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ABSTRACT

A new type of grammar called a DOS system is introduced and
investigated. Essentially it formalizes the notion of a context free

grammar without variables that is generatively deterministic.



INTRODUCTION

There are several approaches to a systematic build-up of formal
language theory or various fragments of it. An example of such an
approach is the mathematical theory of L systems (see, e.g., [R] and
[RS]). Its basic component is a DOL system which is essentially an
jterated homomorphism on a free monoid. A DOL system can be
generalized to a OL system by allowing an iteration of a finite
substitution rather than the iteration of a homomorphism. Then to
either a DOL system or to a OL system nonterminals can be added giving
rise to EDOL and EOL systems respectively. These four classes of
systems (DOL, OL, EDOL and EOL) form the basic framework for the
systematic development of the theory of L systems.

In an attempt to build-up a systematic theory of context free
languages one can look for an analogue of the above situation in
the framework of context free grammars. Obviously, context free
grammars correspond to EOL systems, and, rouahly speaking, context
free grammars without nonterminals correspond to OL systems. In
recent years such "classical" grammars without nonterminals were
investigated (see, e.g., [BPR1, [HP ], [MsW] and [s11]).

What is missing at this moment is the sequential analogue of
DOL systems, which, in the above outlined approach, forms the very
essential element of the theory. In this paper we introduce such a
sequential analogue of a DOL system, called a DOS system, and we
believe it will play the same role in the theory of context free
languages as DOL systems play in the theory of EOL languages. One
of the essential advantages of DOS systems (in our opinion) is the

fact that they allow for the first time to formalize the notion of



“grammatical determinism" in the framework of "context-free-like"
sequential grammars.

The paper is organized as follows.

In the first section DOS systems and languages are introduced
and illustrated by examples. Also a graph representation of a DOS
system is presented.

In the second section some very basic problems, including the
role of nonterminal symbols, the role of erasing and the relationship
between DOS and DOL systems, are investigated.

In Section III we provide a result on the combinatorial structure
of DOS languages that allows one to provide various examples of
languages that are not DOS languages. Also closure properties of the
class of DOS languages are investigated in this section.

In the last section we establish a representation theorem
analogous to the Chomsky-Schitzenberger theorem except that it uses
DOS languages rather than Dyck languages (Dyck Tanguages are not DOS
Tanguages) .

We assume the reader to be familiar with the rudiments of the
theory of context free languages. We use mostly the standard notation
and terminology. Perhaps only the following points require an
additional explanation.

(1). For a word o, |a| denotes its length, and, for 1 < i < |al,
a[i] denotes the letter that occurs in a as the i'th e1ément from the
left.

(2). For a class of grammars X, L(X) denotes the class of Tanguages
generated by grammars in X.

(3). As usual, throughout this paper we apply the convention that,



for a language K, K= K u {A}.
(4). Given a labelled graph G, £; denotes its labeling function; if G

is understood we write £, rather than EG.



I. DOS SYSTEMS AND LANGUAGES

In this section DOS systems and languages are introduced and
illustrated by examples. Also a "forest representation" of (all
derivations in) a DOS system is presented.

Qur first notion is that of a sequential homomorphism, which
is like a homomorphism except that it is applicd "sequentially", thét
is one occurrence in a string is replaced in one application of the
sequential homomorphism.

Definition. Let r be a finite alphabet. A sequential homomorphism

(abbreviated s-homomorphism) on £* is a mapping h from r* into 22*
defined inductively as follows:
(1). h(a) = {7},
(2). for each b ¢ r there exists a g « 2" such that h(b) = {g},
(3). for each a ¢ Z+,
h(a) = {alsaz o= albaz for some b ¢ 1, 0y 0ty € £* and h(b) = {B}}.
The S~Homomorphism h is extended to 22* by letting h(K) = oK h(a)

for each K < £*. [

As usual, we assume that an s-homomorphism on ¥ is given by
providing its values for all letters from Z. To simp1ify the
notation, in the sequel we will often identify a singleton {x} with its
element x.
" Definition. A DOS system is a construct G = (2,h,w) where T
is a finite nonempty alphabet, w € Z* and h is an s-homomorphism
on s . The language of G, denoted -L(G), is defined by

L(G) = {x : x € hn(w) for some n > 0}, and referred to as a DOS

1]

language. 1f for no a ¢ I, h(a) = A then we call G propagating and
refer to it as a PDOS system (in this case L(G) is called a PDOS

language). [
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Remark: (1). Aékéuétomary in 1anguagé theory; whenever h(a) = o
for a < ¥ then we refer to (a, o) as a production of G and write it in
the form a - a. Also, if for x, y € £¥ and n > 0, we have y ¢ h(x),
then we say that x derives y (in G). Then we use the notation‘x =y

G
* S S . . o
and xv§> y in“the usual sense (with omitting the reference to G whenever G is

..

c]ea; from’£ﬁe context).
(2). Clearly, each DOS language is generated by a reduced DOS

system, that is by a DOS system G = (z, h, w) such that each letter

from © appears in at least one word of L(G). In the sequel we will

consider reduced DOS systems only. 0

Example 1. Let G = ({a, b, cl, h,'b) be a DOS system where

h(a) = a2, h(b) = abc and h(c) = c. Then L(G) = (@™c" tm=nz= 0} O

A special kind of a labelled ordered forest is naturally
associated with a DOS system. It plays the role of a derivation tree
in a context free grammar except that now this one forest represents
211 derivations in a given DOS system. It is defined as follows.

Definition. Let I be a finite alphabet. A D-forest (éver %)
is an infinite ordered labeled forest T such that:

(1). there exists a positive integer k such that for every node u of
T the out-degree of u is not bigger than k,

(2). for every node u of T the subtree of T rooted at u (denoted as

Tu) is infinite,

(3). every node of T is 1abelled either by an element of £ or by

the empty word, |

(4). if a node u is labelled by A then every node in T, is labelled

by A,



(5). if nodes u and v have the same labels, then Tu and TV are
isomorphic (with the isomorphism on labels being the identity

mapping). O

The.ordéred'sequence of roots of the trees of T (in the order
they occur in T) is referred to as the origin of T. (Hence, if T is
a tree then the origin of T is the root of T).

With every D-forest over I we can associate a language over I as
follows.

Definition. Let T be a D-forest. A cut of T is a sequence t of
nodes from T such that on each infinite path in T starting in the
origin of T there is exactly one node from t and the order of nodes in
t is their (left to right) order in T. We use cut T to denote the sef

of all cuts of T. [0

Definition. Let T be a D-forest over an alphabet z. The cut

language of T, denoted L (T), is defined by

cut

Lcut(T) = {0 e t* 1 a = K(ul)...ﬂ(uh) where Ups-..oUp are

nodes of T and Up..oup e cut T}. J



Example 2. Let T be a D-forest represented by the following

fragment of it:

The sequence of encircled nodes in their left-to-right order
represents a cut of T; the word corresponding to this cut is a4bc2.

The cut language of T is {@™me" tmzn> 0r. 0O

Given a DOS system G = (£, h, w) one can construct its D-forest
TG "originating in w" in much the same way as a derivation tree is
constructed in a context free grammar except that:
(1). Tq is infinite (and, as usual, if u is a node labeled by b ¢ &
then the word obtained by catenating, from left to right, the labels

of direct successors of u equals o if and only if h(b) = «), and



(2). if a node is labeled by the empty word (corresponding to a production
b+ A in G) then it has precisely one direct successor also labelled by
the empty word.

Example 3. The D-forest T from Example 2 corresponds to the

D-forest T. of the DOS system G from Example 1. [J

G

Clearly, given a DOS system G, to each word in L(G) there
corresponds a (not necessarily unique) cut in Tq and the sequence of
labels corresponding to a cut in TG yields a word in L(G). As a matter
of fact we get the following easy to prove result.

Theorem 1.

(1). Let G be a DOS system. Then L(G) = LCut (TG).

(2). Let K be a language. K is a DOS language if and only if there

exists a D-forest T such that L (T) =K. O

cut



IT1. SOME BASIC PROPERTIES

In this section we investigate briefly the role of erasing in
DOS systems, investigate the affect of adding nonterminals to DOS
systems and look at some natural relationships between DOL and DOS
systems.
It tufns out that there are DOS Tanguages that cannot be defined
by PDOS systems.
Theorem 2. There exists a finite language which is in LDOS\L(PDOS).
Proof.
Consider K = {ab, b}. K is a DOS language because it is generated
by the DOS system ({a,b}, h, ab) where h(a) = A and h(b) = b. However
if we assume that K = L(G) for a PDOS system G then b must be the
axiom of G and consequently (since b £ ab) L(G) must be infinite; a

contradiction. [

A standard language-thecretic method to increase the language
generating power of a class X of language generating systems is to
equip the elements of X with the mechanism of nonterminal symbols.
Surprisingly enough, adding nonterminals to DOS systems does not alter
the class of languages generated.

Definition. An EDOS system is a construct G = (%, h, w, A)
where U(G) = (£, h, w) is a DOS system and & < ¢ (elements of 4 are
called terminal symbols and elements of I\A are called nonterminal

symbols). The language of G is defined by L(G) = L(U(G)) n a*. O

Theorem 3. L(DOS)= L(EDOS).
Proof.

(i). Obviously L(DOS) < L(EDOS)..
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(i1). Let us consider an EDOS system G = (¢, w, h, 8). Let
b e r, let u be a node in TG Tabelled by b and let us consider Tu |
(the subtree of TG rooted at u). We say that b is blocking if there
is an infinite path 7 in Tu originating in u such that all nodes
appearing in t, with the possible exception of u, are labelled by the
elements of £\A. Otherwise b is called nonblocking.
Let h be the homomorphism on £* defined as follows.
If b is blocking, then h(b) = b.
If b is nonblocking, then on every infinite path £ in Tu originating in
u we choose the node on &£ which is closest to (but different from) u
and labelled by an element of 4 u {A}. By Konig's lemma there is a
finite number of such nodes (on all infinite paths originating in u);

let their (left to right) order in T, be vy, .uvy and let cy5...,C

be their corresponding labels (all of them are e1eﬁents of A v {A}); g
Then let h(b) = Cl"'cmb’

let G = (2, i, @) be the DOS system where w = h(w).

It is easy to see that L(G) = L(G); the key observation here is
that the sequence vl,...,vmb used in the definition of h(b) for a
nonblocking b is a cut of»TG and in every successful derivation in G if
an occurrence of b is rewritten then at some stage it must yield an
occurrence of h(b).

Hence L(EDOS) < L(DOS). O

In the rest of this section we will contrast DOL systems with
DOS systems. One of the basic properties of a DOL language is that the
number of different subwords of the length k it can have is bounded by

2

the quadratic function C - k“ where C is a constant (see [RS 1). DOS

languages are not subject to such a restriction on the number of
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subwords they can generate.

Theorem 4. There exists a DOS Tanguage K over a two-letter
alphabet £, such that for each n = 0 all words over I of length n
appear as subwords in K.

Proof.

Consider the DOS system G = ({a,b}, h, a) where h(a) = ba and
h(b) = ab. Clearly for every word o« in {a,b}* there exists a word 8
in L{G) such that g = o vy for some word y in {a,b}*. Thus K = L(G)

satisfies the statement of the theorem. [J

An instructive way of investigating the relationship between
parallel and sequential rewriting systems is to consider a DOL system
éé a DOS system (that is to apply the homomorphism involved sequentially)
and, the other way around, to consider a DOS system as a. DOL system
(that is to apply the s-homomorphism involved in the parallel fashion).

This topic is investigated now.

Definition. Let G = (Z, h, w) be a DOL system and G=1(%, h, w)
be a DOS system. We say that G and G are twins if 1 = %, h = h and
w = o (and we write G = twin G and G = twin G)gl) 0

Theorem 6.
(1). There exist DOL systems Gl’ G, such that L(Gl) = L(Gz) but
L{twin Gl) # L(wwin GZ)'
(2). There exist DOS systems Gy, G, such that L(Gl) = L(GZ) but

L(twin Gl) # L(twin GZ)'
Proof.
(1). Consider DOL systems G1 = ({a,b,c}, hl’ abc) and
G, = ({a,b,c}, hz,abc) where hl(a) = abz, hl(b) = b, hl(C) =C
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and h,{(a) = ab, h2(b) = b and hz(c) = bc. Then

2
L(G,) = L(B,) = {a b2l s 03, while

n + 1 c

1)
W(twin G;) = {a b :n= 0} # Llewin 6,y = fab"c :n = 13,

(2). Consider DOS systems G, = ({a,b,c}, hys abc) and

6, = ({a,b,c}, hy, abc) where hy(a) = ab?, hy(b) = b, hy(c) = c and
hy(a) = a, hy(b) = b3, h(c) = c. Then
L(6,) = L(G,) = {a b L s 03, while
n
L{twin Gl) = {a b2n *le.ns 0} # L{twin 62) = {a b3 c:n=0} O

We will discuss now a situation in which knowing a property of
a DOL system G we can infer a property of the language L(zwin G). MWe
start by recalling the notion of rank of a DOL system (see [ ER]). |
Definition. Let G = (%, h, w) be a DOL system.
(1). The rank of a letter b in G, denoted as rank; b is defined
inductively as follows.
(). If {o:b & a} is finite then ranky b = 0.
(ii). Forn =1 let hn denote the restriction of h to
L, = I\a : ranks a < n} and let G = (z, hs w). If {a:b g¢ al is
finite then rank, b = n. "
(2). We say that G is a DOL system with rank if every useful letter in
G (that is a letter in w or a letter reachable from a letter in w) has

a rank. In that case the rank of G, denoted as rank G, is defined as

the highest of the ranks of useful letters in G.

Theorem 6. Let G be a DOL system with rank. Then L{twin G) is
a context free language of finite index.
Proof.

let G = (£, h, w). LetT =1{a: aecz}and let for a in I*, a
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be the word produced by replacing all occurrences in o by their barred

counterparts from z; also A = A. Then let H = (V,, V., P, S) be the

NQ T’
(S} uT with S ¢z uzs, V; =12 and

i

context free grammar where VN

P={S > wyui{a= a:h(a)

it

el u{a » a:aezxl.
Clearly L(H) = L(twinG).

Let T be a derivation tree of a word o in H. We give now a
method for obtaining from T a derivation of « in H such that the number
of nonterminals in every word of it is smaller than some constant Q
dependent on H only.

(1). First rewrite the axiom S using the production S -+ w.

(2). Let g be a sentential form already obtained in the derivation
process.

(2.1). If g contains an occurrence o of a letter b e % which in T
corresponds to a node replacedvby the production b -~ b then this
occurrence o must be replaced by the production b -+ b. |

(2.2). If step (2.1) cannot be applied to g, then productions
different from the productions of the form b » b, b ¢ T, can be applied
to B, subject to the following restriction: an occurrence of a Tetter
of rank m in 8, m = 0, can be rewritten only if g contains no
occurrence of a letter of rank smaller than m.

Observe that if we consider only derivations in H obtained
according to the above method then we derive all elements of L(H)
(because we get every derivation tree in H). However if D is a
derivation obtained as above then
(i). if we apply a production of the formb -~ b, b e T to a
sentential form g, then the number of occurrences of (barred) letters

of any given rank (if a in G has rank m, then we say that a has rank m)
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does not increase,
(ii). if we rewrite a letter b of rank m, then we do not introduce
any letters of rank bigger than m, and
(iii). if we rewrite a letter of rank m 2 1 then if we introduce
letters of rank smaller than m then in a single rewriting we}cannct
introduce more of them than the maximal length of the right-hénd'side
of a production in P. ‘

Thus, clearly, no sentential form in H obtained as above has
more than Q nonterminals, where Q is a constant dependent on H only.

Consequently, H is a context free grammar of finite index. [J

We end this section by demonstrating that the emptiness of the
intersection of a DOS language with a DOL language problem is
undecidable.

Theorem 7. 1f is undecidable whether or not L(Gl) n L(GZ) =0
where G1 is a DOS system and G2 is a DOL system.

Proof. '

Let G, = (¢, h, wl) and Eé = (3, h, mz) be two arbitrary
cofunctional DOS systems, that is DOS systems with the same
s-homomorphism. Let G, = twin Eé.

(i). Assume that L(Gl) n L(GZ) # B. Since, L(GZ) S_L(Gl), this implies
that L(Gl) n L(Gi) £ 0.

(i1). Assume that L(Gl) n L(GZ) # 0. This means that there exists a
word o which is both in L(Gl) and in L(GZ)‘
L(Gl) n L(GZ) # @. Otherwise, let us consider a cut u

If a.¢ L(G,) then

5)
1 in TG yielding
a in L(Gl) and a cut u, in T, yielding o in L(Gé); the situation is

2
illustrated by the following picture:
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We can certainly rewrite nodes in Uy, in such a way as to get a
"horizontal cut" Z, in TG" that is a cut consisting of nodes all of
2

which are of the same distance from the origin of TE" Since G1 has
2

the same s-homomorphism as G2 and both Uy and U, yield the same word

() we can certainly rewrite nodes of Uy in TG in the same way as
1 b
the corresponding nodes of u, are rewritten in T@ , in this way we ge
2
a cut z, (note that z, does not have to be a parallel cut in T, ).

1
Hence we get the following situation:



-16-

Obviously both Z, and Z, will yield the same word, say B. Hence

B e L(Gl) n L(GZ) and consequently L(Gl) n L(Gz) # 0.
(iii). From (i) and (ii) it follows that L(Gl) n L(Gé) # 0 if and only
if L(Gl) n L(Gz) # @. Since it was proved in [ER2] that it is

undecidable whether or not L(Gl) n L(@é) = @ for arbitrary DOS systems

Gl’ GZ’ this implies that the theorem holds. [J
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III. ON THE STRUCTURE OF DOS LANGUAGES

In this section we provide a result on the combinatorial
structure of DOS languages and investigate some of its consequences.
We also look at the closure properties of L(DOS).

First of all we need the following terminology: 1if (a, B) is
a pair of words such that either |a| = 1 or |g] = 1 then (a,8) is
called unary.

Theorem 8. Let K be a DOS language. For every o, ¢ K there
exists a positive integer and words O seeesOpns BysesesBy such

that o = a ..., B = 87 . B85 (as, Bi) is unary for 1 < i < n and

1 i
YooY, € K for all words Yyse-eoYy such that, for every 1. 2 i > n,
i = = !
either Yy T ooy oroyy Bi'
Proof.

Let K ¢ L(DOS)and let «,8 ¢ K. Let G = (£, h, w) be a DOS
system generating K, Tet cuta and cutB be two cuts of TG corresponding
to o and B respectively, and let CUT(a,B) be the set of all nodes

appearing either in cuta or in cut Let u ¢ CUT(a,8) and let t be an

8

infinite path in TG to which u belongs. We say that: u is equal on

t if u is the only node from CUT(w,8) on t; u is higher on t if there

are two nodes from CUT(«,8) on t and out of these two u is closer to

the origin of TG; u is Zower on v if there are two nodes from

CUT(a,B) on ¢ and out of these two u is further from the origin.of T..
Note that the three cases above exhaust all possibilities for u

on t and moreover if ¢ is an infinite path in TG such that u belongs

to £ then:

u is equal (higher, lower respectively) on t
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if and only if
u is equal (higher, lower respectively) on .
Consequently we can partition elements of CUT(a,B) into three

classes as follows:

E = {ue CUT(a,B) : u is equal on t for every infinite
path = in Tg to which u belongs},
H={ue CUT(a,8) : u is higher on t for every infinite
path t in TG to which u belongs}, and
[ = {y e CUT(a,B) : uis Tower on t for every infinite

path t in TG to which u belongs}.
Elements of E, H and L are referred to as equal, higher and lower
nodes respectively.

Let tl,...,tq be the sequence of all nodes from E u H in the

(left to right) order that they appear in TG' Let h be the mapping
from E u H into the ordered pairs of words over i defined as follows.
Let u ¢ E u H; then

h(u) = (&(u), &(u)) if u ¢ E,

(£(u), E(ul)u.ﬂ(umu

ul,...,ﬁh are all nodes from CUT(a,B) that are descendants of u in
u

TG and they appear in this, left to right, order in TG,

=

—~
<

S
4

})) if ue Hand u ¢ cut_» where

A

m
_ u
ul,...,um are all nodes from CUT(«,8) that are descendants of u in TG

u

and they appear in this, left to right, order in TG.

), £(u)) if ue Hand u ¢ cutB, where

Clearly
- if u e H and either h(u) = (a,a) where u,(a,o) satisfy (2) above, or

h(u) = («,a) where u, (a,a) satisfy (3) above, then a §> a. (8.
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Let mw=h(t,) h(t h(t ) and Tet

LR q

N Bn) result from = by erasing from it all

1)
(0’-1» Bl) (OLZ’ 82) .o (O‘n
pairs of the form (A, A). Now it is easy to see that the fact that
tl,...,tq is a cut of Tg, observation ($) and Theorem 1 imply that

Ny agsesestos Bl""’Bn satisfy the statement of the theorem. [

The following result demonstrates that the above theorem cannot
be strengthened into the "if and only if" result.

Theorem 9. There exists a nonrecursive language K satisfying
the conclusion of Theorem 8.

Proof.

Let M be a nonrecurisve set of positive integers and Tet
v = {a, bl Then, obviously, L= {a b" a : n e M}* is nonrecursive.
let ¢ = u {A,B,C}, where {A,B,C} n T =@, and let K = A {BLC}*.

That K satisfies the conclusion of Theorem 8 is seen as follows.

Let o, B ¢ K.
If either |a] = 1 or |8] = 1 then the conclusion of Theorem 8 obviously
holds.

Hence assume that

!

o = ABm CBw C...Bn,C,
r r 1

-1

ABE CBE,_C...BEC

H

B

for some s = r > 1 and wl,...,nr,gl,..;,g Sn L.
Set n =2 r+l, and

if s = r then set

i

a) = A, B1 A,

i

B, B, = BEgs
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Gy = w C, 83 = C,

“or = B Bpp = Beys

“ors1 T M0 Fopag T G
if s > r then set

i
i}

¢4

ABg CBe. C...Be .,C

1% A By r+1%°

i

o, = B, By = BE

a3 = WFC, 83 = C,

OLZI" = B, BZT‘ = 8&19

qutl = 190s Bopyq® C.

Then, obviously, the conclusion of Theorem 8 holds for this .. .

choice of n, SERERRLA Bl,...,sn. 0

Even if we consider only languages K "quite close" to DOS
languages, the condition of Theorem 8 would not suffice for the
characterization of the class of DOS languages as illustrated by the
following. Let us call a unary pair of words (a,8) from K strong if
whenever vy ¢ {a,8} and |y| = 1 then §1¥8, € K implies that 8,88, ¢ K
if y = o and §1ad, € Kif y = 8. Let us refer to the conclusion of
Theorem 8, where we replace the word "unary" by "strong and unary"
as the "modified conclusion of Theorem 8." Clearly our proof of
Theorem 8 implies that its modified conclusion holds. A 0S system
is a nondeterministic version of a DOS system, that is the
s-homomorphism in a DOS system is replaced by a finite substitution.

0S systems generate 0S Zanguages.
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Now we can state our second "negative" result about the possibility
of turning Theorem 8 into an "if and only if" theorem. (Note that the
modified conclusion of Theorem 8 is stronger than the conclusion of
Theorem 8).

Theorem 10. There exists a 0S language K satisfying the
modified statement of Theorém 8 such that K is not a DOS language.

Proof.

Consider a (propagating) 0S system G = ({a},h,az) where the
finite substitution h is defined by h(a) = {a3,a4}. Then, obviously,
L(G) = {az} v {a" : n = 4}). Let us consider a pair of words (a,8)
from K.

(1). If o = B then clearly the modified statement of Theorem 8 holds.
(2). If either o = a2 or g = a2 then obviously the modified statement
of Theorem 8 holds.

a4 5

(3). Ifa-= , B = a then ay = a3, ay T A, By = @, By = a4 satisfy

the modified statement of Theorem 8.

(4); If o= a4, B = an, n > 5 then we can write o = aq0ips B = 8182

with ap = o, = az, 81 = a2 and 82 = e\n'2 where n 2 2 4. Then it

1

follows from (2) that (a,8) satisfies the modified statement of

Theorem 8.
(5). Since it is clear that if all pairs of the form (a4,an) satisfy
the modified statement of Theorem 8, then also all pairs of the form
(ak,an) , k > 4 satisfy this statement, the theorem holds. [

The next result following directly from Theorem 8 allows one to

provide numerous examples of languages that are not in L(DOS).

Corollary 1. Let K ¢ L(DOS).
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(1). Let a,8 in K be such that |a| = 2 and |g]| = 2. Then there exist
words s oo Bl’ Bo such that a= %005 B = 8182, alglﬁA, a262 # A,
LI K and Blay € K.

(2). Let K c 1*and let (z,,2,) be a partition of I. If there exist

a8 in K such that |a] 2 2, [g] 22, o ¢ ZI, B e z; then there

* *
exists a word y in K such that vy ¢ Ty U I,

Proof.

(1) follows easily from Theorem 8 and (2) follows directly from (1). O

We conclude this section by establishing the closure properties
of L{DOS).
Theorem 11. For each of the following operations
i). union,

ii). intersection,

(
(
(iii). concatenation,
(iv). the star operation,
(v). intersection with a regular set,
(vi). A-free homomorphism,
(vii). 1inverse homomorphism,
there exists a finite DOS language, or finite DOS languages if the
operation is binary, such that the application of the given operation
to the given language or languages produces a language which is not a
DOS language.

Proof.

Let Kq = {az,bz}. It follows directly from Corollary 1.(2) that
KO ¢ L(DOS).
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Let K, = {ab,a3,b3,a2b2}. That K, ¢ L(DOS) is seen as follows.

If we assume that G = ({a,b},h,w) is a DOS system such that L(G) = Ky

then it follows immediately from the form of Kl that is o ¢ h(x) for
x ¢ {a,b} then |a| = 1. Then however it must be that w = a%b? and
none of the words ab, a3, b3 is in L(G); a contradiction.

Let K, = {ab,a3}*. That K, ¢ L(DOS) is seen as follows. If we
assume that G = ({a,b},h,w) is a DOS system such that L(G) = Ko then
it follows immediately from the form of KZ that if o ¢ h(x) for
x ¢ {a,b} then |a| =2 1. Consequently ab €> a> which implies that
h(b) =a2. Since either ab 7 abab or a3 E> abab, and a3 E> abab
is impossible, it must be that h(a) = aba. Then however
(aba)3 € h3 (a3) while (aba)3 ¢ KZ; a contradiction.

Let K, = (ab,ba,b’}. It follows directly from Corollary 1.(1)
that Ky ¢ L(D0S) (take « = ab and B = ba).

Now we prove the theorem as follows.

(i). Both {az} and {bz} are DOS languages, however {az} U {bz}

]
s

(i1). Let G = ({a,b},h, a2) and H = ({a,b,c}, ﬁ}az) where h(a)
h(b) = b and h(a) = ¢, h(b) = b, h(c) = b. Then L(G) n L(G) = K

Y
o
-

0
(iii). Both {a,bz} and {b,az} are obviously DOS languages, however

{a,bz} {b,az} = Kl.

(iv). {ab,a3} is obviously a DOS Tanguage, however {ab,a3}* = K.
(v). Let G = ({a,b}, h,az) where h(a) = b and h(b) = b. Then
L(6) o {a2,b%) = ta?,b%).

(vi). {a,b} is obviously a DOS language, however h({a,b}) = K

where h is the A - free homomorphism defined by h(a) = a2 and

0
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(vii). Let h be the homomorphism from {a,b}* into {A}* defined by
h(b) = A and h(a) = AZ. Then h—l({Ag}) = Ky, where {A3} is a DOS

language. 0O



IV. A REPRESENTATION THEOREM FOR CONTEXT FREE LANGUAGES

In this section we establish a representation theorem for the
class of context free languages that is analogous to the well-known
Chomsky-Schiitzenberger Theorem except that rather than Dyck languages
it uses DOS analogues of Dyck Tanguages. To put this result in proper
perspective we observe first that Dyck languages using more than one
kind of parenthesis are not DOS languages.

Example. Let n 2= 2 and let Dn be the Dyck language over n letters
(so the alphabet of D, is {[1""’[n’1]""’n]})‘ Then D_ ¢ DOS.

Proof.

Take o = [1 1] and g = [2 2]. Then the conclusion of Theorem 8
does not apply and so Dn ¢ L(DOS). [

Theorem 12. For each context free language K there is a PDOS
language L, a regular Tanguage R and a weak identity h such that
K=nh(LnR). |

Proof.

Let K be a context free language.

By the Chomsky-Schiitzenberger Theorem (see, e.g., [ S2]) there
exists an integer n a regular language M and a weak identity g such

that K

i

g(Dner) where Dn is the DycK language on n letters, assume

it

that z {ag,..-5a ) and T = {a .,56} are Tetters (left and right

"parenthesis") of Dn‘ Let A = {bl,...,bn}, An(fuz) =0, Let

a = bl"'bn’ 0=13vu 7T and let T, be the mapping of @* defined as

follows:

TA(A) = q, and

for g = Xl"‘xk’ k =21, x . xk € 0,

1,..
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TA(B) = a Xl o Xg...a Xk .

*

Let R = TA(M) and Tet h be the homomorphism on (o u A)* defined by

g(x) if xe vz,
h(x) =
A if X e A,

Clearly K = g(Dner) = h(TA(Dn)r\TA(M)) = h(TA(Dn) nR).

Hence to complete the proof of the theorem if suffices to show
that TA(Dn) ¢ L(DOS). To this aim, let G = (0,f,a) be the
DOS system where f is defined by:

- for x e x vz, f(x) = x, and
- for 1<i<n, f(bi) = bibi+l...bnaich}ble...bi.

It is not difficult to see that indeed L(G) = TA(Dn). Rather
than provide a rathér tedious proof of this fact we give now the
basic intuition underlying the equality L(G) = TA(Dn).

It is well known (éee, e.g., [S2]) that D, is generated by the
context free grammar Hn with one nonterminal only, say S, and the
following productions:

- S - A, and
- for every i ¢ {1,...,n},
T (S - Sa, SE}S) is a production.

Our DOS system G does nothing else but simulates Hn in such a
way that S is replaced in every sentential form by o . Then whznever
an occurrence of S in a sentential form y of Hn is replaced by s in
the corresponding occurrence of o = b1 ...bn in the corresponding
sentential form (here the element of L(G)) ¥ of G the unique
occurrence of bi in (the given occurrence of a) is replaced using the
production by ~ b.b,, . .bnaﬂma}bl...b

17i+1°° i
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It is best illustrated by the following diagram.

=

Since G is organized in such a way that between any two

consecutive occurrences of elements from & u T in any element of
L(G) there is an occurrence of «, indeed it is intuitively clear
that L(G) = Ty (Dn).

Consequently the theorem holds. [

'
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FOOTNOTES

(1). As usual to simplify the notation we consider a finite substitution

*
on & yielding a singleton image for each element of & to be a homomorphism

*
on ¥ .



