acid ], [organic acid ], and [carnitine experiments] . . .

In the first example, the word “the” is erroneously included in the first conjunct. In the second

example, the conjunct “XRCC1” is ommitted. In fact, there are a large number of examples in

which a coordination structure consisting of three or more conjuncts in the gold-standard data is

missing the first conjunct in the corresponding coordination structure generated by a system but is

otherwise correct. In the third example, the word “experiments” is erroneously included in the final

conjunct. Each of these examples represent coordination structures that were evaluated as wrong,

and therefore no credit was given, even though in each case it is clear that they are nearly correct.
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This observation suggests that it might be informative to consider evaluating coordination resolution

at the conjunct level which would allow for partial credit for examples like these. Conjunct-level

evaluation is addressed in Section §6.1.1.1. Examples of coordination structures containing three

or more conjuncts for which the “Integration-4” system was not close to the gold-standard, i.e. it

did not get two or more conjuncts correct, are quite rare.

Table 6.3: Performance of coordination resolution by number of conjuncts. The column titled
“Conjuncts” gives the number of conjuncts in the evaluated coordination structures for that row.
The column titled “Count” gives the number of coordination structures with the given number
of conjuncts. The column labeled “PB” gives the performance of the parser-based system labeled
“Berkeley-1” given in Table 6.1, “PF” the parser-free system labeled “LIBLINEAR-4”, and “IN”
the integrated system labeled “Integration-4.”

Conjuncts Count PB PF IN

2 1,622 57.71 58.69 61.34

3 167 53.29 47.31 53.89

4 38 50.00 44.74 52.63

5 19 52.63 47.37 52.63

6+ 23 47.83 47.83 47.83

Total 1,869 56.98 57.14 60.25

Table 6.4 shows coordination resolution results for the different types of coordination struc-

tures on the holdout test set for the CRAFT corpus. Overall, these results are quite similar to what

was seen on the training set using cross-validation as shown in Table 5.10. However, the differences

between the precision of the parser-based and the accuracy of the parser-free approach for any

given type have changed. For example, in Table 5.10 the precision of the parser-based approach

was 61.80 for the type “NML” while the accuracy of the parser-free approach was 70.05 giving a

difference of 8.25. Here the difference is only 2.05. For the type “PP” the higher performing system

actually changed from the parser-based to the parser-free approach. This means that a suboptimal

set of types to be handled by the parser-based approach when running the integrated system was

chosen. When “Integration-3” and “Integration-4” are run such that coordination structures of

type “PP” from the Berkeley Parser are not used the performance sees a small positive bump to

60.25 for both systems from 59.87 and 59.76, respectively.



88

Table 6.4: Performance of the parser-based, parser-free, and integrated coordination resolution
approaches by type. The columns labeled “PB (A)” and “PB (P)” gives type-specific performance
as accuracy and precision, respectively, for the parser-based system labeled “Berkeley-1”. The
column labeled “PF (A)” gives the type-specific performance as accuracy for the parser-free system
labeled “LIBLINEAR-4”. The column labeled “I (A)” gives the performance of the integrated
system labeled “Integration-3”.

Type Count PB (A) PB (P) PF (A) I (A)

ADJP 105 76.19 77.67 78.10 78.10

NML 372 61.29 62.47 64.52 64.78

NP 770 56.88 59.67 59.74 59.87

PP 60 41.67 43.10 55.00 45.00

S 129 54.26 58.82 27.91 55.04

UCP 55 49.09 50.94 50.91 58.18

VP 324 47.22 50.16 46.30 49.07

OTHER 54 81.48 83.02 72.22 85.19

Total 1,869 56.98 59.50 57.14 59.87

Table 6.5 shows example coordination structures produced by the parser-free system labeled

“LIBLINEAR-4”. For each type a correct and an incorrect coordination structure is shown. While

it is not possible to choose examples that comprehensively represent each type, these examples

were chosen because they are typical of their respective categories. It is interesting to observe that

for many of the incorrect coordination structures the error is caused by confusion about how the

conjoined members can be modified. For example, the incorrect “PP” coordination structure shows

the phrase “located laterally” as not being included in the second conjunct. This implies that the

coordination resolution is happy to modify both “distal streak region” and “narrow swath of cells”

with “located laterally” when, according to the gold-standard data, it should only modify the latter.

These data suggest that getting a better handle on how e.g. noun phrases can be modified could

be a direction for future work on coordination resolution.

6.1.1.1 Conjunct-level Evaluation

Because the conjunction-level evaluation is very exacting, coordination structures that are

nearly correct are given no partial credit. It is informative to look at conjunct-level evaluation to
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Table 6.5: Examples of correct and incorrect coordination structures by type produced by the
parser-free system labeled “LIBLINEAR-4”. For each type (excepting those grouped together un-
der “OTHER”) an example of a correct (+) and incorrect (−) coordination structure produced
by “LIBLINEAR-4” is shown. Directly following each incorrect coordination structure is the cor-
responding gold-standard (G) coordination structure. For most of the examples, the complete
sentence is not shown and ellipses (“. . . ”) can be assumed to precede and follow an example.

Type Example

ADJP
+ [structural] and [irreversible] developmental abnormalities.
− in the [pre-] or [perinatal period] include Bochdalek hernia
G in the [pre-] or [perinatal] period include Bochdalek hernia

NML
+ [Pax3] and [MyoD] expression is detected
− [muscle precursor cell migration] and [differentiation]
G muscle precursor cell [migration] and [differentiation]

NP
+ such as [complete amuscularization] or [phrenic nerve disruption].
− the [right middle lobe] and [accessory] buds
G [the right middle lobe] and [accessory buds]

PP

+
T is also ectopically expressed in mutant extraembryonic mesoderm

[at the anterior embryonic junction] and [along the chorion].

− the expression of Dll1 [in the distal streak region]
and [in only a narrow swath of cells] located laterally

G
the expression of Dll1 [in the distal streak region]

and [in only a narrow swath of cells located laterally]

S

+
[We used BLAST against the nr and EST databases] and [we

found perfectly matching clones covering an ORF of 546 bp].

− Mig12 is present in both [the nucleus and the cytoplasm] and
[the relative abundance] in the two compartments is variable.

G
[Mig12 is present in both the nucleus and the cytoplasm] and

[the relative abundance in the two compartments is variable].

UCP
+ Fourteen-week-old male [transgenic] and [wild-type] littermates
− distinguished from [type II] or [mixed muscle]
G distinguished from [type II] or [mixed] muscle

VP
+

embryos [were smaller in size] and
[lacked the development of an accessory lobe]

− DNA was [isolated] and [separated on 1% agarose gel].
G DNA was [isolated] and [separated] on 1% agarose gel.

get an alternative analysis of how well the two approaches perform at getting conjuncts correct.

For the parser-free approach, in particular, conjunct-level performance gives a more direct evalu-

ation of the classifiers that determine conjunct boundaries. Conjunct-level performance is given

as F-measure because the number of conjuncts proposed by a coordination resolution system may
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differ from the number of conjuncts provided by the gold-standard data. The “Berkeley-1” parser-

based system and “LIBLINEAR-4” parser-free system have nearly identical precision of 76.1 and

76.27, respectively. However, “Berkeley-1” has worse recall than “LIBLINEAR-4” by 2.68 points

giving it an overall F-measure that is 1.47 points less than “LIBLINEAR-4”. Note, that these two

systems have nearly identical accuracy at the conjunction level of 56.98 and 57.14 for “Berkeley-

1” and “LIBLINEAR-4”, respectively. These results together show that while they get about the

same number of coordination structures correct and incorrect, the incorrect coordination structures

produced by “LIBLINEAR-4” have more correct conjuncts than “Berkeley-1”.

Table 6.6: Conjunct-level performance.

System P R F

Berkeley-1 76.1 71.69 73.83

LIBLINEAR-4 76.27 74.37 75.3

Integration-4 77.82 76.76 77.28

Figure 6.1 shows the conjunct-level performance for different lengths of conjuncts. Not sur-

prisingly, the coordination resolution systems have higher performance on shorter conjuncts and

that performance gets worse as the length of the conjuncts increases. However, it is interesting to

note that performance for all three systems remains relatively constant for conjuncts of length eight

through thirteen. For conjuncts of length fourteen or greater, the parser-based system performs

better. However, because the distribution of conjunct lengths is highly skewed towards shorter

conjuncts the higher performance of the parser-based system does not translate to higher over all

performance.

6.1.2 Computational Complexity

The parser-free coordination approach described in Chapter 5 runs in O(n) for a given sen-

tence where n is the number of words in a sentence. This follows straightforwardly from the

following. For every conjunction in a sentence all of the words to the left of the conjunction are

visited once by the left conjunct border classifier. Similarly, all the words to the right of the con-
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Figure 6.1: Conjunct-level performance by length. The F-measure (y-axis) is shown for different
lengths in words of conjuncts (x-axis.) For example, “Integration-4” has an F-measure of 88.87 for
conjuncts of length one. For conjunct lengths of one through four the exact F-measure is shown.
For conjunct lengths of five and greater, the shown F-measures are smoothed by averaging the F-
measure for a given length with the F-measures for the preceeding two lengths and the following two
lengths. For example, the F-measure for “Integration-4” for conjuncts of length five is 70.85. When
averaged with the F-measures for conjuncts of length three, four, six, and seven, the smoothed
F-measure is 71.76. The graph is smoothed because as the length of the conjuncts increases, the
number of conjuncts for that length decreases and correspondingly the exact F-measures fluctuate
making it difficult to visualize the overall trends in the data.
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junction are visited once by the right conjunct border classifier. Also, all of the words to the left of

the left border of the left conjunct are visited by the extra conjunct classifier. Finally, because all of

the words will be visited again for each conjunction in a sentence another term should be added to

the computational complexity. This term is technically bound by n for pathological sentences that

have coordination patterns like “A and B and C and D and E”. However, in practice the number

of conjunctions is less than the number of sentences so it is safe to leave this term out. When

the language model features are used, the probability of n-1 candidate sentences are computed.

Depending on the computational complexity of this procedure (presumably O(n2)), the extraction

of these features may dominate the overall computational complexity. However, in practice the

coordination resolution system runs only incrementally slower when the language model features

are used. In contrast, Hara et al.[18] report that their system has a computational complexity of

O(n4).

The Berkeley Parser has been shown by Cer et al.[6] to be the fastest among the most

widely used constituent parsers which include the Stanford, Charniak, Charniak-Johnson, and Bikel

parsers. Admittedly, constituent parsers do a lot more work than the parser-free approach since they

produce a deep syntactic parse which is then used here to produce coordination structures. Even

still, it is informative to compare the parser-based and parser-free approaches. Both approaches

were run against the CRAFT holdout test set ten times and timed. Time spent loading classifier

and grammar models was subtracted from the run times. The fastest and slowest times from both

systems were removed leaving eight data points for each. The parser-free approach (“LIBLINEAR-

4”) ran in average of 109.6 seconds with a standard deviation of 4.2 seconds. The parser-based

approach (“Berkeley-2”) ran in average of 810.2 seconds with a standard deviation of 4.1 seconds.

Given that there are 1,869 conjunctions in the test set, the parser-free approach resolves 17.1

conjunctions per second while the parser-based approach resolves 2.3 conjunctions per second.

Therefore, the parser-free approach was 7.4 times faster than the parser-based approach for this

task.
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6.2 Results on BIOCC Corpus

Table 6.7 shows the performance of several systems on the BIOCC corpus which is described

in detail in Section §2.2. Results are reported for both the training set and the test set. Here the

Berkeley Parser is trained on CRAFT data because BIOCC does not provide syntactic trees and so

the same grammar models are used for coordination resolution on both the training and test data.

The parser-free approach results on the training data come from ten-fold cross-validation while the

results on the test data come from models trained on the training set. The tags used for training the

Berkeley Parser on CRAFT can be either POSgold, POScraft, or POSgenia. However, because BIOCC

does not provide its own gold-standard part-of-speech tags there is no corresponding POSgold tags

to provide as input to the CRAFT-trained parser. The best performing parser-based system is

“Berkeley-2” which has an accuracy of 49.83% with a sentence failure rate of 2.5%. When the

parser is trained with POSgold or POSgenia tags and then run with POSgenia tags as input to the

parser, the accuracy drops to 43.51% and 45.50%, respectively. The performance of 49.83% for

“Berkeley-2”is 6.46 percentage points less than the accuracy of 56.29% it achieved on the CRAFT

test set.

One way that the BIOCC corpus differs from the CRAFT corpus is that the coordination

structures in the training and test sets are randomly selected. In contrast, the CRAFT corpus was

stratified by the full-text articles the coordination structures were in. As discussed in Section §2.1.1,

this characteristic of CRAFT has undesirable consequences on the ability to calculate statistical

significance because the data can not be considered i.i.d. However, it is much safer to consider

the folds in the training set and the test set to be i.i.d. and so calculating statistical signficance

is feasible. For the results in Table 6.7 the McNemar test statistic was used to test statistical

significance. In Table 6.7, each result was found to be significantly different at a 0.95 confidence

from the result in the cell directly above it except for the difference between “Berkeley-2” and

“Berkeley-1” for the test set and “SVM-2” and “LIBLINEAR-2” for the test set (the latter difference

is significant at the 0.90 confidence level.)
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Table 6.7: Performance of the parser-based and parser-free approaches on coordination resolution
on the BIOCC corpus. The performance is reported as accuracy for both the training data (using
ten-fold cross-validation) and the test data. The systems labeled “Berkeley-1”, “Berkeley-2”, and
“LIBLINEAR-4craft” were each trained on the training set of the CRAFT corpus and are therefore
directly comparable. The remaining systems were trained using BIOCC data.

System Train Test

Berkeley-1 48.14 49.28

Berkeley-2 50.09 49.83

LIBLINEAR-4craft 55.05 54.50

LIBLINEAR-1 51.80 50.38

SVM-1 52.83 52.58

LIBLINEAR-2 54.58 54.98

SVM-2 55.98 56.77
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Unlike the parser-based approach, the parser-free approach can be trained on the BIOCC

corpus. As such, it has a distinct advantage over the parser-based approach for this data. Not

surprisingly the parser-free systems “LIBLINEAR-2” and “SVM-2” do not see a large drop in

accuracy but remain approximately the same. For example, the accuracy of the “LIBLINEAR-2”

system is 55.74% on the CRAFT training data and 54.58% on the BIOCC training data, a drop

of 1.16%. However, its accuracy on the CRAFT test data is 53.88% and on the BIOCC test data

54.98%, an increase of 1.10%. Similarly, performance of the “SVM-2” system drops 1.16% on the

training data sets and increases by 1.93% on the test sets. Another interesting result from Table 6.7

is that the language model features have a larger positive impact on the BIOCC data than they

did on the CRAFT test set as measured by the difference in accuracy between “LIBLINEAR-1”

and “LIBLINEAR-2” and similarly between “SVM-1” and “SVM-2”. Here the improvement on

the test data was 4.60% and 4.19% for “LIBLINEAR-2” and “SVM-2”, respectively. In contrast

the respective improvements on the CRAFT test set were only 1.23% and 1.76%. Results for the

parser-free systems that make use of type-specific token boundary classifiers (namely, “SVM-3”,

“SVM-4”, “LIBLINEAR-3”, and “LIBLINEAR-4”) are not reported here because BIOCC does not

provide type information in the gold-standard data. However, it is possible to leverage the types

provided in the CRAFT corpus as discussed next.

While it is interesting to observe that the parser-free approach has comparable performance

on both the CRAFT and BIOCC corpora, the comparison between the parser-based and parser-

free approaches on the BIOCC data is not fair for those parser-free systems trained on the BIOCC

data. However, the system labeled “LIBLINEAR-4craft” was trained on the CRAFT training data

and then evaluated on the BIOCC training and test sets and provides a fair comparison with the

parser-based approach. “LIBLINEAR-4craft” outperforms “Berkeley-2” by 4.96% and 4.67% on the

training data and test data, respectively. This result suggests that the parser-free approach is a

more robust approach.
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6.3 Comparison with Hara et al.

In this section the parser-based and parser-free approaches presented in this dissertation are

compared with the previous state of the art on the Hara corpus which is described in Section §2.3.

The Hara corpus consists of five folds and the evaluation results are from five-fold cross-validation.

When the Berkeley Parser is evaluated on this corpus five different grammar models are created,

one for each fold that is tested. The training data for each model consists of the other four folds

plus sentences from the tested fold that do not contain coordination structures. These training

sentences were selected to be consistent with how Hara et al. trained the parser models that they

evaluated. Similarly, only POSgold tags are used for training the parser to be consistent with Hara

et al. For the Hara corpus, POSgenia tags come from a part-of-speech tagger that is trained on all

of the GENIA corpus that is not found in the Hara subset.

A slightly relaxed evaluation criteria is used here to be consistent with the results reported by

Hara et al.[18]. Instead of requiring all of the conjuncts to be correct for the coordination structure

only the left-hand boundary of the leftmost conjunct and the right boundary of the right conjunct

must be correct. In practice this makes very little difference for performance and so it is not

compared here with the stricter criteria used elsewhere throughout this dissertation. An additional

difference between this corpus and the other two examined in this chapter is that coordination

structures for the disjunction “but” are also included in the data. Performance on the disjunctive

coordination structures is very similar to that of the ones for “and” and “or” but tends to be a few

percentage points less. This small drop in performance has very little effect on overall performance

because the disjunctions account for only 6.8% of the coordination structures. Incidentally, the

conjunction “or” accounts for 9.9% of the coordination structures and “and” accounts for the

remaining 83.3%.

Table 6.8 shows the results of several systems on the Hara corpus. Consistent with the results

on the other corpora, adding the language model features (i.e. the difference between “SVM-1” and

“SVM-2” and that of “LIBLINEAR-1” and “LIBLINEAR-2”) and using type specific classifiers (i.e.
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the difference between “SVM-2” and “SVM-3” and that of “LIBLINEAR-2” and “LIBLINEAR-

3”) both improve performance. The best performing system, “SVM-3”, is 3.17% higher than the

Berkeley parser. The systems “SVM-4” and “LIBLINEAR-4” were not run on this corpus because

they are more involved to set up and based on the results from the other two corpora they are not

expected to perform much differently than “SVM-3” and “LIBLINEAR-3”, respectively.

Table 6.8: Performance of the parser-based and parser-free approaches on coordination resolution
on the Hara corpus. The system labeled “Berkeley” is the parser-based approach using the Berkeley
Parser trained on the Hara corpus using POSgold tags with POSgenia tags provided as input to the
parser.

System + − A

Berkeley 2,178 1,420 60.53

SVM-1 2,149 1,449 59.73

SVM-2 2,247 1,351 62.45

SVM-3 2,292 1,306 63.70

LIBLINEAR-1 2,103 1,495 58.45

LIBLINEAR-2 2,183 1,415 60.67

LIBLINEAR-3 2,282 1,316 63.42

Table 6.9 and Table 6.10 show results from Table 4 of Hara et al.[18] and results for the

parser-based and parser-free approaches developed in this dissertation. Table 6.9 gives results

when gold-standard part-of-speech tags are provided as input and Table 6.10 uses tagger tags. One

of the encouraging results from these data is that the parser-free approach, “SVM-3”, has the best

overall performance for both tables. The column labeled “Hara” gives the results for their system

which does not have the best performance for any coordination structure type excepting “PP”

when POSgold tags are provided and “OTHER” which only has three instances. When POSgold

tags are provided, the parser-free system “SVM-3” outperforms the Hara approach by 3.3% and

the parser-based approach “Berkeley” outperforms the Hara approach by 2.4%. When POSgenia

tags are provided, the parser-free system “SVM-3” outperforms the Hara approach by 6.2% and

the parser-based approach “Berkeley” outperforms the Hara approach by 3.2%. It should be noted

that the part-of-speech tags used by the Hara approach for these results were those produced by
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the Charniak-Johnson parser and so differences in the quality of the produced tags may account

for some of the difference in performance.

One of the surprising results from Table 6.9 and Table 6.10 is the disparity in performance be-

tween the Berkeley Parser and the two parsers examined by Hara et al.: the Bikel-Collins Parser and

the Charniak-Johnson Parser. Table 6.9 shows the Berkeley Parser outperforming the Charniak-

Johnson Parser by 11.8 percentage points and, similarly, Table 6.10 shows the Berkeley Parser

outperforming the Bikel-Collins Parser by 7.6 percentage points. These results are surprising be-

cause a number of studies (c.f. [6]) have shown that these three parsers perform at very similar

levels when evaluated on parsing accuracy. A probable explanation for this discrepancy when they

are evaluated on the coordination resolution task is that Hara et al. made a poor assumption about

how best to apply the parsers to the task of coordination resolution. In the GENIA corpus, parent

nodes of coordination structures are marked with the label “COOD”. Hara et al. used these markers

to update the syntactic categories of those nodes with the suffix “-COOD”. The parsers were then

trained with these modified node types and expected to learn these modified syntactic categories

directly. In contrast, the parser-based approach taken with the Berkeley Parser (as described in

Section §5.1) does not use the “COOD” labels but rather trains the parsers using the unmodified

treebank data. The parses produced by the Berkeley Parser were then used to create coordination

structures using the coordination structure production algorithm. Initial experiments with running

the Berkeley Parser using the training method used by Hara et al. suggest that performance drops

considerably using that approach for that parser. Therefore, an area of further research would be

to apply these other parsers to the coordination resolution task using the coordination structure

production algorithm.

6.4 Conclusions

In this chapter the parser-free approach was shown to perform at the same level as the parser-

based approach on the CRAFT test data and the integration of the two approaches provided a

further increase in performance. In contrast, the parser-free approach performed better on the
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Table 6.9: Performance of the Berkeley Parser and the parser-free system compared with Hara et
al. results using POSgold tags. For each system, training was performed using POSgold tags and
POSgold tags were provided as input to the respective coordination resolution approaches. The
columns labeled “Hara” and “BC” give the respective performance of the Hara system and the
Bikel-Collins parser. These results are taken directly from Table 4 of Hara et al[18].

Type Count Hara BC Berkeley SVM-3

NP 2317 64.2 45.5 62.1 67.2

VP 465 54.2 67.7 62.2 62.4

ADJP 321 80.4 66.4 81.3 81.0

S 188 22.9 67.0 67.0 18.1

PP 167 59.9 53.3 55.7 59.9

UCP 60 36.7 18.3 36.7 46.7

SBAR 56 51.8 85.7 87.5 75.0

ADVP 21 85.7 90.5 90.5 95.2

Others 3 66.7 33.3 0.0 33.3

Total 3598 61.5 52.1 63.9 64.8

BIOCC and Hara corpora than the parser-based approach. Furthermore, the parser-free approach

outperformed the Hara approach which was the previous state-of-the-art for coordination resolution

in the biomedical domain. Also, it was shown that the parser-free approach was more than seven

times faster than the parser-based approach.
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Table 6.10: Performance of the Berkeley Parser and the parser-free system compared with Hara et
al. results using POSgenia tags. For each system, training was performed using POSgold tags and
POSgenia tags were provided as input to the respective coordination resolution approaches. The
columns labeled “Hara” and “CJ” give the respective performance of the Hara system and the
Charniak-Johnson parser. These results are taken directly from Table 4 of Hara et al[18].

Type Count Hara CJ Berkeley SVM-3

NP 2317 62.5 50.1 59.6 66.6

VP 465 42.6 61.9 56.1 57.9

ADJP 321 76.3 48.6 74.8 81.9

S 188 15.4 63.3 66.5 17.6

PP 167 53.9 58.1 52.7 58.7

UCP 60 38.3 26.7 31.7 40.0

SBAR 56 33.9 83.9 80.4 73.2

ADVP 21 85.7 90.5 85.7 100.0

Others 3 33.3 0.0 0.0 33.3

Total 3598 57.5 52.9 60.5 63.7



Chapter 7

Discussion

In Chapter 2 the three corpora used for training and evaluation throughout this dissertation

were described. One salient characteristic of all three corpora is the wide diversity of coordination

structures they contain. It was shown that coordination structures differ with respect to syntac-

tic type, number of conjuncts, and length of conjuncts. This diversity speaks to the difficulty

of performing coordination resolution accurately. While the specific parser-based and parser-free

approaches developed in this research have pushed forward the state-of-the-art on this task, there

remains a fairly large gulf between the reported performance results of automated coordination

resolution and how consistently humans can perform this task. For the BIOCC corpus, the highest

performing system acheived an accuracy of 56.77%. In contrast, inter-annotator agreement was

83.61%. Agreement between individual annotators and the adjudicated coordinations structures

was as high as 94.26%. These results indicate that it may be possible for machines to improve

significantly over the results presented in this dissertation. This chapter discusses the challenges

that remain for computational approaches to match the performance of humans and gives recom-

mendations for future work on this task. Finally, the significance of this work and conclusions are

presented.

7.1 Multiple Sources of Structural Ambiguity

The structural ambiguity introduced by coordination phenomena competes, in a sense, with

several other kinds of structural ambiguity such as prepositional phrase attachment and modifier
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scope. Consider, for example, the following two sentences:

• The targeting construct was linearized with NotI and electroporated into CJ7 ES cells.

• . . . and thus difficult to digitize and compile into a standardized and integratable format.

Both examples end with a prepositional phrase beginning with the word “into”. In the first example,

the prepositional phrase belongs to the second conjunct but in the second example, the prepositional

phrase is not part of a conjunct because it modifies both “digitize” and “compile”. Similarly, in

Section §6.1.1 it was discussed that a number of observed errors related to modifier scope. The

following example was given to illustrate this problem:

• . . . muscle precursor cell migration and differentiation . . .

• . . . muscle precursor cell migration and differentiation . . .

Here, the incorrect coordination structure produced by the parser-free approach is followed

by the gold-standard coordination structure. There are plenty of examples in the gold-standard

data that look syntactically similar to the incorrect coordination structure given above. Here is

one example:

• . . . primordial germ cells and spermatogonia . . .

The above examples suggest that focused attention on these sources of structural ambiguity,

i.e. prepositional phrase attachment and noun modification, could benefit the coordination resolu-

tion task and may point to ways in which they may be resolved together. It should be possible,

for example, to isolate prepositional phrase attachment into a separate subtask such that only

prepositional phrases and the constituents that they modify are identified. This would facilitate a

comparison between a parser-based approach and any number of possible parser-free approaches

which would likely lead to insights on how to tackle this task analogous to those discovered in this

dissertation for coordination. The new insights on how to resolve prepositional phrase attachment

could then, hopefully, be used to by a parser to better handle examples like the “into” example

above.
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7.2 Integrated Approaches

The three paradigms for coordination resolution that were discussed in this dissertation were

the parser-based approach which uses the Berkeley Parser which learns probabilistic context-free

grammars from treebank data (see Section §5.1), the parser-free approach which uses conjunct

boundary classifiers (see Section §5.3), and the Hara approach which uses sequence alignment on a

weighted edit graph (see Section §1.1.4). All three of these approaches make use of machine learning

techniques which produce some notion of a probability or confidence score. More sophisticated ways

of integrating these three approaches could be explored that leverage the produced probabilities or

scores. For example, one could train a classifier that uses these scores as features for classification

of conjunct candidates produced by these three different approaches. Alternatively, it may be

possible to improve the integrated approach found in Section §5.4 by, for example, first running

the parser-based approach followed by the Hara approach, followed by the parser-free approach

and experimenting with different thresholds of confidence for the produced coordination structures

to determine which approach’s coordination structure should be used. Another possible approach

is to extend a syntactic parser such that it can accept and work with coordination structures

produced by the parser-free or Hara approach. Again, by using the confidence scores produced by

these two approaches only high quality coordination structures could be handed over to the parser.

This might not only improve the coordination resolution of the parser but improve overall parsing

performance.

7.3 Feature Selection

A better exploration of existing and new features may prove to be an effective way to improve

performance of the parser-free approach. For starters, a more rigorous exploration of the existing

lexical features may point towards a better performing combination of the features than were given

in Table 5.2. Similarly, a feature that uses the output of the type classifier could be evaluated.

This may prove more effective than using the classified types to triage instances to different sets
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of type-specific classifiers as was done in Section §5.3.4. Similarly, there are a number of different

ways to experiment with language model features that were not extensively explored. For example,

all of the language models were built with 4-grams. Experiments with bigram- and trigram-based

models might also prove fruitful. In Section §3.2.2 it was mentioned that a number of alternative

approaches for leveraging language model probabilities were examined. For example, normalizing

for candidate sentence length by dividing by the number of words was found to perform worse than

adding in the probability of the candidate conjunction. However, there are a number of alternative

normalization schemes that could also be tried. One common approach is to look at the changes

in perplexity between words in a sequence and penalize for large fluctuations. Another approach

for leveraging language model probabilities that was examined involved the comparison of n-gram

phrases derived from the candidate conjuncts rather than entire candidate sentences. Another

strategy for improving the language model derived features is to experiment with additional word-

level features that are used to build the language model. In this dissertation only word stems,

part-of-speech tags, and sentence boundary markers were explored. However, the SRILM toolkit

allows for the use of arbitrary features to be added to the model. One potentially useful feature

that could be added to the language models are word dependency relationships derived from a

dependency parser. Another possible research direction for language model derived features is to

look at “micro” models derived from the text of the document the target conjunction is found in.

It may be possible to build, for example, a bigram model using only the text of the document

that it is found in or documents that have been clustered together with the current document. All

of these possible ways to experiment with ways to improve the language model suggest that such

research would likely uncover an approach that performs better on the target metric used here,

overall average rank percentile. However, it might also prove fruitful to add many language model

derived features to the conjunct boundary classification models rather than only using one.

As discussed in Section §4.2.3, the graph-based semantic similarity features were shown to

give a very small improvement for F-measure on the one-word conjunct pair classification task. One

likely reason this technique may not have been more effective may be due to the poor coverage of
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the underlying resources (i.e. WordNet and the UMLS) for the words being classified. Therefore,

using semantic similarity metrics that are based on distributional statistics of words may prove to

be more effective because, presumably, the coverage would be better. However, widening the notion

of “similarity” to that of “relatedness” may also prove to be an effective strategy for discovering

better features for coordination resolution. For example, an OWCP such as “age and gender”

shows two words that are clearly related but not necessarily similar. The resolution of one-word

conjunct pairs as discussed in Chapter 4 provides a good task for evaluating different semantic

similarity and semantic relatedness metrics that are either graph-based and/or distributional. One

can imagine that extensive experimentation along these lines would likely produce effective features

for coordination resolution and may also yield give additional insights into coordination as well.

7.4 Significance

This work has narrowly focused on the task of automated coordination resolution as an in-

teresting and challenging problem in and of itself. However, performant coordination resolution

is of little interest as a stand-alone application and is really of practical interest only as it relates

to “downstream” processing such as information extraction tasks. There are two means by which

information extraction may benefit from better coordination resolution. The first is that better

coordination resolution could be leveraged to improve syntactic parsing performance. Information

extraction systems that use a syntactic parser may then benefit simply due to improved results from

the parser. However, given a high-quality and fast coordination resolution solution, information

extraction systems may be refactored to make direct use of produced coordination structures. For

example, Cohen et al.[12] describe a high-precision information extraction system that leverages

coordination structures directly. They demonstrate that using a parser-based coordination reso-

lution approach to provide coordination structures to their protein-protein interaction recognition

system resulted in a significant performance boost from an overall F-measure of 24.7 to 27.6.
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7.4.1 Porting Coordination Resolution to a New Domain

It is interesting to contrast the amount of effort required to annotate the BIOCC corpus

versus the CRAFT corpus. The BIOCC corpus was annotated with a very simple annotation

scheme and takes a few hours to train a domain expert (e.g. a biologist) with little or no linguistics

background how to perform the task consistently. The CRAFT corpus, in contrast, is annotated

with a very rich annotation scheme that facilitates representation of deep syntactic analysis of

a sentence. Furthermore, the work must be performed by a highly trained annotator with an

extensive background in linguistics in addition to exposure to the subject domain of the texts. It

is a reasonable hypothesis that the annotation speed of directly annotating coordination structures

(as was done for BIOCC) is much faster than annotating syntactic trees (as was done for CRAFT.)

These observations suggest that porting the parser-free approach to a different domain such as

clinical notes or legal documents should be much easier than for the parser-based approach because

creating new training data is much easier and less expensive. Furthermore, if a syntactic parser

were developed or extended to make use of coordination structures as input, then an aternative

path for porting a syntactic parser to a new domain presents itself. That is, a syntactic parser

could be trained on data that is already available (e.g. CRAFT) and ported to another domain

(e.g. the medical domain) by using coordination structures produced by a parser-free coordination

resolution system ported to that domain by means of directly annotating coordination structures

in texts of that domain and training on those structures. In a similar vein, the annotation of

coordination structures by domain experts may be a means for improving syntactic annotation in

a new domain when resources allow for both. That is, syntactic annotation quality might improve

if the Linguists who are performing the syntactic annotation are given coordination structures

annotated by domain experts.
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7.5 Conclusions

As discussed in Section §1.1 the task of coordination resolution has not received the focused

attention that it deserves. This research has shown that by focusing directly on this task, per-

formance can be improved and insights on the phenomena can be gained. A simple, fast, and

accurate alorithm for coordination resolution was presented that advances the state-of-the-art for

coordination resolution. This chapter has proposed future research directions for this task.

- talk about DDNs - talk about distributional approaches for semantic similarity - talk about

cotraining / semi-supervised approaches - google n-gram approach
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parsing using spanning tree algorithms. In HLT ’05: Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Processing, pages 523–530,
Morristown, NJ, USA, 2005. Association for Computational Linguistics.

[33] Preslav Nakov and Marti Hearst. Using the web as an implicit training set: Application to
structural ambiguity resolution. In Proceedings of Human Language Technology Conference
and Conference on Empirical Methods in Natural Language Processing, pages 835–842, Van-
couver, British Columbia, Canada, October 2005. Association for Computational Linguistics.

[34] Jens Nilsson, Joakim Nivre, and Johan Hall. Graph transformations in data-driven dependency
parsing. In Proceedings of the 21st International Conference on Computational Linguistics and
44th Annual Meeting of the Association for Computational Linguistics, pages 257–264, Sydney,
Australia, July 2006. Association for Computational Linguistics.

[35] J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kübler, S. Marinov, and E. Marsi.
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