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The design of supersonic and hypersonic aerospace vehicles is by nature a multi-disciplinary

problem requiring the close integration of compressible fluid dynamics, heat transfer, and struc-

tural dynamics. The transient flow around the body must be accurately characterized in order to

assess its affect on the thermal and structural responses; conversely, the thermal and structural

behavior may significantly alter the aerodynamic performance. The core of this dissertation effort

is concerned with the development and demonstration of an analysis and design capability for the

aerothermoelastic behavior of high-speed aerospace vehicles. This nominally involves coupling of

the compressible Navier-Stokes equations for the fluid dynamics, the transient heat equation for the

thermal response, and the elastodynamic equations for the structural dynamics. The streamline

upwind Petrov-Galerkin (SUPG) stabilized finite element method is used for solving the compress-

ible flow problem. Both a standard Galerkin and stabilized Galerkin gradient least squares (GGLS)

finite element method are utilized for solving the heat equation, and a standard Galerkin method

is used for solving the elastodynamic equations. The transient and steady-state responses of a

problem are determined via a single, simultaneously coupled nonlinear system, thus bypassing ac-

curacy and stability issues of classical staggered multi-physics coupling strategies. A gradient-based

optimization framework is developed for designing transient coupled aerothermoelastic systems via

adjoint-based sensitivity analysis. This framework is used to optimize the design of a structure in

regard to thermal and structural performance. The efforts of this thesis have yielded a state-of-

the-art approach for coupled aerothermoelastic analysis and design optimization.
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Chapter 1

Introduction

1.1 High-Fidelity Aerothermoelastic Analysis of High-Speed Vehicles

The design of modern aerospace structures that are capable of flying at hypersonic speeds

requires not only careful analysis of the relevant individual physical phenomena, for instance the

compressible fluid flow around the body, heat transfer through it, and the structural response,

but also necessitates special consideration of the interplay between them. Examples of real-world

aerospace structures requiring multi-disciplinary design treatment are that of supersonic aircraft

and both blunt and slender body atmospheric re-entry vehicles. For these structures the interplay of

the aerodynamics, heat transfer, and structural dynamics simply cannot be ignored. The objective

of this dissertation is to develop a tightly coupled aerothermoelastic computational analysis and

design methodology, and to demonstrate its uses and advances for solving problems relating to

transient high-speed flight conditions. Towards this end, this work utilizes the finite element method

for solving the compressible viscous flow, heat transfer, and structural response problems in a

coupled fashion, and uses numerical optimization techniques to demonstrate the design potential

of these methods.

Much effort has gone into the development of analysis tools for specific disciplines. For

example, the use of computational fluid dynamics to estimate the drag of a complete aircraft is now

a routine calculation performed by many organizations [2]. Likewise, the practice of computational

structural dynamics is a commonplace activity in nearly every aerospace engineering organization.

Traditionally though, these methods are used almost exclusively as stand alone analysis tools,
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which assume loads and boundary conditions that crudely represent the physical affects of another

interacting field. This has led to the so-called “throw it over the wall” analysis and design approach

where individual disciplines are solved with minimal interaction between one another. Clearly,

this method of analysis is highly modular and easy to implement but this comes at the expense

of solution fidelity, especially for transient and/or highly coupled physical phenomena such as

aeroelastic or aeroheating problems.

Due to the deficiencies of the aforementioned design process, efforts have been made to

improve upon computational methods for coupled systems and in particular we focus here on

coupled aerodynamics problems. For instance, advances to the state-of-the art have been made by

Farhat and coworkers [40] for coupled transient aeroelastic problems, Tran et al. [140] worked on

coupled aerothermoelasticity, Hassan et al. [51, 52] have developed a simulation tool for transient

aeroheating and ablation problems along with similar work by Candler [26] and Martin and Boyd

[103]. There are two predominant themes which these efforts all share and where this dissertation

work makes a departure from the status quo for aeroheating and aerothermoelastic simulations:

the choice of flow solver and the choice of coupling strategy.

1.1.1 Compressible Flow Solver

Each of the previously mentioned efforts all use a finite volume method for solution of the

flow problem. This choice is with good reason as the de facto standard in modern computational

methods for compressible gas dynamics is the finite volume method. Numerous commercial (e.g.

Fluent [77]), government (e.g. DPLR [131]), and academic (e.g. AERO-F [42]) codes exist for

solving such flow problems, all which utilize the finite volume method. While the finite element

method has been employed and used almost exclusively for heat transfer and structural dynamics

problems (such as in ABAQUS [73], ANSYS [76], and NASTRAN [31]) it has also been successfully

applied (in a stabilized form) to solve compressible flow problems [136, 137, 71, 125, 4, 70]. Though

the stabilized finite element method has not gained as much popularity as the finite volume method,

several promising developments have clearly demonstrated its applicability for high speed, shock
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dominated flows. In particular, Chalot [28] applied it to solve reacting hypersonic flows in chemical

equilibrium, Tezduyar et al [138] have developed new shock capturing techniques, and Kirk [85]

and Bova [23] have highlighted several improvements to the basic formulation.

Due to the successes of the stabilized finite element method for high-speed flows, this work has

adopted and implemented the streamline-upwind Petrov-Galerkin (SUPG) finite element formation

for solving compressible gas dynamics problems. It should also be noted that discontinuous Galerkin

methods are another popular class of finite element based methods for fluid flow problems and have

been successfully used for compressible flows (see for instance [12, 14]). While this decision diverges

from the popular choice of a finite volume solver, it was also a strategic decision as discussed next.

1.1.2 Coupling Strategy

The other predominant similarity between the previously listed multi-disciplinary analysis

efforts is their choice of how they couple the individual disciplines. All of these works use what is

referred to by Felippa [45] and Farhat [43, 44] as a partitioned or staggered coupling strategy. Cou-

pling is achieved by sequentially advancing one physical problem in time, passing relevant boundary

conditions back to another physical problem and advancing it in time, and then passing results and

boundary conditions from the second problem to the first and continuing on in this fashion. Farhat

[40] and Tran [140] provide clear schematics for staggered aeroelasticity and aerothermoelasticity

while Hassan et al. [52] show a staggered coupling flow chart for transient ablation and aeroheating

along a flight trajectory.

The primary reason the partitioned coupled approach has been so popular is that it easily

facilitates coupling by integrating existing but often separate analysis codes. As previously men-

tioned, the finite volume method is primarily used to solve compressible fluid dynamics problems

while the finite element method is typically used for heat transfer and structural dynamics. His-

torically and with few exceptions, the analysis capabilities are encapsulated in separate codes since

they use different spatial discretization methods. In fact, it is not uncommon for the heat transfer

and structural dynamics solvers (which usually both use the finite element method) to be contained
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in different software packages. Hence, the idea of partitioned coupling is a natural one due to the

modular nature of most analysis codes.

The partitioned coupled approach, however, has a few common pitfalls that are not easily

avoided. The first is accuracy and implicitness. The partitioned coupled approach is, to some

extent, just an automated “throw it over the wall” procedure, and since lines are drawn according

to which code solves which discipline important interactions may be neglected. For instance, when

an chemically ablating material encounters a chemically reacting flow the chemical species from the

two will most likely be continuously interacting. With the partitioned coupling strategy though, as

one discipline is advances in time the other(s) remain behind in time, thus it is much more difficult

to achieve a truly implicit scheme as the equations are satisfied using solution information at an

old time level. This problem is lessened by reducing the time step, but the main advantage of

using an implicit method in the first place was being able to take large time steps afforded by the

unconditional stability of an implicit scheme. While it is possible to achieve a partitioned coupling

strategy that is second order accurate and unconditionally stable, it is far more difficult than for

monolithically coupled schemes.

The idea of the partitioned coupling method has also led to the sometimes controversial term

“multi-physics” simulation. Some may argue that there are not multiple physics in the sense that

the Navier-Stokes equations governing fluid flow are somehow different from the heat equation or

the elastodynamic equation. Rather, these are equations which all obey the same laws of physics

such as conservation of mass, momentum, and energy. Along this vain of thought, one can easily

argue that it may not make sense that the energy equation for fluid flow is solved separately from

the energy equation for the heat transfer in aeroheating problems, or that the momentum equation

for fluid flow is solved separately from the momentum equation for structural dynamics. In the

interacting system, mass, momentum, and energy must be conserved at each point in time so why

pull the equations apart and satisfy them separately (as the partitioned approach does)? As a

result, the coupling strategy in this thesis differs from the partitioned approach by handling all of

the governing equations in a single nonlinear system. This leads to a dilemma which was already
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encountered. In order to solve the conservation equations coupled across fluid and solid boundaries,

a code is needed that is capable of delivering those equations into a single time integration method

and a single nonlinear system solver. Most simulation codes typically focus on solving a single

problem type and thus are not designed to solve the equations across fluid and solid boundaries

simultaneously – the work contained herein addresses this shortcoming.

1.1.3 Additional Comments

The decision to use the finite element method in this work to discretize the equations for

fluid flow, heat transfer, and structural response was made to better facilitate the one code, one

nonlinear system philosophy. Certainly, it is in the realm of possibility to follow this philosophy

and still discretize the equations partially with a finite volume method and the rest with a finite

element method; however, maintaining a consistent discretization approach has its benefits in terms

of implementation simplicity. While the finite volume method has been applied to solving the heat

and elasticity equations, it has seen little acceptance by the computational mechanics community

for these purposes.

A comment must also be made in regards to the “high-fidelity” term used in the title of

this section. There are many computational techniques from which an engineer has to choose from

to perform an analysis or simulation of a real-world event. Many of these tools are regarded as

approximation methods, which make rather significant assumptions or neglect important portions

of the physics that are being simulated. Examples of such techniques are lattice vortex methods

and boundary layer approximation codes for compressible gas dynamics or one-dimensional heat

transfer codes applied to multi-dimensional problems. This is not to suggest that these codes are

inaccurate or inferior when applied to the appropriate problem, but it is up to the engineer to decide

what assumptions are appropriate and which part of the physics are negligible. The methods used

in this thesis fall under the category referred to by the computational mechanics community as

“high-fidelity” because every attempt is made to discretize the governing equation in its entirety

and by a method which exhibits at least second-order accuracy in space and at least second-order



6

accuracy in time for transient problems.

1.2 Design Optimization for Aerothermoelastic Problems

Design optimization for aerodynamic problems has been a field of intense research for over

30 years, highlighted by the pioneering work of Jameson [80]. Yet analysis for design purposes,

especially aerodynamic analysis, is most useful when coupled with the response of the structure.

Maute [105] and Martins [104] published notable efforts for aerostructural shape optimization in

the context of inviscid flows at steady-state conditions. Few published efforts have been made to

perform steady-state aeroheating or aerothermoelastic optimization. Since the transient behavior

of aeroheating and aerothermoelasticity is often of primary interest, steady-state studies offer only

limited insight. Furthermore, the concept of design optimization over a transient time period has

seen little development, though a very notable exception has been recently presented [110]. Almost

without doubt, the combination of transient shape optimization for aerothermal or aerothermoe-

lastic problems is an exciting area of exploration.

Motivated by the potential for design improvements of high-speed aerospace structures, one

of the objectives of this work is to begin exploring the area of transient design optimization. Given

the complex nature of the interactions which exist in problems where high-speed flow is coupled

with thermal and elastic response of a structure, the need for a mathematically rigorous method

for navigating this design space is large. As opposed to steady-state behavior, transient responses

may lead to hard to find or non-intuitive designs especially in the context of atmospheric re-entry

heating. For example, it is a well known fact that the bluntedness of a body flying at supersonic

speeds will effect the strength of the bow shock wave and hence the amount of drag and heating

the body will experience. This is clearly evident in the design of manned re-entry capsules, which

are extremely blunted to increase wave drag and reduce heating, and the design of slender body

re-entry vehicles used for military purposes where a premium is placed on decreased drag at the

expense of increased heating.

Given the transient nature of a re-entry problem, finding an optimal design that leads to
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desired drag, heating, and structural dynamics characteristics is difficult at best, even for seasoned

engineers. This thesis aims at demonstrating such a computational methodology to speed this

process and help in generating more efficient structural designs. Granted that a computational tool

is no replacement for sound engineering intuition and experience, it is the hope of the author that

this effort will serve as a demonstration for the potential of this optimization technique.

One of the unique features in this thesis is the application of topology optimization methods

to design the internal material layout of a structure under transient loading. Topology optimiza-

tion is the most general of the three primary design optimization techniques (the other two being

size/parameter optimization and shape optimization) as it assumes no initial design but rather

begins from an arbitrarily defined domain inside which the optimization is to be preformed. The

concept pursued in this thesis is to use topology optimization to determine the layout of solid mate-

rial within the structure with different thermodynamic and elastodynamic properties to beneficially

alter the transient heat flow and stress conditions. Similar efforts have been made by Maute [106]

and James and Martins [79] for generating conceptual designs of wing structures under steady-state

conditions.

While shape optimization methods are useful for altering the external shape of the structure to

minimize internal heating and stresses, the absorption of thermal energy by the body is unavoidable.

Consequently, good designs in terms of heat mitigation and management must take into account

the behavior of the material within the entire volume in addition to the behavior of the material

at the surface.

A simple design concept for the interior of a structure is to consider the best layout of any two

given materials – for instance, a material with a high heat capacity and low thermal conductivity

(such as aluminum) and another material with a high density and melting point and better elastic

properties (such a high strength steel or tungsten). Taking this idea a bit further, this thesis

considers phase change effects of the materials with the added benefit of energy absorption via

the latent heat effect. Incidentally, aluminum has a particularly high latent heat and its potential

for absorbing thermal energy is quite promising. If a material is permitted to change phase the
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elastic response of the structure will undoubtedly come into question. In this case, the elastic

properties of the second material become even more important. Hence, in this effort topology

optimization is performed with both thermal and structural design criteria to ensure structural

integrity is maintained while mitigating internal heating.

1.3 Software Implementation

Software development is a necessary component of computational mechanics and unfortu-

nately many important computer science aspects are often not understood or ignored by many in

the field of computational mechanics. It is only through careful software design and leveraging

of existing software packages that a simulation code can gain the flexibility and power needed to

become a truly useful design tool. Achieving such an objective is no small feat especially within the

scope of any dissertation effort. Given this observation, the finite element code used to complete

this work was developed from the ground up (beginning in the summer of 2008) with aspirations

of becoming a flexible and high-performance general purpose design tool. Towards this end, the

object-oriented programming paradigm afforded by the C++ language has been used to try to

maximize code reuse and extensibility. Also important to this development project is the incorpo-

ration of well established software packages in order to handle common tasks most finite element

codes must perform such as mesh representation and linear equation solving. What follows is a

brief description of the third-party libraries that the code developed here interfaces with.

Mesh and Solution Data Format The Exodus mesh format [91] developed at Sandia

National Labs is used to define and read a computational grid as well as store solution data as it

becomes available during a time integration process. Exodus stores information in a binary format

and hence makes considerable performance gains in terms of storage and read/write access over

the commonly used ASCII data format. Additionally, the Nemesis extension to Exodus is used

for the purpose of representing a partitioned mesh needed for a domain decomposition parallel

processing approach. The Nemesis format simply adds subdomain connectivity information to a

collection of Exodus files. Care has been taken to ensure that the code is not dependent solely on
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Exodus, as it uses the Exodus read/write capabilities to construct its own internal mesh objects.

Hence, by providing an interface to a different mesh representation, such as that of any number of

popular commercial pre- or post-processing tools, one may easily begin to uses meshes defined in a

different format. Another advantage of using a well established mesh format such as Exodus is the

use of powerful mesh generation tools that can write directly to Exodus format. CUBIT [88] and

ICEMCFD [74] are two extremely powerful mesh generators that export directly to Exodus.

Domain Decomposition and Mesh Utilities The open-source version of the SEACAS

software [94] developed at Sandia National Labs contains tools that perform mesh manipulation.

Commonly needed mesh tasks include: domain decomposition operations (using SEACAS’ “load-

bal” and “epu”), converting an Exodus file to and from an ASCII format (using “exotxt” and

“txtexo”), interrogating an Exodus file for results information (using “grope”), comparing the re-

sults contained in two Exodus files (using “exodiff”), merging the meshes of two Exodus files (using

“gjoin”), and mapping solution data from one mesh to another (using “mapvar”). These tools help

in performing the basic tasks every user of a finite element code often needs to do. Without the

availability of this software project, the code developed here simply would not be as capable or

convenient to use.

Sparse Matrix Format Storage of sparse matrices is performed using the Epetra library

[90] or the Petsc library [96] that is included as a part of the Trilinos project [95] and Petsc project

[96] developed at Sandia National Laboratories and Argonne National Laboratory, respectively.

The code accesses Epetra and Petsc through abstract interfaces so it is not explicitly dependent

on the these classes, thus the use of another sparse matrix format may be adopted by providing

interfaces to any other sparse matrix class. The Epetra and Petsc sparse matrix classes are used

by their respective solvers, however the ability to use external classes through interfaces applies to

all of the solver capabilities listed below. Epetra and Petsc also provide a convenient means for

assembling and solving a distributed linear system in parallel. Hence, by using this sparse matrix

format, parallel solution capabilities “come for free”.
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Direct Linear Solvers The Amesos package [89] within Trilinos provides interfaces to

several external direct linear solvers such as UMFPACK [139] and SuperLU/SuperLU dist [126].

Petsc provides similar interfaces to a collection of direct linear solvers as well. Once a linear system

has been constructed with the interfaces to the appropriate linear algebra format, a direct linear

solution is easily available. In practice, the direct solvers are used for development and debugging

purposes while iterative solvers are preferred for larger, memory intensive problems.

Iterative Linear Solvers and Preconditioners The AztecOO library [87] within Trili-

nos provides several common iterative solver implementations such as a preconditioned conjugate

gradient (PCG) solver and a generalized minimum residual (GMRES) solver. AztecOO provides

many of the common iterative solver preconditioners such as a Jacobi, ILU, and ILUT precondi-

tioner. Petsc’s Krylov Subspace (KSP) package provides nearly analogous capabilities.

Nonlinear Solvers The nonlinear solver used here is a Newton-Raphson solver built into

the code base that has been developed for this thesis work. However, it is a subject of future work

to include interfaces to the NOX library [92] provided with Trilinos in order to take advantage of

its Jacobian-free Newton-Krylov nonlinear solver capabilities.

Time Integrators Three time integrators have been developed for this code to support

implicit integration of the first and second-order ordinary differential equations (ODEs) obtained

via semi-discretization of governing equations. For first-order ODEs arising from fluid and heat

transfer equations, a backward differentiation formula (BDF) scheme and the so-called Θ-scheme

are provided. For second-order ODEs arising from structural dynamic equations, a generalized-

α time integrator has been implemented. Future work will include an interface to the Rythmos

package [93] in Trilinos which provides a BDF time stepping algorithm and also capabilities for

transient adjoint integration.

Solution Visualization One of the conveniences of using a well established mesh format

is also gaining access to a number of powerful post-processing visualization tools. The Exodus

format is read directly by the freely available ParaView visualizer [78] as well as the commercially

available EnSight visualizer.
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1.4 Thesis Objectives

Any dissertation effort would not be complete without a clear picture of how the author

envisions the work contributing to the state-of-art in the research field. The following is a description

of the objectives of this dissertation, and how it fits into the overall landscape of computational

mechanics research for aerothermoelastic problems.

Compressible Fluid Dynamics Solver Development While the stabilized finite el-

ement method developed and used in this thesis is not a new contribution, its use in simulating

high-speed, tightly coupled fluid-structure interaction problems is at the forefront of this research

area. As previously described, the bulk of all similar analyses are performed with finite volume

flow solvers. The use of this discretization procedure for coupled aerothermal and aerothermoelas-

tic problems puts it along side state-of-the-art work being done concurrently by staff members at

NASA [84] and Sandia National Labs [23].

Monolithic Coupling Strategy As previously discussed in this chapter, the single non-

linear system approach to coupling equations is a departure to the well established approach of

partitioned coupling. This work that has been conceived independently from but parallel to an

identical approach being used by staff at Sandia National Labs [24]. It is the opinion of the author

that the coupling strategy contained herein offers a viable alternative to the partitioned or stag-

gered coupling approaches that is a truly tightly coupled implicit scheme for solving aeroheating

and aerothermoelastic problems.

Transient Design Optimization for Aerothermoelastic Problems This contribution

is made to an area that is quite unique and relatively unexplored. Transient optimization using

adjoint sensitivity analysis is an emerging research area, see for example [110], and its application

to topology optimization has seen few developments. Undoubtedly, the use of transient adjoint

sensitivity techniques using topology optimization for structural design of aerothermoelastic prob-

lems is an untouched application of these methods. This thesis demonstrates the promise of this

approach.



12

The transient adjoint sensitivity analysis methods developed and used in this thesis effort

may also be applied to several other classes of contemporary and emerging research interests.

Uncertainty quantification and error estimation techniques also make use of adjoint sensitivity

analysis, and as such, the methods developed herein could be directly applied to these techniques.

Extensible Platform for Multi-Disciplinary Analysis and Optimization

Another outcome of this thesis work is the development of a software tool that will hopefully prove

to allow easy extension and modification for incorporating new capabilities. Every effort has been

made to use sound software engineering practices and mature external packages with the intent of

leveraging capabilities where ever possible.

1.5 Thesis Organization

Stated briefly, the remainder of this thesis is organized in the following manner: we begin with

a description of the methods used to analyze fluid, thermal, and structural response, then discuss

coupling of the fields, numerical optimization, and transient design optimization, and finally make

concluding remarks. A slightly more in-depth summary of the objectives of each chapter is now

described.

Chapter 2 discusses the stabilized finite element formulation used to solve the compress-

ible fluid dynamics problems in this thesis. In particular, the Navier-Stokes governing equations

and streamline-upwind Petrov-Galerkin finite element discretization are presented. In order to

accommodate moving boundary problems, the spatially discretized form is cast into an arbitrary

Lagrangian-Eulerian formulation which is then discussed along with both a first and second order

accurate backward difference scheme for time integrating the resulting semi-discrete equations. This

chapter is concluded with several numerical example problems which highlight the performance of

the implementation for solving representative fluid flow problems demonstrated later on in this

thesis.

Standard Galerkin and Galerkin gradient least squares stabilized finite element methods used

for solving the transient heat equation are the subject of Chapter 3. Methods for accounting for
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phase change and ablation are presented as needed for the later chapter on design optimization

are discussed. Again, an arbitrary Lagrangian-Eulerian formulation is used to account for moving

boundary problems, and a “Θ-scheme” time integration method used for solving the transient

problem is presented. Numerical examples are then presented which demonstrate the transient

heat transfer capabilities.

Chapter 4 presents the standard Galerkin implementation for structural dynamics problems

and thermoelastic implementation used to simultaneously simulate the coupled structural and ther-

mal response as needed for aerothermoelastic optimization. The generalized alpha class of Newmark

time integrators is presented along with several numerical problems that display coupled thermoe-

lastic simulation.

Chapter 5 considers the tightly coupled simulation strategy adopted in this thesis effort. Two

methods of coupling the equations across interfaces were initially considered for this work. One,

simply called the “residual based” coupling method, acts directly on the residual equations and

is based on a similar scheme developed at Sandia National Labs [24]. Another common coupling

method is a weak formulation approach such as a mortar method, which has advantage of coupling

non-matching, non-contiguous meshes. The residual based approach was adopted for its simplicity

and ease of implementation. Numerical examples are presented which use these methods to couple

the compressible fluid dynamics equations to the heat and elasticity equations.

Chapter 6 is merely a background and theory chapter on general design optimization pro-

cedures. The formulation of an arbitrary nonlinear constrained optimization problem is presented

along with sensitivity equations and solution via two popular nonlinear optimization algorithms.

Transient topology optimization is then considered in Chapter 7. A transient adjoint based

sensitivity analysis method is described and applied to design the internal material layout of a

structure to meet its structural and thermal optimization criteria

Chapter 8 concludes this thesis by summarizing the analysis and design procedures devel-

oped and implemented to complete the work contained herein. Statements are made to recap the

contributions of this thesis toward advancing the state-of-the-art in the field, and the chapter will
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end with a discussion of future work to be performed.



Chapter 2

Compressible Computational Fluid Dynamics

2.1 Introduction

The intent of this chapter is to discuss the governing equations, discretization, and solution

of compressible fluid flow problems. In this work, the solution of the partial differential equations

(PDEs) of supersonic flows for problems with moving boundaries is the primary concern. Sev-

eral numerical example problems are presented that demonstrate the finite element based solution

capabilities developed herein to complete the studies contained later on in this thesis.

In the context of computational fluid dynamics, several numerical procedures exist for solving

the governing PDEs of fluid flow. Namely, finite difference, finite volume, and finite element

techniques are commonly employed to solve such equations. Each of these methods may be viewed,

to some extent, as a variation of each other as they each have the end goal of producing a discrete

representation of the original PDE on a computational mesh. Also common amongst the methods

described below is the concept of numerical upwinding which is needed to eliminate non-physical

solution behavior that results from discrete difference approximations inherent to each of these

schemes.

Finite Difference Methods Finite difference methods are the oldest of the three PDE

discretization methods mentioned above and are conceptually the most straightforward. Finite dif-

ferences employ a direct discretization of the governing equations by replacing difference terms with

approximate finite difference formulas such as forward, backward, or central difference schemes. Fi-

nite differences have the benefit of ease of implementation but are often limited to simple geometries
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since structured meshes are necessary for finite difference solutions. The Lax-Wendroff [98] and

MacCormack [101] methods are two of the most popular finite difference schemes for solving the

PDEs arising from supersonic flows. While finite difference techniques are mature, useful methods,

they are not currently a heavily active area of research as some of the newer methods offer greater

promise for addressing the difficulty of solving complex flow problems.

Finite Volume Methods Finite volume methods were first introduced by MacCormack

and Paullay [102] and have since enjoyed widespread acceptance for solving compressible as well

as incompressible flow problems. These methods center around integrating the flux terms of the

PDE over a control volume. As opposed to the finite difference method, finite volume methods

can more easily account for arbitrary geometries through the use of unstructured meshes. While a

large majority of fluid flow solvers utilize the finite volume discretization, this was not the method

of choice for reasons that will become more apparent later on in this document.

Finite Element Methods The finite element method was conceived in the 1950s with one

of the first publications on the topic attributed to Turner, Clough, Martin and Topp [141] for use in

structural engineering applications. It has subsequently been applied to problems in heat transfer,

fluid flow, acoustics, and electromagnetics with great success and has since become one of the most

widely use methods for solving engineering problems of all types. In regards to compressible fluid

dynamics, the streamline upwind Petrov-Galerkin (SUPG) stabilized finite element method was

developed by Hughes and Tezduyar [71] in the early 1980s to provide the numerical upwinding

needed to produce non-oscillatory solutions for advection dominated flows. Further efforts yielded

the Galerkin least-squares method [63], the Taylor-Galerkin method [34, 100], and more recently

the discontinuous Galerkin method [13, 12, 14, 33] for compressible fluid flow.

The SUPG stabilized finite element method was chosen for solving the compressible fluid flow

problems in this thesis. This chapter will discuss the salient features of the SUPG formulation for

laminar compressible flows, as well as present several numerical example problems that highlight

the capabilities of its implementation.
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2.2 Navier-Stokes Equations

The Navier-Stokes equations govern the flow of a viscous fluid and represent the conservation

of mass, momentum, and energy [9, 135]. The Navier-Stokes equations are often divided into two

distinct forms, one governing the behavior of an incompressible fluid and the other governing the

behavior of a compressible fluid. When the fluid exhibits little compressibility effects (e.g. a liquid)

or the fluid is a gas with a relatively low flow velocity, it may be treated as incompressible. In

the case of gas dynamics, a fluid moving at a speed roughly greater than three-tenths the speed of

sound (M∞ > 0.3 ) is generally treated as a compressible fluid. Most aerospace applications involve

compressible flows so only the compressible form of the Navier-Stokes equations will be considered

from this point forward.

The compressible flow regime is often categorized in the follow manner. Subsonic flows occur

when M∞ < 1.0. Transonic flows occur in the vicinity of M∞ = 1.0 and contain regions of

locally supersonic flow where shock waves form. Supersonic flows occur when M∞ > 1.0 and the

presence of shock waves is clearly evident. A hypersonic flow is categorized as one in which the

commonly used ideal gas assumptions break down and high-temperature effects of the gas such as

molecular vibration and chemical reactions become important. The lower Mach number bound for

a hypersonic flow is generally accepted to occur around M∞ = 5.0.

This thesis considers what is referred to herein as “high-speed” flows. This definition encom-

passes supersonic and low hypersonic flows where the formal treatment of real gas effects may be

neglected.

2.2.1 Differential Form of the Navier-Stokes Equations

The equation governing the conservation of mass is written in differential form as

∂ρ

∂t
+
∂(ρvi)
∂xi

= Sc (2.1)

where t and xi represent time and the spatial coordinates, ρ is the density of the fluid, vi is the

fluid velocity in the spatial directions, and Sc accounts for any mass source terms (e.g. a mass flux
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at a boundary or a mass source over a volume). In the equations presented in this chapter, index

notation is implied for i, j, k = 1, . . . , nsd where nsd represents the number of spatial dimensions.

The mass conservation equation states that the time rate of change of the mass and the divergence

of the mass flux must be balanced by the source terms, if any.

The momentum conservation equations are written in differential form as

∂(ρvj)
∂t

+
∂

∂xi
(ρvivj + pδij) =

∂τij
∂xi

+ Smi (2.2)

where p is the pressure of the fluid, τij is the deviatoric, shear, or viscous stress tensor, and Smi are

momentum source terms. The viscous stress tensor, which may be represented as a combination

of the volumetric and deviatoric components (σij = −pδij + τij), is split to clearly delineate the

inviscid pressure term (−pδij) from the viscous stress term (τij). The conservation of momentum

equation states that the time rate of change of the momentum plus the divergence of the inviscid

momentum flux must be balanced by the divergence of the viscous stresses and any momentum

source terms.

Conservation of energy is written in differential form as

∂(ρE)
∂t

+
∂

∂xi
(ρEvi + pvi) =

∂(τijvj)
∂xi

− ∂qi
∂xi

+ Se (2.3)

where E is the total energy per unit mass, qi is the heat flux vector, and Se are any energy source

terms (e.g. volumetric heat sources). This equation states that the time rate of change of the

energy plus the net energy flux must be balanced by the rate of work done due to viscous forces,

heat flux, and energy sources.

The τij and qi terms in equations 2.1 – 2.3 represent the diffusive effects of the fluid. In

addition to the advection transport mechanism associated with the motion of the fluid, the fluid

has the ability to transport momentum and energy via a diffusion process. In the absence of any

diffusion, the viscous Navier-Stokes equations reduce to the so-called inviscid Euler equations which

account solely for advection. Since viscous effects are of primary concern for aerodynamic heating

problems, the Euler equations will not be further discussed.
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The viscous stress tensor requires a constitutive equation which relates the viscosity and

spatial derivatives of the velocity to the stresses. For a Newtonian fluid (i.e. one which has a linear

stress/strain relationship) the deviatoric stress tensor is often written as

τij = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
+ λδij

(
∂vk
∂xk

)
(2.4)

where µ is the viscosity and λ is the bulk viscosity of the fluid. For a Newtonian fluid the bulk

viscosity is often expressed as λ = −2µ/3.

The heat flux vector qi appearing in equation 2.3 is a measure of the thermal energy flow and

is typically written using Fourier’s law

qi = −κ ∂T

∂xi
(2.5)

where κ is the gas thermal conductivity and T is the gas temperature.

2.2.2 Vector Form of the Navier-Stokes Equations

The conservation equations 2.1 – 2.3 are often grouped into a vector form. The Navier-Stokes

equations may then be represented as

∂U

∂t
+
∂F i (U)
∂xi

− ∂Gi (U)
∂xi

− S = 0 (2.6)

where U is the vector of conservative variables, F i are inviscid fluxes, Gi are the viscous fluxes,

and S is the source term vector.

The conservative variable (or state variable) vector U in equation 2.6 is written in vector

form as

U =


ρ

ρvj

ρE

 (2.7)

where ρ is density of the fluid, ρvj are the momentum variables, and ρE denotes the density times

the total energy per unit mass. The total energy is the sum of the fluid’s internal energy e and
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kinetic energy and can be written as

E = e+
1
2

(vjvj). (2.8)

The inviscid flux vector F i is defined as

F i(U) =


ρvi

ρvivj + Pδij

ρEvi + Pvi

 (2.9)

and the viscous flux vector Gi is written by

Gi(U) =


0

τij

τijvj − qi

 . (2.10)

The source vector S accounts for any inputs to the system such as a mass flux, gravity, or chemical

reactions.

The system of equations presented in 2.6 are completed by a set of boundary conditions

b(U) = b̄(U ,x, t) on Γf (2.11)

which prescribe the values b̄ of a general nonlinear boundary condition b through time. Flux

boundary conditions may be imposed such that

F i(U) = F̄ i(U ,x, t) on Γf̄ (2.12)

and

Gi(U) = Ḡi(U ,x, t) on Γf̄ (2.13)

Additionally, the state values U must be specified at each point x as initial conditions at t = 0

U(x, t = 0) = U0(x) in Ωf (2.14)

Equation 2.6 is also often written in quasi-linear form as

∂U

∂t
+ Ai

∂U

∂xi
− ∂

∂xi

(
Kij

∂U

∂xj

)
− S = 0 (2.15)
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where Ai are the inviscid flux Jacobian matrices, which are expressed as

Ai =
∂F i

∂U
(2.16)

and Kij are diffusion matrices accounting for the effects of viscosity and thermal conductivity,

hence the viscous fluxes may be written by

Gi = Kij
∂U

∂xj
. (2.17)

For convenience, equation 2.15 may written compactly as the product of a quasi-linear operator L

and the state vector U minus any source terms S as

LU − S = 0 (2.18)

where the operator L is defined as

L ≡ ∂

∂t︸︷︷︸
Lt

+ Ai
∂

∂xi︸ ︷︷ ︸
Ladv

− ∂

∂xi

(
Kij

∂

∂xj

)
︸ ︷︷ ︸

Ldiff

. (2.19)

and Lt, Ladv, and Ldiff represent the temporal, advection, and diffusion operators.

State Variables

Many choices of state variables are possible for solving the Navier-Stokes equations (e.g.

conservation variables, primitive variables, entropy variables) and the performance of each set of

variables depends on the physics of the flow. For compressible flows, the conservation variables

are the standard variable of choice in the finite volume and finite difference communities, however,

within the finite element literature the choice of variables for solving compressible flow problems is

split between conservation and entropy variables. Hauke [53] compares the relative merits of each

choice of state variable vectors and draws conclusions on the effectiveness of each set. Shakib [124]

successfully employed entropy variables for compressible flow applications ranging from subsonic

to supersonic while Chalot [28] demonstrated the effectiveness of entropy variables for equilibrium

chemically reacting flow problems. Le Beau [15] showed that conservation and entropy variables

produce results with indistinguishable differences for inviscid flows. Aliabadi [3] was among the
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first to demonstrate the use of conservation variables for viscous laminar flows. In this work,

conservation variables have been chosen and will be used throughout.

2.2.3 Boundary Conditions for Supersonic Viscous Flow Problems

Appropriate treatment of the boundary conditions for supersonic compressible flows is needed

to uniquely define the problem and its solution. For external viscous flow problems the domain

boundaries can be divided into three distinct regions: the inflow, wall, and outflow boundary. Each

of the boundary condition types will be considered next.

Supersonic Inflow Boundary A supersonic inflow boundary specifies all components of

the state vector U as Dirichlet boundary conditions. The mathematical reasoning for this is nicely

described by Donea [35] and has to do with the fact that all the characteristic lines of the flow

(for supersonic flow the characteristic lines are Mach lines) are entering the domain at a supersonic

inflow boundary.

Wall Boundary

The wall boundary for a viscous flow problem may be divided into two different type based on

thermodynamic considerations: an adiabatic wall and an isothermal wall. Common amongst these

two types is the treatment of the momentum equations – the wall is treated in such a way that the

velocity and hence the momentum at the wall is prescribed. In the case the wall is not moving, the

velocity is prescribed to be zero. However, the wall could be moving as in the case of aeroelasticity,

in which case each point on the wall takes on a value equal to the local velocity vector. If the

wall is adiabatic, the heat flux normal to the wall (qi · ni) is zero. If the wall is isothermal, a

constant temperature of the wall Tw is prescribed. This work chooses to use a Lagrange multiplier

based constraint equation method to strongly impose the wall temperature. Lagrange multipliers

are an elegant way to apply nonlinear boundary conditions; in the case of an isothermal wall, the

temperature at the wall is a function of the conservative state variables and is simply handled by

constraining the total energy to be ρE = ρcvTw + 0.5ρ(vivi). Details of such an approach may be

found in [6].
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Supersonic Outflow Boundary As described by Donea [35], for a supersonic outflow

boundary all of the characteristics of the flow point of the domain. Consequently, no Dirichlet

boundary conditions are given here. A boundary integration my arise from a discretization such

as the Galerkin finite element method when the divergence of the viscous flux term (∂Gi/∂xi) is

integrated by parts. In such a case, performing this boundary integration is necessary as shown by

Shakib [125].

2.2.4 Transport Coefficient Models

The viscous stress tensor τij and heat flux vector qi rely on transport coefficients the determine

the rate of the diffusion process. The viscosity coefficient for a gas is a macroscopic approximation

of momentum transport within the flow as a result of molecular diffusion. Several models for

the viscosity of a gas exist, with the most common probably being Sutherland’s law [123]. The

Sutherland formula is written in two coefficient form as

µ(T ) = µref
T 3/2

T + Tref
. (2.20)

For air at temperatures below roughly 1000K and pressures below around 1 × 106 N/m2, valid

reference values are µref = 1.458 × 10−6 kg/m · s · K1/2 and Tref = 110.4 K. The Sutherland

formula may also be written in a three coefficient form as

µ(T ) = µref

(
T

Tref

)3/2 Tref + S

T + S
(2.21)

where µref = 1.716× 10−5 kg/m · s, Tref = 273.11 K and S = 110.56 K. Additionally, Keyes law

may also be used to compute the viscosity

µ(T ) = a0
T 3/2

T + 10a−a1
T

(2.22)

where for air the SI unit viscosity model constants are: a = 5, a0 = 1.488× 10−6, and a1 = 122.1.

Since the viscosity of a gas is derived from kinetic theory, a viscosity model directly related to the

molecular kinetics is also possible via the formula

µ(T ) = 2.67× 10−6

√
MwT

σ2Ωµ
(2.23)
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where Mw is the molecular weight, Ωµ = Ωµ(T ∗), T ∗ = T/(ε/kB), and σ and ε/kB are the so-called

Lennard-Jones parameters. The reader is referred to reference [77] for more details on the use of

this viscosity model.

The coefficient of thermal conductivity needed for the heat flux computation is a measure of

the energy transport resulting from molecular collisions. The thermal conductivity of a gas is often

modeled as a relation of the Prandtl number and viscosity by the equation

κ =
cpµ

Pr
(2.24)

where cp is the specific heat of the gas at constant pressure, Pr is the Prandtl number and µ is the

viscosity of the fluid. The Prandtl number is the ratio of the viscous diffusion rate to the thermal

diffusion rate and for laminar flow of air at moderate temperatures the Prandtl number is assumed

to be constant and equal to approximately 0.71. Since thermal conductivity is also based on kinetic

theory, a kinetic theory model is also possible. One such kinetic theory model is given via the

equation

κ =
15
4

R

Mw
µ

(
4
15
cpMw

R
+

1
3

)
(2.25)

where Mw is the molecular weight and R is a gas constant. Further details on use of this thermal

conductivity model may be found in reference [77].

2.2.5 Gas Models

The compressible Navier-Stokes equations are closed by a fluid model that describes the

thermodynamic behavior of the fluid; this model is often referred to as an equation of state. There

are a number gas models including the ideal gas model, equilibrium real gas models, the frozen

real gas models, and non-equilibrium real gas models. The equations of state associated with each

of these models provide a thermodynamic relation between the density, pressure, internal energy,

enthalpy, and temperature of the gas. For the purposes of this thesis, only the ideal gas model

is considered. However, the real gas models are discussed here because they are important for
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understanding the hypersonic gas flow regime and the validity of the ideal gas model for high Mach

number flows.

Ideal Gas Model

The precise definition of an ideal gas varies throughout the literature and textbooks; here

an ideal gas is defined as a calorically perfect gas. The perfect gas assumption implies that inter-

molecular (e.g. Van der Waals) forces are negligible. Thus, a perfect gas may be modeled by the

perfect gas equation of state

p = ρRT (2.26)

where R is a constant specific to the type of gas (for air R = 287.1 J/kg/K). The calorically perfect

gas assumption adds the following requirements: (1) the gas is in thermal equilibrium, (2) the gas

is not chemically reacting, (3) the specific heats (cv and cp) are constant, and (4) the internal

energy and enthalpy are dependent only on temperature . In accordance with these assumptions,

the specific heats may be written as

cv =
R

γ − 1
, cp =

γR

γ − 1
(2.27)

where γ is the ratio of specific heats (for air γ = 1.4) and is expressed as

γ =
cp
cv
, (2.28)

and the internal energy and enthalpy are computed by the equations

e(T ) = cvT , h(T ) = cpT . (2.29)

An alternative but equivalent form of the perfect gas equation of state can be obtained by writing

the temperature as T = e(γ − 1)/R. Inserting this temperature expression into equation 2.26 we

obtain the following form of the ideal gas equation

p = (γ − 1)ρe (2.30)

The ideal gas assumptions begin to break down when the temperature of the fluid reaches

roughly 600 K. The differences between an ideal gas model and a real gas model become important
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(on the order of 15 - 25 %) around 2000 K. Above this, an ideal gas approximation will significantly

over-predict gas temperatures. It is noted that this limit usually coincides with a Mach number of

approximately 5, which is generally considered the hypersonic limit where chemical reactions and

thermal non-equilibrium begin to occur. Chalot [28] provides a nice motivation for the necessity of

incorporating real gas effects for hypersonic flows.

Thermochemical Equilibrium Real Gas Model

As the gas temperature increases (above roughly 800 K for air), the calorically perfect as-

sumption is no longer valid as gas molecules become vibrationally excited. The vibrational excita-

tion means that the specific heats are no longer constant but now also a function of temperature. At

this point the gas is referred to as thermally perfect. At even higher temperatures (above 2000 K

for air), the thermally perfect gas assumption is no longer valid as the molecules of the gas will start

to dissociate and individual gas species will begin to chemically react. The equilibrium assumption

of the gas means that the chemical reactions are taken to occur instantaneously. Assuming the gas

is not at a state of high pressure and low temperature, the intermolecular forces of the chemical

species may be ignored and the gas may be treated as a mixture of thermally perfect gases. As

such, the mixture density is written as

ρ =
ns∑
s=1

ρs (2.31)

where the s subscript represents an individual species. Following this, the mass conservation

equation (2.1) must take into account the density of the individual species and is modified to

become
∂ρs
∂t

+
∂

∂xi

(
ρsvi − ρDs

∂χs
∂xi

)
= ω̇s (2.32)

where Ds are the species diffusion coefficients, χs = ρs/ρ are the species mass fractions, and

ω̇s are the species reaction rates which go to ∞ under equilibrium conditions. The equation for

conservation of energy must also be re-written to account for the mass diffusion, hence equation

2.3 becomes

∂(ρE)
∂t

+
∂

∂xi
(ρEvi + Pvi) =

∂(τijvj)
∂xi

− ∂qi
∂xi

+
∂

∂xj

(
ρ

ns∑
s=1

hsDs
∂χs
∂xi

)
+ Se (2.33)
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The equation of state for the mixture of thermally perfect gases is written as

P =
ns∑
s=1

ρsRsT (2.34)

The internal energy and enthalpy are now computed by the equations

e(T ) =
ns∑
s=1

χse
0
s +

ns∑
s=1

χscvs(T )T , h(T ) =
ns∑
s=1

χsh
0
s +

ns∑
s=1

χscps(T )T . (2.35)

where e0
s and h0

s are formation energies for individual species. For the thermochemical equilibrium

assumption, it is assumed that the vibrational modes of the molecule are at a steady-state, and the

energy quantities in equation 2.35 are computed by a single temperature.

Thermochemical Non-equilibrium Real Gas Model

The case of thermochemical non-equilibrium assumes the time scales associated with the

molecular vibration modes and chemical reactions are much less than that of the fluid flow. Non-

equilibrium of the chemical reactions implies that they no longer occur at an instantaneous rate

but instead at a finite-rate while the gas is being advected. This means that finite values of ω̇s

must be used for the mixture mass conservation equation (2.32), otherwise equations 2.31 through

2.34 are used to model chemical non-equilibrium effects.

Thermal non-equilibrium occurs when the translational, rotational, and vibrational modes of

a molecule are excited at different temperatures. A two-temperature energy model is often assumed

where the translational and rotational modes occur at one temperature T and the vibrational mode

occurs at another temperature Tv. Accordingly, the internal energy may now be written as

e(T, Tv) =
ns∑
s=1

χse
0
s +

ns∑
s=1

χsc
tr
vs(T )T + ev (2.36)

where cvs is the translational/rotational temperature dependent specific heat of specie s and ev is

computed by solving an additional energy equation. Additional information on the two-temperature

energy model can be found in reference [114, 115].
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2.3 Finite Element Discretization of the Navier-Stokes Equations

Solving the Navier-Stokes system posed by equation 2.15 is hardly a trivial task. As men-

tioned in the introduction to this chapter, standard finite difference, finite volume, and finite element

methods typically result in a central difference scheme that produces non-physical oscillations in

the solution for advection dominated flows. A well practiced cure for this problem is the so-called

“upwinding” technique, whereby the difference scheme is weighted more heavily in the upwind di-

rection. This section discusses the details of the streamline-upwind Petrov-Galerkin (SUPG) finite

element method used to solve the Navier-Stokes equations.

2.3.1 Galerkin Formulation

The standard Galerkin discretization proceeds by dividing the domain of interest into ele-

ments, weighting the strong form of the residual equation (2.15) with element test functions and

integrating over the domain. This produces the following Galerkin weak statement:∫
Ωf

W ·
[
∂U

∂t
+
∂F i

∂xi
− ∂Gi

∂xi
− S

]
dΩ = 0. (2.37)

where W are the set test functions and the dot operator implies a scalar product. The viscous

term in equation 2.37 involves a second-order spatial derivative, so it is commonly integrated by

parts to reduce its order. Consequently, equation 2.37 may now be re-written as∫
Ωf

W ·
(
∂U

∂t
+
∂F i

∂xi
− S

)
+
∂W

∂xi
·Gi dΩ−

∫
Γf

W ·Gin̂i dΓ = 0 (2.38)

which is the familiar Galerkin weak form which includes a boundary integration of the viscous flux

terms Gi.

2.3.2 Streamline Upwind Petrov-Galerkin Formulation

Among the first occurrences of the upwinding technique being used in the context of finite

element methods can be traced to work by Tabata [134]. However, the first generally recognized

success is attributed to the seminal paper by Brooks and Hughes [25] in which the SUPG method
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was introduced. While the first applications of SUPG were for solving the incompressible Navier-

Stokes equations, Hughes and Tezduyar applied the method to the compressible Euler equations

in the early 1980s [137, 71] and later to the compressible Navier-Stokes equations. Hughes et al.

[64, 69, 67, 68, 62, 65, 61, 63, 124, 125] then later generalized the SUPG method and called it the

Galerkin least-squares (GLS) method.

The fundamental concept of the SUPG method is to add an upwind bias to the standard test

functions W . The SUPG method achieves this by using a modified test function written as

Ŵ = W +
∂W

∂xk
Akτ supg . (2.39)

This amounts to adding a perturbation to the test functions W that is proportional to the test

function gradient (∂W /∂xi) and in the upwind direction (via the inviscid flux derivatives contained

in the Ai matrices). The upwind perturbation is then appropriately scaled through the stabilization

parameter τ supg. The specifics of computing τ supg are deferred to a later section. By substituting

the SUPG modified test function (2.39) into equation 2.38 we arrive at the SUPG weak form∫
Ωf

W ·
(
∂U

∂t
+
∂F i

∂xi
− S

)
+
∂W

∂xi
·Gi dΩ−

∫
Γf

W ·Gin̂i dΓ +

ne∑
e=1

∫
Ωef

∂W

∂xk
Akτ supg ·

[
∂U

∂t
+ Ai

∂U

∂xi
− ∂

∂xi

(
Kij

∂U

∂xj

)
− S

]
dΩ = 0 . (2.40)

In this equation, the summation over the elements e = 1, ..., ne implies that the stabilization occurs

only over the element interior. As such it applies to the strong form of the Navier-Stokes residual

equation (2.15). Equation 2.39 may also be represented by the more compact operator notation as∫
Ω
W ·

(
∂U

∂t
+ Ai

∂U

∂xi
− S

)
+
∂W

∂xi
·
(

Kij
∂U

∂xj

)
dΩ−

∫
Γ
W ·Gin̂i dΓ +

ne∑
e=1

∫
Ωe

LT
advW τ supg · (LU − S) dΩ = 0 . (2.41)

The GLS method is obtained by replacing the LT
advW term in the previous equation by the full

Navier-Stokes operator acting on the test functions LTW . For the purposes of compressible gas

dynamics, the SUPG stabilization has proven to be successful [4, 5] and the GLS method will not

be considered any further.
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In the case of supersonic gas dynamics, shock waves prove particularly difficult to handle

by a numerical scheme because they exhibit steep gradients in the solution and lead to numerical

oscillations. Shock capturing methods are often introduced into equation 2.41 that have the effect

of adding numerical dissipation in the vicinity of the shock. Thus, we arrive at a new form of the

SUPG stabilized weak statement with a dissipative shock capturing term added

∫
Ωf

W ·
(
∂U

∂t
+
∂F i

∂xi
− S

)
+
∂W

∂xi
·Gi dΩ−

∫
Γf

W ·Gin̂i dΓ+

ne∑
e=1

∫
Ωef

LT
advWτ supg · (LU − S) dΩ +

ne∑
e=1

∫
Ωef

δ

(
∂W

∂xi
· ∂U
∂xi

)
dΩ = 0 . (2.42)

where δ is a shock capturing parameter which scales the dissipation term in the vicinity of a

discontinuity in the solution. Computation of shock capturing parameters are discussed later in

section 2.3.5.

Equation 2.42 represents the standard SUPG formulation for compressible Navier-Stokes as

found in much of the literature. More recently, several researchers have introduced modifications to

the standard SUPG treatment that improve its accuracy and robustness especially for high-speed

and hypersonic flows. These improvements will be discussed in further detail.

2.3.3 Finite Element Spatial Approximation

As briefly mentioned in section 2.3.1, the spatial discretization by the finite element method

proceeds as follows: the domain Ω is divided into ne elements Ωe and we select a suitable trial

solution space Sh and test function space Vh for Uh and W h, respectively. The trial solution

space is typically defined in the following manner:

Sh =
[
Uh ∈

[
C0(Ω)

]ndof , Uh |Ωe∈
[
P k(Ωe)

]ndof
, b(Uh) = b̄(Uh,x, t) on Γf

]
(2.43)

which states that the trial solution must be C0 continuous (a polynomial function on any side of

an element is completely specified by the the degrees-of-freedom on that side), representable by

an interpolation polynomial P k of order k, and must satisfy the prescribed boundary conditions.
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Similarly, the test function space is defined by

Vh =
[
W h ∈

[
C0(Ω)

]ndof , W h |Ωe∈
[
P k(Ωe)

]ndof
, b(W h) = 0 on Γf

]
. (2.44)

The definition of the test function space is similar to equation 2.43 only that the values of the

test functions must be zero on the boundary. An appropriate choice of interpolation polynomial

order P k is often dependent on the behavior of the partial differential equation being solved. For

the smooth solution behavior of elliptic PDEs (such as in elasticity) and parabolic PDEs (as in

transient heat transfer) a higher order test function polynomial will often lead to more accurate

solutions. However, if the PDE is hyperbolic in nature and exhibits discontinuities in the solution,

a linear test function polynomial is often the best choice as shock capturing methods reduce the

solution to first-order accuracy at the discontinuity. Hence, the so-called “h-refinement” practice

of introducing more elements of a given basis rather than the “p-refinement” practice of increasing

the interpolation order is the best way of obtaining a more accurate solution for a shock dominated

flow. The finite element implementation of this work permits the use of linear or quadratic element

bases, however, in practice only linear basis functions are used for the supersonic flow solutions

contained in this thesis.

Given these function spaces, the solution can be represented at any spatial point x in time

through an interpolation from the nodal solution values using the finite element shape/basis func-

tions N

Uh(x, t) =
nn∑
n=1

Nn(x) ·Un(t) . (2.45)

In addition to interpolating the solution variables, other nonlinear function quantities such

as the flux terms (equations 2.9 and 2.10 ) need to be interpolated for the purposes of performing

numerical integration over the element. The idea of interpolating inviscid flux terms from nodal

quantities was suggested in an SUPG context can be traced back to reference [71]. More recently,

Kirk [85] showed that interpolating the inviscid fluxes from nodal values leads to better stability

and accuracy properties in an SUPG context. The nodal inviscid flux interpolation is the expressed
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via

F h
i (x, t) =

nn∑
n=1

Nn(x) · F n
i (U , t). (2.46)

This is opposed to computing the fluxes directly at the nodes using interpolated state values Uh.

Continuing along this same line of reasoning, the work contained in this thesis also computes any

nonlinear quantity that does not depend directly on spatial derivatives (velocity, internal energy e,

temperature, pressure, viscosity, and thermal conductivity) at the nodes and interpolates the nodal

values to the integration points. This is opposed to computing the quantity at the integration point

from interpolated values of the conservative variables Uh. In the case of elements with linear basis

functions, the degrees of freedom are represented in a piecewise linear fashion; likewise, the scheme

is arguably more stable if any quantities which are derived from the degrees of freedom are also

piecewise linear. It is noted that the viscous flux terms, which depend on spatial gradients of the

solution, are interpolated from nodal state values in the usual finite element fashion using shape

function derivatives.

2.3.4 SUPG Stabilization Parameter

The stabilization parameter τ supg found in equation 2.39 is used to scale the amount of

stabilization needed without making the solution overly or underly diffuse. The values in τ supg are

often referred to as intrinsic time scales that adapts the upwinding provided by the ∂W /∂xi Ai

term accordingly. Several forms of the stabilization parameter have been devised, which are split

here into spatially dependent and equation specific stabilization parameters.

Spatially Dependent τ supg One of the earliest and simplest stabilization parameters

was introduced by Hughes [71] where a separate τ is computed for each spatial direction

τ si =
αhi
ai

(2.47)

where α is a parameter related to the accuracy of the time integrator (α = 1 for first-order accurate

solutions and α = 1/2 for second-order accurate solutions), hi are element length scales, and ai are

the spectral radii of the flux Jacobian matrices Ai. The spectral radii are computed by finding the
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maximum eigenvalue of the individual Ai matrices; the maximum eigenvalue is computed as c+ vi

where c is the local speed of sound. The perturbed weight functions are then computed by

Ŵ = W +
∂W

∂xi
Aiτ

s
i . (2.48)

A single stabilization parameter may be found by taking the maximum of the individual τi values,

as is done by Le Beau [15]. There are numerous ways to compute the element length scale hi.

Hughes suggests computing it via

hi = C

[(
∂xi
∂ξ

)2

+
(
∂xi
∂η

)2

+
(
∂xi
∂ζ

)2
]1/2

(2.49)

for three-dimensional hexahedral (quadrilateral in two-dimensions) elements and via

hi = C

[(
∂xi
∂ζ1

)2

+
(
∂xi
∂ζ2

)2

+
(
∂xi
∂ζ3

)2

+
(
∂xi
∂ζ4

)2
]1/2

(2.50)

for three-dimensional tetrahedral (triangular in two-dimensions) elements. C in the previous two

equations is the parametric length of the element, thus for quadrilateral/hexahedral elements C = 2

and for triangular/tetrahedral elements C = 1. Le Beau [15] simply computes the hi values as the

length of the element in the xi direction.

Equation Dependent τ supg It is also possible to compute a separate scalar stabiliza-

tion parameter for each conservation equation. Using this approach the τ supg in equation 2.39 is

represented as a diagonal matrix; the three dimensional form is written as

τ supg = diag (τc, τm, τm, τm, τe) (2.51)

Tezduyar [138] proposed some of the original forms for computing these individual τ terms as

τc =
[(

1
hv

)r
+
(

2
∆t

)r]−1/r

(2.52)

τm =
[(

1
hv

)r
+
(

2
∆t

)r
+
(

4µ
ρhm

)r]−1/r

(2.53)

τe =
[(

1
hv

)r
+
(

2
∆t

)r
+
(

4νe
he

)r]−1/r

(2.54)
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where the three individual length scales hv, hm, and he are defined as

hv =

(
nn∑
n=1

| v · ∇Nn |

)−1

(2.55)

hm = 2

(
nn∑
n=1

| rm · ∇Nn |

)−1

where rm =
∇‖v‖
‖∇‖v‖‖

(2.56)

he = 2

(
nn∑
n=1

| re · ∇Nn |

)−1

where re =
∇T
‖∇T‖

, (2.57)

νe is the “kinematic viscosity” for the energy equation (which is often represented as ρcp/κ).

Equations 2.52 – 2.54 are written using the “r − switch” inverse norm which allows for a smooth

variation between its different contributions. Typically r = 2.

More recently, Bova [23] has proposed an alternate form for τc, τm, τe which are written as

τc =

[(
‖v‖+ c

hv

)2

+ (dcp)2

]−1/2

(2.58)

τm =

[(
‖v‖+ c

hv

)2

+ (dcp)2 +
µ

ρh2
v

]−1/2

(2.59)

τe =

[(
‖v‖+ c

hv

)2

+ (dcp)2 +
κ

ρcph2
v

]−1/2

(2.60)

where dcp represents the discontinuity capturing parameter (typically δ or ν) which is discussed in

the next section. Kirk [85] defined the flow-aligned length scale hv similar to Tezduyar’s but as

hv =

(
nn∑
n=1

| v̂ · ∇Nn |

)−1

(2.61)

where v̂ is the unit velocity vector. Bova uses a different definition of hv based the discussion in

reference [11]

hv = C
√

vkvk
vigijvj

(2.62)

where gij is the inverse metric tensor defined by

gij =
∂ξk
∂xj

∂ξk
∂xi

(2.63)

Nodal τ supg There are several choices of where to evaluate the τ supg term in equation

2.42. The classical approach is to evaluate this term directly at the integration points. However, as



35

noted by Bova [23], the flow-aligned length scale hv may involve element specific quantities (such

as gij in the case of equation 2.62) which result in a discontinuous stabilization field across the

elements that support a given node. This means that the upwinding may be inconsistently applied

and recent work has suggested that a scheme will exhibit improved stability if the stabilization

parameter associated with a node is constant amongst its patch of elements [11].

Since all of the terms in equations 2.39 and 2.58–2.60 can be computed directly at the nodes

except for hv, this quantity must be computed in a nodally averaged sense from element quantities.

Bova performs a global L− 2 projection to obtain hv at the nodes. The work presented here uses a

local projection technique. The nodal averaging procedure implemented here progresses as follows:

(1) Compute hv quantities at the integration points as a pre-processing step before any element

integration begins

(2) Project integration point values of hv to the nodes using a local L − 2 projection or ex-

trapolation operator and sum the nodal values

(3) Compute a nodal hv by averaging the hv sum amongst the patch of elements that support

that node

(4) Before the integration of an individual finite element begins compute τ supg at each node

using the nodally averaged hv

(5) Interpolate the nodal values of τ supg to the integration points during the finite element

integration of equation 2.42

The code developed for this thesis has implemented both the “classic” integration point

evaluation of τ supg and the nodally reconstructed version of τ supg. Experience has shown that

the nodally reconstructed stabilization parameter provides a modest improvements in stability and

robustness.



36

2.3.5 Discontinuity Capturing Parameter

As mentioned in section 2.3.2, the discontinuity capturing parameter δ in equation 2.42 is

responsible for adding numerical dissipation in order to limit steep gradients and solution oscillation

in the presence of a shock wave. Several forms of the discontinuity capturing operator are discussed

in this section as well as a few improvements devised by Kirk and Bova [23].

δ Discontinuity Capturing Operator The form of the discontinuity capturing operator

shown in equation 2.42 was originally listed in a 1991 paper by Le Beau [16]. Repeated here for

clarity, this form of the operator reads

ne∑
e=1

∫
Ωe

δ

(
∂W

∂xi
· ∂U
∂xi

)
dΩ (2.64)

The calculation of the δ parameter, as used by Kirk [85], is written in its three-dimensional form

as

δ91 =


∥∥∥∂U
∂t + Ai

∂U
∂xi
− ∂

∂xi

(
Kij

∂U
∂xj

)∥∥∥
A−1

0

‖∇ξ · ∇U‖A−1
0

+ ‖∇η · ∇U‖A−1
0

+ ‖∇ζ · ∇U‖A−1
0


1/2

(2.65)

The A−1
0 term in this equation is a matrix which transforms entropy state variables to conservation

state variables.

ν Discontinuity Capturing Operator Another form of the discontinuity capturing op-

erator, originally due to Hughes and Mallet [68] may be expressed as

ne∑
e=1

∫
Ωef

ν

(
∂W

∂xi
· gij ∂U

∂xi

)
dΩ (2.66)

where

ν =


∥∥∥∂U
∂t + Ai

∂U
∂xi
− ∂

∂xi

(
Kij

∂U
∂xj

)∥∥∥
A

−1
0

‖∆U‖
A

−1
0

+ gij ∂U
∂xi

A−1
0

∂U
∂xj


1/2

(2.67)

where gij is the element metric tensor ∂xi
∂ξk

∂xj
∂ξk

and ∆U = ∂U
∂t ∆t is a measure of the unsteadiness of

the flow.

Node Based Discontinuity Capturing Parameter As discussed by Bova [23], for the

essentially the same reason it is desirable to have a node based τsupg it is also desirable to have a
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node based discontinuity capturing parameter. The reasoning for this is because a discontinuous

numerical dissipation field may lead to jumps in the solution gradients ∂U
∂xj

. Similar to the previous

discussion on construction of a nodally averaged length scale, the same procedure is applied here

to construct a nodally averaged discontinuity capturing parameter. One note, however, is that

the extrapolation procedure may produce negative values of δ or ν. This is not physical as the

discontinuity capturing parameter is defined to always be greater than zero. A lumped mass L− 2

projection or simple clipping of negative values ensures that the discontinuity capturing parameter

always remains positive. In practice, the nodally averaged discontinuity capturing parameter is vital

for producing smooth shock boundaries since the discontinuity capturing parameter is in general

element-wise discontinuous.

The nodal averaging procedure implemented here for the discontinuity capturing parameter

proceeds as follows:

(1) Compute discontinuity capturing parameters at the integration points as a pre-processing

step before any finite element integration begins

(2) Project integration point values to the nodes using a local L−2 projection or extrapolation

operator and sum the nodal values

(3) Compute a nodal discontinuity capturing parameter by averaging the summed values

amongst the patch of elements that support each node

(4) Interpolate the nodal values of the discontinuity capturing parameter to the integration

points during the finite element integration of equation 2.42

Conservation of Enthalpy The addition of numerical dissipation for the purpose of

capturing shocks can effect an important property of the energy equation; that is the total enthalpy

of a flow must be constant along a streamline. As discussed by Kirk [83], this can be achieved by

having the discontinuity capturing operator act on ρH instead of ρE for the energy equation. In
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the case of the ν shock capturing parameter, this transformation to enthalpy variables reads

ne∑
e=1

∫
Ωef

ν

(
∂W

∂xi
· gijAH

∂U

∂xi

)
dΩ (2.68)

where AH is a transformation matrix from ρE to ρH only for the energy equation. In two-

dimensions, for instance, this transformation matrix is expressed as

AH =



1 0 0 0

0 1 0 0

0 0 1 0

0.5vivi(γ − 1) (1− γ) vx (1− γ) vy γ


(2.69)

The same transformation applies for the δ shock capturing parameter as well.

2.4 Solution Strategies for the Navier-Stokes Equations

2.4.1 Nonlinear Solution via Newton’s Method

Equation 2.42 represents the nonlinear Navier-Stokes residual equations which requires a

suitable nonlinear method in order to solve for the conservative variables. Several nonlinear solution

strategies exist include: Newton’s method, quasi-Newton’s method, fixed point iteration methods,

and homotopy methods [111]. In the context of computational fluid dynamics, Newton’s methods

and quasi-Newton’s method are a common nonlinear solver of choice and is the strategy used to

solve the nonlinear problems in this thesis.

Solving a nonlinear system of equations via Newton’s method is conceptually quite simple.

We begin by defining a nonlinear residual vector R that is a function of a state vector U

R(U) = 0 (2.70)

Writing out the Taylor series expansion of R but truncating after the first order derivative we get

R(U (m)) +

[
∂R(U (m))

∂U

]
∆U (m+1) = 0 (2.71)
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where U (m) represents the solution state at the last nonlinear iteration and U (m+1) is an as of

yet unknown solution state. Equation 2.71 can be rearranged to yield a linear equation system

expression with unknowns ∆U (m+1)

[
∂R(Um)
∂U

]
∆U (m+1) = −R(Um) (2.72)

By solving equation 2.72 for ∆U (m+1), the previously known solution state U (m) can be updated

to yield a new solution state that hopefully is closer to satisfying the original nonlinear residual

equation (2.70) via

U (m+1) = U (m) + ∆U (m+1) (2.73)

This procedure continues iteratively until certain stopping criteria have been met. The norm of

the residual is a useful quantity to watch and the nonlinear system is typically considered to have

converged when the residual norm has dropped a predefined amount relative to the initial residual

norm at the start of the nonlinear solve. This condition is expressed as∥∥∥R(U (m+1))
∥∥∥∥∥∥R(U (m=0))
∥∥∥ < ε (2.74)

where epsilon is a small number, usually something on the order of 1× 10−4 to 5× 10−1 depending

on the problem being solved.

It is important to note that the ∂R/∂U term in equation 2.72 represents a first-order lin-

earization of R(U (m)) and is often referred to as the Jacobian matrix. Because the truncation

error is of O2 and provided U (m=0) is “sufficiently near” the final solution and the Jacobian matrix

is exact, Newton’s method will exhibit second-order convergence. However, computing the exact

Jacobian matrix is both computationally very expensive. In many cases the exact Jacobian is not

needed to produce good convergence behavior and in some cases, when the initial guess ∂U (m=0) is

far from the solution, may actually produce worse convergence than a approximate Jacobian. This

work uses an approximate Jacobian which will soon be discussed.
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2.4.1.1 Semi-Discrete Residual Equation

In applying Newton’s method to solve the Navier-Stokes equation, the Navier-Stokes total

residual vector, as defined by equation 2.42, is re-written here as

Rf (U̇ ,U) ≡
∫

Ωf

W ·
(
U̇ +

∂F i

∂xi
− S

)
+
∂W

∂xi
·Gi dΩ−

∫
Γf

W ·Gin̂i dΓ+

ne∑
e=1

∫
Ωef

∂W

∂xk
Akτ supg · (LU − S) dΩ +

ne∑
e=1

∫
Ωef

δ

(
∂W

∂xi
· ∂U
∂xi

)
dΩ = 0 (2.75)

Rf (U̇ ,U) indicates that the total fluid residual equation is both a function of the state U and

its time derivative U̇ . The weight functions can be represented in matrix form for elements with

multiple degrees-of-freedom at each node, as is the case for solving the compressible Navier-Stokes

equations. W is constructed from the nodal test function values according to

W e = [W1I W2I ... WnI] (2.76)

where W1, W2, ..., Wn are the test functions for each elemental node and I is the identity matrix

with order equal to the number of elemental degrees-of-freedom. Using the test function matrix,

an approximate solution may interpolated from the element-wise nodal solution vector U e and its

time derivatives U̇
e

via

Uh = W eU e (2.77)

U̇h = W eU̇
e

(2.78)

The above equation can be cast into a generic semi-discrete equation of the following form:

Rf (U̇ ,U) ≡Rf (U̇ ,U) +Rf (U) (2.79)

The nonlinear dynamic residual Rf (U̇ ,U) is assembled from element-level dynamic residual

vectors using a standard finite element assembly procedure

Rf (U̇ ,U) =
ne∑
e=1

Re
f (U̇

e
,U e) (2.80)
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where the element-level dynamic residual is defined as

Re
f (U̇

e
,U e) ≡Re

f,galerkin + Re
f,supg (2.81)

and

Re
f,galerkin =

∫
Ωef

W eT · U̇h
dΩ (2.82)

Re
f,supg =

∫
Ωef

∂W e

∂xk

T

Akτ supg · U̇
h
dΩ (2.83)

The Navier-Stokes nonlinear static residual Rf (U) is assembled from element-level static

residual vectors defined by

Rf (U) =
ne∑
e=1

Re
f (U e) (2.84)

where the element-level static residual is represented as

Re
f (U) ≡ Re

f,galerkin +Re
f,supg +Re

f,dco (2.85)

and

Re
f,galerkin =

∫
Ωef

W eT · ∂F
h
i

∂xi
dΩ +

∫
Ωef

∂W e

∂xi

T

·Gh
i dΩ −

∫
Γef

W eT ·Gh
i n̂i dΓ (2.86)

Re
f,supg =

∫
Ωef

∂W e

∂xk

T

Akτ supg ·
(
∂F h

i

∂xi
− ∂Gh

i

∂xi

)
dΩ (2.87)

Re
f,dco =

∫
Ωef

δ

(
∂W eT

∂xi
· ∂U

h

∂xj

)
dΩ (2.88)

It is important to discuss the nature of the ∂Gi/∂xi term appearing in equation 2.87. The viscous

fluxes Gi include spatial gradients of the velocity and temperature (as shown by equations 2.10,

2.4, 2.10) and taking the divergence of these fluxes yields second order spatial derivatives. If finite

elements with linear basis functions are used, the majority of the second-order derivative terms are

zero because the basis functions have no ability to represent a function that is higher order than

itself. In the case of skewed bilinear or trilinear elements the mixed derivative terms are in general

non-zero, however. Nonetheless, due to the above observation the viscous flux divergence in the

strong form of the residual used in the stabilization term is often dropped. As Jansen [81] points
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out, ignoring this contribution to the residual leads to inconsistency of the scheme and may only

be safe to do so when diffusional effects of the problem are small. To remedy this situation he

proposes a method for approximating this term. In this work, which considers problems with high

advection in relation to diffusion, this term has been ignored. The verification problems presented

at the end of this chapter confirm that the choice to neglect this term is indeed safe.

2.4.1.2 Jacobian Calculation

Differentiating the total fluid residual R with respect to U we obtain the expression

∂Rf (U̇ ,U)
∂U

≡∫
Ωf

W ·

[
∂U̇

∂U
+

∂

∂U

(
∂F i

∂xi

)
− ∂S

∂U

]
dΩ +

∂W

∂xi
· ∂Gi

∂U
dΩ−

∫
Γf

W T · ∂Gi

∂U
n̂i dΓ +

ne∑
e=1

∫
Ωef

∂W

∂xk

T [∂Ak

∂U
τ supg · (LU − S) + Ak

∂τ supg
∂U

· (LU − S)
]

+

∂W

∂xk

T
[
Akτ supg ·

(
∂U̇

∂U
+

∂

∂U

(
∂F i

∂xi

)
− ∂

∂U

(
∂Gi

∂xi

)
− ∂S

∂U

)]
dΩ +

ne∑
e=1

∫
Ωef

∂δ

∂U

(
∂W

∂xi
· ∂U
∂xi

)
+ δ

(
∂W

∂xi
· ∂W
∂xi

)
dΩ (2.89)

which is the consistent linearization of Rf (U̇ ,U) and will result in second-order convergence be-

havior when used with Newton’s method. However, the implementation of every term in equation

2.89 leads to high computational cost and not necessarily required to converge the nonlinear prob-

lem. A common practice is to drop some of the lesser important terms in the linearization; this

results in an approximate Jacobian matrix.

The approximate Jacobian matrix used for the calculations performed in this thesis is written
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as

∂Rf (U̇ ,U)
∂U

≡∫
Ωf

W ·

[
∂U̇

∂U
+

∂

∂U

(
∂F i

∂xi

)
− ∂S

∂U

]
dΩ +

∂W

∂xi
· ∂Gi

∂U
dΩ−

∫
Γf

W · ∂Gi

∂U
n̂i dΓ+

ne∑
e=1

∫
Ωef

∂W

∂xk

T

Akτ supg ·

[
∂U̇

∂U
+

∂

∂U

(
∂F i

∂xi

)
− ∂

∂U

(
∂Gi

∂xi

)
− ∂S

∂U

]
dΩ +

ne∑
e=1

∫
Ωef

δ

(
∂W

∂xi
· ∂W
∂xi

)
dΩ (2.90)

The derivatives of the inviscid flux Jacobians Ak, the stabilization parameter matrix τ supg, and

the shock capturing parameter δ or ν with respect to U have been dropped. Issues related to

evaluating some of the terms in this equation will now be discussed.

Computing ∂U̇/∂U

The partial derivatives ∂U̇/∂U depends on the specific time integration scheme. For instance,

a first-order backward difference formula (BDF-1) will have a different ∂U̇/∂U than a second-order

BDF-2. This issue will be considered further in the section on time integration (2.4.2).

Computing ∂(∂F i/∂xi)/∂U

The partial derivative of inviscid flux divergence term ∂F i/∂xi with respect to the state

vector U may be computed by

∂

∂U

(
∂F i

∂xi

)
=
∂F i

∂U

∂W

∂xi
= Ai

∂W

∂xi
(2.91)

This term can easily be evaluated at the integration points by interpolation of the spatial gradients

of the Ai matrices from nodal values.

Computing ∂Gi/∂U

The derivatives of the viscous fluxes Gi may be computed directly by differentiating equation

2.10 with respect to U to yield viscous flux Jacobian matrices similar to how the Ai matrices were

derived (note that Kij are viscous flux coefficient matrices used for building Gi from ∂U/∂xj and

not Jacobian matrices).

Di =
∂Gi

∂U
(2.92)
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Alternatively, if the viscous fluxes Gi are written in quasi-linear form their derivatives may be

computed according to

∂Gi

∂U
=

∂

∂U

(
Kij

∂U

∂xi

)
=
∂Kij

∂U

∂U

∂xj
+ Kij

∂W

∂xj
=
∂Kij

∂xj
+ Kij

∂W

∂xj
. (2.93)

As implemented here, the quasi-linear form is used to avoid having to implement and compute the

viscous flux Jacobians Di. In practice the ∂Kij/∂xi term is often ignored yielding an approximate

viscous flux derivative which is written as

∂Gi

∂U
= Kij

∂W

∂xj
. (2.94)

Computing ∂(∂Gi/∂xi)/∂U

The derivatives of the viscous flux divergence term ∂Gi/∂xi with respect to U may also be

represented in two forms. The first leaves the viscous fluxes in their consistent form; the partial

derivative with respect to U may then be represented as

∂

∂U

(
∂Gi

∂xi

)
=
∂W

∂xi

∂Gi

∂U
=
∂W

∂xi
Di . (2.95)

If the viscous fluxes are written in quasi-linear form, the differentiation reads

∂

∂U

[
∂

∂xi

(
Kij

∂U

∂xj

)]
=

∂

∂U

[
∂Kij

∂xi

∂U

∂xj
+ Kij

∂2U

∂xi∂xj

]
=

∂

∂U

(
∂Kij

∂xi

)
∂U

∂xj
+
∂Kij

∂xi

∂W

∂xj
+
∂Kij

∂U

∂2U

∂xi∂xj
+ Kij

∂2W

∂xi∂xj
. (2.96)

Clearly, either of these options is non-trivial to implement. However, as explained in section 2.4.1.1,

the viscous part of the residual is left out of the stabilization term; hence, computing the Jacobian

of the viscous flux divergence is not needed.

Matrix Form of the Approximate Jacobian

Using the approximations above, the Jacobian as written in equation 2.90 can now be ex-

pressed in as
∂Rf (U̇ ,U)

∂U
≡
∂Rf (U̇ ,U)

∂U
+
∂Rf (U)
∂U

. (2.97)
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The Jacobian of the nonlinear dynamic residual Rf (U̇ ,U) is assembled from element-level

dynamic Jacobian contributions via

∂Rf (U̇ ,U)
∂U

=
ne∑
e=1

∂Re
f (U̇ ,U)
∂U

(2.98)

where the elemental dynamic Jacobian is defined as

∂Re
f (U̇ ,U)
∂U

≡ J e
f,galerkin + J e

f,supg . (2.99)

The dynamic Galerkin and SUPG Jacobians are defined, respectively, as

J e
f,galerkin =

∫
Ωef

W e T · ∂U̇
h

∂U
dΩ (2.100)

J e
f,supg =

∫
Ωef

∂W e

∂xk

T

Akτ supg ·
∂U̇

h

∂U
dΩ (2.101)

The Jacobian of the nonlinear static residual Rf (U) is assembled from elemental static

Jacobian matrices defined by
∂Rf (U)
∂U

=
ne∑
e=1

∂Re
f (U)
∂U

(2.102)

where the static Jacobian as computed by each element is assembled from the Galerkin, SUPG,

and discontinuity capturing terms

∂Rs,e(U)
∂U

≡ Jef,galerkin + Jef,supg + Js
e

dco (2.103)

The individual static Jacobians are expressed as

Jef,galerkin =
∫

Ωef

W e T ·Ai
∂W e

∂xi
+
∂W

∂xi

e T

·Kij
∂W

∂xj
dΩ −

∫
Γef

W e T ·Kij
∂W e

∂xj
n̂i dΓ (2.104)

Jef,supg =
∫

Ωef

∂W

∂xk

e T

Akτ supg ·
(

Ai
∂W e

∂xi

)
dΩ (2.105)

Jef,dco =
∫

Ωef

δ

(
∂W e

∂xi

T

· ∂W
e

∂xj

T
)
dΩ (2.106)
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2.4.1.3 Finite Difference Jacobian Calculation

The fully consistent Jacobian (equation 2.89) can also be approximated by assembling ele-

mental Jacobian contributions that have been computed via finite differencing of the dynamic and

static residual equation (2.75). Accordingly, the dynamic Jacobian matrix may be computed by

finite differences by
˜∂Re
f (U)
∂U

∼=
Re
f (U̇ + ε,U)−Re

f (U̇ − ε,U)
2ε

· ∂U̇
∂U

(2.107)

and the static Jacobian matrix is computed via

˜∂Re
f (U)
∂U

∼=
Re
f (U̇ ,U + ε)−Re

f (U̇ ,U − ε)
2ε

. (2.108)

Hence, the total Jacobian of equation 2.97 can be approximated by assembling the elemental

contributions as follows
∂Re

f (U̇ ,U)
∂U

∼=
˜∂Re
f (U)
∂U

+
˜∂Re
f (U)
∂U

(2.109)

Computing the approximate Jacobian in this fashion is much slower than via the analytic form

given in the previous section because it requires the nonlinear dynamic and total residual to be

calculated twice for every element during each nonlinear iteration. Other procedures for computing

the Jacobian via finite differences with fewer operations are possible but have not been explored

in this work. Nonetheless, this form yields a very good approximation to the consistent Jacobian

because the finite differencing of the residual vector captures all of the nonlinearities contained

therein. For instance, the derivatives of the stabilization matrix τ supg, the shock capturing param-

eter δ or ν, and the derivatives ∂Ak/∂U from equation 2.89 that were dropped in the approximate

Jacobian of equation 2.90 are all accounted for by the finite difference approach of equation 2.109.

2.4.2 Time Integration via Backward Differentiation Formulas

By and large, the time integrator of choice for the semi-discrete Navier-Stokes equations given

by equation 2.75 and subsequently equation 2.79 is the class of backward differentiation formula

(BDF) time integrators. The first-order accurate BDF time integrator yields the familiar backward
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Euler scheme while the second-order accurate BDF integrator is the 3-point backward difference

scheme. These methods have become the standard choice of many computational fluid dynamics

codes (e.g. [42, 77]) by virtue of the fact that for time-accurate flow computations the 3-point

BDF formula exhibits slightly more numerical dissipation than a counterpart scheme such as the

Crank-Nicholson method [41].

Fixed Time Step Backward Differentiation Formulas

For a fixed time step ∆t, the first-order accurate backward Euler formula is simply written

as

U̇ =
∂Un+1

∂t
=
Un+1 −Un

∆t
(2.110)

while the second-order accurate 3-point BDF scheme is written as

U̇ =
∂Un+1

∂t
=

3
2U

n+1 − 2Un + 1
2U

n−1

∆t
(2.111)

where Un+1, Un, Un−1 are the solution state vectors at the new, previous, and second previous

time iterates. These equations are commonly found in any number of textbooks including nu-

merical differentiation formulas. Time integration proceeds by using these formulas to compute

approximations for the time derivatives of the state vector U needed by equation 2.79.

Adaptive Time Stepping

One of the challenges of solving the Navier-Stokes equations is time integrating in such a way

that one can quickly and efficiently obtain a solution, whether it be a steady-state solution or a

transient flow analysis. Unfortunately, it is intractable to solve the stationary form of equation 2.79

in which any time dependent terms are ignored (as is often done in heat transfer or elasticity) in

order to obtain a steady-state solution. This is because the Navier-Stokes equations are simply too

nonlinear for such an approach to be feasible. In this case, the common practice for steady-state

flow solutions is to time integrate the transient equations until U no longer changes. Using a fixed

time step ∆t to integrate to steady-state is prohibitively slow since the time step size used to begin

the solution process is typically very small (on the order of 10−9 to 10−3 depending on the problem).

Clearly, using such a small time step after the flow has had a chance to develop is not necessary.
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In order to provide a faster solution process, two methods are commonly used to time integrate

the Navier-Stokes equations: adaptive time stepping and nodal time stepping. In the nodal time

stepping approach, each node is assigned a time step based on the Courant-Freidrichs-Levy (CFL)

number. This condition provides an stable local time step based on the state of the flow and the

element size. This approach, however, is only intended for steady-state flows. Adaptive global time

stepping provides a way of selecting a new time step to gradually increase or decrease the value in

order to maintain stability while integrating the equations in an efficient manner and also applies

to integrating the transient equations in a time accurate fashion.

The adaptive time step selection method used in this work is due to Gresho [49], and is

written as

∆tn+1 = ∆tn
(
b
εt

dn+1

)a
(2.112)

where a = 1/2 and b = 2 for a first-order time integrator and a = 1/3 and b = 3(1 + ∆tn−1/∆tn)

for a second-order time integrator. The quantity dn+1 is a measure of the difference between the

initial or predicted nonlinear iterate U (m=0) and the converged state vector U (m+1) for the current

nonlinear iteration and is represented as

dn+1 =
1

√
ndof‖U‖∞

[(
U (m+1),n+1 −U (m=0),n+1

)2
]1/2

. (2.113)

Experience has shown that this technique does a good job of detecting the solution behavior and

adjusting the time step accordingly. However, it is also common practice to limit the time step size

increase to be no more than 10% to 20% larger than the previous time step size.

Adaptive Time Step Backward Differentiation Formulas

If the time steps are permitted to vary, the backward differentiation formulas previously

presented are no longer valid. In order to obtain adaptive time step compatible formulas, we follow

the derivation presented by Kirk [82]. Beginning with a Taylor series expansions for Un and Un−1

Un = Un+1 +
∂Un+1

∂t

(
tn − tn+1

)
+
∂2Un+1

∂t2

(
tn − tn+1

)2
2

+O
[
(tn − tn+1)3

]
(2.114)

Un−1 = Un+1 +
∂Un+1

∂t

(
tn−1 − tn+1

)
+
∂2Un+1

∂t2

(
tn−1 − tn+1

)2
2

+O
[
(tn−1 − tn+1)3

]
(2.115)
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Making the following definitions for the time step sizes

∆tn+1 = tn+1 − tn , ∆tn = tn − tn−1 , ∆tn+1 + ∆tn = tn+1 − tn−1 (2.116)

equations 2.114 and 2.115 can be rearranged to yield

∂Un+1

∂t
=
Un+1

∆tn+1
− Un

∆tn+1
+
∂2Un+1

∂t2

(
∆tn+1

)2
2

−O
[(

∆tn+1
)2] (2.117)

∂Un+1

∂t
=

Un+1

∆tn+1 + ∆tn
− Un

∆tn+1 + ∆tn
+
∂2Un+1

∂t2

(
∆tn+1+∆tn

)2
2

−O
[(

∆tn+1+∆tn
)2]

(2.118)

Ignoring the higher-order terms of equation 2.117 produces the first-order backward Euler scheme

∂Un+1

∂t
=
Un+1

∆tn+1
− Un

∆tn+1
(2.119)

while a combination of equations 2.117 and 2.118 will produce the 3-point backward difference

scheme

∂Un+1

∂t
=
[

1
∆tn+1

+
1

∆tn
− ∆tn+1

∆tn(∆tn+1 + ∆tn)

]
Un+1 −

[
1

∆tn+1
+

1
∆tn

]
Un+[

∆tn+1

∆tn(∆tn+1 + ∆tn)

]
Un−1 (2.120)

It is easily verified that if ∆tn+1 = ∆tn = ∆t then equation 2.120 reproduces the fixed time step

scheme given in equation 2.111.

2.5 Arbitrary Lagrangian/Eulerian Form of the Navier-Stokes Equations

When a fluid/structure interface moves in time, as is often the case in aeroelastic or ablation

problems, the numerical framework must appropriately account for the changes to the boundary.

Several techniques have been developed to handle such problems; these approaches can be divided

into fixed mesh and moving mesh methods.

Fixed Mesh Methods The aim of fixed methods is to approximate the boundary using a

numerical model as it passes through a stationary mesh. The immersed boundary method (IBM)

[116, 117, 108] or the extended finite element method (XFEM) [32, 17] are two examples of such

schemes. The IBM and XFEM approaches capture the interface as it moves through the mesh
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and are well suited for treating arbitrary interface changes. Nonetheless, the methods require

significant implementation effort and are arguably not as good at maintaining the solution quality

at the interface unless mesh adaptivity is employed.

Moving Mesh Methods A moving mesh method tracks the interface by moving the nodal

positions of the mesh to adjust to the boundary as it changes. The arbitrary Lagrangian/Eulerian

(ALE) [56, 66] formulation is probably the best known moving mesh method. The ALE formulation

is used to solve the governing equations on a mesh that is moved to track the fluid/structure

interface. This method is straightforward to implement and because the mesh moves as the interface

moves is much better suited for ensuring sufficient mesh resolution at the boundary than fixed

mesh methods. Since capturing the boundary layer effects of a compressible viscous flow is of

utmost importance this is significant advantage. However, the primary drawback of a moving mesh

technique is its inability to handle complex boundary deformations that may severely warp or

distort the mesh. Mesh adaptivity can be employed to better handle complex interface changes but

this comes at the expense of implementation simplicity.

Given that most aerodynamic problems do not typically involve complex boundary deforma-

tions, as is the case with aeroelasticity and ablation problems, the moving mesh ALE approach is

used in this work. The ALE method is a generalization of the classical Eulerian and Lagrangian

frames of reference. The predominant frame of reference for a computational fluid dynamics problem

is the Eulerian frame of reference, however, when the mesh moves it gains a Lagrangian reference

component. Correctly accounting for this is the key to the ALE formulation.

2.5.1 ALE Form of the Conservation Laws

In order to correct for the effect the deformation of the mesh has on the flux terms, the mass,

momentum, and energy conservation equations (2.1 – 2.3) must be written in an ALE frame of

reference. Here the ALE form of the mass conservation equation is derived; the reader is referred

to Donea [35] for a more complete exposition of ALE methods in a finite element context.
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ALE Form of the Mass Conservation Equation The conservation of mass states that

the time rate of change of mass in a control volume will remain constant. This can be simply stated

in equation form as
D

Dt

∫
Ωt

ρ dΩ = 0 . (2.121)

Using the Reynolds transport theorem, this previous expression can be re-written as∫
Ωt

∂ρ

∂t
dΩ +

∫
Γt

ρvi · n̂i dΓ = 0 . (2.122)

The Divergence theorem, which relates a volume integral of a divergence term to a boundary

integral via
∫

Ω
∂φi
∂xi

=
∫

Γ φi · nidΓ, may be applied to equation 2.122 to arrive at the following∫
Ωt

∂ρ

∂t
+

∂

∂xi
(ρvi) dΩ = 0 . (2.123)

The previous integral holds for any Ωt so we can drop the integral and obtain the differential form

of the mass conservation law in an Eulerian frame of reference as previously expressed in equation

2.1
∂ρ

∂t
+

∂

∂xi
(ρvi) = 0 . (2.124)

By expanding the divergence term in equation 2.124 it may be re-written as

∂ρ

∂t
+ vi

∂ρ

∂xi
+ ρ

∂vi
∂xi

= 0 . (2.125)

Next, we recall the definition of the total derivative, which is written as,

Dφ

Dt
≡ ∂φ

∂t

∣∣∣∣
X

+ vi
∂φ

∂xi
(2.126)

where
∣∣
X

means the term is evaluated with respect to the reference or initial configuration. This

definition may be substituted into equation 2.125 to produce

Dρ

Dt
+
∂vi
∂xi

dΩ = 0 . (2.127)

Given equation 2.127, we can cast this into an ALE frame of reference by making use of the

following fundamental ALE relation

Dφ

Dt
≡ ∂φ

∂t

∣∣∣∣
χ

+ ci
∂φ

∂xi
= 0 . (2.128)
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where
∣∣
χ

means the term is evaluated with respect to the so-called referential configuration. The

convective velocity ci in equation 2.128 is the relative velocity between the material and the mesh

and expressed as

ci ≡ vi − vmi (2.129)

Using the definition of the ALE total derivative, the mass conservation equation can be written as

∂ρ

∂t

∣∣∣∣
χ

+ ci
∂ρ

∂xi
+ ρ

∂vi
∂xi

= 0 (2.130)

and by substituting the definition of ci into the previous equation we obtain

∂ρ

∂t

∣∣∣∣
χ

+ vi
∂ρ

∂xi
+ ρ

∂vi
∂xi
− vmi

∂ρ

∂xi
= 0 . (2.131)

Recognizing that the second and third terms in the previous equation are simply the divergence of

the momentum ρvi we may then express the ALE form of the mass conservation equation as

∂ρ

∂t

∣∣∣∣
χ

+
∂

∂xi
(ρvi)− v̂i

∂ρ

∂xi
= 0 . (2.132)

Vector Form of the ALE Navier-Stokes Equations The previous derivation of the

ALE form of the mass conservation equation extends readily to the momentum and energy equa-

tions. After these expressions are obtained, the vector form of the ALE based Navier-Stokes

equations, previously expressed as equation 2.6, becomes

∂U

∂t
+
∂F i

∂xi
− vmi

∂U

∂xi
− ∂Gi

∂xi
− S = 0 . (2.133)

2.5.2 Time Accurate ALE Integrators

Time integration of the semi-discrete Navier-Stokes equations written in an ALE frame of

reference requires special treatment to preserve the accuracy of the integrator. The reason for this

has to do with the fact that the computation of the flux terms on a moving grid must be done in

a fashion that satisfies the so-called discrete geometric conservation laws (DGCL). The underlying

premise of the DGCL is that the computation of the geometric quantities (i.e. the mesh coordinates

xi and the mesh velocities vmi in equation 2.133) must done in fashion that is consistent with the
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time integration scheme in order to preserve the order of accuracy the same integrator would achieve

on a fixed mesh. The DGCL states that a time-accuracy preserving integration scheme will preserve

the state of a uniform flow on a moving mesh. Farhat and coworkers have studied the implications

of the DGCL extensively [40, 41, 38] and presented several ALE time integrators that maintain the

same accuracy as their fixed grid counter parts [39]. This section serves as an overview of ALE

time integrator techniques laid out by Farhat et al. for solving the Navier-Stokes equations via a

finite volume method (reference [39]) and extends these concepts to the Navier-Stokes equations

solved via finite element methods.

As expressed in reference [39], a choice must be made as to where the inviscid fluxes F i and

viscous fluxes Gi should be evaluated when integrating across a time slab from tn to tn+1. One

option is to time average the flux terms F i and Gi computed at a distinct point and the other is

to time average the mesh configurations over the time slab and compute a single flux term using

the result.

Flux Time-Averaging With this averaging option, the flux terms are computed at predeter-

mined positions within the time slab and the resulting fluxes are time averaged according to the

equations

F̄
ALE
i =

kF∑
k=1

αk F i(Un+1, xkF,i, v
m,k
i ) (2.134)

Ḡi =
kG∑
k=1

βk Gi(Un+1, xkG,i) (2.135)

where xkF,i and xkG,i are the spatial coordinates for time plane k used for evaluating the inviscid

fluxes (F i)and viscous fluxes (Gi), respectively, vm,ki are the time plane mesh velocities.

Mesh Time-Averaging In this option, a time averaged mesh configuration is generated and a

single flux term is computed according to

F̂
ALE
i = FALE

i (Un+1, n̄i, κ̄i) (2.136)

Ĝi = F i(Un+1, x̄) (2.137)



54

where, according to reference [39], for a finite volume scheme the mesh averaged quantities are

defined by

ν̄ =
kF∑
k=1

αk ψ(xkF ) (2.138)

κ̄ =
kF∑
k=1

αk v
m · ψ(xkF ) (2.139)

x̄G =
kG∑
k=1

βk x
k
G (2.140)

and the normal vector n is a nonlinear function of the mesh position vector x according to n = ψ(x).

From a computational perspective, the mesh time averaging option is more efficient. How-

ever, this scheme, as presented above, is only applicable to a finite volume method by virtue of

the nonlinear function ψ used to compute cell normal vectors. Hence, this option is not readily

applicable to finite element methods and only the flux averaging option will be explored further.

2.5.2.1 ALE Version of the 3-Point Backward Difference Formula

The ALE form of the 3-point backward difference scheme presented in reference [39] is shown

in this section. For simplicity the fixed time step form of the differential formula for computing the

time derivatives of the conservative variable vector U in equation 2.111 is repeated here

U̇ =
∂Un+1

∂t
=

3
2U

n+1 − 2Un + 1
2U

n−1

∆t
(2.141)

Computation of the inviscid flux evaluation coordinates (xkF ) and velocities vk as well and viscous

flux evaluation coordinates xkG are done according to the parameterizations

xkF = ζn+1
k xn+1 + ζnkx

n + ζn−1
k xn−1 (2.142)

vk =
θn+1
k xn+1 + θnkx

n + θn−1
k xn−1

∆t
(2.143)

xkG = ηn+1
k xn+1 + ηnkx

n + ηn−1
k xn−1 (2.144)

Farhat proposes two sets of rules for selecting the coefficients ζ, θ, and η in a way that will lead to

a accuracy preserving ALE time integrator. The specifics of those rules are not covered here and
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the reader is referred to reference [39] for those details. The paper lists two parameter sets and

hence integration schemes that maintain formal second-order time accuracy. One scheme averages

across 4 time planes while the other simply uses the time plane at tn+1. However, only the first

satisfies the DGCL and hence can be guaranteed to preserve the nonlinear stability of the method.

As such, only the 4 time plane averaging method is overviewed here.

This scheme uses combinations of the three solution states (Un+1, Un, Un−1) known by

the 3-point backward difference integrator to compute 4 mesh configurations for averaging of the

inviscid fluxes and simply uses the mesh configuration at tn+1 for computing the viscous fluxes,

hence kF = 4 and kG = 1. The coefficients used for the time averaging needed by equations 2.134

– 2.135 and 2.142 – 2.144 are

α1 = α2 =
3
4

, α3 = α4 = −1
4

, β1 = 1 (2.145)

and

ζn+1
1 =

1
2

(
1 +

1√
3

)
, ζn1 = 1

2

(
1− 1√

3

)
, ζn−1

1 = 0,

ζn+1
2 =

1
2

(
1− 1√

3

)
, ζn2 = 1

2

(
1 + 1√

3

)
, ζn−1

2 = 0,

ζn+1
3 = 0, ζn3 = 1

2

(
1 + 1√

3

)
, ζn3 =

1
2

(
1− 1√

3

)
,

ζn+1
4 = 0, ζn4 = 1

2

(
1− 1√

3

)
, ζn4 =

1
2

(
1 +

1√
3

)
, (2.146)

θn+1
1 = θn+1

2 = 1, θn1 = θn2 = −1, θn−1
1 = θn−1

2 = 0,

θn+1
3 = θn+1

4 = 0, θn3 = θn4 = 1, θn−1
3 = θn−1

4 = −1,

ηn+1
1 = 1, ηn1 = 0, ηn−1

1 = 0

2.5.2.2 ALE Version of the Backward Euler Scheme

While not explicitly stated in either reference [41] or [39] for viscous flows, the ALE form

of the first-order accurate backward Euler scheme is a simplification of the 3-point scheme and is

presented here. Again for the sake of simplicity, the fixed time step form of this method is used
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and repeated here from equation 2.110

U̇ =
∂Un+1

∂t
=
Un+1 −Un

∆t
(2.147)

Computation of the inviscid flux evaluation coordinates xkF and velocities vk and the viscous flux

evaluation coordinates xkG are done according to the parameterizations

xkF = ζn+1
k xn+1 + ζnkx

n (2.148)

vk =
θn+1
k xn+1 + θnkx

n

∆t
(2.149)

xkG = ηn+1
k xn+1 + ηnkx

n (2.150)

This scheme uses combinations of the two solution states (Un+1, Un) known by the backward

Euler integrator to compute 2 mesh configurations for averaging of the inviscid fluxes and simply

uses the mesh configuration at tn+1 for computing the viscous fluxes, hence kF = 2 and kG = 1.

The coefficients used for the time averaging needed by equations 2.134 – 2.135 and 2.148 – 2.150

are

α1 = α2 =
1
2

, β1 = 1 (2.151)

and

ζn+1
1 =

1
2

(
1 +

1√
3

)
, ζn1 = 1

2

(
1− 1√

3

)
ζn+1

2 =
1
2

(
1− 1√

3

)
, ζn2 = 1

2

(
1 + 1√

3

)
, (2.152)

θn+1
1 = θn+1

2 = 1, θn1 = θn2 = −1,

ηn+1
1 = 1, ηn1 = 0

2.6 Numerical Example Problems

This section presents several example problems that highlight the SUPG finite element flow

solver developed to complete the work in later chapters. Problems are shown for viscous flows with

both fixed and moving boundaries.
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For verification purposes, many of the numerical examples were also run with a variety of other

codes and discretizations. The results from the other codes have been included where appropriate

for the purpose of verifying that the implementation at hand is indeed correct. The three primary

codes used for the majority of these numerical examples are listed and described below.

• CU/FEMDOC: Stabilized finite element based code developed at the University of Colorado

at Boulder for this thesis.

• SNL/Aria: Stabilized finite element based code being developed at Sandia National Labo-

ratories. Aria is very similar to CU/FEMDOC. Notable exceptions are Aria’s use of the ν

shock capturing parameter its integration by parts of the inviscid flux terms.

• ANSYS/Fluent: Cell centered unstructured finite volume code that is commercially avail-

able. Details of Fluent’s numerical formulation can be found in its documentation [77].

2.6.1 2-Dimensional Carter Flat Plate

The Carter problem [27] is a classic problem that involves low Reynolds number but super-

sonic flow over a flat plate. The purpose of this test problem is to compute and compare skin

friction and heat transfer coefficients along the plate with other numerical solutions. This example

repeats the work of Carter and Shakib [124] to verify that the current solver matches other pub-

lished results. Additionally, the same problem is solved with other flow codes to verify the accuracy

and performance characteristics of the current solver.

2.6.1.1 Problem Description

This problem consists of a M∞ = 3.0, Re = 1000 flow over a flat plate. Figure 2.1 shows the

physical domain and boundary conditions. The problem is specified in an entirely non-dimensional

fashion. The domain boundaries span the area −0.2 ≤ x ≤ 1.2 and 0.0 ≤ y ≤ 0.8, and the leading

edge of the plate is at the origin of the domain. The inflow boundary has all four conservative

variables specified (ρ = 1, ρux = 1, ρuy = 0, ρE = 2.769× 10−4), the symmetric boundary imposes
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uy = τxy = qy = 0, the plate satisfies the no-slip condition of ux = uy = 0 with an isothermal wall

temperature equal to the stagnation temperature Tw = 7.754 × 10−4. The outflow boundary has

no prescribed variables, however, the boundary term appearing in equation 2.38 is appropriately

integrated.

The Sutherland law is used to model the viscosity of the fluid and takes the form µ =

0.0906T 3/2/(T+0.0001406). The thermal conductivity of the fluid is modeled by a constant Prandtl

number as κ = cpµ/Pr, where Pr = 0.71.

2.6.1.2 Computational Mesh and Model

A hierarchy of meshes are used for solving this problem where the domain consists of 28x16,

56x32, 112x64, 224x128, and 448x256 quadrilateral elements. Figure 2.2(a) shows the 224x128

element mesh, while Figure 2.2(b) show the 224x128 element mesh and the domain boundary used

for a 16 parallel process simulation.

The problem is time integrated to steady-state via a backward Euler (BDF-1) scheme begin-

ning with in an initial time step of 1.0 × 10−4 s. The adaptive time stepping scheme discussed in

section 2.4.2 is used with a time step increase limit of 10 %. A Newton scheme is used to solve the

nonlinear equations. The nonlinear iteration loop exits when the nonlinear residual drops at least

two orders of magnitude or when the initial nonlinear residual norm is less than 1.0 × 10−3. The

Trilinos/Aztec iterative linear solver package is used to solve the linearized equation system at each

Newton step. The GMRES solver is used with a global ILU(0) preconditioner and the iterative

solve exits when the linear residual norm has drop four orders of magnitude.

2.6.1.3 Results and Discussion

Figure 2.3 shows the nonlinear residual norm and the time step sizes as the problem is

integrated toward steady-state. The problem is run for a fixed number of time iterations for

performance comparisons purposes.

Figure 2.4 shows solution contour plots for the finest mesh. These plots compare qualitatively
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Figure 2.1: Carter flat plate domain and boundary conditions.
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(a) 224x128 element mesh.

(b) 224x128 element mesh with 16 process domain decomposition.

Figure 2.2: Carter’s flat plate problem computational mesh.
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Figure 2.3: Carter’s Mach 3.0 flat plate nonlinear residual convergence history.
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very well with the contour plots shown in reference [125]. Due the low Reynolds number of this

flow the boundary layer is quite pronounced and clearly evident in these plots.

The pressure coefficient along the length of the plate is plotted in Figure 2.5 and has been

computed by Cp = (p− p∞)/0.5ρ∞v2
∞. Also shown in this figure and several others that follow are

the pressure, skin friction, and heat flux coefficient as computed by the Aria and Fluent computa-

tional fluid dynamics codes. The skin friction coefficient along the length of the plate is plotted in

Figure 2.6 and is computed by Cf = τw/0.5ρ∞v2
∞. The heat flux coefficient along the length of the

plate is plotted in Figure 2.7 where the heat flux coefficient is computed by Ch = −qw/0.5ρ∞v3
∞.

The pressure coefficient, skin friction coefficient, and heat flux coefficient all show good

agreement with the results published by Shakib [124] and Carter [27]. It is interesting to note

that the skin friction and heat flux coefficient profiles degrade significantly as the mesh coarsens.

This is due to the fact that these quantities are dependent on the gradient of the solution and are

computed using the basis functions of the finite elements that exist on the boundary. Thus, as the

mesh is coarsened, the gradient approximation becomes less and less accurate.

Table 2.1 shows non-dimensionalized run times for the 5 mesh refinement levels used for this

problem when run in both a serial and parallel. Every effort was made to make the comparison as

meaningful as possible, which is a difficult task when using different codes on different computational

platforms.

The CU/FEMDOC and SNL/Aria codes are quite similar, both using stabilized finite element

methods. The same time integration scheme, time increment, number of time iterations, Newton

relaxation, and iterative linear solver parameters were specified. As previously mentioned both

codes were run for 100 time iterations which corresponded to a 8-order of magnitude reduction in

the nonlinear residual.

The ANSYS/Fluent code represents a completely different numerical approach as it is a

finite volume method and takes CFL based approach toward integration to steady-state. Fluent,

however, is an industry standard code well known for its computational performance and thus

makes an interesting point of reference for comparison purposes. Fluent was run with the highest
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(a) Mach number contours.

(b) Density contours.

(c) Pressure contours.

(d) Temperature contours.

Figure 2.4: Carter’s Mach 3.0 flat plate solution contours (448x256 element mesh).



64

(a) 56x32 element mesh.

(b) 112x64 element mesh.

(c) 224x128 element mesh.

Figure 2.5: Carter’s Mach 3.0 flat plate wall pressure coefficient profiles.
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(a) 56x32 element mesh.

(b) 112x64 element mesh.

(c) 224x128 element mesh.

Figure 2.6: Carter’s Mach 3.0 flat plate skin friction coefficient profiles.



66

Figure 2.7: Wall heat flux coefficients for Carter’s flat plate problem.
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tolerable CFL number (approximately 100,000 for most problems) and run until each equations

residual had dropped 8-orders of magnitude.

Since the individual codes were run on different computers, the run times needed to be scaled

to account for the differences in overall system performance. This was accomplished by running a

simple matrix inversion benchmark test on each of the different computers and determining a CPU

specific scaling factor. Clearly, this approach does not account for several other critical aspects of

the system performance such as network speed or I/O performance, but at least provides a simple

quantitative measure of the CPU and memory subsystem performance.The following formula is

used in an attempt to scale the results that have been run on different platforms as well as non-

dimensionalize the overall run times.

Nondimensional time =
tsim

trefsim

trefbenchmark
tCPUbenchmark

· 100 (2.153)

Using Fluent as the point of reference for comparison purposes, the CU/FEMDOC code has

run-times that are approximately 1.5 to 6 times longer than Fluent. The SNL/Aria code has run-

times that range from approximately 3 to 40 times longer than Fluent. Finite volume methods are

renowned for their low computational cost so the fact that the finite volume scheme computationally

outperforms the finite element method is not surprising.

2.6.2 2-Dimensional Compression Corner

Another classic problem that is often used for computational validation and verification is

Holden’s compression corner [58]. Holden performed experimental studies of a supersonic compres-

sion corner and several researchers have used the data for computational code validation since. The

purpose of this test problem is to compute and compare pressure, skin friction, and heat trans-

fer coefficients along the compression corner geometry with other numerical solutions as well as

Holden’s experimental data.
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2.6.2.1 Problem Description

The problem consists of a M∞ = 11.68, Re = 248, 600 flow over a 15◦ compression corner.

Figure 2.8 shows the physical domain and boundary conditions for the problem. Similar to the

previous problem all dimensions and boundary conditions are specified non-dimensionally. The

domain boundaries span the area −1.74 ≤ x ≤ 28.0 and 0.0 ≤ y ≤ 8.34 with the 15◦ ramp

beginning at x = 17.4.

Figure 2.8: Supersonic compression corner geometry and boundary conditions.

The inflow boundary conditions are completely prescribed on this surface (ρ = 1.0 kg/m3, V∞ =

1 m/s, T = 8.412 × 10−5 K). The slip boundary lying on the axis just forward of the flat plate

portion of the domain imposes the conditions uy = τxy = qy = 0. The wall boundary satisfies the

no-slip condition of ux = uy = 0 with an isothermal wall with temperature Tw = 8.412×10−5. The

outflow boundary has no prescribed variables, however, the boundary term appearing in equation

2.38 is appropriately integrated.
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2.6.2.2 Computational Mesh and Model

This problem is solved using three mesh levels. The coarsest mesh is grid of 39x104 quadri-

lateral elements, the mid-level mesh is composed of 78x208 elements, and the finest mesh contains

156x416 elements. Figure 2.9 shows the 39x104 quadrilateral element mesh. The meshes are not

perfectly nested as they are in the previous example, but rather constructed to bias the mesh re-

finements towards the wall since the Reynolds number of this problem is higher and the boundary

layer is much thinner. The initial element height from the compression ramp wall is 0.0056 m,

0.0011 m, and 0.00026 m for the 39x104, 78x208, and 156x416 element meshes, respectively.

Figure 2.9: Supersonic compression corner 39x104 quadrilateral element mesh.

2.6.2.3 Results and Discussion

Figure 2.3 shows the nonlinear residual norm and the time step sizes as the problem is

integrated toward steady-state. Convergence is declared when the initial nonlinear residual norm

for each Newton solve has dropped eight orders of magnitude from the reference nonlinear residual

norm. For this problem the reference nonlinear residual is that from the second time iteration,

which is the maximum value the norm takes during the time integration.

Figures 2.11(a) - 2.11(d) shows the Mach number, density, pressure, and temperature con-

tours for the 156x416 element mesh. As in the previous example, these contour plots compare

qualitatively very well with the contour plots shown in reference [125], as well as reference [82].
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Figure 2.10: Holden’s Mach 11.68 compression corner nonlinear residual convergence history.
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(a) Mach number contours.

(b) Density contours.

(c) Pressure contours.

(d) Temperature contours.

Figure 2.11: Holden’s Mach 11.68 compression corner solution contours (156x416 element mesh).
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The pressure coefficient along the length of the plate is plotted in Figure 2.12 where the

pressure coefficient is computed by Cp = (p− p∞)/0.5ρ∞v2
∞. A discrepancy between the solutions

shown here and Shakib’s results [125] exists for the pressure coefficient values between the leading

edge of the plate and the start of the compression corner. Shakib’s results converge to a Cp value of

approximately 0.02 before the start of the compression corner, while the solutions show here take

Cp values between 0.005 and 0.006 before the start of the compression corner. The skin friction

coefficient along the length of the plate is plotted in Figure 2.13 where the skin friction coefficient

is computed by Cf = τw/0.5ρ∞v2
∞. The heat flux coefficient along the length of the plate is plotted

in Figure 2.14 where the heat flux coefficient is computed by Ch = −qw/0.5ρ∞v3
∞.

2.6.3 2-Dimensional Nose Tip

This example problem solves the supersonic flow about a two-dimensional nose tip geometry.

The geometry and meshes used for this example come from an verification study used to assess the

performance of various codes in use at Sandia National Laboratories among a few others.

In addition to the three codes described in the introduction to this section, three additions

codes have been used for solution comparison purposes:

• SNL/Premo: Vertex centered unstructured finite volume code developed at Sandia National

Laboratories. Premo’s underlying theory is well documented in a conference proceeding

[130].

• SNL/Saccara: Cell centered structured finite volume code that was adapted from INCA,

a once commercially available CFD code. Information on Saccara is provided in a report

published by staff members at Sandia National Laboratories [142].

• NASA/Overflow: Cell centered structured finite volume code developed at NASA. Infor-

mation on Overflow can be found on its author’s website [1].

Dr. Jeff Payne at Sandia National Laboratories generated the solutions shown in this section with

these three different codes.
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Figure 2.12: Wall pressure coefficients for Holden’s compression corner problem.
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Figure 2.13: Wall skin friction coefficients for Holden’s compression corner problem.
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Figure 2.14: Wall heat flux coefficients for Holden’s compression corner problem.



76

2.6.3.1 Problem Description

The flow conditions for this problem are that of a M∞ = 3.0 flow at 40 km altitude where

ρ∞ = 3.99641 × 10−3 kg/m3 and T∞ = 250.35 K. Freestream flow values for ρ, ρvx, ρvy, and ρE

are prescribed on the inlet boundary. Slip boundary condition (vy = 0) is used for the edge lying

on the x-axis. A no-slip adiabatic wall boundary condition is used for the surface of the body. No

values are prescribed for the outflow edge and the viscous fluxes are integrated to be consistent

with the integrated-by-parts weak form of the viscous fluxes.

The gas constants for air are specified as R = 287.0 and γ = 1.4. The two-coefficient

Sutherland model for air is used to compute the viscosity (µref = 1.458× 10−6 kg/m · s ·K1/2 and

Tref = 110.4 K) and the Prandtl number (Pr = 0.70) is used to compute the thermal conductivity

of the air.

2.6.3.2 Computational Mesh and Model

Three meshes are used for the purpose of this study. The coarsest mesh, shown in Figure

2.16(a), is a structured 37x40 quadrilateral element domain and contains a total of 1722 nodes.

The medium level mesh contains 74x80 quadrilateral elements and has a total of 6723 nodes. This

mesh was generated by taking the coarsest mesh and applying a 1-level uniform refinement (i.e.

1 quadrilateral is equally divided into 4 new quadrilaterals). The finest mesh contains 148x160

quadrilateral elements and has a total of 26,565 nodes. This mesh was generated by taking the

coarsest mesh and applying a 2-level uniform refinement (i.e. 1 quadrilateral is equally divided into

16 new quadrilaterals).

The backward Euler time integrator is used with adaptive time stepping where an initial

time step size of 1× 10−7 s and a maximum time step increase of 1.2 are used. Newton’s method

with an approximate linearization is used to solve the nonlinear problem at each time step. A

nonlinear relaxation factor of 0.9 is used with a nonlinear residual drop criteria of ε = 0.1. The

Trilinos/Aztec GMRES iterative solver is used for solving the linear problem at each nonlinear
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Figure 2.15: Three dimensional supersonic nose tip geometry and boundary conditions.
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step. A global ILU(0) preconditioner with a linear residual drop criteria of ε = 1 × 10−4 is used.

The SUPG term in the weak residual equation uses node averaged stabilization and δ discontinuity

capturing parameters. The nodally averaged discontinuity parameter in particular is important for

computing a smooth shock boundary.

2.6.3.3 Results and Discussion

Nonlinear residual convergence behavior for the three meshes is plotted in Figure 2.17 against

the time iteration count. The time step is ramped up exponentially, as shown on this figure. The

nonlinear residual norm begins a gradual descent during the small time step iterations early on

in the simulation. In all three cases, a breaking point occurs between time iteration 60 - 70 and

∆t = 1 × 10−4 s where the nonlinear residual norm begins to decrease exponentially. The exact

behavior of the residual’s descent at this point varies with the refinement of the mesh, with the

higher degree of refinement resulting in a slower convergence rate.

Figures 2.18 show contour plots of Mach number, density, pressure, and temperature, respec-

tively, for the finest mesh.

Figure 2.19 shows the static pressure along the surface of the nose tip as computed by the

various codes used for this study. The stagnation pressure can be computed analytically from the

equation

P0 = P∞

(
(γ + 1)2M2

∞
4γM2

∞ − 2(γ − 1)

) γ
γ−1 1− γ + 2γM2

∞
γ + 1

(2.154)

and substituting the freestream pressure and Mach number values the theoretical perfect gas stag-

nation pressure should be 3463 Pa.

Figure 2.20 shows the temperature along the surface of the nose tip as computed by the

various codes used for this study. The stagnation temperature can be computed analytically from

the equation

T0 = T∞

(
1 +

γ − 1
2

M2
∞

)
(2.155)

and substituting the freestream temperature and Mach number values the theoretical perfect gas
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(a) 74x80 element mesh.

(b) 74x80 mesh with 8 process domain decomposition.

Figure 2.16: Two-dimensional nose tip computational mesh.
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Figure 2.17: Nonlinear residual convergence history for the nose tip problem.



81

(a) Mach number contours. (b) Density contours.

(c) Pressure contours. (d) Temperature contours.

Figure 2.18: Mach 3.0 nose tip solution contours (148x160 element mesh).
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(a) 41x40 element mesh.

(b) 74x80 element mesh.

(c) 148x160 element mesh.

Figure 2.19: Mach 3.0 nose tip wall pressure profiles.
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stagnation temperature should be 700.98 K.

Figure 2.21 shows the XY shear stress along the surface of the nose tip as computed by the

various codes used for this study. Note that these values are the stress values with respect to the

Cartesian X & Y coordinates and not the shear stress values tangent to the surface.

Table 2.2 shows the stagnation temperatures and pressures as computed by the analytical

equations and as computed the various codes.

2.6.4 2-Dimensional Pitching NACA0012 Airfoil

This problem demonstrates the ability of the finite element solver for computing viscous flow

solutions on moving meshes. The problem is modeled after one studied by Aliabadi [4] and solves

for the flow about a pitching NACA 0012 airfoil.

2.6.4.1 Problem Description

This problem consists of a M∞ = 0.2, Re = 1000 flow around a NACA 0012 airfoil. Figure

2.22 shows the physical domain and boundary conditions for the problem. The domain boundaries

span the area −0.0009 ≤ x ≤ 0.0009 m and −0.0009 ≤ y ≤ 0.0009 m, and the chord length of the

airfoil is 2.117−4 m. The properties of the fluid are consistent with air and assumed be Γ = 1.4,

R = 287 J/kg-K, Pr = 0.72, and the viscosity is modeled by Sutherland’s three equation model

2.21 with µref = 1.8× 10−5 kg/m/s, Tref = 300 K, and S = 110 K.

The inflow boundary conditions are take sea-level atmospheric values and since the flow is sub-

sonic only the density and momentum terms are specified (ρ = 1.225 kg/m3, V∞ = 69.4 m/s, T =

300.0 K). The outflow boundary condition requires that the pressure or alternately the tempera-

ture is known. For this problem the far-field outflow boundary condition is prescribed as 300 K.

The wall boundary satisfies the no-slip condition of ux = uy = 0 with an adiabatic wall. The airfoil

is pitched about its mid-chord point according the following equation

α(t) = 10◦ − 10◦cos(2πt) (2.156)
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(a) 41x40 element mesh.

(b) 74x80 element mesh.

(c) 148x160 element mesh.

Figure 2.20: Mach 3.0 nose tip wall temperature profiles.
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(a) 41x40 element mesh.

(b) 74x80 element mesh.

(c) 148x160 element mesh.

Figure 2.21: Mach 3.0 nose tip wall XY shear stress profiles.
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Figure 2.22: NACA 0012 airfoil geometry and boundary conditions.
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2.6.4.2 Computational Mesh and Model

The problem is solved using two meshes, one with 60x70 quadrilateral elements and another

with 120x140 quadrilateral elements. Figures 2.23-2.25 shows the 60x70 element mesh.

The problem in integrated time to steady-state via a three-point backward Euler (BDF-2)

scheme using a constant time step of 0.05 s. A Newton scheme is used to solve the nonlinear

equations. The nonlinear iteration loop exits when the nonlinear residual drops at least three

orders of magnitude or when the initial nonlinear residual norm is less than 1.0 × 10−8. This

problem utilizes the UMFPACK direct solver for solving the linearized system equations at each

Newton step.

Standard element based stabilization is used instead of the nodally average stabilization

parameter; given the low Mach number of this problem, both approaches are equally stable. No

discontinuity capturing operator is needed or used for these simulations.

The effect of the pitching motion is generated in two different fashions. In the first case, the

mesh motion is generated by treating the fluid mesh as an elastic solid and applying rigid body

rotation to a block of elements surrounding the airfoil chord center according to equation 2.156.

The displacements at the freestream boundaries are then fixed. The mesh deformations then

occur in the elements that lay between the rigid body rotation and the fixed freestream boundary.

This form of generating the pitching motion requires an appropriate arbitrary Lagrangian-Eulerian

treatment due to the motion of the mesh. In the second case, the pitching motion is generated by

leaving the airfoil wall fixed and modifying the inflow boundary conditions to simulate the 0◦ to

20◦ angle of attack. These two forms allow for conclusions to be draw about the accuracy of the

ALE implementation.

2.6.4.3 Results and Discussion

Figures 2.26 - 2.29 show the Mach number, density, pressure, and temperature contours for

the pitching NACA 0012 airfoil at 20 degrees angle of attack when the pitching motion is generated
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Figure 2.23: NACA 0012 airfoil 60x70 quadrilateral element mesh.
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Figure 2.24: NACA 0012 airfoil 60x70 quadrilateral element mesh at 0◦ angle of attack.
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Figure 2.25: NACA 0012 airfoil 60x70 quadrilateral element mesh at 20◦ angle of attack.
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via mesh motion.

Figures 2.30-2.31 show the pressure and skin friction coefficients for the airfoil at 0◦ angle of

attack.

Figures 2.32-2.33 show the drag and lift coefficient history as the airfoil pitches between

10◦ and 30◦ angle of attack. The two forms of prescribing the pitching motion of the airfoil

(mesh pitching and freestream pitching) show negligible differences in the drag coefficient and lift

coefficient through time. As expected, the ALE corrected drag and lift coefficient computed on the

moving mesh match the coefficients computed by the non-moving, freestream pitching problem.

2.6.5 Axisymmetric 50 Caliber Bullet

This problem demonstrates the ability of the finite element solver from computing viscous

axisymmetric solutions about a slender body. This class of problems is important for re-entry type

bodies as well munitions design. Similar studies for 50 caliber projectiles have been conducted by

other researchers [129] for fully three-dimensional geometry including turbulence effects and body

spin. It is important to note that the study contained in this section was run without the effects

of turbulence and a spinning body.

2.6.5.1 Problem Description

The problem consists of a M∞ = 2.4, Re = 3.85×106 flow around a 50 caliber bullet. Figure

2.1 shows the physical domain and boundary conditions for the problem. The domain boundaries

span the area −0.2 ≤ x ≤ 0.069012 m and 0.0 ≤ y ≤ 0.8, and the nose of the bullet is at the origin

of the domain.

The inflow boundary conditions are consistent with sea-level standard atmospheric values

and the solution is completely prescribed on this surface (ρ = 1.225 kg/m3, V∞ = 816.7 m/s,

T = 288.15 K). The symmetric boundary lying on the axis just forward of the nose imposes the

conditions uy = τxy = qy = 0. The wall boundary satisfies the no-slip condition of ux = uy = 0

with an adiabatic wall boundary condition. The outflow boundary has no prescribed variables,
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Figure 2.26: 0◦ to 20◦ pitching NACA 0012 Mach number contours at 20◦ angle of attack (120x140
element mesh).
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Figure 2.27: 0◦ to 20◦ pitching NACA 0012 density contours at 20◦ angle of attack (120x140 element
mesh).
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Figure 2.28: 0◦ to 20◦ pitching NACA 0012 pressure contours at 20◦ angle of attack (120x140
element mesh).
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Figure 2.29: 0◦ to 20◦ pitching NACA 0012 temperature contours at 20◦ angle of attack (120x140
element mesh).
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Figure 2.30: 0◦ AoA NACA 0012 wall pressure coeffient profiles (120x140 element mesh).
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Figure 2.31: 0◦ AoA NACA 0012 skin friction coeffient profiles (120x140 element mesh).
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Figure 2.32: 0◦ to 20◦ pitching NACA 0012 drag coefficient time history.
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Figure 2.33: 0◦ to 20◦ pitching NACA 0012 lift coefficient time history.
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however, the boundary term appearing in equation 2.38 is appropriately integrated.

The Sutherland law is used to model the viscosity of the fluid and uses the model coefficients

µref = 1.458 × 10−6 kg/m · s ·K1/2 and Tref = 110 K. The thermal conductivity of the fluid is

modeled by a constant Prandtl number as κ = cpµ/Pr, where Pr = 0.71.

2.6.5.2 Computational Mesh and Model

A hierarchy of meshes are used for solving this problem; the meshed domains consist of

50x250, 100x500, and 200x1000 quadrilateral elements. Figure 2.35(a) shows the 50x250 element

mesh and the 200x1000 element mesh’s 64 process domain decomposition.

The problem is integrated in time to steady-state via a backward Euler (BDF-1) scheme

beginning with in an initial time step of 1.0×10−4 s. The adaptive time stepping scheme discussed

in section 2.4.2 is used with a time step increase limit of 10 %. A Newton scheme is used to solve

the nonlinear equations. The nonlinear iteration loop exits when the nonlinear residual drops at

least two orders of magnitude or when the initial nonlinear residual norm is less than 1.0 × 10−3.

The Trilinos/Aztec GMRES iterative solver is used for solving the linear problem and employs and

global ILU(1) preconditioning and a linear residual drop criteria of 1.0× 10−4.

2.6.5.3 Results and Discussion

Figure 2.36(a) shows the velocity magnitude and Figure 2.36(b) shows the density contours

for the 50 caliber bullet simulation. Figures 2.37(a) and 2.37(b) show the pressure and temperature

temperature contours. The stagnation pressure may be computed from the following equation:

P0 = P∞

(
(γ − 1)2M2

∞
4γM2

∞ − 2(γ − 1)

) γ
γ−1 1− γ + 2γM2

∞
γ + 1

(2.157)

and the stagnation temperature can be computed from the the equation

T0 = T∞

(
1 +

γ − 1
2

M2
∞

)
(2.158)

For this problem the theoretical value of the stagnation pressure is 7.8×105 Pa and the theoretical

value of the stagnation temperature is 620 K. The stagnation pressure and temperature computed
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Figure 2.34: 50 caliber bullet geometry and boundary conditions.
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(a) 50x250 element mesh.

(b) 200x1000 mesh with 64 process domain decomposition.

Figure 2.35: Axisymmetric 50 caliber bullet computational mesh.
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(a) Velocity magnitude contours.

(b) Density contours.

Figure 2.36: Axisymmetric 50 caliber bullet solution contours.
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(a) Pressure magnitude contours.

(b) Temperature contours.

Figure 2.37: Axisymmetric 50 caliber bullet solution contours.
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by the code and shown figures 2.37(a) and 2.37(b) agree very well with their analytical values.

Figures 2.38 - 2.40 show the pressure, shear stress, and temperature profiles at the wall for

the three different meshes. It is believed the oscillations observed in the pressure, shear stress and

temperature profiles are caused by compression waves that form and emanate from the bullet’s

surface. These compression waves form as the cross-sectional area of the body increases and ulti-

mately coalesce to form a shock wave away from the body. If the mesh is too coarse in the presence

of the compression waves the oscillations observed here will occur. As shown by these figures, the

severity of the oscillations is reduced with mesh refinement.

2.6.6 3-Dimensional Nose Tip

This problem is a continuation of the two-dimensional example 2.6.3 as it involves the super-

sonic flow about a the same nose tip geometry but now in three dimensions. The problem in run

with both a pitch and yaw angle; as such the flow is truly three-dimensional and an axisymmetric

calculation not appropriate.

2.6.6.1 Problem Description

The flow conditions for this problem are identical to of the example in section 2.6.3, however

the pitch and yaw angles are both specified to at 10◦. Figure 2.41 shows the problem geometry and

boundary conditions. Freestream flow values for ρ, ρvx, ρvy, ρvz, and ρE are prescribed on the

inlet boundary and a no-slip adiabatic wall boundary condition is used for the surface of the body.

No values are prescribed for the outflow edge and the viscous fluxes are integrated to be consistent

with the integrated-by-parts weak form the Galerkin term.

2.6.6.2 Computational Mesh and Model

As with the two-dimensional problem, three meshes of increasing refinement are used for

this study. The three-dimensional meshes were generated by revolving the two-dimensional meshes

about their x-axes. This produces good quality hexahedral elements throughout the volume, how-
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Figure 2.38: 50 caliber bullet wall pressure profiles at steady-state.
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Figure 2.39: 50 caliber bullet wall shear stress profiles at steady-state.
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Figure 2.40: 50 caliber bullet wall temperature profiles at steady-state.



109

Figure 2.41: Three dimensional supersonic nose tip geometry and boundary conditions.
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ever, one drawback is that pentahedral elements that exist on the stagnation line. For each node on

the stagnation line, there are at least as many elements connected to it as there are revolution in-

tervals. This leads to large stencil in terms of degree-of-freedom to degree-of-freedom dependencies

which has the potential for causing convergence problems and performance loss for linear solvers.

However, no such difficulties were experienced in solving these problems.

The backward Euler time integrator is used with adaptive time stepping where an initial time

step size of 1× 10−7 s and a maximum time step increase of 1.2 are used. A nonlinear relaxation

factor of 0.9 is used with nonlinear convergence criteria of ε = 0.1. Node based stabilization and δ

shock capturing parameters are used. As in several the prior examples, the Trilinos/Aztec GMRES

is used with a global ILU(0) preconditioner.

The coarsest mesh, shown in Figure 2.42, is a structured 41x40 quadrilateral element domain

revolved 360◦ at 10◦ revolution intervals and has a total of 9757 nodes. This mesh is decomposed

into 8 domains and solved using 8 processors. The medium level mesh is a 74x80x36 element

revolved mesh and has a total of 216,075 nodes. This mesh is decomposed into 32 domains and

solved using 32 processors. The finest mesh is a 148x160x36 element revolved mesh and has a total

of 858,389 nodes. This mesh is decomposed into 128 domains and solved on 128 processors. Figure

2.43 shows this mesh’s domain decomposition.

2.6.6.3 Results and Discussion

Figures 2.44 through 2.47 show the Mach, density, pressure and temperature contours for the

finest mesh used for this problem. Although not readily apparent from these figures, the non-zero

pitch and yaw angles produce a fully three dimensional flow and explain the asymmetries seen on

wall and boundaries of the flow domain.s

Figure 2.48 shows the viscous shear stress tensor components plotted on the wall of the body.
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Figure 2.42: Three-dimensional nose tip 41x40x36 element revolved mesh.
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Figure 2.43: Three-dimensional nose tip 148x160x36 element revolved mesh domain decomposition.
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Figure 2.44: Three-dimensional nose tip problem Mach number contours (148x160x36 element
mesh).
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Figure 2.45: Three-dimensional nose tip problem density contours (148x160x36 element mesh).
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Figure 2.46: Three-dimensional nose tip problem pressure contours (148x160x36 element mesh).
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Figure 2.47: Three-dimensional nose tip problem temperature contours (148x160x36 element mesh).
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(a) XX stress. (b) YY stress.

(c) ZZ stress. (d) XY stress.

(e) YZ stress. (f) XZ stress.

Figure 2.48: Three-dimensional nose tip deviatoric stress contours (148x160x36 element mesh).



118

Mesh/# of CPUs CU/FEMDOC SNL/Aria ANSYS/Fluent
28x16 / 1 CPU 0.379 3.57 0.0859
56x32 / 1 CPU 1.56 11.1 0.345
112x64 / 1 CPU 5.76 31.9 1.03
224x128 / 1 CPU 26.3 100 5.44
224x128 / 2 CPU 13.3 54.0 3.10
224x128 / 4 CPU 7.61 26.5 2.48
224x128 / 8 CPU 3.98 14.0 –
224x128 / 16 CPU 2.21 – –
448x256 / 4 CPU 42.4 97.4 28.0
448x256 / 8 CPU 20.4 59.2 –
448x256 / 16 CPU 11.8 – –
448x256 / 32 CPU 6.02 – –

Table 2.1: Non-dimensional run times for serial & parallel simulations of Carter’s flat plate.
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Code (mesh) Stag. Pres. % diff Stag. Temp. % diff.
Analytic Value 3463 Pa 0.00 % 701.0 K 0.00 %
CU/FEMDOC (41x40 mesh) 3522 1.70 % 697.6 -0.49 %
CU/FEMDOC (74x80 mesh) 3458 -0.14 % 701.9 0.13 %
CU/FEMDOC (148x160 mesh) 3430 -0.95 % 703.4 0.34 %
SNL/Aria (41x40 mesh) 3390 -2.11 % 697.6 -0.48 %
SNL/Aria (74x80 mesh) 3418 -1.30 % 697.8 -0.46 %
SNL/Aria (148x160 mesh) 3418 -1.30 % 697.8 -0.46 %
ANSYS/Fluent (41x40 mesh) 3534 2.05 % 699.3 -0.24 %
ANSYS/Fluent (74x80 mesh) 3405 -1.67 % 700.0 -0.14 %
ANSYS/Fluent (148x160 mesh) 3454 -0.26 % 700.0 -0.14 %
SNL/Premo (41x40 mesh) 3624 4.65 % 712.0 1.57 %
SNL/Premo (74x80 mesh) 3494 0.90 % 702.3 0.19 %
SNL/Premo (148x160 mesh) 3482 0.55 % 701.8 0.11 %
SNL/Saccara (41x40 mesh) 3449 -0.40 % 704.0 0.43 %
SNL/Saccara (74x80 mesh) 3473 0.29 % 701.7 0.10 %
SNL/Saccara (148x160 mesh) 3473 0.29 % 701.3 0.04 %
NASA/Overflow (41x40 mesh) 3408 -1.59 % 701.1 0.01 %
NASA/Overflow (74x80 mesh) 3436 -0.78 % 701.3 0.04 %
NASA/Overflow (148x160 mesh) 3452 -0.32 % 701.4 0.06 %

Table 2.2: Nose tip problem analytic vs. numeric stagnation pressure and temperature comparison
for all codes and all meshes.



Chapter 3

Computational Analysis of Transient Heat Transfer

3.1 Introduction

This chapter discusses the governing equation, discretization, and solution of transient heat

transfer problems. The standard Galerkin treatment as well as a stabilized Galerkin discretization

will be presented and used in this chapter. An arbitrary Lagrangian-Eulerian form of the parabolic

partial differential equation will also be developed for the purpose of solving the equations on a

moving mesh. Additionally, formulations for solving volumetric phase change and surface ablation

problems will be shown. This chapter will conclude by presenting several numerical example prob-

lems that demonstrate the capabilities developed for this thesis to analyze transient heat transfer

problems.

3.2 Transient Heat Conduction Equation

The transient heat equation for a solid represents an energy conservation equation that gov-

erns the time-dependent diffusion of heat energy through a body [119]. The heat equation is a

parabolic partial differential equation and in general is much more amenable to solution via numer-

ical methods than the hyperbolic partial differential equations considered in the previous chapter.

Nevertheless, instabilities in the numerical solution may arise and these will be addressed in the

next section.
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3.2.1 Differential Form of the Transient Heat Equation

The transient heat conduction equation governs the time-dependent temperature distribution

within a body. This equation is written in a generic form as

∂H

∂t
+
∂qi
∂xi
−Q = 0 (3.1)

where H is the enthalpy of the material, qi is the heat flux vector, and Q is a volumetric heating

or source term. The enthalpy is a measure of the internal energy of the material and is written

in this form to account for phase changes that may occur in the material. The volumetric heating

term accounts for heat input that may occur from external sources or through chemical reactions.

Both of these terms will be discussed in greater detail in the next section. Similar to the viscous

terms in the Navier-Stokes energy equation (equation 2.3), the heat flux vector qi is a measure of

the thermal energy flow and is typically written using Fourier’s Law

qi = −kij
∂T

∂xi
(3.2)

where kij is the symmetric thermal conductivity tensor for the material and T is the temperature

of the solid. Using this definition of the heat flux, equation 3.1 is more commonly written as

∂H

∂t
− ∂

∂xi

(
kij

∂T

∂xj

)
−Q = 0 (3.3)

Equation 3.3 is completed by the Dirichlet boundary conditions

T = T̄ (x, t) on ΓT (3.4)

which states that the temperature T̄ may be prescribed on the Dirichlet boundary surface ΓT and

the Neumann boundary conditions

qi · ni = −q̄ − qc − qr on Γq̄ (3.5)

which states the heat flux transferred normal to the boundary surface Γq̄ is balanced by any

prescribed heat flux q̄, convective heat flux qc, and/or radiative heat flux qr. The convective heat
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flux is often represented by Newton’s Law of Cooling as

qc = hc(T − Tref ) (3.6)

where hc is the convective heating coefficient and Tref is a reference or ambient temperature. The

last term in equation 3.5 is the radiative flux and is represented by the equation

qr = εrσ(T 4 − T 4
∞) (3.7)

where εr is the radiative emissivity, σ is the Stefan-Boltzmann constant, and T∞ is the far-field

temperature the body is radiating to. Finally, initial conditions must be given to define the thermal

state of the solid on ΩT

T (x, t = 0) = T0(x) in Ωt (3.8)

3.2.2 Thermal Material Models

Equation 3.3 is written with the enthalpy term H in order to account for changes in phase

of the solid. As a material changes phase, a latent heat effect occurs whereby energy is released or

absorbed. This is a highly nonlinear effect and must be handled appropriately by the numerical

method. The enthalpy of a solid may be written as a function of temperature according to the

equation

H(T ) =
∫ T

Tref

ρCp(T )dT + ρLhf (T ) (3.9)

where ρ is the density of the solid, Cp(T ) is the temperature dependent specific heat, Lh is the latent

heat of fusion, and f is a function which specifies the volume fraction of liquid in the material. The

“phase function” f may have several forms; the simplest of which is a linear interpolation defined

as

f (T ) =


0 if T < Tsolid

0 < f ∗ (T ) < 1 if Tsolid < T ≤ Tliquid

1 if T > Tliquid

(3.10)
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Note that if we assume the material does not change phase and that the specific heat is constant

equation 3.3 may be re-written as

ρCp
∂T

∂t
− ∂

∂xi

(
kij

∂T

∂xj

)
−Q = 0 . (3.11)

The the three-dimensional form of the symmetric thermal conductivity tensor kij given in

equation 3.3 may be written as

kij =


k11 k12 k13

k21 k22 k23

k31 k32 k33

 . (3.12)

If the material is assumed to behave in an isotropic fashion then the thermal conductivity tensor

becomes

kij =


k11 0 0

0 k11 0

0 0 k11

 . (3.13)

In general, the components of kij = kij (T ) meaning that the thermal conductivity may vary with

temperature.

3.3 Finite Element Discretization of the Transient Heat Equation

This section discusses the spatial discretization of the transient heat equation via a standard

Galerkin finite element method and a stabilized finite element method. The stabilized form is used

to suppress solution oscillations that sometimes arise with the Galerkin form, especially when a

relatively high heat flux is applied to a low thermal conductivity material.

3.3.1 Galerkin Discretization

The standard Galerkin variational statement is obtained by multiplying the governing equa-

tion (3.3) by suitably defined test functions W∫
Ωt

W ·
[
∂H

∂t
− ∂

∂xi

(
kij

∂T

∂xj

)
−Q

]
dΩ = 0 (3.14)
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Integrating the second order spatial derivative term in equation 3.14 by parts reduces it to the sum

of a first-order derivative volume integral and a surface integral∫
Ωt

W ·
(
∂H

∂t
−Q

)
dΩ−

[
−
∫

Ωt

∂W

∂xi
·
(
kij

∂T

∂xj

)
+
∫

Γt

W

(
kij

∂T

∂xj

)
nidΓ

]
= 0 (3.15)

After rearranging the previous equation it becomes the familiar Galerkin weak statement for tran-

sient heat transfer∫
Ωt

[
W ·

(
∂H

∂t
−Q

)
+
∂W

∂xi
·
(
kij

∂T

∂xj

)]
dΩ−

∫
Γt

W qin̂i dΓ = 0 (3.16)

Recognizing that the boundary flux integral in equation 3.16 is simply the Neumann boundary

conditions given in equation 3.5 this may also be expressed as∫
Ωt

[
W ·

(
∂H

∂t
−Q

)
+
∂W

∂xi
·
(
kij

∂T

∂xj

)]
dΩ +

∫
Γt

W · (q̄ + qc + qr) dΓ = 0 (3.17)

This equation is the familiar Galerkin weak statement for the transient heat equation.

3.3.2 Galerkin Gradient Least Squares Discretization

The Galerkin weak statement given by equation 3.17 has been known to produce non-physical

solution oscillations for certain problems. In particular, problems with high boundary heat fluxes

and low thermal conductivity of the solid fall under this category, as described by Fachinotti [37].

Given this deficiency, Ilinca [72] applied the Galerkin gradient least-squares (GGLS) method devel-

oped by Franca et al. [46] to stabilize errors arising from the poor spatial approximation in these

cases. Given that problems of interest to aerospace applications necessarily involve tremendous

heat fluxes and possibly low thermal conductivity materials, the GGLS approach was pursued and

implemented.

Similar to the SUPG method shown in the previous chapter, the GGLS formulation is a

residual-based method that aims to add dissipation were needed in order to obtain a better behaved

numerical scheme. The GGLS analog to the test function perturbations introduced by the SUPG

method in equation 2.39 is written as

Ŵ = W +
∂W

∂xi
kτggls . (3.18)
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For the sake of simplicity, the thermal conductivity tensor kij is represented here as an isotropic,

scalar thermal conductivity k. In this equation, a perturbation proportional to the test function

derivative and the thermal conductivity k is scaled by the stabilization parameter τggls. Computa-

tion of τggls is deferred to a later section for the time being. The test function perturbation applies

to the strong form of the residual given by equation 3.3, hence the GGLS weak form is written as

∫
Ωt

[
W ·

(
∂H

∂t
−Q

)
+
∂W

∂xi
·
(
kij

∂T

∂xj

)]
dΩ +

∫
Γt

W · (q̄ + qc + qr) dΓ +

ne∑
e=1

∫
Ωet

∂W

∂xi
kτggls ·

∂

∂xi

[
∂H

∂t
− ∂

∂xi

(
kij

∂T

∂xj

)
−Q

]
= 0 (3.19)

The summation symbol in equation 3.19 indicates that the stabilization occurs only over element

interiors. Note that stabilization is added via the gradient of the strong form of the residual and

hence has the greatest influence in the regions where the spatial change in the residual is large.

3.3.3 Finite Element Spatial Approximation

The solution of equations 3.17 and 3.19 is obtained by first discretizing the domain Ω into

elements Ωe and solving for approximate temperature solutions T h of the weak statement. The

approximate trial solutions T h are sought by solving the weak statement represented by a linear

combination of the test functions W h. The trial solution and test function spaces are defined in a

similar manner to equations 2.43 and 2.44 from the previous chapter.

Sh =
[
T h ∈

[
C0(Ω)

]ndof , T h |Ωe∈
[
P k(Ωe)

]ndof
, T h = T̄ on Γt

]
(3.20)

which states that the trial solution must be C0 continuous, representable by an interpolation

polynomial P k of order k, and must satisfy the Dirichlet conditions on the boundary. Similarly,

the test function space is defined by

Vh =
[
W h ∈

[
C0(Ω)

]ndof , W h |Ωe∈
[
P k(Ωe)

]ndof
, W h = 0 on Γt

]
. (3.21)
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The standard approximation for T is represented using element basis functions via a split in the

time and spatial dependence of the variable according to the equation

T h(x, t) =
nn∑
n=1

Nn(x)Tn(t) . (3.22)

where n = 1, ..., nn symbolizes the nodes of the element.

3.3.4 GGLS Stabilization Parameter

The stabilization parameter used here for the GGLS formulation is the same one defined by

Franca [46]. τggls is written as

τggls =
h2

6k
ξ̄ (3.23)

where

ξ̄ =
cosh

(√
6α
)

+ 2

cosh
(√

6α
)
− 1
− 1
α

(3.24)

α =
(ρCp/∆t)h2

6k
(3.25)

and h is the element size which is defined here to be

hT = 2

(
nn∑
n=1

| re · ∇Nn |

)−1

where re =
∇T
‖∇T‖

, (3.26)

The stabilization parameter used here was derived for one-dimensional GGLS problems, however as

reported by reference [72] and as observed here the stabilization parameter also performs reasonably

well for multi-dimensional problems.

3.4 Ablation Modeling

Hypersonic re-entry vehicles often need some form of thermal protection system in order

to mitigate the extremely high heat fluxes and resulting thermal conduction into the body while

passing through the atmosphere. Perhaps the most commonly used method of reducing the heating

of the structure is through the use of an actively ablating material. The intent of an ablator

is to absorb and remove as much of the heat energy as possible through mass loss via chemical
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decomposition of the material. The intent of this section is to overview two types of surface ablation

models and discuss the implementation of one in terms of solving the heat conduction equation on

a moving boundary.

The physics of the hypersonic flow environment was discussed in the previous chapter yet it

is important to reiterate that chemical reactions often come into play along with viscous effects of

the body. A chemically reacting ablator will inject species into the flow field which may in turn

react with the fluid species. Unfortunately, it is outside the scope of this thesis to incorporate

thermochemical flow effects thus accounting for the chemical interactions of the ablator and fluid.

For the purpose of demonstrating the monolithic coupling approach used in this dissertation the

simpler Q* discussed here was chosen. For more details on sophisticated thermochemical ablation

modeling techniques see, for instance, the work of Amar and Blackwell [7, 8] and Chen and Milos

[29, 107].

3.4.1 Heat of Ablation (Q*) Model

The so-called “Heat of Ablation” model accounts for the amount of energy absorbed by the

material as it changes phase from a solid to a liquid or gaseous state. The Q* model uses a latent

heat to approximate the energy consumed at the ablating surface and makes no attempt to model

in detail what may be occurring in terms of chemical reactions. For many problems this model is

able to give a rough approximation of the surface energy balance and recession rate. However, its

use is often entirely insufficient for accurate prediction of many modern ablators that require the

in-depth modeling of the chemical decomposition process.

The flux boundary condition as written by equation 3.5 is now written including a latent

heat term that accounts for recession of boundary as the material at the surface changes phase

qi · ni = −q̄ − qc − qr + q∗ on Γq (3.27)

where q∗ is written as

q∗ = ρLhṡ on Γq (3.28)
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where Lh is the latent heat due to phase change and ṡ is the surface recession velocity.

3.4.2 Thermochemical Equilibrium Ablation Model

For a thermochemical ablation model the surface energy balance is written as

qi · ni = −q̄ − qc − qr + qtc on Γq (3.29)

where qtc is written as

qtc = ρṡ (hw − hc) on Γq (3.30)

In the previous equation, ṡ is the surface recession velocity due to thermochemical ablation and hw

and hc are the specific enthalpies of the gas at the wall and the enthalpy of the charred ablator.

The char enthalpy is defined as

hc = href +
∫ T

Tref

Cp(T ) dT (3.31)

and the product ρṡ is defined as

ρṡ = CmB
′ (3.32)

where Cm is a mass transfer coefficient and B′ represents a dimensionless ablation mass transfer

rate. It is typically assumed that the mass transfer coefficient is equal to the convective heat

transfer coefficient hc in equation 3.6. The B′ values must be computed for a specific material

given a wall temperature and pressure. The equilibrium chemistry code ACE [118] is a commonly

used tool for performing this task. The thermochemical equilibrium ablation development shown

here is similar to that shown by Kuntz et al. [86]; the reader is referred to this reference for further

information.

3.5 Solution Strategies for the Transient Heat Conduction Equation

3.5.1 Nonlinear Solution via Newton’s Method

Newton’s method is used to solve the nonlinear equations arising from the weak formulation

of equations 3.17 and 3.19, the basics of which were previously discussed in section 2.4.1.
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3.5.2 Semi-Discrete Residual Equation

The Galerkin gradient least-squares weak residual equation is given by

Rt(Ṫ , T ) ≡
∫

Ωt

[
W ·

(
ρCp(T h)Ṫ h + ρLhḟ(T )−Q

)
+
∂W

∂xi
·
(
kij(T h)

∂T

∂xj

)]
dΩ +∫

Γt

W · (q̄ + qc + qr) dΓ +

ne∑
e=1

∫
Ωet

∂W

∂xi
kτggls ·

∂

∂xi

[
ρCp(T h)Ṫ + ρLhḟ(T )− ∂

∂xi

(
kij(T h)

∂T

∂xj

)
−Q

]
= 0 (3.33)

The weight functions used to interpolate the solution are defined by the vector

W e = [W1 W2 ... Wn] (3.34)

Using the weight function vector W the approximate solution defined in equation 3.22 and its time

derivative may be written simply as the dot product with the elements nodal state variables

T h(x, t) = W T T e (3.35)

Ṫ h(x, t) = W T Ṫ e (3.36)

The previous equation can now be cast into a semi-discrete matrix-vector form

Rt(Ṫ ,T ) ≡Rt(Ṫ ,T ) +Rt(T ) (3.37)

where the dynamic residual is computed as

Rt(Ṫ ,T ) =
ne∑
e=1

Re
t (Ṫ

e
,T e) (3.38)

The element-level nonlinear dynamic residual contribution is expressed by

Re
t (Ṫ ,T ) ≡Re

t,galerkin + Re
t,ggls . (3.39)

Re
t,galerkin is the dynamic portion of the standard Galerkin residual in which any material nonlin-

earities may exist

Re
t,galerkin =

∫
Ωe
W T ρCp(T h)Ṫ h dΩ +

∫
Ωe
W TρLhḟ(T h) dΩ (3.40)
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and ḟ is the time derivative of the phase function field. Re
t,ggls accounts for the GGLS contribution

to the time dependent part of the residual equation

Re
t,ggls =

∫
Ωet

∂W e

∂xi

T

kij(T h) τggls(T h) · ∂
∂xi

[
ρCp(T h)Ṫ h + ρLhḟ

]
dΩ (3.41)

The nonlinear static residual Rt(T ) is assembled from element residual contributions in the same

way the dynamic residual is built. The element-level static residual is defined according to the

equation

Re
t (T ) ≡ Re

t,galerkin +Re
t,ggls . (3.42)

Re
t,galerkin is the steady portion of the standard Galerkin treatment of the heat equation and is

expressed as

Re
t,galerkin =

∫
Ωet

∂W

∂xi

T

·
[
kij(T h)

∂T h

∂xj

]
dΩ−

∫
Ωet

W T ·Q(T h) dΩ +
∫

Γet

W T · (q̄ + qc + qr) dΓ (3.43)

If the GGLS formulation is included, the element static residual Re
t is augmented by the GGLS

residual for the heat equation

Re
t,ggls =

∫
Ωe

∂W

∂xi

T

kij(T h) τggls(T h) · ∂
∂xi

[
− ∂

∂xi

(
kij(T h)

∂T h

∂xj

)
−Q(T h)

]
dΩ (3.44)

It is important to note that the third-order spatial derivatives arising from this equation vanish for

linear or quadratic element basis functions. In many cases this term is dropped from consideration.

3.5.3 Jacobian Calculation

Differentiating the residual statement (equation 3.33) with respect to T we obtain the Jaco-

bian expression

∂R(Ṫ , T )
∂T

= J(Ṫ , T ) ≡∫
Ωt

W ·

[
ρ
∂Cp(T )
∂T

Ṫ + ρCp(T )
∂Ṫ

∂T
+ ρLh

∂ḟ(T )
∂T

− ∂Q(T )
∂T

]
dΩ+∫

Ωt

∂W

∂xi
·
(
∂kij(T )
∂T

∂T

∂xj
+ kij(T )

∂W

∂xj

)
dΩ +

∫
Γ
W ·

(
q̄ +

∂qc
∂T

+
∂qr
∂T

)
dΓ +

ne∑
e=1

∫
Ωet

∂W

∂xi
kij(T ) τggls(T ) · ∂

∂xi

[
∂

∂T
(LT −Q(T ))

]
(3.45)
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The previous equation may be written compactly as

J(Ṫ , T ) ≡ J t(Ṫ , T ) + J t(T ) (3.46)

where the dynamic Jacobian is computed as

J (Ṫ , T ) =
ne∑
e=1

J e
t (Ṫ

e, T e) (3.47)

The element-level nonlinear dynamic Jacobian contribution is expressed by

Re
t (Ṫ , T ) ≡ J e

t,galkerin + J e
t,ggls (3.48)

where Re
t,galerkin is the standard Galerkin Jacobian in which any material nonlinearities may be

accounted for

Jet,galerkin =
∫

Ωe
W T ·

[
ρ
∂Cp(T h)
∂T

Ṫ h + ρCp(T h)
∂Ṫ h

∂T

]
dΩ (3.49)

and ḟ is the time derivative of the phase function field. Jet,ggls accounts for the derivatives of the

GGLS contribution to the time dependent part of the residual equation

Jet,ggls =
∫

Ωet

∂W

∂xi

T

kij(T h) τggls(T h) · ∂
∂xi

[
ρCp(T h)Ṫ h + ρLhḟ

]
dΩ (3.50)

The static Jacobian J t is assembled from element Jacobian contributions in the same way the

dynamic Jacobian is built and is defined according to the equation

Jet (T ) ≡ Jet,galerkin + Jet,ggls (3.51)

where

Je
s

Q = (3.52)

Jet,galerkin =
∫

Ωet

∂W

∂xi

T

·
(
∂kij(T h)
∂T

∂T h

∂xj
+ kij(T h)

∂W

∂xj

)
dΩ−

∫
Ωet

W T ·

[
ρLh

∂ḟ(T h)
∂T

− ∂Q(T h)
∂T

]
dΩ +

∫
Γet

W T ·
(
q̄ +

∂qc
∂T

+
∂qr
∂T

)
dΓ (3.53)

and if the GGLS formulation is included its static residual contribution is defined by

Jet,ggls =
∫

Ωet

∂W

∂xi

T

kij(T h) τggls(T h) · ∂
∂xi

[
∂

∂T

(
ρCp(T h)

∂T

∂t
− ∂

∂xi

(
kij(T h)

∂T

∂xj

)
−Q(T h)

)]
dΩ

(3.54)

where the derivatives of kij(T h) and τggls(T h) have been ignored for the sake of simplicity.
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3.5.4 Time Integration via the Θ-Scheme

The semi-discrete problem posed by equation 3.37 is solved here via the Θ-scheme time

integrator. As an alternative to semi-discretization, the space-time finite element methods, which

discretize both the temporal and spatial parts of the PDE via finite element methods, have been

successfully applied to solving first-order in time PDEs [10].

The Θ integrator defines an intermediate state at which the residual is built. The intermediate

state is defined by

T̃ = ΘT n+1 + (1−Θ)T n (3.55)

and the time derivative of the state is computed by the backward difference

Ṫ =
T n+1 − T n

∆t
(3.56)

The residual and Jacobian given by equations 3.33 and 3.45 are now computed as functions of T̃

and Ṫ . Setting Θ = 1 yields the backward Euler integrator and Θ = 0.5 produces a second-order

accurate mid-point rule integrator.

The adaptive time step selection process given by equation 2.112 also applies to this integra-

tor. Since the Θ-scheme is a two-point method (using only T n+1 and T n) no special form of the

integrator accounting for previous time step sizes is needed, as was the case with the BDF scheme

presented in the last chapter. It is also possible to use the BDF integrator to solve the heat transfer

equations presented here as well as use the Θ-scheme to solve the Navier-Stokes equations of the

last chapter.

3.6 Arbitrary Lagrangian-Eulerian Form of the Heat Equation

3.6.1 ALE Form of the Governing Equation

In the event the mesh is moving while solving the transient heat equation (as may be the case

in ablation of the solid), an arbitrary Lagrangian-Eulerian (ALE) frame of reference is adopted in

order correct for advection of the material introduced by the mesh motion. Consequently, equation
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3.3 must be re-written as

∂H

∂t
+ vmi

∂H

∂xi
+

∂

∂xi

(
kij

∂T

∂xj

)
−Q = 0 (3.57)

where vmi is the mesh motion velocity. This is consistent with replacing the partial time derivative

∂/∂t with the total derivative
D

Dt
≡ ∂

∂t
+ vi

∂

∂xi
(3.58)

which describes the rate of change of a quantity that is both changing in space and time.

3.6.2 Time Accurate ALE Integration

Time accuracy of an integrator solving the ALE form of the governing equation 3.57 is

automatically satisfied on a moving grid due to the nature of the equations. The energy equation

solved for transient heat transfer is a pure diffusion process, with no advective terms inherent to

the equation. As noted by Geuzaine [47], diffusive fluxes do not affect the DGCL, only advective

fluxes. Since the only advection in equation 3.57 is introduced by the non physical and arbitrary

mesh motion the DGCL is not a consideration. Simple numerical experiments can be done to prove

this statement.

However, there is another issue related to the time accuracy which arises in the case of

excessive mesh motion. If the non-dimensional Peclet number, defined as

Pe =
ρ vm hCp

2k
(3.59)

which is a measure of the advective and diffusive scales, is greater than one then the spatial ap-

proximation may exhibit oscillations in the solution. This is related to the same cause of instability

of a finite element scheme for an advection dominated flow. Hence, stabilization techniques such

as an SUPG, GLS, or GGLS method may be used to stabilize these effects.
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3.7 Numerical Example Problems

3.7.1 2-Dimensional Heat Transfer on a Moving Mesh

This example solves the steady state heat transfer on a moving mesh and is based on a

problem from the ANSYS Verification Manual [75].

3.7.1.1 Problem Description

Figure 3.2 shows the geometry and boundary conditions used for this problem. The solid

material has a thermal conductivity of k = 54 W/m ·K, density of ρ = 7833 kg/m3, and thermal

capacitance of Cp = 465 J/kg · K. The top surface is heated by a convective heat flux where

h = 50 W/m2 ·K and a ambient reference temperature of Ta = 1000 K. The bottom of the domain

has an imposed Dirichlet boundary condition of T = 0 K. A sinusoidal forcing function is applied

to an elastic system governing the motion of the mesh, which generates the mesh deformations.

3.7.1.2 Computational Mesh and Model

Figure 3.2 shows the 11 element mesh used for this problem. The problem is integrated

to steady state via the Θ-scheme time integrator using an adaptive time stepping method. The

SuperLU direct linear solver is used for computing the nonlinear update within the Newton solver.

Note this problem is linear in nature, hence the nonlinear solver computes the exact solution in one

Newton step for every time iteration.

3.7.1.3 Results and Discussion

Figures 3.3(a) - 3.3(e) show the temperature contour plots for several positions of the mesh

during the simulation. It is interesting to note that although the mesh is moving, the steady-state

response remains unaltered by the mesh motion.

Figure 3.4 shows the temperature profile vertically along the edge of the domain at the same

points in time shown in figures 3.3(a) and 3.3(d).
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Figure 3.1: Geometry and boundary conditions for heat transfer on a moving grid.
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Figure 3.2: 11 element computational mesh used for the moving grid heat transfer problem.
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(a) t = 1000 s (b) t = 5000 s (c) t = 10000 s (d) t = 15000 s (e) t = 20000 s

Figure 3.3: Temperature contours at various mesh positions in time.
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Figure 3.4: Temperatures along the vertical edge of the domain for the undeformed steady-state
configuration and two other mesh positions and instances in time.
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3.7.2 2-Dimensional Phase Change Example

In this example the phase change formulation presented in section 3.2.2 is used to demonstrate

its capability. This problem illustrates the benefit of utilizing phase changing materials with high

latent heat as a means of altering internal heat flow for design purposes. This concept will be

further explored later in this thesis; at present we simply consider the phase change formulation as

an analysis capability.

3.7.2.1 Problem Description

The geometry and boundary conditions are shown in Figure 3.9. The geometry is divided

into two distinct material zones; the inner and outer ring consist of a tungsten-like material with

k = 200.0 W/m ·K, ρ = 19, 300 kg/m3, c = 134 J/kg ·K, and the middle ring of material is an

aluminum alloy with k = 210.0 W/m ·K, ρ = 2700 kg/m3, c = 950 J/kg ·K. The tungsten material

changes phase between Ts = 3300 K and Tl = 3305 K with a latent heat of 1.84× 105 J/K, while

the aluminum alloy changes phase between Ts = 900 K and Tl = 925 K with a latent heat of

3.80× 105 J/K. The relatively high latent heat and low density of the aluminum alloy makes it an

intriguing material in terms of thermal energy absorption.

The outer surface of the cylinder is heated by a constant 2.0× 106 W/m2 heat flux and the

remaining boundaries are treated as adiabatic surfaces. The entire structure is at an initial uniform

temperature of 800.0 K when the simulation begins.

3.7.2.2 Computational Mesh and Model

The problem is solved using a mesh with 922 quadrilateral elements and is shown in figure

3.6.

The problem is solved via the theta-scheme time integrator scheme using Θ = 0.5 and a

constant time step of 0.01 s. A Newton scheme is used to solve the nonlinear residual equations. The

nonlinear iteration loop exits when the nonlinear residual drops at least four orders of magnitude.

Before the temperature of the structure reaches the melting temperature of either material, the
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Figure 3.5: Geometry and boundary conditions for the quarter cylinder phase change problem.
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Figure 3.6: 922 quadrilateral element mesh for the quarter cylinder phase change problem
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problem behaves linearly and only a single nonlinear solve is required to converge within the Newton

loop. However, due to the nonlinear nature of the phase change process once a material begins

to change phase the problem suddenly becomes a nonlinear one. In many situations some amount

of under-relaxation of the nonlinear update computed by the Newton solve can actually speed

convergence over no relaxation. In order to accommodate these two situations, a multi-level Newton

solver is used. The first level specifies a maximum of 2 Newton solves and no relaxation of the

Newton update. The solver enters the second level if the first level fails to reduce the residual to

the tolerance specified above, as is the case when the problem becomes nonlinear. The second level

specifies a maximum of 20 Newton solves and an update relaxation of 0.8. This setup has proven

to noticeably accelerate the overall time integration over a single-level Newton solver. Trilinos’

Aztec/GMRES iterative solver is used to solve the linearized equations generated by the Newton

solver. The ML multi-level preconditioner available within Trilinos is used in conjunction with the

GMRES. The GMRES/ML combination provides a very fast linear solver capability and for many

problems of this type is over two times faster than some of the fastest direct solvers available.

3.7.2.3 Results and Discussion

Figure 3.7 shows the temperature and phase functions fields at the end of the simulation for

the problems with and without phase change. It is qualitatively clear from this figure that the

problem with phase change leads to a much lower temperature field than the non-phase changing

problem.

Figure 3.8 shows the temperature histories of the center node for an all tungsten cylinder

and for one in which the middle material zone is aluminum. This plot makes it very apparent that

the phase changing material “shields” the inner material by absorbing energy through the latent

heat effect. As one can see, from roughly 6.0 s to 16.0 s the temperature rise at this node levels

off. Once the aluminum has completely changed phase after this time, the zone continues heating

at roughly the same rate as the all tungsten problem. The end result, however, is that at the end

of the simulation (20.0 s in this case), the difference in temperature between the all tungsten and
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Figure 3.7: Temperature and phase function contour plot comparisons. The top half of the figure
displays temperature contours and the bottom half shows the phase function value at the end of
the simulation (20 s). The left half shows the non-phase changing problem, and the right shows
the phase changing problem.
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tungsten/aluminum problems is roughly 200 K. This is an observation we aim to exploit in a later

chapter on topology optimization.

3.7.3 Axisymmetric GGLS Example

This example problem highlights the use of the GGLS formulation in a situation where the

standard Galerkin method exhibits wild undershoots in the solution.

3.7.3.1 Problem Description

The geometry is a half-sphere modeled by an axisymmetric quarter-circle of radius 0.02 m

and material properties of ρ = 2700 kg/m3, Cp = 896 J/(kg ·K) and k = 17.0 W/(m ·K). A heat

flux of q̄ = 1.0 × 109 is applied to the curved boundary of the quarter-circle, all other edges are

adiabatic (i.e. q̄ = 0). The initial temperature of the solid is set to 300 K.

3.7.3.2 Computational Mesh and Model

This problem is solved using two different meshes. The first mesh is relatively coarse (con-

sidering the high heating rate it experiences), consisting of only 601 element, and is shown in figure

3.10(a). The second mesh is significantly more refined and contains 40,409 elements and is shown

in figure 3.10(b).

This problem is solved via five backward Euler time steps that are taken with a fixed time

step size of ∆t = 0.001 s. The UMFPACK serial direct solver is used to solve the linearized problem

within Newton’s method.

3.7.3.3 Results and Discussion

Figures 3.11(a) and 3.11(a) show the solutions as computed by the standard Galerkin formu-

lation and the Galerkin gradient least-squares formulation for the coarse mesh. It is apparent from

these figures that the standard Galerkin method undershoots the solution tremendously, computing

the clearly non-physical temperature of roughly −1167 K at the row of nodes one element depth in
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Figure 3.8: Center node temperature time history for both phase changing and non-phase changing
simulations.
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Figure 3.9: Quarter cylinder phase change problem geometry and boundary conditions.
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(a) 601 element coarse mesh. (b) 40,409 element fine mesh.

Figure 3.10: Coarse and fine meshes used for the GGLS example.
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from the outer boundary. This undershoot is due to the fact that the elements are too coarse to ac-

curately capture the temperature gradient induced by the high heat flux. Using the GGLS method

for the same problem, however, proves that the stabilization term controls the strong gradient and

prevents the temperature field from taking on negative values.

(a) Standard Galerkin solution. (b) GGLS stabilized solution.

Figure 3.11: Coarse mesh temperature contours computed using a standard Galerkin and the GGLS
formulation.

The standard approach to avoiding over/undershoots in the solution when using a Galerkin

formulation for heat transfer is to refine the mesh. The next two figures show that by refining the

mesh the Galerkin solution no longer under-predicts the solution and the GGLS solution is almost

exactly identical to Galerkin result. With this observation we conclude that it is possible to avoid

oscillatory solutions with coarser meshes via the GGLS formulation.

3.7.4 Axisymmetric Q* Ablation

This problem tests the Q* ablation formulation presented earlier in this chapter and was

inspired the problem presented by Hogge [57].
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(a) Standard Galerkin solution. (b) GGLS stabilization solution.

Figure 3.12: Fine mesh temperature contour computed using a standard Galerkin and the GGLS
formulation
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3.7.4.1 Problem Description

Figure 3.13 shows the geometry and boundary conditions for this problem. The geometry is

a half-sphere modeled by an axisymmetric quarter-circle of radius 0.05 m and material properties

of ρ = 1925 kg/m3, Cp = 2200 J/(kg ·K) and k = 25.0 W/(m ·K). The material begins to ablate

at 3800 K with a latent heat release of 1.925× 107 J/kg ·K. A convective heat flux is applied to

the outer surface of the sphere with a convection coefficient that varies continuously between 5, 000

and 15, 000 W/m2 ·K with an ambient temperature of Ta = 5000 K. All other edges are adiabatic

(i.e. q̄ = 0), and the initial temperature is 300 K .

3.7.4.2 Computational Mesh and Model

This problem is solved using three meshes with varying refinement in the circumferential

direction. A 30x5, 30x10, and 30x20 quadrilateral element mesh are employed to assess the quality

of the ablating surface recession as the level of refinement at the surface can affect the smoothness

of the ablation response. A Θ-scheme time integrator is used with Θ = 1.0 and a constant time

step of ∆ t = 0.1 s is used for 200 time iterations. The nonlinear Newton solver has an initial

relaxation of 1.0. If the first Newton solve fails to converge, the Newton solve begins again with a

relaxation of 2/3. This has proven to be an efficient and effective strategy for solving ablation type

problems.

Figure 3.14 shows the 30x5 element mesh. Five elements in the circumferential direction is

clearly a coarse approximation of the sphere’s curved boundary. Refinements in this direction are

used to yield an ablation response with better resolution.

3.7.4.3 Results and Discussion

Figure 3.15 shows the temperature contours and final ablated shape at the 20.0 s simulation

end time. It is noted that the coarsest mesh roughly approximates the ablation boundary but its

final shape is very similar in nature to the more refined meshes. Table 3.1 shows surface temperature

at the stagnation point at the end of the simulation and the percentage it deviates from the 3800 K
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Figure 3.13: Axisymmetric sphere ablation geometry and boundary conditions.
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Figure 3.14: Axisymmetric sphere ablation 30x5 quadrilateral element mesh.
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ablation temperature. From this we conclude that the penalty formulation used to enforce the

ablation temperature at the boundary does an adequate job of holding this value.

(a) 30x5 element mesh. (b) 30x10 element mesh.

(c) 30x20 element mesh.

Figure 3.15: Axisymmetric sphere temperature contours and ablated shape at 20.0 s.
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Mesh Surf. Temp. % Diff from 3800 K Ablation Depth
30x5 element mesh 3802.4 K 0.06 % 0.0232 m
30x10 element mesh 3800.0 K 0.00 % 0.0221 m
30x20 element mesh 3801.5 K 0.04 % 0.0216 m

Table 3.1: Axisymmetric sphere surface temperatures and ablation depth at 20.0 s.



Chapter 4

Computational Structural Dynamics

4.1 Introduction

This chapter’s primary purpose is to overview the elastodynamic equations, its solution via fi-

nite element methods, and the generalized-α time integrator used to solve its semi-discrete form. A

tightly coupled thermoelastic formulation will be presented that allows the solution of the elastody-

namic equations in conjunction with the transient heat equation. The developments of this chapter

will enable us to simultaneously solve the Navier-Stokes equations with the thermoelastodynamic

equations via the coupling schemes discussed in the next chapter.

4.2 Elastodynamic Equations

The elastodynamic equations govern the time-dependent response of a solid body subject to

external forces, and represents conservation of linear momentum. The response of a solid body

can be grouped into the following three categories based on the nature of the deformations. (1)

A small displacement, small strain problem assumes the undeformed and deformed configurations

of a body are identical and the material exhibits linear behavior. Hence, the geometric response

of the structure is assumed to be linear and the material response is assumed to be linear. (2) A

large displacement, small strain problem assumes the undeformed and deformed configurations of

a body may be significantly different, however the strains remain small and behave linearly with

the material. The stiffness of the structure is dependent on the displacement field, and this type of

problem is categorized as geometrically nonlinear, but materially linear. Problems falling under this
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category typically involve long flexible structures. (3) A large displacement, large strain problem

assumes both significant displacements and strains. This type of problem is not only geometrically

nonlinear, but also materially nonlinear. Such problems requiring this type of analysis are hyper-

elastic materials such as elastomers or the elastoplastic response of a metallic structure. For the

purposes of this thesis, only small displacement, small strain structural dynamics problems with

linear elastic material relationships will be considered. However, it is important to note that

framework developed herein for solving aerothermoelastic problems may easily be extended to

problems with nonlinear geometric or material behaviors.

4.2.1 Differential Form of the Elastodynamic Equation

The elastodynamic equations may be expressed as

ρ
∂2uj
∂t2

+ φ(uj)
∂uj
∂t
− ∂σij
∂xj

− bj = 0 (4.1)

where uj are displacement degrees-of-freedom, φ(uj) is a damping coefficient, σij is the Cauchy

stress tensor, and bj are volumetric or body forces. Here we express the damping coefficient as a

function of the displacements alone; in general, however, the damping coefficient may depend on

the displacements, velocities, and even accelerations.

Equation 4.1 is completed by the Dirichlet boundary conditions

uj = ūj(x, t) on Γu (4.2)

which prescribe the displacements ūj on boundary Γu and the Neumann boundary conditions

σij · n̂i = t̄j(x, t) on Γt̄ (4.3)

which specifies the traction t̄j on the boundary Γt̄. Note that when a traction is integrated over a

surface it results in a quantity with units of force.

Initial conditions must be specified for dynamic problems. Since the elastodynamic equation

is second-order in time, the initial state (the displacements uj) and its first-order time derivatives



157

(the velocities u̇j) must be known at the initial time to properly characterize the initial value

problem. Hence, the initial conditions are expressed as

uj(xi, t = 0) = u0
j (xi) in Ωs (4.4)

u̇j(xi, t = 0) = u̇0
j (xi) in Ωs (4.5)

4.2.2 Elastic Material Models

The behavior of a solid material is governed by a constitutive relation which relates stresses

to strains. In this thesis we consider only linear elasticity, for which the stress-strain relation may

be represented by the equation

σij = Dijkl

(
εskl − εtkl

)
(4.6)

where εskl is an elastic strain tensor and is defined as

εskl =
1
2

(
∂uk
∂xl

+
∂ul
∂xk

)
(4.7)

and εtkl is a thermal strain tensor arising from thermal expansion effects in the material

εtkl = αkl[T − Tref ] (4.8)

4.3 Finite Element Discretization of the Elastodynamic Equation

This section discusses the spatial discretization of the elastodynamic equation via a standard

Galerkin method.

4.3.1 Galerkin Discretization

The weak form of the elastodynamic equation is obtained by weighting it with arbitrary

test functions and integrating of over the domain. By invoking the principal of virtual work, the

arbitrary test functions are virtual displacements δuj and we obtain the following variational form∫
Ωs

δuj ·
[
ρ
∂2uj
∂t2

+ φ(uj)
∂uj
∂t
− ∂σij
∂xj

− bj
]
dΩ = 0 (4.9)
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Integrating by parts the stress divergence term leads to the following statement∫
Ωs

[
δuj ·

(
ρ
∂2uj
∂t2

+ φ(uj)
∂uj
∂t
− bj

)
+
∂δuj
∂xi

· σij
]
dΩ−

∫
Γs

δuj · σijni dΓ = 0 (4.10)

where ∂δuj/∂xi is the virtual strain term and is defined as follows

∂δuj
∂xi

= δεij =
1
2

(
∂δui
∂xj

+
∂δuj
∂xi

)
(4.11)

4.3.2 Finite Element Spatial Approximation

The solution of equation 4.10 is obtained by first discretizing the domain Ω into elements Ωe

and solving for the approximate displacement solutions uhj of the weak statement.

The approximate trial solutions uh are sought by solving the weak statement represented

by a linear combination of the test functions W h. The trial solution and test function spaces are

defined in a similar manner to equations 2.43 and 2.44 from the previous chapter.

Sh =
[
uh ∈

[
C0(Ω)

]ndof , uh |Ωe∈
[
P k(Ωe)

]ndof
, uh = ū on Γu

]
(4.12)

which states that the trial solution must be C0 continuous, representable by an interpolation

polynomial P k of order k, and must satisfy the Dirichlet conditions on the boundary. Similarly,

the test function space is defined by

Vh =
[
W h ∈

[
C0(Ω)

]ndof , W h |Ωe∈
[
P k(Ωe)

]ndof
, W h = 0 on Γu

]
(4.13)

The standard approximation for uj is represented using element basis functions via a split in

the time and spatial dependence of the variable according to the equation

uhj (x, t) =
nn∑
n=1

Nn(xn)unj (t). (4.14)

where n = 1, ..., nn symbolizes the nodes of the element. Likewise the virtual displacements are

approximated by the equation

δuhj (x, t) =
nn∑
n=1

Nn(xnj )unj (t). (4.15)
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The relation between strains and displacements can be expressed using the matrix-vector

notation as follows

ε = Bu (4.16)

where B is the so-called strain-displacement operator. Now, substituting the relations for displace-

ment and strain we obtain the following expression∫
Ωs

ρW TW ü dΩ+
∫

Ωs

φ(u)W TW u̇ dΩ−
∫

Ωs

WTσ dΩ−
∫

Ωs

W Tb dΩ−
∫

Γs

W T t̄ dΓ = 0 (4.17)

Summing all finite elements we obtain a semi-discrete, second-order ordinary differential

equation of the following form

Rs (ü, u̇,u) ≡M ü+ C (u) u̇+R (σ)− F (t) = 0 (4.18)

where the global mass matrix, damping matrix, static residual vector, and force vector are defined,

respectively, as

M =
ne∑
e=1

Me , C (u) =
ne∑
e=1

Ce (u) , R (σ) =
ne∑
e=1

Re (σ) , F (t) =
ne∑
e=1

F e (t) (4.19)

The global matrices and vectors defined by equation 4.19 are assembled from element level contri-

butions which are given by

Me =
∫

Ωes

ρW TW dΩ (4.20)

Ce (u) =
∫

Ωes

φ (u)W TW dΩ (4.21)

Re (σ) =
∫

Ωes

BTσ dΩ (4.22)

F e (t) =
∫

Ωes

W Tb (t) dΩ−
∫

Γes

W T t̄ (t) dΓ (4.23)

An alternative expression for equation 4.18 is sometimes given by recognizing that σ = σ (ε) and

ε = ε (u), so then σ = σ (u) and equation 4.18 may then be expressed as

Rs (ü, u̇, u̇) ≡Mü+ C (u) u̇+Rs (u)− F (t) = 0 (4.24)
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4.3.3 Damping Matrix

Determining an appropriate damping coefficient φ and damping term C (u) is often difficult,

if not impossible for most problems. A common approach is to approximate the damping matrix

using the Rayleigh damping method. In this case,

Ce (u) = αd Me + βd
∂R (u)
∂u

(4.25)

where the last term in the previous equation is the element tangent stiffness matrix.

4.4 Solution Strategies for the Elastodynamic Equation

The dynamic response of a structural system can be characterized by any number of methods,

including mode superposition, direct time integration, or modal analysis. However, for general

analysis of structural dynamics problems direct time integration is the most common choice.

The Newmark method [109] is arguably the most predominant direct time integration scheme

for second-order ordinary differential equations arising from the elastodynamic equations. Several

improvements to the basic Newmark algorithm have been introduced since it inception, including

the Hilber, Hughes, & Taylor[54] (HHT-α) method and the Wood, Bossak, & Zienkiewicz [143]

(WBZ-α) method. The generalized-α method was introduced by Chung and Hulbert [30] in 1993

and is essentially a generalization of the three aforementioned schemes. The generalized-α method

is briefly overviewed here and used for several numerical examples shown during the remainder of

this document.

4.4.1 Time Integration via Generalized-α Method

Beginning from the semi-discrete form of the residual equation (4.24), repeated here for

convenience,

Rs (ü, u̇, u̇) ≡Mü+ C (u) u̇+R (u)− F (t) = 0 (4.26)
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the generalized-α method solves the equilibrium equation at the intermediate time state n+ 1− α

according to the equation

Rs ≡Mün+1−αm + C
(
un+1−αf

)
u̇n+1−αf +R

(
un+1−αf

)
− F

(
tn+1−αf

)
= 0 (4.27)

and the intermediate states are defined by the equations

ün+1−αm = (1− αm) ün+1 + αmü
n (4.28)

u̇n+1−αf = (1− αf ) u̇n+1 + αf u̇
n (4.29)

un+1−αf = (1− αf )un+1 + αfu
n (4.30)

tn+1−αf = (1− αf ) tn+1 + αf t
n (4.31)

where αm and αf are algorithmic parameters that interpolate between the states at n and n+ 1.

The Newmark approximations for ün+1 and u̇n+1 are expressed by

ün+1 =
(

1− 1
2β

)
ün − 1

β∆t u̇
n + 1

β∆t2

(
un+1 − un

)
(4.32)

u̇n+1 = u̇n + ∆t (1− γ) ün + ∆tγün+1 (4.33)

where β and γ are Newmark algorithmic parameters. The approximated accelerations (4.32) and

velocities (4.33) are based on the current degree-of-freedom solution un+1 and previously known

displacements, velocities, and accelerations. The terms are computed and substituted into the

generalized-α equations for acceleration (4.28) and velocity (4.29).

According to Chung and Hulbert’s analysis [30] the generalized-α method is second-order

accurate when

γ =
1
2
− αm + αf (4.34)

and unconditionally stable (for linear problems) when

αm ≤ αf ≤ 1
2 , β ≥ 1

4 + 1
2 (αf − αm) (4.35)



162

4.4.2 Nonlinear Solution via Newton’s Method

In order to solve the following nonlinear, second-order-in-time residual equation,

Rs

(
ün+1−αm , u̇n+1−αf ,un+1−αf

)
= Mün+1−αm + C

(
un+1−αf

)
u̇n+1−αf+

R
n+1−αf
s − F n+1−αf = 0 (4.36)

Newton’s method is used to linearize the problem and compute an increment to the solution. First,

however, the generalized mid-point rule is used to interpret the nonlinear static residual Rn+1−αf
s

and external force vector F n+1−αf via

R
n+1−αf
s = Rs

(
(1− αf )un+1 + αf u

n
)

(4.37)

F n+1−αf = F
(
(1− αf )tn+1 + αf t

n
)
. (4.38)

The linearization of the total residual, which is expressed in terms of a state at n + 1 − α,

takes place about the state n+ 1 as follows

Rs

(
u(m),n+1−α

)
+

[
∂Rs

(
u(m),n+1−α)
∂un+1

]
︸ ︷︷ ︸

Js

∆u(m),n+1−α = 0 (4.39)

where (·)(m),n+1−α represents the linearization at the m-th nonlinear iteration and the time state

n+ 1− α.

The Jacobian matrix Js is then defined by

Js = M
∂ün+1−αm

∂un+1
+ Cn+1−αf ∂u̇

n+1−αf

∂un+1
+
∂Cn+1−αf

∂un+1
u̇n+1−αf +

∂R
n+1−αf
s

∂un+1
− ∂F n+1−αf

∂un+1
(4.40)

where the derivatives of Rn+1−αf and F n+1−αf are

∂R
n+1−αf
s

∂un+1
= (1− αf )

∂R
(
un+1

)
∂un+1

(4.41)

∂F n+1−αf

∂un+1
= 0 (4.42)

The derivative of the damping matrix Cn+1−αf with respect to un+1 must be accounted for ac-

cording to the damping model used (e.g. Rayleigh damping). Finally, the derivatives of ün+1−αm
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and u̇n+1−αf with respect to un+1 are expressed as follows

∂ün+1−αm

∂un+1
=

1− αm
β∆t2

(4.43)

∂u̇n+1−αf

∂un+1
=

(1− αf ) γ
β∆t

(4.44)

Thus, the Jacobian matrix as shown in equation 4.40 can be expressed in the following form for

the generalized-α method

Js =
(

1− αm
β∆t2

)
M+

(
(1− αf ) γ
β∆t

)
Cn+1−αf +

∂Cn+1−αf

∂un+1
u̇n+1−αf + (1− αf )

∂Rs (un+1)
∂un+1

(4.45)

4.5 Thermoelastic Coupling

A coupled thermoelastodynamic system can be assembled by piecing together the elastody-

namic equations and the transient heat equation in the following fashion Muu 0

0 0


 ü
T̈

+

 Cuu 0

CTu CTT


 u̇
Ṫ

+

 Kuu KuT

0 KTT


 u
T

 =

 F
Q

 (4.46)

The sub-matrices located on the diagonal of the above matrix equation have been previously defined,

but are repeated here for the sake of convenience. The element-level structural mass, stiffness, and

damping matrices are defined as, respectively,

M e
uu =

∫
Ωe
W TρW dΩ (4.47)

Ke
uu =

∫
Ωe
BTσ dΩ =

∫
Ωe
BTDsB dΩ (4.48)

Ce
uu =

∫
Ωe
φ (u)W TρW dΩ (4.49)

where Ds is the structural constitutive matrix that relates stress and strain via σ = Ds ε. The

thermal capacitance and conduction matrices are defined as

Ce
TT =

∫
Ωe
ρCpW

TW dΩ (4.50)

Ke
TT =

∫
Ωe
BTDtB dΩ (4.51)
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The matrix KuT couples displacements in the structure and the temperature field through the

coefficient of thermal expansion. The matrix contribution takes the following form

Ke
uT =

∫
Ωe
BTDsαN dΩ . (4.52)

where α is the vector of coefficients of thermal expansion. The matrix CTu is often referred to as

the “thermoelastic damping” matrix and is defined as

Ce
Tu = −Tref [Ke

uT ]T . (4.53)

and Tref is the coefficient of thermal expansion reference temperature (i.e. temperature at which

thermal expansion is zero).

4.6 Numerical Example Problems

4.6.1 2-Dimensional Thermoelastic Dynamic Beam

This problem demonstrates the coupled thermoelastic formulation presented in the previous

section for computing the coupled heat transfer and elastic response of a cantilevered beam.

4.6.1.1 Problem Description

The geometry of the beam is shown in Figure 4.1 and consists of a 1.0 × 0.05 m rectangular

beam with unit thickness. The beam is fully clamped on its left edge and all boundaries are

adiabatic except the top surface. The beam is initially at rest and at a uniform temperature of

288.0 K.

The top surface of the beam is heated by a convective heat flux whose heat transfer coefficient

take a step function profile. The heat transfer coefficient is h = 1.0×105 W/m2·K from 0 ≤ t ≤ 0.1 s

and h = 0.0 W/m2 ·K for t > 0.1 s. The thermal conductivity of the material is k = 300.0 W/m ·K,

the density is ρ = 7833.0 kg/m3, and the thermal capacitance is Cp = 465.0 J/kg ·K.

The elastic modulus of the beam is E = 3.0× 1010 N/m2, and the Poisson ratio is ν = 0.33.

The top half of the beam has a coefficient of thermal expansion (CTE) of 10.0 × 10−6/K and
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Figure 4.1: Thermoelastic beam geometry and boundary conditions.
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a reference temperature of Tref = 288.0 K while the bottom half has no coeffient of thermal

expansion. This mismatch in CTE induces a continuous bending moment for a uniform temperature

of the beam that is above or below Tref . Proportional damping is used to bring the beam into

a stationary resting position after the transient behavior dies out. The proportional damping

coefficients used for this problem are: αd = 2.0× 10−3 and βd = 2.0× 10−4.

4.6.1.2 Computational Mesh and Model

The problem is time integrated via the generalized-α integrator presented above. A constant

time step of 3.0 × 10−3 s is used for 2000 time iterations. Three nested meshes are used for the

problem with the coarsest mesh being containing a 50x20 grid of quadrilateral elements. This mesh

is shown in figure 4.2.

Figure 4.2: Thermoelastic beam 50x20 element computational mesh.

4.6.1.3 Results and Discussion

Figure 4.3 shows the temperature contours for the beam at t = 0.001 s. It is this initial

strong temperature gradient in the top layer of the beam that leads to the thermal expansion and

bending moment that results in the dynamic response of the beam. Figure 4.4 shows the XX-stress

contours at this same instant in time.

Figure 4.5 shows the dynamic y-displacement response of the node at the top right corner of

the beam.

Figure 4.5 shows the temperature time history of the top and bottom surfaces of the beam

at the tip of the structure.
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Figure 4.3: Thermoelastic beam temperature contours at t=0.001 s.

Figure 4.4: Thermoelastic beam XX-stress contours at t=0.001 s.
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Figure 4.5: Thermoelastic beam y-displacement response for the top right corner node.
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Figure 4.6: Thermoelastic beam top and bottom surface temperature responses.



Chapter 5

Coupled Aerothermoelastic Analysis

5.1 Introduction

This chapter considers the coupling of the aerodynamic field with the thermal and elastic

fields needed to perform a tightly coupled aeroelastic, aerothermal or aerothermoelastic response

analysis.

Several forms of coupled solution strategies exist for computational fluid-structure interaction

problems. Among them are partitioned solution, staggered solution, and simultaneous or monolithic

solution procedures. The partitioned solution approach is discussed by Felippa [45]. As discussed in

the introduction, the classical approach to performing a coupled analysis is the staggered coupling

method, popularized by research in aeroelasticity [44] and aeroheating [52]. This thesis takes the

simultaneous solution approach to fluid-structure coupling whereby the conservation equations of

the compressible fluid are solved in conjunction with the energy and/or momentum equations of

the solid. This approach of solving a single nonlinear residual equation instead of a sequence of

discipline specific sub-problems and passing boundary conditions between them is a potentially

promising approach for aeroheating and aerothermoelasticity which is being concurrently pursued

by researchers at Sandia National Labs [24].
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5.2 Aeroelastic Coupling

5.2.1 Aeroelastic Interface Conditions

In order for the fluid and solid equations to be coupled across a boundary, the Dirichlet

(essential) and Neumman (natural) boundary conditions must be continuous across the interface.

That is the jump in values must equal zero. Considering a purely aeroelastic problem for the

moment, the Dirichlet conditions that must be satisfied are that the displacement field must be

continuous

JujK = ufj − u
s
j = 0 (5.1)

where the superscripts f and s denote the fluid side and solid side displacements. Equation 5.1

simply states that the displacements at the boundary must be equal. The velocities at the interface

must also be continuous

Ju̇jK = vfj − u̇
s
j = 0 (5.2)

where vfj are the fluid velocity components and u̇sj are the solid velocity components. Additionally,

the jump in traction across the interface must be satisfied

JtjK = − (τij − pδij)︸ ︷︷ ︸
σfij

n̂fi − σ
s
ijn̂

s
i = 0 (5.3)

which states that traction vector resulting from the fluid stress tensor must balance the traction

vector arising from the solid stress tensor.

5.2.2 Aeroelastic Interface Coupling

The procedure for coupling the momentum equations for the fluid and solid begins from the

the stabilized weak form of the Navier-Stokes equations and the weak form of the elastodynamic

equations. From these starting points we separate out the boundary integral terms we are interested

in coupling on the fluid-structure interface.

Navier-Stokes Momentum Equation Boundary Term

We start with the stabilized weak form of the Navier-Stokes equations, however with both the
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inviscid flux terms F i and viscous flux terms Gi integrated by parts∫
Ωf

W ·
(
∂U

∂t
− S

)
dΩ +

∫
Ωf

∂W

∂xi
· (Gi − F i) dΩ +

∫
Γf

W · (F i −Gi) dΓ+

ne∑
e=1

∫
Ωef

LadvWτ supg [LU − S] dΩ +
ne∑
e=1

∫
Ωef

δ
∂W

∂xi
· ∂U
∂xi

dΩ = 0
(5.4)

We can then write out only the Navier-Stokes momentum equation associated with a node n on

the fluid side of the boundary Γf∫
Ωf

Wn

(
∂(ρvj)
∂t

− Smj
)
dΩ +

∫
Ωf

∂Wn

∂xi
[τij − (ρvivj + pδij)] dΩ+∫

Γf

Wn [(pvivj + pδij)− τij ] n̂i dΓ+∫
Ω
LadvWnτ

[
L [ρvj ]− Smj

]
dΩ +

∫
Ωf

δ
∂Wn

∂xi
· ∂(ρvj)
∂xi

dΩ = 0 (5.5)

and further separate the boundary integral term by defining Γf = Γnfsi ∪ Γfsi which states that

the fluid boundary Γf is composed of the union of the non-fluid-structure interface boundary Γnfsi

and the fluid-structure interface boundary Γfsi. According to this definition we make the following

split in the boundary integral terms∫
Ωf

Wn

(
∂(ρvj)
∂t

− Smj
)
dΩ +

∫
Ωf

∂Wn

∂xi
[τij − (ρvivj + pδij)] dΩ+∫

Γf

Wn [pvivj ] n̂i dΓ−
∫

Γnfsi

Wn [τij − pδij ] n̂i dΓ−
∫

Γfsi

Wn [τij − pδij ] n̂i dΓ∫
Ωf

LaWnτ
[
L [ρvj ]− Smj

]
dΩ +

∫
Ωf

δ
∂Wn

∂xi
· ∂(ρvj)
∂xi

dΩ = 0 (5.6)

Following this split, we can group every volume and boundary integral term not associated with

the viscous traction on the fluid-structure interface boundary into R̃n
jf

as follows

R̃n
jf
−
∫

Γfsi

Wn [τij − pδij ] n̂i dΓ = 0 . (5.7)

The tilde over R is used to symbolize that this term is an incomplete total residual that only

accounts for the integrals over
∫

Ωf
and

∫
Γnfsi

.

Elastodynamic Momentum Equation Boundary Term

In a similar manner to the previous section we can separate out the traction term on the fluid-

structure interface in the weak form the elastodynamic equation. The elastodynamic weak form is
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repeated here ∫
Ωs

δujρ
∂2uj
∂t2

dΩ +
∫

Ωs

∂δuj
∂xi

σijdΩ−
∫

Ωs

δujbjdΩ−
∫

Γs

δujσijn̂idΓ = 0 (5.8)

Again separating the boundary into two distinct regions via Γs = Γnfsi∪Γfsi where Γnfsi indicates

the non-fluid-structure interface boundary Γnfsi and Γfsi represents the fluid-structure interface

boundary. This leads to the previous equation being written for a particular node n as∫
Ωs

δunj ρ
∂2uj
∂t2

dΩ +
∫

Ωs

∂δunj
∂xi

σijdΩ−
∫

Ωs

δunj bjdΩ−
∫

Γnfsi

δunj σijn̂idΓ−
∫

Γfsi

δunj σijn̂idΓ = 0 (5.9)

which can then be re-written to group residual contributions arising from all volume and boundary

integral terms not on the fluid-structure interface into the term R̃n
js

and the remaining fluid-

structure fluid-structure interface boundary integral as

R̃n
js −

∫
Γfsi

δnj σijn̂i dΓ = 0 . (5.10)

Aeroelastic Interface Enforcement

Given the traction jump condition of equation 5.3 we can now enforce continuity of the

traction by simply replacing the residual terms for the fluid momentum equations at a node on the

interface as follows

Rn
jf
← R̃n

jf
+ R̃n

js (5.11)

Equation 5.11 implies that the total residual equations for fluid momentum conservation are re-

placed by the sum of volume and partial boundary integrals of the fluid and solid momentum

residual equations.

The velocity jump condition of equation 5.2 is then enforced by replacing the total residual

entries of the solid momentum equations at a node on the interface with the constraint equations

Rn
js = vnj − u̇nj . (5.12)

which explicitly enforces the zero velocity jump condition.
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The displacement jump condition of equation 5.1 may be handled in two manners. If the

degree-of-freedom type assigned to govern the fluid mesh motion is the same degree-of-freedom type

assigned to the solid displacement field, then the fluid-side boundary displacements and the solid-

side boundary displacements are automatically equal because they are the same degrees-of-freedom.

This, however, means that the fluid mesh stiffness affects the solid’s displacements since they are

coupled via the same displacement degree-of-freedom. The stiffness contribution of the fluid to the

solid’s stiffness can be reduced by giving the fluid mesh motion elements an elastic modulus much

less than the solid’s elastic modulus. The drawback in this case is that scaling issues can arise if

a great disparity between element stiffnesses exist. This problem can be alleviated by assigning

different displacement degrees-of-freedom to the fluid mesh and solid mesh, hence decoupling the

fluid mesh stiffness from the solid mesh stiffness. The additional momentum equations introduced

for the fluid mesh motion can then be used for enforcing compatibility of the displacements (i.e.

equation 5.1) on the boundary via simple constraint equations as was done for the velocities in

equation 5.12.

5.3 Aerothermal Coupling

5.3.1 Aerothermal Interface Conditions

In order for the fluid and heat equations to be coupled across a boundary, the Dirichlet

(essential) and Neumman (natural) boundary conditions must also be continuous across the inter-

face. Considering a purely aerothermal problem for the moment, the jump conditions that must

be satisfied are that no jump in the temperature field at the boundary must exist, that is

JT K = Tf − Ts = 0 . (5.13)

The subscripts f and s denote the fluid side and solid side temperatures and states that the two

temperatures must be equal at the boundary. Additionally, the jump in heat fluxes across the

interface must be satisfied

JqnK = qif n̂if − qif n̂is = 0 (5.14)
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which states that heat flux normal to the fluid side boundary must balance the heat flux normal

to the solid side boundary.

5.3.2 Aerothermal Interface Coupling

The so-called residual based enforcement presented here is similar to work developed in

reference [59] and is best described as a residual manipulation method. In the case of aerothermal

coupling, the nodal energy equation residual terms on the fluid-structure boundary are modified to

enforce the jump conditions listed above. Beginning from the weak form of the residual (equation

2.75), repeated here for convenience∫
Ω
W ·

(
∂U

∂t
+
∂F i

∂xi
− Si

)
dΩ +

∫
Ω

∂W

∂xi
·GidΩ−

∫
Γ
WGidΓ−

nele∑
e=1

∫
Ω

∂W

∂xk
Akτ supg

[
∂U

∂t
+
∂F i

∂xi
− ∂Gi

∂xi
− Sh

]
dΩ +

nele∑
e=1

∫
Ω
δ
∂W

∂xi
· ∂U
∂xi

dΩ = 0
(5.15)

we can single out only the Navier-Stokes energy residual associated with a node n on the fluid side

of the boundary Γf

∫
Ωf

Wn ·
(
∂(ρE)
∂t

+
∂(ρEui + Pui)

∂xi
− Sei

)
dΩ +

∫
Ωf

∂Wn

∂xi
· (τijuj − qi) dΩ−∫

Γf

Wn · (τijuj − qi) n̂i dΓ−∫
Ωf

∂Wn

∂xk
Akτ supg

[
∂(ρE)
∂t

+
∂(ρEui + Pui)

∂xi
− ∂(τijuj − qi)

∂xi
− Sei

]
dΩf+∫

Ωf

δ
∂Wn

∂xi
· ∂(ρE)
∂xi

dΩ = 0 . (5.16)

The previous equation can be rearranged to a more compact form which singles out the viscous

boundary integral; the residual equation may now be written as

R̃n
f −

∫
Γf

Wn · (τijuj − qi) n̂i dΓ = 0. (5.17)

where again the tilde indicates that this is only the part of the total residual that includes the

volume integral and the boundary integral that is not on the fluid-structure interface. Note that

in case of a viscous no-slip boundary condition on the interface ui = 0 so the previous equation
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reduces to

R̃n
f +

∫
Γf

Wn qi n̂if dΓ = 0. (5.18)

In a similar manner, the weak form of the energy equation for transient heat transfer associ-

ated with a node n on the solid side of the boundary Γs may be written as∫
Ωs

Wn

(
ρC

∂T

∂t
− Q̇

)
dΩ−

∫
Ωs

∂Wn

∂xi
kij

∂T

∂xi
dΩ +

∫
Γs

Wn qin̂i dΓ = 0 (5.19)

which can also be written in a form that singles out the boundary heat flux term

R̃n
s +

∫
Γs

Wn qi n̂is dΓ = 0. (5.20)

Returning now to the compatibility conditions listed in equations 5.13 and 5.14 we can

combine equations 5.18 and 5.20 to enforce the flux condition∫
Γf

Wn qi n̂if dΓ−
∫

Γs

Wn qi n̂is dΓ = R̃n
f − R̃n

s = 0. (5.21)

Based on this we can manipulate the nodal residual equations to satisfy the energy balance. The

residual contribution for the fluid’s Navier-Stokes energy equation at node n becomes

Rn
f ← R̃n

f − R̃n
s . (5.22)

and the residual contribution for the solid’s heat transfer energy equation at node n becomes

Rn
s = Tns − Tnf = 0. (5.23)

Equations 5.22 and 5.23 above effectively enforce the two jump conditions given by equations 5.13

and 5.14.

5.4 Aerothermoelastic Coupling

Aerothermoelastic problems involve solving the governing equations for Navier-Stokes, tran-

sient heat transfer, and elastodynamics in a coupled fashion. In this work, aerothermoelastic

problems are solved by combining the finite element formulation for compressible gas dynamics
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described in chapter 2 with the thermoelastic coupling approach described in chapter 4. The in-

terface coupling procedures for aeroelasticity and aeroheating described in sections 5.2 and 5.3 of

this chapter are simply combined to couple the momentum equations and energy equation at the

fluid-structure interface. The only additional consideration is that the wall velocity is non-zero

for the energy equation and the mesh is moving. Hence, the ALE based formulation discussed in

chapter 2 applies.

Time integration of the aerothermoelastic problems contained is thesis are performed with

a hybrid BDF-Generalized-α method. The BDF time derivative approximation given in section

2.4.2 is used for the first-order-in-time equations for the fluid and heat transfer problems. The

Generalized-α time derivatives are used for the second-order-in-time equations that arise from the

structural dynamics part of the coupled system. This hybrid scheme efficiently handles the truly

monolithic coupling for aerothermoelastic problems in an elegant and easy to implement manner.

5.5 Numerical Example Problems

5.5.1 2-Dimensional Nose Tip Aeroheating Response

This example problem uses the aerothermal coupling formulation presented in section 5.3 to

solve the coupled aerodynamic/heat transfer problem for the nose tip example shown in chapter

2.6.3.

5.5.1.1 Problem Description

The problem geometry and boundary conditions are shown in Figure 5.1, however, now the

energy equations at the fluid/structure interface are governed by equations 5.13 and 5.14. The

flow conditions for this problem are that of a M∞ = 3.0 flow at 40 km altitude where ρ∞ =

3.99641 × 10−3 kg/m3 and T∞ = 250.35 K. Freestream flow values for ρ, ρvx, ρvy, and ρE are

prescribed on the inlet boundary. Slip boundary condition (vy = 0) is used for the edge lying

on the x-axis. A no-slip wall boundary condition is used for the surface of the body. No values
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are prescribed for the outflow edge and the viscous fluxes are integrated to be consistent with the

integrated-by-parts weak form of the viscous fluxes.

The gas constants for air are specified as R = 287.0 and γ = 1.4. The two-coefficient

Sutherland model for air is used to compute the viscosity (µref = 1.458× 10−6 kg/m · s ·K1/2 and

Tref = 110.4 K) and the Prandtl number (Pr = 0.70) is used to compute the thermal conductivity

of the air. The material properties of the solid are ρ = 2700 m/kg3, k = 200 W/(m · K) or

k = 2 W/(m ·K), and Cp = 870 J/(kg ·K).

5.5.1.2 Computational Mesh and Model

The computational mesh used for this problem contains a region for solving the Navier-

Stokes equations of the compressible fluid flow and a region for solving the heat transfer and

ablation response of the structure. These two zones of the mesh are connected or contiguous at

the fluid/solid interface as is required by the coupling formulation presented in this chapter. As

previously mentioned, contiguous meshes are not a strict requirement of this coupling scheme as

it is also easily extensible to non-matching meshes. The fluid mesh is identical to the coarse fluid

mesh used in example 2.6.3, which showed that this coarsest mesh yields solutions that are very

close to much more refined meshes. The solid mesh fills the region of the solid, first beginning

with a structured grid going inward normal to the fluid/solid interface and then progressing to a

unstructured grid to fill the remainder of the region. Figure 5.2 shows this fluid/solid computational

mesh.

The simulation is run until 200.0 s physical time using the BDF-2 time integrator with

adaptive time stepping where an initial time step size of 1 × 10−7 s and a maximum time step

increase of 1.2 are used. Newton’s method with an approximate linearization is used to solve the

nonlinear problem at each time step. A nonlinear relaxation factor of 0.9 is used with a nonlinear

residual drop criteria of ε = 0.1. The Trilinos/Amesos UMFPACK direct solver is used for solving

the linear problem at each nonlinear step. The SUPG term in the weak residual equation uses node

averaged stabilization and δ discontinuity capturing parameters.
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Figure 5.1: Two-dimensional nose tip aerodynamic heating problem geometry and boundary con-
ditions.
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Figure 5.2: Two-dimensional nose tip aerodynamic heating problem fluid/solid mesh.



181

5.5.1.3 Results and Discussion

Figure 5.3 shows the fluid and solid temperature contours at 200.0 s. Several interesting

observations can be made from this figure. First, in contrast to the adiabatic wall temperature

contour shown in Figure 2.18(d) the boundary layer appears much cooler as result of the heat

being transferred into the structure. In Figure 5.3 the solid is nearly all the same temperature

throughout (the minimum and maximum temperatures span less than 5 K) due to the high (k =

200 W/(m · K)) thermal conductivity of the solid. When the problem is run with a much lower

thermal conductivity (k = 2 W/(m ·K)), Figure 5.3(b) shows the disparity between the minimum

and maximum temperature of the solid is much greater (approximately 214 K). This observation

is a motivating factor for using the GGLS formulation presented in section 3.4.2 for aeroheating

problems with high wall heat fluxes and low thermal conductivities of the solid where strong

temperature gradients may lead to non-physical solution behavior.

(a) Solid thermal conductivity k = 200 W/m−K (b) Solid thermal conductivity k = 2 W/m−K

Figure 5.3: 2D nose tip aerodynamic heating problem temperature contours at 200.0 s.

The two temperature scales in Figure 5.3 make it difficult to observe that the fluid tempera-
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ture and the solid temperature at the interface are indeed the same. Figure 5.5, however, shows the

fluid and solid wall temperature profiles at several instances in time. From this it is easily observed

that the fluid and solid temperatures match exactly at each time step.

The next figure shows the temperature at various x-coordinate locations along the centerline.

From this figure it is obvious that the high thermal conductivity material response produces and

essentially uniform temperature field while the low thermal conductivity material produces a greatly

differing temperature distribution throughout the body. This is an important consideration from

a transient aerodynamic heating perspective – under what transient conditions is it beneficial to

reduce peak structural temperatures with the use of high thermal conductivity materials and under

what conditions is it better to reduce heating in certain regions at the expense of much higher

temperatures in other regions? The answer to this question difficult and often hard to address, and

is the subject of later chapters on design optimization for transient problems.

5.5.2 2-Dimensional Cylinder Aerothermoelastic Response

In this problem, the aeroelastic and aerothermal coupling formulations presented in sections

5.2 and 5.3 are combined to solve the three-field aerodynamic/heat transfer/elastic response prob-

lem for a cylinder in a supersonic flow.

5.5.2.1 Problem Description

Figure 5.6 shows the geometry and boundary conditions for this problem. The free-stream

conditions of the flow are M∞ = 5.0 at 40 km altitude where ρ∞ = 3.99641 × 10−3 kg/m3 and

T∞ = 250.35 K. Freestream flow values for ρ, ρvx, ρvy, and ρE are prescribed on the inlet boundary.

Slip boundary condition (vy = 0) is used for the edge lying on the x-axis. The wall momentum

and energy equations are governed by the coupling conditions as described in sections 5.2 and 5.3.

No values are prescribed for the outflow edge however the boundary flux integrals are performed

as has been done in many of the previous problems.

The gas constants for air are specified as R = 287.0 and γ = 1.4. The two-coefficient
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Sutherland model for air is used to compute the viscosity (µref = 1.458× 10−6 kg/m · s ·K1/2 and

Tref = 110.4 K) and the Prandtl number (Pr = 0.70) is used to compute the thermal conductivity

of the air. The material properties of the solid are ρ = 2700 m/kg3, k = 50 W/(m · K), and

Cp = 870 J/(kg ·K). The elastic modulus of the solid is E = 1.0× 106 N/m2, the Poisson ratio is

ν = 0.33, the coefficient of thermal expansion is α = 1.0 × 10−5/K with a reference temperature

Tref = 250 K. Rayleigh damping is used for the structural dynamics problem where αd = 0.002

and βd = 0.0002.

5.5.2.2 Computational Mesh and Model

Figure 5.7 show the computational mesh for this problem, which is a 48x24 element structured

mesh for the fluid domain and a 24x24 element structured mesh for the solid domain. Again, the

fluid and solid meshes are connected/contiguous at the interface as this is required by the coupling

method implemented here.

The simulation is run until 200.0 s physical time using a hybrid BDF/Generalized-α time

integration method with adaptive time stepping where an initial time step size of 1× 10−9 s and a

maximum time step increase of 1.1 are used. Newton’s method with an approximate linearization

is used to solve the nonlinear problem at each time step. A nonlinear relaxation factor of 0.5 is

used with a nonlinear residual drop criteria of ε = 0.1. The Trilinos/Amesos UMFPACK direct

solver is used for solving the linear problem at each nonlinear step. The SUPG term in the weak

residual equation uses node averaged stabilization and δ discontinuity capturing parameters. The

GGLS scheme is used for the heat equations to limit any strong gradients that may arise. The

standard Galerkin formulation shown in section 4.3 is used for the elastodynamic equations.

5.5.2.3 Results and Discussion

Figure 5.9 show various coupled response contours for the aerothermoelastic response at the

simulation end time (100, 000 s). The deformation of the cylinder has been magnified 10 times to

more evidently show the near steady-state conditions of the cylinder.
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Figure 5.9(a) shows the temperature profiles through time of the inner and outer surface

boundaries of the cylinder at the X- and Y-axes. The structural temperatures begin to rise sig-

nificantly from the initial 250 K value after about 1 s. The fluid temperature rise occurs much

faster than this but heat transfer into the structure occurs on a much larger time scale than the

fluid. The temperature of the structure reaches a steady-state value of about 1400 K around

70, 000 s of physical time. Figure 5.9(b) shows the displacement response of the structure during

the simulation. The X-displacement of the outer surface at Y=0 clearly shows two distinct events.

The first this the displacement response that occurs roughly before t = 1 s. This displacement

occurs because of the aerodynamic forces that act to compress the cylinder. The time scale of the

aerodynamic forcing response is clearly quite fast as the displacement responses appear to reach a

steady state between t = 0.5 s and t = 7, 000 s. After roughly t = 7, 000 s a second displacement

response occurs that is associated with the thermal expansion of the structure. Once the solid

temperatures rise due to aerodynamic heating the thermal expansion of the solid begins to induce

thermal strains. This causes a displacement that “pushes back” against the aerodynamic pressure

loading, as seen in Figure 5.9(b).

5.5.3 2-Dimensional Flat Plate Aerothermoelastic Response

In this problem, the aeroelastic and aerothermal coupling formulations presented in sections

5.2 5.3 are combined to solve the three-field aerodynamic/heat transfer/elastodynamic response

problem for the supersonic flow over a flat plate.

5.5.3.1 Problem Description

Figure 5.10 shows the flat plate problem geometry and boundary conditions. The free-stream

conditions of the flow are M∞ = 2.0 with ρ∞ = 0.4 kg/m3 and T∞ = 223.95 K. Freestream flow

values for ρ, ρvx, ρvy, and ρE are prescribed on the inlet boundary. Slip boundary condition (vy = 0)

is used for the edge lying on the x-axis. The wall momentum and energy equations are governed

by the coupling conditions as described in sections 5.2 and 5.3. No values are prescribed for the
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outflow edge however the boundary flux integrals are performed as has been done in many of the

previous problems.

The gas constants for air are specified as R = 287.0 and γ = 1.4. The two-coefficient

Sutherland model for air is used to compute the viscosity (µref = 1.458× 10−6 kg/m · s ·K1/2 and

Tref = 110.4 K) and the Prandtl number (Pr = 0.71) is used to compute the thermal conductivity

of the air. The thermal material properties of the solid are ρ = 2800 m/kg3, k = 170 W/(m ·K),

and Cp = 875 J/(kg ·K). The elastic modulus of the solid is E = 7.3×1010 N/m2, the Poisson ratio

is ν = 0.33, the coefficient of thermal expansion is α = 22.5×10−6/K with a reference temperature

Tref = 223.95 K. Rayleigh damping is used for the structural dynamics problem where αd = 0.002

and βd = 0.0002.

5.5.3.2 Computational Mesh and Model

Figure 5.11 show the computational mesh for this problem, which is a 160x40 element struc-

tured mesh for the fluid domain and a 150x16 element structured mesh for the solid domain.

The simulation is run until 0.1 s physical time using a hybrid BDF/Generalized-α time

integration method with adaptive time stepping where an initial time step size of 2 × 10−7 s

and a maximum time step increase of 1.1 are used. The maximum time step size is limited to

1 × 10−4 s in order to capture the high frequency vibrational response of the plate. Newton’s

method with an approximate linearization is used to solve the nonlinear problem at each time

step. A nonlinear relaxation factor of 0.5 is used with a nonlinear residual drop criteria of ε =

0.1. The Trilinos/Amesos UMFPACK direct solver is used for solving the linear problem at each

nonlinear step. The SUPG term in the weak residual equation uses node averaged stabilization

and δ discontinuity capturing parameters. The standard Galerkin formulation is used for both the

heat transfer and the elastodynamic equations.
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5.5.3.3 Results and Discussion

Figure 5.12 shows the fluid and solid temperature fields at the simulation end time of 0.1 s.

The high Reynolds number of the problem results in a very thin boundary layer that lies very close

to the plate. Due to the relatively short simulation time, the heat transfer into the plate is not

significant and the thermal expansion effect of the plate is minimal.

Figure 5.13 shows the Y-displacement response of the center point of the flat plate through

time. It is noted that the aerodynamic forces cause vibrational response of the structure that

gradually damps out with time. This observation is consistent with classical examples of high-

speed flow aeroelastic panel responses.

Figure 5.14 shows the flat plate temperature profiles at 0.043 s and 0.1. The mean temper-

ature of the plate is not significantly above the thermal expansion reference temperature (Tref =

223.95 K, hence the thermal expansion effect is negligable for this problem.

5.5.4 2-Dimensional Nose Tip Ablation Response

This example problem uses the aerothermal coupling formulation presented in section 5.3 and

the Q* ablation formulation in section 3.4 to solve the coupled aerodynamic/heat transfer/ablation

problem for the nose tip example shown in chapter 2.6.3.

5.5.4.1 Problem Description

Figure 5.15 shows the geometry and boundary conditions for this problem. The setup is very

similar to example 5.5.1 however now the fluid/solid interface is allowed to recede according the

Q* ablation model. This problem is run at three different Mach numbers to examine differences in

the recession rate of the structure.

The free-stream conditions of the flow are M∞ = 3.0, M∞ = 4.0, and M∞ = 5.0 with

ρ∞ = 3.99641× 10−3 kg/m3 and T∞ = 250 K. Freestream flow values for ρ, ρvx, ρvy, and ρE are

prescribed on the inlet boundary. Slip boundary condition (vy = 0) is used for the edge lying on

the x-axis. The wall momentum and energy equations are governed by the coupling conditions as
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described in sections 5.3. No values are prescribed for the outflow edge however the boundary flux

integrals are performed as has been done in many of the previous problems.

The gas constants for air are specified as R = 287.0 and γ = 1.4. The two-coefficient

Sutherland model for air is used to compute the viscosity (µref = 1.458× 10−6 kg/m · s ·K1/2 and

Tref = 110.4K) and the Prandtl number (Pr = 0.71) is used to compute the thermal conductivity of

the air. The thermal material properties of the solid are similar to SLA-561V, an Apollo era ablation

material. The use of a Q* model is not valid for this type of decomposing ablator, however, this

example serves the purpose of demonstrating the capabilities of this coupling method. The material

properties are ρ = 480 m/kg3, k = 0.12 W/(m ·K), Cp = 1172 J/(kg ·K), Lh = 5.41 × 107J/kg,

and the ablation temperature is Tabl = 588 K.

5.5.4.2 Computational Mesh and Model

This problem is solved with both a 41x40 element and a 74x80 element fluid mesh and corre-

sponding unstructured contiguous solid meshes. Figure 5.16 show the caorsest hybrid computational

mesh.

The simulation is run for total physical times of between 27 s and 80 s time using a Θ-

scheme time integration method with adaptive time stepping; an initial time step size of 2×10−7 s

is used with a maximum time step increase of 1.2. The maximum time step size is limited to

5 × 10−1 s in order to capture salient features of the ablation response. Newton’s method with

an approximate linearization is used to solve the nonlinear problem at each time step. A “fail-

safe” nonlinear strategy is used: if the nonlinear solve fails to converge using a relaxation factor of

0.9 then it will retry with a relaxation factor 0.6. This has proven be effective for these types of

problems that initially behave linearly then become nonlinear during the simulation. A nonlinear

residual drop criteria of ε = 0.02 is used. The Trilinos/Amesos UMFPACK direct solver is used for

solving the linear problem at each nonlinear step. The SUPG term in the weak residual equation

uses node averaged stabilization and δ discontinuity capturing parameters. The standard Galerkin

formulation is used for both the heat transfer with Q* ablation elements on the fluid/solid interface.
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5.5.4.3 Results and Discussion

Figures 5.17–5.19 shows the ablation response at a time snapshot during the simulation for

the Mach 3, 4, and 5 freestream flows. Figure 5.17 shows an interesting response. At this instant

in time the simulation ended due the mesh collapsing on itself. The peculiar shape of the ablated

surface may be explained by the fact that the coupled wall temperature does not exceed the ablation

temperature of 588 K at a certain point along the nose. Due to the lower Mach number of this

problem (M∞ = 3.0), the heat fluxes do not drive the wall temperature as high as the high Mach

cases. Since the point at which the wall temperature does not exceed the ablation temperature

occurs on the nose, and because of the (relatively) coarse discrete representation of the surface by

finite elements, one of the nodes on the wall becomes a pivot point for the ablation front. However,

given a fine enough mesh, this problem should correct itself.

Figures 5.17 and 5.19 show the Mach 4 and Mach 5 ablation responses. These problems

clearly do not exhibit the same numerical problems the Mach 3 case displayed. This is due to the

fact that the coupled wall temperature exceeds the ablation temperature well past the nose of the

body and occurs somewhere farther back on the side wall.

Figure 5.20 shows the surface recession time histories for the various Mach numbers and

meshes. The non-smooth response of the coarser meshes is improved by mesh refinement, as shown

in the figure.

Figure 5.21 shows the stagnation point temperatures of the various problems. As the surface

temperature reaches the ablation temperature, the penalty formulation used to enforce the ablating

wall temperature does a relatively good job of holding the ablation temperature. However, a higher

penalty factor would lead to a tighter temperature constraint but at the expense of worsening scaling

of the linear system.
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(a) Solid thermal conductivity k = 200 W/m−K

(b) Solid thermal conductivity k = 2 W/m−K

Figure 5.4: 2D nose tip aerodynamic heating problem wall temperature profiles.
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Figure 5.5: 2D nose tip aerodynamic heating problem centerline temperatures
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Figure 5.6: 2D cylinder aerothermoelastic problem geometry and boundary conditions.
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Figure 5.7: 2D cylinder aerothermoelastic problem fluid/solid mesh.
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(a) Fluid velocity/solid XX stress (b) Fluid density/solid von Mises stress

(c) Fluid pressure/solid displacement (d) Fluid temperature/solid temperature

Figure 5.8: 2D cylinder aerothermoelastic response contours at simulation end time. (NOTE: the
structural deformations shown have been magnified 10x.)
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(a) Temperature response.

(b) Displacement response.

Figure 5.9: 2D cylinder aerothermoelastic temperature and displacement responses at various
points.
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Figure 5.10: 2D flat plate aerothermoelastic problem geometry and boundary conditions.

Figure 5.11: Two-dimensional flat plate aerothermoelastic problem fluid/solid mesh.

Figure 5.12: 2D flat plate aerothermoelastic temperature contours at 0.1 s.
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Figure 5.13: 2D flat plate aerothermoelastic displacements at x=L/2.



197

Figure 5.14: 2D flat plate aerothermoelastic wall temperature profiles.
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Figure 5.15: Two-dimensional nose tip ablation problem geometry and boundary conditions.
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Figure 5.16: Two-dimensional nose tip ablation problem fluid/solid mesh.
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Figure 5.17: 2D nose tip ablation problem Mach 3 flow ablation response at 80 s.
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Figure 5.18: 2D nose tip ablation problem Mach 4 flow ablation response at 40 s.
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Figure 5.19: 2D nose tip ablation problem Mach 5 flow ablation response at 20 s.
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Figure 5.20: 2D nose tip ablation surface recession vs. time for Mach 3, 4, and 5 flows.
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Figure 5.21: 2D nose tip ablation surface temperature vs. time for Mach 3, 4, and 5 flows.



Chapter 6

General Design Optimization Methods

6.1 Introduction

Design optimization has numerous real-world applications spanning many disciplines of en-

gineering. Every design problem can be cast into the form of an optimization problem. However,

the amount of improvement to the design that is realizable and the cost associated with setting

up and solving the optimization problem often dictate whether optimization a beneficial step in

the design process. Increasingly robust computational methods for engineering analysis, ever in-

creasing computing power, and efficient algorithms for numerical optimization continue to reduce

the overhead of design optimization though. The ability to quickly optimize a complex product is

becoming a necessity for product development cycles; thus, it is no surprise that a wide variety of

areas of design optimization have been the subject of intense research for some time.

The broad subject of design optimization can be divided into three categories. The following

list represents the fundamental conceptual approaches to design optimization:

(1) Sizing optimization involves changing the parameters of the design such as material prop-

erties, thicknesses, cross-sections, or operating conditions as a means of achieving a better

design. This method assumes that the shape and topology of the design are predefined, and

merely operates on the parameters that define the design. To some extent the following two

optimization techniques are variations of sizing optimization but are typically categorized

separately as they are specializations of the sizing optimization concept.
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(2) Shape optimization uses variables controlling the shape of the object to improve the design.

Examples of shape optimization include changing the spatial positioning of truss joints to

minimize member stresses or changing the shape of an airfoil as a means of increasing the

lift/drag ratio. While the shape of the design is the subject of optimization, an initial design

must be defined and the topology, or layout of the material and voids that constitute the

design, is not subject to change.

(3) Topology optimization, also referred to as material distribution or layout optimization, is

concerned with the placement of material within a domain to improve the design. Topology

optimization is best thought of as determining the number, size, shape, and location of

material and material voids to create an optimum design. This is the most general of the

design optimization techniques, as it does not require a baseline design to begin with.

6.2 Mathematical Optimization

A design problem may be formulated as an optimization problem with an objective to be

minimized or maximized with constraints that limit specific design criteria. The following discusses

the general elements of design optimization. The general optimization problem is presented, math-

ematical optimality is defined, approaches to solving the design optimization problem are briefly

laid out, and issues of shape and topology optimization relevant to this thesis are discussed.

6.2.1 Constrained Optimization Theory

In a general optimization problem, the objective function, z, is defined as the quantity to

be minimized or maximized, and the constraints are divided into equality constraints, hj , and

inequality constraints, gk. For the design optimization problems contained in this document the

governing partial differential equations are discretized by a finite element model. This model is

then used to evaluate objective and constraint values. The objective and constraint functions are

expressed in terms of real valued abstract design variables, si, which are bounded by lower limits,
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sLi , and upper limits, sUi . The general form of the optimization problem is expressed mathematically

as

min
si

z(si), i = 1, ..., nx (6.1)

hj(si) = 0, j = 1, ..., nh

gk(si) ≥ 0, k = 1, ..., ng

si = {si ∈ Rnx | sLi ≤ si ≤ sUi }

where nx, nh, and ng are the number of optimization variables, number of equality constraints, and

the number of inequality constraints, respectively.

The optimization algorithms most often used for wide array of design optimization problems

are classified as Lagrangian-based methods. These methods construct a primal-dual Lagrange

function from the constrained optimization problem (equation 6.1). The Lagrange function is

written as

L(si, ηj , γk) = z(si) +
nj∑
j

ηjhj(si) +
nk∑
k

γkgk(si) (6.2)

where the Lagrange multipliers are defined as

ηj ∈ Rnh

γk ∈ Rnk .

(6.3)

In this function the primal variables are the design variables si, and the dual variables are

the Lagrange multipliers, ηj and γk. Optimality of the primal-dual Lagrange function corresponds

to the optimum of the objective function in primal space. Thus,

L(s∗i , η
∗
j , γ
∗
k) = z(s∗i ) (6.4)

where the ∗ is used to indicate the optimal solution. This solution corresponds to minimizing the

Lagrange function in the primal space and maximizing the Lagrange function in the dual space.

Hence, the optimal solution is said to exist at the saddle point of the Lagrange function.
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The Karush −Kuhn − Tucker conditions establish criteria for satisfying optimality of equa-

tion 6.2 and for the general optimization problem (equation 6.1). The KKT conditions are also

known as first-order optimality conditions and are defined as

∂L

∂si
→ ∂z

∂si
(s∗i ) +

nh∑
j

ηj
∂hj
∂si

(s∗i ) +
ng∑
k

γk
∂gk
∂si

(s∗i ) = 0 (6.5)

∂L

∂ηj
→ hj(s∗i ) = 0 (6.6)

∂L

∂γk
→ γ∗j gj(s

∗
i ) = 0 (6.7)

γ∗j ≥ 0. (6.8)

Equation 6.5 states that the derivative of the objective function evaluated at the optimum

should be equal and opposite to the sum the constraints multiplied by their respective Lagrange

multipliers. The Lagrange multipliers act as scaling parameters for the constraints and give a sense

of how active each constraint is at the optimum.

Equation 6.6 simply states that the equality constraints must be equal to zero at the optimum.

This condition is directly seen in the statement of the general optimization problem given by

equation 6.1. Note that equations 6.5 - 6.8 do not explicitly include the condition gk ≥ 0 in

equation 6.1. The inequality conditions are encompassed by the complimentary slackness condition

at the optimum (equation 6.7).

Equation 6.7 is the condition necessary to satisfy the inequality constraints, which may be

either active or inactive at the optimum. To handle this condition the inequality constraints are

rewritten as equality constraints by introducing slack variables vk such that

gk + v2
k = 0 (6.9)

where vk ∈ Rnk .

Slack variables are additional variables added to the problem which ensure the inequality is

always satisfied. Given this modification, the constraints can assume two states: gk = 0, in which

case the constraint is active and its associated slack variable vk must also equal zero, or gk < 0,
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in which case the constraint is inactive and its associated slack variable is greater than zero. The

Lagrange function originally given by equation 6.2 must now be written as

L(si, ηj , γk, vk) = z(si) +
nj∑
j

ηjhj(si) +
nk∑
k

γk(gk(si) + vj(si)2). (6.10)

The first-order optimality condition with respect to γj becomes

∂L

∂γk
→ γ∗kgk(s

∗
i ) + v2

k(s
∗
i ) = 0. (6.11)

Since the slack variables were introduced to the Lagrange function, the partial derivative of the

Lagrange function with respect to vk must be added to the set of first-order optimality conditions.

Thus,
∂L

∂vk
→ 2γkvk = 0. (6.12)

Once again, the two states of an inequality constraint can be distinguished:

(1) If the constraint is active, that is γk 6= 0, then gk = 0 and the slack variable vk = 0

(2) If the constraint is inactive, then γk = 0, gk < 0, and the slack variable vk > 0

For both of these cases, the complimentary slackness condition of equation 6.7 is satisfied.

Finally, equation 6.8 must be satisfied, which states that the Lagrange multiplier for the

inequality constraints must be greater than or equal to zero. The formal proof for this condition

is quite involved and beyond the scope of this thesis. Please refer to Nocedal and Wright [111] for

further information on the derivation of the KKT conditions.

6.2.2 Design Optimization Methodologies

Several methods are available for solving design optimization problems. The difference be-

tween the methods is how the state variables of the governing equations and the optimization

variables are handled. The nested analysis and design (NAND) and simultaneous analysis and de-

sign (SAND) methods described here are applicable to the single-discipline optimization problems

of this thesis as well as multi-disciplinary optimization problems.
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Nested Analysis and Design The traditional approach for design optimization is the

NAND method, which assumes the equilibrium equations are satisfied independently from the

optimization process. For each optimization iteration and the current set of optimization variables,

si, the equilibrium state equations must be solved. Consequently, the structural state variables (u)

are written as an explicit function of the optimization variables, i.e. u(si).

Since the state variables are solved independently at each optimization iteration, existing

analysis codes can be easily linked to the optimization process with little modification. The benefit

of this method can be seen in multidisciplinary optimization problems. In the analysis of multi-

disciplinary systems, codes of different architectures, for instance finite element, finite volume, or

finite difference solvers, may be used for the individual field problems and can be easily nested within

the optimization iterations. The work presented in this thesis is based on the NAND optimization

methodology.

Simultaneous Analysis and Design The SAND approach includes the governing equi-

librium equations of the system with the equality constraints of the optimization problem. In this

method, u and si are both treated as independent variables. The advantage is that the state equa-

tions are satisfied only when the optimization problem converges, thus avoiding multiple solutions

of the state equations. SAND formulations have been successfully used for optimization problems

in structures [97], heat transfer [60], and aerodynamics [112].

This approach leads to a large optimization problem, and the solution process often becomes

unwieldy. To mitigate this problem, reduction methods have been applied to the system [113]. The

analysis and optimization routines must also be closely integrated, often requiring heavy modifica-

tion of existing codes.

6.3 Topology Optimization

Topology optimization is concerned with optimizing the distribution of material to meet

a specific design goal. The following is an overview of the techniques of topology optimization

relevant to this thesis. Bendsøe and Sigmund [20] give a comprehensive treatment of the subject
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from formulation to applications. Interested readers are referred to this source as well as the

literature review by Eschenauer and Olhoff [36] for additional coverage of this topic.

6.3.1 Basic Concepts

In the context of finite element methods for structural analysis and optimization, a given

design domain, Ω, is discretized into finite elements. The topology optimization procedure assigns

material indicator variables, χ, that are most often associated with each element in the domain. The

material indicator variables are used to indicate the presence of material or a void. Thus, if χ = 1

this indicates the presence of material and if χ = 0 this marks a material void. In order to ensure

that the objective function and constraints predicted by the finite element model are continuous,

χ is allowed to vary continuously between zero and one. By introducing a continuously varying

material, the problem now becomes a optimization problem that seeks to find an optimal layout

of material properties, and not the optimal layout of a single, homogenous material. Clearly, a

material with continuously varying material properties, for instance a varying density, is difficult to

produce. This results from the fact that the material becomes the subject of optimization and not

the layout of a material with fixed properties. Several solution techniques are used to circumvent

these issues and are discussed next.

6.3.2 Solution Strategies

Material Penalization

An approach known as simple isotropic material with penalization (SIMP) [18, 19] is a common

solution to the continuous material parameter problem in topology optimization. This method

penalizes intermediate values of the material properties in the optimization problem. Thus, for an

arbitrary material parameter, η0, for example elastic modulus or coefficient of thermal expansion,

the material indicator is raised to a power β

η = sβi η0, ε < si ≤ 1 (6.13)
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where ε is a small but non-zero value that is used to avoid singularities and the abstract optimization

variables si are used as the material indicators χ. The SIMP model is usually used in conjunction

with a mass constraint. The density of the material, ρ0, is allowed to vary linearly with the abstract

variables according to the equation

ρ = siρ0, ε < si ≤ 1. (6.14)

The discrepancy between the property penalization and the density variation forces more clearly

defined material and void distributions. With this approach, an intermediate material value adds

a considerable negative affect in improving the objective function over a material indicator value

near zero or one.

Filtering

Problems in topology optimization often do not converge to a unique solution upon successive

mesh refinement. The reason is due to the discretization of the design domain and the material

penalty formulation used. As the mesh is refined, an increasing number of possibilities for the size

and location of material voids becomes possible. Another phenomenon know as checkerboards is

also observed in problems solved by topology optimization. Checkerboards are characterized by

alternating, adjacent material and void elements. While the checkerboard problem is reduced by the

use of higher order elements, these type of numerical instabilities may be mitigated by employing a

technique known as filtering. Filtering makes the design gradient of an element dependent on the

neighboring elements lying within a specified radius, and effectively smooths out spatial oscillations

in the design sensitivities. The derivatives of a function with respect to the design variables, ∂f/∂si,

are filtered according to the equation

∂f̃

∂xk
= (xk)

−1 1∑
wik

∑
wikxi

∂f

∂si
. (6.15)

The weighting function wik is expressed as

wik = max (r − dik, 0) (6.16)

where r is the filter radius and dik is the distance between the centers of the ith and kth elements.
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The reader is referred to the works of Sigmund [127, 128] for more details on numerical instabilities

and filtering.

6.4 Sensitivity Analysis

The gradient-based optimizers used in this work require derivative information of the opti-

mization criteria. The gradients ∂z/∂si, ∂h/∂si, and ∂g/∂si must be computed and sent to the

numerical optimization routine to solve the optimization problem of equation 6.1. The process of

computing the gradient values is known as sensitivity analysis, and is often a very computationally

intensive task for structural optimization problems. Three forms of computing the sensitivities are

commonly employed: numerical sensitivity analysis, analytical sensitivity analysis, and automatic

differentiation,.

6.4.1 Numerical Sensitivity Analysis

Numerical sensitivity analysis uses finite difference methods to compute gradient informa-

tion. While easy to implement, numerical sensitivity analysis has several drawbacks. The first of

which is computational cost. If a second-order accurate central difference scheme is used, a forward

and backward perturbed analysis of the system model must be performed for each optimization

variable. This cost becomes severely limiting if the analysis time is lengthy and the number of

optimization variables becomes large. Furthermore, numerical sensitivity analysis is error prone,

as the selection of a finite differencing perturbation and the severity of nonlinearities in the criteria

may lead to inaccurate gradients. The complex step method of numerical sensitivity analysis pro-

vides more accurate results for small perturbation sizes, but its implementation is more involved

than classical finite difference methods. Due to the shortcomings of numerical sensitivity analysis

analytical methods have become increasingly attractive because they decrease computational time

and increase robustness. Nonetheless, numerical sensitivity approaches serve an important pur-

pose, as they are often used for verifying analytical sensitivities and when the overhead related to
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developing analytical sensitivity methods is not justified.

6.4.2 Analytical Sensitivity Analysis

The analytical sensitivity analysis method determines derivatives of the objective or con-

straint functions based on analytical derivatives of the discrete equations. As one might imagine,

the time involved with developing analytical gradient methods is often extensive. However, for

most problems significant returns can be expected in terms of reduced computational cost of the

sensitivity procedure.

The aerothermoelastic system is governed by a set of residual equations expressed in generic

form as

R(s,U(s),T (s),u(s)) = 0. (6.17)

where s are design variables, U is the vector or conservative state variables for the fluid equations, T

is the vector of temperatures for the heat equation, and u is the vector of state variables (nominally

displacements) for the elasticity equation.

The residual and state vector may also be expressed of as an aggregation of discipline-specific

residual and state vectors in the following way

RT =
[
Rf (U(s)) , Rt(T (s)) , Rs(u(s))

]
= 0 (6.18)

and

UT = [U(s) , T (s) , u(s)] (6.19)

Using the NAND optimization methodology, the design criteria, qj , are defined as the set of

objective and constraint functions, and are expressed as

qj = qj(s,U(s),T (s),u(s)). (6.20)

In this equation, s are the design variables and U(s), T (s), u(s) indicates the state variables are

a function of the design variables.
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DIRECT METHOD We may then represent the total derivative of the criteria qj with

respect to the optimization variables s by the equation

dqj
ds

=
∂qj
∂s

+
∂qj
∂U

∂U

∂s
+
∂qj
∂T

∂T

∂s
+
∂qj
∂u

∂u

∂s
. (6.21)

From here the partial derivatives of the criteria with respect to the abstract optimization variables

∂qj/∂s and the criteria with respect to the state variables (e.g. ∂qj/∂U) may be evaluated directly

by the analysis model. In order to obtain the derivative of the state variables with respect to the

design variables (e.g. ∂U/∂s) we must differentiate the governing equations (equation 6.17) with

respect to the design variables. Since we require R = 0, its derivative must also be equal to zero,

hence
dR

ds
=
∂R

∂s
+
∂R

∂U

dU

ds
+
∂R

∂T

dT

ds
+
∂R

∂u

du

ds
= 0. (6.22)

Using the definition of residual vector given by equation 6.18, the previous equation may be written

as 
∂Rf

∂U
∂Rf

∂T
∂Rf

∂u

∂Rt

∂U
∂Rt

∂T
∂Rt

∂u

∂Rs

∂U
∂Rs

∂T
∂Rs

∂u


︸ ︷︷ ︸

A


dU
ds

dT
ds

du
ds

 = −


∂Rf

∂s

∂Rt

∂s

∂Rs

∂s

 (6.23)

Solving the above equation we can now compute the derivatives of the design criteria by

dqj
ds

=
∂qj
∂s
−


∂qj
∂U

∂qj
∂T

∂qj
∂u


T 

dU
ds

dT
ds

du
ds

 (6.24)

ADJOINT METHOD The adjoint method also begins from the derivatives of the opti-

mization criteria
dqj
ds

=
∂qj
∂s

+
∂qj
∂U

∂U

∂s
+
∂qj
∂T

∂T

∂s
+
∂qj
∂u

∂u

∂s
. (6.25)
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The adjoint problem may then be defined as
∂Rf

∂U
∂Rt

∂U
∂Rs

∂U

∂Rf

∂T
∂Rt

∂T
∂Rs

∂T

∂Rf

∂u
∂Rt

∂u
∂Rs

∂u


︸ ︷︷ ︸

AT


af

at

as

 =


∂qj
∂U

∂qj
∂T

∂qj
∂u

 (6.26)

Solving the above equation we can now compute the adjoint vectors and compute the derivatives

of the criteria with respect to the design variables according to the equation

dqj
ds

=
∂qj
∂s
−


af

at

as


T 

∂Rf

∂s

∂Rt

∂s

∂Rs

∂s

 (6.27)

There are two approaches to solving the total sensitivity equation and the choice of which is

dictated by the number of optimization criteria, qj , and optimization variables, si.

Direct Method

If the number of optimization variables is less than the number of optimization criteria the direct

approach is more efficient. This method proceeds according to the following two steps:

(1) Compute the derivatives of the state variables with respect to the optimization variables

to obtain the direct sensitivity solution.

(2) Compute the total sensitivity by evaluating equation 6.21.

This approach requires the solution of a linear system of equations for each optimization variable,

however the evaluation direct sensitivity equations requires the same order of computational time

as the evaluation of the system equations (equation 6.17). As such, the direct method becomes

very costly with an increasing number of optimization variables.

Adjoint Method

If the number of optimization criteria is less than the number of optimization variables the adjoint

approach is more efficient. The adjoint method progresses as follows:
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(1) Compute the derivatives of the optimization criteria with respect to the state variables to

obtain the adjoint sensitivity solution. This is accomplished by evaluating the following

equation

aj =
[

∂R

∂(U ,T ,u)

]−T ∂qj
∂(U ,T ,u)

(6.28)

(2) Compute the total sensitivity by evaluating

dqj
dsi

=
∂qj
∂si
− aj

∂R

∂si
(6.29)

This approach requires the solution of a linear system of equations for each optimization criteria,

qj . The adjoint method eliminates the dependency on the number of optimization variables and

thus is the preferred method if the number of optimization variables exceeds the number of criteria.

The problems solved in this thesis, and for topology optimization problems in general, contain

a large number of optimization variables and a limited number of criteria. As such, the adjoint

method of sensitivity analysis is used here.

6.4.3 Automatic Differentiation

Automatic differentiation is a computational tool for performing analytical sensitivity analysis

based on discretized equation forms. An automatic differentiator operates on an existing discrete

equation routine, or set of routines, and produces a code that computes the derivative of the original

routine’s output. Automatic differentiation applies the chain rule to the base code’s commands with

respect to the input variables. For instance, if a routine computes the stiffness matrix and body

force vector of an element, and is automatically differentiated, the output code will compute the

derivatives of the stiffness matrix and body force vector. It is a quick way of generating derivative

functions, especially if the computational routines that must be differentiated are complex. Well-

refined and tested implementations for the Fortran 77 (ADIFOR [21]) and C/C++ (ADIC [22] and

ADOL-C [50]) programming languages exist. While automatic differentiation is a quick and easy

tool for computing derivatives of functions, it removes the user from any physical insight into the

problem and often decreases computational efficiency.
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6.5 Numerical Optimization

Numerical optimization algorithms are primarily classified according to two types: discrete

and continuous optimization routines. Discrete optimizers seek to find the combination of variables,

often integer values, to minimize an objective. Popular methods of discrete-based optimization are

branch-and-bound methods, genetic algorithms, and simulated annealing. In contrast, continuous

optimization allows the variables to assume real values within their bounds and assumes a con-

tinuous objective function. A subset of continuous optimization is gradient-based optimization

where the derivatives of the criteria are assumed to exist and these derivatives are required by the

optimizer.

Within continuous optimization, constrained and unconstrained methods exist. Constrained

optimization is widely used for engineering applications. This is due to the fact that most engineer-

ing problems are formulated with bounds on the design, for example constraints on mass, stress,

or eigenfrequencies.

The partial differential equations that govern most engineering systems result in nonlinear

objective functions and constraints. Consequently, this work employs gradient-based algorithms for

nonlinearly constrained optimization. The two major branches for general nonlinear constrained op-

timization algorithms include interior point methods and sequential quadratic programming (SQP).

The method of moving asymptotes (MMA) and a follow on method, known as sequential convex

programming (SCP), have appeared recently and were formulated in the context of structural opti-

mization problems. These two methods have also been shown to work well for general optimization

problems [145]. This thesis uses the popular SQP optimizers by Gill ([48]) and Schittkowski ([122])

and the structural optimization inspired MMA and SCP algorithms due to Svanberg ([132]) and

Zillober ([144]).
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6.5.1 Sequential Quadratic Programming

The sequential quadratic programming method constructs and solves a series of quadratic

approximations to the objective and constraint functions. SQP is appropriate for large problems

with significant nonlinearities, and is very effective for structural optimization problems.

The algorithm applies Newton’s method to the system of KKT conditions. The step size of

the optimization variables can be computed by using the familiar Newton linearization approach

discussed in section 2.4.1 but applied to the KKT system. The first order KKT conditions are

defined in vector form as

R =


∂L
∂s

h

γT g

 (6.30)

and the Jacobian of the KKT vector is expressed as

J =


∂2L
∂s2

∂h
∂s

∂g
∂s

∂h
∂s 0 0

γT ∂g
∂s 0 g

 . (6.31)

Thus, the Newton step can be computed by solving the system of KKT equations given by
∂2L
∂s2

n ∂h
∂s

n ∂g
∂s

n

∂h
∂s

n
0 0

γT ∂g
∂s

n
0 gn




4sn

4ηn

4γn

 =


∂L
∂s

n

hn

γT gn

 (6.32)

and the new optimization iterate (sn+1, ηn+1, γn+1) is given by
sn+1

ηn+1

γn+1

 =


sn

ηn

γn

+


4sn

4ηn

4γn

 (6.33)

Equation 6.32 is well-posed if the constraint derivatives ∂h/∂x and ∂g/∂x are linearly inde-

pendent and if the Hessian of the Lagrange function ∂2L/∂x2 is positive definite.
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A unique property of the KKT system is that the iterate step sizes (4xn,4ηn,4γn) can be

computed by either solving the system of equations (equation 6.32) or by finding the solution to

an equivalent quadratic minimization problem. This characteristic of the problem requires either

the use of Newton’s method or a method for quadratic minimization to compute the next iterate.

The corresponding quadratic minimization problem is posed as

min
s

1
2

(4sn)T
∂2L

∂s2

n

4sn +
(
∂z

∂s

n)T
4xn (6.34)

∂h

∂s

n

4sn + hn ≥ 0 (6.35)

∂g

∂s

n

4sn + gn ≥ 0 (6.36)

Computation of the Hessian ∂2L/∂s2 is a computationally expensive procedure and may not al-

ways yield a positive definite matrix. The exact Hessian is often replaced by a quasi-Newton

approximation, which uses first order updates to a approximate the Hessian. The Broydon-Fletch-

Goldfarb-Shanno (BFGS) update is the most popular of all Hessian approximation methods. For

more information on the solution of the quadratic minimization problem (equations 6.34 - 6.36)

and quasi-Newton methods including the BFGS update, refer to Nocedal and Wright [111].

6.5.2 Method of Moving Asymptotes

The Method of Moving Asymptotes (MMA) was first introduced by Svanberg [132] and has

since become a mainstay of structural optimization and topology optimization in particular. The

method is similar to sequential quadratic programming (SQP) methods in that it seeks to solve

the optimization problem by constructing and solving a sequence of easier to solve subproblems

or local models at each iterate. The difference between MMA and SQP is how the subproblem

is defined. MMA takes advantage of a special characteristic of structural problems. Many struc-

tural constraints, such as material stresses, are directly dependent on structural displacements and

are exact linearizations of the original functions with respect to inverse variables. It should be

noted that the primary output of the finite element model, which determines the objective and

constraint values, are structural displacements. As such, nearly any quantity that might be subject
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to constraint, such as stresses, strain energy, mass, or displacements, will be dependent on the

displacement solution.

The MMA algorithm constructs a strictly convex separable approximation to the objective

and inequality constraints by linearizing with respect to transformed inverse variables defined as

1
sni − Lni

,
1

Uni − sni
. (6.37)

The choice of which inverse variable type to linearize against is determined by the sign of the

function derivative at the current iterate. The values of the lower and upper asymptotes Li and

Ui, which represent bounds for the local model, are permitted to change between iterations and are

often referred to as “moving asymptotes.” Selection of the Li and Ui parameters is an important

part of MMA and is discussed below.

At each iteration the objective function is approximated for the current set of design variables

sni by linearizing over the inverse variables according to the equation

z̃ (sni ) = z (sni ) +
∑
i,+

[
∂z

∂si
|xn
(

(Ui − sni )2

Ui − si
− (Ui − sni )

)
+ τi

(si − sni )
Ui − si

]
− (6.38)

∑
i,−

[
∂z

∂si
|xn
(

(sni − Li)2

si − Li
− (si − Li)

)
− τi

(si − sni )
si − Li

]
.

The original form of the MMA algorithm cannot explicitly handle equality constraints so they

will not be considered here. The inequality constraints are linearized with respect to the inverse

variables as

g̃k (x) = gk(xn) +
∑
i,+

∂gk
∂si

∣∣∣∣∣
xn

(
(Ui − sni )2

Ui − si
− (Ui − sni )

)
−
∑
i,−

∂gk
∂si

∣∣∣∣∣
xn

(
(sni − Li)2

si − Li
− (sni − Li)

)
(6.39)

The term
∑

i,+ indicates the linearization with respect to the inverse variables 1/(Uni − si) and

the summation of the resulting components for non-negative partial derivatives evaluated at xn.

The term
∑

j,− indicates the linearization with respect to the inverse variables 1/(si−Lnj ) and the

summation of the resulting terms for negative partial derivatives evaluated at xn. The τi terms in

the objective function are positive parameters chosen to ensure that the approximation is strictly

convex. Note that values of the moving asymptotes are chosen such that Lni < si < Uni .
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The subproblem for the current iterate can now be defined in terms of the linearized functions

min
si

z̃(si), i = 1, ..., nx (6.40)

g̃k(si) ≥ 0, k = 1, ..., ng

s
′L
i ≤ si ≤ s

′U
i

where the box constraint bounds are defined as

s
′L
i = max

(
sLi , a · sni + b · Lni

)
(6.41)

s
′U
i = min

(
sUi , a · sni + b · Uni

)
(6.42)

and the values of a and b are chosen and fixed between 0 and 1. The purpose of the “move limits” a

and b is to keep the variables away from the asymptotes to avoid computing a very large objective

and gradient value.

The subproblem defined by equation 6.40 has several desirable characteristics which result

from the convex approximation made by the method of moving asymptotes. Specifically, the objec-

tive z̃ and constraints g̃k are first-order approximations of the original objectives and constraints

at xn. The objective z̃ is strictly convex and inequality constraints j̃k are also convex, but most

importantly all of the functions are now separable.

The moving asymptotes Li and Ui have been shown to effectively control the behavior of

the subproblem functions [132]. When Lni and Uni are chosen close to the variable sni , the second

derivative will increase and thus so will the curvature of the function approximation. If Lni and Uni

are chosen far from the variables sni , then the second derivative decreases, the curvature decreases,

and the function approximation becomes close to linear. As Lni → −∞ and Uni →∞ the objective

and inequality constraint approximations become linear. For example, the objective becomes

z̃(s) = z(sn) +
∑
i

∂z

∂si

∣∣∣∣∣
sn

(si − sni ) (6.43)

which is recognized as the sequential linear programming (SLP) method. Rules for selecting the

moving asymptotes are largely heuristic. The rules given by Svanberg in his original MMA paper

[132] for choosing the asymptotes are:
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(1) If the iterates oscillate, the problem is likely to become more stable if the asymptotes are

moved closer to xn. Oscillation is detected if the sign of the quantities sni − sn−1
i and

sn−1
i − sn−2

i have opposite signs. The asymptotes should take on values defined by

Lni = sni − s(sn−1
i − Ln−1

i ) (6.44)

Uni = sni + s(Un−1
i − sn−1

i )

(2) If the process is moving slowly, the problem needs to be relaxed by spreading the asymp-

totes. A slow convergence rate is identified if the signs of the difference in variables sni −s
n−1
i

and sn−1
i − sn−2

i is equal. If this is so, the asymptotes should take on values defined by

Lni = sni − (sn−1
i − Ln−1

i )/s (6.45)

Uni = sni + (Un−1
i − sn−1

i )/s

The value of s is taken between zero and one, and typically ranges from 0.5 to 0.9 according to

Svanberg [132].

The convex subproblem generated by the MMA algorithm has traditionally been solved by

a dual method. For large nonlinear programming problems the dual problem is generally more

difficult to solve, however, two characteristics of MMA subproblems make the dual approach more

attractive:

(1) The convexity of the subproblem guarantees that the optimal Lagrange multipliers in the

dual problem directly correspond to the optimal variables in the primal problem.

(2) The separability of the objective and constraints allows the n-dimensional minimization

problem to be separated into n one-dimensional minimizations.

The dual of the subproblem reduces to a maximization of the dual objective function over the dual

variables (Lagrange multipliers of the primal problem) with the only constraint enforcing the dual

variables to be non-negative. This maximization problem can typically be solved efficiently with a
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gradient projection method. Most implementations of the MMA algorithm use the Fletcher-Reeves

conjugate gradient method to solve the dual subproblem.

Another attractive method for solving the subproblem is the primal-dual interior point

method. This method relaxes the KKT conditions via slack variables and solves the KKT system

by Newton’s method. This approach is best for problems involving a large number of constraints

where solving a linear system proportional in size to the number of constraints becomes costly.

6.5.3 Sequential Convex Programming

One of the hindrances of the original MMA algorithm is that it will not converge for some

problems with known solutions. Svanberg [133] and Zillober [145] refer to this characteristic of MMA

as a lack of global convergence. Zillober remedied this situation [144] by introducing a merit function

and line search for solving the MMA subproblem. The MMA algorithm with these additions

subsequently received the names sequential convex programming (SCP) and globally convergent

MMA (GCMMA) [133]. Zillober then extended the SCP method from structural optimization

problems to general nonlinear programming problems [145]. This section presents the merit function

and line search additions to MMA that make up the SCP algorithm.

Simply taking the solution of the MMA subproblem as the next iterate does not guarantee

convergence of the algorithm. Similar to SQP, a merit function with the choice of a penalty

parameter that ensures the search direction is a descent direction of the merit function is required

for global convergence. The MMA subproblem of equation 6.40 can be rewritten with the box

constraints included in the inequality constraints as

minsi z̃(si), i = 1, ..., nx

h̃j(si) = 0, j = 1, ..., nh

g̃k(si) ≥ 0, k = 1, ..., ng + 2nx.

(6.46)

The augmented Lagrangian merit function is used for the SCP method to assure an objective
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decrease

Φr(x, u) = z̃(x) +
nh∑
j=1

(
ηjhj(s) +

1
2
rjh

2
j (x)

)
+
ng+2nx∑
k=1

(
γkgk(x) +

1
2
rkg

2
k(x)

)
(6.47)

where ri are penalty parameters. The gradient of the augmented Lagrangian is then written as:

∇Φr(x, γ) =
[
∇z̃(x) +A(x)

(
γ̄ +Rh̄(x)

)
ĥ(x)

]
(6.48)

where γ̄ is a vector containing the Lagrange multipliers for the active constraints and zeros for

the inactive constraints, h̄ is a vector containing the constraint function values for the active

constraints and zeros the inactive constraints, ĥ(x) is a vector containing the function values for

active constraints or the quantity −γj/rj for inactive constraints, A(x) is a vector containing the

derivatives of the constraints, and R is diagonal matrix of penalty parameters.

If the search direction causes an increase in the merit function, the penalty parameters ri are

updated until a decrease in the merit function results. A line search is then performed with respect

to the merit function given in equation 6.47 to determine the new iterate.

The inclusion of the merit function and linear search are the essential differences between

the MMA and SCP algorithms. Zillober [145] proves the global convergence of SCP by showing

the line search method satisfies the descent property for the merit function and that the penalty

parameters ri are indeed bounded.



Chapter 7

Transient Aerothermoelastic Optimization

7.1 Introduction

This chapter develops the necessary techniques for optimizing transient aerothermoelastic

problems. The ultimate goal is to be able to find an optimal solution to a problem that changes

rapidly through time and for multi-disciplinary design criteria that may be competing with each

other. Such situations are common for aerothermoelastic problems so a sound mathematical and

numerical framework for navigating the design space is very valuable.

The adjoint sensitivity analysis procedure shown in chapter 6 is extended to transient prob-

lems. This formulation will be used to solve optimization problems relating to the internal design

of a structure subject to transient pressure and heat loading. The basic concept pursued herein

is to use topology optimization to determine the material layout that will mitigate heating while

maintaining structural integrity. Transient topology optimization is not a new development with

notable work by Li [99], however, transient topology optimization has not yet been explored as

a design tool for aerothermoelastic problems. This work will hopefully open doors regarding the

usefulness of such an approach for this class of problems.

7.2 Transient Adjoint Sensitivity Analysis

In this section we generalize the adjoint sensitivity analysis shown in section 6.4.2 to time-

dependent problems. This procedure applies to all design criteria q which are a function of the state

variables U . The state vector U may be comprised of state values from several different equation
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types. For aerothermoelastic problems, U = [U ,u,T ], which is composed of the state variables from

the Navier-Stokes equations, elastodynamics equation, and the transient heat transfer equation.

We begin by combining all criteria q, total (dynamic + static contribution) residuals R and

state vectors U through time as follows.

q̃ =
[
q0, . . . , qnt

]T
,

R̃ =
[
R0, . . . ,Rnt

]T
,

Ũ =
[
U0, . . . ,Unt

]T
.

(7.1)

Using this compact form, the derivative of the transient design criteria Q with respect to the design

variables sk can be written as
dQ

dsk
=
∂Q
∂q̃

T dq̃

dsk
, (7.2)

The derivative of the contributions to the objectives at all time steps, q̃, with respect to the design

variable sk, is given by
dq̃

dsk
=

∂q̃

∂sk
+
∂q̃

∂Ũ

T dŨ
dsk

. (7.3)

Then, the derivative of the state vector with respect of the design variables, dŨ/dsk, is computed

from the total derivative of the residual equations

dR̃

dsk
=
∂R̃

∂sk
+
∂R̃

∂Ũ
dŨ
dsk

= 0. (7.4)

Solving Eq. (7.4) for dŨ/dsk and substituting the result into Eq. (7.3) yields

dq̃

dsk
=

∂q̃

∂sk
− ∂q̃

∂Ũ

T
[
∂R̃

∂Ũ

]−1
∂R̃

∂sk
, (7.5)

The adjoint subproblem is then defined as

ãaa = −

[
∂R̃

∂Ũ

]−T
∂q̃

∂Ũ
. (7.6)

For the first step (when n = 0) the derivatives of the dynamic residual vector with respect to the

state vectors ∂R0/∂U j are given by:

∂R0

∂U j
=


I ∀ j = 0,

0 ∀ j = 1, . . . , nt.

(7.7)
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For steps n > 0, the derivatives ∂Rn/∂U j are given by

∂Rn

∂U j
=



−Mn

∆t ≡ J n ∀ j = n− 1,

Mn

∆t + ∂Rn
s

∂Un ≡ Jn ∀ j = n,

0 ∀ j ∈ {1, . . . , Nt} \ {n− 1, n} .

(7.8)

Rewriting Eqs. (7.6)-(7.8) leads to the following adjoint system of equations

I
[
J 0
]T

[
J1
]T [

J 1
]T

[
J2
]T . . .

. . .
[
Jnt−1

]T
[Jnt ]T


︸ ︷︷ ︸

AT



aaa0

aaa1

aaa2

...

aaaNt


︸ ︷︷ ︸

ãaa

= −



(
∂Q/∂z0

) (
∂z0/∂U0

)
(
∂Q/∂z1

) (
∂z1/∂U1

)
(
∂Q/∂z2

) (
∂z2/∂U2

)
...(

∂Q/∂zNt
) (
∂zNt/∂Unt

)


. (7.9)

The structure of the matrix AT is banded and contains a single block at the end of the diagonal.

It is the structure of the adjoint problem that lends this system to an efficient backward time

integration starting from time step nt. Given the adjoint solution ãaa, the derivative of the objective

with respect to the design variable sk can then be determined as

dZ

dsk
=
∂Q
∂q̃

T
(
∂q̃

∂sk
+ ãaaT

∂R̃

∂sk

)
. (7.10)

For solving the optimization problems presented in Section 6.2 we write the fluid states to disk at all

time steps when solving the forward problem. The block matrices J n and Jn are recomputed for

every time step in the adjoint sensitivity analysis. Strategies for reducing the storage requirements

and for reducing the computational costs for the adjoint sensitivity analysis have been explored by

Rumpfkeil and Zingg [120, 121] and Hinze [55].

Given the transient adjoint procedure for solving the sensitivity analysis, we are then able

to feed a numerical optimization method (covered in chapter 6.5) with the design criteria values

(computed during the forward analysis) and the design sensitivities (computed via the sensitivity

analysis). The optimizer then computes a new set of design variables and we iterate the process

until we have reached a satisfactory solution.
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7.3 Numerical Example Problems

The numerical examples contained in the remainder of this chapter pull together the many of

the developments in the previous chapters up to this point in order to perform coupled, transient

design optimization. These problems highlight the multi-disciplinary analysis and optimization

capabilities researched and developed for this dissertation.

7.3.1 2-Dimensional Thermoelastic Topology Optimization

One purpose of this problem is demonstrate the use of a phase changing material to absorb

energy through the latent heat effect. In this manner, the interior of the structure is able to act

as a thermal protection system similar to what is commonly done with surface ablator materials.

A thermal protection system that doesn’t alter the external shape of the body is desirable from

a design standpoint, but a standing questions is how much of a design benefit does this offer in

terms of heat mitigation? In this example we use transient topology optimization to answer that

question.

7.3.1.1 Problem Description

Figure 7.1 shows the geometry, material parameters, and boundary conditions for this prob-

lem. The block is heated at its left edge with a uniform heat load that ramps up from zero at

t = 0 s to 800 W at t = 0.5 s at which point the heat load is abruptly removed. The upper and

lower corners on the left edge of the block are are pinned and a force of 1000 N acts at the center

of the block. Given these thermoelastic boundary conditions, the objective of the optimization

problem is to simultaneously minimize the temperature at the center of the block and to minimize

the structural compliance (maximize stiffness).
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Figure 7.1: Two-dimensional thermoelastic topology optimization geometry and boundary condi-
tions.
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7.3.1.2 Computational Mesh and Model

Figure 7.2 shows the 30x30 element mesh used for this problem. The thermoelastic forward

analysis is solved using the BDF time integrator, a constant time step of ∆t = 0.5 s, and is run for

40 time iterations.

All problems were run with the SIMP material model acting on both the latent heat and

elastic modulus material properties with a penalization factor of β = 3. A “perimeter” constraint

is imposed on the volume of tungsten material such that the variation in the distribution of tungsten

is held below a predefined value. This effectively groups the tungsten together.

7.3.1.3 Results and Discussion

Figure 7.3 shows the Pareto front for this problem as the weighting of the objective shifts from

heavily weighting minimum compliance towards heavily weighting minimum temperature. These

figures show that the prevailing theme behind the optimized designs is to put phase changing

aluminum between the applied heat flux and center of the structure in order to create a “shield” of

material the mitigates the heat load. When the stiffness of the structure is weighted more heavily,

the optimizer clearly shifts it emphasis towards placing tungsten between the pinned supports and

the load point to create a solid load path.

7.3.2 Axisymmetric Aerothermoelastic Internal Material Design

This numerical example was constructed to show the use of transient optimization for an

aerothermoelastic problem. The nose tip studied in sections 2.6.3 and 5.5.1 is used for this purpose.

7.3.2.1 Problem Description

This problem is very similar in boundary conditions to that of the aeroheating nose tip

example in section 5.5.1 however the fluid/structure interface includes aeroelastic and aerothermal

boundary conditions. Figure 7.4 shows the problem specifications. The objective of the optimization
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Figure 7.2: Two-dimensional thermoelastic topology optimization computational mesh.
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Figure 7.3: Pareto front showing the change in designs as the weighting of the objective shifts be-
tween minimum temperature and minimum compliance. The dark regions represent phase changing
aluminum and the light regions represent tungsten.
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problem is to design the optimal material layout within the design domain that minimizes the

temperature at a specified region and at the end of a specified time window.

As noted in section 2.4.1.1, an approximate Jacobian have been implemented and is used

for the forward solve. The “backward in time” adjoint problem defined by equation 7.9, however,

necessitates the use of a consistent Jacobian in order to guarantee accurate sensitivities. Generation

of a consistent, hand-coded analytic Jacobian for aerothermoelastic problems is undoubtedly the

most efficient way to solve the optimization problem, however was outside the scope of this work

and is subject of future endeavors in this area. Hence, a consistent, analytic Jacobian has not

been implemented during the coarse of this work and a consistent Jacobian computed via finite

differences is far too costly to be useful for this problem. In light of this, the decision was made

to move forward with solving the adjoint problem with the available approximate Jacobian but

with the understanding that the computed sensitivities may not be accurate enough to drive the

optimizer towards the true optimum.

7.3.2.2 Computational Mesh and Model

Figure 7.5 shows the mesh for this problem. The numerical model as fully aerothermoelastic

one and is time integrated via a BDF scheme for the fluid and heat equations and via a Newmark

method for the elasticity equations. Time is advanced adaptively to a maximum time of 100.0 s. The

transient simulation is then run repeated within the framework of the transient adjoint sensitivity

analysis (section 7.2) and optimization (chapter 6) processes.

7.3.2.3 Results and Discussion

Figure 7.5 shows an intermediate design from a early design iteration during the optimization

processes. Though not exciting from a visual perspective, what this figure shows is that the

optimizer is beginning to place low conductivity material in the upper left corner of the design

domain. This is precisely the location of the highest temperature for the block of element making

up the design region. This means that the optimizer is shifting the low conductivity material to
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Figure 7.4: Axisymmetric nose tip topology optimization geometry and boundary conditions.
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Figure 7.5: Axisymmetric nose tip computational mesh.
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an area where it will have the most impact for minimizing the objective (temperature). After 10

design iterations the temperature at the objective zone is reduced by approximately 7 K.

This example confirms that the approximate Jacobians used for the transient adjoint sen-

sitivity analysis are at least accurate enough to drive the optimization problem in a meaningful

direction. Beyond this it is difficult to conclude if the end results generated with the approximate

sensitivities are the true optimum.

This example and the previous one, however, confirm that one of the primary goals of this

effort in transient optimization for aerothermoelastic problems was reached – the development and

demonstration of a transient adjoint-based sensitivity analysis and optimization framework. From

this perspective, the developments contained in this chapter are a success.
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Figure 7.6: Axisymmetric nose tip design iteration from early in the optimization process.



Chapter 8

Conclusions

The objective of this dissertation was to develop, implement, and demonstrate a multi-

disciplinary analysis and optimization methodology for high-speed aerothermoelastic problems.

In the preceding chapters each of the these three disciplines were considered along with a means

of interdisciplinary coupling and transient sensitivity analysis and optimization. In the remaining

pages of this document the entire dissertation is summarized, the primary contributions of this

effort are highlighted, and suggestions for future work are made.

8.1 Summary

As mentioned in the introduction of this thesis, aerothermoelastic problems are inherently

coupled and often to a degree that warrants very careful consideration of the interactions which

link them. Given the complexity of each individual field by itself (aerodynamics, heat transfer,

and elasticity), the coupled responses due to the interplay of all three fields is often unwieldy.

Designing with such an intricate system is difficult at best, even with considerable knowledge and

experience. It is this fact that directed this dissertation effort down the path of numerical design

optimization for aerothermoelastic systems. Here, the goal at hand was to develop and test a

numerical sensitivity analysis approach that allows a design engineer to much more easily navigate

the vast design space spanned by aerothermoelastic problems. The remainder of this section briefly

summarizes the purpose and outcome of each chapter in this thesis.

Chapter 1 served as the introduction to this thesis as well as an overview of the computational
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software platform used for completing this work. The code developed for this dissertation was

written from the ground-up to perform tightly coupled multi-disciplinary analysis and optimization.

It draws heavily on well established external libraries such as Exodus, Trilinos, and BLAS for mesh

representation, parallel linear equation solving, and low-level matrix-vector operations, respectively.

Chapter 2 presented the stabilized finite element formulation used for solving compressible

fluid dynamics problems. Several enhancements to the basic scheme where discussed in this chap-

ter such as nodally averaged stabilization and discontinuity capturing fields [23] and an arbitrary

Lagrangian-Eulerian frame of reference for moving mesh problems. Multiple code verification prob-

lems were shown for both subsonic and supersonic test cases.

Chapter 3 introduced the equation for transient heat transfer and its solution via the finite

element method. Multiple extensions pertaining to the thermophysical aspects of aerothermoelastic

problems were introduced in this section. An arbitrary Lagrangian-Eulerian frame of reference was

implemented and tested to accommodate moving mesh problems. A phase change formulation was

presented as it allowed us to model material behavior when the melting point of the material is

exceeded. A stabilized finite element method was discussed and implemented that is well suited

for handling problems involving high heat flux and low thermal conductivity – which often leads

to non-physical oscillations in the solution with a standard Galerkin approach. Finally, a “heat of

ablation” or Q* ablation model was developed and tested for predicting ablator response and heat

flow mitigation in the structure, which is of great significance to atmospheric re-entry problems.

Several numerical examples were presented and solved which highlighted each of these unique

modeling capabilities.

Chapter 4 showed the governing equations for elastodynamics and presented the scheme

used to solve thermoelasticly coupled structural dynamics problems. Both an elastodynamic finite

element method and a transient heat transfer finite element method are assembled into a coupled

formulation and solved via a Newmark time integrator for second-order-in-time structural dynamics

problems. A numerical example is presented which solves the dynamic response of cantilevered

beam that is excited by a time dependent convective heat flux.
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Chapter 5 developed a coupling formulation for linking the Navier-Stokes equations of com-

pressible fluid dynamics, the transient heat equation, and the elastodynamic equations into a tightly

coupled, monolithic set of nonlinear equations which are solved simultaneously. The approach is

based on the balance of solution variables and fluxes/traction at the fluid/solid interface and is

achieved by manipulating the residual equations. This method has the advantage of not intro-

ducing additional variables such as Lagrange multipliers as is commonly done with other coupling

schemes such as the mortar method based approaches. In addition, all equations are solved si-

multaneously as opposed to a staggered coupling scheme which solves each governing equation

set separately. Numerical examples were shown for aeroheating, aerothermoelastic response, and

ablation response problems.

Chapter 6 was largely an introduction to the theory of mathematical and numerical opti-

mization that is intended to familiarize the reader with basic concepts and algorithms in use for

computational design optimization.

Chapter 7 presented the theory and development of a transient, adjoint-based sensitivity anal-

ysis procedure for performing design optimization of aerothermoelastic systems. At present, this

optimization capability has been used to solve thermoelasticly coupled material layout problems.

Given the power of the transient adjoint sensitivity analysis, the full capabilities of this method

have not been fully realized and its continued extension is a significant area for future work.

8.2 Primary Contributions

This section describes, in the author’s view, the contributions of this dissertation towards

advancing the state-of-the-art in aerothermoelastic modeling, simulation, and optimization.

The first contribution is the development and verification of the finite element based code

written by the author for solving compressible gas dynamics problems, transient heat transfer prob-

lems, and structural dynamics problems. Given that many codes used for solving computational

mechanics problems are written for a single discipline, one that is written with the intent for solving

multi-disciplinary problems all within the same code base is certainly a unique and powerful re-
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search tool. Several non-standard enhancements to the basic finite element formulations have either

been developed or implemented for each of the disciplines. An ALE approach for moving meshes

has been written for use in fluid and heat transfer problems. A stabilized formulation (GGLS)

for heat transfer has been implemented and its usefulness has been demonstrated for aeroheating

problems which involve high heating and low thermal conductivity materials. A phase change

formulation was implemented that later facilitated the application of phase changing materials for

topology optimization. Finally, a Q* ablation model was implemented that allowed ablation prob-

lems to be solved in a monolithically coupled fashion. A contribution of this effort that is not to

be overlooked is the extensive verification that has been performed for this code. This helps to

establish credibility of the code as an analysis tool and a worthy platform that can be trusted to

deliver accurate results.

Another contribution of this work is the development of a flexible, extensible software platform

for doing research on multi-disciplinary computational mechanics and design optimization. The

code developed for this dissertation leverages many external software projects that greatly enhance

its capabilities, especially in terms of linear equation solving. One of the primary objectives of the

code itself was for it to be written as a scalable platform for high-performance parallel computing.

Several of the numerical examples presented in the previous chapters confirm this objective has

been met. In terms of design optimization, this software platform represents a unique capability

for solving both forward analyses and sensitivity analyses in parallel.

The aerothermoelastic coupling technique presented in chapter 5 represents a major achieve-

ment of this dissertation. The basic idea behind the residual based coupling method was originally

used in the GOMA computational fluid dynamics code at Sandia National Labs, and later extended

to aeroheating problems. It was extended to fully coupled aerothermoelastic problems in this thesis

and has shown great promise as an alternative to weak formulation coupling approaches such as

discontinuous Galerkin methods or mortar methods.

The development and implementation of the transient adjoint sensitivity analysis solver also

comprises a major achievement of this dissertation. Such a capability is quite uncommon, with a
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notable exception being the adjoint solver contained in NASA’s FUN3D computational fluid dy-

namics code. It is this adjoint solver that makes the optimization of transient problems, especially

ones with a large number of design variables, feasible. Much effort has been spent to make the

adjoint solver efficient and robust from a computational perspective since the backward solve pro-

cedure requires the re-initialization of the state vector at each time step and the re-computation of

the Jacobian’s with respect to multiple time states.

The use of design optimization techniques such as topology optimization for solving prob-

lems in aerothermoelasticity is the final contribution of this dissertation. At least to the author’s

knowledge, the combination of these two fields is unexplored territory. The work contained herein

has only begun to explore this area and many challenges remain to effectively apply computational

design optimization to aerothermoelastic problems.

8.3 Future Work

Aerothermoelastic problems are most relevant in the context of high-speed gas dynamics,

especially hypersonic high-temperature gas dynamics, where the coupling is strong. Given the

complex physical environment of hypersonic aerothermoelastic problems it is difficult to include

all necessary physics in the computational model. This is compounded when the development of

the computational framework begins from the ground-up and within the time-frame and scope

of a Ph.D. thesis. The coupling method developed herein has proven to be quite efficient and

robust from a numerical standpoint, yet much can be done to fully generalize it. The optimization

capability developed for this thesis is also in a fledgling state, with much work to be done in order

to fully realize the promise of design optimization for aerothermoelastic problems. This section

briefly lists recommendations for future work in light of these three observations.

Physics Modeling Several additions can be made to improve the physics modeling capa-

bilities of this work to make it a viable platform hypersonic flow simulation.

• Turbulence Modeling The inclusion of a turbulence model is needed for accurately account-
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ing for high Reynolds number turbulent flows.

• Thermochemical Real Gas Models Hypersonic flows often necessitate that real gas effects

are appropriately accounted for, as mentioned in section 2.2. The implementation of a

reacting gas capability is needed to extend this code to applications in hypersonic gas

dynamics.

Physics Coupling The coupling scheme presented in Chapter 5 can benefit from the

additions listed below.

• Extension to Non-Matching Meshes The coupling approach used in this dissertation require

the meshes be contiguous (connected) at the fluid/structure interface. Clearly, this is a

limitation in terms of mesh generation (where, due to complexity, it may be difficult to

generate the fluid and solid mesh as one) and efficiency of the meshes as the amount of

mesh refinement needed for the solving the fluid and solid problems may vary greatly.

This coupling method may be readily applied to non-matching meshes and would greatly

strengthen it applicability to general problems.

• Weak Formulation Coupling A coupling method based on a weak variational formulation

such as a mortar method would be useful in assessing the performance of the residual based

coupling approach. Mortar methods are widely used coupling schemes and being able to

compare the strengths of weaknesses of both approaches is needed to make a definitive

statement about the favorable performance of one over the other.

• Staggered Coupling The monolithic coupling scheme used in this thesis has proven to work

quite well. Being able to speak objectively about the superiority of a monolithic coupling

scheme over a staggered coupling scheme requires that one be able to meaningfully compare

the performance of each. Additionally, the ability to test a staggered coupling method is

needed to fully understand the performance and accuracy gains one hopefully achieves with

a fully coupled monolithic method.
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Design Optimization Much has been done in the transient sensitivity analysis area for

aerothermoelastic problems, yet much work is still required to make this a truly mature research

tool.

• Transient Direct Sensitivity Analysis A transient direct sensitivity analysis solver is needed

to efficiently handle the cases where there are few optimization variables but many design

criteria. In such cases, the direct approach is preferred over the adjoint approach developed

and used in this document.

• Shape Optimization Mesh Manipulation Module A module for controlling shape changes is

need to realize the benefits of this work for transient aerothermoelastic shape optimization

problems.



Nomenclature

Italic Letters

a acceleration or spectral radius
B ′ nondimensional ablation mass transfer rate
C specific heat or coefficient
c speed of sound or specific heat
D drag force, diffusion coefficient, or constitutive tensor
E total energy per unit mass or elastic modulus
e internal energy per unit mass
G shear modulus
g inequality constraint set or metric tensor
H total enthalpy per unit mass
h equality constraint set or enthalpy per unit of mass
K stiffness
k thermal conductivity
L Lagrange function or lower bound
N finite element shape function
n normal component
p fluid static pressure
Q volumetric heating term
q heat flux
R gas constant
r “r-switch” exponent
S source term
s design variable or recession distance
T temperature
t time variable
u displacement or upper bound
v velocity or slack variable
w weighting function
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x spatial coordinate
z objective function
Bold Italic Letters

a adjoint vector
b boundary condition function or right-hand side vector
c vector of “slack variables
F vector of inviscid fluxes
f force or flux vector
G vector of viscous fluxes
N vector of shape function
n normal vector
p Krylov vector or search direction
q design criterion or heat flux vector
R static or steady residual vector
r unit vector
S fluid source vector
s vector of design variables
U vector of fluid conervative state variables
u vector of structural displacements
v fluid velocity vector
W vector of test functions
x vector of mesh coordinates
Bold Roman Letters

A inviscid flux Jacobian matrix
B differential operator matrix or strain-displacement matrix
C structural damping matrix
D viscous flux Jacobian matrix or material constitutive matrix
H Hessian matrix
I identity matrix
J static or steady Jacobian matrix
K diffusivity matrix or structural stiffness matrix
M structural mass matrix
Caligraphy Letters

L Navier-Stokes or transient heat transfer operator
R dynamic or unsteady residual vector
S trial solution space
U combined multi-disciplinary state vector
V test function space
Lh latent heat
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Bold “Mathfrak” Letters

R space of real numbers
Lowercase Greek Letters

α generalized-α parameter, ALE parameter, or coefficient of thermal exp.
αd Rayleigh damping coefficient
β Nemark algorithmic parameter or ALE parameter
βd Rayleigh damping coefficient
χ species mass fracion
δ shock capturing parameter
ε finite difference perturbation, convergence tolerance or strain
η second natural coordinate direction or Lagrange multiplier
γ ratio of specific heats, Newmark parameter or Lagrange multiplier
κ fluid thermal conductivity
λ bulk viscosity or Lagrange multiplier
µ dynamic viscosity
ν shock capturing parameter or Poisson’s ratio
ω reaction rate
φ damping parameter
ρ density
σ stress
τ stabilization parameter or viscous shear stress
θ relaxation factor or ALE parameter
ξ first natural coordinate direction
ζ third natural coordinate direction
Uppercase Greek Letters

∆ incremental value
Γ boundary of the domain
Ω volume of the domain
Φ shape function set
Ψ generic aeroelastic equations
Σ summation symbol
Θ Θ-scheme time integration parameter
Bold Lowercase Greek Letters

ε strain tensor
λ vector of Lagrange equality multipliers
µ vector of Lagrange inequality multipliers
σ stress tensor
τ viscous stress tensor
Superscripts
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( )∗ optimum solution or heat of ablation
( )c continuity equation
( )e element or energy equation
( )h discrete approximation
( )k optimization iteration
( )L lower bound
( )m momentum equation or nonlinear iterate
( )n time iterate or node
( )T transpose
( )U upper bound
( )tc thermochemical
Subscripts

( )Γ surface or mesh boundary
( )Ω volume or mesh interior
( )a ambient
( )c continuity equation or convection
( )d drag
( )e energy equation
( )f fluid, force, or skin friction
( )g inequality constraint
( )h equality constraint or heat flux
( )i vector component index
( )j vector component index
( )k vector component index
( )l vector component index or liquid
( )m momentum equation
( )p under constant pressure
( )s structural, solid, specie, or design variable
( )T temperature
( )t traction, thermal, or temporal
( )u displacement
( )v under constant volume
( )w wall
( )0 initial guess or total/stagnation value
( )∞ far field
( )abl ablation
( )adv advection
( )dco discontinuity capturing operator
( )diff diffusion
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( )dof degree of freedom
( )fsi fluid-structure interface
( )galerkin Galerkin
( )ggls Galerkin gradient least squares
( )ref reference
( )supg streamline-upwind Petrov-Galerkin
Symbols Over The Letter

(̄ ) time-average average or prescribed quantity
(̈ ) second time derivative
˙( ) first time derivative

(̂ ) unit vector representation
(̃ ) approximate quantity
Other Symbols

∇( ) gradient
d( ) differential
Dimensionless Numbers

M Mach number
Pe Peclet number
Pr Prandtl number
Re Reynolds number
Acronyms

ALE Arbitrary Lagrangian-Eulerian
BFGS Broydon-Fletcher-Goldfarb-Shanno
CFD Computational Fluid Dynamic
CFL Courant-Friedrichs-Lewy
CPU Central Processing Unit
dcp discontinuity capturing parameter
FE Finite Element
FSI Fluid-Structure Interaction
FV Finite Volume
GMRES Generalized Minimal Residual
ILU Incomplete LU

KKT Karush-Kuhn-Tucker
MMA Method of Moving Asymptotes
NAND Nested Analysis and Design
ODE Ordinary Differential Equation
PDE Partial Differential Equation
SA Sensitivity Analysis
SAND Simultaneous Analysis and Design
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SCP Sequential Convex Programming
SIMP Simple Isotropic Material with Penalization
SQP Sequential Quadratic Programming
SUPG Streamline-Upwind Petrov-Galerkin
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Appendix A

Two-Dimensional Euler Flux Jacobians and Viscous Tensor

The two-dimensional Euler fluxes F i are defined as:

F 1 =



ρu1

ρu2
1 + p

ρu1u2

u1(ρE + p)


, F 2 =



ρu2

ρu1u2

ρu2
2 + p

u2(ρE + p)


(A.1)

The components of the Euler flux Jacobian matrices, Ai, can be derived by the following definition:

∂F 1

∂x1
= A1

∂U

∂x1
⇒



∂(ρu1)
∂x1

∂(ρu2
1+p)

∂x1

∂(ρu1u2)
∂x1

∂(ρu1E+u1p)
∂x1


= A1



∂ρ
∂x1

∂ρu1

∂x1

∂ρu2

∂x1

∂ρE
∂x1


(A.2)

∂F 2

∂x2
= A2

∂U

∂x2
⇒



∂(ρu2)
∂x1

∂(ρu1u2)
∂x1

∂(ρu2
2+p)

∂x1

∂(ρu2E+u2p)
∂x1


= A2



∂ρ
∂x2

∂ρu1

∂x2

∂ρu2

∂x2

∂ρE
∂x2


(A.3)
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The rows of the A1 Jacobian are derived as follows:

∂F1 (1)
∂U

=
[
∂(ρu1)
∂ρ

,
∂(ρu1)
∂ρu1

,
∂(ρu1)
∂ρu2

,
∂(ρu1)
∂ρE

]
(A.4)

= [0, 1, 0, 0] (A.5)

∂F1 (2)
∂U

=
∂(ρu2

1 + p)
∂U

(A.6)

=
∂
(
ρu2

1 + [(γ − 1)ρe]
)

∂U
(A.7)

=
∂
(
ρu2

1 +
[
(γ − 1)(ρE − 1

2ρ(u2
1 + u2

2))
])

∂U
(A.8)

=
∂
(
ρu2

1 + (γ − 1)ρE − 1
2(γ − 1)ρ(u2

1 + u2
2)
)

∂U
(A.9)

=
∂(ρu2

1)
∂ρ

∂ρ

∂x1
+
∂ρu2

1

∂u1

∂u1

∂x1
+ (γ − 1)

∂ρE

∂x1
(A.10)

−1
2

(γ − 1)
[
∂ρ(u2

1 + u2
2)

∂ρ

∂ρ

∂x1
+
∂ρ(u2

1 + u2
2)

∂u1

∂u1

∂x1
+
∂ρ(u2

1 + u2
2)

∂u2

∂u2

∂x1

]
(A.11)

= u2
1

∂ρ

∂x1
+ 2ρu1

∂u1

∂x1
+ (γ − 1)

∂ρE

∂x1
(A.12)

−1
2

(γ − 1)
[
(u2

1 + u2
2)
∂ρ

∂x1
+ 2ρu1

∂u1

∂x1
+ 2ρu2

∂u2

∂x1

]
(A.13)

= u2
1

∂ρ

∂x1
+ 2ρu1

[
1
ρ

(
∂ρu1

∂x1
− u1

∂ρ

∂x1

)]
+ (γ − 1)

∂ρE

∂x1
(A.14)

−1
2

(γ − 1)
(
u2

1 + u2
2

) ∂ρ
∂x1
− 1

2
(γ − 1)2ρu1

[
1
ρ

(
∂ρu1

∂x1
− u1

∂ρ

∂x1

)]
(A.15)

−1
2

(γ − 1)2ρu2

[
1
ρ

(
∂ρu2

∂x1
− u2

∂ρ

∂x1

)]
(A.16)

= u2
1

∂ρ

∂x1
+ 2u1

∂ρu1

∂x1
− 2u2

1

∂ρ

∂x1
+ (γ − 1)

∂ρE

∂x1
(A.17)

−1
2

(γ − 1)
(
u2

1 + u2
2

) ∂ρ
∂x1
− (γ − 1)u1

∂ρu1

∂x1
+ (γ − 1)u2

1

∂ρ

∂x1
(A.18)

−(γ − 1)u2
∂ρu2

∂x1
+ (γ − 1)u2

2

∂ρ

∂x1
(A.19)

=
[

1
2

(γ − 1)
(
u2

1 + u2
2

)
− u2

1

]
∂ρ

∂x1
+ [3u1 − γu1]

∂ρu1

∂x1
(A.20)

+ [u2 − γu2]
∂ρu2

∂x1
+ [γ − 1]

∂ρE

∂x1
(A.21)

(A.22)
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∂F1
∂x1

(3) = ∂(ρu1u2)
∂x1

= ∂ρu1u2

∂ρ
∂ρ
∂x1

+ ∂ρu1u2

∂u1

∂u1
∂x1

+ ∂ρu1u2

∂u2

∂u2
∂x1

= u1u2
∂ρ
∂x1

+ ρu2

[
1
ρ

(
∂ρu1

∂x1
− u1

∂ρ
∂x1

)]
+ ρu1

[
1
ρ

(
∂ρu2

∂x1
− u2

∂ρ
∂x1

)]
= u1u2

∂ρ
∂x1

+ u2
∂ρu1

∂x1
− u1u2

∂ρ
∂x1

+ u1
∂ρu2

∂x1
− u1u2

∂ρ
∂x1

= −u1u2
∂ρ
∂x1

+ u2
∂ρu1

∂x1
+ u1

∂ρu2

∂x1

(A.23)
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∂F1
∂x1

(4) = ∂(ρu1E+u1p)
∂x1

= ∂ρu1E
∂x1

+ ∂u1p
∂x1

= ∂ρu1E
∂x1

+
∂u1[(γ−1)(ρE− 1

2
ρ(u2

1+u2
2))]

∂x1

= ∂ρu1E
∂x1

+ (γ − 1)∂u1ρE
∂x1

− 1
2(γ − 1)∂ρ(u3

1+u1u2
2)

∂x1

= γ
(
∂ρu1E
∂x1

)
− 1

2(γ − 1)∂ρ(u3
1+u1u2

2)
∂x1

= γ
[
∂ρu1E
∂ρ

∂ρ
∂x1

+ ∂ρu1E
∂u1

∂u1
∂x1

+ ∂ρu1E
∂E

∂E
∂x1

]
−1

2(γ − 1)
[
∂ρ(u3

1+u1u2
2)

∂ρ
∂ρ
∂x1

+ ∂ρ(u3
1+u1u2

2)
∂u1

∂u1
∂x1

+ ∂ρ(u3
1+u1u2

2)
∂u2

∂u2
∂x1

]
= γ

[
u1E

∂ρ
∂x1

+ ρE ∂u1
∂x1

+ ρu1
∂E
∂x1

]
−1

2(γ − 1)
[
(u3

1 + u1u
2
2) ∂ρ
∂x1

+ (3ρu2
1 + ρu2

2)∂u1
∂x1

+ (2ρu1u2)∂u2
∂x1

]
now substitute in ∂u1

∂x1
, ∂u2
∂x1

, and ∂E
∂x1

= γu1E
∂ρ
∂x1

+ γE
(
∂ρu1

∂x1
− u1

∂ρ
∂x1

)
+ γu1

(
∂ρE
∂x1
− E ∂ρ

∂x1

)
−1

2(γ − 1)
(
u3

1 + u1u
2
2

) ∂ρ
∂x1
− 1

2(γ − 1)
(
3u2

1 + u2
2

) (∂ρu1

∂x1
− u1

∂ρ
∂x1

)
−(γ − 1)u1u2

(
∂ρu2

∂x1
− u2

∂ρ
∂x1

)
= γu1E

∂ρ
∂x1

+ γE ∂ρu1

∂x1
− γu1E

∂ρ
∂x1

+ γu1
∂ρE
∂x1
− γu1E

∂ρ
∂x1

−
[

1
2(γ − 1)

(
u3

1 + u1u
2
2

)] ∂ρ
∂x1
−
[

1
2(γ − 1)3u2

1

] ∂ρu1

∂x1
−
[

1
2(γ − 1)u2

2

] ∂ρu1

∂x1

+
[

1
2(γ − 1)3u2

1u2

] ∂ρ
∂x1

+
[

1
2(γ − 1)u1u

2
2

] ∂ρ
∂x1

− [(γ − 1)u1u2] ∂ρu2

∂x1
+
[
(γ − 1)u1u

2
2

] ∂ρ
∂x1

=
[
−γu1E − 1

2(γ − 1)
(
u3

1 + u1u
2
2

)
+ 3

2(γ − 1)
(
u3

1 + u1u
2
2

)] ∂ρ
∂x1

+
[
γE − 3

2(γ − 1)u2
1 − 1

2(γ − 1)u2
2

] ∂ρu1

∂x1

+ [−(γ − 1)u1u2] ∂ρu2

∂x1
+ γu1

∂ρE
∂x1

=
[
(γ − 1)

(
u3

1 + u1u
2
2

)
− γu1E

] ∂ρ
∂x1

+
[
γE − (γ − 1)u2

1 − 1
2(γ − 1)

(
u2

1 + u2
2

)] ∂ρu1

∂x1

+ [−(γ − 1)u1u2] ∂ρu2

∂x1
+ γu1

∂ρE
∂x1

(A.24)
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Thus, the two-dimensional form of the Euler flux Jacobian matrix A1 is defined as:

A1 =



0 1 0 0

(γ − 1)u
2

2 − u
2
1 3u1 − γu1 u2 − γu2 γ − 1

−u1u2 u2 u1 0

u1

[
(γ − 1)u2 − γE

]
γE − (γ − 1)

(
u2

1 + u2

2

)
−(γ − 1)u1u2 γu1


(A.25)

The Euler flux Jacobian matrix A2 can be derived in the same way and the full derivation of this

matrix has not be included here. The final form of the A2 Jacobian is defined as:

A2 =



0 0 1 0

−u1u2 u2 u1 0

(γ − 1)u
2

2 − u
2
2 u1 − γu1 3u2 − γu2 γ − 1

u2

[
(γ − 1)u2 − γE

]
−(γ − 1)u1u2 γE − (γ − 1)

(
u2

2 + u2

2

)
γu2


(A.26)

where u2 = u2
1 + u2

2

The two-dimensional viscous fluxes are defined as:

G1 =



0

τ 11

τ 12

u1τ 11 + u2τ 12 − q1


, G2 =



0

τ 21

τ 22

u1τ 21 + u2τ 22 − q2


(A.27)

The components of the viscous tensor Kij can be derived starting from the following definitions:

G1 = K11
∂U

∂x1
+K12

∂U

∂x2
(A.28)

G2 = K21
∂U

∂x1
+K22

∂U

∂x2
(A.29)

The rows of the K11 and K12 tensors are derived as follows:

G1 (1) = 0 (A.30)

G1 (2) = 4
3µ

∂u1
∂x1
− 2

3µ
∂u2
∂x2

= 4
3
µ
ρ

(
∂ρu1

∂x1
− u1

∂ρ
∂x1

)
− 2

3
µ
ρ

(
∂ρu2

∂x2
− u2

∂ρ
∂x2

)
=

(
−4

3
µu1

ρ

)
∂ρ
∂x1

+
(

4
3
µ
ρ

)
∂ρu1

∂x1
+
(

2
3
µu2

ρ

)
∂ρ
∂x2

+
(
−2

3
µ
ρ

)
∂ρu2

∂x2

(A.31)
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G1 (3) = µ∂u1
∂x2

+ µ∂u2
∂x1

= µ
ρ

(
∂ρu1

∂x2
− u1

∂ρ
∂x2

)
+ µ

ρ

(
∂ρu2

∂x1
− u2

∂ρ
∂x1

)
=

(
µu2

ρ

)
∂ρ
∂x1

+
(
µ
ρ

)
∂ρu2

∂x1
+
(
−µu1

ρ

)
∂ρ
∂x2

+
(
µ
ρ

)
∂ρu1

∂x2

(A.32)

G1 (4) =
(

4
3µ

∂u1
∂x1
− 2

3µ
∂u2
∂x2

)
u1 +

(
µ∂u1
∂x2

+ µ∂u2
∂x1

)
u2 − κ ∂T

∂x1

(A.33)

now define ∂T
∂x1

noting that T = e/cv

∂T
∂x1

= 1
cv

∂e
∂x1

= 1
cv

∂[E− 1
2(u2

1+u2
2)]

∂x1

= 1
cv

∂E
∂x1
− 1

2cv

∂(u2
1+u2

2)
∂x1

= 1
cv

∂E
∂x1
− 1

2cv

[
∂(u2

1+u2
2)

∂u1

∂u1
∂x1

+
∂(u2

1+u2
2)

∂u2

∂u2
∂x1

]
= 1

cv

[
∂E
∂x1
− u1

∂u1
∂x1
− u2

∂u2
∂x1

]
= 1

cv

[
∂ρE
∂x1
− E ∂ρ

∂x1
− u1

∂ρu1

∂x1
+ u2

1
∂ρ
∂x1
− u2

∂ρu2

∂x1
+ u2

2
∂ρ
∂x1

]
=

[
1
cvρ

(
u2

1 + u2
2 − E

)] ∂ρ
∂x1

+
[
−u1
cvρ

]
∂ρ
∂x1

+
[
−u2
cvρ

]
∂ρ
∂x1

+
[

1
cvρ

]
∂ρ
∂x1

(A.34)

then the fourth element of the viscous flux vector G1 may be defined as

G1 (4) =
(
−4

3
µu2

1
ρ

)
∂ρ
∂x1

+
(

4
3
µu1

ρ

)
∂ρu1

∂x1
+
(

2
3
µu1u2

ρ

)
∂ρ
∂x2

+
(
−2

3
µu1

ρ

)
∂ρu2

∂x2

+
(
µu2

2
ρ

)
∂ρ
∂x1

+
(
µu2

ρ

)
∂ρu2

∂x1
+
(
−µu1u2

ρ

)
∂ρ
∂x2

+
(
µu2

ρ

)
∂ρu1

∂x2

+
[
−κ
cvρ

(
u2

1 + u2
2 − E

)] ∂ρ
∂x1

+
[
κu1
cvρ

]
∂ρ
∂x1

+
[
κu2
cvρ

]
∂ρ
∂x1

+
[
−κ
cvρ

]
∂ρ
∂x1

(A.35)

Thus, the two-dimensional form of the viscous tensor K11 and K12 are defined as:

K11 =



0 0 0 0

−4
3
µu1

ρ
4
3
µ
ρ 0 0

−µu2

ρ 0 µ
ρ 0

K11(4, 1) 4
3
µu1

ρ + κu1
cvρ

µu2

ρ + κu2
cvρ

− κ
cvρ


(A.36)

where

K11(4, 1) = −4
3
µu2

1

ρ
− µu2

2

ρ
− κ

cvρ

(
u2

1 + u2
2 − E

)
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K12 =



0 0 0 0

2
3
µu2

ρ 0 −2
3
µ
ρ 0

−µu1

ρ
µ
ρ 0 0

−1
3
µu1u2

ρ
µu2

ρ −2
3
µu1

ρ 0


(A.37)

The rows of the K21 and K22 tensors are derived as follows:

G2 (1) = 0 (A.38)

G2 (3) = µ∂u1
∂x2

+ µ∂u2
∂x1

= µ
ρ

(
∂ρu1

∂x2
− u1

∂ρ
∂x2

)
+ µ

ρ

(
∂ρu2

∂x1
− u2

∂ρ
∂x1

)
=

(
µu2

ρ

)
∂ρ
∂x1

+
(
µ
ρ

)
∂ρu2

∂x1
+
(
−µu1

ρ

)
∂ρ
∂x2

+
(
µ
ρ

)
∂ρu1

∂x2

(A.39)

G2 (2) = 4
3µ

∂u2
∂x2
− 2

3µ
∂u1
∂x1

= 4
3
µ
ρ

(
∂ρu2

∂x2
− u2

∂ρ
∂x2

)
− 2

3
µ
ρ

(
∂ρu1

∂x1
− u1

∂ρ
∂x1

)
=

(
2
3
µu1

ρ

)
∂ρ
∂x1

+
(
−2

3
µ
ρ

)
∂ρu1

∂x1
+
(
−4

3
µu2

ρ

)
∂ρ
∂x2

+
(

4
3
µ
ρ

)
∂ρu2

∂x2

(A.40)

G2 (4) =
(
µ∂u1
∂x2

+ µ∂u2
∂x1

)
u1 +

(
4
3µ

∂u2
∂x2
− 2

3µ
∂u1
∂x1

)
u2 − κ ∂T

∂x2

(A.41)

where the temperature gradient ∂T
∂x2

is defined as

∂T
∂x2

=
[

1
cvρ

(
u2

1 + u2
2 − E

)] ∂ρ
∂x2

+
[
−u1
cvρ

]
∂ρ
∂x2

+
[
−u2
cvρ

]
∂ρ
∂x2

+
[

1
cvρ

]
∂ρ
∂x2

(A.42)

then the fourth element of the viscous flux vector G2 may be defined as

G2 (4) =
(
µu1u2

ρ

)
∂ρ
∂x1

+
(
µu1

ρ

)
∂ρu2

∂x1
+
(
−µu2

1
ρ

)
∂ρ
∂x2

+
(
µu1

ρ

)
∂ρu1

∂x2

+
(

2
3
µu1u2

ρ

)
∂ρ
∂x1

+
(
−2

3
µu2

ρ

)
∂ρu1

∂x1
+
(
−4

3
µu2

2
ρ

)
∂ρ
∂x2

+
(

4
3
µu2

ρ

)
∂ρu2

∂x2

+
[
−κ
cvρ

(
u2

1 + u2
2 − E

)] ∂ρ
∂x2

+
[
κu1
cvρ

]
∂ρ
∂x2

+
[
κu2
cvρ

]
∂ρ
∂x2

+
[
−κ
cvρ

]
∂ρ
∂x2

(A.43)

Thus, the two-dimensional form of the viscous tensor K21 and K22 are defined as:

K21 =



0 0 0 0

−µu2

ρ 0 µ
ρ 0

2
3
µu1

ρ −2
3
µ
ρ 0 0

−1
3
µu1u2

ρ −2
3
µu2

ρ
µu1

ρ 0


(A.44)
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K22 =



0 0 0 0

−µu1

ρ
µ
ρ 0 0

−4
3
µu2

ρ 0 4
3
µ
ρ 0

K11(4, 1) µu1

ρ + κu1
cvρ

4
3
µu2

ρ + κu2
cvρ

−κ
cvρ


(A.45)

where

K22(4, 1) = −µu
2
1

ρ
− 4

3
µu2

2

ρ
− κ

cvρ

(
u2

1 + u2
2 − E

)


