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Abstract 

Wang, Yunda (Ph.D., Mechanical Engineering) 

Polymer-based Micro Cryogenic Coolers  

Dissertation directed by Professor Y. C. Lee 

This dissertation studies the design and fabrication of polymer-based planar, Joule-

Thomson (J-T) micro cryogenic coolers (MCCs). The polyimide layers are used for fluid 

channels defined by copper sacrificial layers. The first planar MCC consists of a micro machined 

polyimide counter-flow heat exchanger and a silicon/glass anodic-bonded coldhead with a J-T 

expansion valve. Main features of the MCC demonstrated are: 1) the J-T valve with a size of 1.2 

mm by 1.7 mm and  a 3 µm gap ; 2) the high pressure fluid channel with a size of 12 mm by 2 

mm and  a 20 µm gap ; 3) the low pressure fluid channel with a size of 12m by 2mm and  10 µm 

gap ; 4)  the DRIE-etched opening for the fluid coupling between the heat exchanger and a 

compressor with a size of  1.6mm by 300 µm and a through-wafer depth of 550 µm; 5) the 

staggered posts with a diameter of 60 µm inside the fluid channels for withstanding high pressure 

6) the O-ring like trenches with a depth of 5 µm for the fluid coupling between the heat 

exchanger and the substrate. This planar MCC is functional with the coldhead temperatures 

reaching 233K; however, it suffers a leakage problem at the soldered-interface between the heat 

exchanger and the coldhead. This assembly problem is solved by an improved wafer-level 

processing for a monolithic polyimde MCC.  The new cold stage including the heat exchanger 

and the J-T valve is fabricated using copper-polyimide processes, monolithically on a wafer . 

Improved features are: 1) the polymer J-R valve with a size of 1.2 mm by 1.4 mm and  a 3.2 µm 

gap ; 2) the polyimide tethers to support the suspended heat exchanger; 3) the 3-dimensional 

fluid interconnects in different layers. This monolithic polyimide MCC does not encounter the 

mechanical leakage problem since the soldered-interface is removed. It also enhances the 
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manufacturability and scalability of the MCC through the wafer-level processing. The coldhead 

temperatures improve from 233 K to 190 K with a flow rate reduced from more than 260 sccm to 

about 60 sccm. The cryogenic demonstration is accomplished by using a custom-designed 5 

components refrigerant (8% methane, 46% ethane, 14% propane, 4% butane and 26% pentane) 

optimized by scientists in NIST.  

During the demonstration studies, an accurate model to design a polymer J-T valve is 

identified as a critical need. Therefore, this thesis experimentally measures flow characteristics 

of different polymer J-T valves in order to establish the design model. Specifically, an apparatus 

is built to measure pressure drop vs. flow rate corresponding to pure nitrogen and a gas mixture 

consisting of methane 34%, 22% ethane, 20%, ethylene 12% isobutane and 12% isopentane. A 

valve resistance prediction model is established with a homogeneous assumption for a 

multiphase flow assisted by the calculation of fluid properties using NIST-REFPRO. The model 

is proven accurate with a mean deviation < 10% for the cases studies at temperatures of 295 K, 

265 K and252 K.  

Keywords: cryogenic cooler, MEMS, polyimide, planar structure, heat exchangers, tethers, 

thermal isolation, Joule - Thomson valve  
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CHAPTER 1: INTRODUCTION AND BACKGROUND 

1.1 Thesis motivation 

Cryogenic coolers are intended to cool low power-consumption sensors thereby lowering 

thermal noise, enhancing bandwidth, and enabling superconductivity in the sensor [1]. For 

example, the signal-to-noise ratio of a preamplifier can be improved when the thermal noises are 

reduced substantially as the temperature reaches a cryogenic level. The parasitic resistance which 

is induced by inductors in electrical filters as LRC filters often limits the Q (quality) factor. The 

Q factor can be improved dramatically assisted with superconductor materials operating at 

cryogenic temperatures. Another example is for the  mixers used in terahertz frequencies 

imaging system based on high temperature superconductor hot-electron bolometers (HTS HEBs) 

operated at cryogenic temperatures, e.g. 70 K [2]. According to DARA’s MTO MCC project 

description [3], applications that benefit from operation at cryogenic temperatures include cooled 

IR detectors for heat-seeking missiles and night vision; low-noise amplifiers for ultra-sensitive, 

long-range communications such as needed for deep space applications; front-end passives in 

communication systems; myriad sensors that have substantially lower noise floors and improved 

stability when operated at cryogenic temperatures (including and especially sensors for inertial 

navigation); and nextgeneration nanoscale devices such as atom optical inertial sensors and 

timing references, single electron transistors, biosampling devices, and other nano-applications 

that operate best at cryogenic temperatures.  

However, most current cryogenic cooler systems are of large volumes and do not match 

the size of devices or systems targeted to be cooled.  Coolers with rather large size will make the 

whole system to be large, power consumptive and expensive which impedes the use of cryogenic 

cooling. It is desirable to design and fabricate miniature cryogenic cooler systems with small size 
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and low power. However, to offset economies of scale and to enhance the performance, some 

key elements involving new fabrication technologies remain to be developed. Improved 

miniature heat exchangers and regenerators are needed [4]. 

 This thesis will report the first polyimide-based planar cold stage for micro Joule-

Thomson cooler. Fabricated through wafer-level processing, this novel component will make the 

MCC very compact, manufacturable, reliable and cost-effective. The details of the designs, 

fabrication and characterization of the MCC’s planar cold stage are to be presented and discussed 

in the thesis. 

1.2 Micro Joule-Thomson (J-T) cooler  

Figure 1.1 shows the schematics of the operation principle of the J-T micro cryocooler. 

Refrigerant flows continuously through the compressor, heat exchanger (high-pressure channels), 

JT expansion valve, evaporator, heat exchanger (low-pressure channels), and then through the 

compressor again to form a closed loop cycle. The gas mixture (refrigerant) is pressurized by a 

compressor (see Figure 1.1, a→b), and then it flows through a cooler to be precooled (see Figure 

1.1, b→b’). After precooling, the gas mixture flows through a counter flow heat exchanger, 

where it exchanges heat with the gas flowing in the opposite direction inside the low-pressure 

line (see Figure 1.1, b’→c). When the gas mixture enters a flow restriction (see Figure 1.1, J-T 

orifice), it undergoes an isenthalpic expansion and the pressure drops from high to low. During 

the expansion process, the gas mixture cools and partially vaporizes (see Figure 1.1, c→d). The 

liquid evaporates or boils while absorbing heat from the device and from the environment (see 

Figure 1.1, d→e). From the cold head, the low-pressure two-phase fluid flows back into the heat 

exchanger (see Figure 1.1, e→a) to cool the incoming high-pressure warm fluid for enhancement 
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of efficiency. The gas eventually goes back to the compressor system to complete a closed-loop 

Joule-Thomson cooling cycle.  

 

Figure 1.1: On the left side, a schematic diagram of the J-T cycle. On the right side,  

the T-S diagram of nitrogen with isobars and isenthalps. The bold lin e with 

numbers represents the cycle.  

 

In the past decades, the miniaturization of J-T coolers attracted considerable interest due 

to its great potential for small size, low noise, fast response, and high efficiency [5]. Figure 1.2 

compares J-T MCCs, thermoelectric (T/E) coolers and Stirling coolers for a temperature range 

from 300 K to 200 K. As indicated, for the same heat lift, MCC input power is about 10 % of the 

T/E cooler’s. MCC’s size is about 10% of the Stirling cooler’s. The T/E cooler is well known for 

its poor efficiency at temperatures below 240 K.  The Stirling cooler’s size is limited by the 

operation frequency (<120 Hz) of the compressor, which is limited by the oscillating flow. With 

the simple configuration, MCC’s compressor can be operated at high frequencies, e.g. 1 kHz or 
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100 KHz. Dr. Ray Radebaugh at NIST has also derived other comparisons corresponding to 

different temperature ranges with conclusions similar to those illustrated in Figure 1.2 [6]. 

 

Figure 1.2: J-T cooler compared with thermoelectric and Stirling coolers for a 

300K to 200K temperature range. 

 

1.3 Previous work on MCC 

According to our knowledge, Jim Mercereau was the first pointing out the need for 

microminiature refrigeration [7] and together with Little, W. A. submitted a proposal to the Navy 

in 1972 to develop a microminiature refrigeration system and integrated superconducting 

magnetometer [4].  

For fabrication of the micro cooler’s cold stage, most of recent works have highly relied 

on assembly processes. For example, in 2006, Lerou et al. reported a micro cryocooler made of 



5 

 

glass wafers as seen in Figure 1.3a [7.1in1]. They used the HF wet etching technology to 

fabricate the channel for gas delivering, heat exchanger, and gas valve structure [8][9].Three 

glass chips were fusion bonded together (see Figure 1.3b). 

 

(a) Left: four different micro cryogenic cold stages. Top right: magnification of the micro 

channel with supporting pillars. Middle right: the end of the high-pressure flow. 

 

(b) Overview of the process scheme of the cold-stage fabrication.  

Figure 1.3: Picture and schematics of 3 glass chips based microcrygenic cold stage 

reported by Lerou et al from University of Twente. (Figures from[20]) 

The smallest dimension of these coolers was around 30 mm × 2.2 mm × 0.5 mm. With 

8.0 MPa nitrogen input and expanding to 0.6 MPa, the cold head reached a temperature around 

100 K and the net refrigeration power was 12 mW [9]. However, these plates-based coolers 

which were usually fabricated with plates with up to several hundred micron thickness had 

significant heat conduction from the warm end to the cold end. Such conduction loss could 

dramatically decrease the net refrigeration power.  
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To reduce the loss, the Center for Integrated Micro and Nanoscale Transducers (iMINT 

center) at the University of Colorado cooperating with National Institute of Standards and 

Technology (NIST) developed a fiber/capillary based microcryogenic cooler in 2009 as shown in 

Figure 1.4. They used six internal hollow-core fibers inside a glass capillary to form the heat 

exchanger. As shown in Figure 1.4, the fiber-based heat exchanger was 25 mm long and 0.61 

mm in outer diameter with six hollow-core fibers of 125 μm O.D./76 μm I.D. bundled internally. 

The cold head was 2 mm × 2 mm × 1.2 mm silicon-to-glass chip stack which provided fluid 

coupling structure and the J-T valve. Fibers were inserted manually into the coupling structure in 

the silicon chip. The fibers, the capillary tube and the silicon chip were soldered and sealed 

(Figure 1.5). Due to the very thin wall of the glass fiber and the capillary, this cooler achieved 

excellent thermal isolation with extremely low conduction and radiation. The corresponding 

MCC reached 140 K with 15 sccm mixed refrigerants under 14:0.08 MPa pressure ratio [10]. 

 

http://www.nist.gov/
http://www.nist.gov/
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Figure 1.4:a) CU&NIST’s  fiber-based vertical MCC cold stage, by Martin Lin et al.  

in 2009. b) Six fibers in a capillary tube. c) Cross sectional view. 

 
Figure 1.5: Cross-sectional view of a CU Boulder’s cold head with fibers manually  

inserted into the cold head assembly.  

 

However, the fabrication of the cold-stage was labor intensive and low yield. For 

example, inserting fibers into the small hole on valve chip (see Figure1.4) was challenging. 

There were many processing steps required for soldering and epoxy bonding to seal the fibers 

with the valve chip, the capillary tube with the cap chip and the cold-head with the coupler chip 

(see Figures1.4 and 1.5). In addition, the assembly was brittle and could be damaged easily in the 

after-assembly processing and characterization steps What’s more, the vertical structure was a 

challenge to future packaging which was needed for providing a vacuum environment, protecting 

and making a fully integrated cooling system. 
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1.4 Mixed Refrigerant and Opportunity for Polymer Based MCC 

In macro-scaled Joule-Thomson refrigeration systems, mixed refrigerants have been 

widely applied to enhance the efficiency and refrigeration power. Radebaugh [11], Missimer [12], 

and Boiarski [13] reviewed recent developments and history of mixed refrigerants. Fuderer and 

Andrija [14] first used mixed gases in a single stream without phase separators in 1969. They 

found that the mixtures experienced mostly two-phase flow in the heat exchanger.  As a result, 

boiling and condensing heat transfer of two-phase flow greatly enhanced cooling efficiency [6]. 

The ideal cooling power of a refrigerant in a J-T cryogenic cooler is given by the product 

of flow-rate with the minimum isothermal enthalpy difference between the high-pressure 

refrigerant and low-pressure refrigerant [15]. 

 

                                                                    (1.1) 

 

NIST scientists have successfully developed a series of refrigerants for different 

temperature ranges [16]. For example， a mixture with 5 composition (8% methane, 46% ethane, 

14% propane, 4% butane and 26% pentane) was optimized by the program NIST-4 [17] to 

provide an optimum (∆h|T)min in the range from 300 K to 200 K with a high pressure of 4.0 bar 

and a low pressure of 1.0 bar. The enthalpy differences curve is shown in Figure1.6. 
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Figure 1.6: Isothermal enthalpy differences for a 5 component mixture with a high 

pressure of 4 bar and a low pressure of  1 bar. The minimum isothermal enthalpy 

difference is 4.09 kJ/mol for the temperature range between 300 K to200 K. 

 

Compared with the pure fluids or mixtures used in previous studies, this novel mixture 

can deliver a reasonable refrigeration capability with a low pressure ratio. Without high pressures 

inside the heat exchanger, it allows us to use polymer instead of glass. By using polymer, we will 

benefit from wafer-level fabrication and sacrificial layer releasing processes developed for 

MEMS.  We have an opportunity to fabricate monolithic cold stage including the heat exchanger 

and J-T valve. Specifically, polyimide is chosen since it has been used in cryogenic applications. 

Polyimide remains ductile even in cryogenic temperatures and can avoid failures resulting from 

mechanical loadings such as vibration, shock and impact.  Its thermal conductivity (polyimide: 

k=0.17W/(m-K) was also lower than that of glass: k=2 W/(m-K)). For the sacrificial material, 
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copper is chosen. The copper-polyimide thin structures are standard configurations used widely 

in the manufacturing infrastructure for electronic packaging.  

 

1.5 Thesis Outlines  

This thesis will present the design, fabrication and characterization of polymer-based cold 

stage for micro cryogenic coolers (MCC).  It should be noted that an MCC consists of a cold 

stage including a heat exchanger and a J-T valve and a compressor. However, MCC has also 

been used to describe the cold stage alone in the previous studies. In this thesis, we will use 

MCC to describe the cold stage. The planar compressor will be developed in the future, but it is 

outside the scope of this thesis work.  

The thesis consists of the following chapters:   

(1) Introduction including the project motivation, the review of previous works and 

opportunities offered by the polymer-based MCC as described in Chapter 1.  

(2) System design considerations and optimization of the MCCs based on planar 

polyimide-based MCCs in Chapter 2 

(3) Thermal and mechanical analysis of the MCCs based on planar polyimide-based 

MCCs in Chapter 3 

(4) Fabrication and assembly of the polyimide-based MCCs in Chapter 4.  

(5) In proved design and fabrication by making monolithic polyimide planar MCCs in 

Chapter 5.  

(6) Cooling tests and measurements of the both the polymide-based and monolithic 

polyimide MCCs in Chapter 6.  

(7) Study of the polymer J-T valve in Chapter 7.  
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(8) Summarization the conclusions of the thesis works, followed by recommendations for 

future works. 
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CHAPTER 2: SYSTEM DESIGN OF THE POLYMER-BASED MCC 

 

2.1 Introduction to the structure of the polymer-based MCC and design features  

Since polyimide material and MEMS technologies were considered to make the cold 

stage, a heat exchanger (HX) with a parallel-plate configuration rather than some other 

geometries, such as tube-in-tube, is chosen for the planar MCC.  The structure of the MCC cold 

stage contained a polyimide heat exchanger which was fabricated on a silicon substrate by using 

polyimide/copper surface micro fabrication process, and a cold-head which contained a micro 

gap as a gas valve. The two parts were assembled by soldering. Figure 2.1(b) and Figure 2.1(c) 

illustrates the structure and major dimensions of the planar polyimide-based MCC both from a 

top view and a cross-sectional view.  

Some other description of the features are shown in Figure 2.2, including: 1) 1.2 mm by 

1.7 mm with a 3 µm gap for the J-T valve; 2) 12 mm by 2 mm with a 20 µm gap for high 

pressure fluid channel; 3) 12m by 2mm with 10 µm gap for low pressure fluid channel; 4)  1.6 

mm by 300 µm 550 µm length of holes for fluid coupling between the heat exchanger and a 

compressor; 5) Polyimide tethers to support the suspended HX for better mechanical properties 

to avoid vibration or excessive displacement under shock); 6) Small posts with column diameter 

of about 60 µm staggered inside the two channels for both withstanding overpressure in the 

channels and increasing thermal exchanging surface area (see Figure 2.2). 7) O-ring like trenches 

in the HX-to-substrate coupling end to enhance the sealing between the interface of the substrate 

and polyimide HX. To understand this, as show in Figure 1(b), polyimide was embedded in the 5 

µm deep trenches around the interconnecting channel to form a micro O-ring. Because the deep 

trench was etched by deep reactive ion etching (DRIE), scallop side walls formed a better 
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bonding interface between the polyimide and silicon. High pressure fluid can be stopped by the 

micro O-ring like trenches to provide a better seal.  

 
Figure 2.1: Schematics of the operation principle of the J -T micro cryogenic cooler 

system with top and cross-sectional views of the planar polymer-based MCC. Heat 

exchanger and cold end (or “cold head”) are micro-fabricated and their schematics 

are shown in (b) and (c).  
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Figure 2.2: Schematics of the operation principle of the J -T micro cryocooler 

system with top and cross-sectional views of the planar polymer-based MCC. 

 

 

 

Figure 2.3: Schematics of the Cold head. Micro gap is formed with anodic bonded 

Pyrex and silicon chips. 
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The cold-head (or J-T valve chip) is made up of a silicon/glass bonded stack which 

contains a submicron (around 700nm to 3000nm) gap to provide the gas restriction. The footprint 

is about 2.5 mm × 2.7 mm. This valve was attached on the cold end of the heat exchanger by 

soldering (see Figure2.2 and Figure 2.3). More details about the fabrication and assembly of the 

cold head can be found in Chapter 4. 

 

2.2 System Analysis of the MCC  

2.2.1Gross Refrigeration and Mixed Refrigerant 

As shown in equation (2.1) in Section 2.2.2, the gross refrigeration power is the product 

of the flow rate    times the minimum isothermal enthalpy difference of the refrigerant          . 

The minimum isothermal enthalpy difference of the refrigerant is approximately proportional to 

the pressure ratio applied up to some maximum pressure ratio [10]. With limited power 

consumption and stroke volume, a micro compressor is difficult to deliver both high pressure 

ratio and flow rate.  A typical high-pressure that is possible to generate with a miniature 

compressor is in the range of 0.4-0.8 MPa. In order to provide a system which can operate with a 

shorter heat exchanger and low driving pressure, refrigerant mixtures need to be used. In fluids, 

the largest enthalpy difference usually occurs at or very close to the temperature of the phase 

change from liquids to gas. In mixed refrigerants, refrigerant mixtures are designed to have some 

fraction of the mixture in liquid-phase throughout most of the heat exchanger. This two-phase 

flow results in higher heat transfer parameters. Furthermore, refrigerant mixtures can have 

substantially higher enthalpy differences between the high and low pressure streams at any 

temperature, as the high-pressure stream can have a higher liquid fraction than the low-pressure 

stream at the same temperature, and the evaporation of some of that liquid will yield large 

enthalpy changes [37]. Dr. Huber and Dr. Radebaugh of NIST are the world leaders in 
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engineering refrigerants and maximize the minimum isothermal enthalpy difference           

along the heat exchanger working temperature range. As shown in Figure 1.6 in Chapter 1, Dr. 

Huber has engineered the optimized five-component mixture with 4.09kJ/mol under 0.4MPa : 

0.1MPa pressure ratio within temperature range of 300-200 K. Based on this mixture, the MCC heat 

exchanger has been optimized to minimize the refrigeration loss under a condition of 10 SCCM 

so that the gross refrigeration is about 40.9 mW. Details of the optimization of the heat 

exchanger using this mixture can be found in Section 2.3. 

Some other optimized mixed refrigerants for different temperature range were also 

designed to meet different temperature and refrigeration requirement. For example, the enthalpy 

differences of refrigerants using 4 or 5 components under 0.4:0.1MPa pressure ratio within 

temperature range of 300-140K are shown in Figure 2.4.  
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Figure 2.4: Gas mixtures designed for a 300-to-140 K temperature range and 4:1 

pressure ratio. Gas mixture of  methane/ethane/ethylene/isobutane/isohexane with 

mole fractions 0.34/0.20/0.18/0.16/0.12 achieved a 2.01 kJ/mol  refrigeration 

capability. (Figure from [6]) 

 

 

2.2.2 Refrigeration losses in the MCC system 

For a system requirement, the MCC is designed to have maximal gross refrigeration and 

minimal refrigeration losses due to the heat exchanger ineffectiveness, pressure drop, and heating 

from the environment. The ideal cooling refrigeration of a refrigerant in a J-T cryogenic cooler is 

given by the product of flow-rate with the minimum isothermal enthalpy difference between the 

high-pressure refrigerant and low-pressure refrigerant [9]. 

                                                                  (2.1) 

where     is the gross refrigeration delivered by the mixed refrigerant pumped by the compressor; 

   is the flow rate in mol/s;           is the minimum molar isothermal enthalpy difference of 

the refrigerants between the high pressure and low pressure enthalpies within the temperature 

range of interest. However, for the realistic situation, there will be refrigeration losses associated 

with imperfect heat transfer, pressure drop, and environment heating as given in [15], 

                                                            (2.2) 

where       is the net refrigeration (heat lift) of the MCC;       is refrigeration loss due to heat 

exchanger ineffectiveness;      is the refrigeration loss resulting from the pressure drop along the 

heat exchanger;        is the conduction heat load through the heat exchanger or DC leads used 

to power the device; and       is the radiation heat load from the environment. Calculations of 

the each of the components have been elaborated by Radebaugh in [15]. Since the cold stage will 
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be operated in a vacuum chamber with air pressure less than 10
-4

 torr, conduction heat load 

through the air is negligible.  Figure 2.5 shows all the refrigeration losses of the MCC system. 

 

Figure 2.5: Schematics of heat flow in and out in the micro cryogenic cooler.  

 

2.3 Optimization of the Heat Exchanger 

The objective in optimizing the heat exchanger geometry is minimizing the volume of the 

heat exchanger. Heat exchangers are usually the largest components of the J-T cryogenic coolers 

so the objective is particularly important for the development of micro cryogenic coolers. To 

optimize the heat exchanger, we chose to consider the fractional losses associated with imperfect 

heat transfer, pressure drop, and heat loss as functions of heat exchanger geometry. These losses 

are normalized by the gross refrigeration power    . The design will be considered reasonable 
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once the ratio of the refrigeration loss to the total refrigeration power is less than 60% which 

mean at least 40% of the gross refrigeration power will be successfully used [15]. 

For an ideal parallel plates counter-flow heat exchanger, the thickness of each wall needs 

to be minimized both to increase the thermal isolation between the warm end and cold end and to 

increase the heat transfer between the two lines; however, due to a consideration of the process 

and mechanical properties, the thickness was chosen to be 20 µm, 10 µm and 20 µm for each 

layer respectively as shown in Table 2.1. We then started by using a flow-rate of 10 standard 

cubic centimeters per minute (sccm) of a five components mixed refrigerant under operating 

pressures of 4 bar and 1 bar for high and low pressure sides. For a fixed width of 2 mm, channel 

gap of 20 µm, and flow-rate of 10 sccm, the optimization of length was obtained as shown in 

Figure 2.6. The fixed parameters are determined by manufacturability, cooling power 

requirements, and size requirements.  
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Figure 2.6: The ratio of the refrigeration losses to the total gross refrigeration 

power. Each refrigeration loss is calculated according to the method presented in 

[9]. 

Since the ratio of the refrigeration loss to the total refrigeration power in an optimized 

design is constant for a constant ratio of the flow rate to heat exchanger width, the gross and net 

refrigeration powers are proportional to the flow rate as long as the width is changed equally. It 

means that the gross refrigeration can be increased simply by increasing flow rate which can be 

gained with scaling up the width. The dimensions we chose to demonstrate the MCC is shown in 

Table 2.1.  
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Table 2.1 Key dimensions of the MCC 

Symbol Description Value 

ttop thickness of the top layer 10 µm 

tbottom thickness of the bottom 

layer  

20 µm 

tcenter thickness of the center 

layer,  

10 µm
 

Dpost diameter of the posts 60 µm 

Lc length of the channels
 

12 mm 

Wc width of the channels 2 mm 

hc height of the channels 20 µm 

WHX width of the heat 

exchanger 

3 mm 

Spost space between the posts 150 µm 
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CHAPTER 3: THERMAL AND MECHANICAL ANALYSIS OF THE 

POLYIMIDE-BASED MCC 

 

3.1 Thermal isolation of the MCC 

3.1.1 Requirement of analysis of thermal isolation. 

Environmental and parasite heat load is one of the major refrigeration losses of the MCC. 

Due to the high surface-to-volume ratio and short path for heat conduction from the worm end to 

the cold end, the heat leak from the environment (radiation and conduction losses) is particularly 

significant in the micro cryogenic cooler with limited gross refrigeration power as illustrated as 

in Figure 3.1[10]. High thermal isolation design is essential to manage the heat losses and 

increase the net refrigeration power for a given gross refrigeration power.  

In the previous MCC studies, one solution was to increase the gross refrigeration power 

to compensate the loss to environment [10]. In Little’s work [4][18][19][21], they reached high 

gross refrigeration powers by using relative high pressure ratio nitrogen (16.5:1 MPa) and flow-

rate (107 μmol/s). In Lerou’s work [9][20], a low emissivity metal thin film was coated on the 

heat exchanger to reduce its radiation loss, however, they still needed to use a much higher 

pressure (8 MPa) and flow-rate in order to compensate the loss. As described in Lin’s work [10], 

even using a high refrigeration mixture as the refrigerant, to achieve the temperature at which 

they aimed, and to provide required refrigeration power, the MCC has to be well thermally 

isolated to minimize heat loads from the environment. In a 77 K cold head under a 300 K 

shielding temperature, the glass capillary based test vehicle, the hollow-core fiber-based MCC 

with a segmental low emissivity metal coating, and the hollow-core fiber-based MCC without 

the segmental coating enclosed by an enhanced low emissivity shielding are tested and achieved 
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a heat leak of 5.1 mW, 9.6 mW, and 3.8 mW, respectively [10]. It seems that the thermal 

isolation is extremely important for such a small size micro cryogenic cooler with limited gross 

refrigeration.  

In this thesis work, the conduction and radiation losses due to the polyimide heat 

exchanger were considered in the design optimization in Chapter 2. However, it is good to 

understand contribution of each part of the MCC to the refrigeration losses for potential 

adjustments, e.g. by knowing the radiation loss of each part, one can decide whether it is 

necessary to apply reflective shielding for some part or not. In addition, tethers are used to make 

a mechanical support of the MCC. Their contribution to refrigeration loss was not considered in 

the optimization in Chapter 2, and the reason is that tethers’ dimension will not affect the design 

of the functional part of the heat exchanger itself while on the other hand, it’s a trade-off design 

between the thermal losses and mechanical design, it should be more convenient to isolate the 

design of the tether from the optimization of the heat exchanger. A conduction loss analysis is 

needed for us to come with a reasonable design including the tethers.  

 

3.1.2 Calculation of the thermal refrigeration losses of the polyimide-based MCC 

Conductive refrigeration loss  

In the polyimide based MCC, heat is transferred from the environment to the cold end by 

conduction and radiation (see Figure 3.1). 

The conduction can happen both along the heat exchanger (HX) and air from surrounding 

to the cold end. However, in our system, the cold stage of MCC is in vacuum with 1E-4 Torr 

(0.01333 Pa) or smaller number, the conduction heat transfer through air can be negligible.  
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Figure 3.1 Schematic of the heat transfer mechanisms in the MCC system. 

Specifically, for two parallel plates in a vacuum environment as the effective air thermal 

conductivity can be calculated using the following equation [22]:  

                                                 (3.1) 

where T is the absolute temperature (K); P is pressure (Pa); and d is the air gap (m). The air 

thermal conductivity (W/m∙K) is calculated using the following equation:  

      (3.2) 

In the test of our MCC, pressure is kept lower than 1E-4 Torr (0.01333 Pa). As a result, air 

conduction is negligible. The conduction loss therefore is mainly due to the heat transfer along 

the solid parts of the HX. This loss can be expressed by Fourier’s law of heat conduction as 

equation (3.3) [23].  
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                                                              (3.3) 

where        is the heat transfer rate, A is the cross sectional area, T is the temperature, x is the 

length along the temperature gradient and k is the thermal conductivity of the material.   

For a rectangular heat exchanger of which the cross-sectional area does not change along 

the x direction, the temperature along the x direction can be seen as a liner distribution if the 

radiation energy transfer can be ignored compared to the conduction one. By making such an 

assumption, the conduction heat transferred from the worm end of the heat to the cold end of the 

HX is simplified as: 

       kA(Tworm-Tcold)/∆x                                                 (3.4) 

where Tworm and Tcold are the temperature of the worm end and cold end respectively. The 

dimensions and material properties of our device are given in Table 3.1 and 3.2, a conduction 

refrigeration loss due to the HX is shown in Figure 3.2 for an interested cold end temperature 

range (from 140 K to 250 K). 
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Table 3.1 Dimensions of the MCC for thermal calculation 

Parameters of the MCC for thermal 

calculation  

Dimensions  

HX total solid thickness (t)  50 µm  

L1 (indicated as in Figure3.2) 3 mm  

L2 (indicated as in Figure3.2) 8 mm  

HX Width (W)  3 mm  

Gap (g)  15 µm  

Acs (Side area of cold head ) 9.36e-6 m2  

Lt (Length of the tethers) 300 µm 

Wt( Width of the tethers ) 60 µm 

 

 

 

Figure 3.2: Illustration of the parameter of the MCC for thermal calculation . 
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Table 3.2 material properties of the MCC for thermal calculation 

Parameter 

of material 

Thermal 

Conductivity 

(W·m−1·K−1) 

Thermal 

Emissivity 

Polyimide 0.18 (0.175@200K to 

0.186@300K) [24] 

0.95 

Cr - 0.05 

Au 318 0.025 

 

Thermal conduction loss with varies of the cold head temperature from 140 K to 200 K 

were calculated as shown in Figure 3.3. As a result, there is a 0.33 mW conduction refrigeration 

loss due to the HX and 0.18 mW due to one tether of a dimension of 300 µm × 60 µm. 

 

Figure 3.3: Refrigeration losses due to conduction  

mailto:0.175@200K
mailto:0.186@300K
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Radiation refrigeration loss  

Heat energy transferred through electromagnetic waves is called thermal radiation. The 

heat transfer from an ideal thermal radiator, or a black body, can be modeled by the Stefan-

Boltzmann law of thermal radiation [23].  

                                                    (3.5) 

where σ is the Stefan-Boltzmann constant with the value of 5.669E-8 W/m
2
·K. A is the surface 

area of radiator, and Tobj is the surface temperature of radiator. Most of the time the object 

material is not an ideal radiator or blackbody, and a factor called emissivity ε is introduced to 

correct this. Values of emissivity of the materials we are using are shown in Table 3.2. 

Considering that a thermal radiator with enclosed by a surface which will also emit EM, a more 

popular used equation for calculation is:  

                           (3.6) 

 

where T1 is the temperature of the radiator and T2 is the temperature of the environment material, 

εeq is the equivalent emissivity which is determined by emissivity of the radiator (ε1) and 

environment material (ε2) and there geometries.  

For A2 >> A1 , εeq   ε1 

For a infinite parallel plates structure εeq = 1/ (1/ε1+1/ε2-1) 

In the HX fabricated for this thesis study, the bottom of the HX was very close to a Cr coated 

silicon substrate therefore being considered with a good shield condition. The upper side of the 

HX was not coated with low emissivity material. However, further shielding of the upper side of 
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the HX can be achieved by sputtering metal layer, for example gold layer with 100 nm thickness, 

to dramatically decrease the emissivity of the surface (see Figure 3.4). 

 

Figure 3.4: Shielding method of the planar MCC. 

Radiation refrigeration loss of each part of the cold-stage was then calculated according 

to a cold head temperature range from 140K to 250K (see Figure 3.5). The result indicates that, 

with a thin layer of metal (Au 100 nm in thickness) coating to cover the top surface of the HX, 

the total radiation loss can be reduced dramatically with only adding much smaller extra 

conduction loss. For example, the MCC’s radiation loss can be reduced from 12 mW to 0.73 mW 

with only inducing 1.16 mW of conduction loss for a 200K cold end temperature condition. For 

such a reason, we can benefit a lot from the shielding process by reducing the radiation loss 

exponentially. 
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Figure 3.5: Radiation refrigeration energy loss of the MCC. 

 

3.2 Mechanical analysis of MCC  

3.2.1 Deformation of polyimide HX under pressures 

For a functional mechanical design of the MCC, firstly, numbers and size of the posts 

inside the channels need to be optimized to minimize the pressure loss along the channels while 

still keeping the channels stiff enough under pressures. To make the posts more efficient on 

supporting the center layer which was the thinnest layer (10 µm) of the heat exchanger, the posts 

were staggered (see Figure 3.6). 
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Figure 3.6: Left: schematic of staggered posts; right: posts lay out in the channel s.  

  

A series FEA study results by using Coventorware showed that by using 80 µm × 80 µm 

staggered posts array with 150 µm distance of rows and columns can gave us a stiff enough 

supporting under a 4:1 bar pressure ratio under a vacuum environment with maximum channel 

gap variation of only 2 µm. Figure 3.7 shows the deformation of each layers deformation under 

an internal pressures condition of 4:1 bar for high and lower pressure channels. By comparing 

the deformation of each layer, we were able to tell the channel size deformation.   
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(a)  Deformation of the top layer with 20 µm thickness.  

                       

(b) Deformation of the center layer with 10 µm thickness.  
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(c) Deformation of the bottom layer with 20 µm thickness. 

 

 

(d) Schematic of the posts strategies for both channels  

Figure 3.7: Deformation of each layer under pressure difference of 4 bar and 1 bar. 

 

3.2.2 Mechanical analysis of the tethers  

Stiffness design of the tethers 

For the polymer-based MCC, because of the complaint property of polyimide material 

used, tethers design became very important to prevent the suspended device structure from large 

vibration excessive displacement under shock or gravity of the device to be cooled. In our case, 
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as a simplification, when the deformation of the cold end is small, tethers can be considered as 

cantilever beams with ends load (see Figure 3.8). In such a case, the deformation of the free end 

of a tether can be calculated by [25] 

  
    

   
                                                                   (3.7) 

 

where F is the force applied on the end, L is the length of the tether, E is the young's modulus of 

the material and I is the moment of inertia of the beam, which is given in [25] by  

  
   

  
                                                                      (3.8) 

in which b is the width and h is the height of the tether. We can combine equation (3.7) and (3.8) 

to obtain 

    
    

                                                                  (3.9) 

 

Figure 3.8: Schematic of the cantilever with end load.  



35 

 

In such a relationship, when the h is fixed by considering the design and optimization of 

the heat exchanger, the effective spring constant is proportional to the width of the tether b and 

inversely proportional to the L3. From equation 3.4, we can see that if the ratio of b to l is kept as 

a constant, the heat leak along the tether will be the same. For such a reason, to obtain a larger 

stiffness design with same refrigeration loss, smaller tethers are preferred. Numerical study can 

be used to get the more accurate deformations under different loads. For example, in Figure 3.9, 

it shows the deformations of the heat exchangers with different tether dimensions, under a 

loading of 80 mg which was estimated to be a typical weight from the cold head and a chip to be 

cooled. The material properties used in the simulation of PI-2574 is shown in Table 3.3. The 

results also suggest using smaller tethers to achieve better stiffness with same conduction loss.  

 

 

Figure 3.9 Deformation of the heat exchangers with different tether dimensions, 

under a loading of 80 mg. 

 

 

 

Failure analysis of the tethers  
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When the tether becomes too small, failure of the tethers could happen due to potential 

stress in them. As can be seen in Chapter 4, some of the tethers of the heat exchanger made of 

PI-2574 are broken after releasing. The reason is because of the CTE mismatch between the Si 

substrate and the polyimide used. After the releasing, without filling of the copper, the suspended 

structure tuned to be stretched and then a tensile tress concentration was applied on the thinnest 

part of the suspended structure.  

 

 

Figure 3.10 Photos of the broken tethers after metal etching  
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Figure 3.11 Schematic of a simplified case with only one tether supported.  

 

Figure 3.11 shows a very simple situation. In such a situation, the HX is only supported  

by one tether, after the structure cooled down from the curing temperature of the polyimide Thigh 

to the room temperature Tlow, the Polyimide will shrink much more than the Si substrate do 

therefore generating a mismatch to the silicon substrate.  The total linear mismatch is given by:  

                                                                       (3.10) 

where        are the original length of  HX and the tether;             are the liner CTE of the 

polyimide and silicon respectively;             are the elongation of the HX  and the tether  if 

the joint is not broken. Without failure or breaking happens, the force along the tether and the 

HX will be same, which gives the following equation: 

       
   

  
     

   

  
                                                     (3.11) 

where   
  and    

  are the length of the HX and tether in the low temperature status and are given 

by 
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                                                                           (3.12) 

  
                                                                          (3.13) 

By using a tether size of 300 µm × 60 µm and HX size of10 mm × 3 mm respectively, with the 

PI-2574 material of which properties are given in Table 3.3, the stress on the tether    was 

calculated to be 434MPa which is too large for a material with ultimate strength of 130MPa. By 

using another material PI-2611 which has very low CTE (5 ppm/˚C) which is close to the CTE of 

Si for calculation, the maximum stress on the tether    is 33.9MPa. So the PI-2611 was preferred 

to be used to get larger design room.  

 

Table 3.3 Material properties two different types of polyimide for failure calculation 

 Si  PI-2574  PI-2611        

CTE ( )  2.6ppm/C  40ppm/C  5ppm/C  

Young’s 

modulus  

 2.45GPa  8.5GPa  

Ultimate 

Strength  

 130MPa  350MPa  

Yield strength   About 

80%*UTS  

About 

60%*UTS  

 

More accurate analysis of this failure can be done by conducting numerical stress 

analysis and choosing a proper failure criterion. In general, solid materials are divided into brittle 

and ductile materials. The main difference between brittle and ductile fracture can be attributed 

to the amount of plastic deformation that the material undergoes before fracture occurs. Different 

http://www.sv.vt.edu/classes/MSE2094_NoteBook/97ClassProj/glossary.html#plasticdef
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failure criteria have been developed to predict there fractures. Material with elongation value 

larger than 0.05 is considered as ductile material. Polyimide is pretty flexible at even very low 

temperature (4.2K) and we consider it to be ductile material even working under cryogenic 

condition [26]. For example, von Mises criterion can be used because it’s convenient to get von 

Mises by using commercial FEA tools such as Coventorware. This theory proposes that the total 

strain energy can be separated into two components: the volumetric (hydrostatic) strain energy 

and the shape (distortion or shear) strain energy. It is proposed that yield occurs when the 

distortion component exceeds that at the yield point for a simple tensile test. This is generally 

referred to as the von Mises yield criterion and is expressed as: 

                             (3.14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Hydrostatic
http://en.wikipedia.org/wiki/Shearing_(physics)
http://en.wikipedia.org/wiki/Von_Mises_yield_criterion
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   CHAPTER 4: FABRICATION AND ASSEMBLY OF THE POLYIMIDE-

BASED MICRO CRYOGENIC COOLERS 

 

4.1 Fabrication of polyimide heat exchanger 

Properties of polyimide have been well studied at cryogenic temperature, and polyimide 

was proven to be a good candidate polymer for cryogenic applications. It has high stability even 

at cryogenic temperatures, e.g., with decreasing temperature from room temperature to  4.2 K,  

the failure strain of a  typical polyimide continuously decrease by only 25%, and the fracture 

toughness increase continuously by 10% [27]. In addition, it has also been widely used in 

microelectronics due to their excellent planarizing and step coverage abilities [29] [31]. For a 

micro surface machining technology, electroplated copper has been used as a sacrificial layer to 

make suspended polyimide structures [31], [32]. In this project, we make the heat exchanger by 

using multiple suspended polyimide layers based on this technology and combine it with silicon 

bulk etching technology. 

Figure 4.1 shows the cross-sectional view of the schematic of the HX (upper) and a 

picture of the HX (lower) while Figure 4.2 illustrates the major batch fabrication steps for the 

polyimide HX. The fabrication of the HX is based on the surface micro-machining technology 

using electroplated copper as the sacrificial layers and polyimide as the structural material. The 

process consists of multi-layers of metallization of copper, spin coating and curing of polyimide, 

and the patterning on each layer. As shown in Figure 4.2, after alternatively coated polyimide 

layers and electroplated copper layers, we performed reactive ion etchings (RIE) or deep reactive 

ion etching (DRIE) both from front side and back side of the wafer to make the openings on the 

ends of the channels and to expose the sacrificial layers (Cu). The metal layers were then etched 
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away to form the channels and a suspended polyimide structure. In this process, a particular 

releasing method has been designed to make the very long channel structure with micron gap 

releasable. A key aspect to accomplishing this is the design of lateral etching structures laid on 

top of the sealing edge of the channels (see Figure 4.1). In such a design, the etchant can keep 

diffusing inside from the sides of the channels instead of just going through holes on the two 

ends. To make the sealing of all the releasing holes, A special epoxy Stycast 2850 FT (Trade 

names are given here to clearly identify materials with unique characteristics used in the process, 

but it does not imply any endorsement or that they are necessarily the best materials for this 

application) which is well known for being good in cryogenic application, was used to fill them 

in after the device was released (see Figure 4.1). This method is also suitable for wafer-level 

manufacture requirements when using a silk-screen method by utilizing a shutter mask to just 

expose the releasing holes. 

Due to the thermal mismatch between the polyimide layers and silicon substrate, all the 

tethers in this design were broken after the metal releasing. As shown in Figure 4.1, the heat 

exchanger warped and the cold-end is further distanced from the substrate. This heat exchanger 

still functions well, although it exhibits worse mechanical properties than designed. This thermal 

mismatch problem can be solved by designing the tethers to be of flexture structures (see Figure 

4.1c) or replacing the PI-2574 with another type of polyimide which has a similar coefficient of 

thermal expansion to silicon. More details about using the new type of polyimide are to be 

introduced in Chapter 5. The process to make the polymer CFHX has an extensive application to 

make a variety of polymer based micro-fluid system or other polymer chamber structures.  
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Figure 4.1: Cross-sectional view of the schematic of the heat exchanger (a), photo 

of the heat exchanger with tethers being broken due to the CTE mismatch (b) and 

photos of the heat exchanger with a flexture design to avoid the teth er breaking.  
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Figure 4.2: Fabrication process flow of the polyimide HX; all the conformal 

topography by PI coatings were drawn to be a planarized covering to make the 

fabrication process flow figures easier to read with more clarity.  
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The HX was fabricated using a 7 mask (see Figure 4.3) fabrication process on a 3 inches 

(76 mm) n-type <100> silicon wafer of 550 µm thickness. By carefully laying out, 25 units of 

HXs were fabricated at a 3 inch wafer (see Figure 4.4). The detailed steps and their explanations 

are as follows: 

(a) A masking oxide approximately 1.8 µm thick was grown on both sides with wet thermal 

oxidation.  

(b) O-ring shapes were patterned on the SiO2 layer using reactive ion etching (RIE), followed by 

5 µm deep reactive ion etching (DRIE) on silicon with silicon oxide as a mask. The trenches are 

to enhance the bonding and sealing between the interface of the polyimide layer and silicon 

substrate.  

(c) Backside SiO2 was patterned using RIE. This pattern is a masking preparation for later DRIE 

etching on the silicon to make entrance and exit holes. 

(d) An adhesion layer of chromium 100 nm in thickness followed by an electroplating seed layer 

of copper 500 nm in thickness were evaporated onto the wafer using a thermal evaporator. 

Additional copper of 15 µm was then deposited using electroplating with a current density of 

approximate 5 mA/cm
2
. The metals are then patterned using wet etching to complete the first 

sacrificial layer. 

(e) Polyimide (DuPont PI-2574*) was then deposited onto the wafer in two spin coats of 2400 

rpm for 30 seconds followed by a soft bake after each at 100 °C for 120 seconds. After all the 

spin coats, the polyimide was cured at 260 °C for 1 hour in nitrogen, arriving at an after- cure 

thickness of about 20 µm. 

(f) Similar to (d) but using an adhesion layer of 30 nm thick titanium, instead of using chromium, 

followed by a 500 nm thick copper electroplating seed layer were deposited using a thermal 
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evaporator. Additional copper of 20 µm was then electroplated followed by patterning to the 

geometry as one of the later embedded micro channels in the HX. The patterning of copper and 

titanium were done by using wet etching and RIE in a plasma of CF4:O2 ratio at 4:16 

respectively.  

(g) A second polyimide (DuPont PI-2574*) layer was spin coated at 2400 rpm for 30 seconds 

followed by a soft bake at 100 °C for 120 seconds. Again, it was cured at 260 °C for 1 hour in 

nitrogen, yielding a thickness of about 10 µm.  

(h) Same as (f), another 20 µm thick layer of copper plating and wet etching were done to form 

the geometry of the other embedded micro channel in the HX. 

(i) The exact same process as described in (e) was done again to form another polyimide layer 20 

µm in thickness.  

(j) A hard metal mask of 30 nm of titanium (as the adhesion layer) and 2 µm of copper was 

evaporated on the polyimide layer from (i). It was then patterned to the geometry of the HX with 

alignment entrance and exit holes on the end and releasing holes along the sealing edge of the 

HX.  

(k) The exposed polyimide was etched in a CF4 and O2 (CF4:O2= 6:10 sccm) plasma all the way 

down to the copper metal to expose all the three sacrificial layers, including the first sacrificial 

layer which is to suspend the whole HX structure and other  two sacrificial layers which form the 

channels.  

(l) By using the pre-defined SiO2 mask in (c), backside entrance and exit holes were etched from 

the backside of the substrate using DRIE. Further RIE in a CF4 and O2 (CF4:O2= 6:10 sccm) 

plasma was then done to etch the polyimide making the entrance and exit holes  go all the way  

to their channels filled with metal.  



46 

 

(m) The sacrificial layers of copper were etched away at the end in a standard copper etchant 

(Transene CE-100*) at 60°C to form the embedded micro channels in the HX and free the whole 

HX structure. The etch time to fully release the structure was approximately 48 hours. 

 

Figure 4.3: Layout of the heat exchanger on a 3 inches wafer. By carefully laying 

out, 25 units can be fabricated on one wafer . 
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Figure 4.4: Picture of the fabricated polyimide based HX  before released. 

 

During the development of the fabrication, several challenges and interesting problems 

have been identified and solved including: 

(1) Interesting electrochemical reaction phenomena when develop the selective etching method 

when there are different metals (Copper as sacrifical layer; Ti as adhesive layer; Cr as a shielding 

layer on Si). The details of the further discussion of problems and solution can be found in 

Appendix B. 

(2) We always need to deal with a surface with large (>20um) vertical topology. This has always 

been inducing problem for MEMS fabrication. Details in order to solve this problem won’t be 

addressed in this thesis. However, generally consideration was to use relative thick photo resist 

http://www.google.com/search?hl=en&biw=1920&bih=955&spell=1&q=Interesting+electrochemical+phenomena&sa=X&ei=ukl7UKSYF6a02gWp44CQDg&ved=0CBsQvwUoAA
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and design with tolerance to solve problems such as step coverage, over etching and non-uniform 

etching rate on different area of the wafer. 

(3) Releasing problem in order to release copper in long channel with a micro gap. We have 

figured out the strategy to etching the copper from the sides of the channel (see Figure 4.5). To 

fully release the metals which were defining the channels, the etchant would just go from the 

coupling holes on the two ends if there are no other available openings. For such long channels 

structures with only 10 or 20 µm gaps, exchanging of the etchant between inside and 

environmental was extremely difficult. Mass transferring of the etchant in the solvent can mainly 

based on diffusion mechanism which is a pretty low process. As a result, the etching took about 

one week to just etch about 3 mm into the channel in length and almost stopped there. For such a 

reason, lateral etching holes laid on top of the sealing edge of the channels were designed to 

accomplishing the releasing in a reasonable time, e.g. 2 days. In such a design, the etchant can 

keep diffusing inside from the sides of the channels instead of just going through holes on the 

two ends. To make the sealing of all the releasing holes, a special epoxy Stycast 2850 FT  (see 

Figure 4.1) which is well known for being good in cryogenic application, was used to fill them in 

after the device was released. As seen in Figure 4.5, the releasing holes were designed with 

throttling features which can selectively allow the etchant and epoxy to get into the channels. 

Due to the large surface tension and viscosity, the epoxy was stuck in the throttle avoiding 

further flow into to the channels to block them. 
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Figure 4.5: Illustration of the strategy of releasing from the si des of the channel.  

 

 

4.2 Fabrication of Si/Glass cold head 

The J-T valve has a footprint of 2.5 mm × 2.7 mm and is made up of a silicon/glass 

bonded stack which contains a micro gap (3 µm in height) to provide the gas restriction (see 

Figure 4.7). Features of the J-T valve include a “Lego” (or “plug-in slot”) structure by multi-

layer etching on silicon using deep reactive etching (DRIE) for better alignment and for 

avoidance of a solder bridging problem during the reflow process.  The processes are illustrated 

in Figure 4.6. 
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Figure 4.6: Fabrication process flow of the J-T valve chip.  
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Figure 4.7: Backside (upper left), front side (upper right) and a perspective view 

(lower) of the silicon valve chip; the depth of cavity for the later gap were 

characterized using 3D optical surface prof ilers.  

For silicon micro-machining, the number of structure layers is limited by the number of 

masks [7]. To fabricate the Si valve chip with a 3-layer structure, multiple SiO2 mask patterns 

were pre-generated through controlling the etching time. First, SiO2 was patterned to form the 

primary mask pattern, which was further patterned and etched, forming a thickness difference. 

During processing, etching proceeds with the primary mask first, and the thinner SiO2 was 

selectively etched away by controlling etching time and etchant. The remaining SiO2 served as a 

secondary mask for latter Si etching. After the etching, E-beam evaporation was used to deposit 

Ti as an adhesive layer, followed by Cu for soldering, and Au for oxidation protection. This 

metallization was to make a metal layer which is solderable for the following assembly. Finally, 

the Pyrex glass chip and the silicon valve chip were aligned and sandwiched by electrodes with 

cathode on silicon and anode on glass. The chips stack was then pre-heated at 400 °C for 10 
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minutes to stabilize ions in Pyrex glass and hence avoid arcing when voltage is applied. A 550 V 

voltage was applied across the chips for about 20 minutes to complete the boding. Figure 4.7 

shows the pictures of the manufactured Si chip and J-T valve. 

For the detailed steps and their explanations according to Figure 4.6, they are as 

explained as following:  

(1) Thermal oxide the wafer with 1.8um masking SiO2 . 

(2) Using 10um photoresist AZ- 4620 as a mask, patterned the front side SiO2 with RIE of 

plasma of CF4 and O2. This pattern is to prepare the mask for the via holes DRIE etching. 

(3) Patterned the backside oxide for a later backside DRIE etching mask. 

(4) Patterned the front side SiO2 for the secondary front side mask for gap area. Thinner the SiO2 

with 0.9 µm, instead of etching away all the SiO2 of 1.8 um.  

(5) Etched the Si using DRIE from the front side for 250 µm.  

(6) Etched the Si using DRIE from the back side for 200 µm. After this step, the via-holes on the 

Si were etched through and meaning while, a so called “Lego” structure on the backside of the Si 

chip were formed. This structure played as a “plug-in” structure, which was important on 

alignment and avoiding the solder from bridging, in the later assembly procedure.  

(7) Coat metal (Ti/Cu/Au of thickness of 40nm/800nm/100nm respectively) on the backside. 

(8) Conducted BOE etching on front side to remove the thinner SiO2 to expose the silicon of gap 

area. 

(9) Etched the Si from the front side using RIE with a plasma of SF6 for about 2-3 µm (the height 

can decide the flow impedance of the valve chip). 

(10) Removed the reminding SiO2 mask for a next anodic bonding requirement. 
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(11) Bonded the silicon chip to a pyrex with anodic bonding, under a bias voltage of 550V at 400 

˚C.  

 

4.3 Assembly of MCC 

To make the assembly of the cold head on the HX, soldering was chosen to make the 

sealing and connection since solder exhibits selective wetting to metal and other materials which 

makes the sealing and bonding controllable without inducing clogging problems as epoxy does. 

The first step was to metalize the cold end of the HX. A shutter mask made of aluminum was 

used to expose just the area on the cold end which is 2.7 mm × 2.5 mm followed by thermal 

evaporation of metal layers of Ti/Cu/Au in thickness of 40 nm/800 nm/100 nm, respectively (see 

Figure 4.8). 

 

Figure 4.8: Metal coating on the cold end (a) stainless steel shutter mask; (b) 

evaporation on the cold end; (c) Metal coated HX. 

 

A solder piece was then pre-molded to fit the shape of the metal pads and J-T valve for 

better wetting and reflow. Cold head, pre-molded solder and HX were then stacked as a 
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“sandwich” and then reflowed on a hot plate at 160 ˚C in a formic acid chamber. The “plug-in” 

structure on the cold head prevents the solder from bridging to clog the via-holes. As a result, the 

J-T valve and HX were bonded together (see Figure 4.9) and made a closed loop from one of the 

channel to the other. 

 

 
Figure 4.9: Solder reflowing method to make the connection and sealing of the cold 

head and the heat exchanger. 

To make the connection of the macro facilities to the micro heat exchanger, two brass 

adaptors were used and glued with epoxy to connect the HX to the copper tubes to a stainless 

flange. The flange allowed O-ring connection to the macro measuring system so that the device 

was easily assembled and de-attached for repeating the test (see Figure 4.10). 
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Figure 4.10 Assembled cold stage on a stainless flange. 
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CHAPTER 5: MONOLITHIC POLYIMIDE MCC - DESIGN AND 

FABRICATION 

 

5.1 Motivations of the all polymer approach 

In the last chapters, we presented the design and fabrication of a planar polymide-based 

MCC that consists of a micro machined polyimide counter flow heat exchanger (CFHX), and a 

silicon/glass based J-T expansion valve. Compared to the previous work based on the fiber-based 

heat exchangers, most of the fabrication processes for the planar MCC are achieved on wafer-

level that substantially enhances the manufacturability and scalability. The scalable configuration 

enabled a designer to choose a fluid channel width for a specific heat lift with the same vertical 

layers. In addition, polyimide can maintain ductility at cryogenic temperatures, and it minimizes 

the material failure due to crack propagation in brittle materials during vibration, shock, or 

impact.  

However, in such an assembly, the J-T valve and the heat changer have been made 

separately to achieve the 3-D micro fluid system, which was soldered and epoxy-bonded to make 

3-D connections between the channels of the heat exchanger and the J-T valve. This assembly 

challenge affects the manufacturability and yield of the device due to the complicated connection 

process. For example, a mechanical leakage problem (see Figure 5.1) has been identified in the 

bonding interface of the device, which will be explained in details in Chapter 6 that covers the 

test results of the polyimide-based MCC.  
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Figure 5.1: Potential mechanical by-pass leakage in the interface to cold head. 

In this Chapter, the MCC assembly method has been replaced by a fairly new approach 

by making monolithic polyimide MCCs as presented in Figure 5.2. The new MCC cold stage 

including a heat exchanger and a J-T valve are all fabricated monolithically on a wafer using 

polyimide. Compared to the old assembly approach, such an all-wafer-level processing 

successfully avoided the mechanical leakage problem by making the cold stage a whole piece out 

of same material. It also further enhanced the manufacturability and scalability. The scalable 

configuration enables a designer to choose a fluid channel width for a specific heat lift with the 

same vertical layers. One of the major problems solved for this novel approach is the 

development of the wafer-level 3-D interconnect for making high pressure, e.g. 10 atm, gas 

channels.  

The design, optimization, fabrication of the MCC manufactured with the monolithic 

polyimide approach are to be presented in the following sections. 

 

5.2 Design of the monolithic MCC 

Functionally, similar to the polyimide-based MCC, the monolithic MCC still have to 

consist of a micro machined polyimide heat exchanger and Joule-Thomason (J-T) expansion 

valve. The heat exchanger had a structure consisting of two parallel rectangular polyimide 
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channels stacked on top of each other. On the cold end, the two heat exchanger channels were 

interconnected with a polyimide gap of 3.4 µm, while on the worm end they are connected to the 

fluid via holes on the silicon substrate going to compressors thereby forming a Joule-Thomason 

loop. Polyimide posts were used to strengthen the polyimide fluid channels that have been 

proven reliable for a 10-atm gas flow. The polyimide MCC’s dimensions are 15 mm × 3 mm × 

90 µm with one of the ends tethered for both excellent thermal isolation and good mechanical 

properties (see Figure 5.2).   

For the system and device design of the monolithic MCC, all the heat exchanger 

optimization and device thermal and mechanical analysis of the polyimide-based MCC are 

directly applicable here. In such a case, the typical dimensions of the monolithic MCC were 

same to that in Table 2.1. The only difference was that the silicon/glass valve was replaced with 

a polyimide valve integrated with the heat exchanger, this can make the cold head becomes a 

cold tip which was even so that the radiation loss was also improved.  
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Figure 5.2: Schematics of the operation principle of the J -T micro cryocooler 

system with top and cross-sectional views of the planar polymer-based MCC. 

 

5.3 Fabrication of the all polymer MCC 

Similar to method for the polyimide based MCC heat exchanger, the fabrication process 

for the all polymer MCC consists of multi-layers of metallization of copper, spin coating and 

curing of polyimide, and the patterning on each layer.  The J-T valve can be integrated in the 

heat exchanger process in which copper was also used to sever as a sacrificial layer to make the 

small gap J-T valve. With proper alignment and over lapping of the different channels sacrificial 

layers, a through etching 3-dimensionally connected all the channels to form the J-T loop. The 

detailed steps and their explanations are as follows and illustrated in Figure 5.3:  
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(1) A masking oxide approximately 1.5 μm thick was grown on both sides with wet 

thermal oxidation.  

(2) O-ring shapes trenches were patterned on the SiO2 layer using reactive ion etching 

(RIE), followed by 7 μm deep reactive ion etching (DRIE) on silicon with silicon oxide as a 

mask. The trenches were to enhance the bonding and sealing between the interface of the 

polyimide layer and silicon substrate.  

(3) Backside SiO2 was patterned utilizing RIE. This patterning was to prepare oxide mask 

for later DRIE etching from the backside of the silicon substrate. 

(4) An adhesion layer of chromium 100 nm in thickness followed by an electroplating 

seed layer of copper 500 nm in thickness were evaporated onto the wafer using a thermal 

evaporator. Additional copper of 15 μm was then deposited using electroplating with a current 

density of approximately 10 mA/cm2. The metals were then patterned with wet etching serving 

as the first sacrificial layer.  

(5) Polyimide (DuPont PI-2611*) was then deposited onto the wafer in two spin coats of 

2000 rpm for 30 seconds followed by a soft bake after each at 100 °C for 120 seconds. After all 

the spin coats, the polyimide was cured at 260 °C for 1 hour in nitrogen, arriving at an after- cure 

thickness of about 20 μm.  

(6) Similar to (4) but using an adhesion layer of 10nm thick titanium, instead of using 

chromium, followed by a 400 nm thick copper electroplating seed layer were deposited using a 

thermal evaporator. Additional copper of 20 μm was then electroplated followed by patterning to 

the geometry as one of the later embedded micro channels in the HX. The patterning of copper 

and titanium were done by using wet etching and RIE in a plasma of CF4:O2 ratio at 4:16 

respectively.  
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(7) A second polyimide (DuPont PI-2611*) layer was spin coated at 2000 rpm for 30 

seconds followed by a soft bake at 100 °C for 120 seconds and cured at 260 °C for 1 hour in 

nitrogen, yielding a thickness of about 10 μm.  

(8) Same to (6), another 20 μm thick layer of copper plating and wet etching were done to 

form the geometry of the other embedded micro channel in the HX.  

(9) Photoresist of 10 μm thick was deposited on to the wafer and patterned to expose the 

J-T valve area followed by thermally evaporating 10 nm Ti and 3 μm thick copper. The metal 

layers were then patterned with lift-off by the photoresist serving as a sacrificial layer for 

forming the J-T valve. 

(10) The exact same process as described in (5) was done again to form another 

polyimide layer 20 μm in thickness.  

(11) A hard metal mask of 10 nm of titanium (as the adhesion layer) and 2.5 μm of 

copper was evaporated on the polyimide layer. It was then patterned to the geometry of the HX 

with alignment entrance and exit holes on the end and releasing holes along the sealing edge of 

the HX.  

(12) The exposed polyimide was etched in a CF4 and O2 (CF4:O2= 6:10 sccm) plasma 

until down to the copper metal to expose all the sacrificial layers, including the bottom sacrificial 

layer, lower channel sacrificial layer and the J-T valve sacrificial. At this situation, the lower 

channel was then connected to the J-T valve. Because, the metal defining the J-T valve is already 

connected to the upper channel sacrificial layer, three of them should be able to be connected 

together after releasing.  
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(13) Backside entrance and exit holes were etched from the backside of the substrate 

using DRIE. Further RIE in a CF4 and O2 (CF4:O2= 6:10 sccm) plasma was then done to etch the 

polyimide making the entrance and exit holes go all the way to their channels filled with metal.  

(14) The sacrificial layers of copper were etched away at the end in a standard copper 

etchant (Transene CE-100) at 60°C forming the embedded micro channels in the MCC and free 

the whole MCC structure. The etch time to fully release the structure was approximately 48 

hours.  

(15) A Kapton film was used as a cap and was epoxy-bonded to seal the top etching holes 

on the cold tip.  

In the previous polymer-based MCC design introduced in the above Chapters. DuPont 

PI-2574 was used as the structure material. Because of the thermal mismatch between the 

polyimide layers and silicon substrate, all the tethers in this design were broken after the metal 

releasing.  In order to solve the problem, DuPont PI-2611 which has a similar coefficient of 

thermal expansion to silicon was chose to making this device. No tether breaking was found after 

the copper releasing of the device as can be seen in Figure 5.4. 
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Figure 5.3: Fabrication process flow of the polyimide HX; all the conformal 

topography by PI coatings were drawn to be a planarized covering to make the 

fabrication process flow figures easier to read with more clarity.  
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Figure 5.4: Cross-sectional view of the schematic of the heat exchanger (a), photo 

of the heat exchanger with tethers being broken due to the CTE mismatch (b) and 

photos of the heat exchanger with a flexture design to avoid the tether breaking.  
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CHAPTER 6:  TEST OF THE POLYIMIDE-BASED MCC AND ALL 

POLYIMIDE MCC 

6.1 Mechanical test of the polyimide heat exchanger 

Before conducting the cooling test of the MCC, it is good to conduct a study on the 

mechanical integrity of the HX. This will tell us how much pressure the heat exchanger can 

survive and what’s the flow resistance generated by the heat exchanger’s channel. 

In the experimental study, two mechanical tests were conducted on the HX to be used in 

a Joule- Thomason micro cryogenic system later. The first test was to estimate the pressure drop 

of fluid in the HX. One of the energy losses in HX is the pressure drop along the flow channels. 

Slip flow will begin to occur in nitrogen with channel diameters smaller than about 66 µm when 

Knudsen number Kn in regime of 10
-3

 to 10
-1

 for room temperature and atmospheric pressure and 

this critical number could be smaller at cryogenic conditions [15]. However, for Kn less than 10
-2

 

(in our case, the Kn = λN2/Dn= 66nm/36 µm=0.00183, where λN2 is the molecular mean free path 

of standard nitrogen gas and Dh is the hydraulic diameter of the channels and has a relationship 

to the channel gaps of Dh= 2 × gap), the effects on friction factors and Nusselt numbers can be 

ignored [15]. In this case, the pressure drop in a flow channel is where the flow density can be 

considered as a constant value is given by in [15]. 

   
          

 

   
                                                           (6.1) 

 

In equation (6.1) fr is the Fanning friction factor,    is the mass flow rate in the flow 

channel, ρ is the density of the gas, and Ag is the cross-sectional area of the flow channel. For a 

plate form where the width of the channel is much larger than the gap, fr is given by  
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                                                                 (6.2) 

 

where the Reynolds number Nre can be expressed as  

 

    
  

  

        
                                                            (6.3) 

 

where µ is the viscosity of  the fluid. By using nitrogen gas for example, at room temperature, 

the viscosity can be approximated as a constant for pressures less than 1 MPa. For a flow-rate of 

nitrogen of 100 sccm, which is the largest flow-rate in the interested range, the number Nre is 

calculated to be 109 with the density of nitrogen gas given as 1.165g/ in standard condition 

indicating that the flow is laminar in the interested range. 

The density in (6.1) is varying along the channel because gases are compressible, which 

give a relationship between it and the pressure as 

    
 

   
                                                                       (6.4) 

 

where the ρ0 is the density of nitrogen gas at standard condition and the P0 is the standard 

atmosphere pressure. By combining the equations (6.1), (6.2) and (6.3), and doing the integration 

along the channel, the pressure across the channel and the standard volume flow-rate has a 

relationship of 
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and (6.5) can be further simplified as 

 

          
        

  
   

    
 

 

                                    (6. 6) 

By using a nitrogen viscosity of 1.78 Pa∙s and PL of 0.081 MPa, the theoretical 

relationship between the volume flow-rate and the pressure drop for rectangular channels without 

posts inside but with the same dimensions is shown in Figure 6.3.  

However, in our device, many micro posts were placed inside the channel for supporting 

and increasing the heat exchanging surface, which can introduce an extra pressure drop along the 

flow channels. To estimate the how much the posts can affect the pressure loss of the fabricated 

HX, an experimental study with the test facility schematically shown in Figure 6.1 was done. 

Nitrogen is fed from the substrate end to one of the channels and goes across to the atmosphere 

from the freestanding end.  

 

 

Figure 6.1: Schematic of the pressure drop test setup.  



68 

 

 

To make the connection of the macro facilities to the micro heat exchanger, two brass 

adaptors were used and glued with epoxy to connect the HX to the copper tubes to a stainless 

flange (see Figure 6.2). The flange allowed O-ring connection to the macro measuring system 

such the device was easily assembled and de-attached for repeating the test (see Figure 6.2).   

 

 

Figure 6.2: Picture of the pressure drop test setup.  

By controlling the valve to adjust the inlet pressure and measuring the flow-rate, flow-

rate v.s. ΔP curves for each channel on a same HX were measured (see Figure 6.3). The pressure 

drop across a channel was found to increase linearly in a large range with the flow-rate through it 

which is according to the theoretical calculation, as assessed with standard nitrogen in room 

temperature (see Figure 6.3).  From the comparison of the testing result for channels with posts 
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and the analytical result for channels without posts for a same device, the affection on the 

pressure drop brought by the posts design was tolerated in our device. The pressure drop was 

ignorable in a Joule - Thomason micro cryogenic cooler aiming at an operation pressure ratio of 

around 4:1 (0.4 MPa : 0.1 MPa). However, one should not simply make a conclusion that the 

difference of pressure drop is due to adding posts. Other the process deviations such as that from 

the thickness controlling of the metal sacrificial layers and over etching on metals could also 

affect the flow resistance.  

 

Figure 6.3: Experimental pressure drop v.s.  flow-rate across the channels when 

using nitrogen gas at room temperature compared with analytical result for 

channels without posts.  

 

The other test was to assess the over pressure withstanding capability of the HX. Each 

channel was tested by sealing one of its ends with epoxy while feeding nitrogen gas from the 

other end. The result showed that the channel structure was able to hold a pressure of at least up 
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to 1 MPa. Such a high pressure was good enough for an application of a Joule-Thomason micro 

cryogenic cooler aiming at an operation pressure ratio of 4:1 (0.4 MPa : 0.1 MPa). No bulging or 

leakage was observed. To verify the quality of this heat exchanger in cryogenic environment, 

same sealing testing was conducted after applying thermal shock by cycling the temperature 

between 77 K and room temperature multiple times. The results showed that the polyimide heat 

exchanger could sustain a cryogenic temperature down to at least 77 K, without de-bonding or 

cracking. . 

 

6.2 Cooling test setup  

To evaluate and measure the performance of the MCC, we have constructed a 

measurement apparatus as shown by the schematic in Figure 6.4 and by photo in Figure 6.5. The 

MCC cold stage was epoxy-bonded to copper tubes and then connected to a stainless coupler. 

The coupler was compatible with a cooling test setup which includes a miniature compressor 

composed of a miniature piston oscillator and micro-machined check valve assembly [17]. The 

MCC was held in a vacuum of <10
-4

 Torr during the cooling tests, to minimize heat loads 

associated with conduction through air. Icing has been noted as a problem in MCCs [17], so to 

ensure that any trace amount of water in the refrigerant was removed, 1 g of 3 Å molecular sieve 

was placed in the test loop. A 15 µm particulates filter was installed between the molecular sieve 

and the MCC to prevent any particulate build-up in the micro-channels. Before running any tests, 

the lines were evacuated to a pressure of <10
-4

 Torr, then charged with refrigerant from a low-

pressure supply cylinder. A temperature sensor (Omega platinum resistance thermometer), with a 

footprint of 2 mm × 2 mm which allowed good thermal contact was attached to the cold head 

using small amount of wax. The resistance was monitored by applying a small voltage and 



71 

 

measuring the current-draw. Heating can also be applied to learn the heat lift by operating the 

temperature sensor at a higher voltage. Temperature started to drop once the compressor was 

turned on.  

 

 
Figure 6.4: Schematic of the setup for cooling test . 
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Figure 6.5: Photo of the setup for cooling test .  

 

6.3 Cooling test of polymide-based MCC  

6.3.1 Results   

In macro-scaled Joule-Thomson refrigeration systems, mixed refrigerants have been 

widely applied to enhance the efficiency and refrigeration power. Radebaugh [11], Missimer [34], 

and Boiarski [35] reviewed recent developments and history of mixed refrigerants. Fuderer and 
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Andrija [36] first used mixed gases in a single stream without phase separators in 1969. They 

found that the mixtures experienced mostly two-phase flow in the heat exchanger.  As a result, 

boiling and condensing heat transfer of two-phase flow greatly enhanced cooling efficiency. 

The composition (8% methane, 46% ethane, 14% propane, 4% butane, 26% pentane) we 

used was optimized by the program NIST4 [16] to maximize (∆h|T)min in the range of 300 K to 

200 K with a high pressure of 4.0 bar and a low pressure of 1.0 bar. The enthalpy difference 

curve is shown in Figure 6.6. The minimum isothermal enthalpy difference is 4.09 kJ/mol in the 

temperature range from 300 K to 200 K. During the test, the base and inlet of the cold stage was 

pre-cooled in the ice and water bath to cool the inlet mixture to cooler than a standard room 

temperature, which ensured the temperature to be lower than 300 K. 

 

 

Figure 6.6: Curve of isothermal enthalpy difference for a 5 component mixture with 

a high pressure of 4 bar and a low pressure of 1 bar. The minimum isothermal 

enthalpy difference is 4.09 kJ/mol in the temperature range 300 K to 200 K.  
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The cooling test result is shown in Figure 6.7. The cold tip was able to reach to a stable 

temperature of about 233±2 K. The compressor pressure and the flow rate are shown in Figure 

6.8 and 6.9 respectively. The low side pressures were adjusted by using regulation of the 

refrigerant supply, and the high side pressures increased according to the increasing of the low 

side pressures. Flow-rate kept increasing during the test procedure until the flow-rate meter was 

saturated. Increasing of the flow-rate is both due to the increase of pressure difference between 

the two sides and a drop of the temperature of the J-T valve and resulting gas liquefaction. Two-

phase flow and periodical phase change of the refrigerant have been observed when the flow-rate 

is higher than 100 sccm.  Figure 5.10 shows pictures of the cold head taken with a high speed 

camera, showing a cycle of the phase changes. This periodic phase change was accompanied by 

the flow rate oscillations shown in Figure 14 after 3000 s. More interesting phenomena between 

two-phase flow patterns and cooling power of mixed refrigerant in MCC is being reported in 

[38]. 

As a result, the flow rate of the mixture is more than 200 sccm under the pressure ratio of 

7:1.5 bar giving a stable tip temperature of about 233 K. 
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Figure 6.7: Curves of cooling result. The cold tip was able to reach to a stable 

temperature of  about 233±2 K. 

 

Figure 6.8: Curves of pressure of each side of the compressor, the highest 

compression ratio reached is about 7:1.5 bar.  



76 

 

 
Figure 6.9: Curve of the flow rate vs. time; flow rate kept increasing during the test 

procedure until the flow rate meter was saturated.  

 

 

Figure 6.10: Pictures of the cold head taken with high speed camera, showing a 

cycle of the two –phase flow pattern change in the cold head. The camera used is an 
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Olympus i-speed visible-light camera with no filters. The light source was a white 

LED. 

6.3.2 Problems and discussions 

During the testing, we were able to intentionally adjust the high-pressure to make the 

high side pressure go up in order to get lower temperature. For example, we increased the high 

side pressures by just increasing the low side pressures a little with charging more gases from the 

mixture cylinder. We can also increase the frequency of the piston of compressor from 8 Hz to 

50Hz to increase the pressure ratio.  

The demonstrated 233K result by using the 5 components mixture is still higher than the 

targeted optimized temperature which was 200K. The reason is because the mixture was not 

working under the optimized conditions. The flow-rate is much higher than 10 sccm which was 

the design flow. This is because the flow restriction of the valve was not large enough. Under 

this condition, since the flow-rate is too high, the pressure loss along the channel can increased 

which made the actual pressure drop across the valve became smaller than 4:1 even when the 

total pressures were at 7:1.5 bar. Besides this, the velocity of the flow was much higher than the 

design velocity therefore a poor heat transfer occurred between the two lines (incoming channel 

and outgoing channel) which decreased the effectiveness of the HX. The valve was easily 

detached from the cold end after the testing, and external leakage sometimes happened on the 

solder bonding interface between the cold head and heat exchanger, so a mechanical by-pass 

leakage was also believed to happen in the solder interface between the J-T valve and heat 

exchanger to create the non-enough resistance problem.  

To improve the cooing ability of the device, the assembly method has been replaced by a 

fairly new approach by making monolithic MCCs. The new MCCs were fabricated 

monolithically on a wafer all using polyimide which avoided the potential by-pass leakage 
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problem. Preliminary test results of the new coolers reached a 190 K stable temperature by using 

the same refrigerant and this will be seen in Section 6.4. 

The MCC took much longer than what expected to cool down to 233K by considering the 

quite small thermal mass. The potential reason was that for the big system, it took long time to be 

stabilized. Some component, e.g. pentane, is supposed to be liquefied at room temperature at 

high pressure,  e.g. 5.5 bar, and will condense and then be held in the large tube of the system, in 

that case the actual mixture to passed the cooler had been changed to that has a much lower 

enthalpy difference (as much as 10× lower). This can happen until the condensed liquid amount 

reached to a certain level thus the system reached to the equilibrium. A further study by 

compactly integrating a micro compressor and the cold stage is ongoing in our group to solve the 

large tube liquid condensing problem to improve the cooling time. However, it is outside of the 

coverage of this thesis.  

 

6.4 Cooling test of the monolithic polyimide MCC  

6.4.1 Results  

Same to the procedure of testing the polyimide-based MCC, The composition (8% 

methane, 46% ethane, 14% propane, 4% butane, 26% pentane) was also used here to test the all 

polymer based MCC Same to the reason in testing polyimide-based cooler, the base and inlet of 

the cold stage was pre-cooled in the ice and water bath in order to enable a fast reaching of the 

equilibrium of the mixture.  

The cooling result is shown in Figure 6.11. The cold tip was able to reach to a stable 

temperature of about 190±10 K while the compressor is operated at a pressure ratio of 6.2 bar : 1 

bar. Curves of the flow-rate and the compressor low and high sides pressures are shown in 

http://www.google.com/search?hl=en&biw=1920&bih=955&sa=X&ei=tJU_UK27Famw2wXAjIHQDA&ved=0CBsQvwUoAQ&q=equilibrium&spell=1
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Figure 12 and 13 respectively.  We also applied switched heating to control the temperature 

expecting to see  more stable temperature, specifically, we were able to program the temperature 

sensor so that it applied 20 mW heat when the temperature is below 200K and switched off once 

the temperature once it reached 200 K. The temperate was then stabilized at about 200 K. The 

average heat applied is about 5.2 mW indicating the heat lift is 5.2 mW at 200 K. After applying 

heat, the flow rate decreased according to the changing of the viscosity and density of the 

mixture components.  

 

Figure 6.11: Curves of cooling result. The cold tip was able to reach to a stable 

temperature of  about 190±10 K. 

Flow-rate and pressures are fluctuating when the cold tip get cooling (see Figure 6.12 and 

Figure 6.13), this is believed due to the liquid holding and sending issue. More details on study 

and improvement according to the study of the mixture can be found in [39]. 
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Figure 6.12: Curve of the flow rate vs. time; flow rate kept increasing when the 

temperature is decreasing; the flow rate start to fluctuate when the temperature 

reached the 190 K.  

 

Figure 6.13: Curves of pressure of each side of the compressor, the highest 

compression ratio reached is about 6.2:1bar. Pressures fluctuate according to the 

flow rate.  
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6.4.2 Problems and discussions 

The cooling temperature demonstrated by using the 300 K - 200 K mixture successfully 

reached the optimized temperature. However, the net heat lift was still lower than what we had 

expected which was about 12 mW. The flow rate was higher than that designed (actual: 60 sccm; 

designed: 10 sccm). The higher flow-rate provided higher gross refrigeration, however, the heat 

exchanger efficiency was thus degraded due to a large flow-rate. Another potential problem was 

that the enthalpy difference of the mixture in the optimization was under the assumption of a 

thoroughly mixed refrigerant. However, due to the liquid vapor separation issue, the enthalpy 

difference was smaller than the one calculated that also contributed to the reduced refrigeration. 

In addition, the heat exchanger tested had no metal shielding to cover its top surface. Without 

this additional radiation shielding, the thermal load was higher than what we had expected.  

It is essential to reach the designed flow-rate with the correct gap of the J-T valve. It is 

the main reason we decided to conduct a detailed study to character the J-T valve gap. This study 

will be reported in Chapter 7.  In summary, we have developed the amonolithic polymide MCC 

with five components mixture and successfully demonstrated the 200 K cooling with a 5.2 mW 

heat lift The MCC can be further improved.  
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CHAPTER 7 STUDY OF THE POLYMER J-T VALVE 

7.1 J-T valve and previous work on pressure drop prediction of two phase flow 

The function of J-T valve in Joule-Thomson cryogenic cooler is to: (1) enable a 

significant pressure drop along with a large temperature drop in temperature [40]; (2) regulate 

the cryogenic fluid in order to achieve the desired flow-rate though the MCC. In other words, to 

achieve the optimization condition at which we aimed, and to provide required refrigeration, this 

valve regulate the flow-rate for a given pressure drop. In the MCC system, mixtures of two-

phase flow are required to achieve high enthalpy difference for effective refrigeration, we need 

sound knowledge of the two-phase frictional characteristics in order to improve the accuracy of 

the design of the J-T valve. 

Typically, there are two different approaches to predict the frictional pressure drop of a 

two phase flow: the homogeneous model and the separated flow model. For the homogenous 

model, the two-phase flow is assumed thoroughly mixed and can be treated as a single-phase 

flow so that the slip ratio equals to 1. The pressure drop is computed as if the flow is a single 

phase with some properties modified.  Details of using the homogeneous model will be given in 

Section 7.3.5 in this chapter. In the separated flow model, the two phases of the flow are 

considered separately and their velocities may differ [41].  

There are lots of works been done on precisely prediction of two phase flow based on 

comparison of experimental data and theoretical correlations in order to improve the design 

accuracy of systems such as steam-power and petrochemical plants, refrigeration and air-

conditioning systems. Most of the frequently used correlations to predict the two-phase frictional 

pressure gradient take the form of two-phase frictional multipliers. This concept was first 

introduced by Lockhart and Martinelli 1949 [42]. In their formulation, the multipliers were a 
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function of the Martinelli parameter. Detailed formula and definition of the multipliers was 

introduced by Lockhart and Martinelli in [43].  In 1979, Friedel improved the prediction by 

proposing correlations based on a bank of 25,000 data and the multiplier is given in [44]. 

However, these correlations were found to be limited to specific range of flow conditions as 

surface tension of the flow, fraction of the vapor and dimensions and geometry of the channel. 

For example, it was found that the Friedel correlation significantly over-predict the data having 

smaller liquid mass flux while under-predict the data of higher liquid mass flux of air–water in 

capillary tubes [45] [46]. On the other hand, interestingly, it can fairly predict the refrigerant data 

in a 3-mm diameter tube which has been proved by Yang et al [47]. Due to the limitation of 

existing correlations, there are more works kept being done to enlarge the data base and 

generating more accurate correlations. In 1992, an experimental study was conducted by Souza 

et al [41] to provide the local pressure drop during two-phase flow of R-134a and R-12 inside 

smooth tubes. A correlation was developed based on theoretical pressure drop modeling. The 

ranges studied were those utilized in residential and automobile air conditioning evaporators. In 

2002, Chen et al [42] developed an appropriate correlation to predict the two-phase pressure drop 

in small tubes, D < 10 mm, based on the relevant database.  

However, despite these progress made to predict pressure drop both experimentally and 

theoretically, it seems that the applicability of these correlations for refrigerants for even smaller 

channels, such as a micro gap is still not clear. Furthermore, most of the two-phase flow studies 

were focusing either on air-water mixture or commercial refrigeration making their results hard 

to be confidently applied to our specific case of the MCC valve design due to that all these 

correlation limitations to specific range of flow types and conditions 
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In this chapter, a study on the polymer J-T valve will be conducted in order to 

experimentally study the pressure drop of the customized mixture for micro gaps with the 

dimension of interest for the MCC design. In this study, the polyimide valve was fabricated and 

tested to simulate the real case in the monolithic polyimide MCC. An apparatus was built to test 

the pressure drop v.s. flow-rate with different fluids. Pressure drop data for micro gaps with 

nitrogen and a five components mixture were obtained. Because of the reason that even would be 

just valid for the bubbly flow, homogeneous model was reported to give comparatively accurate 

predictions in smaller tubes for various flow conditions [41] [45], it was chosen as a comparison 

to the test date of the valve. The calculation using homogeneous was assisted with NIST-

REFPRO to generate the flow properties under different pressure and temperature conditions. 

It was indicated that prediction method using the homogenous model assisted NIST-

REFPRO has a good predictive ability (a mean deviation < 10%) for a five component mixture 

through the valve of typical dimensions in the MCC. Details of the study are to be introduced in 

the following sections. 

7.2 Problems of the current polyimide J-T valve design 

The all polyimide approach to make the MCC as mentioned in Chapter 5, demands an 

accurate design of the polyimide gap for the J-T valve .However, for the current design of the 

valve, due to the reason discussed above in Section 7.1, the J-T valve dimensions were obtained 

by trials and errors. What’s more, polyimide gap structure was very compliant without any 

stiffness design, making the flow restriction sensitive to pressure as what is shown schematically 

in Figure 7.1 (a). This deflection under pressure will add a nonlinear effect making it difficult to 

predict the restriction of the valve.  
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Figure 7.1 Schematics of the deformation of the polyimide gap (a) without any 

stiffness design and (b) with stiffness design . 

 

As a result, it is desirable to understand more on how to predict the polyimide J-T valve 

restriction. This chapter will propose and verify an effective analytical design method.  

7.3 Experimental study of the J-T valve  

7.3.1 Study method 

In order to propose a design reference, a systematic testing of J-T valve resistance needed 

to be tested under different temperatures. For this reason, we decoupled the testing of the valve 

from the MCC, which meant we fabricated and tested valves in different dimension separately. 

The test can be conducted with any flow that are interested and the study were limited to a 

dimension range interested according to the interested flow-rates and pressures for the polymer-

based MCC. 
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 After the test, the results were compared to calculation results by using homogenous 

model in order to understand how good it is effectively to predict the valve flow resistance. The 

processes and methods developed in this study can also be references for engineers who work on 

the similar cooler design to follow to understand the flow resistance under similar conditions. 

 

7.3.2 Design of the test vehicles 

Stiffness design of the polyimide gap 

As mentioned in above, since polyimide (for PI-2611, Young’s modulus is 8.5 GPa) is 

compliant material making the flow restriction sensitive to pressure, a induce a nonlinear effect 

which makes it difficult to predict the restriction of the valve see (Figure 7.1 a). In order to 

reduce the nonlinear effect, supporting structures were designed to make the gap to be rigid 

avoiding large deflection under internal pressure (see Figure 7.1 b). 

Numerical study in Conventorware was used in order to understand the deformation of 

the polyimide gap deformation under internal high pressures. For example, in Figure 7.2, for a 

given valve with a 3 µm gap and a deformable layer in thickness of 20 µm which similar to the 

conditions in the current demonstration of MCC, by choosing posts diameter of 100 µm and 

space between each post to be 100 µm either, the maximal deformation is only 66 nm under an 

internal pressure of 4 bar. This deformation is considered to be negligible for a 3 um gap. To 

understand this, by doing a simple calculation, when a gap change from 3 µm to 3.066 µm, based 

on equation (7.1) the flow rate will become (3.066/3)
3 
=1.07 times for a given pressure drop and 

fixed other conditions of the valve and flow properties. This posts design parameters were 

chosen to make all the test vehicles discussed in this chapter.  
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Figure 7.2 Simulation of the deformation of  the valve for a typical posts design.  

 

Flow resistance calculation and dimension design of the test vehicles 

In this study, due to the fabrication requirement of the planar polymer-based MCC, the 

interested structure of the J-T valve here was nothing but a gap. In order to fabricate the valve 

together with the heat exchanger, the evaporated copper was used as the sacrificial layer to make 

the polymer gap that serves as a pressure drop restriction. In this case, the gap height interested 

was confined to be from one to several micron (e.g. 1 - 4 µm). Smaller gap could make the 

releasing substantially difficult and could also make valves to be too sensitive to any deformation 

under high pressures condition. For example, by using equation (7.1), if the gap g varies from 1 

µm to 1.066 µm, the flow rate will become (1.066/1)
3 

=1.2 times for a given pressure drop and 
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fixed other conditions of the valve and flow properties.  In our study, 3.2 µm was chosen as the 

valve gap by having the concerns discussed above. Under confinement, we designed several 

different dimensions of valves in our interested flow restriction range. The dimension was 

decided based on experience.  For a motivation to make the device small, the valve can be scaled 

down by making both the length and width smaller while still keeping a same restriction. 

However, when the width and length becomes too small, any small contamination introduced 

from the system can risk the valve to be totally clogged. Furthermore, the restriction of the valve 

can also become too sensitive to the deviation the fabrication. Based on these considerations, 

typical dimensions of the valve in this study have been chosen are shown in Table 7.1. 

Table 7.1 Dimensions of the studied test vehicles 

 Set-1 Set-2 Set-3 Set-4 

Length (L) 1.5mm 3mm 4mm 1.5mm 

Width (W) 2mm 2mm 2mm 6mm 

Gap (g) 3.2 um 3.2um 3.2um 3.2um 

 

7.3.3 Fabrication and assembly of the test vehicles   

The valves were fabricated on a 3 inch (76 mm) n-type <100> silicon wafer of 380 μm 

thickness. Evaporated copper were used as the sacrificial layer and polyimide was used as the 

structural material to simulate the real situation for the valve in the polyimide MCC. Figure 7.3 

illustrates the major batch fabrication steps for the polyimide J-T valve. The detailed steps and 

their explanations are:  

http://www.google.com/search?hl=en&biw=1920&bih=955&sa=X&ei=YeRxUKXtN6rm2QW59YHgDQ&spell=1&q=vehicle&ved=0CBsQvwUoAA
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(1) Polyimide (DuPont PI-2611) was deposited on to the wafer in spin coat of 2000 rmp for 30 

second followed by a soft bake at 100 °C for 120 seconds. After all the spin coats, the polyimide 

was cured at 260 °C for 1 hour in nitrogen, coming with an after- cure thickness of about 10 µm. 

(2) An adhesion layer of 20 nm thick chromium followed by a 3.2 µm thick copper  layer were 

deposited using thermal evaporator. 

(3) The copper and chromium were then patterned using CE-100 (Transene) etchant and 30% 

HCl solution respectively. 

(4) Another Polyimide (DuPont PI-2611) layer was deposited on to the wafer in two spin coats of 

2000 rmp for 30 second followed by a soft bake after each at 100 °C for 120seconds. After all 

the spin coats, the polyimide was cured at 260 °C for 1 hour in nitrogen, coming with an after- 

cure thickness of about 20 µm. 

(5) Proper dicing was conducted to achieve the right dimensions of the valves (length) and to 

expose the metal layer. 

(6) Etched away copper layer to release the device using copper etchant (Transene CE-100). 

http://www.transene.com/etchants.html
http://www.transene.com/etchants.html
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Figure 7.3: The fabrication steps of the J-T valve test vehicles.  

 

Figure 7.4 shows the picture of a fabricated J-T valve, a fabricated valve is a polyimide 

gap on top to silicon substrate, the top layer of polyimide is about 20 µm thick. To couple out the 

gap to the test setup, the gap was then epoxy-bonded to an aluminum fixture, and then with 

stainless tube connection, the gap was connected to the 3” flange which was compatible with the 

fluids test setup  mentioned in Chapter 6.  
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Figure 7.4: Photos of a typical J-T valve test vehicle, the valve is a polyimide gap 

on top of the surface.  

 

Figure 7.5: Schematic of the assembly of the test vehicle for connecting the valve to 

the system.  
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7.3.4 Test setup  

To measure the pressure drop v.s. the flow rate of polyimide valve, we constructed a 

measurement apparatus as shown by the schematic in Figure 7.6.  The valve was connected and 

epoxy-sealed to aluminum and then connected to a copper flange with stainless tube. The flange 

is compatible with our cooling test setup as described in Chapter 6, which includes a miniature 

compressor composed of a miniature piston oscillator and micro-machined check valve assembly 

[16]. A TE cooler was then placed under the test valve assembly so that the valve can be tested 

under different temperatures. The MCC was held in a vacuum of <10
-4 

Torr during the cooling 

tests, to minimize heat loads associated with conduction through air. The lowest temperature 

reached is 252K by using a TE cooler with 100 mW heat lift for maximum cooling temperature 

of 60 °C (dTmax). A valve at the high pressure side of the J-T valve was used to adjust the 

pressure (see Figure 6.4). 

A temperature sensor is epoxy-bonded on top of the assembly to test the temperatures, 

since the thin gap (g=3.2 µm) severed as a very good “heat exchanger”, the average fluid 

temperature inside the valve was considered to be same to the temperature measured on the 

assembly.  The actual temperature difference of the fluids going through and the solid part can be 

calculated using [48] 

∆T= (Tin-TTE)  
 
              

     

 

                                       (7.1) 

where Tin is the inlet fluid temperature, TTE is the temperature of the wall of the channel, which 

is considered to be same to the measured temperature due to a good thermal conductivity of the 

aluminum and silicon; L is the length of the channel and W is the width of the channel, g is 
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height of the gap, Cp is the average specific heat of the mixture for a given pressure and 

temperature range.    is the flow-rate in mole/s. 

To understand that ∆T is negligible in our interested flow and temperature range, we can 

take a calculation for a specific case. For example, for a conservative assumption, even when the 

inlet mixture will be precooled with the aluminum fixture, we still assume it is 295 K as a worst 

case. In this case, by using equation (6.3), ∆T is only 1.4 K when choosing a TTE of 252 K which 

was the lowest temperature in our experiment and a flow-rate of 40 sccm which was the largest 

number in our experiment, 150 µm of the channel is good to make the ∆T to be about 1.4 K. The 

calculation suggests that in our tests which are to be reported in the following sections, it is okay 

to assume that the temperature of the fluid is same to that we are measuring.  

 

Figure 7.6: Schematic of the measurement apparatus to test the valve restriction 

under different temperature. By making a good thermal isolation design, TE cooler 
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can be used to enable a low cost system to test the valve restriction at low 

temperature. 

 

7.3.5 Models for flow restriction   

To calculate the flow restriction of the pressure drop in a flow channel where the flow 

can be considered as laminar flow is given in [15], 

   
          

 

   
                                                           (7.2) 

 

where fr is the Fanning friction factor,    is the mass flow rate in the flow channel, ρ is the 

density of the fluid, and Ag is the cross-sectional area of the flow channel. For a plate form where 

the width of the channel is much larger than the gap, fr is given by  

   
  

    
                                                                 (7.3) 

 

where the Reynolds number Nre can be expressed as  

 

    
  

  

        
                                                            (7.4) 

 

and µ is the viscosity of  the fluid. By using nitrogen gas to estimate, at room temperature, the 

viscosity can be approximated as a constant for pressures less than 1 MPa (about 10 bar). In such 

a case, equation (7.2) can be simplified to be  

dp 
     

      
dl                                                          (7.5) 

The high side pressure then can be calculated using  
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                                              (7.6) 

 

However, to use the equation, the flow has to be laminar flow which is the situation in 

our study. For a flow-rate of nitrogen of 100 sccm, which is even more than largest flow-rate (40 

sccm) in the interested range, the number Nre is calculated to be 109 with the density of nitrogen 

gas given as 1.165g/L in standard condition indicating that the nitrogen flow is laminar in the 

interested range. For the mixtures in our study, the standard densities of mixtures are usually 

similar to it of the nitrogen, which means that mass flow-rate    of the mixture for a same 

volume flow-rate (40 sccm as the largest interested) is similar to that of nitrogen, on the other 

hand, viscosity of mixture   is always large than that of nitrogen indicating that the mixture can 

also be treated as laminar flow here. 

For mixture flow under low temperature, the flow becomes two-phase. The homogeneous 

model is the simplest approach to the prediction of two-phase flows is to assume that the phases 

are thoroughly mixed and can be treated as a single-phase flow so that equation 7.6 is still 

applicable. For the homogeneous model, the bulky density and viscosity were given in [50]: 

                                                   (7.7) 

 

                                                       (7.8)  

where ρG and ρL are the gas and liquid densities and x is the quality (fraction of the total mass 

flow which is vapor).  ηG and ηL are the gas and liquid viscosities respectively. The liquid and 

vapor properties of the mixture under different pressures and temperatures can be generated 
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using NIST- REFPRO. For example, under temperature of 252K, the properties of the five 

components mixture optimized for 275K-160K under different pressures are shown in Table 7.1. 

Table 7.2 The liquid and vapor properties of the 275 - 160 K mixture (34% ethane, 22% 

ethane propane, 22% ethylene, 12% isobutane, 12% isopentane) generated using NIST-

REFPRO. 

 

 

 

7.3.6 Test and discussions  

Valve restriction using nitrogen 
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N2 gas was first used to check error of the system and tested as a simple reference.  4 

different kinds of test vehicles in different dimensions have been tested. The result is shown in 

Figure 7.5. Testing results are presented as the spots while the calculation results are presented as 

curves in the graph. The results suggest that the testing is generally according well to the 

modeling. However, in the lower flow rate range, discrepancy of the pressure drop are of larger 

numbers, this is because that in the low flow rate range, the pressure is more sensitive to flow 

rate, in this case, any small error in reading the flow rate will induce relative larger error of 

pressure discrepancy. For the device of set-4, we have repeated the tests for 6 times and error 

bars are present in figure, the result shows that the repeatability of one device is good.  

In Figure 7.5, one can find that the device of set-4 shows a large discrepancy between test 

and calculation to that of other sets. This is because of the propagation of uncertainties. 

Specifically, for a comparison between set-1 and set-4, the only difference is that the width of 

set-4 is 3 times of that of set-1. In the valve restriction equation (7.1),    is proportional to the Ag 

if other parameters are fixed, so for a specific valve, e.g. of set-1, if the flow-rate under a certain 

pressure is   1, the flow rate   2 under same pressure for set-4 should satisfy: 

  2 = 3 ×   1                                                        (7.9) 

In this case, according to the theory of propagation of uncertainties [49], if δ  1 if the uncertainty 

of measuring of   1, the uncertainty of for flow-rate   2 is: 

δ  2= 3 × δ  1                                                    (7.10)  

which suggest that in Figure 7.7, the obvious larger discrepancy between test and calculation for 

set-4 compared to other set is reasonable. 
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Figure 7.7: Calculation and measurement result of the valves’ restriction using 

nitrogen as the flow.  

Valve restriction test of a five components mixture  

In order to understand the performance of the valve for a complicated cryogenic fluid, a 

mixture of 5 components (34% ethane, 22% ethane propane, 22% ethylene, 12% isobutane, 12% 

isopentane in mass fraction) which optimized by the program NIST4 [5] to maximize (∆h|T)min in 

the range of 275 K to 160 K with a high pressure of 4.0 bar and a low pressure of 1.0 bar was 

also used to conduct the flow resistance measurements. There were several reasons for choosing 

this mixture as a candidate for this study. Firstly, the components of this mixture using was 

similar to the one used for the 200 K demonstration in Chapter 6. Secondly, the mixture itself 

was designed for a 275 K-160 K cooling which is being used in the future cooling demonstration 
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in this project therefore measured results can directly benefit the future work. Thirdly, compared 

to the other similar mixtures, this mixture won’t be liquefied at room temperature for relatively 

higher pressure, e.g. up to 5 atm. This can make the testing go up for comparatively higher 

pressure range (up to 5.5 atm compared to only 2 atm with the 300-200 K mixture mentioned in 

Chapter 6) by avoiding the condensing and liquid hold-up problem. Figure 7.8 illustrates the 

condensation and liquid hold-up problem of the mixture. Some components could be liquefied 

even at room temperature when the pressure is high, e.g. pentane at 5.5 atm. These liquid 

components were held in the large tube in the high pressure side of the testing setup. Once the 

liquid hold-up happened, the actual components went through the valve were changed from that 

of the original mixture. This could result a changing of the mixture we measured when the 

pressures were changed and the changed mixture components are not accurately predictable 

making us had no idea what we were testing. 

 

Figure 7.8: Illustration of the condensing and liquid hold -up problem of the 300-

200K mixture.  
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Even used the 275 K-160 K mixture which can avoid the large tube liquid hold-up 

problem, one thing needs to be noticed is that when the temperature went down liquefaction 

could still happen in the valve assembly’s small cold volume. However, since the cold volume 

was is very small, we expected that the liquid accumulation can reach to a certain level quickly 

and be sent through the valve finally. To verify that condensing and liquid hold-up in the small 

cold volume won’t induce the components changing problem, samples of mixture after going 

through different temperatures were collected and analyzed. The components analysis results are 

shown in Figure 7.8. The results indicated that there was no major permanent components 

change after the mixture went through a valve at both room temperature and 256K.  The result 

confirmed our assumptions discussed above making us believe the components kept consistence 

for the test conducted at three different temperatures of 295 K, 265 K, and 252 K. 

 

 

Figure 7.8: Comparison of components analysis of the 275-160 K mixture between 

experiment conducted under 295K and 256K.  
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As can be seen in Table 7.2, at 252 K, the vapor quality was about 64% before it gets into 

the valve when it is under 4 bar pressure which indicate that there were enough liquid existing in 

the system. Figure 7.9 shows the tested valve restriction for the 275 -160 K mixture (34% ethane, 

22% ethane propane, 22% ethylene, 12% isobutane, 12% isopentane in mass fraction) under 

three different temperatures of 295 K, 265 K and 252 K.    

 

 

Figure 7.9: Calculation and measurement result of  the valves restriction for 275-

160 K mixture under different temperature;  the tested valve was of set-2 in Table 

7.1. 

 

In Figure 7.9 we also compared the test results (dots in the figure) to the result calculated 

with homogeneous model assistant with NIST-REFPRO introduced in Section 7.3.5, the result 
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has suggested a good match between them for different temperature. A calculation of the 

restriction of nitrogen at room temperature was also plotted in the figure as a reference.  

By playing with a calibration factor, specifically, in equation (7.5), if we introduce a 

calibration factor Kc and choose the right number, we can fit the calculation curve to the 

measurement very well. Kc shown in the figures are 0.91, 0.91 and 0.88, however, they are all 

treated as 0.9 since the data were not good enough to us the accuracy down to 0.01) (see Figure 

7.10, 7.11 and 7.12). 

Kc×dp 
     

      
dl                                                          (7.12) 

 

 

Figure 7.10: Calculation, calibrated calculation and 6 times repeat measurement 

results of the valves restriction for 275-160 K mixture under 295 K; the valve tested 

was of set-2 in Table 7.1. 
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Figure 7.11: Calculation, calibrated calculation and measurement result of the 

valves restriction for 275- 160 K mixture under 265 K; the valve tested was of set-2 

in Table 7.1. 

 

 

Figure 7.12 Calculation, calibrated calculation and measurement result of the 

valves restriction for 275- 160 K under 252 K; the dimension of the tested valve was 

of set-2 in Table 7.1. 
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In Figure 7.9, for the condition under 295 K, since the mixture were all gases, the test 

result should fit better to the single model (for the same valve tested with N2 only 5% 

discrepancy was estimated). However, there was still a 0.9 discrepancy between the prediction 

and measurement. This is partially because of a calibration gap of the flow meter itself for testing 

mixture. In the flow meter, there is an internal built calibration coefficient for testing different 

gases. This coefficient could induce a 10% error when tested mixture, which suggested that our 

test results could have up to 10% errors to the real flow-rate numbers.  The results of Figure 7.10 

and Figure 7.11 suggest that when the temperature goes down and start to have two-phase flow, 

e.g. 252K, according a mass fraction of liquid in the inlet end of 36%, the homogenous model 

was still good to predict the flow resistance.  

In Figure 7.13, there are the 6 times repeating test results and according calculations and 

calibrations for the same dimension of the valve discussed in Figure 7.9 to Figure 7.12. The 

results suggested that the repeatability of the tests were good. The raw data of the repeated tests 

can be found in appendix E. 
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Figure 7.13 Calculation, calibrated calculation and measurement result of 6 times 

of the valves restriction for 275- 160 K mixture under 3 different temperatures; the 

dimension of the tested valve was of set-2 in Table 7.1. 
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Based on the above discussion, there are several J-T valve design suggestions generated 

as following:  

(1) For mixture without liquid hold up issue and under similar liquid fraction condition, 

one can directly use the developed homogenous model to predict the flow restriction for valve in 

such a small dimension (micro gap).  

(2) For mixture without liquid hold up issue and with larger liquid fraction condition. 

One can still use the developed homogenous model to predict the flow restriction, however, one 

should notice that larger error by using the model could happen due to more contribution to 

potential two phase separation, in that case, a different calibration number may be need, to 

estimate the number, one can follow the process develop in the study.  

(3) For mixture with different components designed for different temperature range 

which could has the liquid condensing and hold-up issue, one can calculate the real components 

going through the valve after it reach to an equilibrium situation and then apply the developed 

homogenous model to predict the flow restriction. The calculation method of the varied 

components after condensing and reach to equilibrium is elaborated in [37]. After the calculation 

of the real components getting through the valve, the method can be applied by considering the 

suggestions (1) and (2).  

 

7.4 Conclusion  

In this study, we have designed and conducted an experimental test to study the valve 

flow restriction under different temperatures with limited thermoelectric (TE) cooling.  Test 

vehicles with micro gaps have been designed and fabricated to simulate the polyimide J-T valve 

used in MCC. The restrictions of the valve have been tested with a N2 gas and a five components 
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mixture. The measured results match well to the calculated ones resulting from the use of a 

homogenous two phase flow model with properties estimated using NIST-REFPRO software.  A 

calibration constant of 0.9 was found to be needed when use the homogenous model to predict 

the flow resistance. The 0.9 calibration number was partially contributed by a calibration gap of 

the flow meter itself when test mixtures beside for that by the process variation. The model 

verified can be used to predict the flow resistance for a micro gap valve under certain 

temperatures and flow types conditions. Several design suggestions have been developed based 

on the results and discussions. The model and the method developed are important to design 

future micro-scaled J-T valves for the polyimide MCC.  
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CHAPTER 8: SUMMERY AND FUTURE WORKS 

 

8.1 Summery  

In this thesis, we present the fabrication and test of a novel polymide-based Joule-

Thomson (J-T) micro cryogenic cooler (MCC). Monolithic fabrication processes for high 

pressure polymer channels and 3-D interconnects for fluid channels including a valve have been 

developed for a planar MCC. In general, an MCC consists of a cold stage and a compressor. 

However, MCC has been used to represent the planar cold stage in this thesis work. This 

representation may not be accurate; however, it is has been used by most of previous 

publications related to MCC. In addition, the planar processes can be used to fabricate future 

compressors compatible with the planar cold stage. The MCC, i.e. the planar cold stage, consists 

of a polymer heat exchanger (HX) and a silicon/glass J-T valve. The cooling temperature 

reachable was around 233 K under an operation pressure ratio of 0.7:0.15 MPa by using a 

custom-designed mixed refrigerant. It is the first demonstration ever reported for the J-T MCC 

fabricated and assembled based on wafer-level, planar thin-film processes.   

After the demonstration of the first polyimide-based MCC, we identified a mechanical 

by-pass leakage problem. And, we improved the fabrication method by designing a monolithic 

polyimide MCC. The fabrication is based on surface micro-machining technology using 

electroplated copper as the sacrificial layers and polyimide as the structural material. The process 

includes multi-layers of metallization of copper, spin coating and curing of polyimide, and 

patterning on each layer. One of the techniques enabling this novel approach is the development 

of the wafer-level 3-D interconnect for making high pressure, (e.g. 10 atm) polymer fluid micro 

channels. To evaluate the performance of MCC, a five-component fluid mixture was used as a 

refrigerant. The cold tip was able to reach to about 190 K under a refrigerant pressure ratio of 



109 

 

only 5.5 : 1.1 bar. In addition to the monolithic wafer-level processing capability, this approach 

is also scalable to meet different refrigeration requirements.  

The J-T valve in the all-polymer MCC is an essential part therefore we have studied the 

valve in details. We have developed a model to predict the flow rate and pressure drop for a 

given gap; the model was verified by the experimental data for the cases with pure nitrogen and 

the 5-component mixture. Several design suggestions have been developed based on the 

modeling results and discussions. This model can be used to design the optimum J-T valve for 

MCC.  

Major contributions of this work are summarized below:  

(1) Developed the world’s first polymer-based micro cryogenic cooler, which was the 

also the smallest MCC at the time of publication. It should be noted that MCC is used to 

represent the cold stage of a cryocooler in this thesis work and in most of previous studies.   

(2) Developed a monolithic fabrication method for 3-D interconnection of a multi-

channel structure. The method allows us to selectively interconnect horizontal channels in 

different layers.  

(3) Achieved a high thermal isolation design for MCC to minimize the refrigeration 

losses.  

(4) Developed a process to study the flow restriction in a J-T valve with mixtures at 

different temperatures.  

(5) Developed and verified an effective model to predict the flow behavior of the J-T 

valve under certain limitations assumed. 
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8.2 Future Work 

8.2.1 Hermetic sealing for packaging  

Hermetic sealing is important to ensure a vacuum package for MCC. It is essential to 

maintain a reliable vacuum environment for closed MCC with negligible refrigerant losses for 

years.   

Diffusion rates through polymer are generally much more worse than those through 

inorganic materials , e.g. silicon, metal. The polyimide-based MCC and epoxy-bonded seal and 

interfaces are not acceptable for hermetic seal. Atomic Layer Deposition (ALD)-based moisture 

barrier coatings can provide a nanoscale, conformal, pinhole-free, hermetic alumina coating on 

the polymer substrate [51] [52] [53] [54].  Since the coating is at nanoscale, the induced thermal 

conduction loss and mechanical effect will be negligible. Because of its conformal coating and 

low temperature process, e.g. 100 °C to 150 °C, the fabricated polyimide MCC package can be 

encapsualated at the end of the manufacturing process  and transformed from non-hermetic to 

hermetic ones. 

However, defects of the barrier coating can be generated during the deposition process or 

operation resulting from strains. Further understanding of these potential challenges is important 

to apply this technology for the hermetic sealing of the polymer-based MCC. 

8.2.2 Fully integration of MCC  

For a portable system consideration, the MCC is going to be integrated with miniature or 

micro compressors, thermal electrical cooler, vacuum packaging, pressure sensors, temperature 

sensors, getter, functional sensor, control electronics, and power electronics [10]. 

MEMS-enabled micro compressor, with pressure ratios above 4:1 bar, has been 

demonstrated by other team members of the MCC project at the University of Colorado – 

Boulder (CU-Boulder). Such pressure ratios are high enough to drive vapor-compression and 
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Joule-Thomson refrigeration systems [55]. Meanwhile, MEMS compressor can improve these 

microcompressor with additional size reductions of 10 × or 100 ×. Such a compressor is also 

being studied here at CU-Boulder [6]. 

Figure 8.1 illustrates the schematic of a future fully integrated MCC with a MEMS 

compressor and a sensor to be cooled. It is always a challenge to design and fabricate such 

complicated micro fluid systems [10]. This thesis has integrated the heat exchanger, cold heat 

including the J-T valve with wafer-level processes.  Naturally, we should extend the integration 

to cover the MEMS compressor and the fluid couplings between the heat exchanger and the 

compressor.  

 

Figure 8.1: Schematic of a fully integrated MCC with a MEMS compressor and a 

sensor to be cooled.  
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Appendix B: Standard operation of procedure of fabrication of the silicon valve chip of for 

polyimide-based MCC 

The following steps numbers are according to that in Figure 4.6. 

 

(1) Thermal oxidation.  

- Prepare  double side polished (DSP) 3 inch (76 mm) n-type <100> silicon wafer of 

380 μm in thickness 

- Wet thermal oxide use CNL standard oxidation Instruction on CNL’s Lindberg 

Diffusion/oxidation/annealing furnace 85304 

- Wet oxidation of 1.8 μm SiO2 for about 7 hrs 

(2) Pattern front side for the through holes.  

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195W 

(using CH Mask-1) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is need to make sure the photoresist are properly developed) 

- O2 plasma for 1 minute (repeat if required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do RIE etching on the front side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 25 minutes for Silicon oxide (4 sccm O2 + 16 sccm 

CF4 @ 150W);  rotate the wafer and etch for another 25 minutes 

- Clean off the photoresist use the standard acetone + IPA procedure in CNL 

(3) Backside SiO2 was patterned using RIE. 

- Spin coat photoresist AZ- 4620 on back side at 1600rmp for 60 s  
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- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using  CNL Karl Suss MJB3 Mask aligner-II (front-to-back alignment) to 

expose for 2’15’’ @ 275 W (using CH Mask-2) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is need to make sure the photoresist are properly developed) 

- O2 plasma for 1 minute (repeat if required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do RIE etching on the back side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 25 minutes for Silicon oxide (4 sccm O2 + 16 sccm 

CF4 @ 150W);  rotate the wafer and etch for another 25 minutes  

(4) Pattern the front side gap area and thinner the SiO2  for secondary mask. 

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195W 

(using CH Mask-3) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is need to make sure the photoresist are properly developed) 

- O2 plasma for 1 minute (repeat if required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do RIE etching on the front side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 20 minutes for Silicon oxide (4 sccm O2+ 16 sccm CF4 

@ 150W 

- Clean off the photoresist use the standard acetone + IPA procedure in CNL 
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(5) DRIE to etching on front side. 

- Distribute crystal bond 555 on a bare silicon wafer (as a backup wafer) under hotplate 

of 95 °C 

- Bond the backside of the wafer under processing to the backup wafer and make the 

front side exposed 

- Do DRIE etching using NIST STS DRIE using standard silicon etching recipe at an 

etching rate about 1.1  μm/cycle  

- Etching for 227 cycles for about 250  μm 

- Take off the wafer on hot plate set @ 95 °C   

- Clean off the crystal bond residue using the standard acetone + IPA procedure in 

CNL 

(6) DRIE to etching on back side to make the “lego”. 

- Distribute crystal bond 555 on a bare silicon wafer (as a backup wafer) under hotplate 

of 95 °C 

- Bond the fronside of the wafer under processing to the backup wafer and make the 

backside exposed 

- Do DRIE etching using NIST 3’’ DRIE using standard silicon etching recipe: 

“specnod”  

- Etching until the holes are etched through and the backup wafer will been seen 

(usually take 200 cycles) 

- Take off the chips on hot plate set @ 95 °C   

- Clean off the crystal bond residue using the standard acetone + IPA procedure in 

CNL 5mins ultrasonic respectively  
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(7) Metalize the silicon valve chip for soldering 

- Spin coat photoresist AZ- 4620 on a 3” bare wafer at 1600rmp for 60 s  

- Place the silicon valve chips on the wafer while making the front side of chips to 

upside. 

- Bake the wafer on hotplate @ 110 °C  for 4 minutes  

- Evaporate Ti/Cu/Au for 40nm/1um/100nm respectively  (with a standard fast vacuum 

plasma for 5mins) 

- Take off and clean chips  using the standard acetone + IPA procedure in CNL 5mins 

ultrasonic respectively  

(8) Etch away the silicon oxide of the gap area using BOE  

- Spin coat photoresist AZ- 4620 on a 3 glass slide at 1600rmp for 60 s  

- Place the silicon valve chips on the glass slide while making the front side of chips to 

upside. 

- Bake the glass slide on hotplate @ 110 °C  for 4 minutes  

- Etch away the gap area SiO2 for about 12 minutes (don’t depends on the time, check 

frequently to inspect until the silicon substrate is exposed) 

- Immerse the glass slide in DI water for 5 minutes and dry up with N2 gun. 

(9)  Etch the silicon valve 

- O2 plasma the chips on glass slide for 5 minute  

- Do RIE etching on the front side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for the demanded depth (5 sccm SF6 @ 150W; 1.17 μm 

for 1 mintutes) 

- Measure and verify the depth using profilometer in CNL and Zygo in MEMS lab 
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- Add more time of RIE etching if needed  

(10)  Remove the masking silicon oxide using BOE 

- Etching the chips on slides in BOE for 10 minutes (increase the etching time if the 

silicon oxide is still exist) to totally remove the silicon mask left. 

- Immerse in DI water for 5 minutes  

- Take of the chips and clean using the standard acetone + IPA cleanness procedure in 

CNL 

- Dry up the chips using N2 

(11) Anodic bonding 

- Clean the silicon chips and Pyrex chips in ultrasonic with acetone for 5 minutes, then 

with IPA in ultrasonic for another 5 minutes 

- Dry up the chips and do O2 plasma in Fab Lab for 5 minutes to clean the surface of 

the silicon chips and Pyrex chip. 

- Flip the glass and place it on silicon chips 

- Place the stack on the anodic bonding hot plate, lower the bonding tip until touch the 

silicon/glass stacks 

- Increase the temperature until 400°C   

- Once the temperature reached 400°C, apply 550 V voltage for 20 minutes. 

- Stop the voltage applying and stop the heating , wait the hotplate to cool down until 

temperature lower than 100 °C   

(Now the cold head is ready for assembly) 
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Figure A.1: Overview of the layout to make silicon valve chips on a 3 inches wafer 

and the layouts for different mask layers of one unit.  
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Appendix C: Standard operation of procedure of fabrication of the polyimide heat 

exchanger  

(a) Thermal oxidation.  

- Prepare  double side polished (DSP) 3 inch (76 mm) n-type <100> silicon wafer of 

550 μm in thickness 

- Wet thermal oxide use CNL standard oxidation Instruction on CNL’s Lindberg 

Diffusion/oxidation/annealing furnace 85304 

- Wet oxidation of 1.8 μm SiO2 for about 7 hrs 

(b) O-ring shapes trench making.  

- Spin coat photoresist AZ- 4620 on front side  at 1600 rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195W 

(using HX Mask-1) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- O2 plasma for 1 minute to clean (repeat if required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Conduct  RIE  on the front side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 20 minutes for Silicon oxide (4 sccm O2 + 16 sccm 

CF4 @ 150W);  rotate the wafer and etch for another 20 minutes 

- Do RIE etching on the front side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 4 minutes for silicon (5 sccm SF6 @ 150W)  

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 



121 

 

(c) Backside SiO2 was patterned using RIE. 

- Spin coat photoresist AZ- 4620 on back side at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using  CNL Karl Suss MJB3 Mask aligner-II (front-to-back alignment) to 

expose for 2’15’’ @ 275 W (using HX Mask-2) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is need to make sure the photoresist are properly developed) 

- O2 plasma for 1 minute (repeat if required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do RIE etching on the back side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 20 minutes for silicon oxide (4 sccm O2 + 16 sccm 

CF4 @ 150W);  rotate the wafer and etch for another 20 minutes  

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

(d) Plate and pattern the first sacrificial layer  

- Do E-beam evaporation  to coat chromium 100 nm in thickness followed by an 

electroplating seed layer of copper 500 nm in thickness  using Thermal evaporator 

CNL 

- Copper of 15 µm was electroplated  with a current density of approximate 5 mA/cm
2
 

in CU MEMS lab, thickness is monitored using profilometer  

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  
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- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195W 

(using HX Mask-3) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- Do O2 plasma for 1 minute to remove the photo resist residue  (add more time if  

required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do wet etching of the copper using Transene CE-100, the etching can be conducted 

both at room temperature or up to 40 °C giving different etching rate.  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 

- Do wet etching of the chromium using 30% HCl solution (HCl is supposed not to 

etch chromium Cr, however, there could be some electrochemical reaction when there 

are both Cr and Cu that enable the etching of Cr)  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

(e) Coat the bottom PI layer  

- Polyimide (DuPont PI-2574*) was deposited onto the wafer in two spin coats of 2400 

rpm for 30 seconds followed by a soft bake after each at 100 °C for 120 seconds.  

- After all the spin coats, the polyimide was cured at 260 °C for 1 hour in nitrogen use 

the hotplate in fab lab arriving at an after- cure thickness of about 20 µm. When doing 

the curing, use the fixture with clampers to keep the wafer flat. Increase and 

decreasing the temperature very slowly to reduce thermal shock or thermal stress.  
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(f) Plate and pattern the second sacrificial layer  

- Do E-beam evaporation  to coat titanium of 30 nm in thickness followed by an 

electroplating seed layer of copper 500 nm in thickness  using Egun-2 evaporator in 

NIST BMF cleanroom  

- Copper of 20 µm was electroplated  with a current density of approximate 5 mA/cm
2
 

in CU MEMS lab, thickness is monitored using profilometer  

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195 W 

(using HX Mask-4) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- Do O2 plasma for 1 minute to remove the photo resist residue  (add more time if  

required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do wet etching of the copper using Transene CE-100, the etching can be conducted 

both at room temperature or up to 40 °C giving different etching rate.  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 

- Do wet etching of the chromium using 30% HCl solution (HCl is supposed not to 

etch chromium Cr, however, there could be some electrochemical reaction when there 

are both Cr and Cu that enable the etching of Cr)  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 
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- Conduct RIE etching on the front side of the wafer to etch Ti using  CNL 

Plasmatherm 540/540 Dual Chamber RIE system: etch for 10 minutes with 4 sccm O2 

+ 16 sccm CF4 @ 150W,  more time can be added when needed  

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

(g)  Coat the center (second) PI layer  

- Polyimide (DuPont PI-2574*) was deposited onto the wafer in spin coat of 2400 rpm 

for 30 seconds followed by a soft bake after each at 100 °C for 120 seconds.  

- After all the spin coats, the polyimide was cured at 260 °C for 1 hour in nitrogen use 

the hotplate in fab lab arriving at an after- cure thickness of about 20 µm. When doing 

the curing, use the fixture with clampers to keep the wafer flat. Increase and 

decreasing the temperature very slowly to reduce thermal shock or thermal stress.  

 (h) Plate and pattern the third sacrificial layer  

- Do E-beam evaporation  to coat titanium of 30 nm in thickness followed by an 

electroplating seed layer of copper 500 nm in thickness  using Egun-2 evaporator in 

NIST BMF cleanroom  

- Copper of 20 µm was electroplated  with a current density of approximate 5 mA/cm
2
 

in CU MEMS lab, thickness is monitored using profilometer in CNL 

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195 W 

(using HX Mask-5) 
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- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- Do O2 plasma for 1 minute to remove the photo resist residue  (add more time if  

required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do wet etching of the copper using Transene CE-100, the etching can be conducted 

both at room temperature or up to 40 °C giving different etching rate.  

- Conduct RIE etching on the front side of the wafer to etch Ti using  CNL 

Plasmatherm 540/540 Dual Chamber RIE system: etch for 10 minutes with 4 sccm O2 

+ 16 sccm CF4 @ 150W,  more time can be added when needed  

 

- Bath the wafer in to DI water for 5 minute and then dry it with N2 gun 

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

 

(i) Coat the top PI layer  

- Polyimide (DuPont PI-2574*) was deposited onto the wafer in two spin coats of 2400 

rpm for 30 seconds followed by a soft bake after each at 100 °C for 120 seconds  

- After all the spin coats, the polyimide was cured at 260 °C for 1 hour in nitrogen use 

the hotplate in fab lab arriving at an after- cure thickness of about 20 µm. When doing 

the curing, use the fixture with clampers to keep the wafer flat. Increase and 

decreasing the temperature very slowly to reduce thermal shock or thermal stress 

(j) Coat and pattern final mask layer 
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- E-beam evaporation  to coat chromium 100 nm in thickness followed by an 

electroplating seed layer of copper 500 nm in thickness  using Thermal evaporator 

CNL 

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake in oven @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195W 

(using HX Mask-6) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- Do O2 plasma for 1 minute to remove the photo resist residue  (add more time if  

required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do wet etching of the copper using Transene CE-100 at room temperature  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 

- Conduct RIE etching on the front side of the wafer to etch Ti using  CNL 

Plasmatherm 540/540 Dual Chamber RIE system: etch for 10 minutes with 4 sccm O2 

+ 16 sccm CF4 @ 150W,  more time can be added when needed  

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

(k)  RIE etch to expose the sacrificial layers and define the shape of the heat exchanger 

- Do RIE on the front side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 30 minutes using parameter of: 4 sccm O2 + 16 sccm 

CF4 @ 150W 

- Rote the wafer for 45° and repeat the previous etching step  
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- Repeat the previous rotation and etching for about 8 times until the first layer of the 

sacrificial metal to be exposed which is looks shiny (this rotation and etching is to 

keep a good uniformity of the whole etching in order to keep the under cutting of the 

polyimide to be uniform, more or less of this etching might required depending the 

variation of the etching rate) 

(l) Etch the backside via holes  

- Apply the Crystalbond™ 555 on a silicon wafer when heat it up to 95 °C with a 

hotplate; disperse the Crystalbond™  even onto the wafer, this wafer is a backup 

wafer for doing the later DRIE 

- Place the wafer processed to the backup wafer (backside up) when keep the heating, 

press gently to make a better contact and shut done the hotplate, let the wafer cool 

down to room temperature 

- Do DRIE in NIST cleanroom using standard silicon process setup for a etching rate of 

silicon of about 1.1 um/cycle, etch for about 3hrs until it etch through the silicon 

substrate (etching rate may change depending on the temperature of the surface, 

inspection can be done with some of the designed big inspection area.) 

- Do RIE on the front side of the wafer using CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 1hr minutes using parameter of 4 sccm O2 + 16 sccm 

CF4 @ 150W, until the polyimide is etched through and the metal is exposed which is 

look shiny; similarly, etching rate may change depending on the temperature of the 

surface, inspection can be done with some of the designed big inspection area 

(m) Metal release  
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- Quickly etch away the copper on the top which is for polyimide mask using a 

standard copper etchant (Transene CE-100*). Then etch away the titanium on top 

- This is to remove the top metal layers so that the etching of the metal in channels can 

be monitored since the polyimide is semi-transparency 

- The sacrificial layers of copper were etched away at the end in a standard copper 

etchant (Transene CE-100*) at 45°C to 60°C to form the embedded micro channels in 

the HX and free the whole HX structure. The etch time to fully release the structure 

was approximately 48 hours. Notice that the hotplate temperature set should be higher 

than the etchant temperature depends on the thermal mass of the beaker and etchant 

- Do inspection every day when the device is under releasing 

- After fully etch away the copper (yellow metal is gone), etch away the titanium layers 

for about 10 minutes 

-  Immerse the device in DI water for at least 10 hrs to make cleaning. It takes a long 

time for the etchant inside the channels to diffuse out to the water bath. 

- Clean the device with IPA bath for at least 5 minutes and dry with nitrogen gun  
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Figure A.2: Overview of the layout to make polyimide HXs on a 3 inches wafer.  

 

Figure A.3: The layout to make polyimide HXs for each mask of one device unit. 
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Appendix D: Standard operation of procedure of fabrication of the monolithic polyimide 

MCC 

(1) Thermal oxidation.  

- Prepare  double side polished (DSP) 3 inch (76 mm) n-type <100> silicon wafer of 

550 μm in thickness 

- Wet thermal oxide use CNL standard oxidation Instruction on CNL’s Lindberg 

Diffusion/oxidation/annealing furnace 85304 

- Wet oxidation of 1.8 μm SiO2 for about 7 hrs 

(2) O-ring shapes trench making.  

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195W 

(using MP Mask-1) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- O2 plasma for 1 minute to clean (repeat if required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Conduct  RIE  on the front side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 20 minutes for Silicon oxide (4 sccm O2 + 16 sccm 

CF4 @ 150W);  rotate the wafer and etch for another 20 minutes 

- Do RIE etching on the front side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 4 minutes for silicon (5 sccm SF6 @ 150W)  

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 
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(3) Backside SiO2 was patterned using RIE. 

- Spin coat photoresist AZ- 4620 on back side at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using  CNL Karl Suss MJB3 Mask aligner-II (front-to-back alignment) to 

expose for 2’15’’ @ 275 W (using MP Mask-2) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under 

micro scope is need to make sure the photoresist are properly developed) 

- O2 plasma for 1 minute (repeat if required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do RIE etching on the back side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 20 minutes for silicon oxide (4 sccm O2 + 16 sccm 

CF4 @ 150W);  rotate the wafer and etch for another 20 minutes  

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

(4) Plate and pattern the first sacrificial layer  

- Do E-beam evaporation  to coat chromium 100 nm in thickness followed by an 

electroplating seed layer of copper 500 nm in thickness  using Thermal evaporator 

CNL 

- Copper of 15 µm was electroplated  with a current density of approximate 5 mA/cm
2
 

in CU MEMS lab, thickness is monitored using profilometer  

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  
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- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195W 

(using MP Mask-3) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- Do O2 plasma for 1 minute to remove the photo resist residue  (add more time if  

required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do wet etching of the copper using Transene CE-100, the etching can be conducted 

both at room temperature or up to 40 °C giving different etching rate.  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 

- Do wet etching of the chromium using 30% HCl solution (HCl is supposed not to 

etch chromium Cr, however, there could be some electrochemical reaction when there 

are both Cr and Cu that enable the etching of Cr)  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

(5) Coat the bottom PI layer  

- Dilute the adhesion promoter VM 251 with DI water as in a volume ratio of 1:999 for 

VM251 to DI water. (Please notice that this diluted solvent is only good to use in one 

day)  

- Dispense the promoter onto the substrate, hold for 20 sec and spin dry for 30 sec.  

- Polyimide (DuPont PI-2611) was deposited onto the wafer in two spin coats of 2000 

rpm for 30 seconds followed by a soft bake after each at 100 °C for 120 seconds.  
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- After all the spin coats, the polyimide was cured at 260 °C for 1.5 hours in nitrogen 

environment use the hotplate in fab lab arriving at an after- cure thickness of about 20 

µm. When doing the curing, use the fixture with clampers to keep the wafer flat. 

Increase and decreasing the temperature very slowly to reduce thermal shock or 

thermal stress.  

(6) Plate and pattern the second sacrificial layer  

- Do E-beam evaporation  to coat titanium of 30 nm in thickness followed by an 

electroplating seed layer of copper 500 nm in thickness  using Egun-2 evaporator in 

NIST BMF cleanroom  

- Copper of 20 µm was electroplated  with a current density of approximate 5 mA/cm
2
 

in CU MEMS lab, thickness is monitored using profilometer  

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195 W 

(using MP Mask-4) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- Do O2 plasma for 1 minute to remove the photo resist residue  (add more time if  

required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do wet etching of the copper using Transene CE-100, the etching can be conducted 

both at room temperature or up to 40 °C giving different etching rate.  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 
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- Do wet etching of the chromium using 30% HCl solution (HCl is supposed not to 

etch chromium Cr, however, there could be some electrochemical reaction when there 

are both Cr and Cu that enable the etching of Cr)  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 

- Conduct RIE etching on the front side of the wafer to etch Ti using  CNL 

Plasmatherm 540/540 Dual Chamber RIE system: etch for 10 minutes with 4 sccm O2 

+ 16 sccm CF4 @ 150W,  more time can be added when needed  

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

(7)  Coat the center (second) PI layer  

- Dilute the adhesion promoter VM 251 with DI water as in a volume ratio of 1:999 for 

VM251 to DI water. (Please notice that this diluted solvent is only good to use in one 

day)  

- Dispense the promoter onto the substrate, hold for 20 sec and spin dry for 30 sec.  

- Polyimide (DuPont PI-2611) was deposited onto the wafer in spin coat of 2000 rpm 

for 30 seconds followed by a soft bake after each at 100 °C for 120 seconds.  

- After all the spin coats, the polyimide was cured at 260 °C for 1.5 hour in nitrogen 

use the hotplate in fab lab arriving at an after- cure thickness of about 20 µm. When 

doing the curing, use the fixture with clampers to keep the wafer flat. Increase and 

decreasing the temperature very slowly to reduce thermal shock or thermal stress.  

 (8) Plate and pattern the third sacrificial layer  
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- Do E-beam evaporation  to coat titanium of 30 nm in thickness followed by an 

electroplating seed layer of copper 500 nm in thickness  using Egun-2 evaporator in 

NIST BMF cleanroom  

- Copper of 20 µm was electroplated  with a current density of approximate 5 mA/cm
2
 

in CU MEMS lab, thickness is monitored using profilometer in CNL 

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake on hotplate @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195 W 

(using MP Mask-5) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- Do O2 plasma for 1 minute to remove the photo resist residue  (add more time if  

required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do wet etching of the copper using Transene CE-100, the etching can be conducted 

both at room temperature or up to 40 °C giving different etching rate.  

- Conduct RIE etching on the front side of the wafer to etch Ti using  CNL 

Plasmatherm 540/540 Dual Chamber RIE system: etch for 10 minutes with 4 sccm O2 

+ 16 sccm CF4 @ 150W,  more time can be added when needed  

- Bath the wafer in to DI water for 5 minute and then dry it with N2 gun 

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

(9) Coat the sacrificial layer for J-T valve 

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  
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- Prebake in oven @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195W 

(using MP Mask-6) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- Do O2 plasma for 1 minute to remove the photo resist residue  (add more time if  

required) 

- E-beam evaporation  to coat titanium 20 nm in thickness followed by an 

electroplating seed layer of copper 3 nm in thickness  using thermal evaporator (E-

gun2) in NIST BMF cleanroom.  

- Put the device in the acetone bath to lift-off and pattern the metal. Scotch tape was 

used to help to delaminate the potoresist supposed to be removed* 

*(For this lift-off process, the photo resist used here is not a good candidate since for positive 

photoresist, Since these temperatures often occur during typical coating processes, the resist 

features will rounden and become coated overall making lift-off hard or impossible. Even if the 

resist features do not soften, positive resists allow only positive or - in best case - 90° sidewalls 

which also promotes the coverage of the sidewalls during coating [48]. The AZ 4620 is chose 

here for an development efficiency reason since it’s lithography on such a polyimide/copper 

surface has been developed during the previous process. Some other negative photoresists with a 

similar thickness are suggested to replac the AZ 4620 for the future fabrication.) 

(10) Coat the top PI layer  
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- Polyimide (DuPont PI-2611*) was deposited onto the wafer in two spin coats of 2000 

rpm for 30 seconds followed by a soft bake after each at 100 °C for 120 seconds.  

- After all the spin coats, the polyimide was cured at 260 °C for 1.5 hours in nitrogen 

use the hotplate in fab lab arriving at an after- cure thickness of about 20 µm. When 

doing the curing, use the fixture with clampers to keep the wafer flat. Increase and 

decreasing the temperature very slowly to reduce thermal shock or thermal stress.  

(11) Coat and pattern final mask layer 

- E-beam evaporation  to coat titanium 30 nm in thickness followed by an 

electroplating seed layer of copper 1.8 µm in thickness  using thermal evaporator (E-

gun2)  NIST BMF cleanroom 

- Spin coat photoresist AZ- 4620 on front side  at 1600rmp for 60 s  

- Prebake in oven @ 110 °C  for 4 minutes  

- Expose using CNL Karl Suss MJB3 Mask aligner-I to expose for 3’15’’ @ 195W 

(using MP Mask-7) 

- Develop in developer (AZ400K:H2O=1:2.5) for 5-10 minutes (inspection under micro 

scope is needed to make sure the photoresist are properly developed) 

- Do O2 plasma for 1 minute to remove the photo resist residue  (add more time if  

required) 

- Post bake the wafer for 2 minutes @ 110 °C   

- Do wet etching of the copper using Transene CE-100 at room temperature  

- Dip the wafer in to DI water for 5 minute and then dry it with N2 gun 
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- Conduct RIE etching on the front side of the wafer to etch Ti using  CNL 

Plasmatherm 540/540 Dual Chamber RIE system: etch for 10 minutes with 4 sccm O2 

+ 16 sccm CF4 @ 150W,  more time can be added when needed  

- Strip off the photoresist use the standard acetone + IPA procedure in CNL 

(12)  RIE etch to expose the sacrificial layers and define the shape of the heat exchanger 

- Do RIE on the front side of the wafer using  CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 30 minutes using parameter of: 4 sccm O2 + 16 sccm 

CF4 @ 150W 

- Rote the wafer for 45° and repeat the previous etching step  

- Repeat the previous rotation and etching for about 8 times until the first layer of the 

sacrificial metal to be exposed which is looks shiny (this rotation and etching is to 

keep a good uniformity of the whole etching in order to keep the under cutting of the 

polyimide to be uniform, more or less of this etching might required depending the 

variation of the etching rate) 

(13) Etch the backside via holes  

- Apply the Crystalbond™ 555 on a silicon wafer when heat it up to 95 °C with a 

hotplate; disperse the Crystalbond™  even onto the wafer, this wafer is a backup 

wafer for doing the later DRIE. 

- Place the wafer processed to the backup wafer (backside up) when keep the heating, 

press gently to make a better contact and shut done the hotplate, let the wafer cool 

down to room temperature. 
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- Do DRIE in NIST cleanroom using standard silicon process setup for a etching rate of 

silicon of about 1.1 um/cycle, etch for about 3hrs until it etch through the silicon 

substrate (etching rate may change depending on the temperature of the surface, 

inspection can be done with some of the designed big inspection area). 

- Do RIE on the front side of the wafer using CNL Plasmatherm 540/540 Dual 

Chamber RIE system: etch for 1hr minutes using parameter of 4 sccm O2 + 16 sccm 

CF4 @ 150W, until the polyimide is etched through and the metal is exposed which is 

look shiny; similarly, etching rate may change depending on the temperature of the 

surface, inspection can be done with some of the designed big inspection area.  

(14) Metal release  

- Quickly etch away the copper on the top which is for polyimide mask using a 

standard copper etchant (Transene CE-100*). Then etch away the titanium on top. 

This is to remove the top metal layers so that the etching of the metal in channels can 

be monitored since the polyimide is semi-transparency. 

- The sacrificial layers of copper were etched away at the end in a standard copper 

etchant (Transene CE-100*) at 45°C to 60°C to form the embedded micro channels in 

the HX and free the whole HX structure. The etch time to fully release the structure 

was approximately 48 hours. Notice that the hotplate temperature set should be higher 

than the etchant temperature depends on the thermal mass of the beaker and etchant. 

Do inspection every day when the device is under releasing.  

- After fully etch away the copper (yellow metal is gone), etch away the titanium layers 

for about 10 minutes. 
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-  Immerse the device in DI water for at least 10 hrs to make cleaning. It takes a long 

time for the etchant inside the channels to diffuse out to the water bath. 

- Clean the device with IPA bath for at least 5 minutes and dry with nitrogen gun.  

(15) Cap the front side etching hole 

- Cut a piece of Kapton film with 50 µm thickness 

- Place onto the hole to cap it and seal it with epoxy  

 

Figure A.4: Overview of the layout to make monolithic polyimide MCCs on a 3 

inches wafer. 
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Figure A.5: The layout to make monolithic polyimide MCCs for each mask of one 

device unit.  
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Appendix E: Raw data of the valve restriction tests  

The following are the raw data of the tests of valves flow-rates and pressure drops using the 275 

K- 160 K refrigerant. 

 

Figure A.6: Flow-rate and according pressures for a J-T valve with W × L = 3 mm 

× 2mm tested with 275- 160 K mixture when the temperature of  the valve assembly 

is at 295 K. 
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Figure A.7: Flow-rate and according pressures for a J-T valve with W × L = 3 mm 

× 2mm tested with 275- 160 K mixture when the temperature of the valve assembly 

is at 265 K. 
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Figure A.8: Flow-rate and according pressures for a J-T valve with W × L = 3 mm 

× 2 mm tested with 275- 160 K mixture when the temperature of the valve assembly 

is at 252 K. 
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