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Abstract
Combusting fossil fuels to produce electricity is the single largest contributor to sector-level,
anthropogenic carbon pollution. Because sector-wide policies are often too unwieldy to
implement, however, some researchers have recommended reducing electricity-based CO2

emissions by targeting the most extreme emitters of each nation’s electricity industry. Here, we use
a unique international data source to measure national disproportionalities in power plant CO2

emissions and estimate the fraction of each country’s electricity-based CO2 emissions that would
be reduced if its most profligate polluters lowered their emission intensities, switched to gas fuels,
and incorporated carbon capture and storage systems. We find that countries’ disproportionalities
vary greatly and have mostly grown over time. We also find that 17%–49% of the world’s CO2

emissions from electricity generation could be eliminated depending on the intensity standards,
fuels, or carbon capture technologies adopted by hyper-emitting plants. This suggests that policies
aimed at improving the environmental performance of ‘super polluters’ are effective strategies for
transitioning to decarbonized energy systems.

1. Introduction

As the global, fossil-fueled power sector has contin-
ued to grow, so too has the volume of carbon diox-
ide it emits into the atmosphere (International Energy
Agency 2021). Over the past two decades, the elec-
tricity industry’s CO2 emissions have risen by 53%
worldwide (International Energy Agency 2021) and
over half of all carbon releases are predicted to come
from this sector in the future (Tong et al 2020).
In the absence of an international cap-and-trade
regime, several experts have argued that the next best
approach for decreasing energy-related emissions is
to set goals for electricity sectors’ emission intensit-
ies, measured by the amount of CO2 emissions per
megawatt (MWh) of electricity produced (Center for
Clean Air Policy 2008, International Energy Agency
2009a, 2009b, Gerlak et al 2018). While agreeing that
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this sectoral approach would be easier to implement
than nationwide CO2 emission caps, others suggest
it is still insufficiently targeted because some facilities
release vastly more pollutants than others. According
to them, a country’s emissions could bemitigated sig-
nificantly and without greatly disrupting the overall
economyor threatening industry survival by reducing
the discharges of a small group of extreme polluters
(Freudenberg 2005, 2006, Collins et al 2020, Grant
et al 2020, Pulver and Manski 2021).

Research on disproportionalities in pollution has
received growing attention in recent years. Schol-
ars have examined how toxic releases are distrib-
uted unevenly within U.S. industries (Freudenburg
2005, Ash et al 2009, Collins 2012, Prechel and Istvan
2016, Collins et al 2020). They have also estim-
ated reductions in particle pollution (PM2.5, SO2 and
NOx) within nations’ coal-fired power sectors that
could be achieved by targeting super polluting power
plants (Tong et al 2018a). And they have shown how
industrial hyper polluters in the United States dis-
proportionately expose communities of color and
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low-income population to harmful chemical emis-
sions (Collins et al 2016, Tessum et al 2019).

With respect to carbon pollution, some have sug-
gested that the most effective way to address climate
change is to take aim at the ‘polluter elite,’ individuals
who own large shares of fossil fuel companies and/or
are among the richest 10% of people in the world
(Baer 2009, Chancel and Piketty 2013, Kennedy et al
2014).Others contend a better strategywould be to go
after ‘carbon majors,’ the 100 companies responsible
for supplying 70% of the world’s fossil fuels (Heede
2014). Still other studies have examined organizations
like power plants that directly burn and emit car-
bon. For example, researchers have analyzed dispro-
portionalities in CO2 emissions within the U.S. coal-
fired electric utility sector (Galli et al 2019, Robertson
and Collins 2019) and China’s power sector (Tong
et al 2018b). Only two studies have assessed dispro-
portionalities across fossil-fueled power plants’ CO2

emissions within and between nations (Grant et al
2013, Jorgenson et al 2016), but their analyses are lim-
ited to 2009 when the world economy was in the grips
of a financial crisis and the Paris Agreement had not
yet been ratified.

Here, we use a newly constructed global data-
base of individual power plants’ CO2 emissions in
2018 to (a) reveal the locations and identities of the
plants with the highest emission levels in the world,
(b) compute changes in national disproportionalit-
ies in plant-level emissions from 2009 to 2018, and
(c) calculate how much each country could lower
its electricity-based CO2 emissions by improving the
intensities, fuels, and technologies of its most extreme
polluters.

2. Data andmethods

Our database is an updated version of the 2009
Carbon Monitoring for Action (CARMA) file, the
most widely used bottom-up inventory for allocat-
ing power plant CO2 emissions (Ummel 2012). The
2018 edition of CARMA draws on three data sets:
plant-level emissions reports from the United States,
European Union, Australia, Canada, and India1;
global plant- and company-level data from Platt’s

1 The US Environmental Protection Agency’s eGRID
database is available online at www.epa.gov/cleanenergy/
energy-resources/egrid/index.html. The European Pollutant
Emission Register is available online at http://eper.ec.europa.eu/
eper/flashmap.asp. Australia provides information on
electricity sector emissions at www.cleanenergyregulator.
gov.au/NGER/National%20greenhouse%20and%20energy
%20reporting%20data/electricity-sector-emissions-and-
generation-data/electricity-sector-emissions-and-generation-
data-2018-19. Environment Canada provides green-
house gas emissions reports at www.ec.gc.ca/pdb/
ghg/onlinedata/DataAndReports_e.cfm. The Indian Power
Ministry reports emissions at www.cea.nic.in/planning/
c%20and%20e/Government%20of%20India%20website.htm.

World Electric Power Plants Database; and country-
specific power production data from the Interna-
tional Energy Agency. For non-reporting plants,
CARMA estimates emissions using a statistical model
fitted to data for the reporting plants and detailed data
from the other two sources on plant-level engineering
specifications.

The 2018 version of CARMA was constructed by
the file’s original architect, Kevin Ummel, and con-
sists of 29 078 fossil-fuel power plants from 221 coun-
tries. Unobserved generation and emissions for fossil
fuel power plants are estimated using statistical mod-
els fit to observable plant performance data, using
plant-specific engineering and country-level power
sector characteristics as predictor variables. Specific-
ally, two predictive models are constructed: one to
estimate a plant’s capacity factor and one to estimate
its CO2 emission factor (kgCO2 per MWh). In con-
junction with known installed plant capacity (MW),
these quantities allow estimation of annual electri-
city generation (MWh) and carbon dioxide emissions
(CO2).

Annual plant performance is noisy and subject to
outliers. To guard against undue outlier influence, the
modified (median-based) Z-score test of Iglewicz and
Hoaglin (1993) is used to remove observations that
are deemed potential outliers (Z > 3.5) with respect to
the response variable. After data preparation and out-
lier removal, there are 3,019 plant-level observations
with observable annual capacity factor and 2,581with
observable CO2 emission factor.

Mean response models are fit for both capacity
factor and emission factor using the gradient boosting
machine (GBM) of Friedman (2001) as implemented
by the R interface to theH2O.ai open-sourcemachine
learning platform. GBM models have a number of
advantages relevant to an analysis of this type: (a)
automatic selection from among available predict-
ors, using ten-fold cross-validation to avoid over-
fitting; (b) automatic detection of non-linear rela-
tionships and interaction effects (we allow up to
third-degree interactions among predictor variables);
(c) special treatment of missing values in the pre-
dictor data that would normally (e.g. in conventional
OLS models) require dropping observations or mul-
tiple imputations. To further guard against undue
outlier influence, theGBMmodels use the square root
of total plant capacity as observation weights, put-
ting greater emphasis on accurate modeling of lar-
ger plants that tend to exhibit less noise. In addition,
mean absolute error (as opposed to canonical squared
error) is used to define the stopping criteria for
regression tree growth, which also tends to dampen
the effect of potential outliers on overall model
performance.

The capacity factor and emission factor response
(dependent) variables are technically defined as
ratios, relative to the expected capacity factor and

2

https://www.epa.gov/cleanenergy/energy-resources/egrid/index.html
https://www.epa.gov/cleanenergy/energy-resources/egrid/index.html
http://eper.ec.europa.eu/eper/flashmap.asp
http://eper.ec.europa.eu/eper/flashmap.asp
https://www.cleanenergyregulator.gov.au/NGER/National%20greenhouse%20and%20energy%20reporting%20data/electricity-sector-emissions-and-generation-data/electricity-sector-emissions-and-generation-data-2018-19
https://www.cleanenergyregulator.gov.au/NGER/National%20greenhouse%20and%20energy%20reporting%20data/electricity-sector-emissions-and-generation-data/electricity-sector-emissions-and-generation-data-2018-19
https://www.cleanenergyregulator.gov.au/NGER/National%20greenhouse%20and%20energy%20reporting%20data/electricity-sector-emissions-and-generation-data/electricity-sector-emissions-and-generation-data-2018-19
https://www.cleanenergyregulator.gov.au/NGER/National%20greenhouse%20and%20energy%20reporting%20data/electricity-sector-emissions-and-generation-data/electricity-sector-emissions-and-generation-data-2018-19
https://www.cleanenergyregulator.gov.au/NGER/National%20greenhouse%20and%20energy%20reporting%20data/electricity-sector-emissions-and-generation-data/electricity-sector-emissions-and-generation-data-2018-19
https://www.ec.gc.ca/pdb/ghg/onlinedata/DataAndReports_e.cfm
https://www.ec.gc.ca/pdb/ghg/onlinedata/DataAndReports_e.cfm
https://www.cea.nic.in/planning/c%20and%20e/Government%20of%20India%20website.htm
https://www.cea.nic.in/planning/c%20and%20e/Government%20of%20India%20website.htm


Environ. Res. Lett. 16 (2021) 094022 D Grant et al

Table 1. Predictor variables used in GBMmodelsa.

Predictor variable Description
CF

importance
EF

importance

cf Observed annual capacity factor 0.501
pmover Prime mover technology 0.424 0.136
cf_ratio Ratio of observed capacity factor to

expected mean value
0.141

chp Logical indicating combined heat and
power

0.147 0.048

age Mean generator age 0.115 0.050
fueltype_prime Primary fuel type 0.071 0.019
bustype Business type operating plant 0.059 0.013
steam_flow Steam flow rate, if applicable 0.042 0.016
plant_cap_shr Plant capacity as share of total capacity

within country
0.041 0.011

plant_cap_shr_fuel Plant capacity as share of total capacity of
fuel type within country

0.020 0.026

plant_cap_rel Plant capacity relative to mean capacity
of all plants within country

0.018 0.007

plant_cap_rel_fuel Plant capacity relative to mean capacity
of fuel type within country

0.016 0.008

capacityMW Total plant generating capacity (MW) 0.020 0.005
pgus Number of generating units in plant 0.011 0.005
fueltype_other Secondary fuel type 0.004 0.008
electricity_type Type of plant operator 0.005 0.004
capacity_operational Share of plant capacity that is operational 0.006 0.001
a For additional details, see http://docs.h2o.ai/h2o/latest-stable/h2o-docs/variable-importance.html.

emission factor, respectively, assuming a plant’s
generating capacity mimics national mean beha-
vior for each fuel type. The denominators of the
ratios are constructed by merging country- and
fuel-specific mean capacity and emissions factors
to each plant’s individual generating units and
then calculating the plant-level, capacity-weighted
mean.

The predictor variables used by the GBM models
are given in table 1. The ‘importance’ columns reflect
the relative importance or influence of each predictor,
following the technique of Friedman. Comparison of
observed and predicted values for the observations
used to train the GBM models indicates good over-
all performance. The capacity-weighted R2 for capa-
city factor (N = 3019) is 0.61 (0.58 unweighted). The
capacity-weighted R2 for emission factor (N = 2581)
is 0.92 (0.75 unweighted). The significant difference
between weighted and unweighted R2 for emission
factor reflects the considerable noise in emission
factors for smaller plants, whereas larger plants tend
to be fairly predictable.

One drawback of GBM models is the absence
of standard techniques for estimating prediction
intervals when predicting responses for new data.
To provide an intuitive measure of uncertainty in
the model estimates, prediction standard deviation
is estimated using the variance model technique
described inMilborrow (2012). This consists of mod-
eling the modified absolute residuals of each GBM
model as a non-linear GAM function (Pya andWood
2015) of the predicted response value. After the

GBM models make mean predictions for plants with
unobserved capacity factor and/or emissions factor,
the GAM variance models are then used to estim-
ate the standard deviation associated with those pre-
dictions. The standard deviation can then be used to
construct prediction intervals with the desired level of
confidence.

S&P Global Plants’ World Electric Power Plant
Database (2018) does not include exact latitude and
longitude coordinates for units. Nor do India and
Australia report this information for their plants,
which represent 13% (3813 of 29 265) of all cases.
Twomethodswere employed to identify thesemissing
coordinates. The first was to merge the relevant data
from the original CARMA file, which contained some
of these locations, into the updated power plant data-
base, which covered 54.8% of cases (16 041 of 29 265).
The remaining coordinates were identified according
to their country, subnational, and city names with a
Python forward geocoding programutilizing the Pan-
das and GeoPy libraries.

3. Results

3.1. The geographical distribution of super
polluting power plants
Figure 1 displays the locations of the world’s oper-
ative fossil-fueled power plants, their primary fuels,
and the tons of carbon dioxide they released in 2018.
Some past studies have defined super polluting power
plants using intensity metrics (pollutants per unit of
output or capacity) (e.g. Tong et al 2018a). Although
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United States           Europe     

                

India        East Asia

Figure 1.Maps of fossil-fueled power plants’ CO2 emissions. Taller spikes indicate that plants emit CO2 at higher levels. Colors
signify plants’ primary fuels (blue= coal, yellow= natural gas, black= oil). Plants with red spikes are the world’s ten biggest
polluters (all of which rely primarily on coal).

this provides a straightforward way to compare the
performance of operators of different sizes, we focus
instead on total emissions because to contain global
warming there must be severe cuts in emission levels.
As the IPCC (Somanathan et al 2014) reports, to
keep global warming to below 2 ◦C, we need to
limit CO2 emissions to no more than 1000 GtCO2.
This implies severe cuts to current emission levels—a
41% to 72% reduction by 2050. For this reason, we
operationalize super polluting power plants in terms
of the absolute volume of pollutants they emit. By the
same token, we recognize that improving intensities

might be oneway to decrease emissions levels (assum-
ing no rebounds) and therefore in a later section
estimate how much super polluters’ total amount of
carbon pollution could be reduced if their carbon
inputs were managed more efficiently (see also sup-
plemental figure 1 available online at stacks.iop.org/
ERL/16/094022/mmedia).

Themaps below reveal, as onemight suspect, that
the plants that did the most absolute damage to the
atmosphere were fired by coal (indicated in blue).
Most of these plants were clustered in the United
States, Europe, India, and East Asia. As the map for
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Table 2. Top ten polluting power plants in 2018 and 2009a.

2018

Rank Plant name Country Tons of CO2 Primary Fuel Age Capacity
Relative
Intensity

1 Belchatow Poland 37 600 000 Coal 27 5298 1.756
2 Vindhyachal India 33 877 953 Coal 14 4760 1.485
3 Dangjin South Korea 33 500 000 Coal 10 6115 1.473
4 Taean South Korea 31 400 000 Coal 12 6100 1.481
5 Taichung Taiwan 29 900 000 Coal 22 5834 1.282
6 Tuoketuo China 29 460 000 Coal 10 6720 1.450
7 Niederaussem Germany 27 200 000 Coal 38 3826 1.451
8 Sasan Umpp India 27 198 628 Coal 3 3960 1.401
9 Yonghungdo South Korea 27 000 000 Coal 9 5080 1.481
10 Hekinan Japan 26 640 000 Coal 21 4100 1.394

2009

1 Taichung Taiwan 36 336 000 Coal 13 5834 1.172
2 Poryong South Korea 32 823 000 Coal 13 5954 1.149
3 Taean South Korea 30 347 000 Coal 3 4100 1.310
4 Belchatow Poland 29 500 000 Coal 18 4340 1.448
5 Dangjin South Korea 29 046 000 Coal 2 4075 1.244
6 Hadong South Korea 28 719 000 Coal 7 4000 1.259
7 Niederaussem Germany 26 300 000 Coal 29 3826 1.186
8 Mailiao Fp Taiwan 25 304 000 Coal 8 4200 1.074
9 Vindhyachal India 24 812 000 Coal 5 3260 1.207
10 Kendal South Africa 24 652 000 Coal 18 4374 1.335
a Relative Intensity is the ratio of the plant’s intensity to the average intensity for all fossil-fueled plants in that plant’s country.

the U.S. shows, their facilities with the highest emis-
sion levels tended to be fueled by coal and located in
the eastern half of the country. Despite the U.S. hav-
ing the largest economy, however, none of the world’s
ten worst polluting facilities were located within its
borders.

Two of those worst plants were in Europe, as
indicated in itsmap. TheCO2 emissions of these facil-
ities dwarfed those of their counterparts in the region.
Turning to the map for India, we see two more of the
planet’s most extreme polluters. Their emission levels
stood out from those of others in the country, though
the differences between them were not quite as strik-
ing as observed in the European case.

The remaining six worst polluters are shown in
the map for East Asia. Three of these facilities were
closely situated in the southern portion of the Korean
Peninsula. The others were in Japan, Taiwan, and
northern China. These countries and in particular
China had several major polluting coal plants in addi-
tion to these most extreme emitters. Still, the latter’s
CO2 levels were considerably higher than others in
these areas.

As McAdam (2017) notes, one difficulty climate
change activists have had in mobilizing action is
identifying specific actors to blame for the escalat-
ing threats, creating the impression the climate crisis
is largely the product of impersonal forces beyond
our control. Table 2 reports the names and attrib-
utes of the ten worst polluting power plants shown

in figure 1 and those of the most harmful in 2009.
It reveals that five of the most extreme polluters in
2018 were also among the most profligate nearly a
decade earlier, though their ranking changed with
Poland’s Belchatow plant supplanting the Taichung
facility as the very worst. To put the enormity of these
two plants’ carbon pollution in perspective, in both
years they each emittedmore carbon dioxide than the
entire country of Switzerland2.

Importantly, the last column shows that the ten
worst plants’ intensities (emissions per unit of gen-
erated electricity) exceeded those of other fossil fuel
power plants in their home countries. Specifically, in
2018, they emitted carbon at a rate 28.2% to 75.6%
higher than their counterparts. This indicates that

2 The procedures used to assess the reliability of CARMA estim-
ates are detailed in Ummel (2012). In general, models suggest
that nearly 70% of global CO2 emissions come from plants
with absolute prediction error (APE) < 20% and more than
85% come from plants with APE < 40%. This is because pre-
dictions are especially reliable for the types of large plants
shown in table 2. For example, models suggest that we can
state with a high degree of confidence that the plants from
non-reporting countries listed in this table (under panel 2018)
are all extreme emitters. The 90% prediction intervals for
these six plants are 24 500 000–55 000 000 (Dangjin), 25 590 000–
57 110,00 (Taean), 25 310 000–56 900 000 (Taichung), 25 720 000–
53 850 000 (Tuoketuo), 17 060 000–41 060 000 (Yonghungdo), and
12 450 000–30 500 000 (Hekinan). By the same token, because their
emissions are predictions and, in some cases, close to one another,
these facilities’ relative ranking is less certain.
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Table 3. Gini coefficients for disproportionality in plant-level CO2 emissions for the ten nations with the highest CO2 emissions from
fossil fuel power plantsa.

Rank Country GINI (2018)
Weighted

GINI (2018) GINI (2009)
Weighted

GINI (2009)

1 China 60.6 39.6 59.6 35.8
2 United States 92.4 50.9 86.1 49.8
3 India 84.9 54.3 84.9 47.0
4 Japan 95.7 46.9 95.5 43.6
5 Russia 77.5 48.7 71.7 51.2
6 South Korea 93.7 48.1 92.1 39.6
7 Germany 95.6 61.2 92.9 55.3
8 South Africa 81.0 16.8 77.6 13.7
9 Australia 94.9 55.2 93.8 41.6
10 Indonesia 84.9 56.5 90.5 56.8

World 91.8 54.9 89.8 52.5

Mean S.D. Skewness Range

GINI (2009) 68.0 18.6 −695 2.6–96.4
GINI (2018) 63.9 21.2 −489 2.3–97.4
Weighted GINI (2009) 28.7 13.8 024 1.2–56.8
Weighted GINI (2018) 31.2 14.3 170 1.4–63.8
a Weighted Gini weights each plant by plant-level output, measured as net megawatt-hours generated in a year.

the top ten polluters’ higher emission levels were
not just the result of their greater output. Rather
they also burned inputs less efficiently and/or used
more carbon-intensive fossil fuels. Why these relat-
ively inefficient plants are used so heavily is a topic
ripe for future investigation.

3.2. National and global disproportionalities in
power plant CO2 emissions
In keeping with Freudenberg’s (2005, 2006) seminal
writings on hyper-emitters, table 2 measures national
and global disproportionalities in power plant emis-
sions using Gini coefficients. While a Gini coefficient
typically ranges from 0 to 1, we multiplied the coef-
ficient by 100 to aid in interpretation, a common
approachwhen studying suchmeasures. Thus, a value
of 100 would indicate that a single power plant pro-
duced all carbon emissions in a given sector (perfect
inequality), whereas a value of 0 would indicate that
all power plants emitted an equal amount (perfect
equality).

Table 3 shows that in each of the ten countries that
generated the most carbon pollution in 2018, the dis-
tribution of emissions across their plants was severely
unequal, though less so in the top polluting nation of
China. Disproportionalities were still large even after
considering differences in plants’ electrical output by
weighting each plant by the reciprocal of plant-level
output, the sole exception being the case of South
Africa3. Moreover, when comparing unweighted and
weighted disproportionalities in 2018 with earlier

3 The relative high Gini for the U.S. contrasts with the findings
of Galli and Collins (2019) that suggest disparities in coal-fired
plants’ CO2 emissions are small after accounting for differences in
their electrical output. We suspect part of the discrepancy may be

ones in 2009, we find that these disparities have gen-
erally widened over time at the national and world
levels. Skewness and range statistics also suggest that
more countries’ Gini scores have moved to extreme
positive end of the distribution over time.

Figure 2 explores this possibility in more
detail. Specifically, it reports the relative over- and
underrepresentation of countries’ 2018 weighted
Gini coefficients with the respect to the distribution
of countries’ coefficients in 2009 (Jann 2021). A 2018
coefficient larger than onemeans that countries’ 2018
coefficients are overrepresented at the corresponding
level of 2009 coefficients, values lower than one mean
that the 2018 coefficients are underrepresented rel-
ative to 2009. As the figure reveals, the largest distri-
butional differences are at the top of the distribution.
Countries’ 2018 coefficients are overrepresented by
nearly a factor of 3 in the uppermost quantile, sug-
gesting that countries with extreme disproportional-
ities have become more common between 2009 and
2018.

3.3. Extreme polluters’ shares of CO2 emissions
andmitigation opportunities
While Gini coefficients indicate the overall pollution
inequality across a distribution of plants, they fail to
capture the portion of a country’s CO2 level gener-
ated by its most extreme emitters. The histograms
in figure 3 address this issue. It shows the share of
a country’s total 2018 (unweighted) electricity-based
emissions that came from the top 5% of its pollut-
ing power plants. The graphs reveal that in China, its

because our analysis also includes plants fueled by oil and natural
gas.
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Figure 2. Distributional differences in countries’ weighted Gini scores, 2009–2018.

extreme polluters accounted for 24.5% of total emis-
sions or nearly five times more than would be expec-
ted if emissions were distributed evenly across plants.
Whereas in other countries like the U.S., Japan, South
Korea, Germany, and Australia, where the distribu-
tion of pollution was more extremely skewed, the top
5%of their polluters were responsible for 75%–89.6%
of all emissions or roughly 15–18 times more than
would be expected if emissions were evenly distrib-
uted. For the world as a whole, its top 5% percent of
polluters contributed 73%of all electricity-basedCO2

discharges or 14.6 times more than if pollutants were
evenly dispersed.

Having shown that a large swath of emissions can
be attributed to a small group of extreme polluters,
we now consider how much would nations’ and the
world’s total CO2 emissions be cut if policymakers
focused only on improving the intensities of these
facilities. Specifically, table 4 reports howmuch emis-
sions could be reduced if a country’s top 5% of pol-
luters lowered their intensities to the average for fossil
fuel plants in their sector (column 1), lowered their
intensities to the average for the world’s entire fleet
of fossil fuel plants (column 2), switched fuels from
coal and oil to gas (column 3), and by incorporating
technologies capable of capturing and storing 85%
of carbon emitted per unit of electricity generated
(including the energy penalty associated with cap-
turing and storing emission—International Panel on
Climate Change 2005) (column 4).

Results indicate that in China whose worst pol-
luters emit a comparatively small share of that coun-
try’s total CO2, targeting these facilities would yield
gains ranging from 3.1%, if it reduced their intens-
ities to their electricity sector’s average for all fossil
fuel plants to 20% if all of its extreme polluters were
equipped with carbon capture systems. In contrast,
in a country like the United States, where extreme
polluters account for a much larger share of that
nation’s carbon pollution, the gains would be con-
siderably more substantial. Depending on the change
adopted, targeting super polluters would reduce over-
all emissions between 29.3% and 63.7% in the U.S.
Although the advantages of targeting extreme emit-
ters vary by country, as table 4 shows, if all nations
were to enforce the changes considered here, the
world’s total electricity-basedCO2 emissions could be
reduced by as much as 29.50% should extreme emit-
ters be required to use gas (themost available and effi-
cient mitigation option) and 48.9% should they be
required to incorporate carbon capture systems4.

4 In other analyses not reported here, we estimated what would
happen if intensities were reduced to the average for coal, oil, and
gas plants and found their effects would be minimal. Respectively,
they would only reduce the world’s electricity-based emissions by
3.0%, 1.4%, and .4%.
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Figure 3. Percent shares of electricity-based CO2 emissions. Percent of total CO2 emissions stemming from the electricity sector
indicated in parentheses.

Table 4. Percentage changes in electricity-based CO2 emissions if the top five percent of polluters adopted certain intensity standards,
fuels, or technologies.

(1) (2) (3) (4)

Rank Country

If top 5% lowered
their intensities to
their sector’s average
for fossil fuel plants

If top 5% lowered
their intensities to
the World’s average
for fossil fuel plants

If coal and
oil plants
in top 5%

switched to gas

If top 5%
incorporated
carbon capture
and storage

1 China −3.80% −9.60% −11.13% −20.70%
2 United States −29.30% −29.50% −41.71% −63.70%
3 India −8.40% −20.40% −23.57% −44.20%
4 Japan −39.20% −35.20% −43.06% −76.10%
5 Russia −20.90% −17.40% −34.13% −37.60%
6 South Korea −40.00% −32.70% −39.26% −76.00%
7 Germany −55.90% −35.10% −43.71% −75.90%
8 South Africa −8.60% −11.60% −13.30% −25.20%
9 Australia −28.30% −34.90% −42.88% −75.50%
10 Indonesia −9.00% −28.00% −33.38% −60.50%

World −16.81% −25.40% −29.50% −48.90%
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4. Conclusion

Contrary to the received wisdom that greater envir-
onmental harm is a function of greater economic
activity, emerging scholarship suggests that pollut-
ing releases are disproportionally distributed across
units of production. In this paper, we have sought
to advance our understanding of how electricity’s
climate-disrupting emissions might be reduced by
applying a disproportionality approach to the world’s
fleet of fossil-fueled power plants. Findings suggest
that instead of relying on sweeping environmental
initiatives, substantial environmental progress can be
made through selectively targeting nations’ hyper-
polluters—theworst-of-the-worst—that are respons-
ible for the lion’s share of their carbon pollution. As
the fossil-fuel-burning energy infrastructure contin-
ues to expand and the urgency of combating climate
change grows, nations will likely need to consider
more expedient strategies of this sort.

As our results indicate, focusing on the most
extreme polluters would yield varied benefits for
nations. Therefore, no single disproportionality
policy will fit all. In countries where larger emit-
ters are difficult to regulate, it may be more effect-
ive to target a greater number of smaller plants. For
example, in nations like China that have numerous
mid-sized plants and therefore exhibit less dispro-
portionately, it may be prudent to expand the range
of targeted facilities from, say, the top 5% to the top
10%. Whatever the case might be, this study sug-
gests that policies aimed at a small subset of super
polluters should be considered alongside sector- or
economy-wide approaches.

As is the case with similar studies, our inquiry
is subject to shortcomings. We had to estimate the
CO2 emissions of plants that were not required to
report such discharges. Nor was it possible to obtain
or verify all of the emissions reported to nations, some
of which are proprietary. Although data on individual
plants’ installed capacities are readily available, that
was not the case with unit-based fuel consumption
and annual operating hours, which are also needed
to determine a facility’s electrical productivity. There-
fore, the latter often had to be estimated and some
smaller plantsmay not have been included in our data
sources.

Nonetheless, as we explained in the data and
methods section and footnote 2, our estimated emis-
sions and output are most reliable for the largest
power plants, which were the focus of this paper.
Efforts are also underway to track and verify emis-
sions from plants and other sources using, for
example, satellite monitoring systems (Couture 2020,
Liu et al 2020). And as countries come to recog-
nize their common fate in addressing climate change,

hopefully, more data will be collected, standardized,
and shared5.

In future research, we plan to investigate how
regulators might exploit the mitigation opportunit-
ies revealed here by retiring plants, improving effi-
ciencies, enhancing the quality of fossil fuels inputs,
and adopting various abatement measures. We will
also examine how policies can help expedite such
changes and thus level differences in plants’ emis-
sions. We have matched information on decommis-
sions, emission controls, and policies to the power
plants examined here as part of a larger dataset that
will soon be made publicly available.

Data availability statement

The dataset in this study is available from the corres-
ponding author on reasonable request.

The data that support the findings of this study are
available upon reasonable request from the authors.
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