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Abstract

In this paper we discuss a prototype tool that provides a simple Internet "white pages" directory facility.
Given the name of a user and a rough description of where the user works (e.g., the company name or city), the
tool attempts to locate telephone and electronic mailbox information about the user. The scope of the directory
is large enough to be useful, yet the tool does not require the type of global cooperation that many existing or
proposed directory services require, namely, having special directory servers running at many sites around the
Internet. We accomplish this by building an understanding of the semantics of this particular type of resource
information into the algorithms that support searches, to allow the tool to be intelligent about utilizing existing
sources of information in a variety of formats and locations. At present, the tool utilizes information from
USENET news messages and the "finger” protocol. Other sources of resource information (such as the CCITT
X.500 directory service) can easily be incorporated into the tool as they become available. The tool achieves
good response time through the use of parallel queries.

! This material is based upon work supported in part by NSF cooperative agreement DCR-8420944, and by a grant from AT&T Bell La-
boratories.






1. Introduction

The Networked Resource Discovery Project at the University of Colorado, Boulder, is investigating means
by which users can discover the existence of a variety of resources in an internet? environment, including retail
products, network services, and people in various capacities. While the project involves several goals and tech-
niques [Schwartz 1989], in the current paper we discuss one particular technique applied to a single useful appli-
cation. The application is providing an Internet "white pages” directory facility, to assist users in finding other
users’ electronic mailboxes, telephone numbers, and postal addresses. The technique involves building an
understanding of the semantics of this class of resource information into the algorithms that support searches.
This stands in contrast to treating information simply as text to be managed and retrieved, as many directory and
information retrieval systems do.

Unfortunately, using this technique alone could require special purpose software for every type of resource
(to capture resource semantics) and every user (to capture user context) in the environment. Since this combina-
tion is prohibitively expensive, the general strategy we use in the Networked Resource Discovery Project
involves techniques that are not resource-specific for most cases, and semantically cognizant techniques for a
few particularly useful types of resources. We also provide "hooks" in the system to allow users to write their
own semantically cognizant procedures for resource types of particular interest to them.

We chose Internet white pages as a test application for the technique of exploiting semantics because it is
important; with all of the work that has gone into providing usable interorganizational services like mail and
naming, it is still not possible, in general, to determine the electronic mailbox for any particular Internet user.
This situation has prompted efforts to provide usable network directory services on the part of CCITT [CCITT
19871 and the U.S. Federal Research Internet Coordinating Committee [Sollins 1989]. A difficult problem is
providing a service that it capable of interoperating with a rapidly changing collection of hardware, network
infrastructure, software, and administrative concerns. While the development of standards is clearly an impor-
tant part of this process, in the short term no standard directory service is available, and in the long term, stan-
dards that are currently being devised will need to be evolved, to fit the changing technology base. Our
approach to the problem is to accommodate existing systems, rather than defining a new standard.

While we find the tool described in this paper to be quite useful, it has some limitations. First, its scope is
limited. It only supports searches generated by Internet users looking for other Internet users, where TCP-based
"finger" packets can pass between the initiating user’s machine and a machine at the site where the user being
sought works [Harrenstien 1977]. (Some sites disallow interdomain finger packets for security reasons or
privacy concerns.) Second, the tool is somewhat wasteful of network bandwidth, If a large number of people
were to make regular use of this tool, it could contribute a non-trivial amount of load to the Internet.

We address these points later in this paper. For now, the point to bear in mind is that the tool is not intended
to be a final solution to the Internet white pages problem. Rather, it was built to experiment with several
interesting resource discovery techniques, and to demonstrate the feasibility of the concepts involved. It pro-
vides a useful function in the short term, until sophisticated directory services (like CCITT’s X.500 [CCITT
1987] or the longer term prototype from the Networked Resource Discovery Project) are available. Moreover,
the techniques we have developed can be used to access new directory services as they become available, pro-
viding a larger directory service than any one standard.

The remainder of this paper is organized as follows. In Section 2 we outline the strategy of exploiting
semantics to provide a resource discovery mechanism. In Section 3 we discuss the implementation of the proto-
type. In Section 4 we discuss various measurements of the prototype. In Section 5 we discuss related work.
Finally, in Section 6, we offer some conclusions.

2 Throughout this paper we use "Intemet" to refer to general internetworks. We use "Internet" to refer specifically to the growing collec-
tion of government sponsored networks (including NSFNet, ARPANET, and CSNet) and regional networks (such as Westnet and NYSER-
Net) that interconnect academic, industrial, and government institutions, primarily in the U.S.A.



2. Exploiting Semantics for Resource Discovery

In this section we discuss some common resource discovery mechanisms. We then introduce the
semantically-based techniques we have used, and discuss the advantages of using these techniques.

Various systems have been built that provide some means of navigating around an information space. File
systems typically provide operations to browse through a hierarchical file name space by reading the contents of
a single directory, plus tools on top of these operations to support capabilities such as regular expression based
pattern matching, interactive file name completion, and exhaustive recursive searching. As a second example,
information retrieval systems typically use precomputed indexes to support text retrieval based on a set of
descriptive keywords, such as the author and title of a document. Example systems include bibliographic data-
base systems and online information services.

The fact that these systems treat resource information as simple text without any understanding of the seman-
tics of the information causes problems for users trying to locate information. In the case of a file system, the
organization can become convoluted and inconsistent over time, because users are forced to encode a variety of
different semantic information syntactically into the hierarchy. For example, the UNIX? file name
lusersifacultylschwartzipdp/montelasynchlinit.o contains (from left to right) information about the file’s disk
location, creator’s role, creator, research project, research subproject, algorithm variant, contents (inif = "initiali-
zation routines"), and file type (.0 = "object code").# Trying to find a particular piece of information is difficult,
because users must browse through various parts of the hierarchy, looking at strings that have no consistent
semantic structure imposed upon them,

While index-based systems usually do not require users to browse through a hierarchy, the fact that they use
simple strings to describe a wide variety of resources makes effective resource discovery difficult. When
searching for a particular type of resource (such as books about some topic), users of information retrieval sys-
tems typically find that their searches either match many unwanted resources (because of lack of precision of the
specified keyword combination) or miss wanted resources (because of lack of recall of the specified keyword
combination) [Salton 1986]. Choosing appropriate keyword combinations becomes increasingly difficult as the
size of the information space increases.

Building understanding of the semantics of the resources being sought into the algorithms that support
searches can form the basis for a more effective resource discovery mechanism. Such algorithms can use infor-
mation in ways that cannot be used in a syntactically-based facility. To demonstrate why this is true, we now
briefly overview how the tool we have built works.

We begin by building a database of "seed" data describing machines to search for various possible requests,
by gathering information from the headers of USENET news messages [Nowitz 1979]. These headers typically
list the user name, organization name, city, electronic mailbox, and telephone number for users who post mes-
sages. When a search is requested (using a request format like "schwartz university colorado" or "schwartz
boulder"), the seed database is consulted, using a combination of information the user is able to supply, such as
the name of the institution where the person being sought works.> Each of the machines found in the seed data-
base is then probed using the finger protocol, to see if the user can be found at that host. With the finger proto-
col, a server running on a particular machine returns the name and electronic mailbox for any user that has an
account on that machine when queried about that user, plus whatever other information individual users chose to
make accessible (such as organization name, telephone number, and postal address). A second finger query is
made on that host without specifying a user’s name, to get a list of the users currently logged into that machine,
as well as the machines from which they are remotely connected. Each of the machines in this secondary list is
then fingered, in case the user being sought has an account on one of those machines.

It would probably not be feasible to use USENET message header and finger information in a resource
discovery mechanism that was not tailored for use in a specific application (such as Internet white pages), since

3 Unix is a trademark of AT&T Bell Laboratories.
4 This example is a modified version of one given in [Greenspan & Smolensky 1983].

5 In contrast to the information retrieval systems discussed earlier in this section, this use of simple keyword-based lookups is quite effec-
tive, because the database only contains a narrow class of information, keyed a small number of different ways (primarily, by city and organi-
zation name).
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these information sources only contain data applicable to a narrow range of searches. For most types of searches
(e.g., searching for retail products or network services) this information would not be relevant. It is only
because the tool understands the semantics of the particular application that this information can be effectively
used.

The tool’s use of semantic information is actually more involved than just the fact that USENET and finger
information can be used in providing an Internet white pages directory facility. In using the combination of
USENET and finger information, the tool is exploiting the fact that there is a sizable and growing overlap
between those sites that post messages on USENET and those sites accessible via the Internet, and thus hosts on
USENET can sometimes be queried using the the finger protocol. In addition, the tool exploits the fact that peo-
ple from a large number of different sites post USENET news messages, and hence over time collecting the
headers of these messages is likely to produce a substantial listing of hosts and organizations. These two points
contribute substantially to the tool’s effectiveness, as will be discussed in Section 4.

Another aspect of the semantics exploited by the tool concerns understanding the policies and usage patterns
of the organizations that provide the information it uses. In particular, the tool takes advantage of the fact that
each organization sets the various fields in the news message headers differently. The more variety that is found
in these strings, the more different keywords can be used in searches, and hence the more flexible the tool
becomes. For example, one department at the University of Colorado might use the string "University" as part
of the organizational description, while another uses "Univ.", in which case either string would work for finding
machines at this university. Also, the tool exploits the fact that workstation environments often provide a central
machine to process network news, and that this machine often registers many of the users at the institution,
either because they have accounts on the machine, or because they have mail aliases there. Again, this fact con-
tributes substantially to the tool’s effectiveness.

Understanding semantics also helps reduce the set of unwanted responses that are presented to the user, for
those cases where inappropriate matches come from similar looking keywords for the wrong type of resource.
For example, in a resource discovery mechanism not tailored to the semantics of a particular class of resources,
searching for "wood" might yield information about the building material when in fact the user was trying to find
a person by their last name. Because our tool is aware that users are specifically being sought, it can avoid many
instances of this problem,

3. Implementation

In this section we describe various aspects of the implementation of the tool, including the algorithms used,
changes to the BIND name service "resolver" to make it compatible with lightweight processes, and the structure
and size of prototype software.

Basic Algorithm

As mentioned in Section 2, the basic mechanism used by our tool is to gather information from USENET
news messages, and use parts of the headers of this information as initial "seed" data describing sites to search
using the finger protocol. The USENET data is gathered by a program that runs weekly, and traverses the
USENET news spool directory hierarchy for a set of specified news groups, checking all of the files that have
been created since this program last ran. The relevant data from the message headers is then extracted, and an
inverted index is generated using the UNIX invert tool [Budd & Levin 1982].

At search time, this index is consulted to find matches for the keywords describing the organization name
and/or city. If fewer than a threshold number of matches (currently 100) are found for a given set of keywords,
a finger query is invoked for each match, within a Sun lightweight process [Kepecs 1985].6 If the number of
matches exceeds the threshold by more than 10%, the user is informed that this has happened, and is shown a
partial list of the machines matched from the original query, to help the user form a more specific query.

6 In building this tool, we used Sun's Lightweight Process (LWP) library package to support inexpensive concurrency within a single
UNIX process. We chose this package over other packages (such as the LWP package used with the CMU/ITC Andrew RPC system [Morris
et al. 1986] or AT&T's C++ tasking package [Stroustrup & Shopiro 1985]) because we wanted a package that was widely available.
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Since each lightweight process uses a UNIX file descriptor for its network communication, the number of
concurrent fingers that can simultaneously be active is limited. For instance, on the Sun 4/110 on which this pro-
totype was developed this limit is 64, including 3 for standard input, standard output, and standard error. This
limit is reasonable, since it allows a fairly large amount of concurrency, while limiting how much network
activity a single search can generate. Since the threshold number of matches the tool is willing to honor is
greater than the number of finger queries that can be active simultaneously (due to the the file descriptor limita-
tion), the tool maintains a queue of outstanding queries, accessed from within a monitor by the lightweight
processes that are doing the lookups. Usually, not all of the machines in this queue will be probed, because a
response will be received from earlier machines, at which time the user can interrupt the tool.

As mentioned in Section 2, a finger query is also made on each host requesting a list of all people logged in.
While the information that is returned is not in a completely standardized format, we use some simple heuristics
to parse the information and extract a list of the machines from which the users are logged in. This list can then
be used in further finger queries. Each time such a list is received, the individual machines in it are added to the
queue of outstanding queries. A check is also made to ensure that no host is queried more than once (as could
happen, for example, if the results from a two level deep finger query list the same machine more than once).

Many of the host names encountered in USENET messages are UUCP mailbox addresses. Since UUCP
does not support finger queries, these addresses are not useful for this step in the process. However, in some
cases the user being sought can be found directly in this seed data (because that user at one time posted a
USENET message).

Changes to BIND Resolver For LWP Compatibility

Each finger query involves three network queries (and hence three places for the lightweight processes to
block): the request of the Domain name service to find the Internet address of the host name on which the query
is to take place, and the two finger lookups. These delays can be substantial, ranging from a few tenths of a
second for a name lookup and finger query on a host in the local network, to a minute for a timed out response
from a down host. It is important to allow concurrent activity to proceed during such delays. Therefore, we
needed to modify the BIND resolver, to make it compatible with lightweight processes. The resolver is the
client-resident library code that communicates with a Domain name server to initiate the various queries
[Mockapetris & Dunlap 1988].

The changes involved making the routines reentrant, so that several threads could be doing Domain naming
queries concurrently. This meant changing any code that accessed global or "static" variables to access a global
state array indexed by a thread identifier instead. Since the BIND code is continually evolving, we sought to
make these changes by modifying as little code as possible. We accomplished this by using a combination of C
macro definitions and some "sed" [USENIX Association 1986] transformations in the "makefile".

Structure and Size of Prototype Software

There are several parts to the software that comprises this prototype; all of the software is written in C. In
our modifications to make the BIND name service resolver compatible with lightweight processes, the original
code (BIND version 4.7.3) was about 2200 lines long, including comments. Of this, we changed about 60 lines,
replacing them with about 480 lines, of which about half were declarations and macro definitions.

The code that collects the USENET seed data is about 1050 lines long. The code to invert the seed data and
look up keywords in the inverted index is about 850 lines long, and was taken, with few changes, directly from
the bib code [Budd & Levin 1982].

The code to do the parallel finger lookups (including instrumentation for the measurements described in Sec-
tion 4) is about 1800 lines long. The code to provide the top level functionality that brings the search mechan-
ism and user interface together is about 500 lines long.

4. Measurements

To help assess the effectiveness of the techniques discussed here, we constructed a tool usage session that
measured how well the tool works from a user’s perspective, and how much overhead the tool imposes on the
Internet. We wanted this session to represent how a typical user would use the tool. In particular, the average
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user usually would not know the Domain name of the institution being sought (e.g., "colorado.edu"). A user
who knows this information can generate a search request that causes fewer hosts to be probed, reducing
response time and Internet loading. For example, searching for "schwartz boulder colorado edu” would probe at
most 8 machines based on our current seed database, whereas the search "schwartz boulder" would probe up to
26 machines. (Fewer machines would be probed if a user got a successful response and interrupted the tool.)

The tool usage session consisted of searching for white pages information concerning 40 different specific
individuals, at a variety of institutions around the U.S.A. The institutions had the following characteristics:

¢ 12 were on the west coast o 34 were universities ¢ 8 had 50-200 persons
¢4 were in the mountain region e 3 were government laboratories ¢ 25 had 200-1000 persons
¢ 6 were in the central region o 3 were industrial research laboratories e 7 had 1000+ persons

o 18 were on the east coast

In all but 4 of the searches, the response being sought was not directly available in the seed data. In the 4 cases
where it was, we let the tool go so far as to finger the individuals, to count these searches in the statistics being
measured.

Within these tests we collected data about the success rate, elapsed times, number of name server lookups,
number of connect requests, number of finger probes at both levels of depth (direct finger and finger at a
machine found via a previous finger), number of characters received, number of duplicate responses, and the
effect of parallelism in queries. We ran the measurements twice: once at night, and once during the day. The
purpose of doing this was to assess the effect of having more users logged in (during the day), which helps the
tool to find out about other machines in the environment being searched. Also, at night the Internet is usually
less loaded. During the daytime there will tend to be more congestion from other sources. We wanted to see the
extent to which this affected the tool. Our results are shown in Table 1.

Mid-Morning Evening Evening
(Wed. 10 AM MDT) (Wed. 7PM MDT) (Wed. 7PM MDT)

30 Threads 30 Threads 1 Thread

Successful searches 32 33 33

mean standard mean standard mean standard
deviation deviation deviation
Elapsed time, succ. [sec.] 8.15 4.18 9.88 8.68 11.13 8.07
Elapsed time, fail. [sec.] 24.57 1945 30.71 27.79 37.86 37.28
Name Lookups, succ. 15.85 11.10 17.79 11.63 18.53 13.55
Name Lookups, fail. 10.29 12.01 12,14 12.92 6.29 8.33
Connects, succ, 18.85 12,36 22,61 15.97 23.66 17.74
Connects, fail. 8.86 15.40 10.57 17.06 6.14 10.72
Depth 0 Fingers, succ. 1749 11.70 20.03 15.74 19.94 16.06
Depth 1 Fingers, succ. 0.52 1.13 142 3.34 2.72 4.86
Depth 0 Fingers, fail. 4.14 6.98 9.86 16.50 2.29 3.77
Depth 1 Fingers, fail. 1.71 4.20 043 0.73 343 7.61
Chars. Revd., succ. 272597 317270 | 9745.79 | 19087.34 | 8773.47 | 12209.45
Chars. Revd., fail, 657043 | 16094.20 | 1687.71 2802.64 | 3840.57 8331.59
Dupl. Resp., succ. 0.70 1.17 0.85 1.46 1.00 146

Table 1: Measured Prototype Search Statistics

In the table, "succ." in a row means that measurement was taken for successful searches, and "fail." in a row
means that measurement was taken for searches that failed. We interrupted the tool when a successful response
was received, as a real user of the tool would likely do.” We also interrupted the tool when a query took a long

7 Some users might let this tool run "in the background" for a long period of time without watching it run. This will not cause uncon-
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time (20-40 seconds) with no response. Elapsed times for failures were not much longer than for successes
because users are typically willing to wait for one or more responses to print, once some evidence of the query’s
success is obtained.

Note that failures happened for a variety of reasons. Primarily they were because of name server lookup
failures, lapses in network availability, and differing data available at remote sites indicating other machines to
try, based on where users of the machines being checked were logged in from at the time of the search. Some
failures were also due to query requests that could not complete because insufficient information was found in
the seed data and/or finger information.

"Duplicate responses” refers to how many responses came back for which we had seen the identical response
before (indicating that a user was found who has the same information stored on several machines). This is a
measure of wasted effort, although this redundancy also provides added robustness to network and host failures.

There are several immediate conclusions to be drawu from these measurements, First, the elapsed times are
quite reasonable for this application, ranging from a few seconds to about 20 seconds for successes, and some-
what longer for failures. Second, even though one might expect to have more successful searches in the daytime
(when more people are logged in, and hence more machines will be found that can be used for a second level of
finger lookups, the success rates are quite high (around 80%) regardless of when the searches are performed.®
The use of indirect finger queries is helpful, but not absolutely necessary for the success of the tool, as can be
seen by the relatively small number of indirect queries performed.® Third, while Internet use is somewhat waste-
ful, it is within acceptable limits for the time being. (See Section 6 for a discussion of future work on this
issue.). Duplicate responses are not a large source of Internet load. These numbers are probably somewhat
underreported, since it is possible that responses currently en route across the Internet were not counted because
the program was interrupted after a successful response. Similarly, the characters received measurements are
probably somewhat underreported.

The final set of measurements to note in Table 1 concern the effects of parallelism. The main advantage of
parallelism here is to decrease the response time for the case where a machine being fingered is unavailable,
since it takes a fairly long time for the connect request to that machine to time out in the singly threaded case. In
the multi-threaded case, the connect timeout is not perceived by the user. Parallelism also reduces the mean
response time and, in most situations, the standard deviation. The latter is helpful, because it is annoying to
users to have to wait widely varying amounts of time for responses/failures.

The effect of parallelism is not nearly as pronounced as we had originally expected (given that finger queries
each take several seconds to complete). This is because the USENET seed data often points to machines that are
good candidates for searches (such as large time shared machines on which many users within the domain have
accounts). Nonetheless, the response time improvements from multiple threads are worthwhile, and do not
cause significantly different amounts of Internet loading than the single thread case.

These measurements were taken on an unloaded Sun 4/110 running SunOS 4.0.1. This machine is connected
by an Ethernet-based local area internet to Westnet, an NSF-funded regional network. Westnet is connected by
a T1 (1.544 megabit per second) transmission link to the National Center for Atmospheric Research, an NSFNet
hub site. While these measurements were done on a fairly powerful machine (a Sun 4), we noticed very little
difference in overall tool performance on the less powerful Sun 3/60. Most of the delay comes from waiting for
responses from the finger queries, so the difference in speed of the machines initiating the queries is not very
important, '

5. Related Work

Throughout this paper we have referred to several projects and systems that support some type of resource
discovery. We now discuss a few other such systems.

trolled network loading, since the tool limits the number of probes it will make on behalf on any one search request.
8 Similar results were obtained when we ran the measurements at 2 AM MDT.

9 Slightly more direct and indirect queries were completed at night on average. We believe this is because there is less traffic on the Inter-
net at night, and hence more finger queries were able to complete before the measurement was interrupted.



WHOIS Service

The SRI Network Information Center provides a centralized TCP-based Internet directory facility called the
WHOIS service [Harrenstien, Stahl & Feinler 1985]. While the directory provided by this service is helpful, by
itself it is not sufficient to handle the Internet white pages problem. First, the database is incomplete, containing
only the small fraction of Internet users who have registered with the NIC. Second, the information is often out
of date, since people who register often forget to update the NIC when their information changes (e.g., when
they change work addresses). Since the prototype tool we have built uses information where it "natively"
resides (i.e., on users’ workstations), it avoids these problems.

X.500

CCITT is approaching the white pages problem with its X.500 directory service standard [CCITT 1987].
This standard involves a hierarchical collection of servers running at participating sites, each of which maintains
directory information about that site. While this is an important first step, we believe X.500’s reliance on
hierarchical organization will ultimately limit its usefulness. As the service is required to register an increas-
ingly wide variety of resources (beyond just Internet white pages information), searching for resources will
become difficult, because doing so requires that users understand how the hierarchy is organized in order to
make effective use of it. While browsing operations are supported, browsing through a hierarchy becomes very
difficult when the information space becomes large. In contrast, the Networked Resource Discovery Project
focuses on techniques that do not restrict the resource space organization to be a simple hierarchy. Another
difficulty with standards such as X.500 is that they require that a large number of standard-conformant servers
be deployed in order to achieve reasonable network penetration. We avoid this problem by exploiting informa-
tion sources in a variety of formats and locations. Finally, X.500 utilizes only syntactic techniques for naming
and searching for resource information, unlike the semantically-based techniques discussed in this paper.

Profile

Peterson et al. have developed a system called Profile that supports queries over general types of objects,
based on their Universal Naming Protocol [Peterson 1988]. Like the Networked Resource Discovery Project,
Profile supports a non-hierarchical name space. However, Profile focuses more effort on the structure of query
mechanisms for supporting directory services, whereas our work focuses on allowing resource information repo-
sitories to enter the network and be accommodated into the resource space organization dynamically [Schwartz
1989]. Furthermore, our work focuses attention on supporting directory mechanisms in the absence of global
cooperation, Finally, while Profile utilizes syntactic techniques in searching for resource information, we use a
combination of syntactically and semantically-based techniques.

HNS

The approach taken in this paper is related to that used by one of the authors in a previous research project,
where a Heterogeneous Name Service (HNS) was built to support naming in a heterogeneous computing
environment. The service used individual procedures called Naming Semantics Managers, each of which under-
stood the semantics of naming for a particular class of naming lookups and a particular name service [Schwartz,
Zahorjan & Notkin 1987]. In the current project, rather than providing a name service (which allows users to
use high-level names that map to system-specific low-level identifiers in accessing resources), we consider the
more basic problem of discovering the high-level names in the first place.

6. Conclusions

In this paper we have reported experience with the technique of exploiting semantics to provide a particular
resource discovery facility, namely, an Internet white pages directory. We have found this technique to be quite
effective. By building an understanding of the semantics of resource information into the algorithms that sup-
ports searches, we were able to make use of a large class of existing network accessible information, providing a
usefully large scope for the directory without the type of global cooperation that many directory services require.

Because USENET and finger information were not originally intended for use in providing an Internet white

pages facility, they do not provide a perfect base on top of which to build such a facility. In particular, our tool
cannot provide answers to all queries, and is somewhat wasteful of network resources. Nonetheless, the tool
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provides an immediately useful function, without waiting for agreement to be reached on a global service inter-
face, or for servers to be built and deployed. Furthermore, when global resource discovery services such as
X.500 become available, our strategy will be able to make use of the information they provide. In this sense, our
technique provides superior information infrastructure penetration than any system based on a single standard
protocol.

There are several possibilities for future work on this tool. The most important involves making more
efficient use of Internet bandwidth, by using a more intelligent technique to manage the seed data. As it
currently stands, the seed data coverage is becoming too large and redundant. Presently, it takes up 1.27 mega-
bytes of space, and contains over 12000 entries (where an entry corresponds to a user who at one time posted a
USENET message). While having some redundancy in the data is important for availability’s sake, our meas-
urements show that typical queries will yield 20-30 machines at a site that can be fingered. We believe this
wastes more network bandwidth and remote CPU cycles than is necessary. Our plan now is to revise the tool to
keep track of hosts at each institution that get good responses to most queries, and then have the tool finger those
machines first for future queries, before initiating parallel searches on the other machines found in the seed data-
base. We expect that this will yield results quickly in most cases, and substantially lower the average network
load generated by the tool.

We are also considering extending the tool to use various other sources of information (such as the WHOIS
service [Harrenstien, Stahl & Feinler 1985], the Sun Yellow Pages [Weiss 1985], and the CSNet name service
[Solomon, Landweber & Neuhengen 1982]). However, since the tool already works quite well, doing so is not a
high priority at this time.

We also plan to distribute the tool to a small number of sites around the Internet, and gather measurements
like those shown in Table 1 for real users, to get a more realistic appraisal of the effectiveness of the tool and the
techniques it uses.

Since the Networked Resource Discovery Project is investigating means by which users can discover the
existence of a variety of different resources (not just Internet white pages information), the natural question to
ask at this point is under what circumstances can semantics be exploited to aid searches. While we do not yet
have enough experience with this technique to outline any general principles, there are some obvious candidates
for using the technique. As an example, one could build semantic understanding into a tool concerned with
locating network services, making the tool use information in various existing forms, such as the UNIX
"fetc/services" service listing file, and the keywords listed in the UNIX "man page" inverted index. One could
also check the "Subject: " lines of various USENET newsgroups, such as comp.unix.questions or comp.sources.
Further, one could glean some potentially useful information by monitoring network traffic, e.g., to detect the
addresses of service-specific packets passing along one’s Ethernet.
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