
Efficient Synthesis of Network Updates

by

Nilesh Jagnik

B.Tech., Indian Institute of Technology, 2014

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Computer Science

2016

This thesis entitled:
Efficient Synthesis of Network Updates

written by Nilesh Jagnik
has been approved for the Department of Computer Science

Prof. Pavol Černý

Prof. Sriram Sankaranarayanan

Dr. Ashutosh Trivedi

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Jagnik, Nilesh (M.S., Computer Science)

Efficient Synthesis of Network Updates

Thesis directed by Prof. Pavol Černý

Sofware Defined Networking simplifies network control, configuration and setup by abstract-

ing some steps in these processes. Packet traffic routes in a Software Defined Network(SDN) may

need to change due to policy changes. To implement these policy changes, we need to ensure that

the SDN is updated consistently. Any packet in the network should be routed either according

to the new policy or the old policy. If a packet can take a route which lies partially in the old

policy and partially in the new, the network is said to be in an inconsistent state. We present an

algorithm that produces an order of node updates which preserves consistency in an SDN. This

algorithm will either find an order that preserves efficiency in the SDN or fail stating that such an

order does not exist for the SDN.

When a node is updated, its routing tables are changed. However, it may take some time for the

network to experience this change as there may be some slow packets on the old routes outgoing

from it. For this reason, we may need to wait before we update the next node. Our algorithm finds

a consistency preserving order that needs minimum number of waits.

iv

Acknowledgements

First and foremost, I would like to thank my thesis advisor Pavol, for showing interest in me,

motivating me, guiding me, believing in me, appreciating me and investing time in me. All credit

for everthing that I have been able to present in this thesis, goes to Pavol. In my life, I shall strive

to be a good teacher and a good person like you.

Next, I would like to thank my parents and sister, who have supported me throughout my time at

CU Boulder. There is no satisfaction that compares to seeing pride in your parents’ eyes because

of what you have accomplished.

A special thanks goes to Jed, for his suggestions and valuable inputs on this thesis.

I also feel gratitude towards the entire country of U.S.A, which gave me the opportunity to study

and discover my interests.

v

Contents

Chapter

1 Introduction 1

2 Examples 3

3 The Network Model 5

4 The OrderUpdate Algorithm 7

4.1 Conditions for updating nodes . 7

4.2 Correctness and Completeness of ORDERUPDATE Algorithm 9

5 Minimizing Waits 14

5.1 Purpose of Waits . 14

5.2 Condition for Waits . 14

5.3 A Greedy strategy . 15

5.4 Proof of Optimality . 15

6 Related Work 21

7 Conclusion 23

Bibliography 24

vi

Figures

Figure

2.1 A trivial update . 3

2.2 Double Diamond case. No update sequence exists. 3

2.3 Removable Double Diamond. Here Ci edges are solid and Cf edges are dashed. . . . 4

4.1 Necessary conditions for updating a node s . 8

Chapter 1

Introduction

Software Defined Networking(SDN) is revolutionizing the networking industry, by abstracting

low level networking tasks and providing high level APIs for network programmers. However, there

are still very few mechanisms that reliably abstract the updating of global configurations. Even if

initial and final configurations are correct, näıvely updating individual nodes can lead to incorrect

transient behaviors, including loops, black holes, and access control violations. In this study, we

present an approach for automatically synthesizing updates that are guaranteed to preserve consis-

tency properties with minimal wait time throughout the update. We ensure per-packet consistency

[9], a guarantee that every packet traversing the network will follow one global configuration, either

old or new, throughout the update. Every packet traverses a route specified either by the policy in

place prior to the update or by the updated policy and not a mixture of both. This would ensure

that there are no transient loops or blackholes in the network as long as there are none in the initial

and final network configurations.

To reliably update all nodes on the network, we may need to pause the update mechanism(wait)

after an update, in order to let traffic along paths that were removed get flushed from the network.

In Chapter 5, we shall see that a wait may not be required after every update. We find an order of

updates such that the number of waits required is minimal.

The network in our model is a directed graph, with non-weighted edges, and we update it from

an initial configuration, to a final configuration, with minimal waits, while preserving per-packet

consistency throughout the update. Such an order may not always exist, in which case, we state

2

that a consistency preserving order does not exist. Other papers have presented search-based ap-

proaches [4, 3, 5, 11, 8, 7, 10], that deploy models to prune search trees based on heuristics and

constraints for preserving consistency. We present a polynomial time algorithm that updates nodes

sequentially, and whenever possible, avoids waiting after an update.

Chapter 2 presents a few examples of consistent network updates which illustrate the challenges

for finding a consistent order of updates. Chapter 3 formalizes our network model, presents pre-

cise definitions of consistency and waits, and states our problem statement. Chapter 4 presents

a polynomial time algorithm, OrderUpdate, which finds an order of updates that preserves con-

sistency. In this chapter, we also prove the correctness and completeness of the OrderUpdate

algorithm. Chapter 5 presents a modification, PickAndWait, to the OrderUpdate algorithm that

minimizes the number of required waits. This modification adds a degree of determinism to the

non-deterministic OrderUpdate algorithm using a greedy scheme. We prove that the OrderUpdate

algorithm with the PickAndWait modification, is complete, and produces an order of consistent

updates with minimal number of waits. We finally discuss related work in Chapter 6 and conclude

our results in Chapter 7.

Chapter 2

Examples

Let us consider some easy cases. In Figure 2.1 and Figure 2.2, Ci edges are solid and Cf

edges are dashed. In Figure 2.1, there is a trivial update order - A,H1,B. Note that H2 does not

need to be updated as it has no outgoing edges. However, in Figure 2.2, no matter the order you

update nodes in there will always be inconsistency. This is because H1 can not be updated unless

downstream path from C to H2 is updated. But also, C can not be updated unless the upstream

path from H1 to C is updated. We refer to this case as the Double Diamond case. There is a

circular dependency between H1 and C.

H1

A

B

H2

Figure 2.1: A trivial update

H1

A

B

C

D

E

H2

Figure 2.2: Double Diamond case. No update sequence
exists.

However, we can not say that the presence of a double diamond implies that there can not

be a solution. In Figure 2.3, there is a double diamond between D and G(there are mutiple double

diamonds in this figure), but updating B and waiting removes the old traffic incoming to D. The

nodes D,E,G, F,H, I and J have no incoming traffic. These disconnected nodes can be updated

without worrying about consistency. So, the circular dependency is removed. A valid update

order(not considering waits) would be A,H1,K, L,B,D,E, F,G,H, I, J, C,M . So we see that it is

4

not trivial to know whether an update order exists, and if it exists, to find it.

H1 A

B

C

D

E

F

G

H

I

J K H2

L

M

Figure 2.3: Removable Double Diamond. Here Ci edges are solid and Cf edges are dashed.

These examples lead us to believe that we need a systematic algorithm to find out whether

a consistency preserving update order exists, and if it does, then find it. We shall present an

algorithm that does this and also prove its correctness and completeness.

Chapter 3

The Network Model

Network and Configurations. A topology of the network graph G, is a tuple (N,E),

where N is a set of nodes; and E is a given set of directed edges. The configuration, C ∈ P(E),

of a network G is the set of edges present in G at some time instant. Updating a node removes

some old edges and adds new edges, thus changing the configuration of G. Our goal is to bring

the network, from an initial configuration Ci, to a final configuration Cf . Random is a function

P(N)→ N , that given a set of nodes P , picks a random node a = random(P) from it.

Sources and Sinks. The directed graph G, in any configuration, has only one source H1 and one

sink H2.

Cycles. The graph G is acyclic in any configuration. Cycles in G are undesirable as it would mean

that traffic can loop forever in the network.

Updates. Let R be the set of all sequences that can be formed using nodes in N without repetition.

To update a graph G, we define upd as a function P(E) × R → P(E), that given a configuration

C and a sequence of nodes S, outputs an updated configuration C ′ = upd(C, S).

Paths. Let Q we the set of all possible directed paths in network G. For obtaining paths, we

define paths as a function N ×N × P(E) → P(Q), that given a start node s, an end node t, and

a configuration C, outputs a set of all paths P = paths(s, t, C) between s and t in configuration

C. We define the ∈ operation for a path p and configuration C so that, if p ∈ C, then all edges in

path p lie in set C. nodes is a function Q→ P(N), that given a path q returns a set S = nodes(q)

of all nodes on a path.

6

Consistency. A configuration C is a consistent configuration iff ∀p ∈ paths(H1, H2, C) : p ∈

Ci ∨ p ∈ Cf . There are no paths between H1 from H2 that satisfy neither the old policy nor the

new policy. This means that if an edge in C lies only in Cf (Ci) then all paths in C that include

this edge must lie in Cf (Ci).

Packets. We assume that all packets in the network are of a single type. This assumption lets us

focus on consistency issues which occur due to the network graph alone.

Waits. Let Cc = upd(Ci, U) be the current configuration reached after updating a sequence U . Let

Cw = upd(Ci, U
′), where U ′ is a prefix of U , be an intermediate configuration which was reached

while updating sequence U . And we chose to update some node n, s.t. ∃p ∈ paths(H1, n, Cw) :

p 6∈ Cc ∧ ∃q ∈ paths(n,H2, upd(Cc, n)) : q ∈ Cf , then if there were no waits between Cw and Cc,

we need to wait before updating n. This wait is required because some old configuration had a old

path which was removed(only Ci paths can be removed). So, traffic along this removed path needs

to be flushed as there is a Cf -only path downstream after the update. Not waiting would send Ci

traffic on a Cf path, resulting in inconsistency.

Commands. Our update mechanism consists of two commands - update and wait. The update

command updates a specified node and changes the configuration ofG. Since |N | nodes are updated,

the number of update commands is always a constant. The wait command simply pauses the update

mechanism for some time to allow packets along old edges to get flushed from the network. The

wait command does not change the configuration of G.

The Network Synthesis Problem. We need to find a sequence of commands U = v1, v2, ...vn

such that:

(1) After executing the sequence U , G is in configuration Cf .

(2) Configuration of G after executing each command is consistent.

(3) n is minimal.

Or state that such a U does not exist.

Chapter 4

The OrderUpdate Algorithm

4.1 Conditions for updating nodes

At any point of time during the update, let us refer to the intermediate configuration at this

time as Cc, denoting current configuration. We shall assume that Cc is consistent and we find a

node s to update such that the new configuration upd(Cc, s) is also consistent. Since Cc = Ci

initially, this assumption is correct for the first node update. And so, starting from Ci, at every

point of time, we find a node to update so that the updated configuration is also consistent. In

every intermediate configuration Cc, if a node s follows conditions in Figure 4.1, we can update it.

We now explain why these conditions are necessary for getting an order of updates that maintains

consistency. To update a node, it needs to satisfy an upstream and a downstream condition of

any one of the types listed below. In every case, there is an upstream condition on a node that

gives us information about the paths that the packets on the network have taken to reach it from

H1. Based on this information, it may or may not be safe to route the traffic downstream to H2

according to the new routing policy. For every upstream condition, a downstream condition must

be satisfied by a node to be updated. In general, a node that satisfies an upstream condition is

called a candidate node and if this candidate satisfies the downstream condition, then it is called

a valid node.

• Type-A or Disconnected Nodes - Some nodes in Cc have no traffic incoming to them.

Updating these nodes does not cause any change in network traffic and thus maintains

8
Type Upstream(Condition for paths(H1, s, Cc)) Downstream(Condition for

paths(s,H2, Cc))

A Za =6 ∃p ∈ paths(H1, s, Cc) -

B Zb = ¬Za ∧ ∀p ∈ paths(H1, s, Cc) : (p ∈ Ci ∧ p ∈ Cf) ∀p ∈ paths(s,H2, upd(Cc, s)) :
p ∈ Ci ∨ p ∈ Cf

C Zc = ¬Zb ∧ ∀p ∈ paths(H1, s, Cc) : p ∈ Cf ∀p ∈ paths(s,H2, upd(Cc, s)) :
p ∈ Cf

D Zd = ¬Zb ∧ ∀p ∈ paths(H1, s, Cc) : p ∈ Ci paths(s,H2, upd(Cc, s)) 6= φ ∧
∀p ∈ paths(s,H2, upd(Cc, s)) :

p ∈ Ci

E Ze = ¬Za ∧ ¬Zb ∧ ¬Zc ∧ ¬Zd = (∃pf ∈ paths(H1, s, Cc) :
pf ∈ Cf ∧ pf 6∈ Ci) ∧ (∃pi ∈ paths(H1, s, Cc) : pi ∈

Ci ∧ pi 6∈ Cf)

∀p ∈ paths(s,H2, upd(Cc, s)) :
p ∈ Ci ∧ p ∈ Cf

Figure 4.1: Necessary conditions for updating a node s

consistency. There is no distinction between a candidate and valid node in this type because

there is no downstream condition.

• Type-B - In Cc, all the upstream paths lie in both Ci and Cf . s can be updated if all

downstream paths, after updating s, lie in either Ci or Cf .

• Type-C Nodes - Type B upstream condition was not satisfied. But in Cc, all the upstream

paths lie in Cf . s can be updated if all downstream paths, after updating s, lie in Cf .

• Type-D Nodes - Neither Type A, Type B or Type C upstream condition was satisfied. In

Cc, all upstream paths lie in Ci. In this case there need to be two downstream conditions.

The first condition states that there is a path from s to H2 after the update. This is so

that there are no sinks between s and H2. This condition is required, because in this case,

there are no upsteam Cf paths. Since theer is one sink and one source, having an upsteam

Cf path is enough to ensure that there will be a downstream Cf path after the update.

The second condition states that all downstream paths, after updating s, must lie in Ci.

• Type-E Nodes - A node which does not satisfy any of the above upstream condition is a

Type-E node. There are some upstream paths in Ci and some upstream paths in Cf but

these two sets are disjoint. To update this node s, all downstream paths, after the update

9

should be in both Ci and Cf .

The upstream conditions in Figure 4.1 are exhaustive and mutually exclusive. And for each up-

stream condition, if the corresponding downstream condition is not satisfied, then updating the

node will result in a inconsistent state. Hence, the stated conditions are exhaustive and any node

that can be updated must satisfy one of the conditions in Figure 4.1.

The basic functionality of the ORDERUPDATE algorithm is searching for and updating valid

nodes. We start with a set of nodes N to be updated, which initially contains all nodes, and after

updating we remove the updated nodes from N . Finally, N = ∅ and Cc = Cf since all nodes are

updated.

4.2 Correctness and Completeness of ORDERUPDATE Algorithm

The upstream conditions in Figure 4.1 are exhaustive. The corresponding downstream condi-

tions for each type need to be satisfied for updates to be consistent. Hence if Algorithm 1 produces

a sequence, it is correct. Since the upstream conditions are exhaustive, if any node was not included

in U in Line 14 of Algorithm 1, then it can not be updated in Cc.

Property 1: Removing any paths from Cc does not make Cc an inconsistent state. All

remaining paths are still consistent. Another way of saying this is that removing some paths

upstream or downstream to a valid node in Cc maintains validity of the node in Cc.

Property 2: Once a Cf path is established between two nodes, it can not be broken by any

other update. This is because any update removes Ci paths from Cc but does not remove Cf paths

from Cc.

Lemma 1: If T = UV nY is a valid sequence, then if n was valid after updating sequence

U , T ′ = UnV ′Y is valid sequence where V ′ is a permutation of V , i.e V ′ = π(V).

Updating n before any nodes in V adds some paths to Cc = upd(Ci, U) and removes some paths.

From Property 1, we know that removing paths from Cc does not change the validity of nodes in

V . But there are some nodes for which upstream or downstream paths were added. We now prove

10

that there exists an order V ′ in which we can update nodes in V to form an equivalent sequence

T ′.

Let us argue for all nodes f in V moving along the sequence V from left to right. Here Cc =

upd(Ci, UV (f)) where V (f) denotes the longest prefix of V that ends before f and C ′
c = upd(Ci, UnV

′)

where initially V ′ is empty sequence:

• Case 1 - There exists some upstream paths from n to f in C ′
c which were not in Cc- Node

f is downstream from n. Any upstream paths added to C ′
c are from Cf . This is because

updating the node n removes Ci edges and adds Cf edges to C ′
c. f could be a valid node

of one of the following types in Cc:

∗ TA: This node was disconnected in T , so the only upstream paths in C ′
c are from

n. All paths from n to f in C ′
c are in Cf but not Ci, so downstream paths from f

to H2 are in Cf . f is not updated still all downstream paths in C ′
c are in Cf . So

outgoing edges from f in Ci are in Cf . We do not update f here. This is because

all downstream paths from f in C ′
c are already in Cf . Since all outgoing edges from

f in Ci are in Cf , updating f would have only added some additional paths to C ′
c.

From Property 1, not updating f does not affect the validity of any other node in the

sequence V . We refer to these nodes that we left out as C1-TA nodes and we will

add them to V ′ in some other way.

∗ TB: A Type-B node becomes a Type-C node if a upstream Cf path is added to it.

Since there is an upstream Cf only path to f from n , all downstream paths from f

in C ′
c are in Cf . Paths starting from f in C ′

c are a subset of the paths in Cc because

some nodes in the sequence V were not updated. Paths in Cc after updating f were

either in Ci or Cf . Paths which were in Ci must exist before updating f as well. If

any of these Ci paths existed in C ′
c, then they have to be in Cf as in C ′

c all paths

downstream from f are in Cf . Hence all paths after updating f will be in Cf . Update

f . V ′ = V ′f .

11

∗ TC: A Type-C node stays a Type-C node if some upstream paths from Cf are added

to C ′
c. This node can is still valid. We update it here. V ′ = V ′f .

∗ TD: Updating a Type-D node does not add any paths to its current configuration. It

only removes some paths from it. Updating f may remove some paths from C ′
c but

from Property 1, this update is safe. V ′ = V ′f .

∗ TE: The Type-E downstream condition is very strong. Any node satisfying this con-

dition can be updated no matter what type of candidate it is. So adding an upstream

path may change the candidacy of this node but its downstream condition will still

be fulfilled. f is still valid for update. V ′ = V ′f .

• Case 2 - There exist some downstream paths from f to n in C ′
c which were not in Cc- Node

f is upstream from n. Any downstream path added was in Cf because updating n can

only add Cf paths to C ′
c. There can not be any Ci only paths from f to n in C ′

c else there

would be inconsistency on the downstream Cf paths. So, all paths from f to n in C ′
c are

in Cf . Since the paths added in C ′
c are also Cf paths, f can be updated because updating

f can only add more Cf paths between f and n. V ′ = V ′f .

• Case 3- There exist no downstream paths to or upstream paths from f in C ′
c which were

not in Cc - Since no paths were added, f stays valid and can be updated.V ′ = V ′f .

• Case 4- There exist both downstream paths to and upstream paths from f in C ′
c which

were not in Cc - This case is not possible since there can not be any cycles in C ′
c.

So far, we removed C1-TA nodes from sequence V and created a subsequence V ′. However we need

to add these nodes to V ′ in some order to make sure that V ′ = π(V). To achieve this we find

the C1-TA node which has no other C1-TA node as its descendant in Cf . We update this node,

add this node to V ′ and repeat this process until no C1-TA node is remaining. There is always

one such node without C1-TA descendants in Cf because there are no cycles in the graph. We

shall now prove that updating this node f maintains consistency. Let C1 = upd(Ci, UV n) and

C ′
c = C2 = upd(Ci, UnV

′). The only difference between C1 and C2 is that some Cf paths in C1 are

12

missing from C2 because some C1-TA nodes were not updated. Updating f in C2 will add these

paths to C2. Since there is no C1-TA descendant, updating f will make C1 and C2 identical w.r.t

paths starting at f .

We have obtained V ′ = π(V). After this point, since updating the same set of nodes in any

order leads to the same configuration, upd(Ci, UV n) = upd(Ci, UnV
′), nodes in Y can be updated

in sequence. Hence we proved that T ′ = UnV ′Y is a correct sequence.

Theorem - Algorithm 1 generates a valid order of updates if there exists one.

Let Q = s1, s2....sn be an valid sequence of updates, and Qalg = s′1, s
′
2,s

′
n be the solution

generated by Algorithm 1. Let r be the first node s.t. ∀i < r : si = s′i. Then using Lemma 1, there

is another sequence Q′ ≡ Q s.t. ∀i ≤ r : si = s′i. Using this argument for every index from i to n,

we can find a valid sequence Q′′ ≡ Qalg.

13

Algorithm 1: ORDERUPDATE

Input: Set of nodes to be updated N , Network Initial Configuration Ci, Network Final
Configuration Cf

Result: An order of consistent node updates
1 W ← ∅ // Waitlist is initially empty

2 Cc ← Ci // Cc starts with the initial value of Ci

3 while Cc 6= Cf // Stop when Cc and Cf are equal

4 do
5 Va ← CNa ← {s | s ∈ N∧ 6 ∃p = path(H1, s, Cc)}

// Type-A Valid/Diconnected Nodes

6 CNb ← {s | s ∈ N ∧ s 6∈ CNa ∧ (∀p ∈ paths(H1, s, Cc) : (p ∈ Ci ∧ p ∈ Cf))}
// Type-B Candidates

7 Vb ← {s | s ∈ CNb ∧ (∀p ∈ paths(s,H2, upd(Cc, s)) : p ∈ Ci ∨ p ∈ Cf)}
// Type-B Valid Nodes

8 CNc ← {s | s ∈ N ∧ s 6∈ CNa ∧ s 6∈ CNb ∧ (∀p ∈ paths(H1, s, Cc) : p ∈ Cf)}
// Type-C Candidates

9 Vc ← {s | s ∈ CNc ∧ (∀p ∈ paths(s,H2, upd(Cc, s)) : p ∈ Cf)}
// Type-C Valid Nodes

10 CNd ← {s | s ∈ N ∧ s 6∈ CNa ∧ s 6∈ CNb ∧ s 6∈ CNc ∧ (∀p ∈ paths(H1, s, Cc) : p ∈ Ci)}
// Type-D Candidates

11 Vd ← {s | s ∈ CNd∧paths(s,H2, upd(Cc, s)) 6= φ∧(∀p ∈ paths(s,H2, upd(Cc, s)) : p ∈ Ci)}
// Type-D Valid Nodes

12 CNe ← {s | s ∈ N ∧ s 6∈ CNa ∧ s 6∈ CNb ∧ s 6∈ CNc ∧ s 6∈ CNd}
// Type-E Candidates

13 Ve ← {s | s ∈ CNe ∧ (∀p ∈ paths(s,H2, upd(Cc, s)) : p ∈ Ci ∧ p ∈ Cf)}
// Type-E Valid Nodes

14 U ← Va ∪ Vb ∪ Vc ∪ Vd ∪ Ve
15 if U = ∅ then
16 EXIT // No consistent order of updates exists

17 end
18 s = PickAndWait() // By default, pick a random node, and wait

19 Cc ← Cc − {e|e = edge(s, t) ∈ Ci} // Remove old outgoing edges from Cc

20 Cc ← Cc ∪ {e|e = edge(s, t) ∈ Cf} // Add new outgoing edges to Cc

21 N ← N − {s} // Remove updated nodes from node list

22 end

Chapter 5

Minimizing Waits

In the previous section, we showed that Algorithm 1 produces a consistent order of up-

dates. In this section, we shall extend Algorithm 1 by modifying the PickAndWait() subroutine on

Line 18.

5.1 Purpose of Waits

When Algorithm 1 picks a node to update, it removes all outgoing edges from it on Line 19,

and updates the current network configuration. In the next iteration, it picks a node which is valid

in the current configuration. If we did not flush the packets on these old edges, our network may

not have actually reached the current configuration we assume it to be in. In Figure 2.3, we need

to have a wait between B and D.

5.2 Condition for Waits

We require a wait if there is an non-flushed Ci-only path upstream which got removed and

there is a Cf only path in the current configuration after the update. These conditions are formal-

ized in the waitUp() and waitDown() clauses in Algorithm 2, in Line 1 and Line 2. To keep track

of flushed paths, we maintain a waitlist W . Any updated node which had traffic flowing through

it on a Ci-only path would be added to waitlist W . We refer to these nodes as waitlist nodes. A

node which has doesnot have any upstream Ci path is called a non-waitlist node. An example is

this is C1-TA node from Lemma 1. Any node which has an ancestor in W on a Ci-only path which

15

was previously removed needs to wait.

5.3 A Greedy strategy

We define priorities and update nodes based on these priorities. The idea here is to delay

waits. Delaying waits would allow the waitlist to build up as much as possible before it is flushed.

We try to keep the wait as far down the sequence as possible. This presents the possibilty that some

of the waits in a non-optimal sequence would be pushed out of the sequence. Any node which does

not need to wait is given a higher priority, priority P0. Nodes that need to wait are given priority P1.

5.4 Proof of Optimality

Property 3: If a node n ∈ P0 in configuration C1 = upd(Ci, S), where S is a sequence of

nodes, then for all sequences S′ of nodes not in S, if n is valid in configuration C2 = upd(Ci, SS
′),

n ∈ P0 in C2.

Suppose in C2, n ∈ P1, then either an upstream conditions was added to n in C2 or a downstream

condition was added to n in C2 or both.

• Case 1- Upstream condition was added in C2 - This means that in C1, n had an upstream

Ci path which got removed in C2. There can’t be a downstream Cf -only path in upd(C1, n).

So, If an upstream condition was added, downstream condition was added too. This case

is equivalent to case 2.

• Case 2- Downstream condition was added in C2 - The downstream Cf -only path was not

present in upd(C1, n) but is present in upd(C2, n). This path is added by some node r in

sequence S′. r was downstream from n and connected to it in C1. In upd(C1, n), n had no

downstream Cf -only paths, so n and r are connected by a Ci-only path. So ancestors of n

are ancestors of r and would have been flushed when r was updated. Also, since r added

a Cf -only path downstream, all Ci-only paths upstream have been removed. In this case,

16

n ∈ P0.

• Case 3- Both upstream and downstream condition was added in C2. This case is already

covered by case 2.

This proves Property 3. Any node that becomes priority P0 at some time, it stays priority P0

whenever it is valid in future.

Lemma 2: If T = UV nY is a valid sequence, and after updating sequence U , n ∈ P0 , then

T ′ = UnV ′Y is valid sequence with lesser or equal waits. Here V ′ is a permutation of V , i.e

V ′ = π(V).

This lemma is an extension of Lemma 1. In addition to n being a valid node, n is a Priority P0

node. We shall prove that if n satisfies these constraints, then T ′ can be constructed using the

same V ′ as in Lemma 1. In T ′, after updating U and n, we first update all nodes in V which were

not C1-TA, in order. We then update all C1-TA nodes in a downstream first order. This way, we

build V ′ from V in two phases:

• Phase 1 - In this phase we update all but C1-TA nodes. Let us argue for each f in Phase

1. For the following proof, Cc refers to the configuration before f is updated in T and C ′
c

is the corresponding configuration in T ′:

∗ Case 1 - If f ∈ P1 in T , then in T ′, f ∈ P0 or f ∈ P1. In either case, f does not add

any waits in T ′ as compared to T .

∗ Case 2 - If f ∈ P0 in T . If f ∈ P0 in T ′, then no additional waits are added to T ′

due to f . However, if f ∈ P1 in T ′, waitUp(f) and waitDown(f) are both true in T ′.

This change in priority could be due to one of the following reasons:

– Upstream condition was added in T ′. Downstream condition was unchanged.

The change in upstream condition could be because of two reasons:

(1) Some nodes, which were flushed from the waitlist in T , were not flushed in

T ′. This was because:

17

(a) A C1-TA node which had priority P1 in T was not updated. We add

a wait a before f . This wait was shifted from one node to another.

Using property 3, we can say that the C1-TA node would have priority

P0 whenever it is updated. This wait is possibly delayed with respect

to Phase 1 nodes. Phase 2 nodes do not get added to the waitlist and

so, only considering the nodes that will get added to waitlist, this wait

either stays in its relative position or moves to the right.

(b) Some node before f satisfied Case 1 and did not wait. We wait before

f . Here again, we shift the wait from one node to another. The wait

here has shifted right.

(2) Some upstream Ci-only upstream paths were not removed from Cc are re-

moved in C ′
c. Since the downstream condition is unchanged, it exists in Cc,

and f cannot have any upstream Ci-only paths. All such paths would have

been removed from Cc as well. This case is not possible.

– Downstream condition was added in T ′. The upstream condition may or may

not have been added in T ′. A downstream Cf -only path exists in T ′ which

did not exist in T . We saw in Lemma 1, that not updating C1-TA nodes does

not add paths in the network. This path could only have been added because

of n, and that too, only if n is downstream from f in Cc and C ′
c. There is a

path from f to n in Cc. This path can not be Cf -only since f did not satisfy

the downstream condition in T . This path is a Ci path. Since a downstream

condition for f can only be caused by n, this path exists in C ′
c as well. When

n was updated, it added a Cf -only downstream path, so all upstream Ci-only

paths would have been removed. Additionally, since n was updated in T ′, we

know that all ancestors on these Ci-only upstream paths were already flushed or

non-waitlist nodes. Since all ancestors of f were flushed or non-waitlist nodes, it

18

is not possible for f to have priority P1.

• Phase 2 - These nodes do not have upstream Ci paths so they do not get added to the

waitlist. Additionally, there does not need to be more than one wait in this phase. This is

because, before the beginning of this phase, all upstream Ci-only paths would have been

removed(these nodes were disconnected in Cc), and ancestors along these paths, added to

waitlist. Adding one wait would flush all these ancestors at once.

∗ If f had priority P1 in T , then if it still has priority P1, then the wait before it was

not shifted and if we wait before f there would not be any additional waits in T ′ as

compared with T .

∗ If f had priority P0 in T , and P1 in T ′, there can be 2 reasons for this, like the

corresponding case in Phase 1:

– Upstream condition was added. Downstream condition was unchanged. Since

these nodes have all their Ci-only upstream paths removed from C ′
c, the only

way an upstream condition was added was if some nodes were not flushed. In

Phase 1, all waits either stayed in place or were shifted right. The only way that

some nodes that were flushed in T were not flushed in T ′ is that one wait shifted

right and got dropped. We can add this wait here.

– Downstream condition was added. This case is the same as the case for Phase 1

and is not possible.

We proved that waits in sequence UnV ′ ≤ waits in sequence UV n. We have also seen that all

waits are either at the same position or are delayed. This delay in waits would mean that at the

end of UnV ′, more nodes would be flushed and fewer nodes would be on the waitlist as compared

to UV n. So, waitlist in sequence UnV ′ ⊆ waitlist in sequence UV n. This would mean that while

updating Y in T ′, the number of waits either stays the same or reduces. Hence, we proved That

waits in sequence T ′ ≤ waits in sequence T .

19

Lemma 3: If T = UV nY is a valid sequence, and after updating sequence U , P0 = ∅ ∧ n ∈ P1 ,

then T ′ = UnV ′Y is valid sequence with lesser or equal waits. Here V ′ is a permutation of V , i.e

V ′ = π(V).

Here again, V ′ is formed from V in the same way as before. In T , there is a wait before any node

in V is updated because P0 = ∅ after updating sequence U . If n is updated before V , then by

Property 3, the first node in V ′ would have to be in P0, and thus one wait from V ′ is removed and

added before n in T ′. The argument for rest of the nodes in V ′ and Y would stay the same. In T

if there was a wait before n, then there still is one. However, if in T , there was no wait before n,

then one wait is borrowed from nodes in V ′. Overall, waits in sequence T ′ = UnV ′Y ≤ waits in

sequence T = UV nY .

Theorem 2: Algorithm 1 and Algorithm 2 produce a valid order of updates with minimal

number of waits if there exists one.

Let Q = s1, s2....sn be an optimal valid sequence, and Qalg = s′1, s
′
2,s

′
n be the sequence generated

by Algorithm 1 and Algorithm 2. Let r be the first node s.t. ∀i < r : si = s′i. If s′r ∈ P0, then by

Lemma 2, we can generate a sequence Q′ ≡ Q s.t. ∀i ≤ r : si = s′i. If s′r ∈ P1, then by Lemma 3,

we can again generate a sequence Q′ ≡ Q s.t. ∀i ≤ r : si = s′i. Using this argument for every index

from i to n, we can find a valid sequence Q′′ ≡ Qalg.

20

Algorithm 2: PickAndWait

Result: Return a node that minimizes waits in the sequence
1 waitDown(q) = (∃p ∈ paths(q,H2, upd(Cc, q)) : p ∈ Cf ∧ p 6∈ Ci)
2 waitUp(q) = (∃p ∈ paths(H1, q, Ci) : p 6∈ Cc ∧ p 6∈ Cf ∧ (∃s ∈ nodes(p) : s ∈W))
3 P0 ← {s | s ∈ U ∧ ¬(waitDown(s) ∧ waitUp(s))}

// Nodes we can update without waiting

4 P1 ← {s | s ∈ U ∧ waitDown(s) ∧ waitUp(s)}
// Nodes we can not update without waiting first

5 if P0 6= ∅ then
6 R = random(P0) // Return any node in P0

7 end
8 else
9 WAIT // Need to wait before updating P1 nodes

10 R = random(P1) // Return any node in P1

11 end
12 if ∃p ∈ paths(H1, R, Cc) : p ∈ Ci // If R is a waitlist node, add it to W
13 then
14 W ←W ∪ {R}

// R is a waitlist node if it has traffic incoming on a Ci path

15 end
16 return R

Chapter 6

Related Work

There is a considerable amount work related to avoiding erratic transient behavior that arises

while updating routes in a Software Defined Network.

Consistency. Our work is motivated by earlier work on network updates in SDN [9] that proposed

the notion of per-packet consistency and provided mechanisms for consistent updates like two phase

updates.

Exponential Search Based Algorithms. Dionysus [4] achieves fast, consistent network updates

through dynamic scheduling of rule updates. Swan and zUpdate add support for bandwidth guar-

antees [3, 5]. The CCG [11] framework supports customizable consistency policies during network

updates. McClurg et al. [8] present a update synthesis algorithm based on counter-example guided

search and incremental model checking. More recent work [7] introduces event-driven consistent

updates using network event structures to model contraints on updates. The FLIP [10] Algorithm

computes policy preserving per-flow sequences.

Complexity results. Ludwig et al. [6] study schedules that minimize controller interactions(rounds)

in a loop-free manner and show that deciding whether a k-round schedule exists, is NP-complete

for k = 3. Förster et al. [2] show that for the basic consistency properties of loop and blackhole

freedom, fast updates are NP-hard optimization problems and present a algorithm with provably

minimal dependency structure. The constraint of per-packet consistency in our problem includes

loop freedom and blackhole freedom, and finds a sequential update schedule. Brandt et al. [1]

give a polynomial time algorithm to decide if congestion free configuration change is possible when

22

flows are splittable. This notion of congestion freedom is different than our notion of per-packet

consistency as packets may take a path which lies partially in the old configuration and partially

in the new configuration.

Chapter 7

Conclusion

Our discussion so far can be summarized into the following high level points:

• We presented a polynomial time algorithm, OrderUpdate, to find an order of consistent

updates for the nodes in a network with unweighted directed edges and single packet type.

• We proved that the OrderUpdate algorithm is correct and complete.

• We then presented a modification, PickAndWait, to the OrderUpdate algorithm which

finds an order of consistent updates with minimal number of waits.

• We proved that the OrderUpdate algorithm, with the PickAndWait modification, is correct,

complete and optimal.

Bibliography

[1] Sebastian Brandt, Klaus-Tycho Förster, and Roger Wattenhofer. On Consistent Migration of
Flows in SDNs. INFOCOM, 2016.

[2] Klaus-Tycho Förster, Ratul Mahajan, and Roger Wattenhofer. Consistent Updates in Software
Defined Networks: On Dependencies, Loop Freedom, and Blackholes. IFIP, 2016.

[3] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nanduri,
and Roger Wattenhofer. Achieving high utilization with software-driven wan. In Proceedings
of the ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 15–26, New
York, NY, USA, 2013. ACM.

[4] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Jennifer Rexford, and Roger Wattenhofer. Dynamic scheduling of network updates.
In Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 539–550,
New York, NY, USA, 2014. ACM.

[5] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer, and David
Maltz. zupdate: Updating data center networks with zero loss. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 411–422, New York, NY,
USA, 2013. ACM.

[6] Arne Ludwig, Jan Marcinkowski, and Stefan Schmid. Scheduling loop-free network updates:
It’s good to relax! In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC ’15, pages 13–22, New York, NY, USA, 2015. ACM.

[7] Jedidiah McClurg, Hossein Hojjat, Nate Foster, and Pavol Cerný. Event-driven SDN programs.
CoRR, abs/1507.07049, 2015.

[8] Jedidiah McClurg, Hossein Hojjat, Pavol Černý, and Nate Foster. Efficient synthesis of network
updates. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2015, pages 196–207, New York, NY, USA, 2015. ACM.

[9] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Ab-
stractions for network update. In Proceedings of the ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication, SIG-
COMM ’12, pages 323–334, New York, NY, USA, 2012. ACM.

[10] Stefano Vissicchio and Luca Cittadini. Flip the (flow) table: Fast lightweight policy-preserving
sdn updates. In INFOCOM, 2016. To appear.

25

[11] Wenxuan Zhou, Dong Jin, Jason Croft, Matthew Caesar, and P. Brighten Godfrey. Enforcing
customizable consistency properties in software-defined networks. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages 73–85, Oakland, CA, May
2015. USENIX Association.

