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This dissertation presents four studies that examined how executive functions 

(EFs) relate to problematic behaviors, such as psychopathology and atypical sleep, as 

well as how EFs are characterized in healthy individuals. The first study examined 

whether genetic risk for five different forms of psychopathology predicted EFs at the 

latent variable level in a population sample. The second study characterized the neural 

activation patterns in health individuals in response to 3 different types of EF tasks. This 

study (a) assessed the overlapping activation elicited across the different EF task types, 

and (b) used neural activation to predict high or low EF ability. The third study examined 

whether individual differences in sleep duration influenced either depression or EFs (a) 

within a single time of assessment, (b) across time, and (c) how sleep duration, 

depression, and EFs influence each other in the same model. Study 4 decomposed the 

relationships of sleep duration with depression and then EF into their genetic and 

environmental factors in order to better understand the underlying architecture for these 

relationships. 

In the first study, publically available datasets from the Psychiatric Genomics 

Consortia were used to generate polygenic risk scores for 5 different psychiatric 

disorders: Autism, Attention Deficit Hyperactivity Disorder (ADHD), Bipolar Disorder, 

Major Depressive Disorder (MDD), and Schizophrenia. I then used a deeply phenotyped 

(and genotyped) subset of 354 twins in the Colorado Longitudinal Twin Study (LTS) 

from the University of Colorado Boulder to test whether or not genetic risk in these 

individuals predicted EF abilities. I also examined whether the appropriate risk scores 

were associated with ADHD and MDD symptoms or lifetime diagnoses to the same 

relative extent as the EF scores. Results indicated polygenic risk for psychopathology did 

not significantly predict EFs after controlling for multiple testing. Results also suggested 

that effect sizes for EFs were comparable to those for ADHD and MDD symptoms and 

lifetime diagnoses.  

The second study was a pilot study that included 30 subjects from the Colorado 

Twin Study from the University of Colorado Boulder at approximately age 28. These 

subjects were chosen because they were either high or low in Common EF ability as 

measured in a previous wave of data collection 7 years prior, until we had 15 of each. 

Each subject completed 3 EF tasks in a functional magnetic resonance imaging scanner. 

Results indicated that common brain activation in response to these tasks both overlapped 

with a frontoparietal network typically associated with cognitive tasks, and extended 

beyond this network. The common areas associated with individual differences in EF 

ability fell outside of the frontoparietal network.  

The third and fourth studies utilized data from the same group of 857 twins from 

the LTS sample. These studies examined sleep, depression, and EF when available at 

approximately ages 12, 17, 21, and 23. Study three looked at the phenotypic relationships 
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between these variables and found linear and nonlinear relationships between sleep 

duration and EFs and depression across age. When put together in the same model, 

depression seems to suppress the relationship between EF and sleep duration in 

adolescence. Study four results showed that sleep duration is moderately heritable, and 

that the phenotypic relationships between these variables is typically attributable to non-

shared environmental influences.  
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CHAPTER 1 

Brief Introduction  

 Individual differences in Executive Functions (EFs), higher-level cognitive 

mechanisms that allow individuals to set and reach goals, predict many important life and 

health outcomes, ranging from academic and occupational performance, to 

psychopathology and criminality (Miller, Nevado-Montenegro, & Hinshaw, 2012; 

Morgan & Lilienfield, 2000). In fact, executive dysfunction is so pervasive in many 

forms of psychopathology, that it has been proposed as a potential endophenotype for a 

number of disorders, such as major depression and schizophrenia (Hasler, Drevets, 

Manji, & Charney, 2004; Snitz, MacDonald, & Carter, 2006). This body of research 

works to expand upon previous literature by further characterizing a deeply phenotyped 

model of EFs, and how individual differences in this model relate to psychopathology 

and sleep duration.  

One strength in this body of research is the use of a well-established, deeply 

phenotyped model of EFs. The Unity and Diversity model of EF uses a battery of 9 EF 

tasks, selected from three different domains (response inhibition, updating working 

memory, and task-switching), to extract 3 latent factors: Common EF, Updating-specific 

(UPD), and Shifting-specific (SHI). The Common EF latent factor explains variance in 

all 9 of the EF tasks and is thought to reflect goal maintenance. The UPD factor explains 

additional variance in the 3 updating tasks after the common variation is portioned out, 

and strongly relates to general fluid intelligence (Friedman et al., 2006). The SHI factor 

explains remaining variance in the 3 shifting tasks and often shows an opposite pattern 

with psychopathology compared to Updating-specific abilities and Common EF. These 
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factors allow for a purer measurement of the underlying EF constructs that can then be 

related to problematic behaviors.  

Individual differences in these EFs relate to many types of problematic behaviors 

such as depression (Friedman et al., in prep), substance use (Gustavson et al., 2017), and 

behavioral disinhibition (Young et al., 2009). Longitudinally, these EFs relate to sleep 

problems (Friedman, Corley, Hewitt, & Writght, 2009), self-restraint (Friedman, Miyake, 

Robinson & Hewitt, 2011), and attention problems (Friedman et al., 2007). Given 

previous research suggesting EFs in general as endophenotypes for psychoaphtology and 

the fact that these latent factors have been shown to be highly heritable (Friedman et al., 

2008), and stable (Friedman, 2016), make the Unity and Diversity model of EF a good 

candidate model for EFs as endophenotypes.  

First, I used genetic risk for 5 forms of psychopathology to predict individual 

differences in EFs. All associations were small and did not survive correction for multiple 

testing. This study highlighted 1) the need for large discovery and testing samples when 

using polygenic risk scores, even with deeply phenotyped testing samples, and 2) that 

purported endophenotypes might not produce larger effect sizes than the more distal 

behavior of interest, at least at the level of cognitive lab-based measures. Rose & 

Donohue (2013) conclude that neuroimaging studies of cognition produce more robust 

associations with Schizophrenia than their lab-based counterparts. This finding and the 

results of Study 1 helped to motivate the next study. 

In Study 2, I characterized the neural networks common to EFs, using functional 

magnetic resonance imaging of response inhibition, updating working memory, and set-

shifting tasks. This study highlighted that in general EF tasks activate a fronto-parietal 
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network (FPN), similar to ones previously identified as being related to multiple 

cognitive tasks. However, the overlapping regions from the 3 EF tasks did show some 

differences from this previously identified FPN, suggesting that they cannot be used 

interchangeably. Importantly, the regions that predicted individual differences in EFs 

usually fell outside of the overlapping group activation, suggesting that individuals with 

higher Common EF might activate areas other than those necessary to complete the task 

in order to boost their performance when the task is difficult. Before neural networks of 

EF can be tested as an endophenotypes, many more participants need to be collected. 

Data collection is ongoing. 

In the interim, I further characterized the relationship between sleep duration and 

EFs, as well as sleep duration and depression in both phenotypic and genetically 

informed models. Adolescence into young adulthood is a critical period for the 

development and refinement of EFs (Casey, Getz & Galvin, 2008; Diamond, 2002). This 

time-period is also marked by changes in sleep pressure and circadian rhythms (Barclay 

& Gregory, 2013). Therefore, I first phenotypically assessed the relationships between 

sleep duration and EF, sleep duration and depression, as well as how EF, sleep duration, 

and depression influence each other. Second, I addressed whether the phenotypic 

relationships were driven by shared genetic or environmental influences. Overall, shorter 

sleep durations and sleeping more or less than the average person are associated with 

increased depression, while sleep duration and EFs have a more nuanced relationship. 

Shared genetic variation contributed to both sleep duration and depression in early 

adulthood, but overall most associations between sleep duration and depression or EFs 
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were explained by non-shared environmental influences that make twins more different 

from each other.  

Overall this body of research sets the groundwork for further assessing the Unity 

and Diversity model of EF as a potential endophenotype for various forms of 

psychopathology and maladaptive behaviors.   
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CHAPTER 2 

Predicting Cognitive Executive Functioning with Polygenic Risk Scores for 

Psychiatric Disorders 

 Executive functions (EFs) –– higher-order cognitive processes that regulate 

thoughts and actions during goal-directed behavior –– are implicated in many types of 

psychopathology. Individuals with attention-deficit/hyperactivity disorder (ADHD), 

autism (AUT), schizophrenia (SCZ), major depressive disorder (MDD) and bipolar 

disorder (BP), as well as other psychiatric disorders, show EF deficits, and many of the 

symptoms for these disorders reflect EF dysfunction (Amann et al., 2012; Rosenthal et 

al., 2013; Synder, 2013; Snyder, Miyake, & Hankin, 2015). In fact, researchers have 

hypothesized that EFs are endophenotypes –– intermediate phenotypes on the pathway 

between genes and diagnosis –– for these disorders (Nyden, Hagberg, Gousse, & Rastam, 

2011; Glahn, Bearden, Niendam, & Escamilla, 2004; Hasler, Drevets, Manji, & Charney, 

2004; Snitz, MacDonald, & Carter, 2006; Willcutt et al., 2005). If so, then the genes that 

influence EFs also influence vulnerability to psychiatric disorders. In this study, we 

examine the hypothesis that genetic risk for psychiatric disorders predicts individual 

differences in EFs. We use large, publically available samples for ADHD, AUT, BP, 

MDD, and SCZ to find genetic risk variants and construct polygenic risk scores (PRSs) 

for each disorder, then test whether these risk scores predict EFs in an independent 

population-based sample that is smaller but more deeply phenotyped.  

The EF framework we use is the unity/diversity model (Miyake & Friedman, 

2012), which was recently discussed by Snyder et al. (2015) as a particularly promising 

framework for gaining new insights into the relationship between EFs and 
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psychopathology. This model examines nine tasks tapping three separable but correlated 

latent variable EFs (response inhibition, updating working memory, and shifting sets). 

The covariances among the nine tasks are partitioned into three orthogonal factors: 

Common EF, which explains variance in all nine tasks, including the response inhibition 

tasks; Updating-Specific, which explains residual covariance among the updating 

working memory tasks (once the common factor is accounted for); and Shifting-Specific, 

which similarly explains residual covariance among the tasks designed to examine task 

shifting ability.  

The Common EF latent factor is thought to reflect active goal maintenance and 

top-down biasing of lower-level cognitive processing (Miyake & Friedman, 2012), which 

may be particularly important to avoid dominant or automatic responses. In fact, 

Common EF is isomorphic with response inhibition; in other words after accounting for 

Common EF, there is no Inhibition-Specific factor. The Shifting-Specific factor is 

thought to capture individual differences in the speed with which no-longer-relevant 

goals are cleared from working memory, and the Updating-Specific factor is thought to 

capture individual differences in gating information into working memory, as well as 

possibly memory-specific factors like retrieval (Miyake & Friedman, 2012). Our prior 

work with this model (see Miyake & Friedman, 2012), as well as existing meta-analyses 

and reviews (e.g., Snyder, 2013; Snyder et al., 2015) suggests that the Common EF factor 

is the most closely related to multiple forms of psychopathology. There is less work 

examining specific variances in updating and shifting (i.e., after removing Common EF 

variance), but some prior research suggests that they show different relationships with 

psychopathology-relevant behavior (see summary in Herd et al., 2014). Given this body 
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of research, we use this model as a candidate endophenotype.  

A mediational endophenotype, also referred to as an intermediate phenotype, is 

assumed to be closer to the genetic risk factors for the disorder and the behavioral 

symptoms (Kendler & Neale, 2010).  Therefore, relevant genes should be more strongly 

associated with the endophenotype than the psychiatric disorder itself (Flint & Munafò, 

2007; Walters & Owen, 2007). Proposed criteria for endophenotypes include the 

following: They are associated with the disorder, heritable, and found in unaffected 

family members at higher rates than in the general population (Gottesman & Gould, 

2003). Endophenotypes should also co-segregate in families, and be state-independent, or 

exist in probands even when they are not currently exhibiting the disorder (Gottesman & 

Gould, 2003). Thus, one should be able to find an association between genetic risk for 

psychopathology and purported endophenotypes even in individuals who do not meet 

criteria for a disorder at the time they are measured on the endophenotypes. 

Twin and family studies have shown that most complex psychiatric disorders are 

heritable (Shih, Belmonte, & Zandi, 2004), with heritability estimates of 76% for ADHD, 

85-92% for AUT, 59-87% for BP, 37% for MDD, and 81% for SCZ (Faraone et al., 

2005; Miles, 2011; Smoller & Finn, 2003; Sullivan, Neale, & Kendler, 2000; Sullivan, 

Kendler, & Neale, 2003). As relatively few to no single nucleotide polymorphisms 

(SNPs) have been identified at a genome-wide significance level for most of these 

psychiatric disorders (with the exception of SCZ; Ripke et al., 2014), and at best only a 

handful of SNPs have been identified for constructs related to EFs (Davis et al., 2010; 

Ibrahim-Verbaas et al., 2016; Plomin et al., 2013; Rietveld et al., 2014), it is difficult to 

assess whether the same genetic variants that predict EFs also predict these psychiatric 
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disorders or vice versa. Even in cases for which a relatively large number of genome-

wide significant variants have been identified, such as the 128 independent associations 

with SCZ identified by Ripke and colleagues (2014), the variants collectively explain 

very little of the phenotypic variance on a liability scale (3.4%), with the individual SNPs 

explaining much less (by one estimate for genetic studies more generally, each SNP is 

typically associated with a 1.1 odds ratio; Dick et al., 2015). 

One approach to increasing effect sizes is to use PRSs. PRSs aggregate the signals 

from multiple SNPs related to the disorder of interest, instead of testing the association of 

variants one by one (Dudbridge, 2013; Morrison et al., 2007).  To calculate a PRS, first a 

GWAS in a discovery sample is used to quantify the relations between all SNPs and a 

disorder. Then SNPs that meet a certain p-value threshold (for example, p < .0005) in the 

discovery sample are binned together. However, it is unclear what significance threshold 

is optimal, because adding SNPs can increase noise as well as signal; the threshold that 

results in the optimal signal to noise ratio likely varies depending on phenotype and 

sample size. Thus, studies commonly look at PRSs for SNPs at different p-value bins 

(e.g., all SNPs with p < .10, .05, .005, etc.). Then, for a given bin or collection of apriori 

chosen SNPs, in an independent testing sample, the PRS is computed as a summed count 

of whether or not each individual has 0, 1, or 2 copies of the risk variants. If the 

discovery sample is sufficiently large, then one might expect the estimates of the 

regression betas for each SNP to be stable and accurate, and each SNP can be weighted 

by its beta from the discovery sample (Dudbridge, 2013). Finally, the PRSs can be used 

to predict the disorder or another phenotype in the testing sample.  

A benefit of using a PRS is the ability to use a large discovery set for one 
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phenotype (i.e., a psychiatric disorder) to estimate genetic risk and then test for 

association in an independent, more deeply phenotyped sample. Both samples do not 

need to have both phenotypes, and a larger sample size is more important in the discovery 

sample for determining the risk variants and estimating the SNP effect sizes (Dudbridge, 

2013). So, a smaller testing sample, which in this case has been assessed with great rigor, 

can be used to test the genetic association between the two phenotypes.  

 Genome-wide association studies (GWAS) for constructs related to EFs (such as 

intelligence test subscales, matrix reasoning, the Stroop test, the trail-making test, and 

educational attainment) have had varying success in identifying significant genetic 

variants (Davis et al., 2010; Ibrahim-Verbaas et al., 2016; Plomin et al., 2013; Rietveld et 

al., 2014). However, due to sample-size constraints, reverse-phenotyping is frequently 

employed. For example, the observed heritability of educational attainment is due in part 

to cognitive ability, but also reflects much more, such as work ethic, motivation, and 

behavioral problems (Krapohl et al., 2014). A recent GWAS by Rietveld et al. (2014) 

found that a PRS for educational attainment predicted general cognitive ability better than 

it did educational attainment in an independent sample. The authors suggested that the 

higher relation to general cognitive ability than to the originally investigated trait 

(educational attainment) arose because general cognitive ability is an endophenotype for 

educational attainment. The authors describe this phenomenon of using risk variants for 

the disorder of interest to try to predict a purported endophenotype as "reverse 

endophenotyping." We utilized this approach because we have an extensive EF battery on 

a relatively small sample that would be inappropriate for risk score discovery. That is, 

even though it may be more logical to calculate a PRS for the endophenotype and test it 
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with a psychiatric phenotype, we do the opposite because there are currently larger 

sample sizes for psychiatric disorders than for these EFs. 

 One recent study found associations between psychopathology and single 

cognitive measures (verbal-numerical reasoning, educational attainment, reaction time, 

and memory) in sample sizes of 36,035 to 112,067 individuals from the UK Biobank 

(Hagenaars et al., 2016). Associations were examined in 2 ways: genetic correlations 

from LD score regression, and PRSs. Schizophrenia was the only disorder consistently 

related to each measure, with genetic correlations ranging from 0.13 to -0.34 and betas 

from regressions with PRSs ranging from -0.062 to 0.025. This study shows the best-case 

scenario for effect sizes in large samples with single measures related to cognition. 

However, this study focused on individual cognitive tests that did not target particular 

EFs. In the current study, we use a similar approach to examine relations to multiple EFs, 

measured at the level of latent variables.  

Current Study 

We used publicly available genome-wide summary data from five case-control 

samples (AUT, ADHD, BP, MDD, and SCZ) from the Psychiatric Genomics Consortium 

(PGC) (Sullivan et al., 2010). We calculated PRSs for each disorder at multiple p-value 

bins, and then used them to predict three separable EFs (Common EF, Updating-Specific, 

and Shifting-Specific latent variables) in an independent sample composed of unrelated 

individuals drawn from two Colorado twin studies (n = 386 with both genetic and EF 

data).  

For our EF measures, we employed a latent variable model, which has two major 

advantages over individual tasks. First, because they only reflect variance that correlates 
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across tasks, latent variables are free from measurement error due to unreliability (Bollen, 

1989). Second, particularly for EF constructs, latent variables are more valid measures, 

because they remove task impurity (Miyake et al., 2000). EFs are higher-level processes 

that act on lower-level processes; so individual EF tasks typically include a good deal of 

variance that is not related to the EF of interest (such as verbal or spatial ability). The EF 

model that we use includes measures that were selected to tap the same EFs but differ in 

these non-EF requirements so that this non-EF variance would be removed from the 

latent variables. The result is a purer measure of the EF, but the consequence is that 

standard errors for estimates of relations with these latent variables may be larger than 

those for individual tasks to the extent that the latent variable loadings are low (which 

they typically are for EF models). High reliability and validity is particularly important in 

evaluating endophenotypes, because poor measurement can outweigh the benefits gained 

by an endophenotype’s more proximal connections between genes and behavior. Prior 

research with a subset of the data used here demonstrates that these EF latent variables 

are highly heritable and show high stability across a 6-year time window (Friedman et al., 

2016).  

 While many previous studies of general cognitive ability have larger samples, 

deep phenotyping by selecting highly heritable EF constructs based on a well-

characterized model of EF should increase our ability to detect an association between 

psychopathology PRSs and EF, particularly in a smaller sample. Prior work with the data 

from the Colorado Longitudinal Twin Study sample (Friedman et al., 2016) indicates that 

these EF latent variables have heritabilities at age 17 of 98% for Common EF, 100% for 

Updating-Specific latent factor, and 76% for Shifting-Specific. In the same sample, 



Individual Differences in Executive (Dys)Function  12 

heritability for a general intelligence factor was estimated at 76% (Friedman et al., 2008). 

These same latent variables are stable from ages 17 to 23 years, with correlations 

between the two ages of .86, 1.0, and .91 for Common EF, Updating-Specific, and 

Shifting-Specific abilities, respectively (Friedman et al., 2016). Moreover the Common 

EF factor is more strongly related than general cognitive ability to behavior that is 

relevant to psychopathology, such as attention problems and self-restraint (e.g., Friedman 

et al., 2007; 2011). Thus, Common EF is a strong candidate for examination as an 

endophenotype for psychopathology. 

For comparison purposes, we also included measures that were more similar to 

the psychiatric disorders on which the risk scores were based. Specifically, we used the 

ADHD and MDD PRSs to predict attention problems, depression symptoms, ADHD and 

MDD lifetime diagnosis, and a joint general anxiety disorder (GAD) and/or MDD 

lifetime diagnosis (given that depression and anxiety have a high genetic correlation; 

Kendler et al., 1992). These analyses enabled us to examine whether our effect sizes for 

EFs are larger or smaller than those for phenotypes that more closely match the original 

psychiatric phenotypes used to generate the PRSs.  

Intelligence quotient (IQ), another proposed endophenotype for psychopathology 

and a construct related to EF (Friedman et al., 2006), has been previously linked to 

genetic risk for SCZ. As such, we tested whether the PRSs were correlated with IQ in our 

sample to see if we replicate this association and to better interpret the observed 

relationships between PRSs and EFs.  

 While we are interested in the relationship between all three latent factors in the 

EF model and psychopathology, we hypothesize that the PRSs will be negatively related 
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to the Common EF factor, based on prior work suggesting that multiple forms of 

psychopathology are associated with broad EF deficits (e.g., Snyder et al., 2015). In 

addition, prior phenotypic and genetic models with one of these samples suggest a 

possible positive relationship between the Shifting-Specific factor and PRSs for 

psychopathology, reflecting a stability/flexibility tradeoff with the Common EF factor 

(Miyake & Friedman, 2012); therefore, we hypothesize that PRSs will be positively 

related to the Shifting-Specific factor.   

Method 

Participants  

Target sample. For genetic analyses participants were 452 individual twins (178 

female; mean age at time of EF testing 19.6 [SD = 2.3]), a subset from 2,935 twins 

recruited from the Colorado Longitudinal Twin Study (LTS) and the Colorado 

Community Twin Study (CTS) at the University of Colorado (Rhea et al., 2013). For all 

models we included all individuals who had phenotypic data in order to get a more robust 

estimation of phenotypic traits (distributions or thresholds); however, only a subset of 

452 to 386 individuals who had both genotypic and phenotypic information, depending 

on the analysis, contributed to the correlation between PRS and phenotype. For example, 

in the estimation of the EF models, we used all twins who had EF data (n = 1,543) in 

order to get better, more stable estimates of the latent factor loadings; however, only one 

twin from a subset of those twin pairs was genotyped, and of those, only Caucasian 

samples were imputed to the 1000 genomes reference panel. Out of the 452 individuals 

with imputed genotype data, 386 also had EF data, 387 had IQ data, 452 had diagnostic 

information for ADHD, MDD, general anxiety disorder and/or major depression, or 
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depression symptoms from the Center for Epidemiologic Studies-Depression scale (CES-

D), and 257 also had Child Behavioral Checklist (CBCL; Achenbach et al., 1991) data 

(see supplemental Table S1 for ns). 

 Discovery samples. We used publicly available summary statistics from GWAS 

to obtain the sets of SNPs (and associated beta weights) to be included in the PRSs for 

each disorder. The discovery data came from the PGC (Sullivan et al., 2010) and 

included an AUT sample from the Autism Disorder Working Group (March 2015 

Release; URLs:PGC) with 10,610 individuals (5,305 ASD cases and 5,305 

pseudocontrols), an ADHD sample (Neale et al., 2010) with 9,543 individuals (896 cases, 

2,455 controls, 2,064 trios), a BP sample (Sklar et al., 2011) with 16,731 individuals 

(7,481 cases, 9,250 controls), a MDD sample (Ripke et al., 2013) with 76,237 individuals 

(16,023 cases, 60,214 controls), and a SCZ sample (Ripke et al., 2014) with 150,064 

individuals (36,989 cases, 113,075 controls). For more details on the discovery samples’ 

characteristics, preprocessing procedures, and analysis methods used by the PGC, see the 

papers associated with each dataset.  

Materials 

Attention problem symptoms. Attention problems were assessed by the 

attention problems subscale of the Child Behavior Checklist (CBCL; Achenbach et al., 

1991). This subscale had 11 symptoms that could be endorsed as not true (0), somewhat 

true (1), or very true (2), for a maximum score of 22 points. For the LTS, we used 

multiple waves of parent (either mother or father) ratings from age 7 until age 16 years. 

After taking the square root of the raw score to help normalize the distribution, we 

regressed out age separately within each sex at each time point, then averaged the 
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standardized residuals across time. We followed the same procedure for the CTS sample, 

however we only had parent ratings (mother, father, or both) at one time point. Across 

both the LTS and CTS samples, mothers’ ratings were more common than fathers’; only 

mothers answered approximately 77% of the time, only fathers answered 9% of the time, 

and both parents answered approximately 13% of the time. When both were available, we 

averaged the parents’ ratings at that time point, and then averaged the combined rating 

with the other time points. Descriptive statistics for raw scores are provided in 

Supplemental Table S1.   

Depression symptoms. Participants completed the Center for Epidemiologic 

Studies-Depression scale (CES-D; Radloff, 1977) at three waves: wave 1 (ages 11.33 to 

15.99 years), wave 2 (ages 15.75 to 27.45 years), and wave 3 (ages 21.10 to 34.37 years). 

This 20-question scale assesses how often a person experiences depressive symptoms on 

a scale of 0 (rarely or none of the time) to 4 (most or all of the time). At each wave, after 

reverse-scoring appropriate questions, if an individual answered at least 16 questions, we 

took the mean of those questions and multiplied it by 20 in order to get a sum score.1 We 

used a square root transformation to help normalize the distribution and regressed out 

age, sex, and their interaction, then averaged the standardized residuals across waves to 

get a single score for each participant. 

Lifetime diagnoses. We examined three lifetime diagnoses: ADHD, MDD, and 

GAD and/or MDD. Adult case-control status was assessed by the DSM-IV diagnostic 

criteria, or the DSM-IIIR adjusted to be equivalent with the DSM-IV diagnostic criteria if 

data were collected before 2002. We used the Diagnostic Interview Schedule (DIS; 

                                                        
1 Across all waves, only 4 scores were not computed because the participant did not answer at 

least 16 questions.  
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Robins et al., 2000) for participants 18 or older, and the Diagnostic Interview Schedule 

for Children (DISC; Shaffer, et al, 2000) for participants younger than 18. We had three 

waves of data available (see Depression symptoms section) and used all of the data to 

create our measures. Age at time of psychopathology assessment ranged from 12-34 with 

a mean age of 24.4 (SD = 3.7). When there were multiple assessments, the age in 

supplemental Table S1 is from the most recent wave of available data. Our final variables 

were dichotomous variables for each disorder, where if the participant had ever met 

criteria for diagnosis at any wave, he or she was considered a case. Out of the 452 

participants who had genetic data and information on lifetime diagnosis, 43 (9.5%) had a 

lifetime diagnosis of ADHD, 107 (23.6%) had a lifetime diagnosis of MDD, 45 (10%) 

had a lifetime diagnosis of GAD, and 120 (26.5%) had a lifetime diagnosis of MDD 

and/or GAD.  

Full-scale intelligence. IQ was measured using the Wechsler Adult Intelligence 

Scale, third edition (WAIS-III; Wechsler, 1997) in the LTS sample, and the Wechsler 

Abbreviated Scale of Intelligence (WASI; Wechsler, 1999) in the CTS sample. The 

WAIS-III was collected at a mean age 16.58 (SD = 0.79), with a mean score of 102.2 

(range 70 to 142). The WASI was collected at a mean age of 21.09 (SD = 1.72), with a 

mean score of 106 (range 53 to 135). Scores were regressed on age, sex, and their 

interaction within sample, and the standardized residuals were then concatenated.  

EF tasks. Nine EF tasks were used to construct EF latent variables. The inhibition 

tasks (antisaccade, stop-signal, and Stroop) required stopping a prepotent behavioral 

response (eye movements, categorization, or word reading, respectively). The dependent 

measures were antisaccade accuracy, estimated stop-signal reaction time in the stop-
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signal task, and Stroop response time interference (for incongruent minus asterisks 

stimuli). The updating working-memory tasks (keep track, letter memory, and spatial 2-

back) required monitoring incoming stimuli (words, letters, or spatial locations, 

respectively) updating working-memory with new relevant information (deleting no 

longer relevant information) when appropriate. The dependent measures were accuracy. 

The set-shifting tasks (number–letter, color–shape, and category-switch) required 

participants to switch between two subtasks (categorizing numbers or letters, colors or 

shapes, or animacy or size, respectively) on the basis of cues that appeared before each 

trial. The dependent measures were local switch costs, or the difference in reaction time 

on switch trials minus repeat trials. Additional information is provided in Table 2.1; see 

Friedman et al. (2008) for full details. Tasks were administered in the LTS sample at 

mean age 17.25 years (SD = 0.65) and in the CTS sample at mean age 21.01 years (SD = 

1.68). The CTS and LTS samples were combined and then age, sex, and their interaction 

were regressed out of each EF task score. Standardized factor loadings for the three 

orthogonal EF latent variables are provided in Table 2.1 for the combined sample. See 

supplemental Table S2.1 for task descriptive statistics for the sample with genetic data. 

Table 2.1 Descriptions and Factor Loadings of the Executive Function Tasks 

  Standardized Factor Loading 

Measure Description Common 

EF 

Updating-

Specific 

Shifting-

Specific 

Inhibiting     

Antisaccade Avoid the prepotent response to 

saccade to a cue and instead look in 

.54 - - 
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the opposite direction to view a 

briefly displayed target 

Stop-signal Stop a dominant categorization 

response on infrequent trials in 

which an auditory signal sounds 

.50 - - 

Stroop Avoid the prepotent tendency to 

read a word and instead name the 

color of the font in which the word 

is printed 

.41 - - 

Updating     

Keep-track From a series of 15 words, 

remember the most recently 

presented exemplar of 2-4 specified 

categories  

.38 .63 - 

Letter-

memory 

During a series of letters, 

continuously rehearse the last three 

letters and recall them at the end 

.38 .47 - 

Spatial 2-

back 

Respond whether an indicated 

location is the same as that two trials 

back 

.40 .17 - 

Shifting     

Number-

letter 

Categorize whether the number in a 

letter-number pair is odd or even, or 

.42 - .45 
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whether the letter is a consonant or 

vowel, depending on the location of 

stimuli (top or bottom of screen) 

Color-shape Categorize whether a colored shape 

is a circle or triangle, or red or 

green, depending on a cue letter (C 

or S) appearing above the stimulus 

.39 - .43 

Category-

switch 

Categorize a word as living or 

nonliving, or small or big, 

depending on a cue symbol 

appearing above the word 

.45 - .59 

Note. Standardized factor loadings (all p < .05) from a model with no genetic risk score or 

principal components included. Models included the full sample (n = 1,549) although only a 

subset of 389 individuals contributed to the correlation with the genetic risk scores. The model 

showed an acceptable fit, χ2(21) = 97.22, p < .001; CFI = .959; RMSEA = .048. EF = executive 

function. 

 

Procedures 

Genotyping: discovery sample. The AUT2 and SCZ2 sample were part of a 

second phase and were imputed to the 1000 Genome reference panel (The 1000 Genomes 

Project Consortium, 2010). The BP sample was imputed to HapMap phase 2; the ADHD 

and MDD samples were imputed to HapMap phase 3 (Thorisson, Smith, Krishnan, & 

Stein, 2005; The International HapMap Project, 2003). After quality control through PGC 

(see individual references for more information) all results files were downloaded to our 

servers. All discovery samples went through a clumping procedure in PLINK (Purcell, et. 

al., 2007) to account for linkage disequilibrium (LD). Clumping accounts for LD by 

taking the most significant SNPs in a GWAS, then grouping SNPs that meet an LD 
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threshold with this most significant index SNP, resulting in only one signal per LD block. 

We used an LD threshold of R2 < 0.2, with no SNPs excluded based on p-values for 

association with the disorder. The resulting SNPs were then put into R (R Core Team, 

2003) and the list of SNP names were matched to the imputed SNPs in the testing sample 

for PRS generation in the testing sample.  

Genotyping: testing sample. Individuals were genotyped on the Affymetrix 6.0 

platform (Affymetrix, Inc., Santa Clara CA) and called by BEAGLECALL 1.0.1 

(Browning & Yu, 2009). See the description for the "Center on Antisocial Drug 

Dependence (CADD)" sample in Derringer et al. (2015) for full details of the cleaning 

and quality control procedures before imputation.  

Caucasians were identified by visual inspection of the first 10 components from a 

principal components analysis calculated in PLINK using the full, unrelated CADD 

sample (described in Derringer et al., 2015). Cut-offs for the first 3 PCs were applied, and 

then the remaining subjects were imputed to the 1000 Genome reference panel using 

IMPUTE2 (Howie, Donnelly, & Marchini, 2009)2. The 10 ancestry components were 

also used as covariates in the analyses.  

SHAPEIT was used for the prephasing process (Delaneau, Marchini, & Zagury, 

2012). A cut-off info score of >= .4 was used to ensure good quality imputed SNPs, 

resulting in approximately 14.9 million SNPs. After restricting imputed SNPs to those 

also identified in the discovery sample (see Table S3 in supplemental materials for 

number of SNPs in each PRS), the beta weights for those SNPs were used to calculate 

                                                        
2 Visual inspection involved comparing the self-reported ancestry to the places in the distribution 

that showed breakpoints (or drop-offs) between the sample's ancestry groups. This resulted in 

identification of European ancestry participants by component 1>0.014, 0< component 2 <0.013, 

and component 3>-0.006. 
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weighted risk scores in the testing sample by multiplying 0, 1, or 2 (for copies of the risk 

allele), or dosages for imputed SNPs, by the beta weight for those SNPs, and summing 

across SNPs in each p-value bin.  

Analyses 

Analyses were run in Mplus 7.3 (Muthen & Muthen, 2012) to allow for 

estimation of the EF latent variables. Models used all available phenotypic data when 

possible; however, only individuals who also had genetic information contributed to the 

correlation between PRSs and phenotype (i.e., individuals with EF data, but without 

genetic data were included in the models to obtain the best estimates of the factor 

loadings, but the covariance with the PRS was only based on the subset with both genetic 

and phenotypic data). For models with categorical diagnoses, mean and variance adjusted 

weighted least squares (WLSMV) estimation (delta parameterization) was used, which 

models the underlying liability as a normal distribution using a probit model; for models 

with only continuous data, robust maximum likelihood (MLR) was used.  Non-

independence (due to including both twins) was corrected for with the type= COMPLEX 

option, which clusters by family. In all analyses, all individual indicators (e.g., all nine 

EF tasks) as well as the PRS were regressed on 10 ethnicity PCs.3  

As described earlier, all continuous phenotypic variables were age, sex, and age 

by sex4 regressed before analysis. Age (of last diagnostic assessment) and sex were 

included as covariates for models including diagnoses. PRSs were not regressed on age 

                                                        
3 To include individuals without genetic data in the estimation of the EF latent variables (Mplus 

will exclude individuals missing on covariates) and other phenotypic measures, we imputed 

missing PCs as the average for that self-identified ethnicity in our genetic sample. The number of 

individuals who contributed to each phenotype was as follows: EFs=1543; CES-D=2875; 

CBCL=1684; IQ=1571; DIS diagnoses=2875.  
4 This interaction term was included even though it was not significant in any models.  
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and sex. 

PRSs and EFs. We used structural equation modeling to estimate the three EF 

latent variables: a Common EF latent variable, representing what is shared between all of 

the tasks (with loadings from all nine tasks), an Updating-Specific latent variable 

capturing additional variance specific to Updating tasks (with loadings from three 

updating tasks), and a Shifting-Specific latent variable capturing additional variance 

unique to the shifting tasks (with loadings from the three shifting tasks). The latent 

factors in the EF model are orthogonal, where Common EF explains covariance across all 

nine tasks, and the Updating- and Shifting-Specific factors explain additional covariance 

among the updating and shifting tasks, respectively, that is not explained by the Common 

EF factor.  

To examine the relations of these EF latent variables to each PRS, we correlated 

them with the residual of the PRS (after removing the PCs from the PRS). Thus, the 

correlations we present are actually partial correlations controlling for ethnicity, because 

the 10 PCs were regressed out of both the PRS and the individual EF tasks (and the EF 

tasks were also residualized on age and sex). 

PRSs and psychopathological symptoms, diagnoses, and IQ. We used the five 

PRSs to predict IQ, ADHD symptom scores, ADHD lifetime diagnosis, depression 

symptom scores, depression lifetime diagnosis, and MDD and GAD lifetime diagnoses. 

IQ was correlated with all five PRSs, however ADHD symptom scores and diagnosis, 

and depression symptom scores and diagnosis, were correlated only with the ADHD 

PRSs and the MDD PRSs respectively. As with the EF model, the correlations we present 

are actually partial correlations controlling for ethnicity, because the 10 PCs were 
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regressed out of both the PRS and the phenotype (and the phenotype was also regressed 

on age and sex). 

  Permutation. PRSs for higher p-value bins include the same SNPs as lower 

threshold bins for PRSs based on the same disorder. Due to high correlations between p-

value bins within each risk score (see supplemental Table S2), correlations with the same 

phenotype across bins of the same risk score are not independent. Therefore, we used 

permutation to correct for multiple testing. For each permutation, we retained the 

relatedness of the p-value bins within PRSs for each disorder. The association between 

the independent and dependent variables was broken by randomly shuffling scores for the 

dependent variables 1000 times and constructing a distribution of statistical coefficients 

under this null. For example, for the EF model, we shuffled the rows of the nine EF task 

scores (residualized on age and sex), so that the correlations among the nine EF tasks 

were retained, but their associations with the PRSs were broken. Because the PRSs were 

not shuffled, the associations among p-value bins remained intact. For each shuffle, we 

then ran the same model (including ethnicity PCs, which were not shuffled), and obtained 

the newly estimated correlations between PRSs and EFs. We constructed the empirical 

distribution of correlation coefficients for each disorder in this way, and used it to 

calculate empirical p-values for the correlations we obtained in our unpermuted models 

(i.e., a correlation would be significant if it was more extreme than 95% of the empirical 

correlation values in the distribution of permuted correlations). This is ultimately less 

stringent than a Bonferroni correction (Camargo et al., 2008) for multiple testing, but 

does not correct for the multiple testing due to examining multiple phenotypes, for which 

we divided our alpha of .05 by the number of phenotypes tests (nine) examined, for a new 
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alpha of .006.  

Results  

PRSs With Cognitive Measures 

 EFs. To examine the relationship between EFs and genetic risk for 

psychopathology, we correlated the PRSs (residualized on PCs) with the EF latent 

variables (individual tasks regressed on PCs). Correlations are shown in Figure 2.1. 

Common EF was positively correlated with the MDD p < .05 bin PRS, but did not 

significantly relate to the other PRSs at any p-value bin, and this correlation did not 

survive multiple testing correction.  
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Figure 2.1. Correlations between cognitive measures and psychopathological polygenic risk 

scores (PRSs). Bars represent standard errors. Legend shows colors corresponding to p-value 

threshold bins for each disorder. (a) Correlations between PRSs and the Common EF latent 

factor. (b) Correlations between PRSs and the Updating-Specific latent factor. (c) Correlations 

between PRSs and the Shifting-Specific latent factor. (d) Correlations between PRSs and IQ. EF 

= executive function; IQ = intelligence quotient; ADHD = Attention Deficit Hyperactive 

Disorder; AUT =Autism; BP = Bipolar Disorder; MDD = Major Depressive Disorder; SCZ = 

Schizophrenia. *p< .05 uncorrected. 
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Updating-Specific abilities did not appear to be related to any of the other three disorders. 

Likewise, Shifting-Specific abilities were not related to genetic risk for any of the five 

disorders.   

IQ. We also examined the relationship between IQ and the PRSs, because IQ is 

phenotypically associated with EFs (Friedman et al., 2006; 2008) and has been related to 

PRSs for SCZ (Lencz et al., 2014; McIntosh et al., 2013). As shown in Figure 2.1D, IQ 

was negatively correlated with the SCZ p < 5x10-5 bin, but this result did not survive 

correction for multiple testing.  

PRSs With Measures of Psychopathology 

Given the relatively small effects we observed with the proposed endophenotypes 

(EFs and IQ), we wondered if we would get similarly small effects with phenotypes that 

were arguably more closely related to the phenotypes used to construct the PRSs. So, we 

examined how the ADHD and MDD PRSs related to attention and depression symptoms 

and lifetime diagnoses. The magnitude of effects found for relevant phenotypes within 

our sample allows for a better understanding of the magnitude of relationship observed 

with EF and IQ.  

The relationships between ADHD and MDD symptom scores and their respective 

PRSs were assessed with correlational analyses of the residuals of PRS and phenotype 

after each was regressed on the PCs for ethnicity. As shown in Figure 2.2, PRSs for 

MDD were not significantly related to any psychopathological phenotypes in our sample. 

While genetic risk for ADHD was not related to ADHD symptom scores, it was 

correlated with lifetime diagnosis for ADHD at one bin (p < .05), but this result did not 

survive multiple testing correction. Because we did not find significant results with either 
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EFs or psychopathology measures after correcting for multiple testing, we did not test 

whether the magnitudes of effects were significantly larger for EFs. 

 

Figure 2.2. Correlations between ADHD, MDD, and GAD/MDD symptoms and lifetime 

diagnosis, and ADHD and MDD polygenic risk scores (PRSs). Correlations are partial 

correlations after the 10 principal components for ethnicity have been regressed out of the PRSs 

and the phenotypic measures and age and sex have been regressed out of the phenotypic 

measures. Bars represent standard errors. Legend shows colors corresponding to p-value 

threshold bins for each disorder. ADHD = Attention Deficit Hyperactive Disorder; MDD = Major 

Depressive Disorder; CBC = Child Behavioral Checklist, ADHD dx = lifetime diagnosis of 

ADHD; CESD  = Center for Epidemiologic Studies-Depression Scale; MDD dx = MDD lifetime 

diagnosis; GAD/MDD dx = General Anxiety Disorder or MDD lifetime diagnosis. *p< .05 

uncorrected. 
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in our sample. As can be seen in Table 2.2, we would have enough power with our 
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smaller than this, and therefore we were underpowered with our sample size. We 

examined what sample size would be necessary for a power of .80 with a smaller 

correlation estimate (r = .10). Alpha levels were varied because we examined nine 

different phenotypes that are not fully independent of one another; for example, ADHD 

symptoms are correlated with ADHD lifetime diagnosis (r = .25) and MDD symptoms at 

a lower level (r = .15), so our adjusted alpha should be somewhere between .05 and .006. 

As shown in Table 2.2, for 80% power to detect an effect with a correlation of .10 or 

smaller, larger sample sizes, on the order of 1,510 to 2,500 or more, are necessary. In 

summary, if latent EFs were strong endophenotypes for psychopathology and we 

observed stronger relations between EFs and these PRSs than previously seen with other 

cognitive measures, we would have been adequately powered. However with a 

correlation of .10 or smaller, we would need many more subjects to have adequate power.  

Table 2.2 Power for Executive Function Analyses 

Simulated 

Correlations 

1-β;  

α = .05 and 

N=386 

Required N; 

α = .05 and 

1-β = .8 

Required N; 

α = .01 and 

1-β = .8 

Required N; 

α = .006 and 

1-β = .8 

.50 1 57 84 94 

.40 .999 91 135 151 

.30 .990 165 245 274 

.20 .811 375 558 625 

.10 .294 1510 2247 2519 

Note. Power analysis for the executive functions (EFs) latent-variable model where simulated 

correlations represent a theoretical correlation between common EF and the polygenic risk score.  

1-β = power; α = alpha; N = number of participants included in parameter estimates.  



Individual Differences in Executive (Dys)Function  29 

Discussion 

To understand the potential of EFs as endophenotypes for psychiatric disorders, 

we used large discovery datasets to generate PRSs for five disorders (AUT, ADHD, 

MDD, BP, and SCZ) and related those PRSs to EF latent variables in an independent 

dataset. We found little evidence for stronger effect sizes for the EFs than measures more 

similar to these psychopathologies. The general pattern of results indicated that EFs 

might be related to psychopathology, but they may not lead us to find more genetic 

variants than symptom or diagnosis measures unless we have significantly larger sample 

sizes.  

At a nominally significant level, a Common EF latent variable was positively 

related to genetic risk for depression; however, this effect was in the opposite direction 

than expected, with higher genetic risk for depression indicating better Common EF in a 

general population sample. Higher genetic risk for ADHD was nominally related to better 

Updating-Specific abilities; this association was also not in the expected direction. The 

amount of variance explained by the PRS for each latent factor was R2 = 0.03 for 

Common EF and R2 = 0.06 for Updating-Specific. However, these results did not survive 

correction for multiple testing, so they would need to be replicated to determine if they 

are real effects that are simply underpowered.  

Likewise, we examined a measure of general cognitive ability, IQ, which has also 

been proposed as an endophenotype for psychopathology (Burdick et al., 2009). 

Although our results did not survive correction for multiple testing, the directionality and 

variance explained was comparable to what has been observed in previous studies. Lencz 

et al. (2014) linked a PRS for general cognitive ability to case-control status of SCZ, and 
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McIntosh et al. (2013) linked a PRS for SCZ to increased cognitive decline between the 

ages of 11 and 70. We also found that increased genetic risk for SCZ predicted lower IQ, 

with the amount of variance explained (R2 = 0.01) comparable to that found by Lencz et 

al. (2014; R2 = 0.000 to 0.019) and McIntosh et al. (2013; R2 = 0.006 to 0.009). The 

replication of this association between increased genetic risk for SCZ and cognitive 

ability suggests that we may be seeing real, but underpowered, effects.  

A mediation model of an endophenotype (Kendler & Neale, 2010) assumes that 

the endophenotype is more proximal to genes that influence the psychiatric disorder. If 

the mediation assumption is incorrect and phenotypes related to disorders of interest, 

such as depression symptoms, are equally or more strongly related to the PRSs, then EFs 

as endophenotypes might not be as useful for PRS research. To address this assumption, 

we also used the PRSs to predict relevant phenotypes more similar to the 

psychopathologies used to generate the PRSs. Again, we found few associations. A 

relationship between increased risk for ADHD and lifetime diagnosis for ADHD 

emerged, where greater genetic risk was related to higher rates of lifetime diagnosis, but 

it did not survive correction for multiple testing. However, the amount of variance 

explained (R2 = 0.02) is similar to what we observed for EF and IQ, suggesting that in a 

small testing sample, psychopathology phenotypes do not have a weaker relationship 

with PRSs than candidate endophenotypes. 

Recently, a few studies have also addressed the assumption that endophenotypes 

will elicit larger effect sizes with respect to genetic variants. A meta-analysis by Flint and 

Munafò (2007) concluded that endophenotypes were not necessarily showing larger 

effect sizes than the disorders of interest. These results could have occurred because the 
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studies were not using appropriate endophenotypes or because the assumption that 

endophenotypes have larger effect sizes is incorrect. In particular, if the endophenotypes 

were not mediators between the genes and phenotypes as often assumed, but instead 

indices of liability, where the same genes influence both the endophenotypes and the 

phenotypes of interest (Kendler & Neale, 2010), then one might not expect larger effect 

sizes for the endophenotypes.  

The largest GWAS study to date found no significant hits for EF tasks (Stroop, 

trail-making, and fluency tests; Ibrahim-Verbaas et al., 2016), despite discovery sample 

sizes ranging from 5,429 to 32,070. Thus, EF tasks, like other measures, seem to have 

relatively small effect sizes for individual variants. However, another meta-analysis by 

Rose and Donohoe (2013) found different effect sizes for two different classes of 

endophenotypes for SCZ, with larger effect sizes for cognitive neuroimaging 

endophenotypes than lab-based cognitive measures. More research is needed to establish 

good estimates of expected effect sizes for different types of endophenotypes.  

Another emerging debate focuses on issues of sample size and phenotype 

specificity when testing for genotype-phenotype associations. Many studies have shown 

that with the small effect sizes for individual SNPs, large samples will be necessary to 

detect significant associations with the phenotypes of interest. However, when combining 

data sets or using large publicly available datasets, often only rudimentary phenotypic 

assessment is available (e.g., case-control status, without information on which symptoms 

were endorsed or degree of severity of illness). This thin phenotyping allows for the 

inclusion of more subjects, but potentially dilutes statistical power and the strength of 

association (Tracy, 2008). While this trade-off holds in this study with regard to PRS 
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generation, the deep phenotyping of a candidate endophenotype could possibly help in 

the testing sample. We had hoped that our deep phenotyping with the latent variable 

model of EF, which reduces measurement error and extracts highly heritable latent 

factors that are more stable across time than single measures (Friedman et al., 2016), 

would enable us to detect a larger effect. We were well powered to detect effects that 

explained 4% or more of the variance, but the effects we obtained were smaller than that.   

Despite being underpowered, there is still useful information to gain pertaining to 

the effect sizes we can reasonably expect from endophenotypes compared to more direct 

measures of psychopathology with a small testing sample size. Lab-based measures of 

EF, even at a highly heritable latent variable level, do not seem to generate substantially 

larger effect sizes for genes related to risk for psychopathology than measures of 

symptoms, at least in a population-based sample.  

Limitations 

In addition to the previously discussed power issues, a limitation of this study is 

that our sample was population-based with low levels of psychopathology; hence, the 

genetic variance related to psychopathology was likely restricted compared to a clinical 

sample. Although endophenotypes are present in individuals without the disorder of 

interest, particularly in family members of a proband, the use of a population sample 

might have limited the variance in the endophenotype as well. Thus, a stronger effect 

would perhaps be seen in a clinical sample.  

Although we chose to calculate PRSs from psychiatric disorders and test them 

with EFs because larger sample sizes are available for the former than the latter, and 

because its utility has been previously demonstrated in other studies (Lencz et al., 2014; 
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Rietveld et al., 2014), the reverse endophenotype approach could also be considered a 

limitation. The relationship between purported endophenotypes and genetic risk for 

psychopathology is likely a complicated matter (Cannon & Keller, 2006). If an 

endophenotype is only related to a portion of the genes influencing a given disorder, the 

strength of the relationship between all genes that affect the disorder and the 

endophenotype is unclear. Conversely, if the endophenotype is a complex trait itself, such 

as EF, there are likely unique genetic contributions to EF that do not overlap with the 

more distal phenotype of interest, such as psychopathology. Due to the unclear genetic 

relationship between endophenotypes and the more distal phenotype, it is difficult to 

estimate an expected effect size. However, the genetic architecture of both 

psychopathology and EF are important for the interpretation of our results.  

Multiple testing could also be considered a complication of this study. 

Associations between five disorders and four phenotypes (Common EF, Updating-

Specific, Shifting-Specific and IQ) were tested, as well as one disorder (ADHD) with two 

phenotypes (ADHD diagnosis and ADHD symptoms), and one disorder (MDD) with 

three phenotypes (MDD diagnosis, combined GAD / MDD diagnosis, and MDD 

symptoms), all of these at nine bins. In total, we conducted 225 tests. While this number 

is not remarkable for those working with GWAS data, it is greater than is typically done 

in PRS studies. How to adequately correct for multiple testing is complicated by the fact 

that the nine bins are not independent from each other, the phenotypes are not 

independent (e.g., ADHD symptom count is correlated with ADHD diagnosis), and the 

different disorders are also not independent of one another due to comorbidity. We chose 

to use permutation testing and then use a Bonferonni correction for the number of bins; 
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however, there is no clear best way to correct for multiple testing in this scenario. One 

suggestion for future studies would be to reduce the number of bins tested, particularly if 

testing several phenotypes. However, our initial thorough approach in the exploratory 

analyses presented here will guide future investigations of relationships between common 

and specific EFs and a range of psychopathology outcomes. 

Conclusion 

In this study, we examined the relationship between PRSs for psychopathology 

and EFs with highly heritable EF latent variables. Despite large sample sizes for deriving 

PRSs for psychopathology and deeply phenotyped candidate endophenotypes, we did not 

see substantial effects. The highest observed relations between PRSs for psychopathology 

and EFs ranged from an R2 of .03 to .06, which are smaller than we needed for adequate 

power with our sample size. The highest R2 for non-EF phenotypes with PRSs was .03, in 

a similar range as our EF measures. Overall, our results are similar to what was found by 

Flint and Munafò (2007) and provide little evidence for EFs as endophenotypes that will 

give significantly larger estimates than psychiatric phenotypes such as lifetime diagnosis. 

However, even if EFs do not necessarily show larger genetic effect sizes than psychiatric 

measures, their transdiagnostic associations with psychopathology (Snyder et al., 2015) 

suggests that increasing understanding of their genetic influences can provide a window 

into disease mechanisms and pathways.  
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CHAPTER 3 

Is Common Executive Function Related to a Shared Frontopareital Network? 

Executive functions (EFs) are higher order cognitive processes that regulate 

lower-level processes in the service of goal-directed behavior. Studies of normal 

individual differences indicate that different EFs—such as response inhibition, working 

memory updating, and set shifting—are correlated but separable, suggesting that they 

utilize both a common subset of cognitive processes and unique processes specific to 

each type of EF (Miyake & Friedman, 2012). A large body of neuroimaging research is 

dedicated to understanding which brain regions are important for particular types of EF at 

the group-level, usually within the context of individual tasks. When multiple tasks have 

been examined, the focus has been on which areas show overlapping activation in key 

contrasts across tasks, rather than which areas predict individual differences in 

performance. However, it is not necessarily the case that areas important for individual 

differences are significantly active at the group-level (Yarkoni & Braver, 2010). This 

study aims to examine whether regions important for EF across a variety of complex 

cognitive tasks at the group-level, the multiple demand network (Fedorenko, Duncan, & 

Kanwisher, 2013), predict individual differences in an underlying Common EF latent 

factor. Specifically, we examine whether individuals who differ in a Common EF factor 

also differ in their recruitment of a frontoparietal network during three diverse EF tasks 

loading on this factor. We also examine if individual differences in activation of regions 

within this frontoparietal network correlate across these three EF tasks.  

 While there are many subtypes of EFs (Banich, 2009; Diamond, 2013; Jurado & 

Rosselli, 2007), here we focus on the processes that are common across EFs. Prior work 
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(Miyake & Friedman, 2012; Friedman & Miyake, in press) used a latent variable model 

framework and tasks tapping response inhibition, working memory updating, and set 

shifting to examine the unity and diversity of EFs. They found evidence for a Common 

EF factor that explained variance in all task types (the unity aspect). Updating-Specific 

and Shifting-Specific factors explained additional variance, which was specific to the 

updating and shifting tasks, respectively. The Common EF factor was isomorphic with 

response inhibition, so there was no inhibiting-specific factor. The Common EF factor is 

thought to reflect active goal maintenance and top-down bias (Herd et al., 2014; Miyake 

& Friedman, 2012; Friedman & Miyake, in press).  

 The neural substrates of specific EFs have been well documented; however 

regions important for executive functions in general are less well documented.  One 

notable exception is work by Duncan and colleagues, which describes a frontoparietal 

Multiple Demand (MD) network (Duncan & Owen, 2000; Duncan, 2010; Crittenden & 

Duncan, 2014) that is recruited in a diverse array of cognitive tasks. The MD network 

includes many regions previously associated with EFs in other studies, and combinations 

of these regions have also been called a Frontoparietal (FP) network (Zanto, 2013), 

Cognitive Control network (Cole & Schneider, 2007), frontoparietal control network 

(Spreng et al., 2013) as well as other variations. This particular network includes the 

inferior frontal sulcus (IFS), anterior insula, frontal operculum (AI/FO), pre-

supplementary motor area, dorsal anterior cingulate (SMA/ACC), intraparietal sulcus, 

and sometimes the rostrolateral prefrontal cortex (rlPFC). This MD network has been 

proposed as related to "goal neglect" and has been linked to general cognitive processes 

including fluid intelligence(gf; Bishop et al., 2008; Duncan, 2010; Woolgar et al., 2010). 
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At the level of behavior, intelligence (both fluid and crystalized) has been linked to a 

Common EF factor and an Updating Specific factor (Friedman et al., 2006), though the 

Common EF factor is separable from general intelligence (Friedman et al., 2008). The 

link to goal maintenance and fluid intelligence makes the MD network a good candidate 

for areas related to a Common EF factor.  

 Research by Collette and colleagues (2008) supports the idea that the MD 

network is an appropriate starting point to look for general group activation related to EF 

tasks and a Common EF factor. They conducted a positron emission tomography (PET) 

study looking at the overlap between eight EF tasks tapping inhibition, updating, or set-

shifting. A conjunction map of the average group activation for each task resulted in two 

common areas across tasks where activation was higher in the difficult condition relative 

to the control condition: the left superior parietal cortex (Brodmann’s Area 7) and the 

right intraparietal sulcus. Other regions were identified at lower significance thresholds 

across all three tasks, and still other regions were identified across task subtypes.  

 While areas common across EF tasks are indisputably important for successful 

performance of these tasks, they might not be the regions important for normal individual 

differences in performance of the task. One way to better understand the role a region 

plays in a cognitive process is to look at activation patterns across different tasks or 

contrasts to see if activity is correlated. For example, if a region shows correlated 

activation across different attention-shifting tasks, then it is plausible that a common 

shifting-related cognitive construct underlies activation in response to shifting tasks in 

that region (Purkayastha, Wager, & Nichols, 2008).  
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A study by Wager and colleagues (2005) identified a number of regions that were 

commonly activated across different response inhibition tasks. They then examined 

correlations of activity patterns across tasks and with behavioral performance to help 

them understand if these common regions reflected a unified component important for 

individual differences. A subset of these regions, most consistently the insula, was 

correlated with poorer performance on these tasks. However, the activation patterns in 

these regions did not correlate with each other across tasks, and neither did the 

performance across tasks. This indicates that regions commonly activated during 

response inhibition tasks might not be the crucial regions for predicting individual 

differences.  

 In fact, relatively few individual difference studies find significant effects in areas 

consistently activated across subjects in within-subject designs (Yarkoni & Braver, 

2010). The authors partially attributed this phenomenon to the fact that within-subject 

variance is considered error in between-subject analyses, and vice versa. In fact, it is not 

necessary that regions important for individual differences are significantly active at a 

group-level. An alternative explanation is that on average, people activate areas such as 

the MD network in order to perform EF tasks, but those who perform better or worse on 

these tasks recruit regions outside of this frontoparietal network to provide additional 

support.  

 Indeed, a recent resting state functional connectivity study suggested that healthy 

young adults high in Common EF ability might have an expanded frontoparietal network 

(Reineberg et al., 2015). They found that better Common EF is associated with the 

connectivity of the frontal pole to an attentional resting state network, as well as 
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increased connection of Crus I and II of the cerebellum to a frontoparietal resting state 

network. This study indicates that perhaps those with better EF recruit additional regions 

outside of the functional areas associated with EF at a group-level.   

The Current Study 

Based on the unity/diversity EF framework (Miyake & Friedman, 2012), 

participants completed three functional magnetic resonance imaging (fMRI) tasks: 

Antisaccade (inhibition), Keep track (working-memory), and Number-letter (set-shifting). 

We selected 30 subjects, approximately age 28, based on their prior performance on a 

battery of EF tasks 7 years beforehand: 15 participants high (> 1 SD) and 15 low (< 1 

SD) on a Common EF factor score. All participants performed all three tasks in the 

scanner.  

 First we assessed whether common areas activated across our three EF tasks, at a 

within-subject level, were consistent with the previously identified MD network. We 

broke the MD network into regions of interest (ROIs) to examine activation in our three 

EF tasks (Federanko, Duncan & Kanwisher, 2013). Particularly we expect that any 

regions that overlap across our three tasks would fall within this network’s ROIs. To 

examine this we tested whether or not the MD ROIs were significantly active across all 

three tasks. To accomplish this, we extracted the beta values each ROI for each task, 

tested if it meaningfully differed from zero, and then looked for a pattern of significance 

across the 3 tasks for a given ROI.   

Second, we examined the relationship between the MD ROIs and Common EF 

with an individual differences approach, using two different methods. If an underlying 

Common EF factor predicts performance on three EF tasks, it implies correlations 
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between the tasks, and to the extent that performance is correlated, neural regions should 

also be correlated. If MD ROIs are important for individual differences, a person who 

strongly activates a particular ROI in the inhibition task should also strongly activate that 

ROI during updating and task switching. Therefore, we examined the pattern of 

correlations in all pairs of EF tasks across MD ROIs to look for evidence of an 

underlying Common EF factor.  

Alternatively, if MD ROIs relate to individual differences in Common EF, then 

the MD ROIs should relate to a Common EF group difference score, supporting the idea 

of a unified underlying construct. This was done two ways. First, we conducted a series 

of t-tests using a dichotomous high / low Common EF variable, derived from the full EF 

latent variable model at a previous wave. Second,  

Finally, we also addressed these questions using a more exploratory whole-brain 

approach to see if regions outside of the MD network are common to EFs or related to 

individual differences. We looked at whole-brain activation at the general group-level, as 

well comparing high EF to low EF, both at the task level and then across tasks, to see if 

regions outside of the MD network that are common to EFs or related to individual 

differences. 

Method 

Participants 

Thirty young, healthy adults (mean age 28.1; 24-32 years; 14 males) participated 

in the study in exchange for monetary compensation. Participants were recruited from the 

University of Colorado Boulder Community Twin Sample (CTS). All participants were 

individual twins who had participated in a prior study on executive functions 
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approximately 7 years earlier. Participants were selected to have a Common EF score at 

least 1 standard deviation higher or lower than the mean in the prior wave of data 

collection.  

Materials, Design, and Procedure 

 Three tasks were selected to tap the three EFs examined in the unity/diversity 

framework (Miyake & Friedman, 2012; Friedman & Miyake, in press): antisaccade to tap 

inhibition, keep track to tap updating, and number–letter to tap shifting. These tasks were 

selected because of their high loadings on their respective factors and their ease of 

modification for the scanner environment.  

Task Design 

Antisaccade. The antisaccade task was modified for use in the scanner from a 

speeded version we have used in prior studies (Friedman, et al., 2016) to maximize 

individual differences. All of the measurements of stimuli presented are for the projected 

screen. Participants viewed instructions and practiced the task outside the scanner prior to 

performing the full task in the scanner. The in-scanner task consisted of 2 runs, with 12 

blocks of prosaccade or antisaccade trials, mixed with 6 fixation blocks in each run. Each 

block was preceded by a 500 ms blank, then instructions indicating block type 

("TOWARD", "AWAY", or "FIXATION"), which remained on the screen for 2, 4, or 6 s.  

The fixation blocks consisted of a ¼” fixation cross in the center of the screen for 20 s. 

Each antisaccade and prosaccade block consisted of 5 trials; each trial consisted of a 

fixation cross (variable duration between 1-3 s), followed by a peripheral visual cue (a ¼” 

square) that would appear either to the left or right of the fixation for 232 ms. 

Immediately after the cue, the target stimulus (a 9/32” digit from 0 to 9 in a 7/16” squre) 
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appeared either on the same side as the cue for prosaccade trials, or on the opposite side 

for antisaccade trials, and remained on the screen for 150 ms before being masked by 

grey cross hatching. The mask remained on the screen for 1,650 ms, during which time 

the participant verbally reported the target. Antisaccade and Prosaccade blocks were 

counterbalanced within and across runs. Stimuli were presented in a fixed order to allow 

for individual differences analyses.  

Keep track. The keep track task was adapted for an MRI environment from our 

previous version (see Friedman, et al., 2008 for a more thorough description of the task). 

Participants are given three or four categories for which they have to remember the most 

recent word in each category from a sequence of presented words. The categories for that 

trial remain on the screen throughout the process. In the current version of the tasks there 

is a “Get Ready” screen that is presented for 1500 ms, followed by a 500 ms inter-trial 

interval. Next, the three or four categories the participant needs to remember are 

presented for 2, 4, or 6 s. Then a sequence of 15 words, including both relevant and 

irrelevant words, was presented for 2 s each, followed by a 10 s verbal response period. 

Next there was a brief rest period (1500 ms) and another 500 ms inter-trial interval. A 

variable (20, 25, or 30 s) rest block would occur before the next block would start. There 

were 2 runs, each run including 3 blocks in which the participant had to maintain 4 

categories, and 2 blocks in which the participant had to maintain 3 categories, for a total 

of 10 blocks. Each category contained 6 words. The categories and words within the 

categories were counterbalanced as much as possible across runs. Words did not appear 

across adjacent blocks.  
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Number–letter. The Number-letter task was adapted from our previous version 

of the task (adapted from Friedman et al., 2008). In this version there are four quadrants 

of a square where a number-letter pair (eg. 3E) was presented in one of the 4 quadrants. If 

the pair was presented in either of the upper two quadrants, then the participant was 

supposed to make a button press indicating whether the letter was a consonant (G, K, M, 

R) or a vowel (A, E, I, U). If the pair was presented in one of the lower two quadrants the 

participant would make a button press indicating whether the number was odd (3, 5, 7, 9) 

or even (2, 4, 6, 8).  For each block, there would be a 10,000 s fixation, followed by a 500 

ms blank, and then a 2 s, 4 s, or 6 s instruction period. After a 350 ms blank, the first 

stimuli would appear on screen for 3 s or until the participant responded using an MRI 

compatible button box. Then a second 350 ms blank occurred before the start of the next 

trial. There were 2 runs. Each run consisted of 8 mixed blocks, 4 fixation blocks, and 4 

single-task blocks (2 “Letter” and 2 “Number” blocks). Mixed blocks consisted of trials 

were the stimuli were randomly presented in any of the 4 quadrants, where as Letter 

blocks consisted of trials were stimuli were only presented in the top two quadrants (letter 

judgment), and Number blocks consisted of stimuli only in the bottom two quadrants 

(number judgment). The order of the blocks was counterbalanced across the two runs.  

MRI Parameters  

MRI data were acquired on a Siemens 3Tesla MAGNETOM Trio with a 12-

channel head coil located at the University of Colorado Boulder. Functional images used 

a T2*-weighted gradient echo, echo planar imaging (repetition time [TR] = 1900 ms, 

echo time [TE] = 25 ms, flip angle = 69°, 29 slices parallel to the AC-PC line, thickness 

= 3 mm, gap 1 mm, 64 x 64 in-plane resolution, in-plane FOV = 22 cm). A high-
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resolution T1-weighted anatomical scan was collected for each participant to localize 

functional activity.  

General Procedure 

Tasks were administered using PsyScope X B51 (Cohen et al., 1993) on a 

Macintosh computer (Apple Computer, Cupertino, CA, USA). After the consent process, 

filled out safety screens as well as some self-report questionnaires. Then participants 

provided a urine sample to test for pregnancy in women and substance use and then 

completed a practice session before entering the MRI scanner. They were in the scanner 

for approximately an hour to complete the Antisaccade (inhibition), Keep track 

(updating), and Number-letter (shifting) tasks. Exclusion criteria included 

contraindications to MRI scanning, such as metal in the body or claustrophobia. All 

procedures were approved and carried out in accordance with the University of Colorado 

Boulder’s Institutional Review Board. 

Analyses 

All analyses were carried out using SPM8 (Wellcome Department of Cognitive 

Neurology, UCL). All tasks were analyzed in an event-related design. Error trials were 

excluded for the Antisaccade and Number-letter tasks. For the Keep track task we did not 

exclude error trials as it is difficult to identify where the participant made an error within 

the block given only block-final recall. Rest was explicitly modeled as our task fixations 

for our baselines; therefore there was no need to regress out other forms of activation 

such as errors. 

For the antisaccade task, prosaccade and antisaccade trials were modeled as the 

232 ms cue plus the 150 ms target presentation. The 6-20 s fixation blocks served as 
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baseline. We had three regressors in our model, correct antisaccade trials, correct 

prosaccade trials, and rest fixation. Our main contrast was antisaccade versus fixation. 

We did look at antisaccade versus prosaccade, which is discussed in the supplement. Two 

subjects were excluded from the analysis of this task because they were performing at 

chance levels, presumably due to the increase in difficulty, and one for head movement.  

Keep track trials consisted of each word as it was presented for 2 s. Baseline was 

composed of fixation blocks that were interspersed within the task. The contrast of 

interest for this task was between our two regressors, word events versus fixation blocks.  

Number–letter trials started at the appearance of the cue and continued until the 

participant responded or until 3,000 ms passed. Our model included regressors for switch 

trials in mixed blocks, repeat trials in mixed blocks, repeat trials in number blocks, repeat 

trials in letter blocks, and rest blocks. The main contrast was switch trials within mixed 

blocks versus fixation. We did look at switch trials minus repeat trials within mixed 

blocks (i.e., local switch costs), and this contrast is discussed in the supplement. The first 

trials of each block were excluded because they were neither switch nor repeat.  

For our individual differences analyses, we used the same subject-level model as 

we did for the ROI analyses for each task. These models consisted of regressors for the 

task condition, fixation, and 24 motion covariates, but we added a regressor at the group-

level (between subjects) for Common EF group (coded as -.5 for low and .5 for high). We 

conducted separate analyses for the MD ROIs and the whole brain. 

Regions of interest. Despite having a selected sample, we have a relatively small 

sample to test individual differences. Therefore we chose 27 ROIs in a frontoparietal 

network that is frequently activated across diverse cognitive tasks (from Federenko et al., 
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2013). These ROIs were used as masks for contrasts of interest of each task at both the 

whole group-level and with Common EF as a covariate.   

Whole-brain. Group-level analyses at the whole-brain level were corrected using 

a False Discovery Rate (FDR) to achieve an overall threshold of q<.05, controlling for 

multiple testing at the whole-brain level.   

Analyses with Common EF as an independent variable were not corrected for 

multiple testing at a whole-brain level. Primary thresholds of p<.001, p<.005, and p<.01, 

were applied with corresponding cluster extent thresholds of k>5, k>10, and k>20 voxels, 

respectively. Clusters with the more relaxed thresholds were only shown if there was a 

contiguous cluster that met the p<.001 and k>5 thresholds.  

Conjunction.  In order to see what areas are common across each task type, we 

looked at overlap maps for all three tasks for our contrasts of interest. We also wanted to 

see if areas that are common across tasks at the whole group-level are the same as those 

that predict high or low EF. Therefore we also looked at an overlap map across all three 

tasks for regions predicting group differences. Each contrast for each task was 

thresholded at a t-distribution critical value that corresponded to a p<.05 level (not 

correcting for multiple testing at the whole-brain level). In order for a region to appear in 

the conjunction map, it had to be significant at a p<.05 level in each task; applying this 

threshold for each contrast resulted in an overall level of correction of p<.000125 (Fan et 

al., 2005; Wager et al., 2005).   
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Results and Discussion 

Behavioral Results 

Antisaccade accuracy significantly correlated with keep track accuracy and 

number–letter switch cost (rs=.51 and –.39 respectively), but keep track did not 

significantly correlate with number–letter (r=–.17). At the latent variable level, Shifting 

and Updating typically show a weaker correlation with each other than with Inhibition 

(Miyake & Friedman, 2012); therefore, at the individual task level, these results are 

consistent with the model from which these tasks were selected.  

The high and low Common EF groups significantly differed on their in-scanner 

performance on all three tasks.  The mean differences for antisaccade accuracy and keep 

track accuracy were 0.27 and 0.21, respectively, where individuals with higher Common 

EF were more accurate (antisaccade: M=0.62, SD=0.19; keep track: M=0.89, SD=0.08) 

than those with low Common EF (antisaccade: M=0.35, SD=0.12; keep track: M=0.69, 

SD=0.18), t(25)=4.24, p<.001 and t(27)=4.07, p<.001 respectively. The mean difference 

in number–letter switch cost was –187.60, where the high Common EF individuals 

showed a smaller switch cost (M=85.93, SD=68.25) than low Common EF (M=273.53, 

SD=163.44), t(28)=–4.10, p<.001.  

We calculated a composite z-score for in-scanner behavior to compare to our 

Common EF latent factor. First we reverse-scored switch cost, then standardized each 

score for the three tasks, averaged the scores, and finally re-standardized our composite 

to create our measure of in-scanner Common EF. Common EF also significantly 

predicted mean differences in a composite z-score of in-scanner Common EF, with a 

mean difference of 1.66 (SD=0.20), t(28) = 8.38, p<.001. 
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ROI Analyses 

Are Frontoparietal ROIs Active During All Three Tasks? We examined 

whether regions important for complex cognitive tasks in general are important for our 

three EF tasks at the group-level, using 27 regions of interest derived from the MD 

network (Fedorenko, Duncan & Kanwisher, 2013). Our task designs allowed for different 

contrasts. Both antisaccade and number–letter tasks included a difficult condition 

(antisaccade and switch trials) and an easier condition (prosaccade and repeat trials 

within the mixed block, respectively). However, the keep track task only had fixation 

blocks as the baseline. Therefore, a difference in difficulty of the contrasted conditions 

between keep track and the other two tasks exists. To ensure our results were not an 

artifact of baseline, such as increased power in the keep track contrasts due to task versus 

rest as opposed to hard task versus easy task, we focus on contrasts of the difficult task 

condition with fixation for all tasks in the following sections. Results from analyses with 

task-based baselines for the antisaccade and number–letter tasks are presented in the 

supplement.  

As shown in Table 3.1, 16 of the 27 MD ROIs (59%) were significantly active 

across all 3 tasks. These ROIs (1, 2, 3, 7-11, 13-18, 21, 22) included bilateral Cerebellum 

I-IV and VI, right Precuneus-Lateral Occiptal Cortex (LOC), bilateral Frontal 

Operculum/Insula, bilateral Precentral Gyrus/Middle Frontal Gyrus (MFG), bilateral 

Supplementary Frontal Gyrus (SFG)/MFG, bilateral Brainstem, bilateral Thalamus, right 

Frontal Pole and right MFG.  
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Table 3.1.  MD ROI activation by contrast 

ROI Label Anti-Fix Switch-Fix Keep-Fix 

1 - VI cerebellum R 0.94** 0.36** 0.38** 

2 - VI cerebellum L 1.39** 0.39** 0.40** 

3 - I-IV cerebellum (bilateral) 1.36** 0.19** 0.25** 

4 - Lateral occipital cortex / occipital 

fusiform gyrus L 0.20 0.22** 0.31** 

5 - Precuneus / Lateral occipital cortex 

(superior division) L 0.59 0.97** 0.70** 

6 - Lateral occipital cortex / occipital 

fusiform gyrus R -0.10 0.15** 0.18** 

7 - Precuneus / Lateral occipital cortex 

(superior division) R 0.89* 0.83** 0.63** 

8 - Frontal operculum / Insula R 1.16** 0.31** 0.50** 

9 - Frontal operculum / Insula L 1.15** 0.23** 0.47** 

10 - Precentral gyrus / MFG R 1.11** 0.45** 0.46** 

11 - Precentral gyrus / MFG L 0.63* 0.60** 0.73** 

12 - SMA / SFG (bilateral) 0.41 0.48** 0.67** 

13 - SFG / MFG / Precentral gyrus R 0.96** 0.63** 0.47** 

14 SFG / MFG / Precentral gyrus L 0.78** 0.68** 0.48** 

15 - Brainstem R 1.24* 0.23** 0.23** 

16 - Brainstem L 1.28** 0.18** 0.18** 

17 - Thalamus R 1.11** 0.23** 0.27** 

18 - Thalamus L 1.07** 0.26** 0.29** 

19 - Intracalcarine cortex L 0.82 -0.03 0.21** 

20 - Intracalcarine cortex R 1.00 -0.14 0.19 

21 - Frontal Pole R 0.86** 0.29** 0.56** 

22 - MFG R 0.73* 0.43** 0.66** 

23 - Frontal Pole L 0.11 0.23** 0.41** 

24 - MFG L 0.14 0.56** 0.76** 

25 - Cingulate gyrus (ant) -0.64 0.08 0.33** 

26 - Cingulate R -0.69 0.09 0.28** 

27 - Cingulate L -0.73 0.09 0.25** 
Note. Presented are unstandardized mean differences from 0 for each contrast versus fixation for 

each of the 27 Multiple Demand ROIs.  

 *p<.05, **p<.001. 

 

The keep track task and number-letter task, but not the antisaccade task, showed 

significant activation for regions such as the left Precuneus, bilateral LOC/Occipital 

Fusiform Gyrus (OFG), bilateral Supplementary Motor Area (SMA), left Frontal Pole, 

and left MFG. This result could indicate that the antisaccade task requires fewer MD 
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network areas, but it is also possible that there was lower power to detect all regions due 

to fewer correct trials in the antisaccade analysis than in the other task analyses. Five 

regions (MD ROIs 19,20,25-27), which included the intracalcarine cortex and the 

cingulate cortex, showed activation only in the keep track task.  

Do Individual Differences in Common EF Predict FP ROI Activation? We 

tested whether or not individual differences in Common EF predicted MD ROI activation 

for any of the tasks by testing for mean differences in activation for each ROI between 

Common EF groups. As shown in Table 3.2, Common EF groups differed in activation of 

13 ROIs (or 48% of the MD network) in the keep track task, 8 ROIs (30%) in the 

number–letter task, and 2 ROIs (7%) in the ICC in the antisaccade task. The common 

activation across all three tasks for high Common EF – low Common EF contrast maps 

occurred only in these two ICC regions. Across all tasks, individuals with high Common 

EF activated ICC more strongly than their low Common EF counterparts.  

Considering the conjunction of only the number–letter and keep track tasks, high 

Common EF individuals more strongly activated four other ROIs: left VI cerebellum, 

bilateral LOC/ occipital fusiform, and right SFG/MFG/precentral gyrus. With the 

exception of the ROI in the SFG/MFG/precentral gyrus, these ROIs are outside of the 

frontal and parietal cortex, and less often associated with executive control.  As seen in 

Table 3.2, individuals with high Common EF uniquely activated bilateral precuneus in 

the number-letter task, and uniquely activated six other MD ROIs in the keep track task.   

Table 3.2. MD ROIs mean differences in Common EF ability  

ROI Label Anti-Fix Switch-Fix Keep-Fix 

1 - VI cerebellum R 0.44 0.50 0.52 

2 - VI cerebellum L 0.50 0.91* 0.73* 

3 - I-IV cerebellum (bilateral) 0.73 0.34 0.65 

4 - Lateral occipital cortex / occipital fusiform 0.58 0.85* 0.84* 



Individual Differences in Executive (Dys)Function  51 

gyrus L 

5 - Precuneus / Lateral occipital cortex 

(superior division) L 0.24 0.78* 0.77 

6 - Lateral occipital cortex / occipital fusiform 

gyrus R 0.72 0.81* 0.84* 

7 - Precuneus / Lateral occipital cortex 

(superior division) R 0.12 0.96* 0.54 

8 - Frontal operculum / Insula R -0.02 0.32 0.81* 

9 - Frontal operculum / Insula L 0.01 -0.08 0.61 

10 - Precentral gyrus / MFG R 0.52 0.45 0.58 

11 - Precentral gyrus / MFG L 0.40 0.32 0.79* 

12 - SMA / SFG (bilateral) 0.37 0.61 0.79* 

13 - SFG / MFG / Precentral gyrus R 0.44 1.00* 0.81* 

14 SFG / MFG / Precentral gyrus L 0.16 0.65 0.68 

15 - Brainstem R 0.42 0.57 0.86* 

16 - Brainstem L 0.17 0.36 0.84* 

17 - Thalamus R 0.30 0.32 0.69 

18 - Thalamus L 0.44 0.20 0.74* 

19 - Intracalcarine cortex L 0.95* 0.98* 0.72* 

20 - Intracalcarine cortex R 0.82* 0.92* 0.84* 

21 - Frontal Pole R -0.23 0.25 0.70 

22 - MFG R -0.24 0.23 0.59 

23 - Frontal Pole L 0.13 0.18 0.55 

24 - MFG L -0.00 0.04 0.59 

25 - Cingulate gyrus (ant) -0.30 -0.42 0.74* 

26 - Cingulate R -0.35 0.06 0.45 

27 - Cingulate L -0.26 -0.01 0.63 
Note. Mean differences in standardized MD ROIs activation for each ROI are presented for 

contrast versus fixation for individuals grouped into high or low Common EF ability. The 

Common EF score was derived from a latent variable model in the previous wave of data 

collection, approximately 7 years prior to the current data. 

*p<.05. 

 

We also examined whether we would find the same results using the in-scanner 

Common EF z-composite, since these scores were more temporally proximal, although 

with more noise than the full 9-task model. In-scanner Common EF predicted seven ROIs 

in the keep track task (26%), three in the number–letter task (11%), and one in the 

antisaccade task (4%) (see Supplemental Table S3). No region was predicted in all three 

tasks by in-scanner Common EF, however multiple regions were predicted by at least two 
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tasks. As was the case for out-of-scanner Common EF, in-scanner Common EF predicted 

bilateral ICC activation for the number–letter task, and right ICC activation for the keep 

track task. Individuals with higher in-scanner Common EF showed increased activation 

in the bilateral I-IV cerebellar ROI for the antisaccade and keep track tasks, and left VI 

cerebellar activity for the keep track and number–letter tasks. Common EF predicted 

activation in four other regions for the keep track task that were also predicted by our out-

of-scanner Common EF grouping variable.  

Although similar patterns emerged for activation of ROIs with out-of-scanner and 

in-scanner Common EF variables, the out-of-scanner Common EF variable, which was 

based on a latent factor, was more related to MD ROI activation, despite being collected 

approximately seven years prior to the scans. This result provides evidence of the 

stability of Common EF at the latent level (see also Friedman et al., 2016).  

Do Correlations Suggest a Common Underlying Construct? If MD activation 

reflects a common underlying process that drives activation, we should see correlations 

of activation levels within the same ROIs across the three tasks. No MD ROIs showed 

correlations in activation for all three pairwise possibilities, however there were some 

correlations in the level of activation within participants across specific pairs of tasks. In 

general, correlations across tasks ranged from r=–0.47 to r=0.58. Average correlations 

between keep track and the other two tasks were around M=0.23 to 0.24 (SD=0.18 to 

0.19), while the average correlation between antisaccade and number–letter was M=–0.01 

(SD=0.21). 

Examining the pairwise correlations in Table 3.3, four ROIs correlated across the 

antisaccade and number-letter tasks. Three ROIs correlated across the antisaccade and 
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keep track tasks, and eight ROIs correlated across the keep track and number–letter tasks. 

However, these ROIs were different across pairs; only one ROI was involved in multiple 

correlations. Specifically, activation in the left VI cerebellum during the number–letter 

task positively correlated with its activation during the antisaccade and keep track tasks 

(rs=.58 and .48, respectively); however its activation during the antisaccade and keep 

track tasks did not correlate with each other (r=.20).    

 

Table 3.3.  Correlations in MD ROI activation 

ROI Label Antisaccade with 

Number–letter 

Keep track with  

Number–letter 

Antisaccade 

with Keep track 

1 - VI cerebellum R 0.22 0.49** -0.04 

2 - VI cerebellum L 0.58** 0.48** 0.20 

3 - I-IV cerebellum (bilateral) -0.01 -0.06 0.00 

4 - Lateral occipital cortex / 

occipital fusiform gyrus L 0.49** 0.14 0.04 

5 - Precuneus / Lateral occipital 

cortex L 0.29 0.36 -0.15 

6 - Lateral occipital cortex / 

occipital fusiform gyrus R 0.49** 0.14 -0.05 

7 - Precuneus / Lateral occipital 

cortex R 0.33 0.24 -0.19 

8 - Frontal operculum / Insula R -0.02 0.23 0.03 

9 - Frontal operculum / Insula L 0.04 0.00 -0.11 

10 - Precentral gyrus / MFG R 0.37 0.40* 0.20 

11 - Precentral gyrus / MFG L 0.35 0.43* 0.19 

12 - SMA / SFG (bilateral) 0.39* 0.14 0.15 

13 - SFG / MFG / Precentral 

gyrus R 0.35 0.48** -0.08 

14 SFG / MFG / Precentral 

gyrus L 0.36 0.38* 0.00 

15 - Brainstem R 0.13 0.30 -0.07 

16 - Brainstem L 0.03 0.10 -0.14 

17 - Thalamus R 0.27 -0.16 -0.06 

18 - Thalamus L 0.35 -0.21 -0.06 

19 - Intracalcarine cortex L 0.35 0.20 0.49** 

20 - Intracalcarine cortex R 0.25 0.20 0.51** 

21 - Frontal Pole R 0.20 0.31 -0.19 

22 - MFG R 0.09 0.24 -0.17 

23 - Frontal Pole L -0.22 0.17 -0.47* 

24 - MFG L 0.17 0.28 -0.21 
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25 - Cingulate gyrus (ant) 0.24 0.23 0.01 

26 - Cingulate R 0.12 0.51** -0.13 

27 - Cingulate L 0.12 0.46* -0.04 
Note.  Presented are the correlations in activation across pairs of task contrasts versus fixation for 

each MD ROI.  

*p<.05, **p<.001. 

 

Correlations were higher within tasks (see Supplementary tables S3-S7). That is, 

individuals with high activation in one ROI during a task also tended to show higher 

activation in other MD ROIs during the same task. However, the between-task 

correlations suggest that those individuals did not necessarily show higher activation in 

the other tasks.  Taken together, these correlational patterns suggest that the ROIs in the 

MD network work together during each task, but do not relate to individual differences in 

Common EF. 

Whole Brain Analyses 

The ROI analyses suggested that though many of the MD ROIs were active 

during the three EF tasks, they did not relate to individual differences in performance. 

Thus, we conducted exploratory whole-brain analyses to examine whether there were 

regions outside of the MD network associated with these tasks, at the group-level and 

individual differences level. In the following sections we focus on the conjunction maps 

at the group and individual differences levels; see the supplemental materials for maps 

for each task contrast.  

Which brain regions are active at the whole-brain level across all three 

tasks? While the whole-brain maps at the group-level tell us about activation in each 

task, a question of interest is which regions are active across all three tasks. To answer 

this question, we calculated the whole-brain conjunction map for group-level activation. 

In order for a region to be included in the conjunction map, it had to be significant at the 
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p<.05 level for each task, resulting in an overall correction of p<.00013. As shown in 

Figure 3.1, we observed a large cluster of positive activation in the cerebellum, including 

bilateral portions of Crus I, II, and IV, bilateral middle and superior frontal gyri, insula, 

thalamus, and frontal pole (for list of all regions, see Table 3.4 & 3.5). Consistent with 

the results of the group-level activation in the ROIs, many of our positive regions 

overlapped with the MD ROIs. However, we also observed elevated activation across all 

three tasks in the cerebellar cluster, putamen, right superior temporal gyrus, and bilateral 

supramarginal gyrus.    

Figure 3.1. Panel A: 16 significant group-level MD ROIs across all three tasks versus fixation. 

Panel B: 22 significant group-level MD ROIs across two tasks (keep track and number-letter) 

versus fixation. Panel C: 6 MD ROIs that were more strongly activated by high Common EF 

individuals across two tasks (keep track and number-letter) versus fixation. High Common EF 

individuals more strongly activated two MD ROIs (bilateral intracalcarine cortex, ICC) across all 

three tasks versus fixation. These regions are indicated by the yellow arrows.  No ROIs were 

associated with deactivation across multiple tasks.  
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Table 3.4.  Clusters in group-level conjunction map 

index x y z voxels volume_mm3 

1 -2 -16 32 52618 420944 

2 -30 -80 -38 492 3936 

3 32 -76 -38 666 5328 

4 54 44 -10 4 32 

5 2 -86 -10 18 144 

6 -30 -60 -8 9 72 

7 -22 -76 -4 80 640 

8 56 38 4 56 448 

9 54 -62 22 1010 8080 

10 4 -72 0 3 24 

11 62 6 2 3 24 

12 52 -80 4 2 16 

13 54 -76 8 2 16 

14 -12 16 16 4 32 

15 -42 22 48 2 16 

16 -40 16 56 2 16 

17 -34 -54 68 2 16 

Note. Presented are significant clusters in our conjunction map showing group-level activation. 

No significant negative clusters. p<.05 for each contrast, resulting in an overall contrast of 

p<.000125. 

 

 

What regions predict individual differences in Common EF in all 3 tasks? To 

examine whether the regions that are important for performing the three tasks predict 

individual differences in Common EF, we computed a similar conjunction map of areas 

that related to the Common EF grouping variable.  As shown in Figure 3.2, high 

Common EF participants activated a cluster in the ICC and lingual gyrus, some clusters 

in the superior parietal lobule, cerebellum IV & V, temporal fusiform gyrus, bilateral 

superior temporal gyrus, and the LOC (for list of all regions, see Table 3.5). Most of 

these regions fell outside of the MD ROIs. Within the MD ROIs there was one small 

cluster in the right cerebellum, Crus I. These results generally suggest that the areas 

predicting Common EF are not those that are activated at the group-level, indicating that 
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regions that predict individual differences are outside of those that are necessary in order 

to complete EF tasks.  

 
Figure 3.2. Conjunction map for task minus fixation. Panel A shows a conjunction map for the 

group-level activation for all three tasks versus fixation. Panel B shows a conjunction map for all 

three tasks versus fixation of regions predicted by Common EF ability. All tasks were thresholded 

at the p<.05 level, for a combined threshold of p<.000125 across each map. 

 

Table 3.5. Clusters in conjunction map of Common EF ability 

index x y z voxels volume_mm3 numpeaks 

1 -8 -70 -36 6 48 6 

2 -24 -50 -34 2 16 2 

3 -32 -46 -32 12 96 12 

4 -32 -54 -28 3 24 3 

5 12 -70 -14 93 744 93 

6 -22 -62 -22 8 64 8 

7 -10 -72 -20 5 40 5 

8 36 -62 -20 2 16 2 

9 32 -70 -12 63 504 63 

10 -2 -88 -4 156 1248 156 

11 -6 -70 8 900 7200 900 



Individual Differences in Executive (Dys)Function  58 

12 -26 -78 -8 3 24 3 

13 18 -22 -4 15 120 15 

14 -8 -16 -4 2 16 2 

15 -4 -94 10 9 72 9 

16 66 -30 10 57 456 57 

17 -60 -34 14 14 112 14 

18 -20 -64 22 2 16 2 

19 -38 -84 36 16 128 16 

20 -26 -26 36 6 48 6 

21 52 0 46 3 24 3 

22 8 6 48 9 72 9 

23 -54 -6 50 2 16 2 

24 -12 -54 62 21 168 21 

25 14 -54 64 43 344 43 

26 26 -54 66 10 80 10 

27 10 -8 68 2 16 2 

Note. Presented are significant clusters in our conjunction map where activation is associated 

with Common EF ability. No significant negative clusters. p<.05 for each contrast, resulting in an 

overall contrast of p<.000125. 

 

General Discussion 

The goals of this study were to better understand to what degree the MD network, 

a network that responds to a wide array of cognitive tasks, underlies Common EF and 

whether or not MD region activations predict individual differences in Common EF. A 

substantial number of MD ROIs were active across our three EF tasks, with participants 

activating the most ROIs for the updating tasks and the fewest for the inhibition task. 

However, two regions that were not active across all three tasks, the right and left ICC, 

were the only regions that were significantly predicted by individual differences in 

Common EF in all three tasks. Results from both the ROI and whole brain analyses 

suggested that individual differences in Common EF are related to activation in regions 

outside of the frontal cortex, with the exception of clusters in the frontal pole and in the 

middle frontal gyrus. The whole brain conjunction map also suggested that areas outside 
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of the MD network, such as the fusiform cortex, the superior temporal gyrus, and 

portions of the cerebellum, are important for individual differences in Common EF.  

This study advances the literature on the neural correlates of Common EF in 

several ways. First, we focused on understanding the fMRI predictors of individual 

differences, which are less well studied than group mean activation. A frontoparietal 

network has been strongly associated with group-level activation across multiple types of 

EF tasks, however less is known about what regions predict individual differences in EF 

reliably across tasks.  Second, we examined individual differences in functional 

activation during tasks selected to tap three important components of EF, based on a 

well-validated model. This model allowed us to focus on a Common EF factor, which is 

related to psychopathology, IQ, and various behaviors (Miyake & Friedman, 2012, 

Snyder, 2015).  Prior reports with this model suggest substantial stability of individual 

differences (Friedman et al., 2016), which we leveraged to form another strength of the 

study: We used an extreme groups design to maximize Common EF variance in this 

relatively small sample. These groups were selected on the basis of a full latent variable 

model of nine tasks assessed in a sample of over 700 individuals. Although these groups 

were selected to be at least a standard deviation above or below the mean based on data 

collected 7 years earlier, they were still very different at the current time point; 

specifically they differed by 1.66 standard deviation units in their aggregate performance 

in the scanner. Thus, we were able to examine predictors of a stable individual difference. 

Taken together, our results indicate that areas that are commonly activated during EF 

tasks are not necessarily the same ones that predict individual differences in performance.  
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The MD Network and EF 

We expected our tasks to activate many of the MD network regions, given that 

these MD ROIs were based on activation in a variety of cognitive tasks. Almost every 

MD ROI was significantly active in at least one of our three tasks, with the exception of 

the right ICC. Sixteen ROIs were active during all three tasks, demonstrating that the MD 

network overlaps with a higher-level EF network. Many of the regions of our group-level 

conjunction map also fell within or overlapped with the MD network. However, there 

was not complete overlap between the MD ROIs and activation from our EF tasks. 

Specifically, the ICC was not active in all three tasks, and other regions, such as the 

bilateral cingulate cortex, were not active in the shifting and inhibition tasks. Also, in our 

group-level conjunction map, many clusters extended outside of the MD ROIs and some 

regions fell outside of the MD network, such as the right cerebellum. The observed 

patterns suggest that while strongly related, the MD network is not synonymous with a 

Common EF network.  

We then examined whether regions active during EF tasks at the group-level also 

influenced individual differences in EF in order to address two questions. One, do 

individuals with high and low Common EF ability differentially activate regions in the 

MD network? Those with high Common EF might differentially recruit particular regions 

that are active across all subjects. Two, do individuals with high or low Common EF 

recruit areas outside MD network? It is possible that those with high Common EF recruit 

additional regions outside of the core network which contribute to their higher 

performance, or that those with lower Common EF recruit additional regions to try and 

compensate for poorer performance.  
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To address the first question, we examined whether individual differences in 

Common EF predicted activation of each MD ROI. While Common EF ability predicted 

differences in activation in some MD ROIs, the majority of the ROIs were unaffected. 

The most consistent pattern was that individuals with high Common EF ability showed 

increased bilateral activation in the ICC compared to those with low Common EF ability 

across all 3 tasks, though at the group-level the right ICC was not active in any of the 

tasks and the left ICC was only active in the keep track task. This pattern indicates that 

individuals with high Common EF ability recruit the ICC, but individuals with lower 

Common EF ability do not. The ICC is a part of the primary visual cortex that has 

previously been associated with increased cognitive demand in participants in their early 

twenties (Stern et al., 2005).  

We also found four ROIs that related to Common EF in two out of three tasks: left 

VI cerebellum, left and right occipital fusiform gyri, and right superior/medial frontal 

gyrus.  These regions were significantly activated at the group-level, and therefore it 

seems that individuals with both high and low EF recruit these regions, but those with 

high Common EF ability activate them more strongly. It is not clear why activation of 

these same ROIs during the antisaccade task did not relate to Common EF. Although it is 

possible that the task requirements in that task were different, it is also possible that the 

antisaccade contrast had lower power because we focused only on correct trials.   

In summary, there was limited evidence for activation levels of these ROIs across 

tasks being related to individual differences in Common EF ability. Moreover, an 

examination of the correlations of each ROI's activation across tasks provided little 

evidence for a common factor (i.e., perhaps unrelated to Common EF). Only one region 
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showed correlated activation in more than one pair of tasks. Left cerebellar activation 

during the keep track task was positively correlated with cerebellar activation during the 

antisaccade and the number–letter tasks, but cerebellar activation for the antisaccade task 

did not correlate with that for the switch task. The lack of correlation between tasks could 

be due to low variance, where everyone activated the ROIs to a similar extent, or to 

sufficiently different contexts across the tasks. In either case, this result suggests that 

there is not some unifying construct within the MD ROIs that reflects stable individual 

differences in EFs across tasks.  

To answer the second question, whether individuals with high or low Common 

EF recruit areas outside MD network, we created a whole-brain conjunction map of areas 

that related to individual differences in Common EF across all three tasks. Many of the 

regions identified in the individual differences conjunction map, such as the LOC, 

occipital fusiform gyrus, lingual gyrus, and cerebellum, have previously been associated 

with cognition. Specifically these regions have previously been associated with object 

recognition and working memory load (LOC; Grill-Spector, Kourtzi, & Kanwisher, 2001; 

Taylor et al., 2004), face and word recognition (occipital fusiform gyrus; Rossion et al., 

2013), visual processing of letters, and analysis of logical conditioning (lingual gyrus; 

Mechelli et al., 2000; Brunet et al., 2000). Given that many of the areas we found fell 

outside of the MD ROIs and our group-level conjunction map, individual differences 

research should not restrict the search to the areas significant at the group-level 

(Friedman & Miyake, 2016; Yarkoni & Braver,2010)—a network mask based upon 

which regions activate during a task might cause the researchers to miss areas important 

to individual differences.  
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Reineberg et al. (2015) also found that individuals with higher Common EF had 

expanded connectivity of a frontal-parietal resting state network to the Crus I and II of 

the cerebellum in an independent sample. This result was consistent with previous 

functional work that found increased functional connectivity to and activation in crus I/II 

predicted better working memory and EF performance (Bernard et al., 2013; Salmi et al., 

2010; Stoodley & Schmahmann, 2009). Activation in the cerebellum has been associated 

with various EFs, yet the role of the cerebellum in cognition is still unclear (Stoodley et 

al., 2012; Koziol et al., 2013). One possibility is that the cerebellum may play a role in 

the automation of cognitive processes or inner speech involved with verbal working 

memory (Koziol et al., 2013).  

Somewhat surprisingly, we found a relative lack of prefrontal cortical regions 

predicting individual differences in Common EF. The prefrontal cortex is integral to 

higher-level cognitive processes, and when damaged, EF deficits are often observed (for 

reviews see Alverz & Emory, 2006; Stuss & Alexander, 2000). Common EF predicted 

activation in a few regions in the frontal cortex. In our ROI analysis, Common EF 

predicted activation in the right MFG/precentral gyrus MD ROI in two out of three tasks. 

In our conjunction analysis, we found a region that overlapped with the posterior portion 

of that MD ROI and extended beyond it. We also found a frontal polar region outside of 

the MD network. However, most areas that related to individual differences in Common 

EF were more posterior.  

One possible explanation for the relative lack of frontal regions related to 

individual differences is that everyone generally uses the PFC to complete the task, but 

those with better Common EF have a flexible enough frontoparietal network that they can 
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recruit additional regions outside of the PFC when tasks are sufficiently difficult. If tasks 

are easy, and everyone is performing at ceiling, all individuals might show approximately 

the same levels of activation, since those with higher EF do not need to recruit additional 

areas in order to perform better. However, if the task is difficult there might be more 

variance in brain activation, both in terms of how strongly an individual activates a given 

region, but also in terms of whether an individual recruits additional regions to help with 

the task. This pattern of spatially dissociable regions for group-level and individual 

differences is consistent with results described by Yarkoni & Braver (2010). Another 

potential explanation is that lower-level processing areas can be crucial for individual 

differences in more complex behaviors. 

Working Memory, EF, IQ, and the MD Network 

While Duncan and colleagues never explicitly argue that the MD network 

underlies executive functions, the MD network is a frontoparietal network that responds 

to a variety of cognitive tasks, and therefore seemed appropriate as candidate regions. 

One possible explanation for why we did not find that the MD network predicted 

individual differences in Common EF is that the MD network is more about intelligence 

than Common EF per se. The MD network activates in response to general fluid 

intelligence tasks such as those used by Bishop et al. (2008). They used both verbal and 

spatial problem solving tasks to tap gf, which activated the MD network. In fact, their 

whole-brain corrected maps did not find any regions outside of the their network ROIs, 

suggesting high, if not complete, overlap between gf and the MD network, at least at the 

group-level. However, to-date little research has focused on individual differences in the 

MD network.  



Individual Differences in Executive (Dys)Function  65 

While intelligence is correlated with EFs (Carpenter, Just, & Shell, 1990; Engle, 

Tuholski, Laughlin, & Conway, 1999; Friedman et al., 2006; Salthouse, Fristoe, 

McGuthry, & Hambrick, 1998), the Common EF factor is not the same as g. Friedman et 

al. (2008) found that the genetic correlation between Common EF and full-scale IQ was 

only 0.57, indicating substantial genetic separability between the two constructs.  

Moreover, EFs predict variance above and beyond intelligence in behaviors such as 

attention problems and self-restraint (Friedman et al., 2007; Friedman et al., 2011; see 

Friedman & Miyake, 2016, for a review).  

Although Englehardt et al. (2016) found high genetic overlap between a Common 

EF factor and intelligence, their hierarchical Common EF factor had very high loadings 

for Updating and Working Memory subfactors, in contrast with the Common EF factor 

we examined here (see Friedman et al., 2008, for the analogous hierarchical model). 

Their result is thus very consistent with the general finding that intelligence is closely 

related to updating abilities(Friedman et al., 2006) and working memory, which are 

closely related constructs (Schmiedek, Hildebrandt, Lövdén, Lindenberger, Wilhelm, 

2009). For example, Colom and colleagues (2015) found a strong correlation (r=0.86) 

between latent variable measures of working-memory and fluid intelligence. Updating, at 

the general level, is a combination of Common EF and an Updating-Specific factor, 

which both are equally related to IQ (Friedman et al, 2008). Therefore, the MD network 

is likely tapping a neural network for working-memory and/or fluid intelligence that is 

related to Common EF, but also Updating-Specific ability. If so, then we would expect to 

find partial overlap between our EF tasks and the MD network. However, we might 

expect greatest overlap for the updating task.  
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Consistent with this idea, the keep track task involved the most MD ROIs at the 

group-level and individual differences level. This could indicate increased power in the 

keep track task, or it could indicate that the MD network is more closely related to 

updating working memory than EF in general. Unfortunately we could not directly test if 

an Updating-Specific latent factor predicted more MD ROIs than a Common-EF factor, 

given that our sample was selected for Common-EF. (These individuals also varied to 

some extent on the other EFs and IQ, but these variations were confounded with 

Common EF differences.)  

Limitations 

One limitation of the study is that it was likely underpowered for whole-brain 

individual differences analyses, despite the increased power afforded by the selected 

sample. We focused on ROIs for this reason, but we also presented exploratory whole-

brain analyses. Moreover, although our sample was larger than the average individual 

differences study in contemporary neurocognitive literature (27-30 subjects compared to 

15-20; Yarkoni & Braver, 2010), it is possible that it was still underpowered to detect 

neural correlates of individual differences, even with ROIs. Thus, it may be the case that 

areas within the MD network significantly predict individual differences in a larger 

sample. However, these effects may be relatively weak, given that the selected sample we 

used may also have inflated our effect sizes compared to a population sample. 

In terms of the group-level effects, a potential source of difference between our 

study and Fedorenko et al.'s (2013) study was the increased variance of our sample.  Our 

subjects were selected based on being at least one standard deviation above or below the 

mean for a Common EF factor, whereas the Fedorenko et al., (2013) sample, from which 
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the ROIs were derived, presumably followed a normal distribution with a majority of the 

participants around the mean of Common EF ability. It is possible that individuals high or 

low in Common EF show different neural patterns than those closer to the mean, 

decreasing our power to significantly detect activation in some of the ROIs. If individuals 

who differ in EF ability have different neural patterns, then regions most related to 

individual differences in EF would likely fail to activate at the group-level. Indeed we 

observed that particular pattern for the ICC ROIs, which were related to Common EF 

across all three tasks. However we did observe some other MD regions related to 

individual differences in Common EF ability for particular tasks or pairs of tasks.  

Another limitation is that we selected participants on the basis of Common EF, so 

we did not have sufficient variance in Updating-Specific, Shifting-Specific, or 

intelligence factors to test the different neural patterns between the constructs. Therefore 

we could not test the possibility that the MD network is more related to Updating or 

intelligence than Common EF. A balanced design with equal numbers of individuals with 

high and low IQ (or Updating-Specific or Shifting-Specific) within the high and low 

Common EF groups, or a sufficiently large sample size to allow for estimating of each 

variable would allow us to tease apart the contributions of intelligence and multiple EFs. 

We are currently collecting data for such a study.    

Conclusion 

In a selected sample of individuals with high and low Common EF ability, we 

demonstrated that group-level activation across three EF tasks overlaps with the MD 

network. However, high and low Common EF individuals did not differentially recruit 

any of these regions across all three tasks. The only region within the MD network that 
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was more strongly activated in individuals with high Common EF across all three tasks 

was bilateral intracalcarine cortex, which was not active at the group-level across these 

three tasks. Exploratory whole-brain conjunction analyses also suggested that individuals 

might recruit regions outside the MD network to boost task performance. The results 

suggest that EF tasks recruit areas that overlap with the MD network. While the MD 

network and a Common EF network seem to share neural correlates distributed 

throughout the brain, they also have regions that seem to be unique to each system. 

However, these common and unique regions at the group-level do not seem to be 

important for individual differences in Common EF. These results are consistent with 

Yarkoni and Braver's (2010) suggestion that the areas important for individual 

differences are not necessarily be those that are active at the group-level. In terms of the 

current study, the MD network may be necessary to complete EF tasks, but individual 

differences may be more related to non-MD areas that are differentially recruited to 

augment performance.   
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CHAPTER 4 

Phenotypic Interplay of Sleep, Depression, and Executive Functions 

Atypical sleep and depression are associated with executive dysfunction, and 

atypical sleep is related to increased depression, but the exact nature of how sleep, 

depression, and executive functions (EFs) work together to influence each other remains 

unknown. In this study, I investigate how sleep duration and depression might both 

contribute to executive dysfunction, as well as the degree to which genes and 

environment influence the relationships among these three variables. To do this I use data 

on depression, sleep duration, and EFs from a longitudinal twin study from early 

adolescence to young adulthood (approximately ages 12 to 23 years). Specifically, I first 

investigate whether individual differences in sleep duration are associated with 

depression and EF abilities, and the longitudinal relations among these variables. Next I 

ask whether sleep duration explains the relationship between depression and EF, or if 

depression explains the relationship between sleep duration and EF. Then I examine how 

stable these genetic and environmental influences are across time, and when new genetic 

and environmental factors arise during different developmental stages. Lastly, I examine 

the genetic and environmental correlations between sleep duration, EF, and depression to 

better understand the nature of the relationships between these variables.   

Depression and Sleep 

A good deal of research supports the link between sleep characteristics and 

depression. In fact, sleep is often disordered in those with depression to the point that it is 

a criterion for Major Depression Disorder (MDD) as diagnosed using the Diagnostic and 

Statistical Manual of Mental Disorders (5th ed.; DSM-V; American Psychiatric 

Association, 2013). Also, sleep characteristics, such as rapid eye movement sleep, have 



Individual Differences in Executive (Dys)Function  70 

been proposed an endophenotype – intermediate phenotype on the path between genes 

and disorder diagnosis – for MDD (Hasler et al., 2004; Modell & Lauer, 2007). Insomnia 

also has a bidirectional relationship with depression. Insomnia has often been considered 

a secondary disorder to depression, however there is also research suggesting that having 

insomnia increases the risk of depression in follow-ups 1 year to 34 years later (see 

Baglioni et al., 2011 for a review). Other sleep characteristics, such as sleep duration 

(which will be the focus of this dissertation), have an established, but less clear-cut 

association with depression (van Mill et al., 2010; Zhai et al., 2015; Raniti et al., 2016).   

Individual differences in sleep duration have been inconsistently associated with 

depression. Some research finds an association between short sleep duration and 

depression (e.g., Park et al., 2010). Other studies, such as a meta-analysis by Zhai et al. 

(2015), show increased relative risk of depression with both long and short sleep 

durations (relative risk 1.42 and 1.31, respectively) compared to “normal” sleep 

durations. And yet other studies find no relationship between depression and sleep 

duration (e.g., Supartini et al., 2016). These studies differ in nationalities of the samples, 

how depression and sleep duration are measured, as well as the age of the samples, 

indicating that the relationship between depression and sleep duration is possibly 

influenced by these factors.  

Problematic sleep is associated with depression in childhood and throughout 

adolescence. For example, a variety of parent-reported sleep problems were moderately 

correlated with depression symptoms in 8 year olds (Gregory et al., 2016). Both 

longitudinal and cross-sectional studies suggest short sleep duration and sleep 

disturbances are prospective predictors of adolescent depression (Breslau, et al., 1996; 
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Chang et al., 1997; Roberts & Duong, 2014). I add to this literature by assessing whether 

short, long, or both types of sleep durations influence depression at three different time 

points from adolescence to young adulthood. I also assess whether changes in sleep 

duration influence depression at a later age, as well as whether changes in depression 

influence sleep duration throughout development.  

Executive Functions, Sleep, and Depression 

EFs are related to sleep (Boonstra, Stins, Daffertshofer, & Beek, 2007) and 

depression (see Snyder, 2013 for a review). EFs are higher order cognitive processes that 

help individuals regulate thoughts and behaviors in order to achieve goals. They are 

associated with later life outcomes, such as education and occupation (Best et al., 2009; 

Miller et al., 2012; Valliente et al., 2013), and are often impaired in those with 

psychopathology (Snyder et al., 2015). In fact, EF is often suggested as an 

endophenotype for multiple forms of psychopathology, including MDD (e.g., Hasler et 

al., 2004).  

Multi-component EF model. Most studies use various measures of EF, and often 

equate one task to one type of EF, despite task impurity. Task impurity refers to the 

problem that an EF task may actually tap non-EF processes, and even multiple EF 

processes, rather than just the EF of interest. For example, the Stroop task, which is 

considered an EF task, involves lower level visual processing, word-reading, color 

processing, as well as other cognitive processes, all of which are not EFs, but contribute 

to the performance on that task. The Stroop task was designed to assess individual 

differences to inhibiting the reading response, yet all of these other processes are 

contributing to the final score. However, the current study uses the Unity and Diversity 
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model of EF (Miyake et al., 2000; Miyake & Friedman, 2012), which focuses on latent 

variables. Latent variables allow for purer measures of EF because task-specific 

processes and measurement error are removed. EF is measured by a nine-task battery, 

which includes 3 tasks selected to tap response inhibition, 3 tasks designed to assess 

updating working memory, and 3 tasks targeting set-shifting.  

These tasks result in 3 latent variables (see Figure 4.1; reproduced from Friedman 

et al., 2016): a Common EF variable that explains covariance across all 9 tasks, an 

Updating-Specific variable that explains residual covariance across the 3 updating tasks 

(i.e., not explained by the Common EF factor), and a Shifting-Specific variable that 

explains residual covariance across the 3 shifting tasks.  There is no Inhibition-Specific 

variable after accounting for Common EF, because there was no inhibition task 

covariance leftover after accounting for covariance explained by the Common EF factor.  

 
Figure 4.1.  
Bifactor latent variable model of executive functions (EF) data with standardized loadings for late 

adolescence (Wave 1 in grey; approximately age 17) and early adulthood (Wave 2 in black; 

approximately age 23) reproduced from Friedman et al., 2016. Numbers on arrows are 

standardized factor loadings, those under the smaller arrows are residual variances, and those on 

curved double-headed arrows are interfactor correlations. Numbers in brackets are standard 

errors. There is a Common EF latent variable on which all nine EF tasks load, as well as two 

“nested” latent variables on which the updating and shifting tasks, respectively, also load. The 

Common EF variance is isomorphic with the Inhibiting latent variable, so there was no inhibiting-

specific variance at either time point. Because the Common EF factor captures the variance 

common to all three EFs, the Updating-Specific and Shifting-Specific factors capture the variance 

that is unique to Updating and Shifting, respectively. Hence, they are uncorrelated with the 

Common EF factor and with each other. All parameters were statistically significant (p .05). 
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Antisac antisaccade; Stop stop-signal; Letter letter memory; Snback spatial n-back; Number 

number–letter; Color color–shape; Category category-switch; n.e. not estimated at Wave 1.  

 

The three EF latent factors differentially relate to important constructs, such as 

psychopathology and intelligence. The inhibition or Common EF factor has previously 

been negatively associated with attention problems and conduct disorder (Friedman et al., 

2007; Young et al., 2009; Gustavson et al., 2015), while both the Common EF and the 

Updating-Specific factor have been positively associated with IQ (Friedman et al., 2006). 

Interestingly, the Shifting-Specific factor has been positively associated with problematic 

behaviors, such as Attention Deficit/Hyperactivity Disorder, and Behavioral Disinhibition 

(Miyake & Friedman, 2012; Herd et al., 2014). These results demonstrate that the factors 

uniquely relate to disorders and problematic behavior, and therefore the different factors 

might differentially relate to sleep and depression.  

EF and Depression. A review on the relationship between depression and other 

measures of EF by McClintock and colleagues (2010) reveals a mixed relationship 

between MDD and cognitive impairments. While there is a significant body of research 

that suggests those with MDD have impaired cognition, it may be influenced by age 

(older individuals are more affected), type of EF assessment, severity, medication, and 

comorbidity. A meta-analysis and review by Snyder (2013) found that there is a robust 

relationship between MDD and measures of EF, with effect sizes ranging from relatively 

small (d=.32) to large (d=.97). These findings prompted the speculation that depression 

might be related to Common EF, given that the three factors differentially related to 

psychopathology.  

Confirming this speculation, ongoing research by Friedman (presented in 2016; 

reproduced in Figure 4.2) show that, in the longitudinal sample examined here, 
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depression symptom scores at age 12 negatively predicted Common EF and Updating 

Specific latent factors at age 17. Age 17 depression scores negatively predicted both 

Common EF at age 17 and Updating at age 23 controlling for previous depressive 

symptoms and EF abilities. A similar, but slightly stronger, pattern emerged when using 

lifetime MDD diagnosis at age 12, and past year MDD diagnosis at ages 17 and 23 

instead of symptom scores, with the exception that age 12 lifetime diagnosis no longer 

predicted Updating-Specific abilities at age 17.  

 
Figure 4.2.  

Cross-lag model of the effects of depression symptoms on EF. Reproduced from Friedman et al. 

(in preparation). Red lines = p<.05. Black Bold lines = Stability effects with p<.05. CESD = 

Center for Epidemiological Studies-Depression score. Common EF = Common EF latent factor. 

Updating-Sp. = Updating-Specific latent factor. Shifting-Sp. = Shifting specific latent factor.  

 

If the relations between this model of EF and depression reflect variance shared 

with sleep, then I expect individual differences in sleep duration to be related to Common 
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EF abilities, but not Shifting-Specific abilities. Given this recently completed study with 

EF and depression, it is possible that I will observe a relationship between sleep duration 

and Updating-Specific abilities as well. However, if sleep duration is only related to 

depression and not EF, then I might not observe these patterns.  

EF and Sleep. Sleep characteristics, such as duration and quality, are also 

associated with level of EF (Dahl, 1996; Anderson et al., 2009; Virta et al., 2013). For 

example, children who get less sleep tend to perform more poorly in school (Dewald et 

al., 2010). While school performance is not a pure measure of EF, EF is necessary for and 

correlated with school performance (Best et al., 2011), and the integration and variety of 

EFs necessary for school performance is consistent with Common EF abilities. However, 

as school performance is correlated with IQ, and IQ is related to both Common EF and 

Updating-Specific abilities, then school performance should also be related to an 

Updating-Specific latent factor. Therefore, I hypothesize that sleep duration will most 

likely be related to Common EF and possibly Updating-Specific abilities.  

However, at a slightly later age, approximately age 14, sleepiness, but not sleep 

duration, was related to cognitive function as assessed by portions of the Behavior Rating 

Inventory of Executive Function and Delis-Kaplan Executive Functioning System 

(Anderson et al., 2009). The latent variable model of EF will allow me to get a purer 

measure of Common EF ability than is possible with any one measure, and detect a 

relationship between sleep duration and EF abilities, if one exists in later adolescence.  

Therefore, I will use the bifactor latent variable model of EF, to better understand the 

relationship between individual differences in sleep duration and EF throughout early 

adolescence into young adulthood.   
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The relationship between EF and sleep duration may be influenced by age. A 

meta-analysis by Dewald and colleagues (2010) found a relationship between sleepiness, 

sleep duration, and sleep quality and school performance in children aged 8-18. These 

effects were stronger for younger adolescents than older adolescents, which suggests that 

the relationship between sleep duration and EF might change with age. Another study, 

which used a subset of our sample, found that stable variance in sleep problems, as 

assessed by the Child-Behavioral Checklist, at ages 4,5,7, and 9-16 did not predict EF at 

age 17. However, children who showed improvement in sleep problems over time 

showed better Common EF in adolescence compared to those who continued to have 

sleep problems (Friedman et al., 2009). This indicates that changes in sleep, could be 

related to EF.  Taken together, the literature is unclear on whether the relationship 

depends on age. I will start to address the idea that sleep duration differentially influences 

cognition depending on age by using our longitudinal data to see if relations between 

sleep and EFs differ across ages, and if changes in sleep across time influence EF 

abilities, or if changes in EF abilities influence sleep duration.  

It is possible that those with low EF are more likely to experience depression or 

atypical sleep. It is also plausible that depression influences typical sleep durations and 

cognitive abilities. For example, Naismith and colleagues (2008) found that insomnia 

(early or late) in participants with MDD was associated differentially with depression and 

cognition. Early insomnia (trouble falling asleep) related to poorer global cognition and 

depression severity, whereas late insomnia (trouble falling back asleep in the early 

morning) related to poorer verbal fluency and memory, later depression onset, and 

symptom severity. The authors suggest that sleep disturbances might be a modifiable risk 
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factor for cognitive decline in people with depression. Given the limited research 

examining sleep, EF, and depression in the same model, I propose to run a series of path 

models to better understand the relationship between these three variables over time. 

Current Study 

 The available data are part of the Longitudinal Twin Study (LTS). The depression 

measures include symptom scores on the Center for Epidemiologic Studies – Depression 

(CES-D) scale, and lifetime diagnosis from the Diagnostic Interview Schedule (DIS; for 

participants 18 and older) or Diagnostic Interview Schedule for Children (DISC; for 

participants under 18). These measures were collected at three different time points (see 

Table 4.1 for information on which measures were collected at each age).  

Table 4.1 Available Measures at each Time Point 

 Early 

Adolescence: 

age 12 

Late 

Adolescence: 

age 17 

Henry Ford: 

age 21 

Early 

Adulthood: 

age 23 

EF - 9 EF tasks - 9 EF tasks 

Depression CESD 

DISC 

CESD 

DISC / DIS 

CESD 

 

CESD 

DIS 

Sleep Weekday  

Weekend  

Weekday  

Weekend  

Typical  

Last night  

Weekday  

Weekend  

Insomnia* 

 

Weekday  

Weekend  

Note. CESD = Center of Epidemiological Studies –Depression scale scores; DISC = Diagnostic 

Interview Schedule for Children (administered to participants under 18); DIS Diagnostic 

Interview Schedule (administered to participants 18 and older); DIS and DISC represent lifetime 

diagnosis of Major Depressive Disorder at a given wave of data collection. 

 

I examined both CES-D symptom scores and lifetime diagnoses, because the LTS 

is a population-based sample, which has relatively low rates of clinical endorsement, 

particularly at the younger time points. However, I expect subclinical levels of depression 

to be associated with sleep duration and EF.  For EFs the full battery of nine tasks was 
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available at two time points: late adolescence (approximately 17), and early adulthood 

(approximately 23).  

Multiple waves of sleep data were also collected through 3 different sources: a 

health questionnaire that was part of LTS, the Jessor survey (Jessor &  Jessor, 1977) 

which was part of the Center for Antisocial Drug Dependence (CADD), and a separate 

online study focusing on insomnia that was partially funded by the Sleep Research Center 

at the Henry Ford Health System. For the remainder of the paper, these datasets are 

referred to as the Health survey, the Jessor survey, and the Henry Ford survey, 

respectively. Refer to Table 4.1 for when each survey was administered during 

development.  

At the level of the indicators, sleep duration and depression tend to negatively 

correlate (see Table 4.2 for correlation matrix). A more robust pattern emerges with 

depression symptoms compared to lifetime diagnosis, likely due to low rates of clinical 

depression at this age in a population sample.  
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Table 4.2 Phenotypic Correlations between Depression and Sleep Duration 
  CES-

D 12 

CES-

D 17 

CES-

D 23 

MDD 

12 LT 

DX 

MDD 

17 LT 

DX 

MDD 

23 LT 

DX 

health 

typ 

17 

health 

last 

17 

jessor 

day 

12 

jessor 

end 

12 

jessor 

day 

17 

jessor 

end 

17 

jessor 

wk 22 

jessor 

end 

22 

HF 

day 

21 

HF 

end 

21 

HF typ 

day 21 

CES-D 12                                   
CES-D 17 .33                                 
CES-D 23 .18 .41                               
MDD 12 LT DX .46 .16 .25                             
MDD 17 LT DX .18 .39 .20 .51                           
MDD 23 LT DX .12 .29 .40 .23 .42                         
health typ 17 .01 -.12 -.07 .04 -.11 -.06                       
health last  17 -.03 -.14 -.12 .11 -.08 -.09 .42                     
Jessor day 12 -.11 -.11 -.09 .07 -.11 -.11 .31 .17                   
Jessor end 12 -.12 -.08 -.10 .21 -.07 -.14 .13 .11 .45                 
Jessor day 17 -.02 -.10 -.06 .06 -.14 -.04 .75 .29 .25 .12               
Jessor end 17 -.08 -.11 -.03 .08 -.10 .04 .32 .28 .11 .11 .32             
Jessor day 23 .01 -.07 -.07 .24 -.03 -.15 .24 .12 .16 .13 .23 .13           
Jessor end 23 .01 -.08 -.06 .50 .02 -.12 .12 .14 .06 .18 .13 .29 .42         
HF day 21 .02 .06 .04 .04 -.02 -.06 .16 .07 .12 .02 .22 .10 .32 .12       
HF end 21 -.02 .01 -.02 .12 .10 -.04 .15 .08 .13 .10 .19 .16 .28 .29 .42     
HF typ day 21 -.02 -.12 -.08 .06 -.13 -.16 .23 .13 .16 .06 .27 .08 .43 .20 .47 .26   
HF typ end 21 -.07 -.12 -.11 .25 .00 -.12 .23 .13 .13 .13 .21 .17 .28 .35 .21 .62 .44 

Note. Bold = p<.05. All continuous variables were age and sex regressed before correlations were run. CES-D = Center for Epidemiological 

Studies-Depression score; MDD LT DX = Major Depressive Disorder Lifetime Diagnosis; day = weekday; end = weekend; Typ = sleep duration 

on a typical night; Last = sleep duration last night; Health indicates that the sleep duration came from the health survey during the LTS study; HF 

indicates that the sleep duration came from the Henry Ford Sample; Jessor indicates sleep duration came from the Jessor questionnaire. 
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Given the benefits of structural equation modeling, I examined whether there is 

evidence for a latent variable of sleep duration. If there is evidence for a latent factor of 

sleep, it might be for sleep in general, including both weekday and weekend sleep 

duration. Most of the sleep durations positively correlate with each other; however, 

stronger relationships emerge within a given age for weeknight and weekend night sleep, 

rather than across ages for separate weekday-specific and weekend-specific latent factors. 

Combining the age 21 and 23 variables, I estimated separate weekday-specific and 

weekend-specific latent variables, to help explore potential differential contributions of 

sleep during the week, and less restricted sleep during the weekends. Figure 4.3 depicts 

the latent variable models of sleep duration estimated with these data. However, I did not 

see substantial increases in association with these latent variables, so they were dropped 

from further analyses.  

 
Figure 4.3.  
Latent variable models for sleep with standardized loadings. Panel A. Latent variable model of 

age 17 sleep. Last sleep = how much a person slept the previous night, Typ Sleep = how much the 
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person typically slept. Panel B. Latent variable for Weekday sleep during early adulthood 

(approximately ages 21-23). Panel C. Latent variable for Weekend sleep during early adulthood 

(approximately ages 21-23). Health indicates that the sleep duration came from the health survey 

during the LTS study; HF indicates that the sleep duration came from the Henry Ford Sample; 

Jessor indicates sleep duration came from the Jessor questionnaire.  

 

Method 

Sample 

 Our participants were from the Longitudinal Twin Sample (LTS) at the University 

of Colorado Boulder. The sample was comprised of 857 twins (54% MZ (463)), from 402 

families. The sample was 51% female (437). The LTS twins are same-sex twin pairs born 

between 1986 and 1990.  The families were initially recruited through the Colorado 

Department of Health. The initial sample was 86.6% Caucasian, 8.5% Hispanic, 0.7% 

African- American, 1.2% Asian, and 2.9% other, which approximates the ethnic and 

racial composition of Boulder County, Colorado as whole during the 1990’s according to 

the United States Census (Rhea, Gross, Haberstick, & Corley, 2013). Data collection is 

currently ongoing.  

Materials 

Depression The following depression measures were collected at multiple waves, 

with mean ages 12.43(0.37), 17.26(0.64), 22.81(1.28).  

Lifetime Diagnosis. The Diagnostic Interview Schedule (DIS) is a structured, 

diagnostic interview, was used for participants over 18, and the child version, Diagnostic 

Interview Schedule for Children (DISC) was used for individuals under 18. Then DSM-

IV criteria were applied to the responses, to come up with a dichotomous, case / control 

diagnosis for MDD.  

Depression Symptoms. Depression symptoms were assessed using the 20-question 
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Center for Epidemiologic Studies – Depression (CES-D) scale (Radloff, 1977). The scale 

assesses how often a person experiences depressive symptoms over the past week on a 

scale of 0 (rarely or none of the time) to 3 (most or all of the time). In order to calculate 

depression symptoms, CES-D items were reverse coded where appropriate. Then when at 

least 16 out 20 questions were answered, summing the raw scores and multiplying that 

sum by 20 resulted in a total score. Last, I took the square root of that score to achieve a 

better distribution.  Please see Table 4.3 for descriptive statistic information and raw 

values for CES-D and lifetime diagnosis. 

Table 4.3 Descriptive Statistics for Executive Function (EF) and Depression Measures 

 Mean 

Case/ 

Control SD Min Max N Age (SD) 

EF age 17 na na na na na 786 17.26 (0.64) 

EF age 23 na na na na na 749 22.84 (1.29) 

CESD age 12 9.68 na 7.68 0 48 716 12.43 (0.37) 

CESD age 17 9.45 na 7.50 0 47 795 17.26 (0.64) 

CESD age 21 11.91 na 9.23 0 50 761 21.06 (2.02) 

CESD age 23 11.06 na 8.94 0 46 752 22.81 (1.28) 

DISC age 12 na 10/709 na na na 719 12.43 (0.37) 

DISC/DIS age 17 na 59/738 na na na 797 17.26 (0.64) 

DIS age 23 na 99/664 na na na 763 22.81 (1.28) 
Note. CESD = Center of Epidemiological Studies Depression Scale scores; DISC = Diagnostic 

Interview Schedule for Children (administered to participants under 18); DIS Diagnostic 

Interview Schedule (administered to participants 18 and older); na = not applicable to this 

category. DIS and DISC represent lifetime diagnosis of Major Depressive Disorder at a given 

wave of data collection. As EFs are estimated at the latent variable level for Common EF, 

Updating-Specific, and Shifting-Specific EF, there are no descriptive statistics at each wave.  

 

Executive Functions EF information was collected at two different waves with 

mean ages (17.26, 22.84). Participants completed 9 EF tasks, 3 of which are designed to 

tap response inhibition, 3 to tap updating working memory, and 3 that tap set-shifting 

between sub-tasks.  Please see Friedman et al. (2008; 2016) for a comprehensive 

description of the tasks included in our EF battery. All sleep, EF variables, and CES-D 

scores were regressed on sex and age at time of appropriate assessment.  
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Sleep  

Health. In the Health questionnaires sleep duration was assessed with the 

questions, “How many hours do you typically sleep at night?” and “How many hours of 

sleep did you get last night?”  The participants then wrote in the number of hours for each 

question. See Table 4.4 for descriptive statistics for all sleep measures.  

Table 4.4 Descriptive Statistics for Sleep Duration 

 Mean SD Min Max N Age (SD) 

Health   

Typical: age 17 7.49 1.15 3 13 715 17.26 (0.64) 

Last night: age 17 7.17 1.62 1 13 714 17.26 (0.64) 

Jessor       

Weekday: age 12 8 31.30% 5 11 820 13.12 (1.82) 

Weekend: age 12 10 23.30% 5 11 817 13.12 (1.82) 

Weekday: age 17 8 36.80% 5 11 682 17.20 (0.57) 

Weekend: age 17 9 25.80% 5 11 681 17.20 (0.57) 

Weekday: age 23 7 36.70% 5 11 755 22.28 (1.28) 

Weekend: age 23 8 33.90% 5 11 755 22.28 (1.28) 

Henry Ford: age 21  

Weekday 1 7.14 1.22 3.5 11 703 21.07 (2.02) 

Weekend 1 7.84 1.47 3 12.5 712 21.07 (2.02) 

Weekday 2 7.97 1.55 3 12 710 21.07 (2.02) 

Weekend 2 8.52 1.47 4 13 714 21.07 (2.02) 

Insomnia* .24 

(140/587) 

. . . 727 21.07 (2.02) 

Note. Raw scores before age and sex are regressed out. Health refers to a health survey that was 

administered at the same time as EF measurements in the LTS study. Jessor refers to a survey that 

was administered to assess basic demographic, health, sleep, and other information as part of the 

CADD studies. Sleep variables in the Jessor study were truncated (5 hours of sleep or less, 11 

hours of sleep or more). Henry Ford refers to a sleep study that was conducted in conjunction 

with the Henry Ford Health System. Typical sleep refers to amount typically slept in the past 

month at different waves of the EF study. Last night sleep refers to how much the participant 

slept the night preceding the EF test. Weekday 1 and Weekend 1 refers to sleep that was 

calculated from the time a participant woke up and went to sleep during weekday and weekends 

respectively. Weekday 2 and Weekend2 refers to the average number of hours slept reported by 

the participant. Chronotype = Continuous Chronotype score. Insomnia = case/control status for 

insomnia diagnosis. *This sleep measure was available, but not focused on in Studies.  

 

Jessor. In the Jessor surveys participants were asked, “About how many hours of 

sleep do you usually get each week night?” followed by “How about on weekend 
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nights?” and they selected from the options: 5 or less, 6, 7, 8, 9, 10, 11 or more, or, would 

rather not answer.  

Henry Ford. The sleep survey in the Henry Ford data set assessed sleep duration 2 

ways. They asked, “During the past month, at what time did you TYPICALLY get up ON 

WEEKDAYS? (Please be sure to write 'AM' or 'PM' in the last box)” and “During the 

past month, at what time did you TYPICALLY go to bed ON WEEKDAYS? (Please be 

sure to write 'AM' or 'PM' in the last box)”. The participant wrote in the hour, minute, and 

AM or PM, each one in a separate box for each question. Sleep duration could usually be 

calculated from this information, if it was filled out correctly (answered all parts, did not 

indicate that they slept on average 23 hours per day, etc.). Participants were also asked, 

“During the past month, thinking about your average WEEKDAY, how long did you 

ACTUALLY sleep, EACH night (or your longest sleep period if you work a night shift or 

rotating shift)?” to which they wrote in the hours and the minutes they slept into separate 

boxes. Weekend sleep durations were assessed in the same manners. Please see Table 4.4 

for descriptive statistics.  

During the Henry Ford study, insomnia and sleep related anxiety were also 

measured. For the insomnia measure, participants indicated how often in the past month 

they had: difficulty falling asleep, difficulty staying asleep, and having non-refreshing 

sleep. The response options were “never”, “sometimes”, or  “always”. If a participant 

answered something other than “never” to at least one of the questions, he/she was asked 

a series of follow-up questions about duration of problems and extent of interference 

during the daytime. Participants met DSM-IV-TR criteria for insomnia if they a 
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minimum of one problem “usually” or “always” for at least a month, with at least 

“somewhat” interference (4th ed.; DSM-IV; American Psychiatric Association, 2000).  

The anxiety score was measured using the Ford Insomnia Response to Stress Test 

(FIRST). The FIRST is a 9-item scale that assessed if a person had difficulty sleeping 

under circumstances such as, “Before an important meeting the next day” and “After an 

argument”. The response options ranged from 1 to 4 point scale (1 = not likely; 2 = 

somewhat likely; 3 = moderately likely; 4 = very likely). This scale was then summed for 

a total score (Drake et al., 2004; Drake, Friedman, Wright & Roth, 2011) 

Categorical Sleep Variable. A categorical sleep variable was created to account 

for non-linear relationships between sleep duration and depression and EF. Typically 

nonlinear, quadratic trends in the data are captured by squaring the linear term, which 

results in larger values for both the positive and negative extreme values in a dependent 

variable, compared to both positive and negative values closer to the mean. Then an 

association can be captured between the dependent variable (e.g. depression) and both 

positive and negative extremes for the independent variable (e.g. sleep duration). 

However, the cross-lag models use sleep duration both as a dependent and independent 

variable, depending on the age, and when it is a dependent variable, may violate 

assumptions of normality. In order to avoid violating this assumption, I created a 

dichotomous sleep variable. Sleep was classified as either typical sleep (6.5 to 9.4 hours 

of sleep for weekdays and 6.5 to 10.4 hours of sleep for weekends) or atypical sleep (less 

than 6.5 or greater than 9.5 hours for weekday sleep and less than 6.5 or greater than 10.5 

for weekday sleep). These thresholds were based on visual inspection of within-wave 

sleep duration and depression symptoms scatterplots and are consistent with previous 
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literature (short (<7), medium (7-9), and long (≥9); Watson et al., 2010; Watson, et al., 

2012). Overall, the categorical sleep variable and the quadratic sleep term resulted in 

similar associations with depression symptoms. Descriptive information for these 

variables is available in Table 4.5.  

Table 4.5. Counts for Categorical Sleep Variable 

Atypical (high/low) 

/Typical N’s Age 13 Age 17 Age 21 Age 23 

Health - 17  

typical sleep 

- 

161 (127/34) 

/554 - - 

last night sleep 

- 

240 (205/35) 

/474 - - 

Jessor     

weekday 12 229 (46/183) 

/591 - - - 

weekend 12 193 (91/102) 

/624 - - - 

weekday 17 

- 

147 (123/24) 

/535 - - 

weekend 17 

- 

160 (121/39) 

/521 - - 

weekday 23 

- - - 

221(207/14) 

/534 

weekend 23 

- - - 

163(150/13) 

/592 

Henry Ford - 21   

weekday calculated 

- - 

177 (83/94) 

/533 - 

weekend calculated 

- - 

118 (52/66) 

/595 - 

weekday typical 

- - 

190 (171/19) 

/513 - 

weekend typical 

- - 

140 (109/31) 

/570 - 
Note. Atypical sleep / Typical Sleep counts. Weekday Typical Sleep = 6.5 to 9.4 hours. Weekend 

Typical Sleep = 6.5 to 10.4 hours. Weekday Atypical sleep = < 6.5 or > 9.5 hours. Weekend 

Atypical Sleep = < 6.5 or >10.5. 

 

 Weekend – Weekday Sleep Difference. In addition to assessing sleep duration’s 

relationship with EFs and depression, I also wanted to know if consistency in sleep 
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predicted differences in EFs and depression depending on the amount of sleep. For 

example, some people might have short weekday sleep durations and then catch up on 

sleep on the weekend, or they just have consistently shorter sleep durations. These two 

situations could predict differences in depression and EFs. For example, the person who 

catches up on sleep might perform better on EF tasks because he or she makes up for lost 

sleep on weekends compared to the person who does not. Or the person who has a more 

consistent short sleep duration might have a lower sleep drive, and therefore need less 

sleep and have better EFs. So I created a sleep difference variable and an average sleep 

variable in order to test these possibilities. The sleep difference variable assumed that 

most individuals sleep more on weekends than weekdays, and so I subtracted weekday 

sleep duration from weekend sleep duration. I also calculated the average amount of sleep 

by weighting weekday sleep by 5 (for 5 weekdays), and weekend sleep by 2 (for 2 

weekend days), and then dividing it by 7 (all the days in the week). Negative difference 

scores indicate that the person reported sleeping more during the week than on weekends, 

while positive scores indicate longer weekend sleep durations.  

Analyses 

Analyses were completed in Mplus 7.4 (Muthen & Muthen, 2012). Models used 

all available phenotypic data; non-independence (due to the inclusion of co-twins) was 

corrected with the type= COMPLEX option, which clusters on family.  For models with 

only continuous data, robust maximum likelihood (MLR) was used, and all variables 

were residualized on within-wave age and sex. For models with ordinal diagnoses, mean 

and variance adjusted weighted least squares (WLSMV) estimation (delta 

parameterization) was used, and within-wave age and sex was included as covariates. 
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While sex effects are not typically observed with EF measures, they can be for depression 

and sleep. Therefore, throughout the analyses I looked for evidence of sex effects and 

followed up when necessary. To assess model fit I primarily used comparative fit index 

(CFI) and root-mean-square error of approximation (RMSEA), with the criteria of CFI > 

0.95 and RMSEA < 0.06 as indicators of good fit, since Chi-square is sensitive to sample 

size (Hu & Bentler, 1998). Fit indices are presented in Figure notes or summarized in 

Table notes.  

Results 

   

Aim 1 – Are individual differences in sleep duration associated with depression? 

 Given previous research, I tested whether depression has a linear or quadratic 

relationship with sleep at our adolescent and young adult time, using regression. To test 

for nonlinear relationships I ran regressions with both a linear term and the square of the 

linear term to test for quadratic effects. Results from these regressions are presented 

below in Table 4.6.  

Table 4.6 Beta Estimates between Depression and Sleep Duration 

Linear 

Model 
Sleep 

Variable 

CESD 

- 12 

CESD 

- 17 

CESD 

- 21 

CESD 

- 23 

MDD 

- 12 

MDD 

- 17 

MDD 

- 23 

Weekday - 

12 

linear -0.09     0.06     

quadratic 0.12     0.06     

Weekend -

12 

linear -0.09     0.21     

quadratic 0.07     -0.02     

Weekday -

17 

linear  -0.12      -0.14   

quadratic  0.14      0.08   

Weekend -

17 

linear  -0.08      -0.10   

quadratic  0.07      0.02   

Typically 

sleep - 17 

linear  -0.13      -0.09   

quadratic  0.09      0.03   

 Last night 

- 17 

linear  -0.12      -0.03   

quadratic  0.05      0.06   
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Weekday -

21 

linear   -0.23      -0.13 

quadratic   0.19      0.08 

Weekend -

21 

linear   -0.17      -0.12 

quadratic   0.19      0.00 

Weekday - 

23 

linear     -0.10     -0.17 

quadratic     0.17     0.09 

Weekend - 

23 

linear     -0.05     -0.11 

quadratic     0.08     0.02 

insomnia linear 0.10 0.22 0.39 0.26    

Note. Presented are the standardized beta estimates from regressions where linear and quadratic 

sleep duration predicts depression. Bold = p<.05. CESD = Center of Epidemiological Studies 

Depression Scale scores; MDD = Lifetime Diagnosis for Major Depressive Disorder at a given 

wave of data collection. Weekday = Weekday sleep duration. Weekend = Weekend sleep 

duration. 

 

Generally I found linear relationships where shorter weekday and weekend sleep 

durations predicted more depression symptoms at ages 12 and 21. The fewer hours an 

individual reported that they typically slept and slept the night before testing in the health 

questionnaire also predicted more depression symptoms. Fewer hours of weekday sleep 

duration predicted more depression symptoms at age 17, but after controlling for 

quadratic sleep weekend sleep does not predicted depression. After controlling for 

nonlinear sleep, fewer hours of weekday sleep at age 23 predicted more depression 

symptoms.  

Nonlinear weekday sleep at 12, 17, 21, and 23, and nonlinear weekend sleep at 

age 21 predicted more depression symptoms, while the quadratic effects for weekend 

sleep were marginally significant at all other ages.5  I also saw an association between the 

amount 17 year olds reported they typically slept, but not how much they slept the night 

before testing, and depression. As seen in Figure 4.4, all of these relationships indicated 

                                                        
5At ages 21 and 23, I removed the CES-D symptom that related to sleep from the scores: all of the 

associations that were significant with the complete CES-D scores remained significant. CES-D 

scores with and without the sleep item were correlated at r>0.99. 
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that both fewer and more than a typical 7-9 hours of sleep and 7-10 hours on weekends, 

were associated with increased depression symptoms.  The plots show that both short 

sleep duration and long sleep duration are associated with increased depression, however, 

at the level of depression symptoms, those who report very short sleep seem to have the 

highest depression symptoms. 

 
Figure 4.4 Plots of Quadratic Sleep on Depression Symptoms. Y-axis: Dep: standardized 

depression symptom scores as measured by the CES-D questionnaire. X-axis: Sleep: standardized 

quadratic function of sleep duration.  

 

 As previously mentioned, there is a strong relationship between insomnia and 

depression. To examine whether the relationship between sleep duration and depression 

was an artifact of the relationship between insomnia and depression, I included insomnia 

in the model when it was available at age 21. I found that even when controlling for 

insomnia, less sleep still predicted more depression symptoms for the measures that 
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previously had a significant relationship. Likewise, anxiety about future events, or 

rumination about past events while lying in bed could have a direct influence on sleep 

duration. So I ran models including a Ford Insomnia Response to Stress Test (FIRST) 

score, which assesses a person’s ability to fall asleep after or before stressful situations 

(Drake et al., 2004). Again, all relationships that were previously significant at age 21 

remained after including this covariate.  

MDD 

 In addition to depression symptom scores, depression diagnosis was also available 

at ages 12, 17, and 23 for these subjects; therefore I tested whether linear and quadratic 

sleep predicts the stricter criteria of diagnosis. Overall I saw the same pattern as with 

depression symptoms: less sleep predicted diagnosis linearly and atypical sleep was 

associated with more depression. Only 10 participants at age 12 met the criteria for 

depression; neither linear nor quadratic sleep predicted at this age, and so after these 

regressions, age 12 MDD diagnosis was dropped from further analyses. Less weekday 

sleep, controlling for quadratic sleep, predicted increased depression at ages 17 and 23. 

Both fewer hours and more hours of sleep than typical at age 23 also predicted 

depression. As there was no age 21 time point for depression diagnosis, the relationship 

between age 21 sleep and MDD diagnosis was not assessed. When controlling for 

quadratic sleep, reported typical sleep in the health survey at age 17 and weekend sleep at 

age 23 no longer significantly predict MDD. Overall the phenotypic, within-wave 

regressions and plots indicate that shorter sleep durations and atypical sleep were 

associated with increased depression symptoms. 

Aim 2 – What are the longitudinal relationships between sleep duration and 
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depression? 

Insomnia is a known predictor of depression; across a wide range of ages, 

individuals with insomnia are twice as likely to report depression than those without 

sleep problems during follow ups 1-34 years later (Baglioni et al., 2011). Therefore I 

wanted to test the longitudinal relationships between sleep duration and depression to see 

if similar patterns were observed. These longitudinal relationships were assessed within a 

cross-lag model framework (see Figure 4.5 for an example), with both a linear sleep term 

and a categorical sleep term to account for the non-linear trends in the data. A cross-lag 

model was used because it provides information about prospective relationships while 

controlling for earlier time points, and whether within-wave relations exist even after 

controlling for previous measures or are due to earlier measures. The categorical sleep 

term was a binary variable with one category for “typical” sleep (6.5-9.4 hours on 

weekday nights, and 6.5-10.4 hours on weekend nights) and the other for “atypical” sleep 

(<6.5 or >9.4 hours on weekday nights and <6.5 or >10.4 on weekend nights). Refer to 

methods section above for more information on the categorical sleep variable.  

 
Figure 4.5 Example of a longitudinal cross-lag model between sleep and depression over 3 waves 

of data. a1 and a2 represent the effects of sleep at time t on sleep at time t+1; b1 and b2 represent 

the effects of depression at time t on depression at time t+1;  c1 and c2 represent the effects of 

sleep at time t on depression at time t+1, controlling for depression at time t; d1 and d2 represent 

the effects of depression at time t on sleep at time t+1 controlling for sleep at time t; e1 represents 
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the correlation between sleep and depression at time t; e2, and e3 represent residual correlations 

between sleep and depression within a given time point; residuals not depicted.  
 

The first step in creating the cross-lag models was to establish a model for the 

categorical and linear sleep variables. I modeled all of the autoregressive paths, sleep 

from time t to sleep at time t+1, for both the linear and categorical variables respectively. 

I also modeled all of the within-wave effects with correlations between linear and 

categorical sleep at age 12, and then residual correlations at all other waves. Then I used 

fit indices with the strongest effects to add in either cross-lag paths between linear sleep 

and categorical sleep, or regressions of sleep at time t on sleep at time t+2 (or more), until 

adequate fit was achieved. The final models are presented in Figure 4.6 for both weekday 

(Panel A) and weekend sleep (Panel B).  

 

Figure 4.6 Cross-lag model of the effects of linear sleep on categorical sleep. Panel A depicts 

weekday sleep; CFI=.992, RMSEA=.030. Panel B depicts weekend sleep; CFI=.980, 
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RMSEA=.036.  Solid lines = p<.05. Black bolded lines = Correlations within age with p<.05. Cat 

Slp = Categorical Sleep (Weekday: Atypical (<6.5 or >9.5)/Typical (6.5-9.5); Weekend: Atypical 

(<6.5 or >10.5)/Typical (6.5-10.5)). Longitudinal cross-lag paths more than one time point 

removed were modeled, but are not pictured here if they were not significant. 

 

There were within-wave relationships between linear and categorical sleep at all 

ages, for both weekday and weekend sleep. At age 12, linear weekday sleep correlated 

positively with categorical sleep, meaning that those who slept more on weekdays at age 

12 were more likely to have atypical weekday sleep. All other ages saw the reverse 

pattern where shorter sleep duration was associated with atypical sleep (sleeping more or 

less than typical for weekday or weekend sleep). This association appears to get stronger 

as people age. Both weekday and weekend sleep saw a longitudinal association where 

fewer hours sleep at age 12 predicted atypical sleep at age 23. The weekday model also 

saw that less age 12 sleep predicted atypical sleep at age 17. Overall, sleep duration is 

associated with whether or not someone sleeps more or less than average within a given 

time point, but sleep duration in early adolescence seems to also predict longitudinal 

sleep patterns.  

In addition to these cross-lag paths, earlier sleep duration seems to predict later 

duration, and earlier sleep category predicts later sleep category, over and above the 

autoregressive paths one time point removed. Both weekday and weekend sleep models 

indicated positive relationships between age 12 sleep duration and age 21 sleep duration, 

and age 17 sleep duration and age 23 sleep duration. Similarly, they both indicated age 17 

categorical sleep predict age 23 categorical sleep, where atypical sleep at a younger age 

was associated with atypical sleep at a later age, over and above what was already 

predicted through the autoregressive paths. Weekend sleep showed additional effects of 

early sleep on later sleep where age 12 sleep duration positively predicted age 23 sleep 
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duration, and age 12 categorical sleep positively predicated age 21 categorical sleep. This 

could indicate that age 12 sleep patterns are particularly influential on later sleep patterns.  

When adding in the other behavioral variables (e.g. depression or EF) to our 

cross-lag sleep models I allowed for longitudinal cross-lag paths, where earlier sleep 

duration predicted all subsequent measures of depression symptoms (and vice versa). If 

cross-paths were more than 1 time point removed from the predictor and not significant, 

then those lines were excluded from the figures for ease of visual interpretation. Also, as 

the sleep models change very little with addition of the depression or EF variables, I will 

focus on the relationship between sleep and depression and sleep and EF when describing 

cross-lag models.  

The cross-lag model between weekday sleep and depression symptoms showed 

that age 12 sleep predicts age 17 depression scores (see Figure 4.7). Both the linear and 

categorical measures predicted CESD, such that less sleep and atypical sleep predicted 

higher endorsement of depression symptoms. Again, shorter sleep duration at age 12 

predicted more depression at age 21, after controlling for age 12 and age 17 categorical 

sleep, age 17 linear sleep and age 12 depression. Similarly, increased depression at age 

17 predicted less sleep at age 21, controlling for age 12 and 17 sleep duration. In contrast, 

those with atypical sleep at age 17 are less depressed at ages 21 and at age 23, after 

holding constant previous depression and sleep. Similarly, atypical sleep at age 21 

predicts less depression at age 23, holding constant age 21 depression and previous waves 

of sleep. Interestingly, age 17 sleep duration and age 21 sleep duration have opposing 

effects on age 23 depression symptoms, where more sleep at 17 predicts more depression 

at age 23, but less sleep at age 21 predicts more depressive symptoms.  
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All autoregressive paths for depression were significant. Consistent with simple 

regressions, there were significant, negative correlations between within-wave linear 

sleep and depression at ages 12, 17, and 21, where fewer hours of sleep were associated 

with more depression symptoms. There were positive correlations between categorical 

sleep and depression at ages 17, 21, and 23, where atypical sleep was associated with 

increased depression symptoms. Inconsistent with the simple regressions, within the 

weekday cross-lag model age 12 categorical sleep and age 23 sleep duration did not show 

within-wave correlations with depression.  

To summarize, shorter sleep durations at ages 12 and 21 predict more depression 

at ages 17, 21, and 23, but longer sleep durations at age 17 predicts more depression 

symptoms at age 23, controlling for previous waves of sleep, and accounting for earlier 

depression. Also atypical sleep at ages 12 predicts more depression symptoms at ages 17, 

but atypical sleep at 17 and 21 predicts less depression at ages 21 and 23, holding 

previous depression and sleep constant. Some of these changes in direction of association 

could be due to changing circumstance with increased flexibility in college and post-

university life.  
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Figure 4.7. Cross-lag model of the effects of depression symptoms on weekday sleep. Panel A 

depicts weekday sleep; CFI=.988, RMSEA=.037. Panel B depicts weekend sleep; CFI=.972; 

RMSEA=.048. Solid lines = p<.05. Black bolded lines = Correlations within age with p<.05. All 

dashed lines p>.05. CESD = Center for Epidemiological Studies-Depression score. Sleep = linear 

sleep duration. Cat Slp = Categorical Sleep (Weekday: Atypical (<6.5 or >9.5)/Typical (6.5-9.5); 

Weekend: Atypical (<6.5 or >10.5)/Typical (6.5-10.5)). Longitudinal cross-lag paths more than 

one time point removed were modeled, but are not pictured here if they were not significant. 

 

The weekend cross-lag model with depression symptoms showed a different 

pattern from weekday sleep. Age 12 sleep did not predict depression at all, but age 12 

depression did predict atypical sleep at age 17. Again, earlier depression had an effect on 

later sleep, where more depression symptoms at age 17 predicted shorter sleep duration at 

21, holding previous sleep duration constant. Inconsistent with weekday sleep, atypical 
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weekend sleep at age 17 predicted more depression symptoms at age 2; but consistent 

with weekday sleep, atypical sleep at age 21 predicted fewer depression symptoms, 

holding age 21 depression and sleep duration constant.  

All autoregressive paths but one were significant; sleep category for weekend 

sleep at age 12 did not significantly predict age 17 sleep category status. Within-wave 

correlations were very similar to weekday sleep, with one exception. Shorter sleep 

durations were associated with increased depression symptoms at ages 12, 17, and 21, 

while atypical sleep was associated with more depression at ages 17 and 21, but not 23.  

 Longitudinal relationships between sleep and depression diagnosis were also 

assessed with cross-lag models, however depression diagnosis was not available at age 

21. Also as previously mentioned, due to low rates of depression diagnosis at age 12, 

MDD was left out of the model at that time point. See Figure 4.8, Panel A for the final 

weekday model.  
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Figure 4.8. Cross-lag model of the effects of depression diagnosis on sleep.  

Panel A depicts weekday sleep; CFI=1.000, RMSEA=0.000. Panel B depicts weekend sleep; 

CFI=.985; RMSEA=.033. Solid lines = p<.05. Black bolded lines = Correlations within age with 

p<.05. All dashed lines p>.05. Green lines = linear sleep was the predictor variable. Purple lines = 

categorical sleep was the predictor variable. Blue lines = depression symptoms were the predictor 

variable. Sleep = linear sleep duration. MDD = Lifetime Diagnosis of Major Depressive Disorder.  

 

As expected, when I saw results, either less sleep, or atypical sleep was associated 

with depression diagnosis. Fewer hours of sleep at age 12 predicted depression at age 17, 

holding constant (a)typical sleep status. Age 17 MDD predicted too much or too little 

sleep at age 23, accounting for previous waves of both categorical and linear sleep. The 

autoregressive path between age 17 and age 23 depression was significant. Within each 
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of the age 17 and 23 waves, fewer hours of sleep were associated with depression. Age 

17 atypical sleep was also associated with depression. 

 Overall a similar pattern emerged for weekend sleep (see Figure 4.7, Panel B), 

however fewer hours of weekend sleep at age 12 was only marginally associated with 

MDD at age 17. As seen in weekday sleep, depression diagnosis at age 17 predicted 

sleeping too much or too little at age 23. Weekend sleep showed some differences from 

the weekday model in the within-wave correlates. Linear and categorical weekend sleep 

at age 17 no longer associated with MDD diagnosis. Similarly, linear sleep at age 23 was 

no longer related to MDD.  

 With a few exceptions, fewer hours of sleep and atypical sleep (sleeping too much 

or too little) were related to both depression symptoms and diagnosis longitudinally. 

However, some anomalies from late adolescence to early adulthood (e.g. atypical 

weekday sleep at age 17 predicting fewer depression symptoms at age 21). These 

anomalies could reflect the drastic change in environment, from living with parents with 

a set schedule, to college with a more flexible schedule and less oversight or delayed 

circadian phase around the time of puberty, which often peaks in young adulthood 

(Hagenuer, Perryman, Lee & Carskadon, 2009). More often earlier sleep (particularly 

weekday sleep) was predictive of later depression; however depression at age 17 

consistently predicted age 21 sleep patterns across models. Increased depression 

symptoms predicted fewer hours of sleep, and MDD diagnosis predicted atypical sleep.  

When earlier sleep predicted later depression, typically shorter sleep durations predicted 

more depression, but categorical sleep differentially predicted depression depending on 

age.  
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Aim 3 – Is there a relationship between sleep duration and EFs?   

 Given relationships previously observed between sleep deprivation, EFs, and 

sleep duration and cognitive measures such as academic performance, I predicted I would 

see shorter sleep durations and atypical sleep status associated with lower Common EF 

and Updating-specific abilities at the latent level, and potentially shorter sleep duration 

and atypical sleep status associated with better Shifting-specific abilities. However, as it 

is possible that students with lower EFs differ in sleep drive, are not involved in as many 

school activities, skip early classes, schedule later classes, or are unemployed, and 

therefore sleep more or more regularly than their higher EF counterparts. In order to test 

for overall linear trends and for the possibility of both long and short sleepers, similar 

analyses were conducted at the phenotypic level between sleep duration and our latent 

variable model of EF. Again, I included both a linear sleep variable and then the square 

of that variable to test for quadratic effects. 

 Updating-specific abilities, but not Common EF or Shifting-specific abilities 

were related to linear sleep duration, after controlling for nonlinear sleep. I found less 

sleep at age 12 predicted better Updating-specific abilities, but more sleep at age 21 

(weekday and weekend respectively) was associated with better Updating-specific 

abilities at ages 17 and 23 (see Table 4.7).  
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Table 4.7 Linear and Quadratic Regression Estimates between EFs and Sleep Duration 

Sleep Variable Common EF Updating  Shifting 

 Age 17 EFs 

Age 12 

weekday  

linear 0.06 -0.16 -0.01 

quadratic -0.06 -0.02 0.03 

Age 12 

weekend  

linear -0.00 0.05 -0.03 

quadratic -0.10 -0.01 -0.02 

Age 17 

weekday  

linear 0.02 -0.02 -0.02 

quadratic -0.14 0.13 0.17 

Age 17 

weekend  

linear 0.02 0.02 0.06 

quadratic -0.12 0.05 0.23 

Age 17 

Typical 

linear -0.02 -0.02 -0.09 

quadratic -0.09 0.13 0.14 

Age 17 

Last Night 

linear 0.08 -0.07 0.01 

quadratic 0.00 -0.06 0.04 

Age 21 

weekday  

linear -0.03 0.13 0.07 

quadratic -0.00 -0.02 0.08 

Age 21 

weekend  

linear -0.02 0.11 -0.02 

quadratic -0.10 0.14 0.18 

 Age 23 EFs 

Age 21 

weekday  

linear -0.04 0.09 -0.04 

quadratic 0.02 -0.06 0.00 

Age 21 

weekend  

linear 0.02 0.13 -0.07 

quadratic -0.04 -0.01 0.06 

Age 23 

weekday 

linear -0.07 0.02 -0.07 

quadratic -0.13 -0.09 0.05 

Age 23 

weekend 

linear 0.04 0.02 -0.06 

quadratic -0.06 -0.06 0.04 

Note. Presented are the beta estimates from regressions where both linear and quadratic sleep 

duration predict latent EFs. Bold = p<.05.  

 

 When it comes to non-linear effects of sleep, I hypothesized that for different 

reasons, both those getting too little sleep and too much sleep might have disrupted EFs, 

and therefore tested the quadratic relationship with EF as well. Both Common EF and 

Shifting-specific factors showed a positive relationship with quadratic sleep duration. 

Too much or too little age 17 weekday, weekend, and typically reported sleep all 

predicted better Shifting-specific abilities at age 17. Additionally better age 17 Shifting-
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specific abilities related to more extreme weekend sleep at age 21. Taken together this 

indicates a consistent relationship between both too little and too much sleep at age 17 

and better Shifting-specific ability. However, age 23 weekday sleep negatively predicted 

age 23 Common EF, indicating that worse Common EF was associated with too much 

and too little sleep. The trade-off seen here between Common EF and Shifting-specific 

abilities has been previously reported (Miyake & Friedman, 2012) and might reflect 

competition between goal maintenance and flexibility to switch between goals (Herd et 

al., 2014).  

 The longitudinal relationships between EFs and sleep duration were also assessed, 

because chronic partial sleep deprivation might lead to long-term decrements in EFs; 

alternatively, better EFs might lead to a more regimented sleep scheduled, either imposed 

by parents or individuals themselves, and therefore better Common EF and Updating-

specific abilities could be associated with typical sleep durations. Again, longitudinal 

relationships were assessed in a cross-lag model that included both the linear and a 

categorical sleep term. EFs were simultaneously estimated in weekday and then weekend 

models, as shown in Figure 4.8; however, the results are presented in figures with each 

EF latent factor by itself. Again, I removed non-significantcross-lag paths more than one 

time point removed (eg. age 12 sleep predicting age 23 EFs). Residual correlations for the 

Updating-specific factor at age 23 could not be estimated because the residual variance 

for that factor was fixed at zero. This was done because the Updating-specific factor at 

age 17 almost perfectly predicts the Updating-specific factor at age 21.  
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Figure 4.9. Cross-lag model of the effects of sleep on EFs.  

Single headed arrows = regression path. Double headed arrows = correlation. Sleep = linear sleep 

duration. Common EF = Common Executive Function. Updating-Sp. = Updating Specific factor. 

Shifting-Sp. = Shifting Specific factor.  

 

 Better Common EF at age 17 predicted atypical weekday sleep at age 21, and 

fewer hours of weekday sleep at age 23 (see Figure 4.10, panel A). In general the 

weekday model shows significant residual correlations between linear and categorical 

sleep at each time point, but only the residual correlation between linear sleep and 

Common EF and categorical sleep and Shifting-specific abilities were significant at age 

17. As expected, all autoregressive EF paths were significant in both the weekday and 

weekend sleep models.  
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Figure 4.10. Cross-lag models of the effects of linear and categorical sleep with a Common EF 

latent factor. Panel A depicts weekday sleep; CFI=.957, RMSEA=0.026. Panel B depicts 

weekend sleep; CFI=.971; RMSEA=.022. Solid lines = p<.05. All dashed lines p>.05. Green lines 

= linear sleep was the predictor variable. Purple lines = categorical sleep was the predictor 

variable. Orange lines = EFs were the predictor variables. Sleep = linear sleep duration. Cat = 

Categorical sleep. Common EF = Common Executive Function.  
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Weekend sleep showed a different pattern of results from weekday sleep for 

Common EF. For example, atypical weekend sleep at ages 12 and 17 predicted better 

Common EF (see Figure 4.10, panel B). However typical weekend sleep at age 12 

predicted better Common EF at age 17 while controlling for previous sleep durations. 

Holding categorical sleep and previous depression constant, longer sleep durations at age 

17 predicted better Common EF at age 23. Common EF was the only EF to show within-

wave correlations between weekend sleep and an EF: Both age 17 and 23 typical sleep 

was associated with better Common EF controlling for previous sleep and Common EF.  

Within the same weekday model, Updating-specific abilities and Shifting-specific 

abilities were also examined. Updating results are presented in Panel A of Figure 4.11. 

Controlling for age 12 sleep, typical sleep and shorter sleep durations at 17 predicted 

better Updating-specific abilities at age 23, while better Updating-specific abilities at age 

17 predicted typical weekday sleep and longer sleep durations at age 21. Similarly, longer 

weekday sleep durations predicted better Updating-specific abilities at 23; however 

typical sleep at age 21 predicted worse Updating-specific abilities at 23.  
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Figure 4.11. Cross-lag models of the effects of linear and categorical sleep with an Updating-

Specific latent factor. Panel A is the model with weekday sleep. Panel B is the model with 

weekend sleep. Solid lines = p<.05. All dashed lines p>.05. Green lines = linear sleep was the 

predictor variable. Purple lines = categorical sleep was the predictor variable. Orange lines = EFs 

were the predictor variables. Sleep = linear sleep duration. Cat = Categorical sleep. UPD-Spc. = 

Updating-Specific abilities.  
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Weekend and weekday sleep showed similar patterns with Updating-specific 

abilities (see Panel B of Figure 4.11). Holding previous sleep constant, better age 17 

Updating-specific abilities predicted typical sleep at age 21, while typical sleep at 17 

predicted better Updating-specific abilities at 23. Shorter sleep durations at age 17 

predicted better Updating-specific abilities at age 23, but shorter sleep durations at 21 

predicted worse Updating-specific abilities at 23. There could be a number of 

explanations for this reversal in patterns with weekday and weekend sleep, ranging from 

environmental to biological (such as an increased sleep drive in early adulthood that’s 

associated with better Updating-specific abilities), however more research will be needed 

to determine why this flip occurs.  

The same flip exists in weekday sleep with Shifting-specific abilities: Shorter 

sleep durations at age 17, but longer sleep durations at 21 predict better Shifting-specific 

abilities at age 23 (see Figure 412). Also similar to previous EFs, better Shifting-specific 

abilities at 17 predict typical sleep at 21. Consistent with weekday sleep and Updating-

specific abilities, after controlling for previous Shifting-specific abilities and sleep, 

typical weekday sleep at 21 predicts worse Shifting-specific abilities at 23. This same 

pattern is seen with age 17 typical weekday sleep predicting worse Shifting-specific 

abilities at 23, however the opposite pattern was seen with Updating-specific abilities for 

that time point. Atypical sleep at ages 17 and 21 predicting worse shifting specific 

abilities at 23.  
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Figure 4.12. Cross-lag models of the effects of linear and categorical sleep on a Shifting-Specific 

latent factor. Panel A is the model with weekday sleep. Panel B is the model with weekend sleep. 

Solid lines = p<.05. All dashed lines p>.05. Green lines = linear sleep was the predictor variable. 

Purple lines = categorical sleep was the predictor variable. Orange lines = EFs were the predictor 

variables. Sleep = linear sleep duration. Cat = Categorical sleep. SHI-Spc. = Shifting-Specific 

abilities.  

 

The cross-lag relationships between weekend sleep and Shifting-specific abilities 

were fewer than with weekday sleep (see Figure 4.12). What remained was consistent 
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with weekend sleep and Updating-specific abilities, but inconsistent with weekend sleep 

and Common EF: Shorter sleep duration and typical weekend sleep at age 17 predicted 

better Shifting-specific abilities at age 23. While Common EF and Shifting-specific 

abilities often show opposing patterns with maladaptive behaviors, it was somewhat 

unexpected that Common EF and Updating-specific abilities would show opposing 

patterns. This will be covered more extensively in the discussion.  

Sleep Consistency 

 In addition to understanding sleep duration’s relationship with depression and 

EFs, I also wanted to know if different patterns of sleep predicted differences in 

depression or EFs. For example, people with better EFs or less depression might stay up 

later working during the week and then catch-up on sleep on the weekends or might 

consistently make sure they get enough sleep no matter if it is a weekday or weekend. So, 

I ran within-wave regressions using a difference score between weekend sleep and 

weekday controlling for the average amount of sleep (see methods for a description on 

how the average sleep and sleep difference variables were created; results presented in 

Table 4.8).  
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Table 4.8 Standardized Beta Estimates from Models with Sleep duration Average and 

Difference Scores 

Weekend-Weekday  Sleep Variable Age 12 Age 17 Age 21 Age 23 

CESD      

Age 12 Average  0.20    

 Difference  -0.19    

Age 17 Average   0.21   

 Difference   -0.21   

Age 21 Average    0.43  

 Difference    -0.32  

Age 23 Average     0.12 

 Difference     -0.11 

EFs 17      

Common EF Average  -0.11 -0.03 0.04  

 Difference  0.05 0.07 -0.01  

Updating-Specific Average  0.17 -0.01 -0.26  

 Difference  0.03 0.00 0.21  

Shifiting-Specific Average  0.03 -0.02 -0.07  

 Difference  -0.05 0.02 -0.02  

EFs 23      

Common EF Average    0.02 0.09 

 Difference    0.04 0.06 

Updating-Specific Average    -0.21 -0.02 

 Difference    0.21 0.03 

Shifting-Specific Average    0.10 0.12 

 Difference    -0.12 -0.11 

Note. Presented are the standardized beta estimates from regressions where sleep average and 

sleep duration difference scores predict depression symptoms and EFs. Bold = p<.05. CESD = 

Center of Epidemiological Studies Depression Scale scores; EFs 17 = EF abilities at age 17; EFs 

23 = EF abilities at age 23.  

 

 Holding constant average sleep duration, those who slept less on weekends (and 

more on weekdays) showed more depression symptoms at age 12, 17, and 21. The only 

EF to show a relationship with weekend-weekday sleep differences was Updating-

specific abilities. Again, after controlling for average sleep duration, catching up on sleep 

on the weekends during college (age 21) was associated with better Updating-specific 

abilities at both ages 17 and 23.   

Aim 4 – What is the relationship between depression, sleep, and EF? 
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The final aim of this chapter was to look at the relationship between sleep, 

depression, and EFs in the same model in order to better understand how these variables 

affect each other. I ran a series of mediation models with both sleep and depression 

symptoms measured at the same age and the closest wave of EF data (eg. age 12 

depression and sleep and age 17 EFs). I ran these models with both the linear and 

categorical sleep variables to better understand the non-linearity of the relationships. 

Bootstrap confidence intervals were also calculated, and in cases of partial indirect 

effects, the confidence intervals for the direct effect did not include zero. When I found 

evidence for indirect effects, depression was mediating the modest relationship between 

EFs and sleep (see Table 4.9 for results).  

Table 4.9. Indirect Effects of Sleep on EFs Through Depression 

 Common EF Updating-Specific Shifting-Specific 

Sleep Variable Total Indir Direct Total Indir Direct Total Indir 

 

Direct 

Age 17 EFs 

Age 12 

Weekday 

linear 0.07 0.02 0.05 -0.16 0.03 -0.19 -0.03 -0.02 -0.01 

categ -0.00 -0.01 0.01 -0.00 -0.01 0.01 0.04 0.01 0.03 

Age 12 

Weekend 

linear 0.03 0.02 0.01 0.05 0.02 0.03 -0.03 -0.02 -0.02 

categ -0.13 -0.01 -0.12 -0.13 -0.01 0.01 0.02 0.01 0.01 

Age 17 

Weekday 

linear -0.06 0.01 -0.07 0.05 0.00 0.05 0.08 0.00 0.08 

categ -0.14 -0.04 -0.10 -0.14 -0.01 0.11 0.17 0.00 0.17 

Age 17 

Weekend 

linear 0.00 0.02 -0.02 0.02 0.01 0.01 0.10 -0.00 0.09 

categ -0.11 -0.01 -0.10 -0.11 -0.00 0.02 0.21 0.00 0.21 

Age 17 

Typical 

linear -0.05 0.02 -0.07 0.03 0.01 0.02 -0.05 0.00 -0.05 

categ -0.09 -0.04 -0.05 0.11 -0.01 0.12 0.13 -0.00 0.13 

Age 17 

Last night 

linear 0.02 0.03 -.02 -0.04 0.01 -0.04 0.01 -0.00 0.01 

categ -0.12 -0.01 -0.11 0.02 -.00 0.02 0.03 0.00 0.03 

Age 21 

Weekday 

linear 0.01 0.02 -0.01 0.05 0.00 0.05 0.07 -0.07 0.08 

categ 0.07 -0.02 0.09 -0.15 -0.00 -0.15 0.03 0.01 0.02 

Age 21 

Weekend 

linear -0.04 0.01 -0.05 0.10 0.00 0.09 0.02 -0.00 0.02 

categ -0.06 -0.01 -0.05 -0.04 -0.00 -0.04 0.14 0.00 0.14 

  Age 23 EFs 

Age 21 linear -0.03 0.03 -0.06 0.06 0.01 0.05 0.02 0.00 0.02 
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Weekday categ 0.02 -0.03 0.04 -0.06 -0.01 -

0.05 

0.10 -0.00 0.10 

Age 21 

Weekend 

linear 0.01 0.02 -0.02 0.12 0.01 0.11 -0.03 0.00 -0.03 

categ -0.04 -0.02 -0.02 -0.03 -0.01 -

0.02 

0.11 -0.00 0.11 

Age 23 

Weekday 

linear 

-0.15 -0.00 -0.14 -0.11 -0.01 

-

0.11 -0.09 0.00 -0.09 

categ -0.08 -0.02 -0.06 -0.19 -0.02 -

0.17 

-0.03 -0.00 -0.03 

Age 23 

Weekend 

linear -0.02 0.00 -0.03 0.04 0.00 0.04 -0.03 0 -0.03 

categ -0.11 -0.01 -0.11 0.03 -0.01 0.04 0.05 -0.00 0.06 

Note. Presented are the standardized beta estimates from mediation analyses where depression 

mediates the relationship between sleep duration and latent EFs. Bold = p<.05. Linear = linear 

sleep variable. Indir = Indirect effect. Categ = categorical sleep variable.  

 

The following results are for models that had both a significant total effect 

between sleep and EF, and a significant indirect effect of sleep through depression 

symptoms. A significant partial indirect effect was observed, but the overall effect was 

minimally changed (it went from .16 to .18.) and is not particularly notable. 

Instead of a partial indirect effect, it seems that the effect of atypical age 17 sleep 

to predict worse age 17 Common EF, controlling for linear sleep effects, is mediated 

through depression at that age.  In other words, once accounting for depression, sleeping 

too much or too little does not predict worse Common EF. 

Results also show a partial indirect effect at age 23 of atypical weekday sleep 

predicting worse Updating-specific abilities, through depression, holding linear sleep 

duration constant. So at least some of the relationship between sleeping too much or too 

little at age 23 and worse Updating-specific abilities at age 23 is mediated through level 

of depression at that age. 

 Both sleep and depression, and depression and EFs have stronger total 

relationships than sleep and EFs, yet, those relationships do not seem to be due to their 

relationships with EFs and sleep, respectively. It is the relatively weaker relationship 



Individual Differences in Executive (Dys)Function  114 

between sleep durations and EFs that is at least partially mediated by depression 

symptoms. I observed some significant indirect effects of sleep on Common EF and 

Updating-specific abilities through depression at a given age, but none with Shifting-

specific abilities. However, the total amount of phenotypic variance explained between 

sleep and EFs was small to begin with, and the indirect effects are even smaller and often 

did not result in a substantial amount of change despite being significant. Therefore, these 

results should be interpreted cautiously until replicated.  

 

 

Discussion 

 Individual differences in sleep duration were meaningfully related to both 

depression and EFs, both within a given time point and longitudinally. When significant, 

regressions including both linear and categorical sleep indicate that shorter sleep 

durations, and sleeping more or less than typical, are associated with increased 

depression, better Shifting-specific abilities, worse Common EF, and mixed associations 

with Updating-specific abilities. With the exception of longer sleep predicting worse 

Updating-specific abilities at age 12, these associations were all in the hypothesized 

directions.  

After controlling for previous levels of sleep and depression or EFs in 

longitudinal models the patterns of association sometimes became less clear. Some 

consistent patterns emerged across longitudinal models though. For example, shorter 

weekday sleep durations at age 12 significantly predicted both increased depression 

symptoms and depression diagnosis at age 17. Also, more age 17 depression symptoms 
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predicted fewer hours of both weekday and weekend sleep at age 21, while MDD 

diagnosis at age 17 predicted atypical sleep at age 21. Patterns also emerged across the 

EF models, such that Updating- and Shifting-specific abilities often showed more similar 

patterns with each other than with Common EF. For example, after controlling for 

previous sleep, shorter sleep duration and typical weekday and weekend sleep at age 17 

predicted both better Updating- and Shifting-specific abilities, but longer weekend sleep 

duration and typical weekend sleep predicted worse Common EF. Similarly, better age 17 

Updating- and Shifting-specific abilities predicted typical weekday sleep at 21, but worse 

age 17 Common EF predicted typical weekday sleep at 21. A trade-off between Common 

EF and the other two EFs with sleep seems to be relatively consistent across models.  

A portion of the associations seen in the cross-lag models, particularly those 

specific to each model, are inconsistent from what would be predicted by the within-wave 

regressions. In fact, more associations emerge in the EF models than would be expected 

from those regressions. There are a few potential reasons for differences. First, sleep 

could have different associations with depression or EFs longitudinally due changing 

environmental and developmental factors between measurements. Second, the cross-lag 

models take into account previous sleep patterns, allowing for more complex associations 

to emerge across time. For example, in the weekday model, better updating- and Shifting-

specific abilities predict typical sleep at age 21, but typical sleep at age 21 predicts worse 

updating- and Shifting-specific abilities at age 23. The cross-lag model was used to assess 

longitudinal relations precisely because it examines them in the context of factors that 

matter: previous sleep durations and depression or EFs.  If previously shorter sleep 

duration at age 12 have induced depression at age 17, and then age 17 depression is 
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influencing age 21 sleep (such as is the case with weekday sleep durations and depression 

symptoms), that is more informative compared to a simple association between age 12 

sleep duration and age 21 depression.  

To expand upon the simple regressions, I ran mediation models that included both 

categorical and linear sleep durations, depression symptoms, and EFs. There were 

theoretical motivations for any of the three phenotypes to act as a mediator between the 

other two. For example, depression could underlie abnormalities to sleep duration and 

decreased EFs. Alternatively, worse EF abilities could cause mismanagement of time 

leading to less sleep and worse decision-making leading to depression. Short sleep 

duration could also impact emotional affect and executive abilities. When significant 

indirect effects were observed, there were indirect effects of sleep duration on EFs 

through depression. While significant, these indirect effects were often small in 

magnitude and often only partial mediations. Given that the total effects of sleep on EFs 

were also small to begin with, these results may not be particularly meaningful.  

Overall, individual differences in sleep duration predict variation in both 

depression and EFs. Both linear and categorical sleep durations, when individuals exhibit 

extreme sleep duration (sleeping more or less than the majority of other people), 

differentially predict depression and EFs. When it comes to understanding sleep durations 

relationships with EFs and depression longitudinally, sleep duration seems to have a 

bidirectional effect with both phenotypes. Sometimes previous sleep duration predicts 

later depression (or EFs), sometimes those phenotypes predict later sleep duration. While 

depression, EFs, and sleep duration all relate to each other, no one variable seems to 

substantially mediate the relationship of the other two. This could potentially indicate that 
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other factors, unstudied here, are responsible for these associations. The next step is to 

decompose the variation between sleep durations and these phenotypes into genetic, 

shared, and non-shared environmental factors. This can indicate where to look for 

variables that influence these relationships. 

 

 

 

  



Individual Differences in Executive (Dys)Function  118 

CHAPTER 5 

Genetic and Environmental Relationships between Sleep duration, EFs and 

Depression 

Understanding the relationships between sleep duration, EF, and depression at the 

phenotypic level is important, but understanding the extent to which genes and 

environment influence these variables and their relationships can provide additional 

insight into how these variables affect each other. For example, if environmental 

influences shared between sleep duration and depression are driving the phenotypic 

associations, then identifying and targeting environments that influence both should help 

improve both. However, shared genetic influences could also be contributing to the 

phenotypic association between sleep duration and EFs or depression.  

While a significant amount of sleep research focuses on interventions to target 

sleep habits and environment (e.g., Morin, Culbert, & Schwartz, 1994; Irwin, Cole & 

Nicassio, 2006; Meltzer & Mindell, 2014), the heritabilities of sleep characteristics are 

also well supported by previous research (for a review see Barclay & Gregory, 2013). For 

sleep duration in particular, there have been discrepancies in results, particularly as age, 

sample size, and measurement of sleep duration varied. For example, a study conducted 

by Barclay and colleagues (2010) found shared environment, rather than genetics, to be 

important for sleep duration in adulthood. However, other studies found sleep duration to 

be moderately heritable in both childhood (h2 = 0.52, Sletten et al., 2013) and adult 

samples (h2 = 0.44, Partinen et al., 1983).  

During the transition from adolescence to young adulthood, pubertal onset and 

hormonal changes accompany changes in sleep (Hagenauer, Perryman, Lee, & 
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Carskadon, 2009). Notably, circadian phase is delayed as adolescents transition towards a 

more evening chronotype, with females starting this delay process and peaking a year 

earlier than males. This delay in circadian phase is observed in a number of other cultures 

and is conserved in other mammalian species, all of which points to genetic contributions 

to these changes in sleep. While there could be genetic effects that contribute to 

adolescent sleep duration before pubertal onset, I expect heritability of sleep to increase 

with age in the LTS sample as more genetic contribute to the phenotype, and for more 

genetic stability between waves after the peak circadian phase delay in the late teens.   

Depression is also moderately heritable (heritability estimate = .37; Sullivan, 

Neale, Kendler, 2000). A meta-analysis of age-related changes in heritability indicates 

that the heritability in depression significantly increases over time from approximately 

age 10 through age 30 years (Bergen, Gardner, & Kender, 2007).  As individuals age, 

there may be environmental changes that allow for genes to have a larger impact on 

depression, or new genetic influences that come online to affect sleep, and sleep’s 

relationship with both EF and depression.  

As both depression and poor sleep are heritable, it is possible that some of the 

same genes are contributing to both poor sleep and depression. In fact, one study found 

that the relationship between children's self-reported depression symptoms and their sleep 

problems (reported by their parents) seemed to be mostly genetic in nature (rA = .64 at 

age 8; Gregory et al., 2016). However, that sample had been mostly selected to be high in 

anxiety at age 7, and it is unclear if this pattern holds at later time points in development. 

It would be helpful to know if there are genetic, shared environmental or non-shared 
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environmental correlations between depression and sleep characteristics at later time 

points as well.  

EFs, particularly as measured by the bifactor latent variable model of EF, are 

highly heritable (Friedman et al., 2009; Miyake & Friedman, 2012). The latent factor 

constructs of Common EF, Updating-Specific, and Shifting-Specific have heritability 

estimates of 98%, 100% and 74% respectively in our sample at age 17 (Friedman et al., 

2009). While the phenotypic relationship between depression and EF is supported by a 

number of studies (McClintock, et al., 2010; Snyder, 2013), less is known about the 

genetic relationship between depression and EF. Using the latent variable model of EF, 

the study described earlier by Friedman (2016) provides evidence that this relationship is 

genetic in nature, where genes that promote lower depression scores at age 17, promote 

higher EF at age 23 (reproduced in Figure 5.1). A genetic relationship between EF and 

depression, in the absence of an environmental relationship, suggests that there may be 

common genetic risk, where the same genes influence both EF abilities and levels of 

depression.  

 
Figure 5.1. Genetic relationships between Common EF and Depression Scores. Reproduced from 

Friedman, et al., in prep. Red lines = p <.05. CESD = Center for Epidemiological Studies-
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Depression score, modeled as a latent variable. Common EF = Common EF latent factor. A = 

genetic effects. C = Shared environmental effects. E = nonshared environmental effects.  

 

In addition, new genetic and environmental factors could alter the relationship 

between sleep duration, depression, and cognition during different developmental phases, 

such as the onset of puberty, to moving out and starting college, a new job, or a new 

family. Depending on what the relationship is at a given stage, and whether it is genetic 

or environmental in nature could influence how best to treat sleep problems, depression, 

or cognitive dysfunction.  

Current Study 

This study first assessed the heritability of sleep duration at 4 time points from 

early adolescence (age 12) to young adulthood (age 23). This was done for both weekday 

and weekend sleep duration, first as linear, then as categorical variables. The categorical 

variable was created to capture nonlinear effects between sleep duration and depression 

and EFs in that, both those who slept more or less than typical showed increased 

depression or different relationships with EF over and above nonlinear sleep duration.  

As individuals undergo a lot of developmental changes relevant to depression, 

sleep duration, and EFs during the transition from adolescences to young adulthood; it is 

likely that new genetic or environmental factors become relevant during that time. 

Although it is unclear if those new influences would jointly influence both sleep duration 

and EFs or sleep duration and depression. Alternatively, given the stability of EFs at the 

latent variable level and the consistency of earlier sleep to predict later sleep at the 

phenotypic level, it is plausible that there are genetic or environmental influences that are 

consistent across this time period. So, to better understand the genetic and environmental 

influences of sleep duration, I asked whether genetic or environmental variation at earlier 
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waves was shared with later waves of sleep duration or if new influences became 

important throughout development.   

Similarly, the genetic and environmental influences on weekday sleep could be 

consistent with weekend sleep, or there could be unique contributions to each. Circadian 

rhythm and sleep drive would be consistent across weekdays and weekends, but 

differences in weekday and weekend schedules could lead people to give in to or fight 

these biological processes. For example, people with a delayed circadian rhythm might 

have to force themselves to wake up early during the week due to obligations, resulting in 

shorter sleep durations, but then can sleep in on the weekends, resulting in more typical, 

longer sleep durations. So while that individual would show different weekday, weekend 

patterns, the same genetic influences could be influencing both. Therefore, Cholesky 

decompositions were used to determine if weekday and weekend sleep had shared or 

unique influences acting on them within each time point.  

After the more in-depth characterization of linear sleep duration, univariate 

heritability estimates for categorical sleep were conducted. These analyses were followed 

up by a bivariate Cholesky decomposition between linear sleep duration and categorical 

sleep duration, to better understand if the same or unique influences were contributing to 

both.  

Method 

Please see Chapter 4 Methods for Sample and Materials. 

Analyses 

It is plausible that as new hormonal and environmental factors occur, the 

heritability of sleep duration may change. So the first set of genetic analyses estimate the 
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heritability of sleep in our sample at each age using an ACE twin models. Second, I 

examined the stability of the genetic influences on sleep, as well as whether new, unique 

genetic influences come online throughout development using multivariate modeling (a 

series of bivariate Cholesky decompositions; see Figure 5.2).   

The bivariate Cholesky decomposes the genetic (and environmental) contributions 

by utilizing cross-twin, cross-trait correlations – for example, the correlation between one 

twin’s depression score with the co-twin’s sleep duration. When cross-trait twin 

correlations are greater for MZ than for DZ twin pairs, genetic factors are implicated in 

the covariation across traits. If cross-trait twin correlations are approximately equal for 

MZ and DZ twin pairs, then environmental factors are implicated in the covariation 

across traits. In Figure 5.2, A1 represents the genetic contributions to individual 

differences in weekday sleep duration. Path a21 represents the extent that those genetic 

influences also predict weekend sleep duration, and therefore the genetic stability 

between phenotypes. Path a22 represents the new, or unique genetic influences weekend 

sleep duration.  

 

Figure 5.2 Example of a bivariate Cholesky decomposition with A (additive genetic), C (shared 

environment), and E (non-shared environment) loadings.  
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Importantly, the order of the variables in a Cholesky decomposition can matter. In 

the models between time points, naturally the younger time points will precede the later 

time points. However, when looking across phenotypes, the ordering of the variables for 

the trivariate Cholesky, determines what is partialled out. For example, if Common EF is 

placed first in a Cholesky decomposition, with sleep second, and depression third, then 

the a23 path will represent the genetic contributions of sleep independent of EF that 

predict depression, and a22*a23 is the covariance between sleep and depression 

independent of EF.  These differ depending on the order of the variables.   

The cross paths from a bivariate Cholesky decomposition indicate where the 

covariance is coming from (A, C, or E). This can be used to compute the genetic (and 

environmental) correlations with the following equation: .  

I also examined genetic and environmental correlations between sleep and 

depression at each age using a correlated factor solution of the Cholesky decomposition, 

explained above. I obtained correlations between our genetic A components (rA), shared 

environmental C components (rC), and non-shared environmental E components (rE).  If a 

genetic correlation between sleep and depression occurs at age 12, but not during young 

adulthood, it could be partially explained if individuals with a high genetic loading for 

depression already suffer from depression at age 12, but environmental factors contribute 

to depression or poor sleep habits by age 23. Therefore, these patterns might have 

important implications for how best to approach treatments at various ages.  

Results 

Aim 1- Is sleep duration heritable across development? 

Heritability estimates for sleep duration have been inconsistent in the literature, 

rA = a11a21

a11

2 *(a21

2 + a22

2 )
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with some studies finding duration to be heritable, but others not. I ran univariate ACE 

twin analyses for both weekday and weekend sleep duration at each time point (see Table 

5.1). In general, using ACE twin models, sleep seems to be moderately heritable with a2 

estimates ranging from .15-.4.6 While not explicitly tested, trends in the data suggest that 

the heritability of sleep duration seems to increase with age in this sample, with weekend 

sleep being more consistently heritable than weekday sleep.  

Table 5.1. Univariate Heritability Estimates for Linear Sleep Duration 

Linear Sleep rMZ rDZ A C E 

Age 12 weekday  0.30 0.21 0.19 0.11 0.70 

weekend 0.13 0.07 0.13 0.00 0.86 

Age 17 weekday 0.31 0.15 0.30 0.00 0.69 

weekend 0.37 0.19 0.38 0.00 0.63 

typical 0.31 0.17 0.29 0.02 0.68 

last night 0.41 0.21 0.40 0.01 0.59 

Age 21 

 

weekday  0.17 0.02 0.15 0.00 0.85 

weekend 0.29 0.06 0.26 0.00 0.74 

Age 23  weekday 0.43 0.24 0.38 0.05 0.57 

weekend 0.33 0.16 0.33 0.00 0.67 

Note. Presented here are the univariate heritability estimates for linear weekday and weekend 

sleep duration at each age. Boldface type indicates p<.05 according to chi-square difference tests. 

A = additive genetic heritability estimates. C = shared environmental estimates. E = Non-shared 

environmental estimates. rMZ = monozygotic twin correlations. rDZ = dizygotic twin 

correlations. Model fit indices ranged from CFI= .951-1.000; RMSEA= .000-.035. Models with 

poor fit included: Typ 17: χ2= 13.08(6), p=.042; CFI = .710; RMSEA= .081. Last night 17: χ2= 

12.44(6), p=.053; CFI = .808; RMSEA= .077. Weekday 23: χ2= 12.56(6), p=.051; CFI = .863; 

RMSEA= .075. Weekend 23: χ2= 10.62(6), p=.101; CFI = .780; RMSEA= .063. 

 

Reasons for these trends could stem from the fact that as individuals progress 

from adolescence to young adulthood, a sleep schedule is less likely to be as strictly 

imposed, whether it is because the individual left home for college or the parent has 

permitted them more flexibility in determining their own schedule (Carskadon, Acebo & 

                                                        
6 ACE models were used instead of AE models because age 12 suggested the possibility of shared 

environmental influences on sleep duration and I felt it was important to allow for potential 

common shared-environmental influences in bivariate Cholesky decompositions with other 

phenotypes. However, if AE models are used, then all A estimates become statistically significant.  
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Jenni, 2004).  Then the sleep schedule, and duration, become the individual’s decision 

and can be determined by their biological sleep drive, delayed circadian phase, and 

priorities such as socialization, activity level, or work ethic (Hagenauer, Perryman, Lee, 

& Carskadon, 2009). Puberty triggers hormones that also influence sleep duration, and 

perhaps genetic variation relevant to those hormonal changes are not apparent until closer 

to age 17 (Knutson, 2005).  

Do the same genetic variants that contribute to early sleep contribute to later 

sleep?  

While it useful to understand whether genetic and environmental influences are 

present for sleep duration at a given age, I wondered whether the same genetic variants 

are shared between earlier and later sleep.  

Table 5.2 Cholesky decomposition loadings for sleep duration at earlier waves to later 

waves. 

Model a11 a21 a22 c11 c21 c22 e11 e21 e22 

12 to 17 weekday 0.46 0.41 0.38 0.31 0.00 0.00 0.83 0.08 0.82 

weekend 0.28 0.43 0.42 0.21 -0.07 0.00 0.93 0.00 0.8 

17 to 21 weekday 0.51 0.15 0.33 0.19 -0.06 0 0.83 0.24 0.9 

weekend 0.54 0.05 0.47 0.11 0.05 0 0.83 0.2 0.85 

21 to 23 weekday 0.45 0.63 0 0.12 0.2 0 0.9 0.15 0.74 

weekend 0.51 0.57 0 -0.16 0.33 0 0.85 0.06 0.75 

12 to 21 weekday 0.41 0.3 0.33 0.36 -0.08 0 0.84 0.03 0.89 

weekend 0.41 0.33 0.22 0.35 0.08 0 0.84 0 0.92 

12 to 23 weekday 0.43 0.29 0.52 0.33 -0.02 0.25 0.84 0.04 0.76 

weekend 0.26 0.51 0 0.25 -0.25 0 0.93 0.12 0.82 

17 to 23 weekday 0.55 0.18 0.59 0 0.05 0.2 0.83 0.16 0.74 

weekend 0.53 0.08 0.43 0.28 0.33 0 0.8 0.2 0.81 
Note. Standardized path loadings for bivariate Cholesky decompositions between earlier sleep 

and later sleep. a11 is the genetic loading unique to weekday sleep. a21 represent the shared 

genetic variance between weekday and weekend sleep. a22 represents the genetic variation 

unique to weekend sleep. C11, c21, and c22 = shared environmental loading. e11, e21, and e22 = 

non-shared environmental loadings. Model fit indices ranged from: χ2= 11.57(17), p=.825 to χ2= 

34.95(17), p=.006; CFI= .787-1.000; RMSEA= .000-.072, with almost every model having at 

least one of the two model fit indices within acceptable ranges.  
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There was little evidence (see Table 5.2) for shared genetic variation between 

earlier sleep and later sleep, except at age 21 to 23. This was present for both weekday 

and weekend sleep. Also it seems as if there were significant genetic influences on age 17 

sleep when modeled with age 23 sleep duration. Consistently there were non-shared 

environmental influences that were unique to weekday and weekend sleep. Non-shared 

environmental influences were common to both weekday and weekend sleep at age 17 

with age 21 and age 23. However, only weekday sleep showed common non-shared 

environmental influences between age 21 sleep duration and age 23 sleep duration. These 

results indicate that the phenotypic associations for earlier sleep with later sleep might 

initially be attributable to common non-environmental influences starting at 17, but then 

at age 21 shared genetic influences also contribute.  

Is weekday sleep related to weekend sleep within-wave? 

The different phenotypic relationships that weekday and weekend sometimes 

showed with depression and EFs begged the question: Do weekday and weekend sleep 

duration share a genetic or environmental etiology or are there unique contributions 

working on both? Therefore, I used bivariate Cholesky decompositions with weekday and 

weekend sleep at each wave. Results are presented in Table 5.3. 

Table 5.3 Bivariate Cholesky Decomposition from Weekday to Weekend Sleep 

Weekday to 

Weekend 

a11 a21 a22 c11 c21 c22 e11 e21 e22 

Age 12 0.45 0.15 0.30 0.31 0.15 0.00 0.83 0.40 0.84 

Age 17 0.50 0.33 0.51 0.21 -0.06 0.00 0.84 0.20 0.77 

Age 21 0.41 0.47 0.20 0.00 0.00 0.00 0.92 0.27 0.82 

Age 23 0.60 0.55 0.00 0.26 -0.16 0.00 0.76 0.18 0.80 

Note. Presented are standardized path loadings from weekday to weekend sleep. Boldface type 

indicates p<.05 according to chi-square difference tests. a11 is the genetic loading unique to 

weekday sleep. a21 represent the shared genetic variance between weekday and weekend sleep. 

a22 represents the genetic variation unique to weekend sleep. c11, c21, and c22 = shared 

environmental loading. e11, e21, and e22 = non-shared environmental loadings. Model fit indices 
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ranged from: χ2= 7.86(17), p=.969 to χ2= 31.97(17), p=.015 CFI= .928 to 1.000; RMSEA= .000 

to .067. 

 

Overall, there is genetic variation unique to weekday sleep and some shared 

genetic variation that also contributes to weekend sleep starting in early adulthood. 

Genetic influences becoming more influential around age 21 is consistent with the pattern 

observed between sleep duration at earlier waves with sleep duration at later waves. Also 

consistent with the previous analyses, there seems to be no contributions from shared 

environmental influences (C), and strong evidence for both unique and common non-

shared environmental influences between weekday and weekend sleep.  

Is categorical sleep heritable? 

The phenotypic analyses showed that in addition to linear sleep duration, 

categorical sleep duration, sleeping more or less than typical (<7 or >9.5 for weekdays 

and 10.5 for weekends), has interesting relationships with depression and EFs. Better 

understanding the genetic and environmental influences on this categorical sleep variable 

can better inform the phenotypic relationships. Therefore I estimated heritability using a 

univariate twin analysis, results shown below in Table 5.4. 

 

Table 5.4 Heritability and Environmental Estimates for Categorical Sleep Duration 

Categorical sleep rMZ rDZ A C E 

Age 12 weekday 0.26 0.34 0.00 0.30 0.70 

 weekend 0.12 0.22 0.00 0.17 0.83 

Age 17 weekday 0.55 0.14 0.53 0.00 0.48 

 weekend 0.57 0.37 0.41 0.16 0.43 

 typical 0.50 0.37 0.25 0.24 0.51 

 last night 0.58 0.41 0.33 0.25 0.42 

Age 21 weekday 0.18 0.04 0.16 0.00 0.84 

 weekend 0.46 0.01 0.40 0.00 0.60 

Age 23 weekday 0.54 0.12 0.50 0.00 0.50 

 weekend 0.44 0.19 0.43 0.00 0.57 

Note. A = additive genetic heritability estimates. C = shared environmental estimates. Boldface 
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type indicates p<.05 according to chi-square difference tests. rMZ = monozygotic twin 

correlations. rDZ = dizygotic twin correlations. Model fit indices ranged from CFI: .958-1.000; 

RMSEA: .000-.045. Models with poorer fit included Weekend 17: χ2= 8.29(3), p=.04; CFI=.840; 

RMSEA=.101. Weekend 23: χ2= 9.28(3), p=.03; CFI=.481; RMSEA=.104. Weekday 23: χ2= 

5.83(3), p=.12; CFI=.898; RMSEA=.070. Weekday 17: χ2= 4.76(3), p=.19; CFI=.929; 

RMSEA=.058. 

 

Categorical sleep shows almost the exact same heritability pattern as linear sleep 

duration with the exception weekday categorical sleep is heritable at age 17, and weekend 

sleep at age 21 is only marginally significant. Again, additive genetic influences seem to 

start to come online in early adulthood, and any suggestion of shared environmental 

influences decrease with age. As this was a univariate model, linear sleep duration was 

not controlled for, and therefore, the results probably reflect some of the linear sleep 

heritability. The similarity in genetic and environmental etiology shared by linear and 

categorical sleep could be due to the fact that the same genetic variants or environments 

influence both.  

Do categorical sleep and linear sleep share a genetic / environmental 

etiology? 

Naturally, the next step was to examine whether or not linear and categorical 

sleep share a genetic or environmental etiology using bivariate Cholesky decompositions 

including both linear and categorical sleep. Plausibly the genes or environments that 

influence an individual’s sleep duration are the same that influence whether that amount 

is more or less than typical. Yet, when including quadratic or categorical sleep into many 

of the models, linear sleep was still significant, indicating that they explained unique 

variance at the phenotypic level. This could indicate unique genetic or environmental 

influences on both types of sleep. Thus I ran bivariate Cholesky decompositions with 

linear sleep and categorical sleep within each time point.  
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As seen in Table 5.5, weekday linear and categorical sleep share a substantial 

amount of genetic variation at age 23, but not at any of the other time points. More often, 

linear and categorical sleep have overlapping non-shared environmental influences (E), 

as represented by the e21 path. This is seen for weekday sleep at ages 12, 17, and 23, as 

well as weekend sleep at ages 17 and 23. The amount of sleep a 17 year old estimates he 

“typically” gets and number of hours slept the night before testing, also shows this 

pattern. In other words, non-shared environmental factors that differentiate twins from 

each other influence both an individual’s sleep duration, and whether or not he/she sleep 

more or less than a typical person. 

Table 5.5 Bivariate Cholesky Decomposition of Linear and Categorical Sleep 

Linear to Cat a11 a21 a22 c11 c21 c22 e11 e21 e22 

Age 12 weekday 0.35 -0.19 0.00 0.41 0.54 0.00 0.84 0.29 0.59 

 weekend 0.35 0.31 0.00 -0.13 0.32 0.00 0.93 -0.14 0.78 

Age 17 weekday 0.57 -0.48 0.52 0.11 0.15 0.00 0.82 -0.23 0.43 

 weekend 0.57 -0.35 0.53 -0.10 0.41 -0.01 0.82 -0.25 0.37 

 typical 0.56 -0.46 0.01 0.14 0.53 0.01 0.81 -0.19 0.47 

 last night -0.38 0.58 0.00 -0.43 0.25 0.43 0.82 -0.34 0.31 

Age 21  weekday 0.30 0.04 0.00 0.21 0.57 0.01 0.93 0.00 0.68 

 weekend 0.47 -0.44 0.01 0.16 0.33 0.00 0.87 0.03 0.70 

Age 23 weekday 0.54 -0.70 0.02 -0.35 -0.08 0.00 0.77 -0.46 0.29 

 weekend 0.03 -0.48 -0.16 -0.51 0.38 0.00 -0.86 0.79 -0.02 

Note. Standardized path loadings from a bivariate Cholesky decompositions between linear and 

categorical sleep. Boldface type indicates p<.05 according to chi-square difference tests. a11 is 

the genetic loading unique to weekday sleep. a21 represent the shared genetic variance between 

weekday and weekend sleep. a22 represents the genetic variation unique to weekend sleep. c11, 

c21, and c22 = shared environmental loading. e11, e21, e22 = non-shared environmental 

loadings. Model fit indices ranged from: χ2= 18.11(14), p=.202 to χ2= 36.20(14), p=.001; CFI= 

.901 to .964; RMSEA= .038 to .094. 

 

Often, linear sleep and categorical sleep show significant unique non-shared 

environmental influences that differentiated the two types of sleep from each other. 

Occasionally, linear sleep showed substantial unique additive genetic influences or 

unique shared-environmental influences. The amount of sleep the night before testing at 
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age 17 showed shared-environmental effects (environmental factors that make twins 

more similar to each other), that differentiated between sleep duration and typical vs. 

atypical sleep.  

Aim 2 – Do depression and sleep duration share a genetic etiology? 

Previous research has been conducted on the heritability of depression in a 

subsample of our data for both depression symptoms and diagnosis (h2 = .30-.45 at age 

22; Johnson et al., 2014). Similar heritability estimates were seen in the full LTS sample, 

with lower estimates at ages 12 and 17. After the initial confirmation of heritabilities of 

depression and sleep duration, variation was decomposed into unique and common 

genetic and environmental contributions.  Results are shown in Tables 5.6 and 5.7. 

Table 5.6 Bivariate Cholesky decompositions between linear sleep and depression 

symptoms 

Lin Sleep & Dep a11 a21 a22 c11 c21 c22 e11 e21 e22 

Age 

12 

weekday 0.42 -0.05 0.32 -0.35 0.20 0.46 0.84 -0.02 0.80 

 weekend 0.20 0.14 0.28 -0.29 0.51 0.00 0.94 -0.00 0.80 

Age 

17 

weekday 0.55 -0.04 0.74 -0.01 0.00 0.00 0.83 -0.10 0.66 

 weekend 0.62 -0.17 0.73 0.00 0.00 0.00 0.79 -0.01 0.67 

 typical 0.56 -0.13 0.73 -0.18 -0.03 0.00 0.77 -0.05 0.67 

 last night 0.62 -0.18 0.72 -0.08 0.01 0.00 0.83 -0.06 0.67 

Age 

21 

weekday 0.35 -0.52 0.06 0.17 0.26 0.00 0.92 -0.13 0.80 

 weekend 0.49 -0.14 0.53 0.12 0.21 0.00 0.86 -0.18 0.79 

Age 

23 

weekday 0.61 0.01 0.59 -0.22 0.03 -0.00 0.76 -0.08 0.80 

 weekend 0.57 -0.12 0.59 0.00 0.00 -0.00 0.82 0.01 0.80 

Note. Bivariate Cholesky decomposition estimates between depression symptoms (CES-D score) 

and linear sleep duration. Bold = p<.05 as determined by chi-square differences tests. a11 paths = 

variation unique to linear sleep, a21 paths = proportion of shared variation between sleep and 

depression; a22 paths = variation unique to depression. c11, c21, and c22 = shared environmental 

loading. e11, e21, e22 = non-shared environmental loadings. Model fit indices ranged from χ2= 

8.99(17), p=.941 to χ2= 23.19(17), p=.143; CFI .951 to 1.000; RMSEA .000 to .043.  

 

 

Table 5.7 Bivariate Cholesky decompositions between depression symptoms and 
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categorical sleep 

Cat Sleep & Dep a11 a21 a22 c11 c21 c22 e11 e21 e22 

Age 

12 

weekday 0.0 0.00 0.00 0.58 0.05 0.55 0.82 -0.03 0.70 

 weekend 0.16 0.17 0.01 -0.56 -0.01 0.39 0.81 0.06 0.82 

Age 

17 

weekday 0.63 0.51 0.01 -0.31 0.49 0 0.72 0.13 0.49 

 weekend 0.69 -.011 0.56 0.18 0.49 -0.00 0.71 0.13 0.43 

 typical 0.65 0.43 0.01 -0.27 0.56 0.00 0.71 0.12 0.49 

 last night 0.71 0.07 0.57 -0.03 0.50 0.02 0.7 0.13 0.41 

Age 

21 

weekday 0.62 0.34 0.22 0.00 0.00 0.00 0.79 0.13 0.82 

 weekend 0.62 0.11 0.62 0.00 0.00 0.00 0.79 0.26 0.53 

Age 

23 

weekday 0.60 0.22 0.62 -0.00 0.00 0.00 0.80 -0.05 0.57 

 weekend 0.60 0.38 0.59 0.00 0.00 0.00 0.80 -0.07 0.50 

Note. Bivariate Cholesky decomposition estimates between depression symptoms (CES-D score) 

and categorical sleep duration. Bold = p<.05 as determined by chi-square differences tests Bold = 

p<.05 as determined by chi-square differences tests. a11 paths = variation unique to depression, 

a21 paths = proportion of shared variation between categorical sleep and depression; a22 paths = 

variation unique to categorical sleep. c11, c21, and c22 = shared environmental loading. e11, e21, 

e22 = non-shared environmental loadings. Model fit indices ranged from χ2= 10.03(14), p=.760 to 

RMSEA:.000-.032; CFI: .961-1.000; Four models had less than optimal model fit: last night 17: 

χ2= 23.70(14), p=.050, RMSEA = .059, CFI=.915; typical 17: χ2= 25.39(14), p=.030, 

RMSEA=.064; CFI=.897; weekday 17: χ2= 26.28(14), p=.024, RMSEA=.066; CFI=.892; 

weekend 17: 25.46(14), p=.030, RMSEA=.064, CFI=.872. 

 

While depression and sleep duration often show a significant phenotypic 

relationship, there was no evidence for shared genetic variation. However, there seemed 

to be substantial unique genetic and non-shared environmental influences for both 

depression and sleep duration. Likely the phenotypic associations seen between sleep and 

depression can be explained by a combination of genetic and environmental effects. 

Bivariate Cholesky decompositions were also run between MDD and sleep duration, 

however, no significant relationships between sleep and MDD emerged.  

Aim 3 – Do EFs and sleep duration share a genetic etiology? 

The prefrontal cortex and executive functions develop substantially from 

adolescence to well into adulthood. During that same period, individuals undergo 
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changes in circadian phase and sleep pressure as a result of hormonal influences 

(Hagenauer & Lee, 2013). Genetic variation related to these hormonal changes could 

contribute to changes in both sleep duration and EFs. Alternatively, the changes in 

environment as a result of the changes in sleep patterns could be then causing the 

relationship between sleep duration and EFs. A series of bivariate Cholesky 

decomposition were run to see if shared or unique genetic or environmental influences 

contributed to sleep duration and EFS. However, given small to modest phenotypic 

relationships between EFs and sleep in the LTS sample, I only ran analyses for 

relationships that were significant in the phenotypic within-wave regressions. Cholesky 

decompositions between linear sleep duration and EFs are presented below in Table 5.8. 

Table 5.8 Bivariate Cholesky Decomposition of EFs and Linear Sleep Duration 

EF Sleep 

Variable 

a11 a21 a22 c11 c21 c22 e11 e21 e22 

EFs 17 

UPD weekday 12 1.00 -0.10 0.32 0.00 - 0.00 -0.09 0.75 -0.01 

UPD weekday 21 1.00 0.10 0.26 0.00 - 0.00 0.04 0.89 0.00 

EFs 23 

UPD weekend 21 0.99 0.19 0.00 0.00 - 0.00 -0.14 0.52 0.76 

Note: Bivariate Cholesky decompositions of EFs and linear sleep duration. All EFs were modeled 

simultaneously. UPD = Updating-specific abilities. a11 is the genetic loading unique to UPD. a21 

represent the shared genetic variance between UPD and linear sleep. a22 represents the genetic 

variation unique to sleep. c11, c21, and c22 = shared environmental loading. e11, e21, e22 = non-

shared environmental loadings. c21 was dropped from models to allow for convergence. Model 

fit indices ranged from: χ2=461.468(400), p=.018 to χ2=526.859(399), p=.018; RMSEA: 0.024 to 

.0033; CFI: 0.951 to 0.970. 

 

Overall, the genetic contributions to Updating-specific were not shared to 

significant extent with linear sleep duration. As expected, shared environmental 

influences did not contribute in any meaningful way in these phenotypes. Surprisingly, 

there were no unique non-shared environmental contributions to either EFs or sleep 

duration, but the non-shared environmental influences were significant. However, the 
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non-shared environmental estimate for the Updating-specific latent factor is essentially 

zero, and while the model tries to estimate the proportion of non-shared environmental 

variance shared between sleep duration and Updating-specific abilities, there is nothing to 

really be shared. Therefore the E for sleep duration can go into e21 or e22, and so the e21 

paths are really reflecting unique environmental variation for sleep duration.  Due to 

model convergence issues, only analyses with linear sleep were presented. 

General Discussion 

  Although previous studies have found mixed results for heritability estimates of 

sleep duration, I expected sleep duration to be heritable in our sample at least in 

adulthood. While genetic variation probably contributes to sleep in early adolescence, I 

found that the proportion of variance explained by genetic effects becomes statistically 

significant in late adolescence, around age 17. Linear and categorical sleep showed 

similar heritability patterns.  Separate heritabilities were estimated for weekday and 

weekend sleep, with weekend sleep being more frequently heritable across ages. There 

are multiple possibilities for why this pattern of results is observed. New genetic factors 

could be coming online in late adolescence and early adulthood. Alternatively, flexibility 

in determining one’s own sleep schedule could allow genetic influence to be detected. 

Given that weekend sleep was more frequently heritable than weekday sleep and that 

sleep schedule can be more flexible on weekends, these results suggested that the ability 

to set one’s own sleep schedule might allow for genetically influenced biological 

processes to have a stronger impact on sleep duration.  

 In addition, when looking for genetic and environmental contributions shared 

between earlier sleep duration and later sleep duration, only evidence for shared genetic 
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variation existed in young adulthood (age 21 to age 23). At younger ages, environmental 

factors seem to be more important for phenotypic similarities between earlier sleep and 

later sleep. Again, this pattern could be observed if more controlled environments, such 

as imposed bed and wake times, mask genetic effects, or if new genetic effects come 

online at age 21 that are at least somewhat stable until age 23. To disentangle these two 

possibilities more research will need to be done with more detailed measures. 

 Weekday and weekend sleep showed some differences in heritability patterns, yet 

I expected the same genetic variation to be contributing to both weekday and weekend 

sleep. After all, while sleep patterns might differ between weekdays and weekends, 

biological processes such as sleep pressure and circadian rhythm do not care what day it 

is.  Indeed, in young adulthood (ages 21 and 23), a substantial proportion of genetic 

variation that contributes to weekday sleep also contributes to weekend sleep. While not 

statistically significant (most were marginally significant), the estimates for unique 

contributions to weekend sleep were larger than expected, and might be significant if 

shared environmental estimates were dropped from the models. Genetic influences 

attributable to some other phenotype (such as activity level or sociability) might be 

contributing to weekend sleep more than weekday sleep. Non-shared environmental 

influences play a large role in weekday and weekend sleep. Both unique and common 

non-shared environments contribute to weekday and weekend sleep duration. More 

detailed sleep studies would be necessary to identify which environments are shared 

between weekday and weekend sleep and which are unique to each.  

 Since categorical sleep captures the extremes of the same continuum as linear 

sleep duration, I expected a substantial proportion of genetic variation to be shared 
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between linear and categorical sleep. However some different phenotypic relationships 

emerged between linear and categorical sleep with depression and EFs, hinting that there 

might not be as much genetic overlap as anticipated.  In line with the phenotypic results, 

there was little evidence of the same genetic variation contributing to both linear and 

categorical sleep. The majority of the time there were also significant non-shared 

environmental contributions to both linear and categorical sleep, with a significant 

proportion of that variance being shared between them at ages 17 and 23. The strong 

phenotypic relationship between linear and categorical is mostly explained by non-shared 

environmental factors. Intriguingly there are substantial non-shared (and even one 

shared) environmental factors that distinguish categorical sleep from linear sleep. Perhaps 

specific environments are influencing people who would normally have short sleep 

duration to have a very short sleep duration. Further research is necessary to identify 

what those environments might be. Regardless, the differences indicate that it would be 

important to include both linear sleep duration and categorical sleep duration in future 

analyses.  

 Next I examined whether there were unique or shared genetic (or environmental) 

influences with depression and sleep duration. The same overall pattern was observed for 

depression symptoms with both linear and categorical sleep; there were unique genetic 

contributions to each, and unique non-shared environmental contributions to each, but no 

shared genetic variation. There was some evidence for common non-shared environments 

contributing to both depression symptoms and linear sleep duration at ages 17 and 21. 

While a bidirectional relationship between sleep and depression exists, it does not appear 

to be due to a shared genetic etiology in young adolescence and early adulthood.  
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 Lastly, the genetic and environmental etiology of EFs and sleep duration were 

examined for significant phenotypic results from the within-wave regressions. Given that 

the phenotypic relationships were relatively weak, I did not have grand expectations for 

shared genetic influences. However, given the high heritability of EFs at the latent level, 

some portion of the genetic influences that contribute to EFs could also contribute to 

sleep duration. Indeed, shared genetic influences contributed to both Updating-specific 

abilities at age 23 and age 21 weekday sleep duration, but not with any of the other time 

points. Interestingly, there were not significant unique non-shared environmental 

contributions to either trait, but significant proportions of non-shared environmental 

influences contributed to Updating-specific abilities and sleep durations.    
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Chapter 6 

General Discussion 

This dissertation presented four studies to further examine EFs and their 

relationship with psychopathology and sleep duration. Executive dysfunction is so 

commonly associated with psychopathology and problematic behaviors that it is often 

suggested as an underlying factor and a potential endophenotype. However, most studies 

that examine EF as an endophenotype, use impure measures of one EF with task specific 

components or a measure that conflates multiple types of EFs. Therefore, I wanted to 

examine EFs as a potential endophenotype using the Unity and Diversity model of EFs, 

in which the latent EF variables have been shown to be highly heritable, stable, more 

pure measures of EFs.  

First, I tried to use genetic risk for psychopathology to predict EFs (Chapter 2) – 

if EFs are an endophenotype for psychopathology, some portion of the genetic variation 

that contributes to psychopathology should also contribute to EFs. Second, I began to 

develop a functional neural network for Common EFs based on the Unity and Diversity 

model of EFs to be tested in the future as a potential endophenotype (Chapter 3). Third, I 

further characterized the phenotypic relationships between individual differences in sleep 

duration, depression, and EFs (Chapter 4). Last, I examined the genetic and 

environmental etiology of sleep duration in adolescence and young adulthood and asked 

to what degree genetic and environmental factors were shared with EFs and depression. 

A shared genetic etiology between EF and sleep duration, and sleep duration and 

depression, would suggest the possibility for intermediate phenotype relationships 

between the variables.   
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Major Contributions of the Studies 

 EFs are cognitive abilities that allow individuals to achieve goals and navigate 

novel situations, and underlie everyday behaviors. When EFs are disrupted, it allows for 

problematic behaviors to occur. Behaviors are considered problematic when they are 

inconsistent with or undermine higher-level goals.  And different collections of 

problematic behaviors (or symptoms) get classified as different forms of 

psychopathology. While there are biological differences between disorders, they are 

initially diagnosed from clusters of symptoms. Rumination is a symptom of depression, 

and can stem from the inability to inhibit a thought, to clear it from working memory, or 

successfully switch to a different line of thinking. For reasons such as this, it is easy to 

see why EFs might be proposed as an endophenotype. The next step is to test how well 

EFs fit the criteria of an endophenotype for various disorders. While none of these studies 

were designed to explicitly test whether or not EFs are an endophenotype, the results 

have important implications and take steps towards furthering research on this topic.  

 The first study does not rule out the possibility of EFs as an endophenotype for 

the five forms of psychopathology examined, but it does tell us that larger sample sizes 

are necessary when using polygenic risk scores. Despite deep phenotyping in the testing 

sample, polygenic risk for psychopathology did not significantly predict EFs after 

controlling for multiple testing. This was in part due to the fact that the Unity and 

Diversity model of EF, as currently measured (lab-based cognitive testing), did not 

produce larger effect sizes than psychopathology diagnosis or symptoms themselves. If 

they had, then a smaller sample size might not have been an issue. But given the observed 

effect sizes, we had low power from insufficient sample sizes. While EFs might be more 
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proximal to genetic effects than symptoms of psychopathology, EFs are a complex 

phenotype in and of themselves. So while EFs are highly related to psychopathology and 

are arguable more proximal to genetic effects, perhaps less complex phenotypes would be 

better candidates as endophenotypes. Alternatively, neural activation evoked by EFs 

might be more proximal to genetic variation compared to accuracy and reaction time 

associated with EFs and therefore a better potential endophenotype.  

 The second study started developing a functional neural network based on the 

Unity and Diversity model of EF, in part for future use as a potential endophenotype. 

Neural activation is arguably more proximal to genetic effects than reaction time and 

accuracy measures. I examined whether the overlapping neural activation from three of 

the EF tasks in the unity and diversity model battery produced results that would be 

interchangeable with previously identified frontoparietal networks based on other 

cognitive tasks.  While there was a substantial amount of overlap, there were also a 

number of differences, which makes using these other frontoparietal networks in place of 

this EF network unadvisable. In addition, some areas important for individual differences 

in Common EF fell outside of the network identified at the group level as necessary for 

completion of the tasks. This suggests that when using a neural network as an 

endophenotype, it should not be restricted to just those areas identified at the group level. 

Areas outside of the group level, which are important for individual differences, should 

also be examined.   

 The third study examined the relationships between sleep duration and EFs and 

sleep duration and depression at the phenotypic level in our sample from adolescence 

through young adulthood. When significant, associations were in the expected directions: 
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Shorter sleep duration and sleeping more or less than typical were associated with more 

depression and worse Updating-specific abilities at later ages. Longitudinally, sleep 

duration seems to have a bidirectional relationship with EFs and depression; sometimes 

earlier sleep predicts later EF (or depression), and other times earlier EF (or depression) 

predicts later sleep duration. This indicates that sleep duration is highly interconnected 

with these two phenotypes over time. When these three phenotypes are put into one 

model (within a given time point), it seems as if depression mediates the relationship 

between sleep duration and EFs. However, the relationship between sleep duration and 

EFs is usually small to begin with, and while significant, the indirect effects of sleep on 

EFs through depression do not often change that relationship in a meaningful way.  While 

these three phenotypes all influence each other, it does not seem as if any set of 

relationships is due to the interference of the third at this time in development.  The series 

of analyses in study 3 set the groundwork for the fourth study.  

 The final study in this dissertation assessed the genetic and environmental 

etiology of both linear and categorical sleep duration. Sleep duration showed significant 

genetic and non-shared environmental effects in late adolescence and young adulthood. I 

further characterized genetic and environmental contributions of sleep duration. While 

there was some evidence that a portion those genetic effects were stable in young 

adulthood, across weekday and weekend sleep duration in young adulthood, and between 

linear and categorical sleep, it was not as to the extent I had predicted. More often 

common non-shared environments contributed to the different types of sleep duration. 

Next I asked to what degree were those genetic and environmental influences shared with 

depression and EFs. A substantial proportion of shared genetic variation between 
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phenotypes would suggest the possibility of sleep duration as an endophenotype for EF or 

depression. However, there was little evidence for shared genetic contributions, and 

instead more evidence for unique genetic contributions to each phenotype. Interestingly, 

unique non-shared environments were important for sleep duration and depression, but 

common non-shared environments were important for sleep duration and Updating-

specific abilities. This implies that while sleep duration has bidirectional relationships 

with EFs and depression, it probably will not meet criteria for an endophenotype for 

either phenotype if more thoroughly tested. However, future studies should look to 

disentangle the environmental influences that contribute to these phenotypic 

relationships.  

Concluding remarks 

In conclusion, this body of work suggests that while there is a significant 

relationship between EFs, more research needs to be conducted to determine if EFs are 

indeed an endophenotype that will aid in the identification of genetic variation 

contributing to problematic behaviors and diseases. Even if it turns out that EFs are not 

ideal endophenotypes, important information can still be gleaned from better 

understanding how they relate to other behaviors. For example, we now know that at a 

particular age in young adulthood, how much sleep an individual gets is most strongly 

related to Updating-specific abilities, but atypical amounts of sleep (less than 7 hours or 

more than 9) predict better Shifting-specific abilities. Since it is still unclear how to best 

train or elevate EF abilities and whether training effects generalize and stick around, it 

might be easier to alter sleep patterns. Budgeting enough time for sleep and addressing 

any sleep issues might help to normalize EF abilities during this particularly critical time 
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for the development of EFs if the effect of sleep on EFs is causal. Importantly, adequate 

sleep seems to have implications for later EF abilities, making it even more important to 

stress the benefits of sufficient sleep. So while sleep duration might not be a good 

candidate endophenotype for EFs, and EFs might not be a practical endophenotype for 

psychopathology, important information about the nature of relationships and 

identification of potential mechanisms can still gained from these types of studies.
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