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Abstract

In this paper we present a new algorithm for floating—point computation of the gener-
alized singular value decomposition of an arbitrary matrix pair (A4, B) € R™*" x R?*"
In the case of full column rank A, the new algorithm computes all finite generalized sin-
gular values with high relative accuracy if min{x2(AD), D diagonal} is moderate and if
an accurate rank revealing LU factorization of B is possible. Numerical experiments show
that, in that case, the new algorithm computes the generalized singular values of all pairs
{(AD, D1BD5), D, D1, D; diagonal matrices} with nearly the same relative accuracy.

1 Introduction

In [35], Van Loan introduces a new matrix decomposition of a general matrix pair (A, B) € C™*" x
CPX™ (m > n). He proves that there always exist unitary matrices U, V and a nonsingular matrix
X such that U*AX and V*BX are diagonal matrices, and he defines the B-singular values of A
as the elements of the set {o > 0 : det(4*A4 — ¢?B*B) = 0}. Paige and Saunders [27] remove
the minor constraint m > n and reformulate the original decomposition to avoid the non—unitary
matrix X. They show that there exist unitary matrices U, V', @, diagonal matrices £ 4, ¥p, and
a nonsingular triangular matrix R such that U*AQ = X4[0, R], V*BQ = £[0, R]. This form is
equivalent to Van Loan’s with X = Q(I & R™!). In either formulation, the new decomposition is -
called the generalized singular value decomposition (GSVD) of (A, B), and the B-singular values
of A are the generalized singular values of (A, B). If B is square and nonsingular then the GSVD
of (A, B) is equivalent to the ordinary singular value decomposition (SVD) of AB~1,

The GSVD is a powerful tool in both theoretical analysis and numerical solution of problems like
regularization and various types of constrained least squares [7], [18], [36], [37], [25]. It also arises
in the symmetric definite generalized eigenvalue problem Kz = AM &, where the positive definite
matrices K and M are factored as K = A*A and M = B* B, respectively. The generalized singular
values of (A, B) are then the square roots of the eigenvalues of K — AM. An important advantage
of using (A, B) instead of the pencil K — AM is that k2(A) = \/k2(K), k2(B) = \/ka(M). (Here
ﬁ:Q(A) = || 4]2] ]Amz is the spectral condition number, where A' is the Moore-Penrose generalized
inverse and || - ||2 is operator norm induced by the Euchdean vector norm.)

The central issue in this paper is how to compute the generalized singular values of a real pair
(A4, B) € R™*™ x RP*™ with high relative accuracy in floating—point arithmetic. This computation
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is not always possible. For instance, if € is the roundoff unit and

A:[i 1“1“4], B:[é ?] (1.1)

then, for || < e, A is stored as exactly singular. In this case the smallest singular value of (A, B)
is incorrectly computed as 0 due to rounding error in A;5. In fact, if each entry of A from (1.1)
has an initial relative uncertainty of at most &, then even the exact computation of the smallest
generalized singular value of (A, B) provides no useful information.

There are, however, matrix pairs for which certain small matrix changes introduce only small
generalized singular value perturbations. Those cases are identified by perturbation theory. (Ct.
(2], [3], [8], [12], [14], [22], [23], [24], [31], [32].) In this paper we assume that the pair (A, B)
determines all its generalized singular values well in the sense that their initial uncertainty due
to the uncertainty in A and B is small. Furthermore, we assume that it is of interest to have
approximations of the generalized singular values of (A4, B) that are as accurate as possible. Such
pairs do appear in the practice; see [5], [10] for more detailed discussion and examples. A desirable
property of an algorithm is then to approximate the generalized singular values with a relative
error not much larger than the initial uncertainty in (A, B).

There are several numerically attractive algorithms for the GSVD computation. The first one
is based on a simple connection between the GSVD and the Cosine-Sine decomposition (CSD) of a
partitioned orthonormal matrix, [29], [30], [38]. This algorithm first computes the QR factorization
G= [g] = QR and then it computes the CSD of Q = [g;] , where Q is partitioned in accordance
with the partition of G so that Q; € R™*", Q, € RPX",

The second algorithm avoids the use of the (m + p) x n matrix G and transforms A and B
separately. It has two phases: (i) using an algorithm of Bai and Zha [4], a general pair (A4, B)
is reduced to an equivalent pair of upper triangular matrices (4., B,) with nonsingular B, ; (i1)
using an algorithm of Paige [26], implemented carefully by Bai and Demmel [3], the procedure
completes by the GSVD computation of (A,, B,). It is shown in [3], [4] that both phases of the
algorithm are backward stable in the Frobenius matrix norm. That is, floating—point computation
is equivalent to exact computation with (A + 64, B+ 6B), where ||§A||r/||Al|r and ||6B||r/||Bl|F
are of order machine precision times a moderate function of matrix dimensions. This algorithm is
superior to the CSD approach, and it is implemented as the LAPACK [1] procedure SGGSVD() for
GSVD computation.

Both the CSD and the LAPACK algorithm are designed to use only orthogonal transformations.
This restriction seems to be unnecessary because the generalized singular values are in fact invariant
under the more general transformation (4, B) — (A4’,B’) = (UTAX,V"BX), where U, V are
arbitrary orthogonal matrices and X is an arbitrary nonsingular matrix.

The first method for generalized singular value computation using nonorthogonal transforma-
tions is proposed in [9]. It is an implicit variant of the Falk-Langemeyer method [16] for the
diagonalization of matrix pencils. An error analysis for the full column rank case is given in [8],
and the method is further analyzed and modified in [14]. The second method that is not entirely
based on orthogonal transformations is given in [14], [15]. In this method, a pair (A4, B) of full
column rank matrices is replaced by an equivalent pair (A’, B'), and the SVD of the explicitly
computed matrix A'B’~! is computed using the Jacobi SVD method [19], [12], [13].

Although based on nonorthogonal transformations, these two methods approximate the gener-
alized singular values of a pair (4, B) of full column rank matrices with an error bound (cf. [§]

[14], [15)) N

bo;
max —]—U—] <g(m,n,p)-e-K.(A,B), K. A B)= iCz(ADZl) + KQ(BDBI),
1<ik<n 0y
where g(-,-,-) is a modestly growing function of matrix dimensions, and D4, Dp are diagonal
matrices of Euclidean column norms of A and B, respectively. It is a remarkable fact that these



October 9, 1996 On accurate GSV computation in floating—point arithmetic 3

methods maintain the same accuracy in the family of all pairs (AD;, BD3), where D; and D5 are
arbitrary diagonal nonsingular matrices. This accuracy property is shared neither by the CSD nor
the LAPACK procedure.

In this work we present a new algorithm that is capable of achieving the high relative accuracy
on a set of matrix pairs that is much larger than the set of all (A, B) with moderate K.(A, B). For
instance, we consider matrix pairs (A, B) where A is of full column rank with moderate x2(A,)
and B is a matrix that can be accurately factored using the LU factorization with rank revealing
(total) pivoting. We show how to reduce such a pair to an equivalent pair (4, B') of full column
rank matrices with K.(A’, B’) not much larger than k3(A.). The generalized singular values of
the new pair (A’, B') are then computed by the method from [15].

The rest of the paper is organized as follows: In § 2 we show how condition numbers for the
generalized singular value perturbations depend on different types of floating point matrix pertur-
bations. In'§ 3 we briefly analyze LAPACK’s [1] procedure SGGSVD() for the GSVD computation.
In § 4 we present our new algorithm, and in § 5 we give detailed error and perturbation analyses
that identify a set of input pairs for which computation with high relative accuracy is possible.
- We also show that our algorithm is capable of achieving that accuracy. Finally, in § 6 we present
the results of rigorous numerical testing that demonstrate numerical robustness of our software.
The numerical results correspond to the analysis from § 5, and they also indicate that, in the case
of full column rank A and full (column or row) rank B, the algorithm computes the generalized
singular values of all pairs {(AD, D1BD;), D,D;,D; diagonal matrices} with nearly the same
relative accuracy. We recommend our algorithm as the method of choice for GSVD computation
in floating-point arithmetic.

2 Floating point error analysis of a GSVD algorithm

A floating point algonthm for GSVD computation usually generates a sequence of matrix pairs
(A(k) B®)) k=0,1,..., that can be connected by commutative diagrams. Commutative diagrams
provide systematic way to represent floating—point errors in a form that can easily be used in
perturbation theory. In Figure 1, the computed pair (A('“) BU")) is the result of floating-point
computation with the input (A(’“ D Bk- l)) Equivalently, it is the result of exact computation
starting with certain pair (4(*-1 + §AGR=1 pk=1) 4 spk- 1)), where an estimate of §A%*~1)

§B* =1 is obtained by backward error analy51s In the forward error analysis, it is of mterest
to determine the distance between the floating-point result (A®*+1) B(*+1)) and the exact result
(A®+1) | B(E+1)) obtained with the same input (A(k) B(*)).

ﬂoatmg ﬂoatlng
(Ak=1) Bk~ ) (A<k) B(k) (AR+D) B(k+1))

backw& % N forward error
error

(A=1) 4 s A(k=1) Bk=1) 4 g (k- 1)) (A(k+1) B(k+1)

Figure 1: The backward and the forward error.

The relative accuracy of the computed generalized singular value approximation depends on the
perturbations 6 A®¥), § B(*) and on the corresponding condition numbers of A®), B*®) k= 0,1, .
Here we note that ﬂoatlng point errors and corresponding condition numbers strongly depend on
the details of the algorithm. For instance, (i) if A*) is obtained by changing only a few columns
of A*=1) then additional information on the zero pattern of §A%~1) can be used to derive tight
bounds for the condition number; () if the new pair (A®*)| B(¥)) is obtained by scaling the columns
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of (A¥=1) B(k=1)) then we have small elementwise relative perturbation; (iii)if B is a triangular
matrix obtained by the QR factorization of B*~1) then the backward error analysis from [14]
provides an estimate for each column of §B*~1) |6 B ~Ve;||s < ||B*~Ve;|ls, 1 < i < n, with e;
being the ith column of the identity matrix I.

The next task in the analysis is to derive a sharp estimate of the relevant condition number
for a particular type of perturbation. The tool of trade in certain regular cases is the variational
characterization of the generalized singular values: if B is full column rank matrix, then the
nonincreasingly ordered generalized singular values oy > -+ > o, of (A, B) satisfy

A A
o; = min max 1 Az]ls =max min I $”2, 1<i<n, (2.2)
Xn—itt € Xy_iyy B2l Vi 2 ey, Bzl
z#0 z#0

where X, _;41, V; are arbitrary n — ¢ + 1 and ¢ dimensional subspaces of R".
To use the relation (2.2) in perturbation estimates, first note that for full column rank 4 and

B and sufficiently small ||5AAT|[3 and ||6BBJr |2 and all nonzero vectors z it holds that

L— [|8A4AT |l [|Azll; _ [I(A+84)alls _ 1+[I54AT |l || Az])s
1+ (16BBT||, 1Bzll2 = (B+6B)ell> ~ 1 — |sBBT||, [1Bzll2’

Now the variational characterization (2.2) implies that the ordered generalized singular values
01> --->0pand &1 > - > &, of (4, B) and (A + 64, B + 6B), respectively, satisfy

L fsAaflls _ & _ 1+ Y644t

, Fi=oitéo) 1<i<n, 2.3
1+ 1688, ~ i = 1 ||sBBT|]3 (Gi=oi+60;) 1<i<n (2.3)

An application of the relation (2.3) depends on how § A, 6B are measured relative to A, B, respec-
tively. For example, if |6 A| < n|A|, |6 B| < n|B| are small elementwise relative perturbations of A
and B then the relative perturbations éc;, 1 <1 < n, are bounded by

(8ol 1AL AT ll2+ 11 1B1 - 18T 1]2
o~ L—nll |B]-|BT[ |l

<n, (2.4)

b -— -

provided that 7 is sufficiently small. (The absolute value and inequalities are taken elementwise.) If
we allow the more general relative perturbation ||6Ae;||a < n||Ae;||2, ||6Beill2 < ni|Beill2, 1 < i < n,
then the relation (2.3) implies

1 Aella 4y 8Bl
, 2(Ac) + k2(Be) T |
I%I < [Ac[l2 | Be|l2 < \/ﬁ,,____”Aﬁ”? Bl oo n, (2.5)

i 1- l%g@(&) T vl T

where we use diagonal scalings Dy = diag (||Ae;||2), Dp = diag (||Be;]|2) to define A, = AD;l,
§A. = 6AD3', B, = BD3', 6B, = 6BD1_31. If the size of the perturbation is bounded only by
16 A]l2 < nl|All2, ||6B]]2 < n||Bl|2, then the relative error bound reads

léail fcg(A) + Kg(B) .
< <zi1<n. .
o 1 1- nfcg(B) plsisn (2 6)

Relations (2.4), (2.5), (2.6) reveal three different condition numbers that relate the perturbation
of the pair (A, B) of full column rank matrices to the generalized singular value perturbation. In
Table (2.7), we summarize the above discussion and we also display some important relations
between the three condition numbers derived from (2.3).
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Perturbation (64, 6B) Condition number K.(A, B)
|6A] < nlAl, [6B] < n|B| Kps(A,B) = || |A]-|AT] |2 + || |B] - |BT| |l
16 Ae;]|2 < nl|Aes||2, [|6Beil|2 < nl|Beil|2 Ko(A, B) = ka(Ac) + k2(B.) -
l16A]]2 < nllAll2, [|6B]l2 < nllBll2 K3(A, B) = £a(A4) 4+ k2(B)

l Generalized singular value perturbation: max;<i<y M < K.(A,B)n+ 0(n?) l
Always: || |A] - |AT] ll2 < nming,_ _diag k2(AD) , @(A ) < /nmin,_ diag k2(AD)
Possible: || |A] - [AT| [ls < ka(A4.) , k2(A.) < ka(A)

(2.7
The estimate k2(A.) < \/ﬁminozdiag k2(AD) in (2.7), where the minimum is taken over the set
of n x n diagonal nonsingular matrices, is proven by van der Sluis [34]. The proof of the remaining
relations in Table (2.7) is straightforward. The subscript “BS” in Kpgs indicates the dependence
on the Bauer—Skeel condition numbers of A and B, cf. [6], [28]. Similarly, the subscript “c¢” is a
reminder that K, depends on the spectral condition number of the column scaled matrices A, and
B..

An important difference between Kpg(A, B), K.(A, B) and K3(A, B) is that Kps(4,B) =
Kps(ADy,BD,) and K. (A, B) = K.(ADy, BD,) for any diagonal nonsingular matrices D;, Ds,
while, on the other hand, K3(A, B) depends on such diagonal scalings. Furthermore, Kps(A, B)
and K (A, B) are never much larger than and can be much smaller than K»(4, B).

Hence, we expect better numerical properties (reliability, high accuracy in larger domain of

input palrs) of an algorithm that produces floating-point errors yielding to an application of (2.4)
and (2. 5) rather than (2.6).

3 LAPACK’s GSVD algorithm

In the LAPACK library [1], the procedure SGGSVD for the GSVD computation has two stages:
(1) reduction of a general pair (A4, B) to a regular pair (A’, B') of upper triangular matrices; (ii)
GSVD computation of the regular pair (A’, B’). (The pair (A’, B’) is called regular if B’ is a
full column rank matrix.) Stage (i) of SGGSVD uses an algorithm of Bai and Zha [4], while stage
(#) is a careful implementation of an algorithm of Paige [26], [3]. Working with a regular pair
has several advantages in Paige’s algorithm because its implementation in the case of an irregular
triangular pair is quite complicated [4], [3]. Bai and Zha’s reduction algorithm is based on the QR
factorization and the URV decomposition

O R

A:U[O o

]VT, U,V orthogonal, R triangular nonsingular.

Since Paige’s algorithm is based on plane rotations, the whole process is therefore completed using
solely orthogonal transformations:

ALGORITHM 3.1 (Description of the LAPACK’s procedure SGGSVD)
Input (A(O),B(O)) = (4, B) € R™*™ x RP*™ rank A = r4, rank B = rp.
Stage (1) Reduction. (Bai and Zha [4])

Step 1 Compute the URV decomposition of B(®) and replace B(®) by

()
B YRY [ 0 B ] BY emr=xs.
o o |
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Update and partition A(®) accordingly. Replace the pair (A B(®)) by the equivalent pair

(1)
(40,50 = (i, 4, | § P ]), AR e R,

Step 2 If Agl) is not empty (rg < n), compute the URV decomposition of A( ) and replace A( ) by

(2) EYNMEY:
AR TEY [8 A(1)2 ], AP eRMA <Ta rfj) = rank A%},

)]

Update and partition A§2 accordingly. Repartition B(!), The new pair reads

o A% a

A(z),B(” =
( =6 o A2

0o o BY
188 B ] sy =s.

Step 3 Compute the QR factorization of A%) to get an upper triangular or upper trapezoidal s X rg
matrix Ag?. If s > rp, define Ag?» to be the leading rp x rg submatrix of Ag?. If s<rpg,
append rp — s zero rows to Ag? and denote the resulting matrix by Ag?b. '

Return The reduced regular pair reads (Ag%)p, B(s))

Stage (ii) GSVD of a regular pair of triangular matrices. (Paige [26], Bai and Demmel [3])
Step 1 Apply the algorithm from [3] to compute ‘phe GSVD of the regular pair (Ag;)p, Bg)),
TAgngl EaRi, VY BYQ:=EpR:.

Return The matrices Uy, Vi, @1, 24, EB.

Output Assemble all transformations to get the GSVD in the form introduced by Paige and Saunders:

UTAQ = X4[0,R], V'BQ =Xg[0,R], where (3.8)
r o = @ 4@

Ya= 0 =4 , ZB:[g "“OB]’ R:[Aéz A1]:«%Q1 ]
O O 1

For Van Loan’s decomposition postmultiply (3.8) by I & R™*.

REMARK 3.1 The URV decomposition in Algorithm 3.1 is computed using the QR factorization
with column pivoting and the RQ factorization.

3.1 An example of forward instability

Algorithm 3.1 is backward stable; see [3], [4]. However, backward stability in the matrix norm sense
(||5AHF/HA]|F < 1, |I6Bllr/||Bllr < 1) does not guarantee high relative accuracy. We illustrate
this fact via a s1mp1e example.

ExAMPLE 3.1 Let

A:’“ "‘"], B=[3, 4. (3.9)

@
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The URV decomposition of B is achieved by a single rotation G with the angle w/4:

) l+a 11—«
1
Gz%[ _i } ] (A%, B) = (4G, BG) = V20 V2 0, vas)).

VR

Using BA™! = [8/v/2, 8/(V2/a)]G, we easily compute the generalized singular values of (A, B):
o1 = 400, 09 = ﬁa/ﬂ(l -+ 02)-1/2' Note that ¢y and o3 are perfectly well determined by o and
# in the sense that a perturbation o — a + o, §— B+ 68 with |[da/a] < 1, [68/8] < 1 does
not change o1, and the relative change in o3 is in the bounded by |é/a|+ [68/3] to first order.
Hence, if the parameters «, § are known to a certain relative accuracy, it makes sense to alm to
approximate oq with correspondingly high relative accuracy.

Now let a be such that fI(1+ «) = max{l,a}, e.g., |a| & [¢, 1/€]. If we set 7 = £I(1/+/2) and
n = fl(a/\/2) then

oy T T (1) — _ /|
A(l):fl(A(l))_[T r] or A(”=ﬂ(A<“)*[—n n]'

Note that, in either case, the matrix A1) is exactly singular, while the exact matrix 4(1) is
nonsingular. Hence, the information about the finite singular value is lost as soon as A() is

computed and stored. It is too late even for exact computation because the reduced regular pair
reads ([0], [v/23]) and the computed set of generalized singular values of (A4, B) is {0, +0c0}.

Now consider the backward error. If fI(v/28) = v26(1 + €1), |e1| < €, we can write

S W

¢ 2 2
5 ],c+s =1,

[0, FIVIB)] = [(1 + e2)8, (1 + e)A)G, G = [

where |ea|, |es| & O(e) and |G — G| < O(¢)|G|. This calculation shows that the backward error
6B is elementwise small: |6B| < O(e)|B|. Consider, for example, the case |o| < e. The backward
error 6 A is obtained as the solution of the matrix equation

[: :]:(A+6A)G.

An easy calculation shows that §A1; and § A4y, are of order € and that
6A19 :a—l—’r(E—g), 6Ag9 = -—(1-{-7‘(5—5).

Thus, the backward error 64 is small in the matrix norm sense, ||§A[|r < O(e)||A|l2. However,
the change in the second column of A simply deletes the parameter o and replaces it by roundoff
noise or by an exact zero in the case ¢, = €5 = €3. Moreover, due to the singularity of A1), the
perturbation 6 A necessarily makes the matrix A exactly singular. (Note that the columns of A are
mutually orthogonal.)

To illustrate the numerical instability described above, we run LAPACK’s SGGSVD() procedure
with different choices of o and # = «. In the following table oy denotes the value computed by
stable formula 03 = \/2/(1 + &?), &, denotes the approximation of o5 computed by SGGSVD(), €
is the roundoff unit as computed by SLAMCH(’Epsilon’) (cf. [1]) and &€ = (1 + \/¢).
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(A, B) from (3.9): SGGSVD versus exact formula for oy

a(f=a)

P

oo 2 \/2/(1+ a?)

1/e ~ 0.16777216E+08
1/& ~ 0.16773121E+08
1/1/€ & 0.40960000E+04
0.10000000E+01

Ve & 0.24414062E-03

€ ~ 0.59604645E-07

& ~ 0.59619197E-07
€/10 & 0.59604646E-08

€/100 ~ 0.59604643E-09

0.42146848E-07
0.84314280E-07
0.34526698E-03
0.10000000E+01
0.14140410E+01
0.14142135E+01
0.70693421E+00
0.00000000E+-00
0.70710678E4-02

0.84293696E-07
0.84314273E-07
0.34526698E-03
0.106000000E+01
0.14142135E+01
0.14142135E4-01
0.14142135E+01
0.14142135E+01
0.14142135E+-01

€ = SLAMCH('Epsilon’), & ~ e(1++/¢)

The fact that stage (i) of Algorithm 3.1 runs on a 1 x 1 regular pair for this example means that
the large relative error in &3 is committed in stage (3).

As a second test, we compute the matrix GA = diag (\/5, \/501) and run Algorithm 3.1 with
the pair (GA, B). This leads to an improvement of the accuracy but only in the cases of small a:

( \65 \/%a , [, @]): SGGSVD versus exact formula for oy
a Go 02 & /2/(1+ a?)

1/e ~ 0.16777216E-+08
1/& ~ 0.16773121E+08
1/1/€ ~ 0.40960000E+04
0.10000000E+01

Ve & 0.24414062E-03

e ~ 0.59604645E-07

& ~ 0.59619197E-07
€/10 ~ 0.59604646E-08
€/100 & 0.59604643E-09

0.12644054F-06
0.12647142F-06
0.34522486E-03
0.10000000E+-01
0.14142135E+01
0.14142135E+01
0.14142135E+01

0.14142134E+01 .

0.14142135E+01

0.84293696E-07
0.84314273E-07
0.34526698E-03
0.10000000E+01
0.14142135E4-01
0.14142135E+01
0.14142135E+401
0.14142135E4-01
0.14142135E4-01

€ = SLAMCH('Epsilon’), € =~ e(l+ /)

The relative accuracy is lost in the postmultiplication of A by the rotation . In floating—point
arithmetic, this operation transforms a matrix with mutually orthogonal columns (A) into a nearly
or even exactly singular matrix.

Another source of errors in Algorithm 3.1 can be illustrated by running it on the pair (B, A).
If o] < e or |a] > 1/e, the matrix A is declared rank deficient and the well-defined finite singular
value is lost.

4 Reduction algorithm based on LU factorization

In this section, we present a new GSVD reduction algorithm. The main innovation of our ap-
proach is that we replace the URV decomposition by a combination of LU factorization and certain
nonorthogonal triangular transformations. We also carefully scale the initial matrix pair to prevent
uncontrolled condition growth during the reduction process.

4.1 QRT and LUT factorizations

The key feature of the new algorithm is a new simple and elegant factorization of a general matrix.
It is based on pivoted QR or LU factorization and, in the case of a full column rank matrix, it
reduces to QR or LU, respectively. In the general case, it provides a simple way to cancel out
columns that are'identified in pivoted QR or LU as linearly dependent on the remaining ones.
More precisely, we have:
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THEOREM 4.1 Let B € RP*" and rp = rank B. Then there exist an orthogonal p x p matriz Q,
an n x n permutation matriz I, an rp x (n — rp) matric X, and an rp x rg upper triangular
nonsingular matriz R such that

BH:Q[g 8“(]) );] (4.10)

Furthermore, there exist permutation matrices Py, Py, a unit lower trapezoidal p x rg matriz L,
a unit upper triangular rg x rp matriz U, a diagonal nonsingular rg x rg matriz A, and an
rg X (n—rg) matriz Y such that

P,BP; = LA[U, 0][ Ly ]

o 1 (4.11)

The factorizations (4.10) and ({.11) define the QRT and the LU factorizations of B, respectively.

Proof Let

BII:Q[(‘F)e }02], QQ=QQ =1,

be any rank revealing QR factorization of B, where II is a permutation matrix and R is anrg xrp
upper triangular nonsingular matrix. Define X = R-1R. Then

16 ollo 7]-[s "™ ]=[s 5]

Similarly, let PyBP, = LA[U,U] be any rank revealing LU factorization. Define Y = U~1{ and
note that . B . .
v ol -y]_[v v-uy]_[U O
O O O I | |o 0 10 O}
Q.E.D.

In Theorem 4.1 we use elementary triangular transformations that have the following useful
properties.

ProprosIiTION 4.1 Let

(4.12)

TET(X)::[ ! X].

o I

Then T(X)™t = T(=X) and max{||T(X)||2, |T(X)"|]2} < 14| X||2. Furthermore, if R, U, X,Y
are as in Theorem 4.1, and if Dr and Dy are any diagonal matrices that satisfy |Dg| > |diag(R)|,

|[Dy| > |diag(U)|, where diag(R) & diag (Ri1,...,Rrgryp), then
Xllz < Vre(n = )[R Dell2, [[Y]l2 < V/re(n —rp)||[U~Dylls.

4.2 The algorithm

The structure of our algorithm is similar to the one of Algorithm 3.1. The main differences are:
(i) we use an initial prescaling that is crucial in preserving the numerical stability in subsequent
steps; (1i) we replace the URV factorization with the LUT factorization; (7ii) we use the algorithm
from [15] to compute the SVD of a single matrix instead of using simultaneous transformations of
a pair of matrices. The new algorithm reads as follows.

ALGORITHM 4.1 (LU-based GSVD computation)

Input (4,B) € R™*" x RPX" rank A = ry, rank B = rp.
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Stage A Reduction.

Step 0 Scaling. Define Ay = diag (||Ae;il]2). If some column of A is zero, then replace the
corresponding diagonal entry in the definition of A4 by any nonzero scalar. Compute
A®) = AAGY, BO) = BAZI. The new pair (A(®), B(%) is equivalent to (A, B).

Step 1 Compute the LU factorization with total pivoting of of B(9):
I, BOM, = [ é ][U(lyl), v Lyt e RTEXTE

where L is unit lower triangular and /(11 is upper triangular and nonsingular. Partition
AL, accordingly,
AL, = (ALY, AT,

Step 2 Compute X = A(lol)(U(l’l))"l and

If the right generalized singular vectors are needed, compute 7(Y) with
Y = —(UAD)=1g2) Set UM2) to zero and UMD to I, .

Step 3 If Aglz) is not empty (rp < n), compute a rank revealing QR factorization of A(llz),

(2 4(2) @ Q1)
Aigna= Q[ 45 4], 4 en o, 0 aka)
where Ag) is upper triangular and nonsingular. Set Agzz) to zero. Update Agll) by Agll) —

A(ﬁ) = (Qg) )TAgll). With an appropriate row partition of A(l?i) and with conformal column

repartition the new pair reads

AP, 4 o

A® B(2)) =
( ) =( A5, o o

% } 15,0, 0]).
Return At the end of Step 3 the reduced regular pair reads
PAHS [ f ])- (4.13)
Stage B GSVD of the regular pair (4.13). Use the algorithm from [15].

5 Error and perturbation analysis of the algorithm

In this section we a give detailed analysis of the numerical properties of Algorithm 4.1. Since we
are interested in cases where all finite generalized singular values can be computed with relative
accuracy, we restrict our analysis in this section to the following full rank case: 74 = n, rg =
min{p,n}. For simplicity, we consider only the case rg = p. Since the scaling in Step 0 is
elementwise backward and forward stable for any diagonal scaling (it introduces relative uncertainty
at most of the order of the round-off in each nonzero entry), we assume that (A(®), B(9)) = (4, B).
For ease of notation, we also assume that the matrix B is previously pre- and postmultiplied by
suitable permutation matrices so that no row or column interchanges are necessary for a rank
revealing LU factorization.
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We use the following partition of B = LU:
B = [BWY B = [yt g2 LY [ (L1 ¢ RPXP,
In the same way we write
B+ 8B = [BA 4 6800, B2 4 6802 = [ = L0, 7.2,

A structure of the analysis is given in the form of a commutative diagram on Figure 2 where
vertical arrows (T, |) denote exact computations, horizontal arrows («, —) denote backward per-
turbations, == denotes a forward perturbation, and diagonal arrows (7, \, /') denote floating—
point computations.

(A9, AY], B+ 6B) (A, B)
(A + 6450, A1), LIO D, T2« (A, A9, £0)
([AY, A, Lz, T702)) (A, L)
SO =) x(D)

Y
(147, AL [L,0) = (47, A1, L[E,0]) — (ALY +641), Ay, + 841, ], (L, 0))
Figure 2: Commutative diagram of the floating—point algorithm.

In Figure 2, L, U are computed tnangular factors of B, and LU = B + 6B, for some backward
error 6B. Hence the pair (A(®), LU) is obtained from (A(O) B+ 6B) by an exact LU factorization
of B + 6B. We estimate the relative difference between the generalized singular values of (4, B)
and (A, LU ) in § 5.1. We analyze Step 2 using both backward and forward error analysis. First,

the approximation A(11 of Agl is represented as the exact product A(lll) = (A(1 )—i—éA(O))( Ly-1,
=(1)
Next, starting with [AER,A(H)] we compute the matrix A12 and estimate the difference 64,,

1
(forward error) between A12 and the exact matrix A12 = AY - AV The generalized

singular value perturbations caused by 6A§(i) and 6A§2) are analyzed separately in § 5.2. The error
analysis of Step 3 in § 5.3 is essentially the backward error analysis of the QR factorization. We
conclude the analysis in § 5.4 where we give estimates of condition numbers of matrices defined
in Algorithm 4.1. An important conclusion in § 5.4 is that the relevant condition numbers of all

matrices generated by Algorithm 4.1 remain controlled by the condition numbers of initial matrices
A and B.

5.1 Error analysis of Step 1

The accuracy of Step 1 of Algorithm 4.1 depends on the accuracy of the computed triangular
factors of B. Therefore, we start the analysis with perturbation estimates for the floating—point
LU factorization. Our estimates are based on the backward error estimate from [18] and on the
perturbation analysis of the LU factorization from [33].

The LU factorization in floating—point arithmetic has a very strong form of backward stability
that allows an elementwise bound on the backward error. More precisely:

THEOREM 5.1 [18, Theorem 3.3.1] Let B = fI(B) be an p x n matriz, and let its LUfactorization
be computed by the outer product version of the Gaussian elimination [18, Algorithm 3.2.3]. If no
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zero pivots are encountered during the elimination process, the computed factors LandU satisfy
LU = B+6B, |6B|<erv(|B|+|L|-|U])+O0(e?), (5.14)
where 0 < ery = ery(p,n) < 3(min{p,n} — 1e.

In the next theorem we analyze how 6 B from (5.14) changes the exact factors of B = LU, i.e.,
we bound the errors 6L = L — L and 6U = U — U. We use the following elementwise operators:

. o Aij, 1> 7, e o A,‘j, > 9,
’ (tl‘ll(A))” - { 0, ZS j, (tl‘ll(A))” - { 07 1< j,

and triu(A) = (tril(A7))", triu(4) = (tril (A7))".

- THEOREM 5.2 Let the matriz B in Theorem 5.1 have full row rank, and let B = LU be its LU
factorization, where L is a unit lower triangular mairiz and U is a full row rank upper trapezoidal
matriz. If the spectral radius of

Ep = |L~*6BLD(0 L)1 (5.15)
is less than one, there exist a strictly lower triangular Er and an upper triangular Ey such that
L=(+EL)L, U=U(+Ey) (5.16)
and

|Br| < ero|Libril (L7H(ILUCD] 4 | L TEOD@ED) DL +0(*),  (5.17)

By = [Ef(gl) E’(gz)}, (5.18)
GV < epp|(UOD) T erta (| L (LU
+ L] [TODPEED) T TED] 4+ O?), (5.19)
1EG?P] < erp|(UOD)H{ILH(LUC D] 4 |- [T02)
+ tril (|L7Y(JLUCD] 4 (L] [TOD) (S U]} + 0. (5.20)

Hence, in Theorem 5.1, the backward perturbed matriz can be represented as B + §B = (I +
EL)B(I + EU).

Pi'oof First, note that
BAD 4§D = LUt sy = [~H(6B12) — 6L U12), (5.21)

and that o
16BED| < ey (|BOD| +|L] - [0AD)), i=1,2. : (5.22)

Now an application of [33, Theorem 5.1] to the first equation in (5.21) yields an estimate of
= 6L L~'. Namely, 5
|Er| < |Llteil (I — Eg)~'Ep)|L7Y|. (5.23)

Writing the Neumann expansion of (I — Eg)~! and using (5.15), (5.22) yields (5.17). Similarly,
[33, Theorem 5.1] implies that

(UG~ 1sy D) < (UYL iriu (Ep(I — Ep)~ YU, (5.24)
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and (5.19) follows. To estimate Ey first note that

I+ (U(l,l))—léU(l,l) (U(l,l))-16U(1,2)

(L) 71,2 = (LD r(1,2)

Hence, it remains to estimate |(U(11)~16U/(1.2)|. From the second equation in (5.21) it follows
that

|(U(1’1))_15U(1’2)[ I(U(l,l))—li——léB(Lz)l + I(U(l’l))_lff'15L U(1,2)‘

eru|(UOD) - [L7H(|LUE D] + |L] - [TG2))

|(U(1>1))‘1| . |tril(i‘lﬁB(l’l)(U(l»l))'l)j U2,

Now, using (5.22) implies (5.20). __QE.D.
In Algorithm 4.1, we replace the original pair (A, B) by (A, B+6B), that is, by (4, LUY), where

6B, L, and U are as in Theorem 5.2. In the following proposition, we estimate the generalized

singular value perturbations caused by 6B.

+ INIA

PROPOSITION 5.1 Let the assumptions of Theorem 5.2 hold, and let oy > --- > op and o} > - >
oy be the finite generalized singular values of (A, B) and (A, B + 6B), respectively. If A is a full
column rank matriz with the QR factorization A = QR, and if R(\Y) s the p x p upper left main
submatriz of R, then

loi =il o 1 Bl + 1RDIEG Y, B )R

max <= , 5.25)
1SS Volon T2 1= (1/32)[| Bl | RO DLEG Y, By PIR (

provided that the right-hand side in (5.25) is strictly positive.

Proof Let A= QR be the QR factorization of 4 with a nonsingular upper triangular matrix R.
Without loss of generality we may consider matrix pairs (B, R) and ((I + Er)B(I + Ey), R) or,
equivalently, the matrices BR™! and (I + EL)BR™*(I + REyR™'). By a result of Ren-Cang Li
[23, Theorem 5.2], the distance between the exact and the perturbed generalized singular values is
bounded by

loi—ail . 1 ||Ezllz+[|REyR™l2

= . 5.26)
% ol = 21= (/3] EulLIIREv R (5:20)
Now the special structure of Ey implies the desired bound. Q.E.D.

REMARK 5.1 In relation (5.26), we can easily estimate ||REy R™Y||; by
IREy R™H 2 < k2(R)|| B ||z = k2(A)|| Evll2.
It is important to note that the matrices A and R both have columns of unit Euclidean norm
because of the scaling in Step 0 of Algorithm 4.1. '
5.2 Error analysis of Step 2

In Step 2 of Algorithm 4.1, the transformation of the matrix U is error—free and effortless. It
remains to analyze the computation of the matrix A(Y), We first consider the computation of Agll).

PROPOSITION 5.2 Let figll) be a computed approzimation of the solution of the matriz equation
XU = Ag?). Then there exisis an 6A§2) such that fi(lll) = (A(lg) + 5A(1?))((j(1’1))‘1, and

84| < rpel A (@) LTI 4 0@ED). (5.27)
Hence, for 1 <i<rp,

1645 eills < rell (D) |- [TED]ey], + O(e?). - (62)
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Proof Using an analysis of Wilkinson [39] we know that there exist matrices 6(7,51'1) , 1<k <m,
such that

Hence the residual matrix 6Ag(i) defined by
APTOD — AY =549 (5.29)

satisfies (5.27). Now we rewrite (5.29) as /igll) = (Ag(i) + 6A(12))(0(1’1))“1. Finally, relation (5.28)
follows from (5.27) because A{J has unit columns. Q.E.D.

REMARK 5.2 Note that the bounds (5.27), (5.28) are invariant under row scaling of U(11). Fur-
thermore, if [Tt D];; > [T D]5. j > i, then for all j > i it holds that ((@@D)=1 T}, <
20~ see [20, Lemma 3.1]. Note also that the factor rz can be removed by using double precision
accumulation.

In the next theorem we estimate the uncertainty in the generalized singular values of the new
pair ([AfY, A7), L1, 0G-2)).

THEOREM 5.3 Let 0y > --- > oy, and of > --- > ol be the generalized singular values of the
pairs ([Ag(i),Agg)],ﬁ[ﬁ(l’l),l}(l’Q)]) and ([AY), A9 L[1, UM2)), respectively. Furthermore, let
[Agg),A(ﬁ)] = WL WENT be the QR factorization of [Agg),Agg)] with upper triangular T, and
let T2 = (W A, Then for all i, either o) =0} =00 or

ol
o

1 [6AD@2M 1, < Z8 <14 (64D (r22)-1), (5.30)

Furthermore, zng?) = VTl(f) is the QR factorizaiion ofA(lg) and if 1 is the mazimal acute principal
angle between R(AY) and R(AD)E NR(AD) then

|| |AD] - (@ ED)=1] g @Dy ()= |,

18472 < rpe o , (5.31)
and similarly
(0) (0)
||6Ag(i)(T[2,2])~1H2 < 7'36” | A3y | []2[1(A5, )T||2“ l([j(l,l))—1| . |[j(1,1)| llo- (5.32)
- cos ¢
Proof We can equivalently consider the pair
(Lo, 1, (W, Wl + [0, 84)7-1)7) (5.33)

and compare its singular values to those of (L[U (L1 7], T). The variational characterization
of the generalized singular values immediately implies (5.30). Now note that {O,&A(ﬁ)]T“l =
[0,6A1)(T2)=1] and that T122 = (W) V)T Finally, note that omn((WETV) = cos ¢ >
0 so that relation (5.31) and (5.32) follow from relation (5.27) using matrix norm inequalities.
Q.E.D.

Next we analyze the computation of figlz):
(A5, AR, 11, 00— (ALY, FUAT) — AP0, 111, 0)),

Since this operation involves only matrix sum and multiply operations, the error analysis 1s
simple, at least if we use the standard matrix multiply algorithm.
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. 1Y ~(1) . . -
PROPOSITION 5.3 Let Ay = A1) — APTOD, 4, = 71 AY) = A1) + 640, Then

elAQ 4 ep A (T2 4+ O(e?)
el A+ ep AT (TODY=1] T 4 O(e?),

8457 <
<
where ep = O(rge).
Proof Straightforward. Indeed,
FUAYTOD) = APOOD + By, |By| < epldD)] - [T02),
FUAR = FUARTOD) = AR - APTOD — By 4 By,

where |Ey| < e|A() — AVT12 — By | < e|AD)] + 0(e2). _ QED,

Now we can estimate generalized singular value perturbations due to the error 6A(112).

THEOREM 5.4 Let of > --- > o)) and o' > --- > o/ be the generalized singular values of

- - - - ~(1) . - -
([Agll),Agg)],L[I, ULy and ([A(lll),Au],[L, O]), respectively. Furthermore, let [A(lllj,Ag)] =
(WO WEIT be the QR factorization of [At(lll),figlz)], where T is upper triangular and nonsingular.
Let T(22) = (VT/@))TA%). Then, for alli, either o}’ = 6! = co or

" N 0_;1/ 5 N _
L= 84S (TED) 1o < 25 <14 [[6AG(TED) 1. (5.3)

Furthermore, let fig‘? = VTI(;) be the QR factorization of figlg), let ¥; be the angle between
R(Ag%)ef) and R(fiill)[}(l’g)ei), and let ¢ be the mazimal acute principal angle between ’R(fig))
and R(AY )L NR(AD). Then in (5.84)

A FEC -, < AR T |

cos ¢
O (L Oy=-11 . 177(1,2) FOONT
+ epll A1y |10 ) U |HZ||(A12)6||2+0(€2)‘ (5.35)
min; sin ¥; cos ¢

Proof Similarly to the proof of Theorem 5.3, we create a new pair
(IZ. O], (WD, W] + [0, 6 A17-1)T)

and immediately obtain (5.34). Let us now prove (5.35). First, note that 614%) = FEy — E1, where
Ey and Ej are defined in Proposition 5.3. We easily find that (7(22)-1 = (Tl(;))“l((W(z))Tf/)“l
and thus

UEATE) M LA 1T3) " I

| Eo(TCD)-1)), < Umin((W@))Tf/) = cos ¢

+ O(e?).

It remains to estimate E (f’(z'”)‘l. It is not hard to show, using Pythagoras’ theorem that, for
all ¢, Hfi(é)ei“g > sin 9;. Hence k

| 1AS] - [0CD) |

min; sin ;

IELTS) s < [ 1Bl (A2 < ep 1A,

where we have also used Proposition 5.3, and column scaling of F, is performed using column
norms of A(llz). Now an application of Proposition 5.2 yields the desired estimate. Q.E.D.
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REMARK 5.3 Note that, if the columns of A are fairly linearly independent (k2(Ac) moderate)
and if || (UOD)=1] - |T(12)] ||, is moderate, min; sin ¥; has reasonably large lower bound.

REMARK 5.4 We cannot guarantee that even a “reasonably implemented” fast Level 3 BLAS (cf.
[1, § 4.13]) can speed up Step 2 without sacrificing relative accuracy. The reason is that the
elementwise error estimates in Proposition 5.2 and Proposition 5.3 do not hold if “fast algorithms”
are used (cf. [21]).

5.3 Error analysis of Step 3

=(1)
In the last step of the reduction phase we compute the QR factorization of Ay, . Floating—point

error analysis of the QR factorization implies that the computed upper triangular factor fig?
satisfies the relation

~(9) ~ (1) (1) (1) =(1) .
Q(122)A§%z) =A, +64;,, |!5A12, eill2 < eQrllArzeillz, 1<i<n—rg,

~ ~(1
where ngz) is a certain orthogonal matrix, and A, is a backward error that depends on the details
of the floating—point implementation of the QR factorization. The quantity eQr is bounded by €
times a modestly growing function of matrix dimensions; see e.g. [17], [14]. The same sequence of

(nearly) orthogonal transformations is applied to Aﬁ) so that the resulting matrix 1‘1(1? satisfies

QAR = AD + 64, 1164V ei> < eqrll AV el 1< i < rp.

Hence, with an appropriate row partition of A(li),

i
.A11,2 o

S (2)rr 7 . =(1) (1)
= (Q(lzz)) [Ag11) + 6A(1?, Ay +64,,].

Thus, the output of the reduction phase is the pair (/1521)2, Z) We may proceed with this pair as
with the exact one but must keep-in mind that its singular values differ from the singular values of
([A(lll), Aglz)], [ZU(D) 0]). The relative differences between the maching generalized singular values
of the two pairs are estimated in the following theorem.

‘THEOREM 5.5 Let oy}, > --- > 0!/ and ofyy >+ > ol be the finite generalized singular values
~ (1), . - .
of([Agll), A, 1,[L,0O]) and (Agzl)yz, L), respectively. (The remaining £ = n—rp values are infinite. )

. ~(1) ~ =(1) .
1 1= AR, i Do)l 1AL GA)l < 1, then, for £+ 1< i<,

S <14 (5.36)

Proof Similar to the proof of Theorem 5.4. The only difference is that we cannot use any special

, OV
zero pattern of [6477,6A4,, ]. Q.E.D.

REMARK 5.5 Finally, we may combine the estimate (5.36) with the estimates (5.26), (5.30), (5.34)
to get an estimate of o/’ /o;.

5.4 Analysis of condition numbers

In this section we analyze the condition numbers that determine the relative accuracy of the
generalized singular value approximations computed by Algorithm 4.1 in floating—point arithmetic.
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For the sake of simplicity, we neglect the fact that condition numbers have their own condition
numbers, and thus we consider the condition numbers of matrices obtained in exact computation.
We use the notation from Algorithm 4.1.

We first analyze the condition numbers related to the matrix A.

PROPOSITION 5.4 Let A, UMD U12) be as in Algorithm 4.1, and let Ay = diag(UHY),
(U(l,l))d - A{JIU(I’U, (U(I’Q))d = A[’}lU(l:?). Then

r2((AM)e) < Vika(AD)Ro(USD)a) (1 + (U ) all2)*. (5.37)

Proof Note that
(1,2)
(A0 80) < R4+ Dl 4 I sy
“)dll2

Now a result of van der Sluis [34] implies that

ka((AD)) < v/ min ke(ADA) < Vrka(ADAY)

. a=diag(a) 7
and (5.37) follows. ' Q.E.D.

REMARK 5.6 It trivially holds that for A1) = [A{}] A{))] the condition numbers satisfy

max{rs((A7))e), m2((A1))e)} < ma((AD)e).
The generalized singular values of the pair (Aﬁ)ﬂ, [é]) are computed with high relative accu-

racy by the algorithm from [15] if the condition numbers I{g((Agi)yz)c) and Ka(( [ é] )c) are moderate.
An estimate of xa({( 521)'2)6) is given in the following proposition.
ProproOSITION 5.5 Let

T = {[ g (E) ] ; A diagonal nonsingular, Z square nonsingular, Q arbitrary}

where the partition of each T € T is conformal to the partition of A®). Furthermore, let Ty =
(T €T; A= diag (| A} eill2)""}. Then

ka((AY,)e) < min{\/rp min k2(AMT),  min wy(ADT)} (5.39)

Proof Note that for any T € 7

* *
r= [ AiLA 0]

Hence

wa((AfD)e) < puin mo(APT), min (D)nz(AﬁgD) < min Ao A7)

and (5.39) follows from the orthogonal invariance and near optimality [34] of k2((-).). = Q.E.D.
Thus, if the original matrix A has moderate k2(A,), and if KQ(U(gl’l)) is moderate, then in the
computed reduced regular pair (fi(l?z, L) the condition number ffz((ﬁgzl)z)c) is moderate.
Finally, since the LU factorization of B is computed with a rank revealing pivoting, the numbers

Kz(Uél’l)) and xa(( [%] )e) are almost never large. (In the description of Algorithm 4.1 we do not

specify the choice of pivoting. In practice, we use the best one that is available. The relative
accuracy of Algorithm 4.1 improves as our ability to factor B accurately as LU improves.)
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6 On software implementation of the algorithm

The major part of our software implementation of Algorithm 4.1 is based on LAPACK and BLAS
3 libraries. We also use the Jacobi SVD algorithm [19], [12], [13] because it is the fastest known
method capable of achieving the high relative accuracy. We also use a procedure that computes
the LU factorization of B with total pivoting. The output of our algorithm is the GSVD of (4, B)
in Van Loan’s form. That is, we compute orthogonal matrices V and W and a nonsingular matrix
X such that V7 AX and W”BX are in diagonal form. An interesting feature of our algorithm is
an option to return V and W in factored form, using products of the Householder reflections. In
that case, information necessary to retrieve the reflections that define V and W is overwritten on
the arrays A and B, respectively. Hence, we can compute and use V and W without additional
square arrays. This saves m? + p? memory locations which is attractive if m > n or p > n.

6.1 Test results

We use several different types of test pairs. The first type is taken from [15] and it contains full
column rank matrices with controlled spectral condition number x5((-).) of the column equilibrated
matrix. For the reader’s convenience we give a detailed description of the test pair generation.

EXAMPLE 6.1 We generate random full column rank matrices A, and B. with given x9(A4,) and
ka(B.) and apply scalings A = A,As, B = B,Ap, where A4, Ap are random diagonal, nonsin-
gular matrices with given spectral condition numbers.
Each 4-tuple (k2(A.), k2(A4), k2(B.), k2(Ap)) is chosen from a 4-dimensional mesh of condition
numbers

C = {kijrr = (10°,107,10%,10") : (4,5, k, 1)) €T x J x K x £ C N*},

where Z,J,K, L are determined at the very beginning of the test and kept fixed. For each fixed
Kijkl, we generate A., Ay, B., Ap using different distributions of their singular vlues. We use all
admissible values of the parameter MODE in LAPACK’s DLATM1() procedure [11]. Hence, for each
4-tuple (A., A4, B, Ap) we can choose the singular value distribution modes from the set

M= {pirgr = (i, o, e )} C©Prx Py x Py x Py C {£1,...,£6}7,

For each fixed (kijxi1, pirjrgv) we generate random pairs using different random number generators
as specified by the parameter IDIST in DLATM1() procedure. Thus, our set of random number dis-
tributions is R C {U(~1,1),4(0,1),N(0,1)}, where #(—1,1), (0, 1) are uniform distributions on
(—1,1) and (0, 1), respectlvely, and N(0,1) is the normal dlstrlbutlon For each fixed distribution
X € R we generate a set £ ooy Of different pairs, where the cardinality of £X is

fixed at the very beginning of the test. This process makes a total of

Righl Mt jlgty!

T = |Z||TTIK L] M|

different classes and 7[[, . |€X | different matrix pairs.

Kt byl 1 gty

Each test pair is generated in double precision and its generalized smgular values are computed
using a double precision procedure. The generalized singular values computed by the double
precision procedure are then taken as reference for the single precision procedure run on the
original pair rounded to single precision.

For a test pair (A, B) with well- conditioned A, and B, the value of
(1(A, B) = e max{ky(A.), k2(B.)}

gives a good estimate of relative errors in the generalized singular values computed by the algorlthm
from [15].
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Following our theory, we compute another a priori relative error estimate in the following way.
For computed triangular factors L, U of II; BIl,, we compute the residual § B = LU — II; BII, and
the values

I

er(B) = | ILtxilsB) |E7] |,
Eu(B) = | |0~ Exa(sB) [0] |,

(cf. (5.23) and (5.24) in the proof of Theorem 5.2) and
C2(A, B) = max{ eky(As),eL(B),éy(B) }.

(Here || - |1 is the operator norm induced by the £; vector norm. We use | - |l1 instead of || - |-
because || - ||; is easier to compute.) If ¢;(4, B) and ¢2(A, B) are realistic and sharp enough to be
used in the practice, then the values of '

maX,eq(4,B) li:i MaXseq(4,B) @

G(4,B) 7 (2(4, B)

should be bounded by a moderate function of m, n, p and should not be much less than one. (A

value of 0;(A, B) that is below one means that ;(A, B) overestimates the actual relative error.)
We also use the following measure for the accuracy of our algorithm:

6:(A,B) =

G2(4, B) =

e(i k) = max max Ié—a—l, (i,k)eT xK,
k2(Ac)=10% k3(B.)=10% 0€0(A,B) @
that is, we compute the maximal relative error over all generalized singular values of all matrix pairs
with fixed x2(4.) = 10%, k3(B,) = 10*. Note that — log,, €(é, k) gives an approximate minimal
number of correct digits in the computed approximations of the generalized singular values of the
test pairs with fixed “coordinates” (i, k) € T x K. According to the theory from [15], we can expect
—logyq £(i, k) to be roughly 7 — max{s, k}. '
To inspect the values of some relevant condition numbers, we also compute

K':Q(Bc)
max{€z(B),ey(B)}/e’

An example of the above described values is given in Figures 3, 4, 5. The input data are

03(B) = 04(B) = || [U=Y-1U] |Ir.

7 {2,...,7}, K =1,
J = {4,8,10,12,14,16}, £ = 7,
M = {(5)4y"5)3))(3) _4753 -S)a(4a5,3a_4)}v R = {u(_171)}

Il

For each node of C x M x R we performed one test on a randomly generated pair. As a reference,
we use the double precision algorithm from [15]. The values of 6; and 6, in Figure 3 are bounded
by 100 (roughly), which means that the accumulated round—off enters the error linearly in matrix
dimensions. Both ¢(; and ¢» provide good relative error estimates, although (; is slightly more
pessimistic. The number of correct digits shown in F igure 4 corresponds to the predicted theoretical
behavior. The values of 03 in Figure 5 show that, in this example, the condition numbers ka(Be)
and max{€r(B),éy(B)}/e differ by a factor on the order of the dimensions of the problem. This
means that in this example the method from [15] is as accurate as Algorithm 4.1. Finally, the
values of 04 are, as expected, bounded by a factor of dimensionality.

Our next example illustrates a substantial difference between the direct application of the
algorithm from [15] and our new approach that starts with the LU factorization of B.
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Example 6.1 ( m=n=p=100
10* . . . . . T T

¢ 500 1000 1500 2000 2500 3000 3500 4000

1 1 1
o] 500 1000 1500 2000 2500 3000 3500 4000
Test pairs from Example 6.1

Figure 3: The values of 6,(-,-) and 65(-, -).

Example 6.1 ( m=n=p=100 )

log10(eps(i,k))

k=log10(condition B_c) 1o

i=log10(condition A_c)

Figure 4: The values of log;o€(i, k), (i,k) € Z x K. Observe that —log;o&(i, k) behaves like
7 — max{i, k} (roughly).
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Example 6.1 ( m=n=p=100 )

1500 2000 2500 3000 3500 4000

10 T T
: T3 o A g e AL 0 St
Lee. -5 p e A - e 5 Yy e e ol %
> RS MBS ok TN B &
g0 Baeh AT -
£ o .

1 L 1 1
1500 2000 2500 3000 3500 4000
Test pairs from Example 6.1

Il
0 500 1000

Figure 5: The values of 03(-,-) and 04(-,-).

EXAMPLE 6.2 In this example, the test matrix generator follows the scheme described in Example
6.1 and additionally scales the rows of each generated B by a diagonal ill-conditioned matrix D.
That is; we first generate a random matrix Bg in the same way as the matrix B, in Example
6.1. Then we generate diagonal matrices Ap, Ag) with the same spectral condition number
and compute B = AS)BSAB. In this way we obtain a matrix B with high k2(B,). Tests with
LAPACK’s SGGSVD() and the algorithm from [15] show that neither of those procedures is capable
of achieving high relative accuracy with such a matrix. Since we use /ﬁ}g(Ag)) up to 10'¢, we
cannot use the double precision algorithm from [15] as a reference. We use a double precision
implementation of Algorithm 4.1 instead.

The input data in this example are the same as in Example 6.1. The test results are given
in Figures 6, 7, 8. Note that the values of ; show the same behavior as in Example 6.1, while
the values of §; are much smaller. This indicates a rather pessimistic estimate if we use (1, and
together with large values of 3 illustrates the superiority of Algorithm 4.1 to the direct application

of the algorithm from [15]. The number of correct digits, shown in Figure 7, confirms that the
accuracy is as good as in Example 6.1.

EXAMPLE 6.3 In this example we first generate an m x n matrix A and an n x p matrix C in
the same way as A and B, respectively, in Example 6.1. Then we define B = C”. In this way we
control the size of k3(B, ), where B, is obtained from B by scaling its rows to have unit Euclidean
norm. Note that in this example k2(B,) is used instead of k2(B.) in the definitions of (;(A4, B)
and 03(B). Also note that the algorithm from [15] is not applicable because B does not have full
column rank. ’

The test results are given in Figures 9, 10, 11. We see that the comments about the relative
accuracy from Example 6.1 apply here as well.

EXAMPLE 6.4 We generate A and B in the same way as in Example 6.3, but with larger dimen-
sions, m = 300, n = 150, p = 50, and with 7 = K = {2, .. .6} and J = £ = {8,12,14, 16}. For
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Example 6.2 ( m=n=p=100)

= A

e

. .".,..:t-
Ca

2500 3000 3500 4000

0 500 1000 1500 2000

1 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Test pairs from Example 6.2

Figure 6: The values of 6, (-, ) and 85(, -).

log10{eps(i,k))

k=log10(condition B_S) L

i=log10(condition A_c)

Figure 7: The values of log,,¢(3, k), (1, k) € T x K.

October 9, 1996
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Example 6.2 ( m=n=p=100)

20
10 . : . T T x .
. .'-". . SN N °.‘-.°.-‘ C gt
15 Ty o2 . . q; o ASTSRAE LY Y
10 = I'-» € oz v-.v Sl W vt
.

»;?35 %”’*“':: ft“i“% A

S e FY Y ngv
[} 10 * o H o) .
10 RN .,n. e \"be L AT
5] o B . » s ,gfp s o,
= ,.mfr,ﬁ';‘.& },.»;ww‘*ff.«* &wfﬁﬁ«mﬁ*‘e
10° «* Pt TN X . ,{ : ot
I AN e e M =
L= ™ - F el ™
10 . . . : .
0 500 1000 1500 2000 2500 3000 3500 4000

theta 4

0
10 1 L 1 Il 1 L 1
0 500 1000 1500 2000 2500 3000 3500 4000
. Test pairs from Example 6.2
Figure 8: The values of 63(-,-) and 84(-, ).
R Exampile 6.3 ( m=100, n= 50, p=20 )
10 T T T T T T T

0 500 1000 1500 2000 2500 3000 3500 4000

1 1 1 1
o] 500 1000 1500 2000 2500 3000 3500 4000
Test pairs from Example 6.3

Figure 9: The values of 6,(-, ) andk92(~, .

23
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Example 6.3 ( m=100, n=50, p=20)

log10(eps(i,k))

k=log10(condition B_r) v i=log10(condition A_c)

Figure 10: The values of log,4¢(4, k), (i,k) € T x K.

Example 6.3 ( m=100, n=50, p=20)

theta 4

L 1 L 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Test pairs from Example 6.3

Figure 11: The values of s(-, -) and 84(-, ).

October 9, 1996
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Example 6.4 ( m=300, n=150, p=50 )

054

log10(eps(i.k))
by Lo
o N (4] -
( L L Vi

]
w
L

35

_4>.____,4.,..

. 1
k=log10(condition B_r) 1 i=log10(condition A_c)

Figure 12: The values of log,,¢(¢, k), (i,k) € Z x K.

simplicity, we display only the values of (7, k) (Figure 12). We can see the minimal number of
correct digits shows the same behavior as in all previous examples.
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