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ABSTRACT 

Johnson, Lawrence Cody (Ph.D., Integrative Physiology) 

Aging and the Plasma Metabolome: Relation to Physiological Function 

Thesis directed by College Professor of Distinction Douglas R. Seals 

 

Advancing age is associated with declines across numerous physiological systems, 

leading to an increased risk of chronic disease and disability. Whereas aging itself is inevitable, 

the rate at which physiological impairments occur is highly variable among individuals. 

Differences in the trajectory of physiological decline are due to complex biological processes; 

however, the molecular mechanisms underlying physiological impairments are not well 

understood. Metabolomics provides the unique opportunity to investigate systemic molecular 

changes in vivo by capturing perturbations in metabolic signaling linked to changes in 

physiological function. Therefore, the purpose of this dissertation was to determine the relation 

between metabolomic signatures and age-associated physiological declines in humans. 

 Global metabolomics profiling of plasma from young and older adults demonstrated 

changes in metabolomic signatures with advancing age. Pathway analysis of altered 

metabolites identified amino acid and lipid metabolism as primary pathways modified with age, 

and targeted metabolomic approaches confirmed these differences. Furthermore, changes in 

small molecule profiles were related to numerous clinically relevant indicators of human 

healthspan.  

Additionally, in a systems biology approach to further investigate the molecular 

underpinnings of age-associated physiological declines, metabolomics analyses were applied to 

a model of biological aging. In a longitudinal study of older adults, biological age was quantified 

by integrating numerous clinical and physiological measures of human health. Importantly, 

biological age was significantly related to plasma metabolomic profiles, and these small 

molecule signatures were also associated with, and predictive of, rates of biological aging. 
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Collectively, these studies indicate that changes to the plasma metabolome with 

advancing age are related to physiological dysfunction in older adults. Moreover, these findings 

not only present valuable insight into pathways that may modulate healthy aging, our results 

also provide evidence for easily accessible blood-based markers of age-associated 

physiological declines in humans. 
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Chapter II 

Introduction 

Age is the primary risk factor for the development of physiological dysfunction 

(Richardson et al. 2015), which can lead to clinical disorders and chronic disease (Franceschi & 

Campisi 2014; Kennedy et al. 2014). Given the dramatic increase in the number of middle-aged 

and older adults expected in the coming decades (Statisitics 2008), identifying strategies to 

prevent, delay, lessen and/or treat age-associated physiological dysfunction and reduce disease 

risk is one of the most important biomedical research goals (Fontana et al. 2014; Kennedy et al. 

2014). Such efforts would, in turn, extend healthspan, the period of life associated with 

independence, productivity, and well-being, while simultaneously compressing dysfunction and 

disability into late life (Fries 1980; Kirkland & Peterson 2009). As such, understanding 

underlying pathways that are associated with, and even predictive of, physiological declines 

could benefit millions of adults at risk for age-associated chronic disease by identifying 

individuals who are most likely to progress to clinical conditions.  

Previous research suggests that aging is tightly associated with the deterioration of 

metabolic processes in numerous organs and physiological systems (Ma et al. 2015). Assessing 

global metabolic function provides a unique opportunity to gain a systems biology understanding 

of molecular phenotypes. The metabolome, defined as all small molecules characterizing a 

biological system (Boccard et al. 2010; Barderas et al. 2011), is the downstream result of 

genomic and proteomic activity, and therefore provides important insight into multiple levels of 

physiological regulation (Soltow et al. 2010; Barallobre-Barreiro et al. 2013). Therefore, 

metabolomics is a promising tool for identifying biomarkers and elucidating mechanisms in 

diverse physiological and pathophysiological states by allowing for the exploration and 

integration of multiple pathways and networks (Soltow et al. 2010; Yu et al. 2012). Until recently, 

technological limitations have constrained the number of small molecules measured in any one 

analysis. With the advancement of novel methods, over 50,000 unique small molecules have 
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been detected and logged into current databases (Wishart et al. 2013). Complemented by the 

advancement of powerful computing platforms and generation of innovative statistical 

approaches (Xia & Wishart 2016), metabolomics analyses have the capacity to 

comprehensively measure countless biochemical reactions, and better characterize 

physiological systems (Mishur & Rea 2012). 

Preclinical and clinical studies have demonstrated that the metabolome is modified with 

advancing age (Lawton et al. 2008; Houtkooper et al. 2011; Yu et al. 2012; Calvani et al. 2014; 

Ishikawa et al. 2014; Montoliu et al. 2014; Cheng et al. 2015), providing novel insight into the 

numerous physiological processes altered by aging. In an effort to focus on pathways central to 

aging, metabolomics analyses have been applied to populations of long-lived individuals who 

typically show higher levels of function into later years of life. Analyses of “longevity” cohorts 

(Cheng et al. 2015) and centenarians (Montoliu et al. 2014) have identified small molecule 

patterns that differentiate long lived populations from normal aged groups, and provide insight 

into metabolomic changes associated with healthy aging. 

In addition to understanding metabolic pathways modified with advancing age, 

association of these metabolic perturbations to functional declines presents a unique 

opportunity to gain insight into the molecular mechanisms of age-associated physiological 

declines. Previous research has demonstrated that metabolomic profiles are associated with 

functional outcomes, and that alterations to the metabolome with intervention are related to 

changes in function. In preclinical models, caloric restriction and high aerobic capacity prevent 

age-associated changes in the serum and plasma metabolome (De Guzman et al. 2013; 

Falegan et al. 2016), whereas the administration of exogenous compounds reverse metabolic 

perturbations (Yan et al. 2009; Chin et al. 2014). Importantly, these findings translate to humans 

in which metabolomic modifications with intervention are related to improvements in numerous 

functional domains (Lustgarten et al. 2014; DeVan et al. 2015; Jablonski et al. 2015; Justice et 

al. 2015), sometimes independent of changes in clinical blood markers. Extending beyond 
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subclinical dysfunction, molecular profiles are associated with, and predictive of, chronic 

diseases such as cardiovascular disease and insulin resistance (Newgard 2012; Shah et al. 

2012), and specific metabolite species are predictive of future cognitive decline and pheno-

conversion from healthy/mild cognitive impairment to Alzheimer’s Disease up to 5 years in 

advance of clinical diagnoses in elderly patients (Mapstone et al. 2014). Taken together, these 

findings suggest that the plasma metabolome can provide novel insight into the molecular 

events that underlie functional changes with aging and predict future dysfunction. As such, 

Chapter III of this dissertation focuses on the metabolomic signatures associated with 

advancing age and their relation to adverse changes to healthspan indicators in healthy older 

adults. 

An effective approach to reduce disease burden is to delay the age of onset of 

physiological decline and related clinical conditions (Burch et al. 2014). Although advancing age 

is associated with a progressive reduction in physiological functions (Kennedy et al. 2014), the 

rate at which these declines occur is highly variable (Brooks-Wilson 2013). This discrepancy 

occurs as the result of numerous interactions among complex biological mechanisms that 

underlie physiological declines, including genetic, lifestyle, and environmental factors (Wahl et 

al. 2012). Although chronological age is one of the most important risk factors when predicting 

adverse clinical outcomes, its lack of plasticity limits its predictive capability. Alternatively, 

biological age is highly malleable and therefore a superior metric by which to assess an 

individual’s chronic disease risk (Levine 2013). Whereas previous research has focused on 

generating models of biological aging based upon the association of molecular markers with 

chronological age (Hannum et al. 2013; Horvath 2013), these analyses are not necessarily 

associated with physiological status. Therefore, we developed a method to quantify biological 

age that is reliant on clinical and physiological measures. To identify pathways associated with 

biological aging and provide an avenue for clinical application, in Chapter IV we examine small 

molecules associated with, and predictive of, biological aging in humans. 
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ABSTRACT 

Advancing age is associated with impairments in numerous physiological systems, leading to an 

increased risk of chronic disease and disability, and reduced healthspan (the period of high 

functioning, healthy life). However, the molecular mechanisms underlying physiological declines 

in the absence of disease are poorly understood. The plasma metabolome is thought to reflect 

changes in the activity of physiological systems that influence healthspan. Accordingly, we 

utilized an untargeted metabolomics analysis of plasma collected from healthy young and older 

individuals to characterize global changes in small molecule abundances with age. Using a 

weighted gene correlation network analysis, similarly expressed metabolites were grouped into 

modules that were related to indicators of healthspan. Investigation of metabolic classes 

represented within each module revealed amino acid and lipid metabolism as significantly 

associated with age and healthspan indicators. A separate targeted metabolomic analysis was 

used to confirm these initial findings. Overall, these results demonstrate that plasma 

metabolomics profiles in general, and amino acid and lipid metabolism in particular, are 

associated with clinical and physiological indicators of healthy aging.  

 

Keywords: Aging, metabolomics, weighted gene correlation network analysis, healthspan 
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INTRODUCTION 

Aging is associated with declines in multiple physiological systems, resulting in 

increased risk for the development of chronic disease and disability, and consequent reduction 

in healthspan, i.e., the period of life associated with good function and health (Franceschi & 

Campisi 2014; Kennedy et al. 2014; Seals et al. 2016). Given the dramatic increase in the 

number of middle-aged and older adults in the coming decades (Statisitics 2008), identifying 

and understanding the underlying mechanisms that determine healthspan is an important 

priority in biomedical research (Fontana et al. 2014). While aging itself is inevitable, the 

trajectory of physiological decline with advancing age is highly variable among individuals and is 

likely due, in part, to interactions among complex biological systems (Brooks-Wilson 2013). The 

metabolome, defined as all small molecules characterizing a biological system (Boccard et al. 

2010; Barderas et al. 2011), is the downstream result of genomic and proteomic activity and is 

therefore representative of overall physiological status (Soltow et al. 2010; Barallobre-Barreiro 

et al. 2013). Because the plasma metabolome is reflective of global biological processes, it may 

provide unique insight into pathways that contribute to healthy aging.  

The plasma metabolome is altered with advancing age (Lawton et al. 2008; Yu et al. 

2012; De Guzman et al. 2013), and is predictive of disease in older, at risk populations (Shah et 

al. 2012; Mapstone et al. 2014). However, the relation between age-associated changes in the 

plasma metabolome and physiological and clinical indicators of healthspan is largely unknown. 

In the present study we identified unique plasma metabolomic patterns of aging in adults without 

disease that are associated with clinical and physiological indicators of healthspan. Using a 

combination of untargeted and targeted analyses we identified modules of related metabolites, 

as well as specific signatures of amino acid and lipid metabolism, that were associated with 

multiple determinants of healthspan in humans. Healthspan indicators included physiological 

assessments of maximal oxygen consumption (V̇O2max; aerobic exercise capacity), brachial 

artery flow-mediated dilation (vascular endothelial function), estimated glomerular filtration rate 
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(kidney function), body composition (fat and lean body mass), and key risk factors for chronic 

disease and disability including circulating glucose and insulin, plasma lipids, body mass index, 

arterial blood pressure, and circulating markers of inflammation. 

 

RESULTS 

Subject Characteristics and Indicators of Healthspan  

To determine the effects of aging on the plasma metabolome, we performed an 

untargeted metabolomics analysis on groups of healthy young (Young, 18-30 years, n=14) and 

older (Older, 45-74 years, n=29) adults who were free of clinical disease or disability. All 

subjects underwent a medical history and physical examination, and were phenotyped for 

various indicators of healthspan (Table 1). All clinical and physiological measures were within 

normal ranges, with some expected age-related differences observed between the Young and 

Older groups. Differences observed included age-related increases in percent body fat, systolic 

blood pressure, body mass index, low density lipoprotein (LDL)- and total cholesterol, and 

reductions in V̇O2max and vascular endothelial function in the Older group compared with 

Young.  

 

Construction of Biologically Relevant Metabolomic Modules 

To determine patterns of change within the plasma metabolome associated with age, 

untargeted metabolomics analysis was performed using plasma collected from subjects in the 

Young and Older groups. Of the 4,681 small molecule features identified, 2,957 were 

determined to be present in at least 50% of Young or Older groups, and used to perform a 

weighted gene correlation network analysis (WGCNA) (Langfelder & Horvath 2008). The 

WGCNA method utilizes an unsupervised network–based approach to group metabolites into 

“modules” based on similarities in their abundances, without taking age or other phenotypic 

factors into consideration. This sophisticated data reduction step allows for meaningful 
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information to be extracted from cross-sectional studies because it drastically reduces the 

number of comparisons made, absolves issues of co-linearity, and provides a platform for a 

more practical statistical approach aimed at understanding and interpreting systems biology 

data. The WGCNA analysis identified 20 unique modules of co-expressed metabolites. Per 

WGCNA convention, each module was assigned an arbitrary color for naming purposes, and a 

module “score” (module eigengene) was calculated for each individual based on the first 

principal component score of all metabolites within a module, allowing for comparison of module 

expression between groups and for relating modules of metabolites to indicators of human 

healthspan.  

 

Selection of Age-Associated Metabolomic Patterns and their Relation to Indicators of 

Healthspan 

To determine if any of these modules were associated with aging, mean module scores 

were compared between Young and Older groups using unpaired t-tests. To understand the 

potential physiological and clinical relevance of metabolite modules that demonstrate age-

associated differences, module scores were then related to indicators of healthspan. Because 

this was an exploratory analysis intended to identify potential molecular patterns associated with 

aging, and given the robust data reduction step employed using WGCNA, an unadjusted p-

value of <0.05 was used to identify modules significantly different with age.  

Of the 20 distinct modules generated using WGCNA, the Magenta (97 metabolites), 

Purple (87 metabolites), Blue (349 metabolites), and Green (155 metabolites) modules were 

found to be both different between Young and Older individuals (Figure 1) and associated with 

multiple indicators of healthspan (Table 2). Regarding the associations between modules and 

individual healthspan indicators, it is important to note for purposes of interpretation that some 

modules (Magenta, Blue, and Green) were related to indicators of healthspan that displayed no 

age-associated changes, including lean mass, glucose, insulin, interleukin-6, and HDL-
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cholesterol. This observation suggests that these modules are independently related to the 

healthspan markers in question rather than via secondary associations with age. Based on the 

outcome of this untargeted analysis, the Magenta, Purple, Blue and Green modules were 

prioritized for further analysis, as described next. 

 

Detected Pathways and their Association with Healthspan Indicators 

In an effort to isolate the metabolic pathways associated with aging, a pathway analysis 

was performed on metabolites within each of the four modules of interest. Because we 

performed an untargeted metabolomics analysis, many of the metabolites within these four 

modules remain to be characterized. Therefore, unidentified metabolites were eliminated and 

only known metabolites from each module were included in the pathway analysis using Human 

Metabolome Database (HMDB) (Wishart et al. 2013) identifiers and KEGG curated pathways 

(Kanehisa et al. 2017) through Metaboanalyst software (Xia & Wishart 2016).  

Thirty-four (34) unique metabolic sub-pathways were identified among the four modules 

of interest (Supplemental Table 1). To gain insight into high-level changes in metabolic 

regulation that may occur with age, sub-pathways were organized by their higher order “class”, 

of which eight were identified using KEGG databases (Figure 2). Of the pathway classes 

identified, amino acid and lipid metabolism were strongly represented, accounting for 66% of the 

total class distribution among the four modules. 

 

Targeted Metabolomics Confirms Changes in Amino Acid and Lipid Metabolism with Age 

To confirm the results of our untargeted global analysis of the plasma metabolome, a 

targeted analysis was used to identify metabolites and pathways associated with amino acid 

and lipid metabolism in Young and Older individuals (Table 3). Of 43 amino acids and amino 

acid derivatives measured, 13 demonstrated age-related changes when compared using 

unpaired t-tests, seven of which are associated with protein biosynthesis (Asp, Met, Ala, Pro, 
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Phe, Trp, cystine). Of the proteogenic amino acids and their derivatives, all demonstrated lower 

concentrations with aging, except cystine, which was higher with age (Supplemental Figure 1). 

Alternatively, six non-proteinogenic amino acids and derivatives (3-methylhistidine, citrulline, 

ornithine, β-aminoisobutyric-acid, α-amino-N-butyric-acid, and cystathionine) were found to 

increase with age (Supplemental Figure 1). For lipid metabolism, we measured 12 fatty acids, 

11 acylcarnitines, and 12 ceramides. Age-related increases were observed in six fatty acids, six 

acylcarnitines, and six medium- and long-chain ceramides (Supplemental Figures 2 and 3).  

 

Age-Associated Changes in Amino Acid and Lipid Metabolism-Linked Metabolites are 

Related to Indicators of Healthspan 

After confirming age-associated differences in numerous signatures of amino acid and 

lipid metabolism, we next investigated the potential relations between these metabolites and 

indicators of human healthspan. Metabolites most different with age (P<0.01 in Older vs Young) 

were related to clinical and physiological outcomes using correlation analysis and are presented 

in a heatmap matrix (Figure 3). For clarity, visualization of the relations between individual 

metabolites and indicators of healthspan, the clinical and physiological markers were 

categorized as “adverse” if higher values are associated with higher risk of age-related 

dysfunction/disease or “protective” if higher values are associated with lower risk.  

All metabolites demonstrated significant relations to multiple indicators of healthspan. Of 

note, metabolites positively related to adverse indicators of healthspan were negatively 

associated with protective indicators, and vice versa. Certain classes of metabolites (i.e. amino 

acids, fatty acids, ceramides, and acylcarnitines) typically clustered their associations around 

certain healthspan indicators. For example, amino acids showed associations with systolic 

blood pressure, total cholesterol, estimated glomerular filtration rate, and V̇O2max. Fatty acids, 

in general, were related to measures of body composition and V̇O2max, whereas acylcarnitines 

primarily demonstrated associations with systolic blood pressure and V̇O2max. The group of 
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ceramide metabolites, known for their role in inflammatory and apoptotic pathways (Verheij et 

al. 1996; Nixon 2009), were particularly strongly correlated to V̇O2max, in addition to clinical 

blood markers such as triglycerides, cholesterols, and C-reactive protein.  

 

DISCUSSION 

We employed a novel systems biology approach to elucidate the relations between age-

associated patterns of metabolite expression, individual metabolites, and meaningful clinical and 

physiological determinants of human healthspan. Our results demonstrate specific patterns of 

change in the plasma metabolome with age, and that these changes may be associated with 

multiple indicators of healthspan in adults free of disease or disability. This study also is the first 

to our knowledge to utilize both untargeted and targeted metabolomics approaches to explore 

biologically significant changes in small molecule signatures, and relate them to a diverse set of 

healthspan markers. By using pathway analysis and complementary targeted approaches, we 

were able to show that changes in specific metabolic pathways, primarily those related to amino 

acid and lipid metabolisms, are most consistently related to healthspan markers. These 

healthspan markers, in turn, are well-established risk factors for impaired physiological function 

linked to future disability (e.g., mobility limitations), as well as chronic cardio-metabolic diseases 

with advancing age. 

As this analysis was exploratory in nature, the reported changes in metabolites of lipid 

and amino acid metabolism, in particular, and their associations with markers of healthy aging, 

are meant to guide future hypothesis generation. In this context, one clinically important future 

direction would be examining the relations between changes in these metabolic networks and 

V̇O2max. V̇O2max declines with age and is among the most important indicators of future risk of 

morbidity and mortality in older adults (Fitzgerald et al. 1997; Sui et al. 2007; Betik & Hepple 

2008). A recent scientific statement by the American Heart Association emphasizes the need for 

increased testing of cardiorespiratory fitness as a critical determinant of human health and 
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disease risk (Ross et al. 2016). Therefore, identifying the molecular processes that influence 

V̇O2max is a high biomedical priority.  

In the present study, we found that age-associated differences in metabolites involved in 

fatty acid and acylcarnitine metabolism, which are involved in beta-oxidation and mitochondrial 

function (Koves et al. 2008), were related to V̇O2max. In addition to the negative association 

between V̇O2max and increased fatty acid metabolites, several proteinogenic amino acids 

demonstrated positive associations with V̇O2max, whereas 3-methylhistidine, previously 

identified as a marker of muscle wasting (Bilmazes et al. 1978; Sheffield-Moore et al. 2014), 

was negatively associated with this important measure of integrative physiological function with 

aging. Similarly, changes in several metabolites of these pathways with aging were significantly 

related to vascular (flow-mediated dilation) and renal (estimated glomerular filtration rate) 

function, and numerous clinical risk factors for cardio-metabolic disease and/or disability, 

including body fatness, lean body mass, blood pressure, glucose-insulin function, circulating 

inflammatory proteins, and plasma lipids (Figure 3). Overall, these observations provide insight 

into some of the molecular events related to age-associated declines in physiological function 

and increases in risk of clinical disorders.  

Our findings demonstrate that small molecule profiles from plasma can provide unique 

insight into the connections between metabolic processes, physiological function and risk 

factors for disease with aging. As such, this approach could be used in future investigations to 

identify other candidate pathways that influence human healthspan.  

Given the limitations of this initial, hypothesis-generating set of analyses, we cannot determine 

whether the relations observed in metabolomics signatures, pathways and patterns reported 

here reflect causal influences on associated healthspan indicators or simply represent metabolic 

markers secondary to current physiological and clinical status. We were, however, able to 

identify metabolomic patterns that were related to indicators of healthspan that were not altered 

with aging, suggesting that the associations were not simply driven by the effects of aging. 
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Although more work is necessary to confirm and extend these observations, our integrated 

untargeted and targeted analyses provide an approach for the use of systems biology data to 

uncover the molecular underpinnings of healthy aging in humans.  

 

METHODS 

Study Design and Subjects 

All experimental procedures were reviewed and approved by the University of Colorado Boulder 

Institutional Review Board. Clinical and physiological measurements were performed at the 

University of Colorado Boulder Clinical Translational Research Center (CTRC). Written informed 

consent was obtained from all study participants after the nature, benefits and risks of the study 

were explained. Subjects were screened for smoking status and determined free of clinical 

disease as assessed by medical history, physical examination, blood chemistries, and resting 

and exercise ECG. Older women were postmenopausal for at least one year, while 

premenopausal women were studied during the early follicular phase of their menstrual cycle to 

control for the effects of hormonal variation on function. All subject testing followed a 12-hour 

fast and 24-hour abstention from alcohol, exercise, and prescription medication. 

 

Indicators of human healthspan 

Body mass index was measured using anthropometry (Lohman 1988). Body composition 

measures were measured using dual-energy X-ray absorptiometry (DEXA-GE, Lunar Prodigy 

Advance; software version 5.6.003). Arterial systolic and diastolic blood pressures were 

measured in triplicate over the brachial artery at rest using a semi-automated device (Dinamap 

XL, Johnson & Johnson). Fasting glucose was measured in plasma (Ortho Clinical Diagnostics) 

and fasting plasma insulin was measured by radioimmunoassay (Millipore), and HOMA-IR was 

calculated (fasting plasma glucose (mg/dL) x fasting plasma insulin (µU/mL)/405)(Matthews et 

al. 1985). Circulating IL-6 and TNF-α were measured in serum by ELISA (R&D Systems), and 
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serum high-sensitivity C-reactive protein was measured by immunoturbidimetry (Beckman 

Coulter). Fasting serum lipids were measured by Boulder Community Hospital Clinical 

Laboratory with standard assays, as previously described (DeVan et al. 2015). Estimated 

glomerular filtration rate (eGFR) was calculated using the MDRD 4 equation in the R statistical 

platform (‘nephro’ package, Version 1.1) (Virga et al. 2007). Maximal oxygen consumption 

(V̇O2max) was measured using incremental treadmill exercise testing to exhaustion using open 

circuit spirometry (Balke protocol), as described previously (Evans et al. 1995). Endothelial 

function was assessed using brachial artery flow-mediated dilation in response to reactive 

hyperemia after a 5-minute occlusion of blood flow, as previously described (DeSouza et al. 

2000; Pierce et al. 2009). 

 

Metabolomics Analysis 

Untargeted Metabolomics Analysis:  

Fasting EDTA-treated plasma was collected, frozen, and stored at -80 degrees Celsius until 

analysis. Untargeted metabolomic profiling of plasma was performed using an Ultra High 

Performance Liquid Chromatograph (Infinity 1290 UHPLC, Agilent Inc. USA) coupled to 6550 

Quadruple Time-of-Flight mass spectrometer (Q-ToF MS, Agilent Inc. USA). Data was acquired 

both in positive and negative electrospray ionization (ESI) modes in the mass range of m/z 100-

1600 at a resolution of 10,000. Chromatographic separation was achieved using hydrophilic 

interaction liquid chromatography (HILIC) and reverse phase (C18) liquid chromatography 

separately. The metabolite extraction and instrument settings were performed as described 

previously (Dutta et al. 2012; Dutta et al. 2016) with minor modifications. Plasma (50 µl) 

samples was deproteinated with 80% cold acetonitrile: methanol (1:1), followed by 

centrifugation at 18000xg for 30 minutes at 40C. U-13C6-phenylalanine (3 µl at 250ng/µl) was 

added as internal standard to each sample and QCs. The supernatants was divided into 4 

aliquots and dried down using a stream of nitrogen gas for analysis on a Quadruple Time-of-
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Flight Mass Spectrometer (Agilent Technologies 6550 Q-TOF) coupled with an Ultra High 

Pressure Liquid Chromatograph (1290 Infinity UHPLC Agilent Technologies). Profiling data was 

acquired in scan mode under both positive and negative electrospray ionization (ESI) conditions 

over a mass range m/z of 100 - 1700 at a resolution of 10,000. Metabolite separation was 

achieved using two columns of differing polarity, a hydrophilic interaction column (HILIC, 

ethylene-bridged hybrid 2.1 x 150 mm, 1.7 mm; Waters) and a reversed-phase C18 column 

(high-strength silica 2.1 x 150 mm, 1.8 mm; Waters) with gradient described previously using a 

flow rate of 400µl/min (Dutta et al. 2012; Trushina et al. 2013; Dutta et al. 2016). Samples were 

randomized, and a total of four runs per sample were performed to give maximum coverage of 

metabolites. Samples were injected in duplicate, and a pooled quality control (pooled QC) 

sample, made up of all of the samples from each study was injected ~10 times during a run. A 

separate plasma quality control (QC) sample was analyzed with pooled QC to account for 

analytical and instrumental variability. Samples were reconstituted in running buffer and 

analyzed within 48 hours of reconstitution.  

 

Untargeted Metabolomics Data and Pathway Analysis: 

All raw data files were converted to compound exchange file (CEF) format using MassHunter 

Profinder (version B08.00) software (Agilent). Mass Profiler Professional (Agilent Inc, USA) was 

used to convert metabolite features from each data file (m/z x intensity x time) into a matrix of 

detected peaks for compound annotations and statistical analysis (Dutta et al. 2012; Dutta et al. 

2016). In total, 4,681 features were detected (aqueous positive: 1,244 features; aqueous 

negative: 1,559 features; lipid positive: 1,072 features; lipid negative: 806 features).  To reduce 

the chance of false discovery, only metabolites present in at least 50% of Young or Older 

groups were included in the analysis, as described previously (DeVan et al. 2015; Justice et al. 

2015). Metabolites were annotated as previously described (DeVan et al. 2015; Justice et al. 

2015). Allocation of known metabolites to pathways was performed using HMDB identifiers in 
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MetaboAnalyst, and assigned to KEGG curated pathways (Wishart et al. 2013; Xia & Wishart 

2016; Kanehisa et al. 2017).  

 

Targeted Metabolomics Analysis:  

Quantitative measurements of free fatty-acids (FFA), ceramides, acyl carnitines (C0-C18:1) and 

45 amino acid metabolites in plasma were performed by tandem mass spectometry (MS/MS) 

(full list and %CV values, Table S2). Briefly, plasma samples were spiked with internal 

standards then deproteinized with cold methanol followed by centrifugation at 10,000 g for 5 

minutes. The supernatant was derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl 

carbamate according to Waters’ MassTrak kit. Both derivatized standards and samples were 

analyzed on a triple quadrupole mass spectrometer (TSQ Quantum Ultra, ThermoFisher, USA) 

coupled with UPLC using selected ion monitor (SRM). Concentrations of 43 analytes of each 

unknown were calculated against each respective calibration curve (Lanza et al. 2010). Plasma 

ceramides (C16:0, C18:0, C20:0, C22:0, C24:1, C24:0) sphinganine, sphingosine, sphingosine-

1-phosphate (S1P), were measured as previously described (Blachnio-Zabielska et al. 2012). 

Acyl carnitines (C0-C18:1) were measured by LCMS/MS using selective ion monitoring (SRM) 

on Thermo TSQ Quantiva mass spectrometer (West Palm Beach, FL) coupled with a Waters 

Acquity UPLC system (Milford, MA). Briefly, 25uL of plasma was spiked with a purchased 

internal standard consisting of isotopically labeled acyl carnitines (DL-Carnitine Hydrochloride, 

Fisher Scientific, Hampton, NH; DL-Lauroylcarnitine, Myristoyl-DL-carnitine chloride, Palmitoyl-

DL-Carnitine, Palmitoyl-L-carnitine Chloride, Palmitoyl-L-carnitine HCL, Sigma-Aldrich, St. 

Louis, MO; Heptadecanoyl-L-carnitine in HCL, Elaidoyl L-carnitine-HCL, Oleoyl -13C18-L-carnitine 

HCL 5.7%, Oleoyl-L-13C-carnitine HCL, Isotec, Miamisburg, OH; Stearoly-L-carnitine chloride, 

Linoleoyl L-carnitine chloride, Chem-Impex, Wood Dale, IL; Oleoly L-carnitine, Avanti Polar 

Lipids, Alabaster, AL; Arachidoyl-DL-carnitine chloride, Santa Cruz, Dallas, TX). The samples 

were then extracted with cold MeOH:DCM (1:1) followed by centrifugation at 12,000 g for 10 
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minutes. The supernatant was dried down and reconstituted in running buffer. Concentrations of 

each analyte were calculated against their respective standard curves (Chace et al. 2001). All 

quantitative measurements using GC-MS and LC-MS/MS were done against 12-point 

calibration curves that underwent the same derivatization with internal standard (Figure S4).  

 

Statistics 

Weighted Gene Correlation Network Analysis: Log transformed metabolite abundances from the 

untargeted metabolomics analysis were evaluated with a weighted gene correlation network 

analysis using the WGCNA package in R (Langfelder & Horvath 2008). This analysis generates 

a correlation matrix between all metabolites across all samples to identify groups of metabolites 

that are highly related. Under default conditions, goodSamplesGenes excluded 434 metabolites 

from network calculations. Correlation matrix soft-thresholding power was raised to β = 7, 

emphasizing stronger correlations (Langfelder & Horvath 2008). Key settings include: 

softThresholdPower = 7, minModuleSize = 30, and mergeCutHeight = 0.25. Metabolites were 

grouped into 20 modules containing highly correlated metabolites, and each individual subject 

was assigned a module eigengene (ME) “score”, determined as the first principal component of 

the module, which represents the metabolomic pattern within each module for that subject. ME’s 

can then be used for further statistical analyses. To determine differences with age, MEs were 

compared between Young and Older groups using independent t-tests. Additionally, unpaired t-

tests were used to assess differences in targeted metabolite abundances between young and 

older groups.  Metabolite expression (both modules and independent metabolites from the 

targeted analysis) was related to indicators of healthspan using independent linear regression. 
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Table 1: Subject Characteristics 
 
Subject Characteristics Young Older 

Sex (M/F) 7/7 13/16 
Age (years) 23 ± 1 61 ± 1* 
Body Mass (kg) 65 ± 3 70 ± 2 
Body Fat (%) 22 ± 3 28 ± 2* 
Lean Mass (%) 73 ± 3 69 ± 2 
Systolic Blood Pressure (mmHg) 104 ± 3 119 ± 2* 
Diastolic Blood Pressure (mmHg) 68 ± 2 72 ± 1 
Body Mass Index (kg/m2) 21 ± 1 24 ± 1* 
Fasting Blood Glucose (mg/dL) 84 ± 2 90 ± 2 
Fasting Insulin (mIU/L) 7.3 ± 1 7.8 ± 1 
HOMA-IR 1.6 ± 0.2 1.8 ± 0.2 
Triglycerides (mg/dL) 78 ± 9 98 ± 12 
Total Cholesterol (mg/dL) 157 ± 12 196 ± 7* 
LDL-C (mg/dL) 88 ± 11 113 ± 7* 
VLDL-C (mg/dL) 18 ± 3 16 ± 2 
HDL-C (mg/dL) 54 ± 2 64 ± 4 
TNFα (pg/mL) 1.3 ± 0.4 1 ± 0.1 
C-Reactive Protein (mg/L) 0.8 ± 0.2 0.8 ± 0.1 
IL-6 (pg/mL) 0.8 ± 0.1 0.9 ± 0.1 
eGFR (mL/min/1.73m2) 93 ± 4 76 ± 3* 
VO2max (ml/kg/min) 44.4 ± 2.3 32.7 ± 1.3* 
Endothelial Function (%Δ FMD) 7.4 ± 0.6 4.3 ± 0.3* 
Data are mean ± SEM; LDL-C, low-density lipoprotein cholesterol; VLDL-C, very low-density lipoprotein 
cholesterol; HDL-C, high-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; 
VO2max, maximal oxygen consumption. * P<0.05 vs. Young. 
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Figure 1: To detect differences in metabolomic expression patterns with age, module scores 
were compared between Young and Older groups, with five modules (Magenta, Purple, Blue, 
Grey60, and Green) demonstrated significant differences. Figure includes mean module score ± 
SEM for Young and Older groups. *P < 0.05 vs. Young. 
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Table 2: To determine if modules demonstrating differences in metabolite expression patterns 
with age are associated with physiological measures, modules significantly different between 
Young and Older groups were assessed for their relation to 19 markers of healthspan. Only 
significant correlations are shown (Pearson Coefficient, P<0.05). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

eGFR, estimated glomerular filtration rate; VO2max, maximal oxygen consumption. 
 

Module Healthspan 
Marker 

Pearson 
Coefficient P-Value 

Magenta 
Percent Body Fat -0.52 <0.001 

Total Cholesterol -0.39 0.01 

 Lean Mass 0.39 0.01 

 VO2max 0.64 <0.001 

 Endothelial Function 0.40 0.009 

Purple 
Systolic Blood Pressure 0.35 0.02 

eGFR -0.33 0.03 

 VO2max -0.37 0.02 

Blue 
Glucose 0.37 0.02 

Interleukin-6 -0.38 0.01 

 HDL-Cholesterol 0.31 0.04 

 eGFR -0.50 <0.001 

Green 
Systolic Blood Pressure 0.43 0.004 

Insulin 0.32 0.04 

 Total Cholesterol 0.32 0.04 

 eGFR -0.39 0.009 

 VO2max -0.36 0.02 
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Figure 2: Distribution of identified metabolites, isolated from modules significantly different with 
age and related to multiple markers of healthspan, within specific classes of metabolic pathways 
from KEGG databases. To understand the key pathways most associated with aging and 
function, the two pathways most highly represented in this analysis (amino acid and lipid 
metabolism) were selected for targeted analyses. 
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Table 3: Concentrations of metabolites significantly different with age from targeted analyses of 
amino acid and lipid metabolism.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All concentrations are mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 vs. Young 
 
 
 
 

Metabolite Young Older 

Aspartic Acid (uM) 4.6 ± 1.10 1.90 ± 0.35** 
Methionine (uM) 23.92 ± 1.12 20.59 ± 3.82** 

Alanine (uM) 372.71 ± 21.54 288.12 ± 53.50*** 
Proline (uM) 185.98 ± 16.61 135.78 ± 25.21*** 

Phenylalanine (uM) 57.27 ± 2.91 51.33 ± 9.53* 
Tryptophan (uM) 55.14 ± 2.43 44.13 ± 8.19*** 

Citrulline (uM) 30.69 ± 1.72 37.22 ± 6.91** 
Ornithine (uM) 39.64 ± 2.11 46.32 ± 8.60* 
Cystine (uM) 61.92 ± 10.88 91.42 ± 16.98* 

3-Methylhistidine (uM) 1.48 ± 0.17 2.66 ± 0.49*** 
β-Aminoisobutyric-acid (uM) 1.06 ± 0.16 1.92 ± 0.36** 
α-Amino-N-butyric-acid (uM) 16.38 ± 1.34 21.25 ± 3.95** 

Cystathionine (uM) 0.04 ± 0.02 0.25 ± 0.05* 

Linolenic Acid (uM) 3.68 ± 0.34 5.47 ± 1.02* 
Myristic Acid (uM) 2.96 ± 0.37 4.85 ± 0.90** 

Palmitoleic Acid (uM) 4.39 ± 0.75 8.39 ± 1.56** 
Linoleic Acid (uM) 30.94 ± 3.58 43.42 ± 8.06** 
Palmitic Acid (uM) 42.86 ± 5.68 66.65 ± 12.38** 

Oleic Acid (uM) 66.95 ± 9.06 118.86 ± 22.07*** 

C16-Ceramide (uM) 0.21 ± 0.02 0.28 ± 0.05** 
C18-Ceramide (uM) 0.06 ± 0.01 0.10 ± 0.02* 
C20-Ceramide (uM) 0.07 ± 0.01 0.09± 0.02** 
C22-Ceramide (uM) 0.24 ± 0.02 0.27 ± 0.01* 

C24:1-Ceramide (uM) 0.52 ± 0.04 0.64 ± 0.12* 
C24-Ceramide (uM) 1.38 ± 0.11 1.73 ± 0.32*** 

Acetylcarnitine (uM) 8.74 ± 0.68 13.59 ± 2.52*** 
Octanoylcarnitine (uM) 0.24 ± 0.02 0.31 ± 0.06* 
Myristoylcarnitine (uM) 0.11 ± 0.004 0.12 ± 0.002** 
Palmitoylcarnitine (uM) 0.24 ± 0.01 0.29 ± 0.05** 

Oleoylcarnitine (uM) 0.30 ± 0.02 0.43 ± 0.08*** 
Stearoylcarnitine (uM) 0.15 ± 0.01 0.18 ± 0.03* 
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Figure 3: Correlation heatmap assessing the relation between specific metabolites found to be 
strongly associated with age (P<0.01 in Older vs. Young) from a targeted metabolomics 
analysis and indicators of healthspan. Color is indicative of positive or negative correlation, 
while color intensity demonstrates significance of correlation (Pearson Coefficient, *P < 0.05). 
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Supplemental Table 1: Metabolic sub-pathways identified within four modules of metabolites 
that were different with age and associated with multiple indicators of human health span. 
Pathway analysis was accomplished by mapping metabolites from an untargeted analysis using 
Metaboanalyst 3.0 and KEGG curated pathways. 
 

Amino	Acid	Metabolism Arginine	and	proline	metabolism 
 Tryptophan	metabolism 
 Valine,	leucine	and	isoleucine	degradation 
 Lysine	degradation 
 Glycine,	serine	and	threonine	metabolism 
 Phenylalanine,	tyrosine	and	tryptophan	biosynthesis 
 Valine,	leucine	and	isoleucine	biosynthesis 
 Tyrosine	metabolism 
 Histidine	metabolism 
 Phenylalanine	metabolism 
 Cysteine	and	methionine	metabolism 

Other	Amino	Acid	Metabolism Taurine	and	hypotaurine	metabolism 
 D-Arginine	and	D-ornithine	metabolism 

Lipid	Metabolism Glycerophospholipid	metabolism 
 Steroid	hormone	biosynthesis 
 Linoleic	acid	metabolism 
 alpha-Linolenic	acid	metabolism 
 Fatty	acid	metabolism 
 Arachidonic	acid	metabolism 

Glycan	Biosynthesis	and	Metabolism Glycosylphosphatidylinositol(GPI)-anchor	biosynthesis 
Energy	Metabolism Nitrogen	metabolism 

Metabolism	of	Cofactors	and	Vitamins Retinol	metabolism 
 Lipoic	acid	metabolism 
 One	carbon	pool	by	folate 
 Nicotinate	and	nicotinamide	metabolism 
 Riboflavin	metabolism 
 Pantothenate	and	CoA	biosynthesis 
 Vitamin	B6	metabolism 
 Porphyrin	and	chlorophyll	metabolism 

Nucleotide	Metabolism Pyrimidine	metabolism 
 Purine	metabolism 

Carbohydrate	Metabolism Citrate	cycle	(TCA	cycle) 
 Starch	and	sucrose	metabolism 
 Glyoxylate	and	dicarboxylate	metabolism 
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Supplemental Table 2: List of all targeted metabolites measured in 4 metabolite classes related 
to amino acid and lipid metabolism and critical values assessed for quality control. 
Concentration values are average ± SEM. 
 
Metabolite	 Young	(uM)	 Older	(uM)	 %CV	(area)	

Carnitine	 42.62±4.39	 44.78±1.98	 0.04	

Acetylcarnitine	 8.75±0.68	 13.59±0.63	 0.01	

Propionylcarnitine	 0.57±0.06	 0.58±0.03	 0.03	

Butyrylcarnitine	 0.17±0.03	 0.16±0.01	 0.05	

Isovalerylcarnitine	 0.17±0.01	 0.17±0.01	 0.01	

Octanoylcarnitine	 0.23±0.02	 0.31±0.02	 0.05	

Lauroylcarnitine	 0.06±0.01	 0.08±0.00	 0.02	

Myristoylcarnitine	 0.11±0.00	 0.12±0.00	 0.02	

Palmitoylcarnitine	 0.23±0.01	 0.29±0.01	 0.01	

Oleoylcarnitine	 0.30±0.02	 0.43±0.02	 0.02	

Stearoylcarnitine	 0.15±0.01	 0.18±0.01	 0.11	

EPA	 1.43±0.68	 2.15±0.28	 0.02	

linolenic	 3.68±0.34	 5.47±0.51	 0.01	

DHA	 1.84±0.72	 2.13±0.27	 0.00	

myristic	 2.96±0.37	 4.85±0.41	 0.01	

palmitoleic	 4.39±0.75	 8.39±0.82	 0.04	

arachidonic	 1.54±0.12	 1.77±0.10	 0.00	

palmitelaidic	 0.00±0.00	 0.00±0.00	 0.00	

linoleic	 30.94±3.58	 43.42±2.59	 0.00	

palmitic	 42.86±5.68	 66.65±3.85	 0.04	

oleic	 66.95±9.06	 118.86±5.07	 0.02	

elaidic	 3.25±0.36	 3.31±0.23	 0.01	

stearic	 45.25±6.86	 50.98±2.57	 0.01	

Sphingosine-1-Phosphate	 0.65±0.05	 0.65±0.04	 0.07	

Sphinganine	 0.01±0.00	 0.01±0.00	 0.18	

Sphingomyelin	 0.02±0.00	 0.01±0.00	 0.05	

C8-Ceramide	 0.00±0.00	 0.00±0.00	 0.00	

C14-	Ceramide	 0.01±0.00	 0.01±0.00	 0.06	

C16-	Ceramide	 0.21±0.02	 0.28±0.01	 0.05	

C18:1-	Ceramide	 0.01±0.00	 0.01±0.00	 0.40	

C18-	Ceramide	 0.06±0.01	 0.10±0.01	 0.04	

C20-	Ceramide	 0.06±0.01	 0.09±0.00	 0.01	

C22-	Ceramide	 0.24±0.02	 0.27±0.01	 0.03	

C24:1-	Ceramide	 0.51±0.04	 0.64±0.03	 0.10	

C24-	Ceramide	 1.38±0.11	 1.73±0.04	 0.03	

Histidine	 33.26±3.58	 29.93±2.57	 0.04	

Hydroxyproline	 10.26±0.62	 8.67±0.93	 0.02	

1-Methylhistidine	 9.54±3.93	 20.95±3.86	 0.04	
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3-Methylhistidine	 1.48±0.17	 2.65±0.19	 0.13	

Phosphoethanolamine	 2.51±0.54	 2.23±0.37	 0.10	

Carnosine	 0.00±0.00	 0.00±0.00	 0.00	

Anserine	 0.00±0.00	 0.00±0.00	 0.00	

Ethanolamine	 5.25±0.37	 5.55±0.15	 0.02	

Aspartic	Acid	 4.69±1.10	 1.88±0.20	 0.01	

Sarcosine	 9.57±1.16	 9.00±0.21	 0.00	

beta-Alanine	 11.69±1.49	 10.83±0.32	 0.06	

gamma-Amino-N-butyric-acid	 0.03±0.01	 0.03±0.00	 0.00	

alpha-Aminoadipic-acid	 0.50±0.08	 0.62±0.05	 0.10	

beta-Aminoisobutyric-acid	 1.06±0.16	 1.92±0.15	 0.01	

Hydroxylysine	1	 0.00±0.00	 0.00±0.00	 0.00	

Hydroxylysine	2	 0.07±0.02	 0.05±0.01	 0.18	

alpha-Amino-N-butyric-acid	 16.38±1.34	 21.25±1.03	 0.06	

Cystathionine	1	 0.05±0.02	 0.24±0.06	 0.00	

Cystathionine	2	 0.00±0.00	 0.00±0.00	 0.00	

Methionine	 23.92±1.11	 20.59±0.47	 0.01	

allo-Isoleucine	 1.16±0.21	 1.52±0.16	 0.10	

Homocystine	 0.00±0.00	 0.00±0.00	 0.00	

Asparagine	 50.35±2.56	 47.10±1.14	 0.00	

Arginine	 73.72±6.03	 68.19±2.98	 0.02	

Taurine	 87.67±10.33	 104.24±11.08	 0.06	

Serine	 93.93±6.68	 96.06±2.48	 0.01	

Glutamine	 507.79±28.87	 527.89±13.17	 0.06	

Glycine	 240.71±14.93	 266.05±15.36	 0.02	

Citrulline	 30.70±1.72	 37.22±1.39	 0.02	

Glutamic	Acid	 49.96±9.68	 41.92±4.72	 0.03	

Threonine	 122.64±7.28	 108.76±3.43	 0.01	

Alanine	 372.70±21.54	 288.12±8.49	 0.04	

Proline	 185.99±16.61	 135.77±5.33	 0.02	

Ornithine	 39.64±2.11	 46.33±1.89	 0.01	

Lysine	 144.24±8.89	 162.22±4.54	 0.02	

Cystine	 61.91±10.89	 91.41±5.81	 0.11	

Tyrosine	 58.55±3.37	 55.41±1.51	 0.02	

Valine	 204.07±12.30	 211.76±7.09	 0.01	

Isoleucine	 60.70±3.38	 53.48±2.17	 0.00	

Leucine	 109.53±5.46	 109.14±3.53	 0.00	

Phenylalanine	 57.28±2.91	 51.33±1.16	 0.02	

Tryptophan	 55.14±2.44	 44.13±1.04	 0.01	
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Supplemental Figure 1: Box and whiskers plots (avg. ± max/min) of amino acid concentrations 
in Young vs Older groups. * indicates P<0.05. 
  

Young
Old

0

2

4

6
3-Methylhistidine

A
bu

nd
an

ce
 (u

M
)

*

Young
Old

0

100

200

300

400

Proline

A
bu

nd
an

ce
 (u

M
)

*

Young
Old

0

10

20

30

40

Methionine

A
bu

nd
an

ce
 (u

M
)

*

Young
Old

0

5

10

15

Aspartic Acid

A
bu

nd
an

ce
 (u

M
)

*

Young
Old

0

200

400

600

Alanine

A
bu

nd
an

ce
 (u

M
) *

Young
Old

0

20

40

60

80

Tryptophan

A
bu

nd
an

ce
 (u

M
) *

Young
Old

0

20

40

60

80

Phenylalanine

A
bu

nd
an

ce
 (u

M
)

*

Young
Old

0

50

100

150

200

Cystine

A
bu

nd
an

ce
 (u

M
) *

Young
Old

0

10

20

30

40

alpha-Amino-N-butyric-acid

A
bu

nd
an

ce
 (u

M
) *

Young
Old

0

20

40

60

Citrulline

A
bu

nd
an

ce
 (u

M
)

*

Young
Old

0.0

0.5

1.0

1.5

2.0

Cystathionine

A
bu

nd
an

ce
 (u

M
) *

Young
Old

0

1

2

3

4

5

beta-Aminoisobutyric-acid

A
bu

nd
an

ce
 (u

M
)

*

Young
Old

0

20

40

60

80

Ornithine

A
bu

nd
an

ce
 (u

M
)

*



 31 

 
Supplemental Figure 2: Box and whiskers plots (avg. ± max/min) of fatty acid and acylcarnitine 
concentrations in Young vs Older groups. * indicates P<0.05. 
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Supplemental Figure 3: Box and whiskers plots (avg. ± max/min) of ceramide concentrations in 
Young vs Older groups. * indicates P<0.05. 
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Supplemental Figure 4: Representative standard curves for targeted metabolomics analysis.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Aspartic Acid Ornithine 

Palmitate Acetylcarnitine 



 34 

Chapter IV 
 
 
 
 
 
 
 
 

The plasma metabolome as a predictor of biological aging in humans 
 
 

Lawrence C. Johnson1, Keli Parker2, Brandon F. Aguirre1, Travis G. Nemkov3, Angelo 
D’Alessandro3, Douglas R. Seals1, Christopher R. Martens1 

 

 
1Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309 

 
2Department of Mathematics, University of Colorado Boulder, Boulder CO, 80309 

 
3Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz 

Medical Campus, Aurora, CO 80045 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



 35 

ABSTRACT 

Chronological age is an important predictor of morbidity and mortality, however it is unable to 

account for heterogeneity in the decline of physiological function and health with advancing age. 

Several attempts have been made to instead define a “biological age” using multiple 

physiological parameters in order to account for variation in the trajectory of human aging; 

however, these methods require extensive measurement time and technical expertise and are 

therefore unlikely to be implemented into clinical practice. Identifying circulating biomarkers that 

are associated with biological age would circumvent the need for costly physiological 

measurements allowing biological age to be assessed in clinical settings. In the present study, 

we generated a model of biological age using clinical and physiological measures obtained from 

a large group of healthy adults across a wide age-range, and applied it to a longitudinal cohort 

of healthy middle-aged and older adults. To identify minimally invasive molecular biomarkers of 

biological aging, we identified unique plasma metabolomic signatures that are associated with 

the rate of biological aging in our longitudinal cohort. These results not only have clinical 

implications by employing a simple blood-based assay to predict individuals at risk for faster 

aging, but also provide insight into the molecular mechanisms of human aging. 
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INTRODUCTION 

Chronological age is one of the most important risk factors for many of the chronic 

diseases and disabilities affecting contemporary societies (Lunenfeld & Stratton 2013). The link 

between advancing age and increased chronic disease risk is predominately mediated by the 

progressive decline of multiple physiological systems (Franceschi & Campisi 2014; Kennedy et 

al. 2014). While aging itself is inescapable, the rate at which physiological functions decline with 

advancing age is highly variable among individuals and is the combined result of genetic and 

non-genetic factors including lifestyle behaviors (e.g., diet and physical activity) and other 

environmental or occupational exposures (e.g., sun damage or proximity to volatile chemicals) 

(Brooks-Wilson 2013; Jiang et al. 2013). As such, individuals of the same age may differ 

considerably with respect to their physiological function and overall health status, thus limiting 

the predictive capacity of chronological age in determining disease risk. 

In order to address this issue, recent attempts have been made to define a “biological 

age” that is more reflective of the inherent heterogeneity of human aging than chronological age 

(Nakamura 1991; Cho et al. 2010; Levine 2013; Mitnitski et al. 2013; Belsky et al. 2015; 

Sebastiani et al. 2017). Central to this approach is the integration of multiple age-related 

“biomarkers” that are modifiable by lifestyle behaviors and other environmental exposures, and 

therefore more reflective of physiological status. Biological age, determined using clinical and 

physiological parameters, predicts morbidity and mortality better than chronological age alone 

(Levine 2013); however, the clinical utility of this approach is limited by the substantial cost, 

time, specialized equipment and training required to measure each biomarker. As such, the 

development of a surrogate blood-based measure of biological age would eliminate the burden 

of making multiple clinical and physiological assessments and more rapidly identify individuals 

at risk for faster aging. Moreover, such biomarkers may offer insight into the underlying 

mechanisms of faster aging and provide new targets for therapies aimed at improving human 

healthspan.  
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The metabolome, defined as all small molecules characterizing a biological system, is 

altered with age and reflective of age-related changes in physiological function; thus providing a 

unique window into systemic molecular changes (Lawton et al. 2008; Houtkooper et al. 2011; 

Mapstone et al. 2014). In the present study, we utilized the plasma metabolome to identify the 

molecular events associated with biological aging in healthy adults. After generating a model of 

biological age from clinical and physiological measures in a large cohort of healthy adults, we 

applied our algorithm to a longitudinal cohort representative of healthy aging. By analyzing 

metabolites within plasma samples collected at baseline and follow-up, we identified small 

molecule signatures that are associated with biological aging in middle-aged and older adults, 

including metabolites that are predictive of faster vs. slower aging.  

 

RESULTS 

Selection of Biomarkers and Calculation of Biological Age 

 Thirteen (13) clinical and physiological indicators of human healthspan (Table 1) were 

used to generate a model of biological age using a similar multi-biomarker approach as 

previously described (Klemera & Doubal 2006; Belsky et al. 2015). Briefly, each clinical and 

physiological measure was evaluated for its relation to chronological age using linear regression 

and each slope, intercept, and standard deviation of the residuals for each regression was 

incorporated into an equation that predicted biological age (see “Methods”). The selection of 

biomarkers was based on their association with chronological age in an independent training 

cohort (Figure S1) and/or their relevance to age-related disease risk (Calle et al. 1999). The 

training cohort consisted of 604 healthy adults (aged 18-80 years), who had previously 

undergone testing in our laboratory between 2003 and 2017. Importantly, all subjects were 

rigorously screened to be free of clinical disease and disability at the time of testing as 

confirmed by a medical history and physical examination and all biomarkers were within normal 

healthy ranges, providing a unique opportunity to study the effects of primary aging (Table 1). 
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Due to inherent sex-related differences of several biomarkers included in our model such as 

body composition and maximal aerobic capacity (Fleg et al. 2005; Wells 2007), separate models 

of biological age were created from our training cohort allowing us to compare men and women 

on the same scale for all downstream analyses. Biological age was significantly correlated with 

chronological age (Figure 1A, R2 = 0.68, P < 0.0001; both sexes combined); however, the 

variability among subjects of similar age, as represented by the average deviation from 

chronological age, reflects the expected heterogeneity of biological aging (Figure 1B) and 

provides substrate for additional analyses aimed at understanding the aging process.  

 

Rate of Biological Aging in an Independent Longitudinal Cohort 

Using the sex-specific regression coefficients derived from our training models, we 

calculated biological age in a separate cohort of 31 healthy participants. These individuals had 

previously been screened for disease status and undergone testing in our laboratory between 5-

10 years ago, remained mostly healthy over time to follow-up, and agreed to return to the 

laboratory for follow-up assessments, thus allowing us to assess how biological age changes as 

a result of primary aging. Only late middle-aged and older adults (aged 57-82 years) were 

included in this longitudinal cohort to maximize our ability to detect changes in biological age 

within a relatively short follow-up period, which averaged 8.6 years. Overall, we observed an 

average increase in biological age in our longitudinal cohort from baseline to follow-up of 

approximately six years, with considerable variability among individuals (Figure 2A). To better 

assess this variability, we also calculated each individual’s deviation in age (defined as 

biological age - chronological age) to determine if they were younger or older than their 

chronological age. To understand if individuals who were biologically younger/older than their 

chronological age at baseline were likely to remain relatively younger/older than their 

chronological age at follow-up, we investigated the relation between deviations in biological age 

from chronological age at the two time points. Interestingly, a significant relation between 
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deviation in biological age from chronological age at baseline and follow-up was detected, 

suggesting that trajectories of biological aging are consistent within individuals (Figure 2B). 

Collectively, increases in biological age from baseline to follow-up were driven by expected age-

related changes in the individual biomarkers (LDL- and total cholesterol decreased due largely 

to initiation of cholesterol-lowering medications) (Table 2). 

To account for differences in follow-up time among individuals, we normalized changes 

in biological age to changes in chronological age. This resulted in a ratio in which a value above 

or below one (1) is indicative of faster vs. slower biological aging, respectively. We observed a 

continuous distribution in the rate of biological aging across our longitudinal cohort, with 

approximately half of all subjects exhibiting either faster or slower biological aging (Figure 3A).  

 

The Plasma Metabolome as a Predictor of Biological Aging 

 To identify potential circulating metabolites that may serve as novel biomarkers of 

biological aging, we measured the abundance of 360 individual metabolites in the plasma of our 

longitudinal subjects at both time points. Eighty-one (81) metabolites were significantly altered 

from baseline to follow-up, confirming that age-related changes are detectable in the plasma 

metabolome over a relatively short period of time (Figure S2). To determine if these changes 

were also indicative of biological aging, we related the calculated rate of biological aging to 

changes in 28 metabolites (normalized to follow-up time) (Figure 3B). These changes included 

alterations in amino acid, fatty acid, acylcarnitine, sphingolipid, and nucleotide metabolites.  

Although determining an individual’s actual rate of biological aging holds potential clinical 

value (e.g., precision medicine), it is time consuming, technically challenging, and requires 

repeat assessments of multiple clinical and physiological parameters making it difficult to 

implement into clinical practice. Therefore, our ultimate goal was to identify baseline 

metabolomic signatures indicative of A) one’s deviation in biological age from their chronological 
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age at baseline (i.e., if someone is biologically “younger” or “older” than their actual age) and B) 

one’s future rate of biological aging (i.e., if someone is at risk for faster vs. slower aging).  

 

Predicting Deviation in Biological Age from Chronological Age 

To determine if plasma metabolite concentrations at baseline predict biological age in 

our model, we explored whether baseline metabolite concentrations are predictive of an 

individual’s deviation in biological age from chronological age at baseline. In total, 17 

metabolites were related to deviation from chronological age, 11 of which were endogenous or 

secondary metabolites of microbe metabolism (Table 3). Greater abundances of metabolites 

associated with amino acid (L-aspartate, L-phenylalanine), ethanolamine (2-acyl-sn-glycero-3-

phosphoethanolamine, N-tetradecanoyl-ethanolamine), nucleotide (ADP, nicotinamide, 5-

hydroxyisourate), and gamma-glutamyl (gamma-L-Glutamyl-L-cysteine) metabolism were 

observed in individuals who were biologically older than their chronological age. Alternatively, 

metabolites from pantothenate (pantetheine), fatty acid (10-hydroxydecanoic acid), and 

galactose (phenylgalactoside) pathways were associated with a lower biological age compared 

to chronological age. 

 

Predicting Faster vs. Slower Biological Aging 

Finally, to identify individuals at risk for faster biological aging we sought to determine if 

the concentrations of specific metabolites among individuals at baseline could predict if an 

individual will undergo faster or slower biological aging. Fourteen (14) metabolites measured at 

baseline predicted the rate of biological aging in our longitudinal cohort (Table 4). Two 

metabolites associated with glycolysis/TCA cycle metabolism, oxaloacetate and oxalosuccinate, 

were positively associated with faster aging, whereas metabolites related to glycolysis (2-

phospho-D-glycerate), nucleotide (3’,5’-Cyclic IMP, nicotinamide, phosphate), steroid 

biosynthesis (geranyl diphosphate), bile acids (glycochenodeoxycholate), caffeine metabolism 
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(5-acetylamino-6-formylamino-3-methyluracil), amino acid metabolism (selenohomocystine, α-

D-gulcosamine 1-phosphate) and one exogenous metabolite (4-Hydroxy-2’,3,5,5’-

tetrachlorobiphenyl) were indicative of slower aging. Interestingly, other than nicotinamide, none 

of the metabolites predictive of faster vs. slower aging were the same as those associated with 

one’s deviation from chronological age at a single time-point.  

 

DISCUSSION  

 Despite a growing body of literature, there is little consensus regarding the most 

appropriate method for determining biological age. One approach has been to predict 

chronological age using circulating molecular biomarkers, such as DNA methylation levels 

(Hannum et al. 2013; Horvath 2013); however, these models are less indicative of true 

physiological changes that impact human healthspan. An alternative approach has been to 

define biological age using clinical and physiological parameters that are closely associated with 

age-related disease risk. Such models predict mortality better than those based only on age-

related molecular markers (Levine 2013; Belsky et al. 2015; Kim et al. 2017), but are more 

costly and require specialized training and equipment to measure. In the present study, we 

developed a hybrid approach in which we identified novel sets of circulating metabolites that are 

associated with, and predictive of, biological aging derived from clinical and physiological 

parameters. 

Because biological age is most valuable when compared with chronological age, (i.e., to 

determine if an individual is “younger” or “older” than their age would suggest), we identified 

metabolites associated with the deviation from chonological age, allowing us to derive 

meaningful information about one’s biological aging process from a single blood sample. 

Several amino acids were associated with the deviation from chronological age, including 

metabolites involved in protein homeostasis and/or anabolic and catabolic signaling 

(Timmerman & Volpi 2008). Systemic and cellular energy status is tightly regulated, and its 
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dysregulation has been implicated as a central mechanism of age-associated physiological 

declines. Our observation that metabolites involved in energy homeostasis (e.g., ADP and 

nicotinamide) are related to deviation from chronological age aligns with previous observations 

that energy homeostasis may be central to aging processes (Finkel 2015; López-Otín et al. 

2016).  

A distinctive aspect of the present study is our determination of biological age from a 

large cross-sectional training cohort and subsequent follow-up with a longitudinal cohort of 

healthy (disease free) middle-aged and older adults, which allowed us to study “primary” 

biological aging. Furthermore, our unique longitudinal design enabled us to identify metabolites 

associated with the rate of biological aging, including some that were predictive of future faster 

or slower aging based on a single baseline blood sample. One such pathway was amino acid 

metabolism, in which circulating levels of L-methionine were positively associated with an 

increased rate of biological aging. This observation supports previous findings that L-methionine 

restriction improves physiological function in preclinical models (Sun et al. 2009; Hasek et al. 

2010). Also associated with rate of biological aging were metabolites involved in energy 

homeostasis, such as the nicotinamide adenine dinucleotide (NAD+) intermediate, nicotinamide. 

Declines in NAD+ bioavailability have been implicated as a central mechanism in the 

development of age-related physiological dysfunction (Kujoth et al. 2005; Houtkooper et al. 

2010; Hardie et al. 2012; Lopez-Otin et al. 2013; Imai & Guarente 2014; Verdin 2015; Wang & 

Hekimi 2015; de Picciotto et al. 2016; Wiley et al. 2016). The relation between lipid metabolism, 

including beta-oxidation intermediates, glycolysis, and TCA cycle pathways and an individual’s 

rate of biological aging further supports the association between biological aging and 

mitochondrial dysfunction (Koves et al. 2008). Paired with the relation of energy status and 

sensing metabolites to deviation in biological age, these findings converge upon basic energy 

sensing mechanisms conserved across numerous organisms. 
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 The use of blood-based markers of biological aging has both biomedical and clinical 

applications, and this analysis demonstrates that circulating plasma metabolomic profiles are 

associated with the rate at which changes in biological age occur, which is important in 

determining the molecular underpinnings of aging. For research settings, we have developed 

blood based markers of biological age that could allow investigators to assess biological age in 

large population studies, where the assessment of physiological function is not feasible. In 

clinical populations, our molecular markers may also be useful to efficiently determine 

individuals at risk of faster aging. Future analyses are needed to validate our findings in diverse 

patient populations; however, our model of biological aging and unique metabolomic analyses 

have established a novel approach to investigate the molecular foundation of biological aging in 

humans. 
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METHODS 

Study Design and Subjects 

All study procedures were reviewed and approved by the University of Colorado Boulder 

Institutional Review Board. Clinical and physiological measurements were performed at the 

University of Colorado Boulder Clinical Translational Research Center (CTRC). All study 

participants provided written informed consent after the nature, benefits and risks of the study 

were explained. Subjects from the longitudinal cohort were re-contacted after at least five years 

and provided an option to re-enroll. All subjects were non-smokers, determined to be free of 

clinical disease as assessed by medical history, physical examination, blood chemistries, and 

resting and exercise ECG. To control for their menstrual cycle, premenopausal women were 

studied during the early follicular phase, while older women were postmenopausal for at least 

one year. All subjects followed a 12-hour fast and 24 hour abstention from alcohol, exercise, 

and prescription medication prior to testing. 

  

Model of BIological Age 

Biological age was calculated using the basic Klemera-Doubal equation without chronological 

age as a marker (Klemera & Doubal 2006). Parameters for the 13 clinical and physiological 

measures used in the model were estimated from cross-sectional data in 355 men and 249 

women (Table 1), generating separate equations for biological age in males and females due to 

basic differences in physiology. Specifically, a linear relationship with chronological age was 

estimated in men and women for each measure by individual linear regressions. Biological age 

(𝐵𝐴!) for an individual with measurements 𝑥!  was calculated by the Klemera-Doubal equation 

with 𝑚 = 13: 
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 𝐵𝐴! =
(𝑥! − 𝑞!)

𝑘!
𝑠!!

!
!!!

𝑘!
𝑠!

!
!
!!!

  ,  

where 𝑘! is the slope, 𝑞! the intercept, and 𝑠! the standard deviation of residuals for the 

corresponding regression. Once the model was trained on our initial cohort of 604 individuals, 

the equation was applied to a longitudinal cohort of 31 individuals to determine rates of aging, 

calculated as the ratio of (Δ biological age:Δ chronological age). Deviation in biological age from 

chronological age was calculated by assessing the difference in calculated biological age from 

chronological age at baseline. 

 

Metabolomics Analysis 

Sample Preparation 
 Plasma was isolated from subjects and stored at -80°C until analysis. Prior to LC-MS 

analysis, samples were diluted 1:10 (v/v) with methanol:acetonitrile:water (5:3:2, v:v). 

Suspensions were vortexed continuously for 30 min at 4°C. Insoluble material was removed by 

centrifugation at 10,000 g for 10 min at 4°C and supernatants were isolated for metabolomics 

analysis by UHPLC-MS. 

UHPLC-MS analysis 

 Analyses were performed as previously published (Nemkov et al. 2017). Briefly, the 

analytical platform employs a Vanquish UHPLC system (Thermo Fisher Scientific, San Jose, 

CA, USA) coupled online to a Q Exactive mass spectrometer (Thermo Fisher Scientific, San 

Jose, CA, USA). Plasma extracts (10 µl) were resolved over a Kinetex C18 column, 2.1 x 150 

mm, 1.7 µm particle size (Phenomenex, Torrance, CA, USA) equipped with a guard column 

(SecurityGuardTM Ultracartridge – UHPLC C18 for 2.1 mm ID Columns – AJO-8782 – 

Phenomenex, Torrance, CA, USA) using an aqueous phase (A) of water and 0.1% formic acid 

and a mobile phase (B) of acetonitrile and 0.1% formic acid. Samples were eluted from the 
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column using either an isocratic elution of 5% B flowed at 250 µl/min and 25ºC or a gradient 

from 5% to 95% B over 1 minute, followed by an isocratic hold at 95% B for 2 minutes, flowed at 

400 µl/min and 30ºC. The Q Exactive mass spectrometer (Thermo Fisher Scientific, San Jose, 

CA, USA) was operated independently in positive or negative ion mode, scanning in Full MS 

mode (2 µscans) from 60 to 900 m/z at 70,000 resolution, with 4 kV spray voltage, 15 shealth 

gas, 5 auxiliary gas. Calibration was performed prior to analysis using the PierceTM Positive and 

Negative Ion Calibration Solutions (Thermo Fisher Scientific). Acquired data was then converted 

from .raw to .mzXML file format using Mass Matrix (Cleveland, OH, USA). Samples were 

analyzed in randomized order with a technical mixture injected after every 15 samples to qualify 

instrument performance. Metabolite assignments, isotopologue distributions, and correction for 

expected natural abundances of deuterium, 13C, and 15N isotopes were performed using 

MAVEN (Princeton, NJ, USA) (Clasquin et al. 2012). Metabolic pathway analysis was performed 

using the MetaboAnalyst 3.0 package (www.metaboanalyst.com) (Xia & Wishart 2016).  

 

Statistics 

The relation between chronological age and biological age in our initial training cohort 

was established using Pearson Correlation analysis. Additional comparisons between measures 

made at baseline and follow-up in the longitudinal cohort were performed using paired t-tests 

and deemed significant at P<0.05. For metabolomics analysis, features between the two time-

points in the longitudinal cohort with p-value < 0.05 resulting from a two-tailed t-test and a false-

discovery rate (FDR) < 0.1 were classified as significant. To identify metabolites related with 

rate of aging, differences in metabolite concentrations were calculated and associated with rate 

of biological aging. Subsequent Independent linear regressions were employed to understand 

the relation between metabolite abundances and future rate of aging and deviation of biological 

age from chronological age.  
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Table 1: Training cohort subject characteristics. 
 

Subject Characteristics Male Female 

Subjects (n) 355 249 

Avg. Age (range) 52 (18-79) 55 (18-80) 

Body Mass Index (kg/m2) 26 ± 0.21 24 ± 0.25 

Waist-to-Hip Ratio 0.89 ± 0.003 0.76 ± 0.004 

Body Fat (%) 24 ± 1 34 ± 1 

Bone Mineral Density (g/cm2) 1.27 ± 0.01 1.14 ± 0.01 

Systolic Blood Pressure (mmHg) 122 ± 1 116 ± 1 

Diastolic Blood Pressure (mmHg) 74 ± 1 69 ± 1 

Glucose (mg/dL) 90 ± 1 87 ± 1 

Total Cholesterol (mg/dL) 189 ± 2 200 ± 2 

LDL-C (mg/dL) 116 ± 2 116 ± 2 

HDL-C (mg/dL) 50 ± 1 66 ± 1 

eGFR (mL/min/1.73m2) 78 ± 1 75 ± 1 

Max Heart Rate (bpm) 173 ± 1 168 ± 1 

VO2max (mL/kg/min) 37.9 ± 0.5 30.7 ± 0.5 
 
Data are mean ± SEM; LDL-C, low-density lipoprotein cholesterol; VLDL-C, very low-density 
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; eGFR, estimated glomerular 
filtration rate; VO2max, maximal oxygen consumption. 
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Figure 1: (A) Biological age and chronological age are significantly correlated in our training 

cohort of 604 healthy adults (R2 = 0.68, P-value < 0.0001). (B) Deviation of biological age from 

chronological age was calculated, and although most individual’s biological age is within 5 years 

of their chronological age, many demonstrate greater differences between biological age and 

chronological age. 

-3
0

-2
0

-1
0 0 10 20 30 40

0

50

100

150

200

250

Deviation from Chronological Age (yrs)

N
um

be
r 

of
 S

ub
je

ct
s

A 

B 



 50 

Table 2: Subject Characteristics of our longitudinal cohort. 
 
Subject Characteristics Baseline Follow-Up 

Sex (M/F) 20/11  

Age (yrs) 59 ± 1 68 ± 1* 

Body Mass Index (kg/m2) 25 ± 1 25 ± 1 

Waist-to-Hip Ratio 0.86 ± 0.02 0.86 ± 0.02 

Body Fat (%) 26 ± 2 27 ± 2 

Bone Mineral Density (g/cm2) 1.23 ± 0.02 1.21 ± 0.02* 

Systolic Blood Pressure (mmHg) 119 ± 2 123 ± 2 

Diastolic Blood Pressure (mmHg) 73 ± 2 73 ± 1 

Glucose (mg/dL) 89 ± 2 85 ± 1* 

Total Cholesterol (mg/dL) 204 ± 5 172 ± 5* 

LDL-C (mg/dL) 124 ± 4 100 ± 4* 

HDL-C (mg/dL) 57 ± 3 54 ± 3* 

eGFR (mL/min/1.73m2) 71 ± 2 78 ± 3 

Max Heart Rate (bpm) 168 ± 2 156 ± 3* 

VO2max (mL/kg/min) 36.1 ± 1.7 31.5 ± 1.5* 
 
Data are mean ± SEM; LDL-C, low-density lipoprotein cholesterol; VLDL-C, very low-density 
lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; eGFR, estimated glomerular 
filtration rate; VO2max, maximal oxygen consumption. *P<0.05 vs baseline. 
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Figure 2: (A) Change in biological age, calculated from clinical and physiological measures, in 
our longitudinal cohort. Although the change in biological age is significant (P<0.01), the 
trajectories of aging are highly variable. (B) Significant relation between deviation in biological 
age from chronological age at baseline and follow-up (P<0.001).  
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Figure 3: (A) Rate of bological aging for each individual in the longitudinal cohort. A ratio smaller 
than one indicates slower aging, while a ratio greater than one indicates faster aging. (B) 
Heatmap of the change in abundance of 28 metabolites significantly associated with rate of 
biological aging. Individuals are aligned in columns, metabolites in rows. 
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Table 3: Association of baseline metabolite concentrations with deviation (in years) of bological 
age from chronological age. Non-endogenous metabolites notated in italic text. 
 

Metabolite Estimate Error P-Value 
Greater Values Indicative of Increased Biological Age vs 

Chronological Age 
N-(Tetradecanoyl)-

ethanolamine 3.17E-04 1.15E-04 0.01 

gamma-L-Glutamyl-L-
cysteine 8.78E-04 3.30E-04 0.01 

L-phenylalanine 4.13E-07 1.68E-07 0.02 

L-aspartate 9.59E-06 3.99E-06 0.02 

5-Hydroxyisourate 1.01E-05 4.37E-06 0.03 

2-acyl-sn-glycero-3-
phosphoethanolamine 3.19E-05 1.38E-05 0.03 

ADP 3.57E-04 1.56E-04 0.03 

Nicotinamide 3.62E-05 1.60E-05 0.03 

4-Nitroaniline 2.98E-06 7.30E-07 0.0003 

Salicylate 3.87E-04 1.65E-04 0.03 

Felbamate 4.03E-06 1.32E-06 0.005 

Greater Values Indicative of Reduced Biological Age vs 
Chronological Age 

Pantetheine -5.27E-06 2.17E-06 0.02 

10-Hydroxydecanoic acid -1.02E-04 4.39E-05 0.03 

Phenylgalactoside -1.67E-06 7.94E-07 0.04 

4-Hydroxybenzoate -1.22E-07 5.75E-08 0.04 

Theogallin -4.83E-06 1.45E-06 0.002 

6-Thioxanthine 5'-
monophosphate -5.08E-05 1.80E-05 0.009 
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Table 4: Metabolite concentrations at baseline are significantly associated with future faster or 
slower rate of aging. Non-endogenous metabolites notated in italic text. 
 

Metabolite Estimate Error P-Value 

Greater Values Indicative of Future Faster Aging 

Oxalosuccinate 2.19E-06 8.84E-07 0.02 

Oxaloacetate 6.63E-06 2.93E-06 0.03 

Greater Values Indicative of Future Slower Aging 

3',5'-Cyclic IMP -4.51E-07 1.60E-07 0.009 

Phosphate -9.82E-08 3.82E-08 0.02 

2-Phospho-D-glycerate -1.56E-05 6.08E-06 0.02 

Selenohomocystine -8.58E-07 3.56E-07 0.02 

4-Hydroxy-2’,3,5,5’—
tetrachlorobiphenyl 

-4.66E-07 1.95E-07 0.02 

Geranyl diphosphate -7.13E-09 3.02E-09 0.03 

5-Acetylamino-6-
formylamino-3-methyluracil 

-4.20E-07 1.81E-07 0.03 

Nicotinamide -1.76E-06 7.79E-07 0.03 

α-D-Glucosamine 1 
phosphate 

-1.30E-05 5.86E-06 0.03 

Glycochenodeoxycholate -4.18E-07 2.00E-07 0.04 

Ethylenethiourea -7.38E-07 2.39E-07 0.004 

Octylamine -3.29E-07 1.15E-07 0.008 
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Figure S1: Regressions demonstrating the relation of clinical and physiological markers with 

age. 
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Figure S2: 81 metabolites (of 360 measured) in plasma of individuals from the longitudinal 
cohort were significantly different between baseline and follow-up at P < 0.05, FDR < 0.1. 
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Chapter V 

Conclusion 

 The purpose of this dissertation was to gain novel insight into the molecular 

mechanisms of age-associated physiological declines by understanding key metabolic 

pathways related to physiological dysfunction in healthy older adults.  

 Global, exploratory metabolomics analysis of human plasma from healthy young and 

older adults demonstrated numerous shifts in small molecule abundances with primary aging. 

We discovered physiologically relevant clusters of similarly expressed small molecules that 

were significantly altered with advancing age and, as a group, were related to clinical and 

physiological outcomes. Pathway analysis determined that these metabolites were primarily 

associated with amino acid and lipid metabolism. Additional targeted analyses confirmed 

changes in amino acid and lipid metabolism with age, and the relation of individual metabolites 

from these pathways to healthspan indicators.  

 Metabolomics was also used to characterize the molecular signatures associated with 

biological aging. Clinical and physiological measures were combined to collectively produce a 

model of biological aging, which was applied to a longitudinal cohort of older adults. Our 

analysis determined that metabolomic profiles were associated with biological aging. 

Specifically, small molecule abundances were associated with current and future rates of 

biological aging and an individual’s difference in biological age from their chronological age in 

older populations.  

 The results of this dissertation indicate that age-associated changes to the plasma 

metabolome are associated with adverse changes to healthspan indicators with advancing 

age, and that metabolomic profiles are associated with, and predictive of, rates of biological 

aging in healthy populations. Collectively, these findings provide novel insight into the 

molecular mechanisms underlying age-associated physiological declines. 
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Future Directions 

In the present studies, we identified small molecule patterns and specific metabolic 

pathways associated with physiological declines. However, despite our best efforts to positively 

identify each molecular feature measured by our metabolomics platforms, numerous small 

molecules have yet to be characterized and therefore remain unknown. The continuous 

measurement and classification of novel metabolites is paramount to successfully exploring the 

biochemical reactions within biological organisms. 

In addition, this work was exploratory in nature and leveraged associative models to 

implicate molecular pathways associated with age-related physiological dysfunction. Future 

studies should be performed to confirm and expand on these observations, followed with 

mechanistic investigations to establish cause-and-effect relations between changes in 

metabolic pathways and age associated physiological declines. These results would offer 

insight into ho changes to the plasma metabolome with age are causal to declines in 

physiological processes or simply a reflection of current dysfunction within various systems.  

Finally, physiological declines occur in systems beyond those that were incorporated 

into our analyses. Therefore, further investigations into the relation between metabolomic 

patterns and declines in other functional domains, such as cognitive function, should be 

considered. Additionally, to better understand the relation of these molecular signatures to 

morbidity and mortality risk, robust longitudinal studies should be performed to assess 

transitions between healthy aging and disease phenotypes. 
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