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Kim, Jaehong (Ph.D., Civil Engineering)

Plasticity modeling and coupled finite element analysis for partially-saturated soils

Thesis directed by Prof. Richard A. Regueiro

The objective of the research is to compare various features of partially-saturated soil models

within a coupled small strain triphasic mixture finite element implementation to determine an

appropriate constitutive modeling framework for partially-saturated soils. To achieve the objective,

specific research tasks include: (1) formulating and implementing a small strain nonlinear triphasic

mixture finite element in a Matlab code; (2) verifying the triphasic mixture element in Matlab code

to partially-saturated water flow simulated by commercial codes and a closed-form solution; (3)

formulating and implementing a small strain partially-saturated soil hyperelasto-plasticity model

in the Matlab code; (4) using constitutive parameters from experimental data available in the

literature; and (5) conducting plane strain finite element analysis of rainfall infiltration into slope

surfaces with gravity loading.
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Chapter 1

Introduction

1.1 Background

For finite element analysis of partially saturated soils, commercial software analyzing coupled

seepage and deformation analyses of soil, such as SEEP/W–SIGMA/W[40], PlaxFlow–Plaxis[74,

73], Abaqus[1], and so on, are usually used. Some commercial software for geotechnical problems,

for example UNSAT-H[89], SEEP/W and PlaxFlow, are formulated for conditions of constant net

normal stress (p = σ − pa; excess of mean stress σ over air pressure pa) and non-deformable soil

media. UNSAT-H and SEEP/W software for 1-Dimensional flow process in partially saturated

soil is verified against the Srivastava and Yeh[81] analytical solution, and compared to a partially

saturated flow simulation (rigid soil) using a triphasic mixture finite element implemented in a

Matlab code. The coupled flow and deformation software is used to compare the coupled FE

implementation in a Matlab code, and to better understand the assumptions made in coupling the

soil skeleton deformation with pore liquid and gas flow (via the effective stress equation for partially

saturated soil).

The seepage and flow processes in a deformable soil are influenced by soil solid skeleton

deformations. Pore water pressure change due to seepage will lead to changes in effective stress and

to deformation of a soil. Similarly, effective stress changes will modify the seepage process since

soil hydraulic properties such as porosity, permeability and water storage capacity are affected

by the changes in effective stress. Hence, a monolithically coupled hydromechanical model is

preferred to analyze the behavior and stability of a partially saturated soil subjected to external
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loads, especially rainfall. As a result, the seepage and stress-deformation problems should be linked

simultaneously[97].

The main objective of this research is to develop a monolithically coupled nonlinear

finite element model for a deformable partially saturated soil based on the modified Cam-clay

model, to make Matlab coding and comparison to commercial FE programs (SEEP/W–SIGMA/W,

PlaxFlow–Plaxis, and ABAQUS), to find material parameter fitted with experimental data in the

literature, and to illustrate their implementation to study various features, such as yield surface,

soil-water characteristic curve (SWCC), and effective stress equations, of a proposed hyperelasto-

plastic Cam-clay model for partially-saturated soil in the literature. Issues for investigation to meet

the main objective,

(1) various effective stress equations

(2) a hyperelasto-plastic critical-state Cam-clay-like plasticity model implemented in a biphasic

and triphasic nonlinear coupled FE Matlab code

(3) and, effect of including pore air pressure (pa 6= 0) versus not (pa ≈ 0)

1.2 Motivation

Partially saturated (also called unsaturated) soil mechanics has been closely connected with

the history of hydrology, soil mechanics, and soil physics. Engineering problems in partially sat-

urated soil mechanics can be found in many countries in the world, such as construction of dam,

natural slopes subjected to environmental changes, stability of excavations, lateral earth pressures

on retaining walls, bearing capacity for shallow foundations, collapsing soil structures due to expan-

sive soils, and pavement subgrade and so on. These examples show that there are many practical

situations involving partially saturated soils that require an understanding of the seepage, volume

change, and shear strength characteristics. Common to all partially saturated soil situations are

the negative pressures in the pore-water-air interface (capillarity). The problems involving nega-

tive pore-water pressures, which has received the most attention, are that of swelling or expansive
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clays[32]. The financial damages associated with expansive soils are about $10 billion each year

in the United States and more than twice the complex natural disasters from floods, hurricanes,

tornadoes, and earthquakes[48, 55].

With the development of theories and techniques in partially saturated soil mechanics, it

requires that many principles of soil mechanics and hydraulics should approach the flow and defor-

mation phenomena of partially saturated soil, and that the results obtained through numerical sim-

ulation agree fairly well with field measurements for the various geotechnical engineering problems

involving partially saturated soil. However, it should be needed for understanding the processing of

these problems, such as setting up boundaries and initial conditions among different geotechnical

problems. The majority of practical engineering problems generally involve these two phenomena

simultaneously. An effective theory describing the water infiltration and deformation behavior in

expansive soil, such as clayey soil, appropriate for application of the principles of stress, strain, and

flow in highly deformable soil[65].

Moore[71] is one of the first researchers to recognize the importance of soil suction to the

mechanical behavior of a partially saturated soil. He studied soil suction and water flow due

to infiltration through experimental tests. Many researchers have referred and begun with the

fundamental works of Bishop and Donald[10], Coleman[22], Matyas and Radhakrishna[69] and

Fredlund and Morgenstern[31], and these are the basis of suitable stress frameworks to describe the

stress-strain-strength behavior of partially saturated soils. In the expression of three stress states,

(σij − uaδij); (σij − uwδij) and (ua − uw)δij where, σij is the total stress, ua and uw are pore air and

water pressure and δij is Kronecker delta. Under conditions of partial saturation, the term ua −uw

is a positive quantity and will be denoted as the suction term s[6].

Alonso et al.[6] suggested a constitutive model for describing the stress-strain behavior of

partially saturated soils. This model is formulated within the framework of hardening plasticity

using two independent sets of stress variables: the excess of total stress over water and air pressure

and the suction. Borja[12] presented a mathematical framework for three-phase deformation and

strain localization analyses of partially saturated porous media using conservation laws and a
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modified Cam-clay constitutive model formulation.

1.3 Literature Review

1.3.1 Three vs. two field finite element analysis of partially saturated soil

When taking into account the solid-water-gas interaction to present the features of the hydro-

mechanical behavior of multiphase porous media, the soil model has two kinds of constituent volume

fraction. One is that the air phase is considered active in the voids of a three phase soil as a gas

phase, and tho other is to treat the gas phase as vacuum in a soil mixture. In the soil mechanics,

‘saturated’ just means the mixture of soil particles and water, but other fields, such as Earth Science

and Multi-phase media literature, define the mixture concept unlike the soil mechanics as shown

in Figure 1.1.

unsaturated

Gas Voids
(empty space)

Water

Solid
grains

Solid
grains

Water

unsaturated

saturated unsaturated

Soil mechanics:

Multi-phase media:

Figure 1.1: Schematic description for three phase mixture[57]

According to the role of the air phase, the soil has either the continuous air or the occluded air

bubbles. The former concept like water phase is concerned by mathematical formulation developed

in this study, but the latter concept is related to calculate the water compressibility.

On the other hand, the role of the air phase in the hydro-mechanical behavior of deformable

soil is treated by the air-water interface or contractile skin to recognize a partially saturated soil

as a four phase system[32]. When performing a stress analysis on an element, they assumed the
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partially saturated soil can be visualized as a mixture with soil particles and contractile skin that

approach to equilibrium under applied stress gradients and air and water phases that flow under

applied stress gradients. The reason is why the contractile skin acts like a thin rubber membrane,

pulling the particles together when the pore water pressure gradually changes into the negative

value during the shrinkage-type experiment involving the drying of a small soil specimen as it is

exposed to the atmosphere.
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Solid
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saturated unsaturated

Soil mechanics:

Multi-phase media:
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Figure 1.2: Schematic description of a mixture with double porosity[14]

Recently, in order to observe the coupled solid-water-air phenomenon in detail Gray and

Schrefler[41, 42], Khalili et al.[51, 52], and Borja[14] formulated conservation equations for a three-

phase system consisting of a solid and two immiscible fluids, liquid and gas. They also derived

expressions for the effective stress tensor in multi-phase porous media exhibiting two porosity scales,

micro- and macroporosity during the course of loading. Figure 1.2 shows to describe the concept

of partially saturated porous media with double porosity. The three-phase mixture is composed

of porous media consisting of solid and fluids within the micropores and macropores consisting of

only fluid constituents, liquid and gas, in the macropores as shown in Figure 1.2.

Developments presented in the literature regarding a mixture of solid, liquid, and gas have

recently been proposed as the constitutive framework of the coupled model to simulate water and
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air flow in deformable soil. Finite element analysis for partially saturated soil is generally treated

as biphasic (i.e., two field phases) mixture state in geotechnical engineering.

While a finite element method for saturated constitutive models have been well studied,

research on finite element method for evaluating constitutive models of partially saturated soil is

more limited. In order to implement a partially saturated soil model in a finite element code,

the stresses are updated by integrating the stress-strain relations with a strain increment and

also an updated suction sn+1. For solving this numerical simulation, the methods appropriate for

calculating this algorithm can be classified generally into two categories. They are implicit and

explicit schemes. Explicit method calculate the state of a soil at a later time from the state of

the soil at the current time, while implicit method find a solution by solving an equation involving

simultaneously both the current and the later state of the soil. The former is computationally

stable, and can be unstable for large time increments (large increments of strain and suction). On

the other hand, implicit method is unconditionally stable (accuracy controlled by time increment),

but is difficult to implement since it requires consistent tangents (global for balance equations, and

local for material models). An explicit scheme with error control has been used to integrate the

global differential equations derived in terms of displacement and pore water pressure in partially

saturated soils[77, 78]. Implicit method which has been presented by many researchers is used to

solve nonlinear constitutive equations by iteration in partially saturated soils[91, 76, 12, 21].

Although a number of constitutive equation for partially saturated soil have been developed

based on experimental observations and plasticity theory, a finite element analysis in partially sat-

urated soils is mainly treated by a constitutive model of Cam-clay elastoplasticity based on the

model of Alonso et al.[6] and the well-known soil plasticity model, Mohr-Coulomb elastoplasticity.

Loret and Khalii[62] proposed a constitutive model based on Cam-clay model involving their effec-

tive stress concept, and Griffiths and Lu[43] presented elastoplastic finite element analysis based

on Mohr-Coulomb model in conjunction with the suction stress concept for slope stability analysis.

Cho and Lee[21] proposed a 2D finite element flow-deformation coupled analysis program for calcu-

lating the safety factor for a partially saturated slope. They adopted the modified Mohr-Coulomb
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failure criterion to consider variations in strength due to the presence of matric suction.

In this study, a mechanical constitutive model adopted for the partially saturated soil is

Cam-clay plasticity model, based on so-called critical state soil mechanics. During the past decade,

various aspects of the constitutive model for partially saturated soil have been developed and

discussed; Cam-clay model will be studied based on experimental observations and plasticity theory.

1.3.2 Engineering implications of partially saturated finite element analysis

In order to discuss the practical application of finite element analysis for partially saturated

soils, many parameters and initial and boundary conditions for numerical simulation must be

selected. Unlike classical limit equilibrium methods, the partially saturated finite element approach

to flow-deformation simulation of embankment and slope failure problems allow users to make the

deformed shape or location of the critical failure surface. The behavior of clay appropriate to

critical state concept should be estimated for partially saturated finite element analysis, but, for

ease of application, Mohr-Coulomb failure criterion is often used to formulate the shear strength of

the soil in conjunction with matric suction[21].

τ = c′ + (σn − pa) tan φ′ + (pa − pw) tan φb (1.1)

where σn is normal stress and φb is an angle defining the increase in shear strength for an increase

in matric suction. The critical failure mechanism develops by calculating the shear stress generated

by gravity loading, rainfall infiltration or external loading. The two-dimensional computation of

diverse partially saturated finite element analysis composed of biphasic and triphasic mixture can

be carried out for coupled behavior of the water and air flow with the solid deformation ranging

from very small strains to shear band localizations.

In particular, the investigation of embankment stability problems is a crucial issue and has to

be investigated very carefully. Instabilities of embankment are usually initiated by the localization

of plastic deformations in shear band driven by gravity load and local saturation. The onset of

localizations can appear on both sides of the embankment, for example the water side and the
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air side. The environmental problems of embankment which water table is rapidly increased or

decreased trigger these localization and local saturation. Because the geometries and technical

layouts of embankments are very sensitive to reach a stationary state, two further boundary-value

problems have been computed for an embankment. One is a sudden decrease of the water table at

the water side and the other is high water level at the water side can leak from slope at the air side

of the embankment. Ehlers et al.[29] presented that the air phase in a partially saturated soil is not

generally negligible for embankment problem. Their numerical simulation demonstrated the wide

range of useful applications of the coupled solid-fluid behavior in the framework of the triphasic

mixture formulation.

1.3.3 Experimental data and elastoplasticity

1.3.3.1 Effective stress and stress-strain state variables

Many researchers have presented the effective stress (stress state variable) for partially satu-

rated soils since Terzaghi[86] proposed effective stress to describe the stress state of saturated soils.

The effective stress σ′ controls behavior of saturated soils and can be expressed as a function of

total normal stress and pore-water pressure:

σ′ = σ − pw (1.2)

where, σ′ is effective stress, σ is total stress, and pw is pore-water pressure.

Croney et al.[25] and Bishop[8], respectively, defined equations for the effective stress of

partially saturated soils as follows:

σ′ = σ − β′pw (1.3)

σ′ = (σ − pa) + χ(pa − pw) (1.4)

where, β′ is bonding factor, pa is pore-air pressure, χ is a parameter related to the degree of

saturation of the soil, and (pa−pw) is matric suction. Bishop proposed that the weighting parameter
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χ parameter should be equal to one for saturated soils and zero for dry soils, but depends on factors

such as soil structure, drying and wetting cycles, and stress history. The relationship between χ

and degree of saturation S was obtained experimentally. Note that via thermodynamics, Borja[12]

obtained σ′ = σ − Spw − (1 − S)pa (this was originally obtained by Lewis and Schrefler[58]).

Because of the importance of the effective stress in soil skeleton behavior, the validity of

Bishop’s equation has been criticized by many researchers. It was found that the equation could

be used more accurately for shear strength behavior than for volume change[9]. Several other

effective stress equations have been proposed for partially saturated soils[2, 3, 46, 58, 49, 12].

In consequence, the Bishop[8] equation has a more general form and referenced the total stress

and pore-water pressure when reviewing many researchers’ papers. However, in order to satisfy

fundamental consideration of continuum mechanics, variables used for the description of a stress

state should be independent of material properties. Using the Bishop’s parameter χ violates this

principle of continuum mechanics[31].

For the stress state variables, Coleman[22] suggested the use of net normal stress (σ − pa)

and matric suction (pa − pw) to describe stress-strain relations for partially saturated soil. Further

work by Bishop and Blight[9] illustrated some advantages of using net normal stress and matrix

suction as stress state variables. Fredlund and Morgenstern[31] studied the approach from both

experimental and theoretical standpoints and formally proposed the use of two independent stress

state variables, i.e., (σ− pa) and (pa − pw). The use of these two independent stress state variables

can explain the formulations of shear strength and volume change problems for partially saturated

soils[6, 95, 84, 12].

Recently, there have been numerous researchers that make use of stress state variables incor-

porating soil properties in the constitutive modeling of partially saturated soils[54, 47, 35, 94, 83, 50].

In most of the models proposed, the degree of saturation is assumed to be independent of net mean

stress. Kohgo et al.[54] defined the following empirical effective stress equations according to the
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experimental results for partially saturated soils:

σ′ = σ − pw(e)

pw(e) =







pa − s for s > sae

pa −
[

sae +
sc − sae

(s− sae) + ae
(s− sae)

]

for s ≤ sae

(1.5)

where, σ′ is effective stress for partially saturated soils, pw(e) is the so called equivalent pore pressure,

s is soil suction, ae is material parameter, sc is critical soil suction which means the maximum value

within elastic regime, and sae is air entry value of the soil changed with net mean stress. The Kohgo

et al.[53, 54] equation is not continuous and contains a soil property ae.

With equations of Bishop and Kohgo et al. like equation (1.4) and (1.5), respectively,

Jommi[47] proposed a stress variable for partially saturated soil, denoted by σ̂ij , which can be

called average soil skeleton stress. This stress variable is modified by the Bishop’s effective stress

when the parameter χ of the Bishop’s equation is equal to the degree of saturation S.

σ̂ij = σij −
[

Spw + (1 − S)pa

]

δij

= (σij − paδij) + S(pa − pw) δij (1.6)

where, σij is the total stress, δij is the Kronecker delta, and pa is pore air pressure. This stress

variable means the difference between the total stress and the mean value of the pore water pressure

regarding the degree of saturation S.

Wheeler et al.[94] employed two kinds of stress state variables in his proposed framework.

The first stress variable σ∗ij is the stress tensor which has been used by Jommi[47]. The second

stress variable s∗ is the function of porosity and suction of the soil as follows:

σ∗ij = σij −
[

Spw + (1 − S)pa

]

δij

s∗ = ns = n(pa − pw)

(1.7)

where, n is the porosity, and s = (pa − pw) is the suction.

Lu et al.[66, 63] suggested suction stress σs, denotes as effective degree of saturation Se times

matric suction (pa − pw), as the extension of Terzaghi’s effective stress σ′ (positive in tension) in
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saturated condition,

σ′ = (σ + pa) + σs, σs = −Se (pa − pw)

Se =
S − Sr

1 − Sr
=
[

1 + (αs)n
]−m

(1.8)

where s is matric suction, and α, n, m are curve fitting parameters of van Genuchten[90]’s SWCC

equation. The effective stress (equation (1.8)) is defined as a closed-form expression for suction

stress for the full range of matric suction,







σs = −(pa − pw) ; pa − pw ≤ 0

σs = − pa − pw
[

1 + (αs)n
]m ; pa − pw ≥ 0

(1.9)

The behavior of suction stress can be effectively described using Suction Stress Characteristic Curve

(SSCC) because the effective stress was treated as a function of both matric suction and the degree

of saturation as referred in Section 3.3.2.

Furthermore, there are material properties regarding intrinsic volume change in soil phase

for the stress-strain behavior of partially saturated soils. These soil properties described the overall

volume and the amount of water of a soil are as follows:

• porosity denoted as n,

• void ratio denoted as e,

• specific volume denoted as ν,

• gravimetric water content denoted as w,

• degree of saturation denoted as S,

• volumetric water content denoted as θ (or nw, volume fraction of water).

Especially, void ratio e is generally used in classical soil mechanics, and specific volume

ν(= 1 + e) is used in critical state soil mechanics. The degree of saturation and volumetric water

content requires the measurement of both the gravimetric water content and the volume of the soil

at various soil suction in partially saturated soils.



12

Cs

Cc

V
oi

d 
ra

tio

Effective vertical stress

e

S
pe

ci
fic

 v
ol

um
e 

(1
+e

)

Effective mean stress

κ

λ

ν

0p′ p ln ′0σ ′ σ ′log

Figure 1.3: Compression curves with the two conventional stress-strain axes systems (Wood, 1990)

When soil suction is equal to zero, the soil is assumed to be saturated. Typical shapes of

the curves for the relationships between void ratio and mean effective stress (or vertical effective

stress) of a saturated soil are shown in Figure 1.3[96]. The compression curve for presenting the

stress-strain constitutive relations of a soil can be found in the theory for critical state saturated

soil mechanics, where the Cam-clay model is an example[96]. The compression curve of a soil is

approximated by two straight lines on the natural logarithmic effective stress scale. The slopes

of the unloading-reloading and virgin compression curves are denoted as elastic parameter κ and

plastic parameter λ, respectively.

Under the K0 loading condition (i.e., one-dimensional uniaxial strain loading condition), void

ratio of a soil at any vertical effective stress can be shown in the left side of Figure 1.3. Traditionally,

the slope of the unloading-reloading lines and virgin compression line plotted on 10 based log scale

are called unloading-reloading index Cs, and virgin compression index Cc. The value of the effective

stress at the intersection of the two lines is classically referred to as the pre-consolidation stress (i.e.,

one-dimensional loading). On the other hand, the right side of Figure 1.3 shows the compression

curve on the natural log scale. The slopes of the unloading-reloading and virgin compression curves

are κ (= Cs/ ln 10) and λ (= Cc/ ln 10), respectively. It is referred to as the yield stress (i.e., three-

dimensional loading). Soils behave elastically approximately if the effective stress is less than the

yield stress. Once the effective stress is higher than the pre-consolidation stress (or yield stress),
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the soil exhibits both elastic and plastic volume changes[96, 32].

1.3.3.2 Stress-strain relations considering soil suction

Numerous experimental data presenting the relationship between void ratio and net mean

stress of a soil at constant soil suctions can be found in the literature. Figure 1.4 shows the stress

paths, plotted as suction s against net mean stress p, for compression with decrease in suction.

Note that in the literature the net mean stress often denotes as p because the pore air pressure

pa is assumed as zero, so net mean stress (σ − pa) is equal to mean stress σ. In the triaxial cell

each sample, the initial point A with a large negative value of pore water pressure (a high value of

suction) and zero net mean stress is produced by the compaction process. On the application of

the increments of cell pressure, air back-pressure and water back-pressure, compaction tests were

conducted from point B0 and point B corresponding to the suction value. During the subsequent

equalization stage, the soil state moved to point C0, C1, C2 or C3, with suction s falling while net

mean stress p remained constant. Then, during compression, p increases while s is held constant.

Figure 1.4: Stress paths implemented on partially saturated soils, kaolin (Wheeler and Sivakumar
1995)

Most studies focused on compacted soils that usually collapse during the first wetting process.
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The studies followed similar stress paths and are described in Figures 1.5 and 1.6 show experimental

data for compression curves on several partially saturated soils at various constant soil suctions and

under different loading conditions (i.e., K0 and isotropic). It has been experimentally shown that

soil suction contributes to the stiffness and strength of a soil against the external load[6, 61]. In

other words, the yield stress with respect to the net mean stress of a soil increases as the soil suction

increases.

Figure 1.5: Variation of void ratio with suction at initial stage of loading, bentonite (Lloret et al.,
2003)

Alonso et al.[6] proposed the similarity between compression curves of a partially saturated

soil and a saturated soil. It is a likeness of the compression curve of a soil at a constant soil suction

and at the saturated condition. The compression curve of a partially saturated soil at a constant

soil suction can be approximated by two straight lines, which are distinguished by the yield stress of

the soil as shown in Figure 1.7. The authors also assumed that the slopes of the unloading-reloading

line are constant with soil suction, (i.e., κ(0) = κ(s)), while the slope of the virgin compression

lines are assumed to be a function of soil suction, λ(s).

In the ν − s graph of Figure 1.7, for the axis of specific volume versus soil suction, Alonso

et al.[6] assumed that the compression curve with respect to soil suction at a constant net mean

stress can be approximated as two straight lines with an intersection at the yield suction. The
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Figure 1.6: Variation of specific volume with net mean stress (Wheeler and Sivakumar, 1995)
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slopes of the unloading-reloading and virgin compression lines with respect to the soil suction are

κs and λs, respectively. It was assumed that the two slopes are independent of net mean stress.

The proposed relationships are valid within a low range of soil suction less than the air entry value

of the soil which is the matric suction value that must be exceeded before air recedes into the soil

pores. The air entry value is also referred to as the bubbling pressure in ceramics engineering[32].

However, there is disagreement in the relationship between λ(s) and s provided by two models

as shown in Figures 1.5 and 1.6. Alonso et al.[6] assumed that the slope of the virgin compression

curve of a soil is getting a gentle gradient with an increment of soil suction, while it was assumed

to be getting a steep gradient with the increment of soil suction by Wheeler and Sivakumar[95].

The results are different in tendency (gentle versus step). Many experimental results supporting

both assumptions can be found from research literatures[6, 95, 84, 11, 20, 61, 83].
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Figure 1.8: Compression curve of Alonso’s LCmc model (1993)

Also, it can be observed from numerous experimental results in the literature that the com-

pression curve at a constant soil suction is concave for a wide range of the net mean stress as

shown in Figure 1.8. Therefore, the approximation of the compression curve of a soil at a constant

soil suction as two straight lines is not always valid and the yield stress is not easy to define[11].
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Some researchers have suggested that under an extremely high net mean stress, the void ratios

of a soil at saturation and at a certain soil suction must be the same[4, 95, 34]. In other words,

the compression curve of a soil at a constant soil suction must meet the compression curve of the

soil at saturated conditions (i.e., zero soil suction) at a relative high net mean stress. After the

loading-collapse (LC) yield curve proposed by Alonso et al.[6, 4] presented a “new” model called

LCmc which is capable of expressing the compression curve of a soil at a constant soil suction as

shown in Figure 1.8. Alonso[4]’s LCmc model is extended from the original Barcelona Basic Model

(BBM[6]).
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Figure 1.9: Compression curves of saturated and partially saturated soils, kaolin (Sun et al., 2000)

Sun et al.[82] assumed that the compression curve of a partially saturated soil with respect to

net mean stress at a constant soil suction is a concave curve (Figure 1.9). Futai et al.[34] proposed a

model for the compression curve of a partially saturated soil as shown in Figure 1.10. Silva et al.[79]

presented a critical state soil model used for the analysis of partially saturated soils. They proposed

some changes in the model of Wheeler and Sivakumar[95] by reducing the number of parameters.

Figure 1.11 shows isotropic compression curves to prevent the inconsistency which is possible to

cross these lines for high stresses when using the λ(s) values directly from tests and extending the
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isotropic consolidation lines to different suction values.
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Figure 1.10: Compression curves of partially saturated soils, reddish clay (Futai et al., 2002)

Fredlund and Rahardjo[32] presented the relationship among the four coefficients from a

consolidation test as shown in Figure 1.12. Curve A remains saturated during the consolidation

process. This represents the relationship between the void ratio and net normal stress (σ − pa) as

well as the water content (wGs) and net normal stress.

For test of the same soil, when increasing suction, the volume change is the same at saturation

condition. Once the soil start to desaturate, curve B represents to be less volume change than curve

A due to the increasing suction. This means that a suction increase is more effective than a net

normal stress increase in removing water from the soil. Curve C is the relationship between the

water content versus the suction. The difference between curve B and C is due to the decreasing

degree of saturation as the suction increases, that is, the ratio of vertical axis for curve B and C

indicates the degree of saturation (S = wGs/e). On the other hand, for curve A(S = 1), it means

that wGs = e.
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Figure 1.11: Compression curves of partially saturated soils, clay (Silva et al., 2002)

Figure 1.12: Comparison between compression curves with net mean stress and soil suction (Fred-
lund and Rahardjo, 1993)
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Therefore, experimental data performed from researchers show that there is a similarity

between the compression curve of specific volume versus a soil suction and that of specific volume

versus a net mean stress[6, 32], and the net mean stress increases as the soil suction increases in a

ν-p space[95, 82, 79, 34, 61].

1.3.3.3 Soil-water characteristic curve

The relationship between water content (or degree of saturation) and soil suction is defined

as the soil-water characteristic curve (SWCC) of the soil. The SWCC which has been studied in

the literature reflects material properties including pore size distribution, grain size distribution,

density, organic material content, clay content, and mineralogy on the pore water retention be-

havior. The SWCC plays an important role in understanding the behavior of partially saturated

soils. Soil-water characteristic curves have been used to estimate the hydraulic conductivity, shear

strength, volume change and aqueous diffusion functions of partially saturated soils[65, 32].

Figure 1.13: Typical soil-water characteristic curve (SWCC) of soil (Fredlund and Rahardjo, 1993)

There are a number of methods for measuring and estimating the SWCC of a soil such

as: laboratory measurements, field measurements, estimations using several other soil properties,
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and selection from a soil database. On the logarithmic soil suction scale, the SWCC has an S-

shape. Based on the S-shape of the soil-water characteristic curve, it is possible to distinguish

characteristics of a soil as shown in Figure 1.13. The soil-water characteristic curve of a soil can

be divided into three zones; namely, the boundary effect zone, transition zone, and residual zone.

There are four key parameters of a SWCC that can be graphically estimated from the SWCC plot:

(i) water content at approximately zero soil suction; (ii) air entry value of the soil; (iii) soil suction at

the residual condition; and (iv) water content at the residual condition. These parameters provide

the necessary information for estimating partially saturated soil functions such as the hydraulic

conductivity and the shear strength functions[32, 65].

There are three different types of the SWCC. The first type is gravimetric water content

(w = Mw/Ms) versus soil suction; the second type is volumetric water content (or the volume

fraction of water, nw = Vw/V ) versus soil suction; and the third type is the degree of saturation

(S = Vw/Vv) versus soil suction. The first type is the easiest to measure. The curve requires the

measurement of gravimetric water content of the soil at different values of soil suction. But, the

second and third types require the measurement of both water content and volume change of the

soil at various applied soil suctions.

1.3.3.4 Elasto-plastic models for partially saturated soils

The elasto-plastic constitutive models for partially saturated soils can be classified into two

groups; namely, (i) models that make use of the two stress variables, that is, net mean stress (σ−pa)

and a soil suction (pa − pw); and (ii) constitutive models incorporating a soil property, including

hydraulic hysteresis (Table. 1.1). Most models using two independent stress variables are able to

represent the stiffness changes of the soil induced by suction changes and reproduce the irreversible

behavior of the soil due to two stress variables. But, because each constitutive model is based on

data for a particular soil, the model always has its own limitation[6, 95, 84, 12].

On the other hand, early works of the constitutive models incorporating soil properties is

not continuous for transition between saturated and partially saturated conditions[53, 54], however
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Table 1.1: Classification of elasto-plastic models by variables in use

(σ − pa) and (pa − pw) variables Stress variables + Soil properties

Fredlund and Morgenstern, 1977 Kohgo et al., 1993

Alonso et al., 1990 Dangla et al.,1998

Gens and Alonso, 1992 Jommi, 2000

Wheeler and Sivarkumar, 1995 Romero and Vaunat, 2000

Tang and Graham, 2002 Wheeler et al., 2003

Blatz and Graham, 2003 Galipolli et al., 2003

Chiu and Ng, 2003 Tamagnini, 2004

Borja, 2004

recent works can describe the irreversibility of the soil against stress and suction reversals and also

represent the transition without discontinuity[94, 36, 35, 83].

Most elasto-plastic models for partially saturated soils that make use of two stress variables

have assumptions and yield curves on p − s plane that are similar to the Alonso et al.[6] model.

These models have been successful in the prediction of stress-strain behavior over certain ranges of

net mean stress and soil suction for certain types of soils, particularly compacted soils.

An elasto-plastic framework for partially saturated soils was first introduced by Alonso

et al.[5]. The model has been then developed to a complete elasto-plastic model for partially

saturated soil by Alonso et al.[6]. This model, called “Barcelona Basic Model,” has become the

most widely accepted and the basic elasto-plastic model for partially saturated soils. The model

makes use of the two independent stress variables, such as net mean stress σ − pa and soil suction

s = pa − pw.

On the space of specific volume versus net mean stress, Alonso et al.[6] assumed that the

compression curve of a soil at a constant soil suction can be approximated by two straight lines

with an intersection at the yield stress (Figure 1.14).

For an elasto-plastic model, it is important to specify the yield surface of the soil at any stress

state. When soil suction increases, the mean yield stress p0 of the soil is also increased. Alonso

et al.[6] defined the LC (Loading-Collapse) yield curve as a curve representing the yielding net mean
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stress with respect to the soil suction (Figure 1.16). The LC yield curve can be mathematically

presented as follow:

p0

pc
=

(
p∗0
pc

) [λ(0)−κ]
[λ(s)−κ]

(1.10)

Figure 1.14: Compression curves of a soil at saturated condition and at a constant soil suction
(Alonso et al. 1990)

Figure 1.14 shows the response to isotropic loading of two different types of soil. One is

saturated condition (s = 0), the other is partially saturated condition with a suction (s). pc, p∗0

and p0 are the initial net mean stress, the saturated preconsolidation stress and partially saturated

preconsolidation stress, respectively. The sample with a suction will yield at a larger isotropic stress

p0. And initial specific volumes are N(0) and N(s) with a suction. λ(s) is slope of the normal

compression line at a suction of s, and κ is slope of the unloading-reloading line. κ is the same but

λ(0) is different from λ(s) due to a suction. At partially saturated preconsolidation stress of point

1, it proceeds an initially unloading at constant suction and a subsequent reduction in suction,

from s to zero, at constant stress (p0), the sample follows the path 1-2-3.

The slope of the normal compression line of the soil at a constant soil suction of s can be
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calculated as follow:

λ(s) = λ(0)
[

(1 − r) exp(−β s) + r
]

(1.11)

where β and r are curve fitting parameters and λ(0) is slope of the normal consolidation line at

saturated state.

Wheeler et al.[95] presented a more general form for the LC yield curve, equation (1.10).

Their LC yield curve has a shape similar to the Alonso’s LC model[4] as shown in Figure 1.16.

(

λ(s) − κ
)

ln

(
p0

pat

)

=
(

λ(0) − κ
)

ln

(
p∗0
pat

)

+N(s) −N(0) + κs ln

(
s+ pat

pat

)

(1.12)

where, pat is atmospheric pressure (i.e., ≈ 100 kPa)

1.3.3.5 Elasto-plastic framework for partially saturated soils

Alonso el al.[6] proposed a critical state framework for partially saturated soil involving four

state variables, such as net mean stress σ − pa, deviatoric stress q, suction s and specific volume

ν. Their critical state framework is an isotropic normal compression hyperline, representing soil

states when isotropically loaded to virgin conditions. The term hyperline is used here to describe a

locus of state defined within a four-dimensional mathematical space by two independent equations

(q, ν).

A critical state hyperline represents soil states when sheared to critical conditions defined by

another two independent equations. A section of state boundary hypersurface, joining the critical

state and normal compression hyperlines, can be postulated. This state boundary hypersurface

would be defined by a single equation relating the four state variables[95],

ν = f(p, q, s) (1.13)

The critical state framework is an elasto-plastic form of constitutive model with elastic be-

havior when the soil state lies inside the state boundary hypersurface and with starting plastic

strains when the state boundary hypersurface is reached. As shown in Figure 1.15, the general

shape of the yield surface enables several important features of partially saturated soil behavior to
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be modelled, for instance, an increase of strength with suction and the possibility of collapse due

to reduction of suction.

Figure 1.15 shows that initial state of soil A inside the current position of the yield surface

can be started to yield into three different ways. Isotropic loading path ABC can be produced by

an increase of p, Shearing path ADE can be produced by an increase of q, and wetting path AFG

can be produced by a reduction of s. Also any nonlinear path can be produced by changing p, q

and s simultaneously. A yield curve in p− s space generally produced by isotropic loading is called

a yield locus to distinguish between yielding in p − s and p − q, and the yield locus is shearing in

p− q − s space will produce a yield envelope.

The yield surface in saturated soils is represented by a yield envelope in q − p space and a

corresponding coupled trace in p − ν space. For yielding of partially saturated soils, yield surface

should be defined in p−s space for isotropic loading. Thus many researchers suggest their yield loci

to define the relation between net mean stress and suction as shown in Figure 1.16. It was noticed

that collapse of the soil occurred during both drying and wetting processes[6, 39, 95]. Figure 1.16

shows that the compression curve with respect to soil suction can also be approximated by two

straight lines. Two horizontal lines are used to describe the yielding boundary of the soil suction,

that is suction increment boundary denoted as SI; and suction decrement boundary denoted as

SD.

Also, the yield boundary at a certain stress state for partially saturated soils proposed by

Alonso et al.[6] is not continuous. Delage and Graham[28] suggested that the yield boundary should

be a continuous curve. Tang and Graham[84] suggested a new yield curve called the Loading-

collapse and Suction increase Yield (LSY) curve. And, a schematic illustration of the state surface

predicted using the Blatz and Graham[11] model is shown in Figure 1.17.

The above series of models[6, 95, 11] require measurements of a few soil parameters to cali-

brate the models. Alonso et al.[6] suggested two series of tests to obtain the data for calibration;

namely, (i) tests that involve isotropic drained compression (loading and unloading) at several con-

stant suction values to provide parameters, such as pc, p∗0, λ(0), κ, r, and β; and (ii) tests that



26

Figure 1.15: Yield surface for partially saturated soil (Wheeler and Sivakumar, 1995)

Figure 1.16: Yield boundaries of a partially saturated soil proposed by researchers (Tang and
Graham, 2002)
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involve drying-wetting cycles at a given net mean stress to provide parameters: s0, λs, κs.

Figure 1.17: 3-dimensional p-s-ǫv state surface (Blatz and Graham, 2003)

Figure 1.18 shows the stress-strain behavior by considering the micro and macro structure

of soils. Mechanical behaviors of the micro and macro structures were modeled separately. The

authors assumed that the deformation for the micro structure is independent of that of the macro

structure; but the deformation of the macro structure depends on that of the micro structure[39].

The model provides a good explanation for the mechanical and physical behavior of partially

saturated soils; however, the relationship between the deformation of the macro structure and the

micro structure is empirical and extremely difficult to verify. Hence, the model did not receive

much attention due to its complexity.

Most of the recently proposed elasto-plastic models for a partially saturated soil make use of

stress state variables incorporating a soil property[47, 91, 94, 83]. The development of this series

of models is similar to that of the Alonso et al.[6] model but the net mean stress was replaced by a

stress variable that incorporates one or more soil properties. They assume in their models that the

degree of saturation is dependent on the net mean stress, but the assumption might be not valid
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due to experimental data of Vu and Fredlund[92] and Huat et al.[44].

Figure 1.18: Schematic illustration of the yield curves of double structures of a soil (Gens and
Alonso, 1992)

Figure 1.19 shows the difference of the relationship between the saturation rate and net mean

stress. Vu and Fredlund[92] provides the proof that the saturation rate does not affect net mean

stress in Regina clay. On the contrary, Huat et al.[44] performed a laboratory test that showed

there is difference between water content and saturation rate for net mean stress at a constant

suction.

Hence, a significant improvement in the development of the stress-strain constitutive models

for partially saturated soils is to take into account the effect of hydraulic hysteresis. Two models

that are more appropriate in this area are the Wheeler et al.[94] and the Tamagnini[83] models.

Figure 1.20 shows the hysteresis model for the SWCC incorporated in the Wheeler et al.[94] model,

and the good agreement between numerical results (solid line) and experimental data (dots) in

the right figure. It marked an important point in the historical development for describing the

transition between saturated and partially saturated response, irreversible compression during the

drying stages of wetting–drying cycles, and the influence of a wetting–drying cycle on subsequent
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Figure 1.19: Difference between saturation rate and net mean stress (Vu and Fredlund, 2006; Huat
et al., 2006)

Figure 1.20: Soil property incorporated in a constitutive model and its appropriate agreement
(Wheeler et al., 2003; Tamagnini, 2004)
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behavior during isotropic loading.

As the result, although many researchers have studied the constitutive equations in regards

to both two independent stress variables and stress variables incorporating soil properties, they

do not exactly define the variables used for the description of a stress. One of the reasons is that

net mean stress and soil suction, which are defined as state of stress in partially saturated soils

in terms of two independent variables, can lead to complex constitutive equations with intractable

stress-strain relationships because the net mean stress (σ−pa) is described at the macroscopic scale

and the suction stress (pa−pw) is described at the pore scale[49]. Hence, more and more researchers

carry out their laboratory tests to approach accurate agreement between numerical simulation and

experimental results for stress-strain-strength behavior of partially saturated soils.

For elasto-plastic constitutive model for partially saturated soils, a more appropriate yield

locus in p − s space could be developed based on the Barcelona Basic Model (BBM)[6]. The

shortcomings of BBM that Wheeler et al.[93] discussed some aspects of normal compression lines

for different values of suction should be make up for a limitation on the applicability of the BBM.

In addition, generally measurement of the soil-water characteristic curve (SWCC) in the laboratory

is commonly conducted under zero confining pressure, but the soil is under a confining stress in the

field. Hence it should be considered some study the effects of the confining stresses on SWCC[88].

Lastly, in the experiments, the soil samples were subjected to isotropic consolidation under

constant suctions. The results show that different compaction pressures produce different fabrics

(density) and therefore affect the behavior of the soil. The results also show that the value of

yield stress and the location of the loading-collapse (LC) yield curve are functions of soil fabric. It

is shown that the slopes of normal consolidation lines for densely and loosely compacted samples

differ in partially saturated conditions but are the same in saturated soils. Soil fabric should be

considered in order to have proper elasto-plastic constitutive model for partially saturated soils[30].

For fitting material parameters for partially saturated Cam-clay plasticity model, compre-

hensive laboratory test for partially saturated soil is required. Material parameters for partially

saturated soils can be obtained from soil-water characteristic curve and triaxial test for partially
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saturated soils. Using van Genuchten[90] model for soil water characteristic curve and partially

saturated hydraulic conductivity, the functions of those may be verified and the permeability mea-

surement of partially saturated soil can be calculated from the results of soil-water characteristic

curve test. Then the remaining elasto-plasticity parameters are determined from triaxial test data

on partially saturated soil. Parameters will be taken from the literature.

1.4 Novel Contributions of Thesis

The novelty of this study rests on the following combined features of the research: (1) mono-

lithic coupling (for semi-implicit and fully-implicit nonlinear), (2) comparison of with and without

pore air pressure (pa 6= 0 and pa ≈ 0), (3) porosity dependent permeability, (4) comparison of var-

ious effective stress definitions, (5) adding partially saturated hyperelasto-plastic Cam-clay model

to this framework, and (6) using this numerical framework, simulate plane strain finite element

analysis of infiltration into a partially saturated slope under gravity loading.

This contribution allows me to compare within one mathematical and finite element im-

plementation framework these various features, and their influence on a plane strain finite element

analysis of infiltration into partially saturated slope under gravity loading. The research is currently

limited to small strain and rotations. These comparisons are difficult, if not nearly impossible, to

make in commercial coupled finite element software like SEEP/W–SIGMA/W, PlaxFlow–Plaxis,

or Abaqus, because we do not have access to the source code to make such modifications our-

selves. This is particularly important for partially saturated soils, whereas for the saturated case,

the different commercial software produce almost the same results for the same soil solid skeleton

constitutive model.

1.5 Features of Research

• Numerical finite element implementation and time integration schemes of semi-implicit lin-

ear and fully-implicit nonlinear method (for linear isotropic elastic solid skeleton) demon-

strate the efficiency of the algorithm as well as a comparison to an analytical solution for
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water flow through partially saturated soils.

• Difference between biphasic and triphasic deformation during water infiltration is verified

in the vadose zone. The role of the air phase in deformable partially saturated soils can be

analyzed depending on the interaction among phases through the balance equations and

constitutive behavior of soil solid skeleton

• Monolithic coupled hydromechanical model is preferred to analyze the soil deformation

and seepage problem of a partially saturated soil subjected to external loads and rainfall

simultaneously. But, most commercial problems used in geotechnical engineering conduct

staggered coupled finite element analysis because of ease of implementation.

• The partially saturated hydraulic conductivity is porosity-dependent. It considers the soil

solid skeleton’s behavior by external loading influences on the partially saturated perme-

ability each time step. The effect of porosity produces a difference of pore water pressure

or matric suction according to the passage of time.

• The application of various definitions of effective stress, such as Bishop[8], Lewis and

Schrefler[58], Borja[17], Khalili et al.[49], and Lu et al.[63] in this coupled FE model shows

the merit and shortcoming of each implementation, and is reviewed.

• In order to enhance soil behavior beyond elastic regime, hyperelasto-plastic Cam-clay model

is derived and implemented for partially saturated condition. The constitutive model is

nonlinear and has energy-conserving elasticity coupled with Cam-clay plasticity model.



Chapter 2

Triphasic Poro-Elasticity

2.1 Balance of Mass

For three-phase soil mixture composed of solid(s), water(w) and air(a), the volume and

mass of mixture should be defined in the mathematical description. I follow the formulations by

Coussy[23], Borja[12] and de Boer[27], but consider only small strains. The volume of the mixture

is v = vs + vw + va and the corresponding total mass is m = ms +mw +ma. Similarly, for α phase,

mα = ραRvα (nearly homogeneous), where α = s,w, a; and ραR is the true mass density of the α

phase. The volume fraction occupied by the α phase is given by nα = vα/v, and thus, for water,

air and solid,

ns + n = ns + nw + na = 1

where the porosity n =
vw + va

v
= nw + na. If material is homogeneous, nα =

vα

v
, whereas if

heterogeneous the volume fraction at a material point nα =
dvα

dv
for a differential volume of the

mixture. The partial mass density of the α phase is given by ρα = nαραR, and thus

ρs + ρw + ρa = ρ

where, ρ = m/v is the total mass density of the mixture. As a general notation, phase designations

in the superscript form (for example, ρα) pertain to average or partial quantities, and in the

superscript form with R (for example, ραR) to intrinsic or real quantities. Based on the current

configuration of the mixture (for small strains, theoretically no different than the reference or
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current configurations), the mass balance equations describe the motions of the water and air

phases relative to the motion of the solid phase.

We denote the instantaneous intrinsic velocities of the solid, water, and air phases by v, vw

and va, respectively, and the material time derivative with respect to the solid phase and the α

phase motion,

D(·)
Dt

=
∂(·)
∂t

+ grad(·) · v or
Dα(·)
Dt

=
D(·)
Dt

+ grad(·) · ṽα, (α = w, a) (2.1)

where ṽα = vα − v is the water or air velocity relative to the solid velocity v. The balance of

mass of the mixture is obtained by summing the balance of mass equations for each constituent

α (= s,w, a), but I will end up with separate mass balance equations for water and air using the

mass balance of solid. Ignoring mass exchanges among the three phases (no chemical reactivity),

balance of mass for the solid, water and air phases then can be written as

∂ρs

∂t
+ div(ρsv) = 0 (2.2)

∂ρα

∂t
+ div(ραv) = −div(ραṽα) (α = w, a) (2.3)

Thus, assuming incompressible solid particles and water (ρsR and ρwR are constants), we can write

for three-phase motion, respectively,

�
�ρsR∂n

s

∂t
+�

�ρsRdiv(nsv) =
Dns

Dt
+ ns divv = 0 (2.4)

�
�ρwR ∂n

w

∂t
+�

�ρwRdiv(nwv) = −�
�ρwR div(nwṽw) (2.5)

∂ρa

∂t
+ div(ρav) =

Dρa

Dt
+ ρa divv = −div(ρaṽa) (2.6)

The incompressibility assumption for solid and water is reasonable for geomaterials like saturated

sand, but ρaR could be changed due to compressibility of air. The balance of mass for the saturated

biphasic mixture becomes

Dρ

Dt
+ ρdivv = −divw

(

in index form,
Dρ

Dt
+ ρ vi,i = −wi,i

)

w =
∑

α=w

wα, wα = ραṽα, ṽα = vα − v

(2.7)
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where, wα (for α is water) is the relative flow vector of the α phase with respect to the solid matrix,

given explicitly by the relations.

The flow vector wα has the “physical significance that its scalar product with the unit normal

vector n to a unit surface area attached to the solid matrix is the mass flux of the α phase relative

to the solid matrix flowing across the same unit area,” i.e.[12],

mα =

∫

a
wα · nda =

∫

v
div(wα) dv (2.8)

where mα is the net mass flux and v is total volume. Equation (2.8) shows the net mass flux for

the balance of mass for the solid, water and air phases of equation (2.3). If there is no relative

motion between the α phase and the solid phase such that the mass mα contained in the volume

v moves exactly with the solid matrix, then ṽα = 0 and wα = 0. But it is possible that mα = 0

even if wα 6= 0 provided that wα is divergence free. And then, the net mass flux is zero due to the

α material displaced by another same α phase material[12].

The barotropic flows[67] are defined to be flows satisfying a functional relation independent

of temperature:

f(pα, ρ
αR) = 0

where pα is the mean stress (or pore pressure) for constituent α. The barotropic flows exist for

each phase as follow,

DραR

Dt
=

DραR

Dpα

Dpα

Dt

And so,

Dρα

Dt
=

D(nαραR)

Dt
= nα DραR

Dt
+ ραR Dnα

Dt
= nα DραR

Dpα

Dpα

Dt
+ ραR Dnα

Dt
(2.9)

where pα denotes the intrinsic pressure of α phase.

The bulk modulus of the α phase is

Kα = ραR Dpα

DραR
=⇒ DρaR

Dpa
=
ρaR

Ka
(for compressible air phase) (2.10)

If the bulk modulus of air phase is constant,

pa = Ka ln ρaR =⇒ pa

Ka
= ln ρaR



36

ρaR = exp

[
pa

Ka

]

(2.11)

Likewise, for solid and water phases,

ρsR = exp

[
ps

Ks

]

, ρwR = exp

[
pw

Kw

]

(2.12)

but I assume Ks → ∞ and Kw → ∞ (incompressible solid and water).

Recall barotropic flow assumption for air phase which is a compressible phase,

Dρa

Dt
=

D(naρaR)

Dt
=

Dna

Dt
ρaR + na DρaR

Dt

= ρaR Dna

Dt
+
naρaR

Ka

Dpa

Dt

where,

DρaR

Dt
=

DρaR

Dpa

Dpa

Dt
=
ρaR

Ka

Dpa

Dt

Then, balance of mass for air is

ρaR Dna

Dt
+
naρaR

Ka

Dpa

Dt
+ naρaRdivv = −div(ρaṽa) (2.13)

Dna

Dt
+
na

Ka

Dpa

Dt
+ nadivv = − 1

ρaR
div(ρaṽa) (2.14)

For void fractions ψw = vw/vv , ψ
a = va/vv and vv = va +vw, void fractions regarding volume

fractions are written as

ns + nw + na = ns + ψw(1 − ns) + ψa(1 − ns)

= ns(1 − ψw − ψa) + ψw + ψa = 1 (where, 1 − ψw − ψa = 0)

Defined as the ratio between the volume of the α phase for the total void volume,

ψw =
vw

vw + va
=

nw

1 − ns
, ψa =

va

vw + va
=

na

1 − ns
, ψw + ψa = 1 (2.15)

Generally, ψw is commonly denoted as the degree of saturation S (ψw = S) in geotechnical engi-

neering, so ψa = (1−S). The material time derivative with respect to the solid phase motion is here

used for description of void fractions for three phase motion. Thus volume of voids vv = va + vw

and then, ψα =
vα

vv
=

nα

1 − ns
, α = a and w. For air phase, ψa =

na

1 − ns
, and

Dna

Dt
= (1 − ns)

Dψa

Dt
− ψa Dns

Dt
(2.16)
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If we assume the saturation rate S is a function of the suction s(= pa − pw), then

Dψa

Dt
= −DS(s)

Dt
= −∂S

∂s

(
Dpa

Dt
− Dpw

Dt

)

(2.17)

where ψa = 1 − S. Then, the balance of mass for air with
Dns

Dt
= −nsdiv v from the balance of

mass for solid is

−(1 − ns)
∂S

∂s

(
Dpa

Dt
− Dpw

Dt

)

+ (1 − S)nsdiv v +
na

Ka

Dpa

Dt
+ nadiv v

= − 1

ρaR
div(ρaṽa) (2.18)

where,

nw = nψw = nS

na = nψa = n(1 − S)

n = nw + na

ns = 1 − n

DS

Dt
=

∂S

∂s

(
Dpa

Dt
− Dpw

Dt

)

Dpa

Dt
− Dpw

Dt
=

Ds

Dt
=
∂s

∂t
+
∂s

∂x
· v

Void volume fraction n (porosity) can be related to soil skeleton volumetric strain through ṅ =

(1 − n)ǫ̇v, where �̇ denotes material time derivative relative to the solid phase motion.

For the balance of mass for water phase in mixture of equation (2.5),

Dnw

Dt
+ nwdivv = −div(nwṽw) (2.19)

where, ṽw(= nwṽw) is called the superficial Darcy velocity, and ṽw is the real seepage velocity. It

is written in terms of suction,

Dnw

Dt
= (1 − ns)

Dψw

Dt
− ψw Dns

Dt

(
Dns

Dt
= −nsdivv

)

Dψw

Dt
=
∂S

∂s

Ds

Dt
=
∂S

∂s

(
Dpa

Dt
− Dpw

Dt

)

, ψw = S(s)
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And, so the balance of mass for void phase in mixture can be written as water (w) and air (a)

phase, respectively,

(w) : (1 − ns)
DS

Dt
+ Snsdiv v + nwdiv v = −div(nwṽw)

(a) : −(1 − ns)
DS

Dt
+ (1 − S)nsdiv v +

na

Ka

Dpa

Dt
+ nadiv v = − 1

ρaR
div(ρaṽa)

DS

Dt
=
∂S

∂s

(
Dpa

Dt
− Dpw

Dt

)

(2.20)

These two coupled equations will be used to solve for pa and pw, along with displacement

u from balance of linear momentum. Thus, the above formulation includes the compressible air

phase and incompressible solid and water phases for all the constituent phases.

2.2 Balance of Linear Momentum

The total Cauchy stress tensor σ is obtained from the sum of the Cauchy partial stress

tensors, where σα denotes the Cauchy partial stress tensor for the α phase (α = solid, water and

air).

σ = σs + σw + σa (2.21)

Fredlund and Morgenstern[31] suggested that the fourth-phase stress is contractile skin stress arising

from the presence of meniscus between two solids, but we ignore this stress initially for simplicity.

The balance of linear momentum for α phase ignoring inertial terms is

div(σα) + ραg + hα = 0 (2.22)

where, g is the vector of gravity acceleration, hα is the resultant body force per unit current volume

exerted on the α phase by the other two phases. The forces hα are interaction volume forces between

the constituents of the mixture and thus satisfy the relations hs + hw + ha = 0.

From equation (2.22), the balance of linear momentum for the entire mixture is simply

obtained as follows,

div(σ) + ρ g = 0 (2.23)
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In order to find u, pw and pa, the total stress can be represented as[8]

σ = σ′ − pa1 + χ(pa − pw)1 (2.24)

If χ = 1 (saturated), then σ = σ′−pw1 (the classical effective stress equation by Terzaghi[87]). The

pore pressures pa and pw are positive in compression, while mean stress of soil solid skeleton p′ =

1
3tr(σ′) is positive in tension. Lewis & Schrefler[58] and Borja[12] derived through thermodynamics

that the effective stress parameter χ = S. In which S is the saturation rate. Other choices for χ

include that by Khalili[49]

χ =







(
s

se

)−0.55

if s ≥ se

1 if s ≤ se

(2.25)

where se is suction value marking the transition between saturated and partially saturated states.

For wetting process of SWCC, se is equal to the air expulsion value, whereas for drying processes

of SWCC, se is equal to the air entry value.

As the alternative of effective stress parameter χ, the suction stress σs that Lu et al.[66, 63]

presented can be considered. They proposed a form of suction stress as the extension of Terzaghi’s

effective stress σ′ (positive in tension) in saturated condition,

σ′ = (σ + pa) + σs, σs = −Se (pa − pw)

Se =
S − Sr

1 − Sr
=
[

1 + (αs)n
]−m

(2.26)

where Se is effective degree of saturation, s is matric suction (pa − pw), and α, n, m are curve

fitting parameters of van Genuchten[90]’s SWCC equation. The effective stress (equation (2.26)) is

defined as a closed-form expression for suction stress for the full range of matric suction,






σs = −(pa − pw) ; pa − pw ≤ 0

σs = − pa − pw
[

1 + (αs)n
]m ; pa − pw ≥ 0

(2.27)

In general, most researchers assume χ is a function of suction, such that we write χ(s). We

will investigate this choice in more detail during the numerical examples.
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2.3 Summary of Balance Equations and Constitutive Equations

2.3.1 Triphasic balance and constitutive equations

In order to solve for 3 unknowns (u, pw, pa) using given 3 equations, the balance equations

can be summarized as follows,

1) The balance of linear momentum of a mixture:

divσ + ρ g = 0 (2.28)

ρ = ρs + ρw + ρa

σ = σ′ − pa1 + χ(s)
(

pa − pw

)

1 = σ′ − p̄1

p̄ = pa − χ(s)
(

pa − pw

)

2) The balance of mass of water (porosity n = nw + na = 1 − ns):

n
∂S

∂s
(ṗa − ṗw) + Sdiv v = −div ṽw (2.29)

ṅ = (1 − n)ǫ̇v

ǫ̇v = tr(ǫ̇)

3) The balance of mass of air:

[

−n∂S
∂s

+
n(1 − S)

Ka

]

ṗa + n
∂S

∂s
ṗw + (1 − S) div v = − 1

ρaR
div(ρaRṽa) (2.30)

This study considers material properties to define constitutive equations as follows,

1) Relationship between degree of saturation and suction stress by van Genuchten[90]:

S = f(s) and s = pa − pw (2.31)

f(s) =
[

1 +
(s

a

)n]−m

2) Effective stress:

σ′ (considering Cam-clay plasticity and partially saturated soil model
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from the balance of linear momentum for a mixture)

σ′ = σ + p̄1
(

p̄ = pa − χ(s)(pa − pw)
)

(2.32)

f(σ′, s, pc) = 0 (Yield Function) (2.33)

where, σ′ is governed by soil solid skeleton constitutive response and pc is saturated preconsolidation

pressure.

Table 2.1: Parameter values for triphasic mixture

κ (fine sands and silts) ηw(20 oC) ηa(20
oC) Ka(20

oC)

10−12 ∼ 10−16(m2) ≈ 10−3(Pa · s) ≈ 1.8 × 10−5(Pa · s) 105(Pa)

3) Water flow in a partially saturated porous medium[90]:

ṽw = kw(n, S)

[

−∂pw

∂x
+ ρwRg

]

(2.34)

kw(n, S) =
κ(n)

ηw
krw(S) (2.35)

krw(S) =
√
S
(

1 −
(

1 − S
1
m

)m)2

4) Air flow in a porous medium (Section 6.5.2 of Coussy[23]),

ṽa = ka(n, S)

[

−∂pa

∂x
+ ρaRg

]

(2.36)

ka(n, S) =
κ(n)

ηa
kra(S) (2.37)

kra(S) =
√

1 − S
(

1 − S
1
m

)2m

5) Real air mass density:

ρaR = exp

[
pa

Ka

]

(2.38)

where, the material property κ is called the intrinsic permeability of the soil skeleton and the

function of porosity n, krα is the relative permeabilities related to, respectively, water and air, and

ηα is the dynamic water and air viscosity[23]. The density of air ρaR is approximately 1.2 kg/m3 at

sea level and at 20 oC and air bulk modulusKa is 105 Pa at constant temperature. The approximate
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parameter values are given in Table 2.1. The relative permeabilities krw and kra as function of S

are given in Figure 2.1.

Figure 2.1: Relative permeabilities krw(left) and kra(right) plotted against S when varying m from
0.1 to 1

It can be shown (page.46 in Coussy[23]) that κ(n) = l2δ(n), where l2 is a parameter of

dimension area (m2) and δ(n) by the Kozeny-Carman’s relation (pore space formed by regular

packing of spheres),

δ(n) =
n3

1 − n2

2.3.2 Biphasic balance and constitutive equations

For many quasi-static geotechnical engineering problems, we can assume that pore air pres-

sure, pa, is approximately equal to zero (pa ≈ 0, atmospheric), but the soil suction still corresponds

to negative pore water pressure (s ≈ −pw). In order to solve for 2 unknown (u, pw and pa ≈ 0)

using given 2 equations, the balance equations are summarized as follows,

1) The balance of linear momentum of a mixture:

divσ + ρ g = 0 (2.39)

ρ = ρs + ρw
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σ = σ′ − p̄1, p̄ = χ(s)pw

2) The balance of mass of water (porosity n = nw + na):

−n∂S
∂s

ṗw + Sdiv v = −div ṽw (2.40)

ṅ = (1 − n)ǫ̇v

Likewise, the material properties to define constitutive equations are

1) Relationship between degree of saturation and suction stress:

S = f(s) and s = −pw (2.41)

f(s) =
[

1 +
(s

a

)n]−m

2) Effective stress:

σ′ (considering Cam-clay plasticity and partially saturated soil model

from the balance of linear momentum for a mixture)

σ′ = σ + p̄1
(

p̄ = χ(s)pw

)

(2.42)

f(σ′, s, pc) = 0 (Yield Function) (2.43)

where, σ′ is soil skeleton constitutive response and pc is saturated preconsolidation pressure.

3) Water flow in a biphasic partially saturated porous medium (Section 6.5.2 of Coussy[23]):

ṽw = kw(n, S)

[

−∂pw

∂x
+ ρwRg

]

(2.44)

kw(n, S) =
κ(n)

ηw
krw(S) (2.45)

κ(n) = l2δ(n), δ(n) =
n3

1 − n2

krw(S) =
√
S
(

1 −
(

1 − S
1
m

)m)2

where, the material property κ is called the intrinsic permeability of the skeleton that is a function

of porosity n, krw is the relative permeabilities related to water, and ηw is the dynamic water

viscosity. The function δ(n) is referred to as the Kozeny-Carman formula[23].
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2.4 Coupled Finite Element Formulation of Triphasic Deformable Continuum

To demonstrate how a coupled nonlinear finite element formulation will be carried out for a

triphasic deformable mixture (solid, water and air) as part of the research, and I first present linear

and nonlinear poro-elasticity of a triphasic finite element formulation and then develop nonlinear

poro-elastoplasticity formulation.

2.4.1 Weak form

To describe the implementation of coupled finite element model, the weak form illustrates

integral expression of the coupled governing equations.

Consider the weighting functions which can be thought of as variation of displacement, pore

water pressure and pore air pressure fields.

w(x, t) = δu(x, t)

η(x, t) = δpw(x, t)

ϕ(x, t) = δpa(x, t)

(2.46)

Derive the balance of linear momentum in weighted residual form by using the divergence theorem

as
∫

B(wi σij),jdv =
∫

Γwi σij nj da

∫

B
wi(σij,j + ρ gi) dv = 0 (2.47)

By integrating by parts, using the chain rule (wiσij),j = wi,jσij + wiσij,j

∫

B
wi σij,j dv =

∫

Γ
wi σij nj da−

∫

B
wi,j σij dv

=

(
∫

Γg

��wi σij nj da

︸ ︷︷ ︸

ui = gu
i

+

∫

Γt

wi σij nj
︸ ︷︷ ︸

ti

da

)

−
∫

B
wi,j σij dv (2.48)

where, σij,j =
∂σij

∂xj
and wi = δui = δgu

i = 0 on Γg.

Thus,
∫

B
wi,j

[

σ′ij − χpwδij − (1 − χ)paδij

]

dv =

∫

B
ρwigi dv +

∫

Γt

witi da
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Applying the method of weighted residuals to the balance of mass of mixture in the water phase,

∫

Bw

η

[

n
∂S

∂s
(ṗa − ṗw) + S div v + div ṽw

]

dv = 0 (2.49)

∫

Bw

η n
∂S

∂s
(ṗa − ṗw) dv +

∫

Bw

η Svi,i dv = −
∫

Bw

η ṽw
i,i dv

Applying chain rule, we can obtained as

∫

Bw

η ṽw
i,idv =

∫

Bw

(

[η ṽw
i ],i

︸ ︷︷ ︸
∫

Γw
η ṽw

i ni da=
∫

Γw
r

η ṽw
i ni da+

∫

Γw
s

η ṽw
i ni da

− η,i ṽ
w
i

)

dv (2.50)

where, Γw = Γw
s ∪ Γw

r , η = δpw = δrw = 0 on Γw
r , vi,i = u̇i,i, ṽw

i ni = −Sw on Γw
s , and Sw is

boundary seepage positive for in-flow of water into Γw
s . Thus,

∫

Bw

η n
∂S

∂s
(ṗa − ṗw) dv +

∫

Bw

η S vi,i dv −
∫

Bw

η,i ṽ
w
i dv =

∫

Γw
s

η Sw ds

In the air phase, applying the method of weighted residuals to the balance of mass of mixture,

∫

Ba

ϕ

{[

−n∂S
∂s

+
n(1 − S)

Ka

]

ṗa + n
∂S

∂s
ṗw + (1 − S) div v +

1

ρaR
div(ρaRṽa)

}

dv = 0 (2.51)

−
∫

Ba

ϕn
∂S

∂s
ṗa dv +

∫

Ba

ϕ
n(1 − S)

Ka
ṗa dv +

∫

Ba

ϕn
∂S

∂s
ṗw dv +

∫

Ba

ϕ (1 − S) vi,i dv

+

∫

Ba

ϕ
1

ρaR
(ρaR),i ṽ

a
i dv +

∫

Ba

ϕ ṽa
i,i dv = 0

Likewise, by applying chain rule and using (ρaR),i =
ρaR

Ka
(pa),i we have,

−
∫

Ba

ϕn
∂S

∂s
ṗa dv +

∫

Ba

ϕ
n(1 − S)

Ka
ṗa dv +

∫

Ba

ϕn
∂S

∂s
ṗw dv +

∫

Ba

ϕ (1 − S) vi,i dv

+

∫

Ba

ϕ
(pa),i
Ka

ṽa
i dv −

∫

Ba

ϕ,i ṽ
a
i dv =

∫

Γa
s

ϕSa ds

where, Γa = Γa
s ∪Γa

r and ϕ = δpa = δra = 0 on Γa
r , ṽ

a
i ni = −Sa on Γa

s , and Sa is seepage positive

for in-flow of air into Γa
s .
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Therefore, the coupled Weak form for triphasic mixture is written as,

(W)







Find u(x, t) ∈ Du, pw(x, t) ∈ Dpw and pa(x, t) ∈ Dpa, with t ∈ [ 0, T ] such that

∫

B

[
∇ w : (σ′ − χpw1 − (1 − χ)pa1)

]
dv =

∫

B
ρw · g dv +

∫

Γt

w · t da ,

∫

Bw

η n
∂S

∂s
(ṗa − ṗw) dv +

∫

Bw

η S div v dv −
∫

Bw

∇η · ṽwdv =

∫

Γw
s

η Sw ds ,

−
∫

Ba

ϕn
∂S

∂s
ṗa dv +

∫

Ba

ϕ
n(1 − S)

Ka
ṗa dv +

∫

Ba

ϕn
∂S

∂s
ṗw dv

+

∫

Ba

ϕ(1 − S) div v dv +

∫

Ba

ϕ

Ka
∇pa · ṽa dv −

∫

Ba

∇ϕ · ṽa dv =

∫

Γa
s

ϕSa ds

for all w (x) ∈ Vu, η (x) ∈ Vpw and ϕ (x) ∈ Vpa

(2.52)

In the trial solution spaces,

Du =
{
u (x, t) : B× ]0, T [ 7→ R3, u(t)|Γg = gu(t), u(x, 0) = u0(x)

}

Dpw =
{
pw (x, t) : Bw× ]0, T [ 7→ R, pw(t)|Γw

r
= rw(t)

}

Dpa =
{
pa (x, t) : Ba× ]0, T [ 7→ R, pa(t)|Γa

r
= ra(t)

}

(2.53)

where t ∈ [0, T ]. In the variation spaces,

Vu =
{
wi (x) : B 7→ R3, wi|Γg = 0

}

Vpw =
{
η (x) : Bw 7→ R, η|Γw

r
= 0
}

Vpa =
{
ϕ (x) : Ba 7→ R, ϕ|Γa

r
= 0
}

(2.54)

In the discretization of domain and spaces, Galerkin Form can be written as,

Bh ⊂ B

where, “h” discretization parameter is satisfied by Bh
w ⊂ Bw and Bh

a ⊂ Ba, therefore, we can

restate the Weak form with superscript h’s

(Du)h ⊂ Du , (Vu)h ⊂ Vu

(Dpw)h ⊂ Dpw , (Vpw)h ⊂ Vpw

(Dpa)h ⊂ Dpa , (Vpa)h ⊂ Vpa







uh
i (x, t) ⊂ (Du)h , wh

i (x) ⊂ (Vu)h

ph
w(x, t) ⊂ (Dpw)h , η(x) ⊂ (Vpw)h

ph
a(x, t) ⊂ (Dpa)h , ϕ(x) ⊂ (Vpa)h

(2.55)
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Figure 2.2: Discretization of triphasic domain and spaces in Galerkin Form

2.4.2 Coupled FE form for 2D semi-implicit linear poro-elasticity

For the coupled finite element (FE) form of 2D nonlinear poromechanics, it is used here

linear isotropic elasticity for the solid skeleton effective stress σ′, and assumed the density and

permeability are described in equation (2.35) and (2.37) for water and air phases respectively, and

porosity n is a function of the solid skeleton volumetric strain ǫv, such as in matrix form

σ′ = D · ǫ = D · Be,u · de

kw = kw(n, S)1 and ka = ka(n, S)1

nn+1 =
nn + ∆ǫv
1 + ∆ǫv

and ∆ǫv = tr(∆ǫ)

ρ = ρsR − n(ρsR − ρaR) + nw(ρwR − ρaR)

where D is the elastic modulus matrix, ǫ the solid strain, Be,u the strain-displacement matrix

for element e, de the nodal displacement vector for element e, and we can discretize into mixed

quadrilateral finite elements as shown in Figure 2.3.

In Figure 2.3, element characteristic length is he, element domain is Be, discrete domain is

Bh =
nel

A
e=1

Be,
nel

A
e=1

is the element assembly operator, and the convergent, mixed and quadrilateral

finite element is biquadratic in displacement and bilinear in pore water pressure and pore air

pressure[59].

For a biquadratic element in displacement and a bilinear isoparametric element in pore water
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pressure and pore air pressure, it is necessary to define the interpolating functions for three phases

for coupled finite element form as follows,

eB

h
awB ,

h
a

h
w

h
i

pp

u

 ,

he

eB
ξ

1

η

2

3
4

5

6

7

8 9

dx(3)

dy(3)

pw(3), pa(3)

y

x

ds da

Figure 2.3: Discretization into triphasic mixed quadrilateral finite elements

1) Solid : (displacement, u)

uh(ξ, t) =

9∑

a=1

Nu
a (ξ)de

a(t) = Ne,u · de

=
[

Nu
1 · · · Nu

9

]

·










de
1

...

de
9










(2.56)

Nu
a =






Nu
a 0

0 Nu
a




 , de

a =






de
x(a)

de
y(a)




 (2.57)

where de are element nodal displacements, and weighting function,

wh(ξ) = N e,u · ce (2.58)

2) Water :

ph
w(ξ, t) =

4∑

b=1

Np
b (ξ) θe

b(t) = N e,p · θe
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=
[

Np
1 Np

2 Np
3 Np

4

]

·














θe
1

θe
2

θe
3

θe
4














(2.59)

The pore water pressure time derivative is

ṗh
w(ξ, t) = Ne,p · θ̇e

And weighting function for water portion ηh,

ηh = N e,p · αe (2.60)

3) Air :

ph
a(ξ, t) =

4∑

c=1

Np
c (ξ) ζe

c (t) = N e,p · ζe

=
[

Np
1 Np

2 Np
3 Np

4

]

·














ζe
1

ζe
2

ζe
3

ζe
4














(2.61)

The pore air pressure time derivative is

ṗh
a(ξ, t) = N e,p · ζ̇e

And weighting function for air portion ϕh,

ϕh = Ne,p · βe (2.62)

In the practical application of elements it is necessary to find the value of the partial deriva-

tives of the interpolating functions with respect to global coordinates x and y. For the interpolating

function N of three terms, we will have
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1) Solid :

u̇h
i,i(ξ, t) =

9∑

a=1

[
∂Nu

a

∂x

∂Nu
a

∂y

]

·






ḋe
x(a)

ḋe
y(a)






=
[

B̃
u
1 · · · B̃

u
9

]

·










ḋ
e
1

...

ḋ
e
9










= B̃
e,u · ḋe

(2.63)

B̃
u
a =

[
dNu

a

dx

dNu
a

dy

]

wh
i,j(ξ) =

9∑

a=1

∂Nu
a (ξ)

∂xj
cei(a)











wh
1,1

wh
2,2

wh
1,2 +wh

2,1











=
[

Bu
1 · · · Bu

9

]

·










ce
1

...

ce
9










(2.64)

Bu
a =











dNu
a

dx
0

0
dNu

a

dy

dNu
a

dy

dNu
a

dx











∇wh(ξ) = Be,u · ce

2) Water :

ηh
,i(ξ) =

4∑

b=1

∂Np
b (ξ)

∂xi
αe

b =
4∑

b=1







∂Np
b (ξ)

∂x

∂Np
b (ξ)

∂y






αe

b

=
4∑

b=1

B
p
b α

e
b =

[

B
p
1 B

p
2 B

p
3 B

p
4

]

·















αe
1

αe
2

αe
3

αe
4















(2.65)
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∇ηh = Be,p · αe

∇ph
w = Be,p · θe

3) Air :

ϕh
,i(ξ) =

4∑

c=1

∂Np
c (ξ)

∂xi
βe

c =

4∑

c=1







∂Np
c (ξ)

∂x

∂Np
c (ξ)

∂y






βe

c

=

4∑

c=1

Bp
c β

e
c =

[

B
p
1 B

p
2 B

p
3 B

p
4

]

·















βe
1

βe
2

βe
3

βe
4















(2.66)

∇ϕh = Be,p · βe

∇ph
a = Be,p · ζe

The finite element equations are nonlinear because (i) the porosity n(u) is a nonlinear function

of displacement, (ii) the degree of saturation S(s) is a nonlinear function of suction s, and (iii) the

relative permeabilities kw(n, S) and ka(n, S) are nonlinear functions of u and S. To compare the

formulation for demonstration purposes, both linear and nonlinear behavior are considered. Thus,

ρ(d,θ, ζ) = ρs + ρw + ρa = nsρsR + nwρwR + naρaR

=
(

1 − n(d)
)

ρsR + n(d)S(θ, ζ) ρwR + n(d)
(

1 − S(θ, ζ)
)

ρaR(ζ)

(2.67)

Since the porosity n(d) is a nonlinear function of displacement and S(θ, ζ) is a nonlinear

function of pore air and pore water pressures, then so is the mixture mass density ρ(d,θ, ζ). This

holds for n(d), S(θ, ζ) and ρaR(ζ) as well. It is assumed χ(θe, ζe) = S(θe, ζe) for the solid phase

related to the effective stress (revisit later). The coupled nonlinear FE equations are written then as,
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1) Solid :

nel

A
e=1

(ce)T ·
[(∫

Be

(Be,u)T · D · Be,u da

)

· de −
(∫

Be

χ(θe, ζe)(B̃
e,u

)T · Ne,p da

)

· θe

−
(∫

Be

(

1 − χ(θe, ζe)
)

(B̃
e,u

)T · N e,p da

)

· ζe

=

∫

Be

ρ(de,θe, ζe)(N e,u)T · g da+

∫

Γe
t

(N e,u)T · t da

]

(2.68)

thus,
nel

A
e=1

(ce)T ·
[

ke,dd · de − ke,dθ(θe, ζe) · θe − ke,dζ(θe, ζe) · ζe

= f
e,d
f (de,θe, ζe) + f

e,d
t

]
(2.69)

2) Water :

nel

A
e=1

(αe)T ·
[(
∫

Be
w

n(de)
∂S(θe, ζe)

∂s
(N e,p)T · N e,p da

)

· ζ̇e

−
(
∫

Be
w

n(de)
∂S(θe, ζe)

∂s
(N e,p)T · N e,p da

)

· θ̇e

+

(
∫

Be
w

S(θe, ζe) (N e,p)T · B̃e,u
da

)

· ḋe

+

(
∫

Be
w

(Be,p)T · kw(de,θe, ζe) · Be,p da

)

· θe

=

∫

Be
w

ρwR(Be,p)T · kw(de,θe, ζe) · g da+

∫

Γe
s(w)

(N e,p)TSw ds

]

(2.70)

thus,
nel

A
e=1

(αe)T ·
[

ke,θζ(de,θe, ζe) · ζ̇e − ke,θζ(de,θe, ζe) · θ̇e

+ke,θd(θe, ζe) · ḋe
+ ke,θθ(de,θe, ζe) · θe = fe,θ(de,θe, ζe) + f e,θ

s

]
(2.71)
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3) Air :

nel

A
e=1

(βe)T ·
[

−
(
∫

Be
a

n(de)
∂S(θe, ζe)

∂s
(N e,p)T · N e,p da

)

· ζ̇e

+

(
∫

Be
a

n(de)

Ka

(

1 − S(θe, ζe)
)

(N e,p)T · Ne,p da

)

· ζ̇e

+

(
∫

Be
a

n(de)
∂S(θe, ζe)

∂s
(N e,p)T · N e,p da

)

· θ̇e

+

(
∫

Be
a

(

1 − S(θe, ζe)
)

(N e,p)T · B̃e,u
da

)

· ḋe

−
(
∫

Be
a

1

Ka
(N e,p)T ⊗ (∇pa)n · Be,p · ka(de,θe, ζe) da

)

· ζe

+

(
∫

Be
a

(Be,p)T · ka(de,θe, ζe) · Be,p da

)

· ζe

=

∫

Be
a

ρaR(ζe)(Be,p)T · ka(de,θe, ζe) · g da+

∫

Γe
s(a)

(N e,p)TSa ds

−
∫

Be
a

1

Ka
(N e,p)T ⊗ (∇pa)n · ka(de,θe, ζe) · g ρaR(ζe) da

]

(2.72)

thus,
nel

A
e=1

(βe)T ·
[

ke,ζθ(de,θe, ζe) · ζ̇e
+ ke,θζ(de,θe, ζe) · θ̇e

+ke,ζd(θe, ζe) · ḋe
+ ke,ζζ(de,θe, ζe) · ζe = f e,ζ(de,θe, ζe) + fe,ζ

s

]
(2.73)

Hence the element stiffness matrix for displacement, pore water pressure and pore air pressure

of d.o.f (degree of freedom), and the coupling element stiffness and permeability matrices are written

as,
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ke,dd =

∫

Be

(Be,u)T · D · Be,u da =

∫ 1

−1

∫ 1

−1
(Be,u)T · D · Be,u jdξdη

ke,θθ(de,θe, ζe)=

∫

Be

(Be,p)T · kw(de,θe, ζe) · Be,p da

=

∫ 1

−1

∫ 1

−1
(Be,p)T · kw(de,θe, ζe) · Be,p jdξdη

ke,ζζ(de,θe, ζe)=

∫

Be

(Be,p)T · ka(de,θe, ζe) · Be,p da

=

∫ 1

−1

∫ 1

−1
(Be,p)T · ka(de,θe, ζe) · Be,p jdξdη

ke,dθ(θe, ζe) =

∫

Be

χ(θe, ζe)(B̃
e,u

)T · Ne,p da

=

∫ 1

−1

∫ 1

−1
χ(θe, ζe)(B̃

e,u
)T · Ne,p jdξdη

ke,dζ(θe, ζe) =

∫

Be

(

1 − χ(θe, ζe)
)

(B̃
e,u

)T · Ne,p da

=

∫ 1

−1

∫ 1

−1

(

1 − χ(θe, ζe)
)

(B̃
e,u

)T · N e,p jdξdη

ke,θζ(de,θe, ζe)=

∫

Be

n(de)
∂S(θe, ζe)

∂s
(N e,p)T · N e,p da

=

∫ 1

−1

∫ 1

−1
n(de)

∂S(θe, ζe)

∂s
(N e,p)T · N e,p jdξdη

ke,θd(θe, ζe) =

∫

Be

S(θe, ζe)(N e,p)T · B̃e,u
da

=

∫ 1

−1

∫ 1

−1
S(θe, ζe)(N e,p)T · B̃e,u

jdξdη

ke,ζd(θe, ζe) =

∫

Be

(

1 − S(θe, ζe)
)

(N e,p)T · B̃e,u
da

=

∫ 1

−1

∫ 1

−1

(

1 − S(θe, ζe)
)

(N e,p)T · B̃e,u
jdξdη

ke,ζθ(de,θe, ζe)=

∫

Be

(
n(de)

Ka

(

1 − S(θe, ζe)
)

− n(de)
∂S(θe, ζe)

∂s

)

(N e,p)T · N e,p da

=

∫ 1

−1

∫ 1

−1

(
n(de)

Ka

(

1 − S(θe, ζe)
)

− n(de)
∂S(θe, ζe)

∂s

)

(N e,p)T · N e,p jdξdη

(2.74)
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Recall,

Be,u =
[

Bu
1 Bu

2 · · · Bu
9

]

B̃
e,u

=
[

B̃
u
1 B̃

u
2 · · · B̃

u
9

]

Bu
a =











dNu
a

dx
0

0
dNu

a

dy

dNu
a

dy

dNu
a

dx











B̃
u
a =

[
dNu

a

dx

dNu
a

dy

]

Ne,p =
[

Np
1 Np

2 Np
3 Np

4

]

D =











λ+ 2µ λ 0

λ λ+ 2µ 0

0 0 µ











For plane strain, the tangent modulus, D, is given for linear isotropic elasticity. The hydraulic

equations exist relating the suction stress s to the degree of saturation S (e.g., the Brooks-Corey[18],

van Genuchten[90] and Fredlund-Xing[33] equations). The main drying and wetting curves of the

soil-water characteristic curve (SWCC) are both described by van Genuchten’s equation in this

study.

Se =






1

1 +
(s

a

)n






m

, s = pa − pw = Ne,p · (ζe − θe)

S = Sr + Se(1 − Sr) = Sr +
1 − Sr

[

1 + (αs)n
]m (where, α = 1/a)

(2.75)

where, an “effective” degree of saturation Se may be normalized by the fully saturated condition

(S = 1) with the residual saturated condition Sr as, Se =
S − Sr

1 − Sr
, and α(= 1/a), n and m are curve

fitting parameters of the soil-water characteristic curve (or, water retention curve). For a natural

soil, if the residual saturation Sr is equal to zero, then the effective degree of saturation Se is equal

to the degree of saturation S. The classical relations proposed by van Genuchten[90], namely, the

degree of saturation S of equation (2.75) is considered in this study. It is written as the function
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of suction stress s, and for suction stress derivative we have,

dS

ds
= −(1 − Sr)

[

1 +
(s

a

)n](−m−1)
sn−1 m · n

an
(2.76)

In this study, the element force vectors (body, traction, water and air) are then written as,

f
e,d
f (de,θe, ζe) =

∫

Be

ρ(de,θe, ζe)(N e,u)T · gda

=

∫ 1

−1

∫ 1

−1
ρ(de,θe, ζe)(N e,u)T · g jdξdη

f e,θ(de,θe, ζe) =

∫

Be
w

ρwR(Be,p)T · kw(de,θe, ζe) · g da

=

∫ 1

−1

∫ 1

−1
ρwR(Be,p)T · kw · g jdξdη

fe,ζ(de,θe, ζe) =

∫

Be
a

ρaR(ζe)(Be,p)T · ka(de,θe, ζe) · g da

=

∫ 1

−1

∫ 1

−1
ρaR(ζe)(Be,p)T · ka · g jdξdη

(2.77)

f
e,d
t =

∫

Γe
t

(N e,u)T · tσda

f e,θ
s =

∫

Γe
s(w)

(N e,p)T Swds

fe,ζ
s =

∫

Γe
s(a)

(N e,p)T Sads

(2.78)

Recall,

Ne,u =
[

Nu
1 Nu

2 · · · Nu
9

]

Be,p =
[

B
p
1 B

p
2 B

p
2 B

p
4

]

Nu
a =






Nu
a 0

0 Nu
a




 B

p
b =







dNp
b

dx

dNp
b

dy







After element assembly, we have the coupled nonlinear parabolic PDEs to solve using gener-

alized trapezoidal integration in time.

C(D) · Ḋ + K(D) · D = F (D) (2.79)
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Ḋ =










ḋ

θ̇

ζ̇










, D =










d

θ

ζ










, C(D) =










0 0 0

Kθd(D) −Kθζ(D) Kθζ(D)

Kζd(D) Kθζ(D) Kζθ(D)










K(D) =










Kdd −Kdθ(D) −Kdζ(D)

0 Kθθ(D) 0

0 0 Kζζ(D)










F (D) =










f
e,d
f (D) + f

e,d
t

f e,θ(D) + f e,θ
s

f e,ζ(D) + f e,ζ
s










=










F d(D)

F θ(D)

F ζ(D)










(2.80)

where C is the combination of damping matrix and stiffness matrix of d.o.f vector time derivative,

and K is stiffness matrix. Then, the Location Matrix (LM)[45] can be used to assemble the

individual 26× 26 and 26× 3 contributions to the global “damping” matrix C, stiffness matrix K,

and forcing vector F , and use generalized trapezoidal integration to solve transient equations[45].

For consolidation analysis, generalized trapezoidal rule[45] is used to integrate transient

through FE coupled balance of mass and linear momentum equations at time tn+1, and intro-

duced difference formulas for Dn+1 and V n+1, where velocity V n+1 is Ḋ(tn+1) and α is the time

integration parameter, written as

C(Dn+1) · V n+1 + K(Dn+1) · Dn+1 = F n+1(Dn+1)

Dn+1 = Dn + ∆tV n+α

V n+α = (1 − α)V n + αV n+1

(2.81)

The form of equation (2.81) allows us to consider a semi-implicit integration scheme, leading

to a linear form, which is written as

C(Dn) · V n+1 + K(Dn) · Dn+1 = F (Dn) (2.82)
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Table 2.2: Generalized trapezoidal family

α METHOD TYPE

0 forward Euler explicit (if C diagonal, which it is not)

1/2 trapezoidal rule implicit

1 backward Euler implicit

Table 2.3: Procedure of semi-implicit linear scheme for triphasic mixture

1) Initialize : given initial displacement and pore pressure D0, solve for V 0

C(D0) · V 0 = F 0(D0) − K(D0) · D0

2) Predictor :
D̃n+1 = Dn + (1 − α)∆tV n

3) Solution : (

C(Dn) + α∆tK(Dn)
)

V n+1 = F n+1(Dn) − K(Dn)D̃n+1

4) Corrector :
Dn+1 = D̃n+1 + α∆tV n+1

5) Stability : It will be chosen an unconditionally-stable method

(α = 1; Backward Euler)
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Some well-known members of the generalized trapezoidal family are identified in Table 2.2,

and then generalized trapezoidal rule for consolidation analysis is implemented for linear form

(semi-implicit) by the procedure given in Table 2.3. The full nonlinear Newton-Raphson procedure

is presented for the biphasic case (pa ≈ 0, atmospheric) in Section 2.5.3.

2.4.3 FE form for 2D fully-implicit nonlinear triphasic poro-elasticity

The coupled finite element (FE) form for fully-implicit nonlinear triphasic poro-elasticity

with solution by Newton-Raphson method, and all derivatives are need to apply to the hyperelastic

Cam-clay plasticity model. The nonlinear triphasic poro-elasticity also assumes the solid skele-

ton effective stress σ′(eventually will be a function of suction in plasticity) can be governed by a

nonlinear constitutive model, and that the density and permeability are functions of displacement

and porosity, and porosity is a function of the solid skeleton volumetric strain ǫv. The coupled FE

equations for triphasic mixture written then as

1) Solid (nonlinear triphasic) :

nel

A
e=1

(ce)T ·









(∫

Be

(Be,u)T · σ′(de,θe) da

)

︸ ︷︷ ︸

f
d,INT

e (d
e
,θ

e
)

−
(∫

Be

χ(θe, ζe)(B̃
e,u

)T · N e,p · θe da

)

︸ ︷︷ ︸

f
dθ,INT

e (θ
e
,ζ

e
)

−
(∫

Be

(

1 − χ(θe, ζe)
)

(B̃
e,u

)T · N e,p · ζe da

)

︸ ︷︷ ︸

f
dζ,INT

e (θ
e
,ζ

e
)

=

∫

Be

ρ(de,θe, ζe)(N e,u)T · g da+

∫

Γe
t

(N e,u)T · t ds

︸ ︷︷ ︸

f
d,EXT

e (d
e
,θ

e
,ζ

e
)










(2.83)
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2) Water (nonlinear triphasic) :

nel

A
e=1

(αe)T ·










(
∫

Be
w

S(θe, ζe) (N e,p)T · B̃e,u
da

)

︸ ︷︷ ︸

k
θd,INT

e (θ
e
,ζ

e
)

·ḋe

−
(
∫

Be
w

n(de)
∂S(θe, ζe)

∂s
(N e,p)T · N e,p da

)

︸ ︷︷ ︸

k
θθ,INT

e (d
e
,θ

e
,ζ

e
)

·θ̇e

+

(
∫

Be
w

n(de)
∂S(θe, ζe)

∂s
(N e,p)T · N e,p da

)

︸ ︷︷ ︸

k
θζ,INT

e (d
e
,θ

e
,ζ

e
)

·ζ̇e

−
(
∫

Be
w

(Be,p)T · ṽs
w(de,θe, ζe) da

)

︸ ︷︷ ︸

f
θ1,INT

e (d
e
,θ

e
,ζ

e
)

=

∫

Γe
s(w)

(N e,p)TSw ds

︸ ︷︷ ︸

f
θ,EXT

e











(2.84)

3) Air (nonlinear triphasic) :

nel

A
e=1

(βe)T ·










(
∫

Be
a

(

1 − S(θe, ζe)
)

(N e,p)T · B̃e,u
da

)

︸ ︷︷ ︸

k
ζd,INT

e (θ
e
,ζ

e
)

·ḋe

+

(
∫

Be
a

n(de)
∂S(θe, ζe)

∂s
(N e,p)T · N e,p da

)

︸ ︷︷ ︸

k
ζθ,INT

e (d
e
,θ

e
,ζ

e
)

·θ̇e

+

(
∫

Be
a

[
n(de)

Ka

(

1 − S(θe, ζe)
)

− n(de)
∂S(θe, ζe)

∂s

]

(N e,p)T · N e,p da

)

︸ ︷︷ ︸

k
ζζ,INT

e (d
e
,θ

e
,ζ

e
)

·ζ̇e

−
(
∫

Be
a

(Be,p)T · ṽs
a(d

e,θe, ζe) da

)

︸ ︷︷ ︸

f
ζ1,INT

e (d
e
,θ

e
,ζ

e
)

=

∫

Γe
s(a)

(N e,p)TSa ds

︸ ︷︷ ︸

f
ζ,EXT

e











(2.85)

where Darcy’s water and air velocity, ṽs
w = −kw(de,θe) · [∇pw − ρwRg] and ṽs

a = −ka(de,θe) ·
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[∇pa − ρaRg], is defined by Darcy’s law with porosity and saturation rate dependent permeability,

kw = kw(n, S) 1 and ka = ka(n, S) 1. And then these nonlinear FE equations are written as

nel

A
e=1

(ce)T ·
[

fd,INT
e (de,θe) − fdθ,INT

e (θe, ζe) − fdζ,INT
e (θe, ζe) = fd,EXT

e (de,θe, ζe)

]

nel

A
e=1

(αe)T ·
[

kθd,INT
e (θe, ζe) · ḋe − kθθ,INT

e (de,θe, ζe) · θ̇e
+ kθζ,INT

e (de,θe, ζe) · ζ̇e

− f θ1,INT
e (de,θe, ζe) = f θ,EXT

e

]

nel

A
e=1

(βe)T ·
[

kζd,INT
e (θe, ζe) · ḋe

+ kζθ,INT
e (de,θe, ζe) · θ̇e

+ kζζ,INT
e (de,θe, ζe) · ζ̇e

− f ζ1,INT
e (de,θe, ζe) = f ζ,EXT

e

]

(2.86)

After element assembly, we have the coupled nonlinear parabolic PDEs to solve using generalized

trapezoidal integration in time, and Newton-Raphson iteration

F d,INT (d,θ) − F dθ,INT (θ, ζ) − F dζ,INT (θ, ζ) = F d,EXT (d,θ, ζ) (2.87)

Kθd,INT (θ, ζ) · ḋ − Kθθ,INT (d,θ, ζ) · θ̇ + Kθζ,INT (d,θ, ζ) · ζ̇ − F θ1,INT (d,θ, ζ)

= F θ,EXT (2.88)

Kζd,INT (θ, ζ) · ḋ + Kζθ,INT (d,θ, ζ) · θ̇ + Kζζ,INT (d,θ, ζ) · ζ̇ − F ζ1,INT (d,θ, ζ)

= F ζ,EXT (2.89)

which we may rewrite as

C(D) · Ḋ + F INT (D) = F EXT (D) (2.90)
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where,

C(D) =










0 0 0

Kθd,INT (θ, ζ) −Kθθ,INT (d,θ, ζ) Kθζ,INT (d,θ, ζ)

Kζd,INT (θ, ζ) Kζθ,INT (d,θ, ζ) Kζζ,INT (d,θ, ζ)










F INT (D) =










F d,INT (d,θ) − F dθ,INT (θ, ζ) − F dζ,INT (θ, ζ)

−F θ1,INT (d,θ, ζ)

−F ζ1,INT (d,θ, ζ)










D =










d

θ

ζ










, Ḋ =










ḋ

θ̇

ζ̇










, F EXT (D) =










F d,EXT (d,θ, ζ)

F θ,EXT

F ζ,EXT










Recall the generalized trapezoidal integration:

C(Dn+1) · V n+1 + F INT (Dn+1) = F EXT (Dn+1)

Dn+1 = D̃n+1 + α∆tV n+1 , D̃n+1 = Dn + (1 − α)∆tV n

(2.91)

C(D0) · V 0 + F INT (D0) − F EXT (D0) = 0

V 0 = C−1
0 ·

(
F EXT

0 − F INT
0

)
(2.92)

It can be expressed in residual form, solving for V k+1
n+1 in a Newton-Raphson iteration algorithm

with current iteration (k + 1):

R(V k+1
n+1) = C(Dk+1

n+1) · V k+1
n+1 + F INT (Dk+1

n+1) − F EXT (Dk+1
n+1) = 0

= Rk +
∂Rk

∂V
· δV ≈ 0

(2.93)

Therefore,

δV = −
(
∂Rk

∂V

)−1

· Rk (2.94)

V k+1
n+1 = V k

n+1 + δV

Dk+1
n+1 = D̃n+1 + α∆tV k+1

n+1
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For consistent tangent,

∂R

∂V
=

(
∂C

∂D
· ∂D

∂V

)

· V + C(D) +
∂F INT

∂D
· ∂D

∂V
− ∂F EXT

∂D
· ∂D

∂V
(2.95)

where
∂D

∂V
= α∆t. Equivalently, in component form, we have

R
A

= C
AB

· V
B

+ F INT
A

− FEXT
A

(

A,B,C and E = 1, · · · , n
dof

)

∂R
A

∂V
C

=

(
∂C

AB

∂D
E

∂D
E

∂V
C

)

· V
B

+ C
AB

∂V
B

∂V
C

+
∂F INT

A

∂D
B

∂D
B

∂V
C

−
∂FEXT

A

∂D
B

∂D
B

∂V
C

=

(
∂C

AB

∂D
E

δ
EC
α∆t

)

· V
B

+ C
AB
δ

BC
+
∂F INT

A

∂D
B

δ
BC
α∆t−

∂FEXT
A

∂D
B

δ
BC
α∆t

= α∆t
∂C

AB

∂D
C

V
B

+ C
AC

+
∂F INT

A

∂D
C

α∆t−
∂FEXT

A

∂D
C

α∆t

(2.96)

where C · V =











0

Kθd,INT · ḋ − Kθθ,INT · θ̇ + Kθζ,INT · ζ̇

Kζd,INT · ḋ + Kζθ,INT · θ̇ + Kζζ,INT · ζ̇











, and then implied
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∂C

∂D
· V

(

=
∂C

AB

∂D
C

V
B

)

=












0

−∂Kθθ,INT

∂d
· θ̇ +

∂Kθζ,INT

∂d
· ζ̇

∂Kζθ,INT

∂d
· θ̇ +

∂Kζζ,INT

∂d
· ζ̇

0

∂Kθd,INT

∂θ
· ḋ − ∂Kθθ,INT

∂θ
· θ̇ +

∂Kθζ,INT

∂θ
· ζ̇

∂Kζd,INT

∂θ
· ḋ +

∂Kζθ,INT

∂θ
· θ̇ +

∂Kζζ,INT

∂θ
· ζ̇

0

∂Kθd,INT

∂ζ
· ḋ − ∂Kθθ,INT

∂ζ
· θ̇ +

∂Kθζ,INT

∂ζ
· ζ̇

∂Kζd,INT

∂ζ
· ḋ +

∂Kζθ,INT

∂ζ
· θ̇ +

∂Kζζ,INT

∂ζ
· ζ̇













(2.97)

∂F INT

∂D
=

[

∂F INT

∂d

∂F INT

∂θ

∂F INT

∂ζ

]

(2.98)

∂F INT

∂d
=












∂F d,INT

∂d

−∂F θ1,INT

∂d

−∂F ζ1,INT

∂d












,
∂F INT

∂θ
=












∂F d,INT

∂θ
− ∂F dθ,INT

∂θ
− ∂F dζ,INT

∂θ

−∂F θ1,INT

∂θ

−∂F ζ1,INT

∂θ












∂F INT

∂ζ
=













−∂F dθ,INT

∂ζ
− ∂F dζ,INT

∂ζ

−∂F θ1,INT

∂ζ

−∂F ζ1,INT

∂ζ













∂F EXT

∂D
=

[

∂F EXT

∂d

∂F EXT

∂θ

∂F EXT

∂ζ

]

(2.99)
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∂F EXT

∂d
=











∂F d,EXT

∂d

0

0











,
∂F EXT

∂θ
=










∂F d,EXT

∂θ

0

0










,
∂F EXT

∂ζ
=










∂F d,EXT

∂ζ

0

0










In which its components are

∂Kθθ,INT

∂d
· θ̇ =

nel

A
e=1

∂kθθ,INT
e

∂de · θ̇e

=
nel

A
e=1

∫

Be
w

[

ṗw
∂S(θe, ζe)

∂s
(N e,p)T

]

⊗ ∂n(de)

∂de da

(2.100)

∂Kθζ,INT

∂d
· ζ̇ =

nel

A
e=1

∂kθζ,INT
e

∂de · ζ̇e

=
nel

A
e=1

∫

Be
w

[

ṗa
∂S(θe, ζe)

∂s
(N e,p)T

]

⊗ ∂n(de)

∂de da

(2.101)

∂Kζθ,INT

∂d
· θ̇ =

nel

A
e=1

∂kζθ,INT
e

∂de · θ̇e

=
nel

A
e=1

∫

Be
a

[

ṗw
∂S(θe, ζe)

∂s
(N e,p)T

]

⊗ ∂n(de)

∂de da

(2.102)

∂Kζζ,INT

∂d
· ζ̇ =

nel

A
e=1

∂kζζ,INT
e

∂de · ζ̇e

=
nel

A
e=1

∫

Be
a

[

ṗa

(
1

Ka
− S(θe, ζe)

Ka
− ∂S(θe, ζe)

∂s

)

(N e,p)T
]

⊗∂n(de)

∂de da

(2.103)

where ṗw = N e,p · θ̇e
, ṗa = N e,p · ζ̇e

and
∂n

∂de =

(
1 − n

1 + ∆ǫv

)

B̃
e,u

.

∂Kθd,INT

∂θ
· ḋ =

nel

A
e=1

∂kθd,INT
e

∂θe · ḋe
=

nel

A
e=1

∫

Be
w

[

ǫ̇v(N
e,p)T

]

⊗ ∂S(θe, ζe)

∂θe da

=
nel

A
e=1

∫

Be
w

ǫ̇v

[

(N e,p)T
]

⊗
(

−∂S(θe, ζe)

∂s
Ne,p

)

da

(2.104)
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∂Kθθ,INT

∂θ
· θ̇ =

nel

A
e=1

∂kθθ,INT
e

∂θe · θ̇e

=
nel

A
e=1

∫

Be
w

ṗw n(de)
[

(N e,p)T
]

⊗
(

−∂
2S(θe, ζe)

∂s2
N e,p

)

da

(2.105)

∂Kθζ,INT

∂θ
· ζ̇ =

nel

A
e=1

∂kθζ,INT
e

∂θe · ζ̇e

=
nel

A
e=1

∫

Be
w

ṗa n(de)
[

(N e,p)T
]

⊗
(

−∂
2S(θe, ζe)

∂s2
N e,p

)

da

(2.106)

∂Kζd,INT

∂θ
· ḋ =

nel

A
e=1

∂kζd,INT
e

∂θe · ḋe

=
nel

A
e=1

∫

Be
a

−ǫ̇v
[

(N e,p)T
]

⊗
(

−∂S(θe, ζe)

∂s
N e,p

)

da

(2.107)

∂Kζθ,INT

∂θ
· θ̇ =

nel

A
e=1

∂kζθ,INT
e

∂θe · θ̇e

=
nel

A
e=1

∫

Be
a

ṗw n(de)
[

(N e,p)T
]

⊗
(

−∂
2S(θe, ζe)

∂s2
N e,p

)

da

(2.108)

∂Kζζ,INT

∂θ
· ζ̇ =

nel

A
e=1

∂kζζ,INT
e

∂θe · ζ̇e

=
nel

A
e=1

∫

Be
a

[
ṗan(de)

Ka

[

(N e,p)T
]

⊗
(

−∂S(θe, ζe)

∂s
N e,p

)

− ṗa n(de)
[

(N e,p)T
]

⊗
(

−∂
2S(θe, ζe)

∂s2
N e,p

)]

da

(2.109)

where ǫ̇v = B̃
e,u · ḋe

and
∂s

∂θe = −Ne,p.

∂Kθd,INT

∂ζ
· ḋ =

nel

A
e=1

∂kθd,INT
e

∂ζe · ḋe
=

nel

A
e=1

∫

Be
w

ǫ̇v

[

(N e,p)T
]

⊗ ∂S(θe, ζe)

∂ζe da

=
nel

A
e=1

∫

Be
w

ǫ̇v

[

(N e,p)T
]

⊗
(
∂S(θe, ζe)

∂s
N e,p

)

da

(2.110)
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∂Kθθ,INT

∂ζ
· θ̇ =

nel

A
e=1

∂kθθ,INT
e

∂ζe · θ̇e

=
nel

A
e=1

∫

Be
w

ṗw n(de)
[

(N e,p)T
]

⊗
(
∂2S(θe, ζe)

∂s2
N e,p

)

da

(2.111)

∂Kθζ,INT

∂ζ
· ζ̇ =

nel

A
e=1

∂kθζ,INT
e

∂ζe · ζ̇e

=
nel

A
e=1

∫

Be
w

ṗa n(de)
[

(N e,p)T
]

⊗
(
∂2S(θe, ζe)

∂s2
N e,p

)

da

(2.112)

∂Kζd,INT

∂ζ
· ḋ =

nel

A
e=1

∂kζd,INT
e

∂ζe · ḋe

=
nel

A
e=1

∫

Be
a

−ǫ̇v
[

(N e,p)T
]

⊗
(
∂S(θe, ζe)

∂s
N e,p

)

da

(2.113)

∂Kζθ,INT

∂ζ
· θ̇ =

nel

A
e=1

∂kζθ,INT
e

∂ζe · θ̇e

=
nel

A
e=1

∫

Be
a

ṗw n(de)
[

(N e,p)T
]

⊗
(
∂2S(θe, ζe)

∂s2
N e,p

)

da

(2.114)

∂Kζζ,INT

∂ζ
· ζ̇ =

nel

A
e=1

∂kζζ,INT
e

∂ζe · ζ̇e

=
nel

A
e=1

∫

Be
a

[
ṗan(de)

Ka

[

(N e,p)T
]

⊗ ∂S(θe, ζe)

∂s
N e,p

− ṗa n(de)
[

(N e,p)T
]

⊗
(
∂2S(θe, ζe)

∂s2
N e,p

)]

da

(2.115)

where
∂s

∂ζe = N e,p,

∂S

∂s
= (1 − Sr)

∂Se

∂s
= −(1 − Sr)

[

1 +
(s

a

)n
](−m−1)

s(n−1) mn

an

∂2S

∂s2
= (1 − Sr)

∂2Se

∂s2
= −(1 − Sr)

mn

an

(

(n − 1)s(n−2)

[

1 +
(s

a

)n
](−m−1)

− s(2n−2)(m + 1)

[

1 +
(s

a

)n
](−m−2)

n

(
1

a

)n
)
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∂F d,INT

∂d
=

nel

A
e=1

∂fd,INT
e

∂de =
nel

A
e=1

∫

Be

(Be,u)T · ∂σ′(de,θe)

∂ǫ
· Be,u da (2.116)

∂F θ1,INT

∂d
=

nel

A
e=1

∂f θ1,INT
e

∂de =
nel

A
e=1

∫

Be
w

(Be,p)T · ∂ṽs
w(de,θe, ζe)

∂de da (2.117)

∂F ζ1,INT

∂d
=

nel

A
e=1

∂f ζ1,INT
e

∂de =
nel

A
e=1

∫

Be
a

(Be,p)T · ∂ṽs
a(d

e,θe, ζe)

∂de da (2.118)

where
∂ǫ′

∂de = Be,u and Darcy’s law extends to the partially saturated case for water and air phases.

∂ṽs
w

∂de = −[∇pw − ρwRg] ⊗ ∂kw

∂n

∂n

∂de , δ(n) =
n3

1 − n2
, ∇pw = Be,p · θe

kw(n, S) =
κ(n)

ηw
krw(S) =

l2

ηw
δ(n) krw(S) , krw(S) =

√
S
(

1 −
(

1 − S
1
m

)m)2

∂kw

∂n
=

l2

ηw

[
3n2 − n4

(1 − n2)2

]

krw(S) ,
∂n

∂de =

(
1 − n

1 + ∆ǫv

)

B̃
e,u

∂ṽs
a

∂de = −[∇pa − ρaRg] ⊗ ∂ka

∂n

∂n

∂de , ∇pa = Be,p · ζe

ka(n, S) =
κ(n)

ηa
kra(1 − S) =

l2

ηa
δ(n) kra(1 − S) , kra(1 − S) =

√
1 − S

(

1 − S
1
m

)2m

∂ka

∂n
=

l2

ηa

[
3n2 − n4

(1 − n2)2

]

kra(1 − S)

In Figure 2.1 the relative permeability of water and air are plotted against S for various values of

m.

∂F d,INT

∂θ
=

nel

A
e=1

∂fd,INT
e

∂θe =
nel

A
e=1

∫

Be

(Be,u)T · ∂σ′

∂s
· ∂s
∂θe da (2.119)
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where
∂σ′

∂s
= 0 for linear elasticity,

∂σ′

∂s
6= 0 for partially saturated hyperelasto-plasticity and

∂s

∂θe = −N e,p.

∂F dθ,INT

∂θ
=

nel

A
e=1

∂fdθ,INT
e

∂θe =
nel

A
e=1

∫

Be

(

−pw
∂χ

∂s
+ χ

)

(B̃
e,u

)T · N e,p da (2.120)

∂F dζ,INT

∂θ
=

nel

A
e=1

∂fdζ,INT
e

∂θe =
nel

A
e=1

∫

Be

pa
∂χ

∂s
(B̃

e,u
)T · N e,p da (2.121)

∂F θ1,INT

∂θ
=

nel

A
e=1

∂f θ1,INT
e

∂θe =
nel

A
e=1

∫

Be
w

(Be,p)T · ∂ṽe
w

∂θe da (2.122)

∂F ζ1,INT

∂θ
=

nel

A
e=1

∂f ζ1,INT
e

∂θe =
nel

A
e=1

∫

Be
a

(Be,p)T · ∂ṽe
a

∂θe da (2.123)

∂F dζ,INT

∂θ
=

nel

A
e=1

∂fdζ,INT
e

∂θe =
nel

A
e=1

∫

Be

pw
∂χ

∂s
(B̃

e,u
)T · N e,p da (2.124)

∂F dζ,INT

∂ζ
=

nel

A
e=1

∂fdζ,INT
e

∂ζe =
nel

A
e=1

∫

Be

(

−pa
∂χ

∂s
+ χ+ 1

)

(B̃
e,u

)T · N e,p da (2.125)

∂F θ1,INT

∂ζ
=

nel

A
e=1

∂f θ1,INT
e

∂ζe =
nel

A
e=1

∫

Be
w

(Be,p)T · ∂ṽe
w

∂ζe da (2.126)

∂F ζ1,INT

∂ζ
=

nel

A
e=1

∂f ζ1,INT
e

∂ζe =
nel

A
e=1

∫

Be
a

(Be,p)T · ∂ṽe
a

∂ζe da (2.127)

where by using chain rule,

∂ṽe
w

∂θe = −kw Be,p − [∇pw − ρwRg] ⊗ ∂kw

∂θe = −kw Be,p +
(

Be,p · θe − ρwRg
)∂kw

∂S

∂S

∂s
Ne,p

∂kw

∂S
=

κ(n)

ηw

[
1

2
√
S

(

1 −
(

1 − S
1
m

)m)2
+

2√
S

(

1 −
(

1 − S
1
m

)m)(

1 − S
1
m

)m−1
S

1
m

]

∂ṽe
a

∂θe =
∂ṽe

w

∂ζe = 0
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∂ṽe

a

∂ζe = −ka Be,p − [∇pa − ρaRg] ⊗ ∂ka

∂ζe = −ka Be,p −
(

Be,p · ζe − ρaRg
)∂ka

∂S

∂S

∂s
Ne,p

∂ka

∂S
=

κ(n)

ηa

(

1 − S
1
m

)2m



− 1

2
√

1 − S
− 2

√
1 − S

S
1
m

S
(

1 − S
1
m

)





For the external force derivatives,

∂F d,EXT

∂d
=

nel

A
e=1

∂fd,EXT
e

∂de =
nel

A
e=1

∫

Be

(N e,u)T · g ⊗ ∂ρ(de,θe, ζe)

∂de da (2.128)

∂F d,EXT

∂θ
=

nel

A
e=1

∂fd,EXT
e

∂θe =
nel

A
e=1

∫

Be

(N e,u)T · g ⊗ ∂ρ(de,θe, ζe)

∂θe da (2.129)

∂F d,EXT

∂ζ
=

nel

A
e=1

∂fd,EXT
e

∂ζe =
nel

A
e=1

∫

Be

(N e,u)T · g ⊗ ∂ρ(de,θe, ζe)

∂ζe da (2.130)

where,

∂ρ

∂de = − ∂n

∂deρ
sR +

∂n

∂deS ρ
wR +

∂n

∂de (1 − S) ρaR

=
(

− ρsR + S ρwR + (1 − S)ρaR
)( 1 − n

1 + ∆ǫv

)

B̃
e,u

∂ρ

∂θe = nρwR ∂S

∂θe + nρaR

(

− ∂S

∂θe

)

= n
(
ρwR − ρaR

) ∂S

∂θe = −n
(
ρwR − ρaR

) ∂S

∂s
N e,p

∂ρ

∂ζe = nρwR ∂S

∂ζe + nρaR

(

− ∂S

∂ζe

)

= n
(
ρwR − ρaR

) ∂S

∂ζe = n
(
ρwR − ρaR

) ∂S

∂s
N e,p

For linear elasticity in the saturated case,
∂σ′

∂s
= 0, but for nonlinear hyperelasto-plasticity with

suction in the partially saturated case,
∂σ′

∂s
6= 0.

2.5 Coupled Finite Element Formulation of Biphasic Deformable Continuum

Likewise, a biphasic deformable mixture for partially saturated soil can be simplified from

the triphasic deformable mixture derivation. In this derivation, the pore air pressure is assumed
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as atmospheric pressure, that is, pa is approximately equal to zero (pa ≈ 0) in the triphasic finite

element formulation. This simplifies the nonlinear finite element implementation involving the

complicated relationship among solid, water and air, and allows comparison for various loadings

between pa 6= 0 (triphasic) and pa ≈ 0 (biphasic) FE implementations.

2.5.1 Weak form

To describe the implementation of biphasic coupled finite element model, the weak form

illustrates integral expression of the coupled governing equations. By setting pa = 0 in equation

(2.52), we arrive at the weak form for partially saturated biphasic mixture as,

(W)







Find u(x, t) ∈ Du and pw(x, t) ∈ Dpw , with t ∈ [ 0, T ] such that

∫

B

[
∇w : (σ′ − χpw1)

]
dv =

∫

B
ρw · g dv +

∫

Γt

w · t da

∫

Bw

η n
∂S

∂s
(−ṗw) dv +

∫

Bw

η S div v dv −
∫

Bw

∇η · ṽwdv =

∫

Γw
s

η Sw ds

for all w (x, t) ∈ Vu and η (x, t) ∈ Vpw

(2.131)

In the trial solution spaces,

Du =
{
u (x, t) : B× ]0, T [ 7→ R3, u(t)|Γg = gu(t), u(x, 0) = u0(x)

}

Dpw =
{
pw (x, t) : Bw× ]0, T [ 7→ R, pw(t)|Γw

r
= rw(t)

}
(2.132)

In the variation spaces,

Vu =
{
wi (x) : B 7→ R3, wi|Γg = 0

}

Vpw =
{
η (x) : Bw 7→ R, η|Γw

r
= 0
}

(2.133)

In the discretization of domain and spaces, Galerkin Form can be written as,

Bh ⊂ B

where, “h” discretization parameter is satisfied by Bh
w ⊂ Bw, therefore, we can restate the Weak



72

s

Se: degree of saturation
: suction

h
wBsat.

unsat. h
wB

0,1 >< sSe

0,1 == sSe

Figure 2.4: Discretization of biphasic domain and spaces in Galerkin Form

form with superscript h’s

(Du)h ⊂ Du , (Vu)h ⊂ Vu

(Dpw)h ⊂ Dpw , (Vpw)h ⊂ Vpw







uh
i (x, t) ⊂ (Du)h , wh

i (x) ⊂ (Vu)h

ph
w(x, t) ⊂ (Dpw)h, η(x) ⊂ (Vpw)h

(2.134)

2.5.2 Coupled FE form for 2D semi-implicit linear poro-elasticity

For the coupled finite element (FE) form of 2D nonlinear poromechanics, it is used linear

isotropic elasticity for the solid skeleton stress σ′, and assumed the density and permeability are

described in equation (2.45) for water phases, and porosity n is a function of the solid skeleton

volumetric strain ǫv, such as in matrix form

σ′ = D · ǫ = D · Be,u · de

kw(n, S) = kw(n, S)1

nn+1 =
nn + ∆ǫv
1 + ∆ǫv

and ∆ǫv = tr(∆ǫ)

ρ =
[

1 − n(d)
]

ρsR + n(d)S(θ) ρwR

where D is the elastic modulus matrix. nw < n indicates S < 1 and nw = n indicates S = 1 for

the density, and we can discretize into mixed quadrilateral finite elements as shown in Figure 2.5.

In Figure 2.5, element characteristic length is he, element domain is Be, discrete domain is
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Bh
w =

nel

A
e=1

Be,
nel

A
e=1

is the element assembly operator, and the convergent, mixed and quadrilateral

finite element is biquadratic in displacement and bilinear in pore water pressure[59].

eB

h
wB

h
w

h
i

p

u
he

eB
ξ

1

η

2

3
4

5

6

7

8 9

dx(3)

dy(3)

pw(3)

y

x

ds da

Figure 2.5: Discretization into biphasic mixed quadrilateral finite elements

For a biquadratic element in displacement and a bilinear isoparametric element in pore water

pressure, it is necessary to define the interpolating functions for the two phases for coupled finite

element form, or take triphasic formulation and set ζe = 0 with similar finite element interpolations

and spatial derivatives as in Section 2.4.2, we arrive at the nonlinear coupled FE equations:

1) Solid :

nel

A
e=1

(ce)T ·
[(∫

Be

(Be,u)T · D · Be,u da

)

· de −
(∫

Be

χ(θe)(B̃
e,u

)T · N e,p da

)

· θe

=

∫

Be

ρ(de,θe)(N e,u)T · g da+

∫

Γe
t

(N e,u)T · t da

] (2.135)

thus, A
nel

e=1
(ce)T ·

[

ke,dd · de − ke,dθ(θe) · θe = f
e,d
f (de,θe) + f

e,d
t

]

(2.136)
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2) Water :

nel

A
e=1

(αe)T ·
[(
∫

Be
w

S(θe) (N e,p)T · B̃e,u
da

)

· ḋe

−
(
∫

Be
w

n
∂S

∂s
(N e,p)T · Ne,p da

)

· θ̇e

+

(
∫

Be
w

(Be,p)T · kw(de,θe) · Be,p da

)

· θe

=

∫

Be
w

ρwR(Be,p)T · kw(de,θe) · g da+

∫

Γe
s(w)

(N e,p)TSw ds

]

(2.137)

thus,
nel

A
e=1

(αe)T ·
[

ke,θd(θe) · ḋe − ke,θζ(de,θe) · θ̇e
+ ke,θθ(de,θe) · θe

= fe,θ(de,θe) + f e,θ
s

]
(2.138)

Thus, the element stiffness matrix for displacement and pore water pressure of d.o.f (degree

of freedom), the coupling element stiffness and permeability matrices are written as,

ke,dd =

∫

Be

(Be,u)T ·D · Be,u da =

∫ 1

−1

∫ 1

−1
(Be,u)T ·D · Be,u jdξdη

ke,θθ(de,θe) =

∫

Be

(Be,p)T · kw(de,θe) · Be,p da

=

∫ 1

−1

∫ 1

−1
(Be,p)T · kw(de,θe) · Be,p jdξdη

ke,dθ(θe) =

∫

Be

χ(θe)(B̃
e,u

)T · N e,p da

=

∫ 1

−1

∫ 1

−1
χ(θe)(B̃

e,u
)T · N e,p jdξdη

ke,θζ(de,θe) =

∫

Be

n(de)
∂S(θe)

∂s
(N e,p)T · N e,p da

=

∫ 1

−1

∫ 1

−1
n(de)

∂S(θe)

∂s
(N e,p)T · N e,p jdξdη

ke,θd(θe) =

∫

Be

S(θe)(N e,p)T · B̃e,u
da

=

∫ 1

−1

∫ 1

−1
S(θe)(N e,p)T · B̃e,u

jdξdη

(2.139)
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Like the case of triphasic mixture, the tangent modulus, D, is given for linear isotropic

elasticity for plane strain. The hydraulic equations exist relating the suction stress s to the degree of

saturation S (e.g., the Brooks-Corey[18], van Genuchten[90] and Fredlund-Xing[33] equations). The

main drying and wetting curves of the soil-water characteristic curve (SWCC) are both described

by van Genuchten’s equation in this study.

Se =






1

1 +
(s

a

)n






m

, s = −pw = −Ne,p · θe

S = Sr + Se(1 − Sr) = Sr +
1 − Sr

[

1 + (αs)n
]m (where, α = 1/a)

(2.140)

In the literature, the curve fitting parameter α (1/cm or 1/Pa) is proposed by van Genuchten[90]

and a (cm or Pa) is proposed by Fredlund and Xing[33] corresponding to the unit of suction

stress s (cm or Pa). The classical relations proposed by van Genuchten[90], namely, the degree of

saturation S of equation (2.140) is considered in this study. It is written as the function of suction

stress s, and for suction stress derivative we have,

(1 − Sr)
dSe

ds
= −(1 − Sr)

[
1

1 + (αs)n

]m m

1 + (αs)n
(αs)n

n

s

= −(1 − Sr)mnαn
[

1 + (αs)n
]−m−1

s(n−1)

(2.141)

The element force vectors (body, traction and water) are then written as,

f
e,d
f (de,θe) =

∫

Be

ρ(de,θe)(N e,u)T · gda =

∫ 1

−1

∫ 1

−1
ρ(de,θe)(N e,u)T · g jdξdη

fe,θ(de,θe) =

∫

Be
w

ρwR(Be,p)T · kw(de,θe) · g da

=

∫ 1

−1

∫ 1

−1
ρwR(Be,p)T · kw(de,θe) · g jdξdη

f
e,d
t =

∫

Γe
t

(N e,u)T · tσda

fe,θ
s =

∫

Γe
s(w)

(N e,p)T Swds

(2.142)
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After element assembly, we have the coupled parabolic PDEs to solve using generalized trapezoidal

integration in time.

C(D) · Ḋ + K(D) · D = F (D) (2.143)

Ḋ =






ḋ

θ̇




 , D =






d

θ




 , C(D) =






0 0

Kθd(D) −Kθζ(D)






K(D) =






Kdd −Kdθ(D)

0 Kθθ(D)




 , F (D) =






f
e,d
f (D) + f

e,d
t

f e,θ(D) + f e,θ
s




 =






F d(D)

F θ(D)






(2.144)

−K
θζ
0 · θ̇0 + Kθθ

0 · θ0 = F θ
0

θ̇0 = K
θζ
0

−1 ·
(

Kθθ
0 · θ0 − F θ

0

)

(2.145)

where C is the combination of damping matrix and stiffness matrix of d.o.f vector time derivative,

and K is stiffness matrix. For two phases of a soil we must assemble the element stiffness and

damping matrices. Then, the Location Matrix (LM) can be used to assemble the individual 22×22

and 22× 3 contributions to the global “damping” matrix, stiffness matrix, and forcing vector, and

use generalized trapezoidal integration to solve transient equations[45].

For consolidation analysis, generalized trapezoidal rule[45] is used to integrate the transient

FE coupled balance of mass and linear momentum equations at time tn+1, with introduced difference

formulas for Dn+1 and V n+1, where velocity V n+1 is Ḋ(tn+1) and α is the time integration

parameter, written as

C(Dn+1) · V n+1 + K(Dn+1) · Dn+1 = F (Dn+1)

Dn+1 = Dn + ∆tV n+α

V n+α = (1 − α)V n + αV n+1

(2.146)

A semi-implicit integration scheme leads to a linear form, and is written as

C(Dn) · V n+1 + K(Dn) · Dn+1 = F (Dn) (2.147)

which solved by the following generalized trapezoidal rule procedure as shown in Table 2.5.



77

Table 2.4: Generalized trapezoidal family

α METHOD TYPE

0 forward Euler explicit (if C diagonal, which it is not)

1/2 trapezoidal rule implicit

1 backward Euler implicit

Table 2.5: Procedure of semi-implicit linear scheme for biphasic mixture

1) Initialize : given initial displacement and pore pressure D0, solve for V 0

C(D0) · V 0 = F 0(D0) − K(D0) · D0

2) Predictor :
D̃n+1 = Dn + (1 − α)∆tV n

3) Solution : (

C(Dn) + α∆tK(Dn)
)

V n+1 = F n+1(Dn) − K(Dn) · D̃n+1

4) Corrector :
Dn+1 = D̃n+1 + α∆tV n+1

5) Stability : It will be chosen an unconditionally-stable method

(α = 1; Backward Euler)
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2.5.3 FE form for 2D fully-implicit nonlinear biphasic poro-elasticity

Linear theory (linear elastic solid skeleton, and semi-implicit time integration) has been

assumed in Section 2.5.2 allowing for easier numerical solution as will be shown in the Numerical

Examples. However, because the partially saturated soil balance equations have been shown to be

nonlinear, the solution procedure should be extended for Newton-Raphson method.

Assume the solid skeleton effective stress σ′(eventually will be a function of suction in plastic-

ity) can be governed by a nonlinear constitutive model, and that the density and permeability are

functions of displacement and porosity, and porosity is a function of the solid skeleton volumetric

strain ǫv. The coupled FE equations for biphasic mixture written then as

1) Solid (nonlinear biphasic) :

nel

A
e=1

(ce)T ·









(∫

Be

(Be,u)T · σ′(de,θe) da

)

︸ ︷︷ ︸

f
d,INT

e (d
e
,θ

e
)

−
(∫

Be

χ(θe)(B̃
e,u

)T · Ne,p · θe da

)

︸ ︷︷ ︸

f
dθ,INT

e (θ
e
)

=

∫

Be

ρ(de,θe)(N e,u)T · g da+

∫

Γe
t

(N e,u)T · t da

︸ ︷︷ ︸

f
d,EXT

e (d
e
,θ

e
)










(2.148)

2) Water (nonlinear biphasic) :

nel

A
e=1

(αe)T ·










(
∫

Be
w

S(θe) (N e,p)T · B̃e,u
da

)

︸ ︷︷ ︸

k
θd,INT

e (θ
e
)

·ḋe

−
(
∫

Be
w

n(de)
∂S

∂s
(θe)(N e,p)T · N e,p da

)

︸ ︷︷ ︸

k
θ1,INT

e (d
e
,θ

e
)

·θ̇e

−
(
∫

Be
w

(Be,p)T · ṽs
w(de,θe) da

)

︸ ︷︷ ︸

f
θ2,INT

e (d
e
,θ

e
)

=

∫

Γe
s(w)

(N e,p)TSw ds

︸ ︷︷ ︸

f
θ,EXT

e











(2.149)
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where Darcy’s velocity, ṽs
w = −kw(de,θe)·[∇pw−ρwRg], is defined by Darcy’s law with porosity and

saturation rate dependent permeability, kw = kw(n, S) 1. And then these nonlinear FE equations

are written as

nel

A
e=1

(ce)T ·
[

fd,INT
e (de,θe) − fdθ,INT

e (θe) = fd,EXT
e (de,θe)

]

nel

A
e=1

(αe)T ·
[

kθd,INT
e (θe) · ḋe − kθ1,INT

e (de,θe) · θ̇e − fθ2,INT
e (de,θe) = f θ,EXT

e

]
(2.150)

After element assembly, we have the coupled nonlinear parabolic PDEs to solve using generalized

trapezoidal integration in time, and Newton-Raphson iteration

F d,INT (d,θ) − F dθ,INT (θ) = F d,EXT (d,θ) (2.151)

Kθd,INT (θ) · ḋ − Kθ1,INT (d,θ) · θ̇ − F θ2,INT (d,θ) = F θ,EXT (2.152)

which we may rewrite as

C(D) · Ḋ + F INT (D) = F EXT (D) (2.153)

where,

C(D) =






0 0

Kθd,INT (θ) −Kθ1,INT (d,θ)




 , D =






d

θ




 , Ḋ =






ḋ

θ̇






F INT (D) =






F d,INT (d,θ) − F dθ,INT (θ)

−F θ2,INT (d,θ)




 , F EXT (D) =






F d,EXT (d,θ)

F θ,EXT






Recall the generalized trapezoidal integration:

C(Dn+1) · V n+1 + F INT (Dn+1) = F EXT (Dn+1)

Dn+1 = D̃n+1 + α∆tV n+1 , D̃n+1 = Dn + (1 − α)∆tV n

(2.154)

C(D0) · V 0 + F INT (D0) − F EXT (D0) = 0

V 0 = C−1
0 ·

(
F EXT

0 − F INT
0

)
(2.155)
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It can be expressed in residual form, solving for V k+1
n+1 in a Newton-Raphson iteration algorithm

with current iteration (k + 1):

R(V k+1
n+1) = C(Dk+1

n+1) · V k+1
n+1 + F INT (Dk+1

n+1) − F EXT (Dk+1
n+1) = 0

= Rk +
∂Rk

∂V
· δV ≈ 0

(2.156)

Therefore,

δV = −
(
∂Rk

∂V

)−1

· Rk (2.157)

V k+1
n+1 = V k

n+1 + δV

Dk+1
n+1 = D̃n+1 + α∆tV k+1

n+1

For consistent tangent,

∂R

∂V
=

(
∂C

∂D
· ∂D

∂V

)

· V + C(D) +
∂F INT

∂D
· ∂D

∂V
− ∂F EXT

∂D
· ∂D

∂V
(2.158)

where
∂D

∂V
= α∆t. Equivalently, in component form, we have

R
A

= C
AB

· V
B

+ F INT
A

− FEXT
A

(

A,B,C and E = 1, · · · , n
dof

)

∂R
A

∂V
C

=

(
∂C

AB

∂D
E

∂D
E

∂V
C

)

· V
B

+ C
AB

∂V
B

∂V
C

+
∂F INT

A

∂D
B

∂D
B

∂V
C

−
∂FEXT

A

∂D
B

∂D
B

∂V
C

=

(
∂C

AB

∂D
E

δ
EC
α∆t

)

· V
B

+ C
AB
δ

BC
+
∂F INT

A

∂D
B

δ
BC
α∆t−

∂FEXT
A

∂D
B

δ
BC
α∆t

= α∆t
∂C

AB

∂D
C

V
B

+ C
AC

+
∂F INT

A

∂D
C

α∆t−
∂FEXT

A

∂D
C

α∆t

(2.159)

where C · V =







0

Kθd,INT · ḋ − Kθ1,INT · θ̇







, and then implied

∂C

∂D
· V

(

=
∂C

AB

∂D
C

V
B

)

=







0 0

−∂Kθ1,INT

∂d
· θ̇ ∂Kθd,INT

∂θ
· ḋ − ∂Kθ1,INT

∂θ
· θ̇







(2.160)
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where

∂F INT

∂D
=

[
∂F INT

∂d

∂F INT

∂θ

]

∂F INT

∂d
=







∂F d,INT

∂d

−∂F θ2,INT

∂d






,

∂F INT

∂θ
=







∂F d,INT

∂θ
− ∂F dθ,INT

∂θ

−∂F θ2,INT

∂θ







∂F EXT

∂D
=

[
∂F EXT

∂d

∂F EXT

∂θ

]

,
∂F EXT

∂d
=







∂F d,EXT

∂d

0






,

∂F EXT

∂θ
=






∂F d,EXT

∂θ

0






In which its components are

∂Kθ1,INT

∂d
· θ̇ =

nel

A
e=1

∂kθ1,INT
e

∂de · θ̇e

=
nel

A
e=1

∫

Be
w

[

ṗw
∂S(θe)

∂s
(N e,p)T

]

⊗ ∂n(de)

∂de da

(2.161)

where ṗw = N e,p · θ̇e

∂Kθd,INT

∂θ
· ḋ =

nel

A
e=1

∂kθd,INT
e

∂θe · ḋe
=

nel

A
e=1

∫

Be
w

[

ǫ̇v(N
e,p)T

]

⊗ ∂S(θe)

∂θe da

=
nel

A
e=1

∫

Be
w

ǫ̇v
[
(N e,p)T

]
⊗
(

−∂S(θe)

∂s
N e,p

)

da

(2.162)

where ǫ̇v = B̃
e,u · ḋe

∂Kθ1,INT

∂θ
· θ̇ =

nel

A
e=1

∂kθ1,INT
e

∂θe · θ̇e

=
nel

A
e=1

∫

Be
w

[

ṗwn(de)(N e,p)T
]

⊗ ∂

∂θe

(
∂S

∂s

)

da

=
nel

A
e=1

∫

Be
w

[
ṗw n(de)(N e,p)T

]
⊗
(

−∂
2S

∂s2
Ne,p

)

da

(2.163)

where,

∂S

∂s
= (1 − Sr)

∂Se

∂s
= −(1 − Sr)

[

1 +
(s

a

)n
](−m−1)

s(n−1) mn

an
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∂2S

∂s2
= (1 − Sr)

∂2Se

∂s2
= −(1 − Sr)

mn

an

(

(n − 1)s(n−2)

[

1 +
(s

a

)n
](−m−1)

− s(2n−2)(m + 1)

[

1 +
(s

a

)n
](−m−2)

n

(
1

a

)n
)

where,

∂

∂θe

(
∂S

∂s

)

=
∂2S

∂s2
∂s

∂θe = −∂
2S

∂s2
Ne,p

∂S

∂θe =
∂S

∂s

∂s

∂θe = −∂S
∂s

N e,p

∂n

∂de =

(
1 − n

1 + ∆ǫv

)

B̃
e,u

∂F d,INT

∂d
=

nel

A
e=1

∂fd,INT
e

∂de =
nel

A
e=1

∫

Be

(Be,u)T · ∂σ′

∂ǫ
· Be,u da (2.164)

∂F θ2,INT

∂d
=

nel

A
e=1

∂f θ2,INT
e

∂de =
nel

A
e=1

∫

Be
w

(Be,p)T · ∂ṽs
w

∂de da (2.165)

where,

∂ṽs
w

∂de = −[∇pw − ρwRg] ⊗ ∂kw

∂n

∂n

∂de , δ(n) =
n3

1 − n2
, ∇pw = Be,p · θe

kw(n, S) =
κ(n)

ηw
krw(S) =

l2

ηw
δ(n) krw(S) , krw(S) =

√
S
(

1 −
(

1 − S
1
m

)m)2

∂kw

∂n
=

l2

ηw

[
3n2 − n4

(1 − n2)2

]

krw(S)

∂n

∂de =

(
1 − n

1 + ∆ǫv

)

B̃
e,u

And by taking derivatives with relation to the nodal pore water pressure vector, θ,

∂F d,INT

∂θ
=

nel

A
e=1

∂fd,INT
e

∂θe =
nel

A
e=1

∫

Be

(Be,u)T · ∂σ′

∂s
· ∂s
∂θe da (2.166)

where
∂σ′

∂s
= 0 for linear elasticity.
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∂F dθ,INT

∂θ
=

nel

A
e=1

∂fdθ,INT
e

∂θe =
nel

A
e=1

∫

Be

(

−pw
∂χ

∂s
+ χ

)

(B̃
e,u

)T · N e,p da (2.167)

∂F θ2,INT

∂θ
=

nel

A
e=1

∂f θ2,INT
e

∂θe =
nel

A
e=1

∫

Be
w

(Be,p)T · ∂ṽe
w

∂θe da (2.168)

where,

∂ṽe
w

∂θe = −kw Be,p − [∇pw − ρwRg] ⊗ ∂kw

∂θe = −kw Be,p +
(

Be,p · θe − ρwRg
)∂kw

∂S

∂S

∂s
Ne,p

∂kw

∂θe =
∂kw

∂S

∂S

∂θe

∂kw

∂S
=

κ(n)

ηw

[
1

2
√
S

(

1 −
(

1 − S
1
m

)m)2
+

2√
S

(

1 −
(

1 − S
1
m

)m)(

1 − S
1
m

)m−1
S

1
m

]

By taking derivatives with relation to d and θ for the external force vectors,

∂F d,EXT

∂d
=

nel

A
e=1

∂fd,EXT
e

∂de =
nel

A
e=1

∫

Be

(N e,u)T · g ⊗ ∂ρ(de,θe)

∂de da (2.169)

∂F d,EXT

∂θ
=

nel

A
e=1

∂fd,EXT
e

∂θe =
nel

A
e=1

∫

Be

(N e,u)T · g ⊗ ∂ρ(de,θe)

∂θe da (2.170)

where,

∂ρ

∂de = −∂n
w

∂de ρ
sR +

∂nw

∂de S ρ
wR

=
(

− ρsR + S ρwR
)( 1 − nw

1 + ∆ǫv

)

B̃
e,u

∂ρ

∂θe = nρwR ∂S

∂θe = −nρwR∂S

∂s
N e,p

For linear elasticity,
∂σ′

∂s
= 0, but for Cam-Clay hyperelasto-plasticity with suction,

∂σ′

∂s
6= 0. I

will show comparison of convergence profiles for semi-implicit linear and fully-implicit nonlinear in

Numerical Examples chapter.



Chapter 3

Cam-clay Elasto-Plasticity for Partially Saturated Soil

The framework of Cam-clay plasticity model for partially saturated soils has been focused

on more appropriate yield locus in the space of net mean stress (p− pa) and suction s to approach

to the experimental behavior of a soil based on the Barcelona Basic Model (BBM)[6] by numerous

researchers. However, the shortcomings of BBM have reviewed from several researchers, such as

compression curve at constant soil suction, effects of the confining stress on SWCC and yield surface

depended on soil fabric[95, 88, 30]. In this study, a new version contains the suction stress s as an

additional variable compared to saturated Cam-clay plasticity models. This model is also developed

with the stored energy functions and pressure-dependent elastic moduli to represent the mechanical

behavior of partially saturated soils with energy-conserving elasticity[12, 16].

3.1 Coupling Plasticity and Energy-Conserving Elasticity

In order to develop the coupling plasticity and energy-conserving elasticity for partially sat-

urated soils, first of all, the derivation of stored energy functions appropriate for classical Cam-clay

plasticity model is needed for saturated condition. In this Section 3.1, the void ratio e and the

specific volume v (= 1 + e) denote respectively esat and vsat due to the description of saturated

condition.
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3.1.1 Nonlinear hyper-elasticity model

The elasticity model is an important portion in an elasto-plasticity constitutive model for soil

because it is shown to be a function of stress[16]. Cam-clay model has a linearly increased elastic

bulk modulus due to mean effective stress, but the elastic shear modulus of it is constant. The elastic

shear modulus should be determined from stored energy function because of the nonlinearities of

soil in even elastic region. Energy conservative models can be derived from the assumption of a

stored energy function of the form[16, 12]

ψ(ǫeij) = ψ(ǫev , ǫ
e
s) = ψ̃(ǫev) +

3

2
µe(ǫes)

2

ψ̃(ǫev) = −p′0κ̃ expω , ω = −ǫ
e
v − ǫev0

κ̃

(3.1)

where, ǫev0 is elastic volumetric strain corresponding to a reference mean effective stress of p′0 and

κ̃ is elastic compressibility index. It is the stored energy function ψ(ǫeij) for isotropic loading, and

µe = µe(ǫev) is the elastic shear modulus defined by the expression,

µe(ǫev) = µ0 +
ᾱ

κ̃
ψ̃(ǫev) (3.2)

where µ0 is a constant term, and µe varies with the elastic volumetric strain through the constant

coefficient ᾱ. If ᾱ > 0 and µ0 = 0, the nonlinear elastic model is proceeded; if ᾱ = 0 and µ0 > 0,

the elastic model is defined by linear elastic model using a variable elastic bulk modulus and a

constant elastic shear modulus.

First, the effective Cauchy stress tensor σ′ij can be expressed in terms of ψ, and the elastic

moduli tensor ceijkl can be written as,

σ′ij =
∂ψ

∂ǫeij
, ceijkl =

∂σ′ij
∂ǫekl

=
∂2ψ

∂ǫeij∂ǫ
e
kl

(3.3)

We can consider a class of stored energy functions of the volumetric and deviatoric invariants

of the small elastic strain tensor, denoted by ǫev and ǫes, respectively.
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ǫev = ǫekk , ǫes =

√

2

3
eeije

e
ij , eeij = ǫeij −

1

3
ǫevδij (3.4)

where δij is Kronecker delta. Assuming a stored energy function of the form ψ = ψ(ǫev, ǫ
e
s), then we

can use the chain rule to expand the stress tensor of equation (3.3) in the form

σ′ij =
∂ψ

∂ǫev

∂ǫev
∂ǫeij

+
∂ψ

∂ǫes

∂ǫes
∂ǫeij

,
∂ǫev
∂ǫeij

= δij ;
∂ǫes
∂ǫeij

=

√

2

3
n̂ij (3.5)

where n̂ij = eeij/||ee||, then equation (3.5) can be rewritten in

σ′ = p′1 +

√

2

3
q n̂ = p′1 + s, p′ =

∂ψ(ǫev , ǫ
e
s)

∂ǫev
; q =

∂ψ(ǫev , ǫ
e
s)

∂ǫes
(3.6)

where s is the deviatoric part of σ′, thus we have

p′ = p′0 expω

[

1 +
3ᾱ

2κ̃
(ǫes)

2

]

, q = 3(µ0 − ᾱp0 expω)ǫes (3.7)

The form of the stored energy function results in coupled elastic volumetric and deviatoric

responses, thus the first time derivative of the stress invariants is

{
ṗ′

q̇

}

=

[
De

11 D
e
12

De
21 D

e
22

]{
ǫ̇ev
ǫ̇es

}

=








∂2ψ

∂ǫevǫ
e
v

∂2ψ

∂ǫevǫ
e
s

∂2ψ

∂ǫesǫ
e
v

∂2ψ

∂ǫesǫ
e
s








{
ǫ̇ev
ǫ̇es

}

(3.8)

where, De is a 2 × 2 Hessian matrix of ψ given explicitly, we have individually

De
11 = −p

′
0

κ̃
exp ω

[

1 +
3ᾱ

2κ̃
(ǫes)

2

]

, De
22 = 3µ0 − 3ᾱ p′0 exp ω

De
12 =

3p′0 ᾱǫ
e
s

κ̃
exp ω , De

21 = De
12

(3.9)

where K is the elastic bulk modulus (= De
11) depended on a linear function of p′ in equation (3.7).

The condition of µ0 = 0 and ᾱ 6= 0 mean nonlinear elasticity model in which the volumetric and
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deviatoric elastic responses are fully coupled. Thus, we can obtain the desired elasticity model in

which the elastic shear modulus increases linearly with the effective mean normal stress.

The tangential elasticity tensor generated by the coupled nonlinear elasticity model described

above is

σ̇′ = ce : ǫ̇e = ṗ′1 +

√

2

3
q̇n̂ +

√

2

3
q ˙̂n (3.10)

˙̂n =
d

dt

(
ee

||ee||

)

=
1

||ee||(I − n̂ ⊗ n̂) : ėe (3.11)

where, ˙̂n is the time variation of second-order tensor n̂, I is the rank-four identity tensor defined

such that Iijkl = (δikδjl +δilδjk)/2. Substituting equation (3.11) and the constitutive equation (3.8)

in equation (3.10) then tangential elasticity tensor is as follow

ce =

(

De
11 −

2q

9ǫes

)

1⊗ 1 +

√

2

3
De

12(1 ⊗ n̂ + n̂ ⊗ 1) +
2q

3ǫes
(I − n̂ ⊗ n̂) +

2

3
De

22n̂ ⊗ n̂

(3.12)

3.1.2 Saturated Cam-clay plasticity model

Generally, plasticity model consists of a yield function, a flow rule, and a hardening law.

Cam-clay model is demonstrated as a two-invariant yield function of the form

F = F (p′, q, p′c) =
q2

M2
+ p′(p′ − p′c) = 0 (3.13)

where p′ and q are the mean and deviatoric effective stresses, respectively.

p′ =
1

3
tr(σ′), q =

√

3

2
||s||, s = σ′ − p′1 (3.14)

where σ′ is the effective Cauchy stress tensor with its deviatoric component s.

We assume that the small strain rate tensor ǫ̇ can be decomposed into an elastic and a plastic

portion,

ǫ̇ = ǫ̇e + ǫ̇p = ǫ̇e + γ̇
∂F

∂σ′
(3.15)
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For the case of a two-invariant yield function of the equation (3.13), the stress derivative

yield function is

∂F

∂σ′
=

1

3

(
∂F

∂p′

)

1 +

√

3

2

(
∂F

∂q

)

n̂ ,
∂F

∂p′
= 2p′ − p′c ,

∂F

∂q
=

2q

M2
(3.16)

The consistency parameter γ̇ and the yield function F satisfy the Kuhn-Tucker consistency condi-

tions γ̇ ≥ 0, F (p′, q, p′c) ≤ 0, and γ̇F = 0.

p
v,p' ε

p
sq,ε

M

0p′0p′

Moving yield
surface (cap)

Critical
point

•

n̂ p
sdε

p
vdε

0p′

Figure 3.1: Yield locus in p′ − q space of saturated Cam-clay model

Bilogarithmic compressibility law

The yield function defines the ellipsoid of the modified Cam-clay model. The aspect ratio of

this ellipsoid is controlled by the material parameter M (the slope of the critical state line), while

its size is described by the state variable p′c, called the preconsolidation effective pressure. The

growth of the preconsolidation pressure is conventionally defined by a linear variation of the void

ratio e, the ratio between the volume of voids to the volume of the solid phase in a soil mass, with

respect to the logarithm of the preconsolidation pressure p′c. In terms of specific volume v (= 1+e),

an equivalent hardening law for infinitesimal strain analysis takes the form[16]

v̇

v
= −λ̃ ṗ

′
c

p′c
(3.17)
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where λ̃ is the virgin compression index of a soil. Upon integration, the hardening law of equation

(3.17) defines the following linear relationship between the specific volume v and the logarithm of

p′c

ln

(
v

vo

)

= 1 − λ̃ ln

(
p′c
p′c0

)

(3.18)

Equation (3.18) now indicates a linear variation of ln v with ln p′c. Rewriting this relationship in

the form

v

v0
=

(
p′c0
p′c

)λ̃

(3.19)

It shows that v can not be zero no matter how large is the value of p′c.

Although the equation (3.18) of the bilogarithmic hardening law is useful for behaviors in

the limit of small volumetric strains as well as finite deformation, hyperelastic Cam-clay model

uses the natural volumetric strain, ln
v

v0
= ln

(

1 − ∆v

v0

)

, corresponding to the nominal volumetric

strain
∆v

v0
of the infinitesimal theory, where ∆v = v0 − v. This bilogarithmic hardening law is

verified that it is more accurate than the unilogarithmic compressibility equation by experimental

data from more compressible soils undergoing virgin consolidation[19].

3.1.3 Nonlinear numerical integration of Cam-clay model

For nonlinear numerical integration of saturated hyperelasto-plasticity Cam-clay model, the

integrated flow rule in the strain invariant space takes the form (leaving off n+ 1 subscript)[16],

∆γ = ∆t γ̇

ǫev = ǫe,trv − ∆γ
∂F

∂p′

ǫes = ǫe,trs − ∆γ
∂F

∂q

(3.20)

where time tn+1 is implied, and the elastic strains are

ǫev = ǫeii = ǫe,trii − ∆γ

(
∂F

∂σii

)

= ǫe,trv − ∆γ(2p′ − p′c)

= ǫe,trv − ∆γ
∂F

∂p′

(3.21)
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ǫes =

√

2

3

√
eeabe

e
ab =

√

2

3
||ee,tr|| − ∆γ

∂F

∂q
= ǫe,trs − ∆γ

∂F

∂q
(3.22)

eeab = ǫeab −
1

3
ǫeiiδab = ǫe,trab − ∆γ

∂F

∂σab
− 1

3

(

ǫe,trii − ∆γ
∂F

∂σii

)

δab

= ǫe,trab − 1

3
ǫe,trii δab − ∆γ

(
∂F

∂σab
− 1

3

∂F

∂σii
δab

)

= ee,trab − ∆γ
∂F

∂sab

ee,trab e
e,tr
ab =

(

ee,trab − ∆γ
∂F

∂sab

)(

ee,trab − ∆γ
∂F

∂sab

)

= ee,trab e
e,tr
ab − 2ee,trab ∆γ

∂F

∂sab
+ (∆γ)2

∂F

∂sab

∂F

∂sab

= ||ee,tr||2 − 2ee,trab ∆γ
∂F

∂q

√

3

2
n̂ab + (∆γ)2

3

2

(
∂F

∂q

)2

n̂ab n̂ab

= ||ee,tr||2 − 2ee,trab ∆γ
∂F

∂q

√

3

2

eeab

||ee|| + (∆γ)2
3

2

(
∂F

∂q

)2 eeab e
e
ab

||ee||2

= ||ee,tr||2 − 2∆γ
∂F

∂q

√

3

2
||ee,tr|| + (∆γ)2

3

2

(
∂F

∂q

)2

=

(

||ee,tr|| − ∆γ
∂F

∂q

√

3

2

)2

The consistency condition is imposed by the yield function in terms of the elastic strain invariants

as,

F
[

p′(ǫev, ǫ
e
s), q(ǫ

e
v, ǫ

e
s), p

′
c

]

=
q2

M2
+ p′(p′ − p′c) = 0

p′c = p′c,n exp

(
ǫpv − ǫpv,n

λ− κ

)

= p′c,n exp

(

ǫe,trv − ǫev
λ− κ

) (3.23)

Three equations relative to elastic volumetric strain ǫev, deviatoric strain ǫes, and yield function

F can be viewed as a system of three nonlinear equations with three unknowns (ǫev, ǫ
e
s, ∆γ). The

evolution of p′c can be developed from the bilogarithmic compressibility in equation 3.17, and p′c,n

is the converged value of p′c at time step tn. Then, the matrix
∂R

∂x
(3 × 3) can be calculated by

using the static condensation technique with the linearized system, which solve the problem of the

matrix size.
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The Backward Euler integrated evolution equations for the volumetric and deviatoric strain,

and plastic multiplier are written in residual form

R(x) = 0 , x =










ǫev

ǫes

∆γ










, R
(

xk+1
)

≈ 0

R
(

xk
)

+

(
∂R

∂x

)k

δx ≈ 0 =⇒ ∴ δx = −
[(

∂R

∂x

)k
]−1

·R(xk)

xk+1 = xk + δx

||R(xk+1)||
||R(x0)|| < tol.(10−8)

(3.24)

These equations are linearized for solution by the Newton-Raphson method. The integrated flow

rule in strain invariant space can be viewed as a system of three nonlinear equations in three

unknowns, namely ǫev, ǫ
e
s, and ∆γ

[

leave off (·)n+1

]

.

R(x) =










Rv

Rs

RF










=












ǫev − ǫe,trv + ∆γ
∂F

∂p′

ǫes − ǫe,trs + ∆γ
∂F

∂q

q2

M2
+ p′(p′ − p′c)












= 0 (3.25)

The elastic volumetric strain ǫev and deviatoric strain ǫes derivatives for mean stress p′ and deviatoric

stress q,
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∂p′

∂ǫev
= p′0β expω

(

−1

κ̃

)

(1) = −p
κ̃

∂p′

∂ǫes
= p′0 expω

∂β

∂ǫes
=

3α ǫes
κ̃

p′0 expω

∂q

∂ǫev
= 3ǫes

∂µ

∂ǫev
=

3ǫesα

κ̃
p′0 expω =

∂p′

∂ǫes

∂q

∂ǫes
= 3µ

∂p′c
∂ǫev

= (p′c)n exp

[

−(ǫe,trv − ǫev)

λ̃− κ̃

](
1

λ̃− κ̃

)

(3.26)

The matrix
∂R

∂x
(3 × 3) for the static condensation is

∂R

∂x
=













∂Rv

∂ǫev

∂Rv

∂ǫes

∂Rv

∂∆γ

∂Rs

∂ǫev

∂Rs

∂ǫes

∂Rs

∂∆γ

∂RF

∂ǫev

∂RF

∂ǫes

∂RF

∂∆γ













=













1 + ∆γ

(

2
∂p′

∂ǫev
− ∂p′c
∂ǫev

)

∆γ 2
∂p′

∂ǫes

∂F

∂p′

∆γ
2

M2

∂q

∂ǫev
1 + ∆γ

2

M2

∂q

∂ǫes

∂F

∂q

∂F

∂p′
∂p′

∂ǫev
+
∂F

∂q

∂q

∂ǫev
+
∂F

∂p′c

∂p′c
∂ǫev

∂F

∂p′
∂p′

∂ǫes
+
∂F

∂q

∂q

∂ǫes
0













(3.27)

Therefore,

δx =

−













1 + ∆γ

(

2
∂p′

∂ǫev
− ∂p′c
∂ǫev

)

∆γ 2
∂p′

∂ǫes

∂F

∂p′

∆γ
2

M2

∂q

∂ǫev
1 + ∆γ

2

M2

∂q

∂ǫes

∂F

∂q

∂F

∂p′
∂p′

∂ǫev
+
∂F

∂q

∂q

∂ǫev
+
∂F

∂p′c

∂p′c
∂ǫev

∂F

∂p′
∂p′

∂ǫes
+
∂F

∂q

∂q

∂ǫes
0













−1 










ǫev − ǫe,trv + ∆γ
∂F

∂p′

ǫes − ǫe,trs + ∆γ
∂F

∂q

q2

M2
+ p′(p′ − p′c)












(3.28)
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To take advantage of
∂RF

∂∆γ
= 0, we can conduct a static condensation by writing,













Rv

Rs

RF













+




















∂Rv

∂ǫev

∂Rv

∂ǫes

∂Rs

∂ǫev

∂Rs

∂ǫes















∂Rv

∂∆γ

∂Rs

∂∆γ








[
∂RF

∂ǫev

∂RF

∂ǫes

]

0

























δǫev

δǫes

δ(∆γ)













=













Rv

Rs

RF













+










[
2×2

A
] [

2×1

B
]

[
1×2

C
]

0






















δǫev

δǫes

δ(∆γ)













=













0

0

0













(3.29)

For iteration k, rewrite the first two equations as,






Rv

Rs







+

[

A
]







δǫev

δǫes







+

[

B
]

δ(∆γ) = 0

RF +

[

C
]







δǫev

δǫes







= 0

(3.30)

Let’s multiply equation (3.30) by

[

A
]−1

[

A
]−1







Rv

Rs







+







δǫev

δǫes







+ δ(∆γ)

[

A
]−1 [

B
]

= 0

δ(∆γ)

[

A
]−1 [

B
]

= −
[

A
]−1







Rv

Rs






−







δǫev

δǫes







(3.31)

By multipling by

[

C
]

on both sides,

δ(∆γ)

[
1×2

C
] [

2×2

A
]−1 [ 2×1

B
]

= −
[

1×2

C
] [

2×2

A
]−1







Rv

Rs






−
[

C
]







δǫev

δǫes







︸ ︷︷ ︸

+RF

(3.32)
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Therefore, we have the scalar equation of plastic multiplier δ(∆γ),

δ(∆γ) =

−
[

C
] [

A
]−1







Rv

Rs







+RF

[

C
] [

A
]−1 [

B
] (3.33)

Then, solving for volumetric and deviatoric strain from equation (3.31),







δǫev

δǫes







= −
[

A
]−1













Rv

Rs







+ δ(∆γ)

[

B
]







(3.34)

Update;

(ǫev)
k+1 = (ǫev)

k + δǫev (3.35)

(ǫes)
k+1 = (ǫes)

k + δǫes (3.36)

(∆γ)k+1 = (∆γ)k + δ(∆γ) (3.37)

Update R(xk+1) and check
R(xk+1)

R(x0)
< tolerance.

Once the elastic invariant strains ǫev and ǫes have been determined, the effective stress tensor

σ′ij can be evaluated from the hyperelastic constitutive equation in equation (3.6).

Continuum elastoplastic tangent

Ideally, the consistent tangent

(
∂σ′

∂ǫ

)

n+1

is derived, and this will be done for future work to

obtain global quadratic convergence. For now, for simplicity, we use the continuum elastoplastic

tangent instead. To determine the continuum elastoplastic tangent for hyperelasto-plasticity Cam-

clay model, we start by recalling the stress-strain relationship,
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σ̇′ = ce : ǫ̇e, ce =
∂σ′

∂ǫe
for hyperelasticity

ǫ̇e = ǫ̇ − ǫ̇p, ǫ̇p = γ̇
∂F

∂σ′
,

∂F

∂σ′
=

2q

M2

√

3

2
n̂ + (2p′ − p′c)

1

3
1

(3.38)

Thus,

σ̇′ = cep : ǫ̇, cep is elastoplastic tangent (3.39)

For time derivative yield function,

F =
( q

M2

)2
+ p′(p′ − p′c)

Ḟ = 0

=
∂F

∂σ′
: σ̇′ +

∂F

∂p′c
ṗ′c

(3.40)

Substitute flow rule by plastic multiplier γ̇,

σ̇′ = ce :

(

ǫ̇ − γ̇
∂F

∂σ′

)

Time derivative of preconsolidation pressure p′c is

p′c = (p′c)n exp

[−(ǫpv − (ǫpv)n)

λ̃− κ̃

]

ṗ′c = (p′c)n exp

[−(ǫpv − (ǫpv)n)

λ̃− κ̃

]( −1

λ̃− κ̃

)

ǫ̇pv

= γ̇ hpc

(3.41)

where

ǫ̇pv = tr (ǫ̇p) = γ̇ tr

(
∂F

∂σ′

)

= γ̇ (2p′ − p′c)

hpc = (p′c)n exp

[−(ǫpv − (ǫpv)n)

λ̃− κ̃

]( −1

λ̃− κ̃

)

(2p′ − p′c)
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Time derivative of yield function is

Ḟ =
∂F

∂σ′
: ce :

(

ǫ̇ − γ̇
∂F

∂σ′

)

+
∂F

∂p′c
hpc γ̇ = 0

∂F

∂σ′
: ce : ǫ̇ − γ̇

∂F

∂σ′
: ce :

∂F

∂σ′
+
∂F

∂p′c
hpc γ̇ = 0

γ̇ =

∂F

∂σ′
: ce : ǫ̇

∂F

∂σ′
: ce :

∂F

∂σ′
− ∂F

∂p′c
hpc

(3.42)

Therefore, the stress-strain relationship including continuum elastoplastic tangent is,

σ̇′ = ce : ǫ̇ −







∂F

∂σ′
: ce : ǫ̇

∂F

∂σ′
: ce :

∂F

∂σ′
− ∂F

∂p′c
hpc







ce :
∂F

∂σ′

=

(

ce − 1

χep
ce :

∂F

∂σ′
⊗ ∂F

∂σ′
: ce

)

︸ ︷︷ ︸

cep

: ǫ̇

(3.43)

where

χep =

∂F

∂σ′
: ce : ǫ̇

∂F

∂σ′
: ce :

∂F

∂σ′
− ∂F

∂p′c
hpc

3.2 Cam-clay Plasticity for Partially Saturated Soil

Based on Borja[12] model, the constitutive framework of partially saturated soil should be

considered the constitutive effective stress σ′ with the evolution of solid matrix deformation ǫ, the

degree of saturation S with suction stress s, the intrinsic mass densities of all three phases, and

the relative flow vector ṽα with intrinsic pressure pα for water and air phases. This model is a

combination of features from other partially saturated soil constitutive models[6, 95, 84, 12, 54, 47,

35, 94, 83, 50].

3.2.1 Constitutive framework for partially saturated soils

For constitutive model for the solid matrix, a yield function of an elasto-plastic behavior

is assumed as F = F (σ′, s, p′c) = 0, where the scalar variable p′c is the effective preconsolidation
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pressure at saturated condition (s = 0). The rate expression for the effective constitutive stress σ′

is

σ̇′ = ce : (ǫ̇ − γ̇ g), g =
∂G

∂σ′
(3.44)

where ce = ∂2Ψ/∂ǫe∂ǫe regarding the free energy function Ψ, ǫ̇ is the total strain rate tensor, G is

the plastic potential function, and γ̇ is a plastic multiplier satisfying the Kuhn–Tucker conditions

γ̇ ≥ 0, F (σ′, s, p′c) ≤ 0, γ̇F (σ′, s, p′c) = 0 (3.45)

For preconsolidation pressure, a hardening law of the form can be written as,

ṗ′c = γ̇ h(σ′, p′c) (3.46)

where h is a scalar-valued function. For Modified Cam-clay model ṗ′c usually varies with γ̇ through

the volumetric component of the plastic strain, ǫ̇p
v = tr(ǫ̇p) = γ̇ tr(g). The quantity h is generally

a function of σ′ and p′c. The consistency condition can be written as

Ḟ = f : σ̇′ + ϕṡ −Hγ̇ = 0 (3.47)

where

f =
∂F

∂σ′
, ϕ =

∂F

∂s
, H = − ∂F

∂p′c
h(σ′, p′c) (3.48)

For a constant suction stress s, the sign of plastic modulus H determines the behavior of materials,

that is, H of hardening behavior is larger than 0, softening behavior is less than 0, and perfectly

plastic behavior is H = 0.

Solving for the plastic multiplier gives

γ̇ =
1

χ
(f : ce : ǫ̇ + ϕ ṡ), χ = f : ce : g +H (3.49)

When a plastic behavior occurs, γ̇ > 0 and χ > 0, it must be satisfied as follows,

f : ce : ǫ̇ + ϕ ṡ > 0 (3.50)
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When considering both values of f : ce : ǫ̇ and ϕ ṡ, either of elastic or plastic process can be

predicted. By solving the form for γ̇, the rate constitutive equation is obtained,

σ̇′ = cep : ǫ̇ − 1

χ
(ce : g)ϕ ṡ (3.51)

where,

cep = ce − 1

χ
ce : g ⊗ f : ce (3.52)

cep is the elasto-plastic tangent, and if the rate of suction stress ṡ = 0 and s = 0 becomes, the

classical elastoplastic constitutive relations for fully saturated condition return.

For the relationship relating the matric suction s to the effective degree of saturation Se, van

Genuchten[90] relation is used as,

Se =

[
1

1 + (αs)n

]m

, S = Sr + Se(1 − Sr) (3.53)

The relation between S and s may be affected by the air entry value (or bubbling pressure), which

is the characteristic pressure required before the air enters the pores.

dS

ds
= −(1 − Sr)m nαn

[

1 + (αs)n
](−m−1)

sn−1 (3.54)

where an effective degree of saturation Se is normalized by the fully saturated condition with the

residual saturated condition Sr, thus Se =
S − Sr

1 − Sr
, and α, n, and m are curve fitting parameters.

For the bulk modulus of three phases, the bulk moduli Ks and Kw of solid and water are

assumed infinity values due to incompressible phases even though both values are available from

the reference[67] of material properties. The bulk modulus Ka of the air typically depends on the

temperature, but it is used by about 105 Pa at 20 oC as a constant for isothermal deformations of

Boyle-Mariotte’s law[7], i.e., paVa = paMa/ρa. The net change in the total air mass contained in

the total volume V of the moving solid matrix is equal to zero. Hence, the bulk modulus Ka of the

air phase is equal to the absolute intrinsic air pressure pa, i.e., Ka = pa.
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3.2.2 Hyperelasto-plastic constitutive model

Many researchers have developed over the years to enhance the classic Cam-clay model for

mechanical behavior of partially saturated soils[6, 39, 95, 91, 35, 12, 50]. Their models contain the

suction stress as a partially saturated factor which influences both of the effective size of the elastic

region and the amount of plastic deformation based on the classic Cam-clay plasticity model of

saturated condition.

For coupling plasticity with energy conserving elasticity model, the analytical model of a free

energy function follows Section 3.1, but the yield function and other forms related to suction stress

s should be derived as follows[12],

F (σ′, s, p′c) =
q2

M2
+ (p′ − p′s)(p

′ − p̄′c) = 0 (3.55)

p′s = k · s (3.56)

p̄′c(ǫ
p
v, s) = − exp

[

pa(π)
]

(−p′c)pb(π) (3.57)

where,

pa(π) =
N[c(π) − 1]

λ̃ c(π) − κ̃
, pb(π) =

λ̃− κ̃

λ̃ c(π) − κ̃

π =

(

1 +
s/patm

10.7 + 2.4(s/patm)

)

(1 − S)

(3.58)

The yield surface has the shape of an ellipsoid in principal stress space, and critical state line

M defines the geometric axis ratio of the yield surface. p′s is the suction stress resulting from the

application of the matric suction. It leads the suction-dependent critical state line to shift to the

tension side[6]. k is a dimensionless material parameter that can be zero at saturated condition,

and greater than zero at partially saturated condition[6]. p̄c is the effective preconsolidation stress

depending on the plastic volumetric strain ǫpv and the matric suction s, and it has influence on

the size of active yield surface depending on the applied matric suction s regardless of any plastic

deformation. π is the bonding variable and varies with the air void fraction (1 − S) and a suction

s. patm is the atmospheric pressure, 101.3 kPa.
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The function c(π) represents the ratio between the specific volume v of the virgin compression

curve in the partially saturated state and the specific volume vsat in the fully saturated state.

Gallipoli et al.[35] presented the ratio between the void ratio e in the partially saturated state and

the void ratio esat in the fully saturated state as follow

e

esat
= 1 − c̃1

[

1 − exp(c2π)
]

c(π) =
v

vsat
=

1 + e

1 + esat
=

1/esat + e/esat
1/esat + 1

= 1 − c1

[

1 − exp(c2π)
]

(3.59)

where, c̃1 and c2 are fitting parameters and c1 =
c̃1

1/esat + 1
.

p'

q

M

0s=

0s>

cp ′ cp′
sp'

compression tension

Figure 3.2: Yield surface on the p′ − q plane with suction s

Alonso et at.[6] proposed a non-associative flow rule based on a plastic potential function G,

and then the plastic strain rate form in the partially saturated condition is written as

ǫ̇p = γ̇
∂G

∂σ′
= γ̇

[

1

3
(2p′ − p′s − p̄′c)1 +

2qβ′

M2

√

3

2

s

||s||

]

β′ =
M(M − 9)(M − 3)

9(6 −M)

[
1

1 − κ/λ

]
(3.60)

where β′ is a constant which can be derived by requiring that the direction of plastic strain rate

for zero lateral deformation.

For the saturated condition, these functions are defined as pa(π) = 0, pb(π) = 1 and c(π) = 1,
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and the effective preconsolidation stress p̄′c is also equal to the preconsolidation stress p′c which varies

with the plastic deformation, not matric suction s.

3.3 Implementation of Effective Stress and Pore Air Pressure

The governing equations are derived based on the equations of equilibrium for triphasic

mixture in Section 2.4. The coupling effect from the relationship among the water, the solid

particles, and the air is identified comparing the behavior of biphasic mixture, numerical analysis

and experimental results in the literature. And different expressions of the effective stress principle

have been presented in the literature, for example Bishop et al.[8], Lewis and Schrefler[58], Khalili

et al.[49], and Borja[12], Lu and Likos[66] and Lu et al.[63]. Various link with matric suction and

degree of saturation of the soil particle for the effective stress principle is established regarding

shear strength and volume change in partially saturated soils.

3.3.1 Effect of pore air pressure in triphasic mixture

The air (or gas) pore pressure in three phase porous media is generally necessary to consider

for an air storage problem in an aquifer[70] and CO2 geo-sequestration problems[56] related to CO2

injection or gas energy exstraction via offshore structures.

In order to validate the formulation of air pore pressure in triphasic mixture, although var-

ious researchers[57, 76, 75] have simulated the experimental tests on drainage of soil column and

performed numerical analysis, they premised that the it is not the exact solution for the effect of

air pore pressure in partially saturated soils. The comparison between the numerical solutions and

experimental data in the literature needs to acknowledge the influence of the initial conditions and

the air flow assumptions on the numerical simulations.

3.3.2 Various effective stress equations of partially saturated soils

The role of effective stress in the solid skeleton is to control stress-strain relation, volume

change and strength behavior in a porous medium. In the partially saturated soil, the application
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of the effective stress principle is to determine the most fundamental contribution in the mechanical

constitutive relationship because it participates in elastic as well as elastoplastic constitutive equa-

tions of the solid phase. Based on the concept of effective stress of Terzaghi[86] and Skempton[80]

for the saturated soils, the effective stress principle of the partially saturated soil has been evaluated

by Bishop[8], Lewis and Schrefler[58], Khalili et al.[49], Borja[17], and Lu et al.[63], among others.

The form used for effective stress principle in the partially saturated soils was first developed

by Bishop[8] using effective stress parameter χ,

σ′ = σ + pa1 − χ(pa − pw)1

= σ + χpw1 + (1 − χ)pa1

(3.61)

where consistent with our sign convention, σ′ and σ are positive is tension (p′ =
1

3
tr(σ′) and

p =
1

3
tr(σ) > 0 tension) and pw and pa are positive in compression (pw and pa > 0 compression)

such that suction s = pw − pa is positive or 0, i.e., s ≥ 0.

Bishop takes into account the surface tension (pa − pw) to extend Terzaghi’s effective stress

of saturation condition. For the experimental evidence of equation (3.61), Bishop and Blight[9]

provided experimental results to support the validity of Bishop’s effective stress with χ, to be

determined experimentally. It is substituted for the degree of saturation (χ = S) of the soil by some

researchers based on thermodynamic arguments[58, 12]. But, in Bishop’s effective stress concept,

the shear strength and volumetric characteristics do not change when the individual components

of the effective stress vary because both of the net stress (σ + pa1) and matric suction (pa − pw)

keep at a constant value.

Lewis and Schrefler[58] assumed that external and internal water pressure pw causes only a

uniform, volumetric strain by compressing the solid skeletons. They also assumed that the main

deformation of the solid skeleton is governed by the effective stress σ′. They replaced Bishop’s

parameter χ by the degree of saturation S, i.e. the ratio between pore space occupied by water

and total pore space available, thus assumes the following form

σ′ = σ +
[

Spw + S(a)pa

]

1 (3.62)
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where non-wetting phase saturation S(a) = 1 − S using volume average for the bulk materials. Its

form has been often used to estimate the effective stress in partially saturated soil at small strain

by many researchers.

Recently, to address shortcoming of Bishop’s effective stress principle, Khalili et al.[49] pro-

posed the effective stress principle adequate for shear strength as well as volumetric change of

partially saturated soils. They also provided experimental evidence to support the validity of the

effective stress equation and derived the incremental form of it. From Bishop’s effective stress in

equation (3.61), the effective stress parameter χ was obtained using the best-fit relationship as

shown in Figure 3.3.

χ =







(
s

se

)−0.55

if s ≥ se

1 if s ≤ se

(3.63)

where, se is the air expulsion value sex for wetting processes or the air entry value sae for drying

processes of SWCC.

Figure 3.3: Effective stress parameter χ versus suction ratio s/sae
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In Figure 3.3, the suction ratio is the ratio of matric suction s over the air entry value

sae and it may be obtained for most soils as a unique relationship. When the effective stress is

applied in partially saturated soils, the difference between the total and incremental forms of the

effective stress equation occurs. Its total form is proceeded by calculating stress-path-independent

quantities, for example shear strength or volume change in linearly elastic materials, whereas its

incremental form is performed in path-dependent processes by using tangent material properties.

σ′ = σ + pa1− χ s1 = σnet − χ s1

dσ′ = dσnet − (s dχ+ χds)1 = dσnet − 0.45χds

(3.64)

where, σnet = σ + pa1 and 0.45χ is the result obtained by substituting for χ of equation (3.63).

Borja and White[17] suggested the effective stress equation for partially saturated porous

material. It is demonstrated this expression for the constitutive stress tensor to be energy-conjugate

to the solid rate of deformation[13, 14] but this form is similar to Bishop’s effective stress equation

when assumed as incompressible solid grains (Ks → ∞).

σ′ = σ +

(

1 − K

Ks

)

p̄1, p̄ = Spw + (1 − S)pa (3.65)

where K and Ks are the elastic bulk moduli for the solid skeleton matrix and solid constituent,

respectively. The ratio K/Ks is typically in the range 0.1-0.5 for saturated rocks and concrete[80]

and so, Biot’s coefficient B represents (1−K/Ks). Actually, the ratio is very small for soils, and so

it is customary to take B=1, i.e., Ks ≫ K. They used this ratio in the critical state soil mechanic

problem which can predict an initial stress condition within the slope that lies on the dilatant side

of the critical state line[17].

Lu et al.[66, 63] presented the concept of a suction stress characteristic curve (SSCC) for a

partially saturated soil. The SSCC can represent the effective stress behavior to describe the state

of stress in partially saturated soil. In a microscopic stress, the physical origin of suction stress

can be conceptualized in the forms of van der Waals attraction, electrical double-layer repulsion,

surface tension, and physical and chemical force of the soil-water system[66]. On the other hand,

the suction stress can be represented as the tensile stress concept in a macroscopic stress. The
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Table 3.1: van Genuchten[90]’s curve fitting parameters of three soils

Soil α(1/kPa) n

Loam 0.2 2.76

Silt 0.0432 2.06

Clay 0.0152 1.17

Note: m=1-1/n

isotropic tensile strength projected from a linear extension of the Mohr-Coulomb failure criterion

can be used for formulating suction stress. Thus the isotropic tensile strength can unify shear

strength behaviors obtained from various suction conditions onto the Mohr-Coulomb criterion[64].

Lu et al.[66, 63] proposed a form of suction stress as the extension of Terzaghi’s effective

stress σ′ (positive in tension) in saturated condition,

σ′ = (σ + pa) + σs

σs = −Se (pa − pw), Se =
S − Sr

1 − Sr
=
[

1 + (αs)n
]−m

(3.66)

where Se is effective degree of saturation, s is matric suction (pa − pw), and α, n, m are curve

fitting parameters of van Genuchten[90]’s SWCC equation. The effective stress (equation (3.66)) is

defined as a closed-form expression for suction stress for the full range of matric suction,






σs = −(pa − pw) ; pa − pw ≤ 0

σs = − pa − pw
[

1 + (αs)n
]m ; pa − pw ≥ 0

(3.67)

Lewis and Schrefler[58] used the degree of saturation S instead of the effective stress parameter

χ of Bishop’s equation, however Lu and Likos[66]’s equation is treated as a function of both matric

suction and the effective degree of saturation. Its merit is to describe effectively suction stress of

various soils regardless the wide range of matric suction like clay or the narrow range of matric

suction like sand. Figure 3.4-3.6 show the general patterns of the SSCC interrelated with SWCC

for three different types of soil as shown in Table 3.1.

Figure 3.4 shows the soil-water characteristic curves (SWCCs) for loam, silt, and clay, and

Figure 3.5 shows the suction stress characteristic curves (SSCCs) predicted by equation (3.67). For
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Figure 3.4: SWCC[90] for three soils in Table 3.1

Figure 3.5: SSCC[63] for three soils in Table 3.1 in terms of effective degree of saturation

Figure 3.6: SSCC[63] for three soils in Table 3.1 in terms of matric suction
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loam soil, suction stress is zero when matric suction is zero (saturated condition) and suction stress

approaches zero at a large value of matric suction as shown in Figure 3.6. Suction stress reaches a

minimum value -3.2 kPa at 5 kPa matric suction or 64% degree of saturation as shown in Figure

3.5-3.6.

For silty soil, the minimum value of suction stress is -21 kPa at 100 kPa matric suction or

21% degree of saturation. But a similar suction stress remains through several hundreds kPa values

beyond the minimum value because a soil still keep some suction stresses even under dry condition.

In order to verify this phenomenon in practice field, the behavior of loess cut slopes demonstrates

that loess cut slope which has several tens kPa is capable of maintaining near-vertical cuts of some

meters in height under dry condition without cohesive clay films or any support[63].

For clay soil, Figure 3.5-3.6 show that the distribution of suction stress is distinguished from

that of other soils. Suction stress is zero at zero matric suction (saturated condition), but suction

stress increases quickly by about 40 kPa matric suction, then after this increases gradually through

several thousands kPa. It is difficult to define the minimum suction stress because suction stress

of clay soil usually is very high value under dry condition or high matric suction condition. The

distribution of matric suction of clay in SWCC (Figure 3.4) is similar to that of suction stress of

clay in SSCC (Figure 3.5), namely, there is little difference between matric suction and suction

stress of clay under dry condition for the effective stress of clay.



Chapter 4

Numerical Examples

For finite element implementation of partially saturated soils, three commercial codes, such as

SEEP/W–SIGMA/W[40], Plaxis–PlaxFlow[74, 73], Abaqus[1], are analyzed at the same condition

and compared with water flow and deformation for an example of a column consolidation test.

The main point for the comparison of the program’s results is to check the difference between

the staggered coupling program (SEEP/W–SIGMA/W) and my monolithically coupled program

(Matlab code). In order to prove the validity of numerical simulations, experimental data from

laboratory test in the literature will be compared with numerical results, using parameters for a

plasticity model in the literature. Also, it will be compared to Schrefler[75, 38]’s result for the effect

of air pore pressure in triphasic mixture through a drainage test, and to Cho and Lee[21]’s result

for water infiltration and instability of rainfall-induced soil slope through flow-deformation coupled

finite element analysis.

Numerical simulations by commercial softwares are performed in this Section are showed in

Appendix B. The Appendix B includes how to run UNSAT-H 1D flow program and SEEP/W–

SIGMA/W coupled program for partially saturated case, as well as ABAQUS for the saturated

case.
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4.1 Numerical Simulation for Partially Saturated Flow

4.1.1 Boundary conditions

The profiles of water flow and its pressure in vadose zone may be evaluated with consideration

of the matric suction, negative pore water pressure, profile in the partially saturated soils. It is

influenced by soil type, the thickness of the partially saturated zone, and the fluid fluxes occurring

at the subsurface-atmosphere interface. Hence the profile of matric suction can be assumed as

hydrostatic condition initially although the state of stress for partially saturated soil in the field

is rarely a constant[65]. As the first step, unsaturated flow analysis is performed by UNSAT-

H[89] and SEEP/W prior to the application of coupled pore fluid diffusion and stress analysis with

SEEP/W–SIGMA/W (staggered coupling program), my Matlab code and Abaqus (only use for

saturated case) which is monolithically coupled program for partially saturated soil problems.

In order to describe the negative pore water pressure distribution under one-dimensional

infiltration, Figure 4.1 shows the geometry of the soil column for comparing numerical results of

UNSAT-H, SEEP/W, and my Matlab code (the mesh on the right is used in the Matlab code).

In order to see more accurate result of partially saturated flow, the mesh might be discretized

by 8 elements for smooth suction profile. Above water table the pore water pressure is negative,

representing capillary tension causing the water to rise against the gravitational force and creating a

capillary zone. The saturation associated with particular values of capillary pressure for absorption

and exsorption of water from the partially saturated soil is a physical property called soil-water

characteristic curve. It is defined from laboratory test (see Figure 1.13 in earlier chapter).

The bottom and vertical boundary on the both sides of soil column are fixed in displacement,

and it is impermeable on the right and left sides of soil column. The initial condition of capillary

zone above the water table has hydrostatic profile as shown in the left of Figure 4.1. For positive

pore pressure below the water table, the flow velocity is proportional to the pore pressure value.

The infiltration rate on the top of the soil column is applied to see transient partially saturated

flow. The right of Figure 4.1 shows a numerical mesh(8 elements) which the smaller node spacing
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near the surface is necessary for a correct solution because of rapid changes in initial suction value

due to infiltration. The hydraulic conductivity of a partially saturated soil is calculated by van

Genuchten’s equation[90] using the degree of saturation S(s) and fitting parameters of the soil-water

characteristic curve as shown in equation (4.2).
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Figure 4.1: Boundary and initial condition and numerical mesh on vadose zone; UNSAT-H(left)
and FE codes(right)

4.1.2 Hydraulic conductivity function estimation methods

It is difficult and complex work for the partially saturated hydraulic conductivity function

to be measured directly, thus many researchers have predicted the partially saturated hydraulic

conductivity functions from a measured and predicted volumetric water content function, such

as air-entry value, residual volumetric water content and coefficient of volume compressibility[40,

73, 89]. This is the preferred approach to simulate experimental and practical water flow. Most

commercial software have famous models, for example Fredlund et al.[33] and van Genuchten[90]

methods, used to predict partially saturated hydraulic conductivity function. These functions have
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yet used the function of suction or water content as partially saturated hydraulic conductivity

functions. Equations (4.1) and (4.2) are respectively Fredlund et al. and van Genuchten functions.

kw = ks

∑N
i=j

nw(ey) − nw(s)

eyi
S′

e(e
yi)

∑N
i=1

nw(ey) − nw
s

eyi
S′

e(e
yi)

(4.1)

kw = ks

[

1 − (αs)n−1 (1 + (αs)n)−m
]2

[

1 + (αs)n
]m/2

(4.2)

where, kw is calculated conductivity for a specified water content or negative pore water pres-

sure(m/s), ks is measured saturated conductivity(m/s), nw is volumetric water content, e is natural

number(2.71828), y is a dummy variable of integration representing the logarithm of negative pore

water pressure, i is the interval between the range of j to N , j is the least negative pore water

pressure to be described by the final function, N is the maximum negative pore water pressure to

be described by the final function, s is the suction corresponding to the jth interval, S′
e is the first

derivative of the equation C(s)
nw

{ln [e+ (s/a)n]}m , C(s) is Fredlund et al.’s correcting function and

curve fitting parameters are α, a, n, m. Fredlund et al. suggested that the function consists of

developing the partially saturated hydraulic conductivity function by integrating along the entire

curve of the volumetric water content function. van Genuchten proposed the closed form equation

to describe the hydraulic conductivity of a soil as a function of matric suction. van Genuchten

showed that the curve fitting parameters can be calculated graphically based on the volumetric

water content function of the soil. According to van Genuchten, the best point to evaluate the

curve fitting parameters is the halfway point between the residual and saturated water content of

the volumetric water content function[90, 40].

For constitutive behavior for pore fluid flow in Abaqus, the partially saturated flow is governed

by Forchheimer’s law[7]. Darcy’s law is generally applicable to low fluid (saturated) flow velocities,

whereas Forchheimer’s law is commonly used for situations involving higher (partially saturated)

flow velocities. According to Forchheimer’s law, high flow velocities have the effect of reducing

the effective permeability. As the fluid flow velocity reduces, Forchheimer’s law approximates the
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well-known Darcy’s law. Thus, Forchheimer’s law is to add the velocity-dependent term in Darcy’s

law. Forchheimer’s law is written as

q(1 + β
√

vw · vw) = −krw

γw
ks

(
∂pw

∂x
− ρwRg

)

(4.3)

where q is the volumetric flow rate of water per unit area of a partially saturated soil. Under

uniform condition, Darcy’s law states that the volumetric flow rate of water through a unit area

of the medium, Snvw, is proportional to the negative of the gradient of the piezometric head

(z + pw/γw). vw is the water velocity, β is a velocity coefficient dependent on the void ratio of the

soil, krw is the relative permeability dependent on the degree of saturation S such that obtained

from experiments (krw = 1 at S = 1), ks is the saturated permeability(m/s), and other terms is

the same with equation (2.35). Hence, the partially saturated permeability in Abaqus is defined as

kw =
krw

(1 + β
√

vw · vw)
ks (4.4)

This nonlinear permeability can be defined to be dependent on the void ratio of the soil, so the

fluid velocity tends to zero, Forchheimer’s law approaches Darcy’s law. Although the partially

saturated permeability in Abaqus refers that it depends on β(x, e) which is the function of the

position vector x and void ratio e, Tariq[85] suggested β =
2.33 × 1010

k1.201
s

for only sandstone and

limestone. Hence, Abaqus does not consider the porosity or void ratio dependence for the partially

saturated permeability too.

4.1.3 Analytical solution of transient infiltration

PlaxFlow/Plaxis is based on the staggered coupling analysis for seepage and deformation

in partially saturated soils. Plaxis is a finite element program intended for 2D and 3D analysis

of deformation, stability and groundwater flow in geotechnical engineering. PlaxFlow is also a

finite element package intended for the two-dimensional and steady-state analyses of saturated

and unsaturated groundwater flow problems in geotechnical engineering and hydrology. PlaxFlow

incorporates several models for saturated and unsaturated groundwater flow, including the well-

known van Genuchten[90] relations between pore pressure, saturation and permeability. PlaxFlow
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allows the model to calculate partially saturated conductivity with the relation between degree

of saturation and negative pore water pressure. Using PlaxFlow code the initial condition and

boundary condition for the analytical solution of transient seepage problem are shown in Figure

4.2.

Figure 4.2: Problem geometry and finite element mesh (PlaxFlow Validation Manual chapter.4)

The analytical solution at steady state is presented by Gardner[37] for the particular perme-

ability function. The negative pore water pressure head φp is the function of vertical position for

steady-state as

φp = − 1

α
ln

[(

1 − q

ksat

)

e−αy +
q

ksat

]

(4.5)

where α is a fitting parameter, y is elevation, q is infiltration rate and ksat is the saturated perme-

ability. And the analytical solution at transient flow is presented by Srivastava and Yeh[81] for the

particular water characteristic and permeability functions. The negative pore water pressure head

φp is the function of time and vertical position for transient condition as follows,

φp =
1

α
ln(R) (4.6)
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where,

R =
q

ksat
−
(

q

ksat
− 1

)

e−y − 4q

ksat
e(L−y)/2 · e−t∗/4 ·

∞∑

i=1

sin(λi · y) sin(λi · L)e−λ2
i ·t

∗

1 + (L/2) + 2λ2
i L

t∗ =
n · α · ksat · t
Ssat − Sres

, tan(λ · L) + 2λ = 0

(4.7)

where λi is the ith root of the characteristic equation and t is the time.

Figure 4.3: Negative pressure head at different time steps (PlaxFlow Validation Manual chapter.4)

Figure 4.3 shows the distribution of negative pore water pressure under one-dimensional

infiltration. The results are compared with analytical solutions for both steady state(Gardner,

equation (4.5)) and transient groundwater flow (Srivastava and Yeh[81], equations (4.6) and (4.7)).

Figure 4.2 shows the finite element mesh for a one-dimensional infiltration problem to simulate

the problem of Srivastava and Yeh[81]. The ground surface is exposed to an infiltration rate of

q = 1.16 × 10−6m/s. For transient calculations, the initial negative pore water pressure head

distribution is considered to be hydrostatic. The negative pore water pressure head distribution

is calculated using the steady state option. The same problem is reanalyzed using the transient

calculation option to a final time of 5 days. Figure 4.3 shows the distribution at different time

intervals. In the case of transient flow, the analytical solution as a function of time presented by

Srivastava and Yeh[81] is presented by solid lines, and Gardner’s solution[37] for steady state is

obtained after 5 days of continuous infiltration[73].
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In this study, PlaxFlow-Plaxis program is not compared with SEEP/W–SIGMA/W, Abaqus

and Matlab due to the technical problem of getting the coupled analysis to work.

4.1.4 Comparison of seepage analysis in rigid soil column

For the simulation of partially saturated hydraulic conductivity, suction profile on vadose

zone are compared with UNSAT-H, SEEP/W and Matlab code built into the model that can be

used to predict partially saturated hydraulic conductivity functions. The UNSAT-H (version 3)

model was developed at Pacific Northwest National Laboratory (PNNL) for simulating soil water

infiltration, redistribution, evaporation, plant transpiration, deep drainage, and soil heat flow as

one-dimensional processes. It is one of numerical methods used to estimate the flux of water moving

through the vadose zone for verifing flow processes in unsaturated soils. The model simulates

infiltration in a two-step process. First, infiltration is set equal to the precipitation rate during

each time step. Second, if the surface soil saturates, the solution of that time step is repeated

using a Dirichlet boundary condition (with the surface node saturated). The resulting flux from

the surface into the profile is the infiltration rate[89].

For flow rate of infiltration applied in the seepage simulation, since the flow across the edge

of an element is uniform, the total flow across the edge is the flow rate times the length of the

element edge. In order to calculate a unit rate of flow across the edge of an element, it is necessary

to integrate along the edge of the element and convert the unit rate of flow (q) into nodal flows

which is Neumann boundary condition, Q (= Sw in equation (2.4.1)).

SEEP/W can model both saturated and partially saturated flow but no deformation. The

saturated and unsaturated formulation of SEEP/W makes it possible to analyze seepage as a

function of time and to consider such processes as the infiltration of precipitation. The transient

feature allows us to analyze such problems as the migration of a wetting front and the dissipation of

excess pore-water pressure. For staggered coupled analysis, using SEEP/W computed pore-water

pressures in SIGMA/W makes it possible to deal with irregular saturated and partially saturated

conditions or transient pore-water pressure conditions in a stress-strain behavior analysis. Thus,
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Table 4.1: Soil material parameters (van Genuchten[90])

Soil θs(cm
3/cm3) θr(Sr) ks(m/s) α(1/cm)∗ n

3.7 × 10−6

Loam 0.434 0.218(0.5)
3.8 × 10−13†

0.02 2.76

5.7 × 10−7

Silt loam 0.396 0.131(0.33)
5.8 × 10−14†

0.00432 2.06

9.5 × 10−9

Clay 0.446 0.01(0.01)
9.7 × 10−16†

0.00152 1.17

∗ curve fitting parameter; α = 1/a
† intrinsic permeability κ(m2) used in Matlab code

deformation coupling seepage flow may be analyzed using SIGMA/W program. In Table 4.1, θs

and θr are saturated and residual volumetric water content, respectively, Sr is residual degree of

saturation, ks is saturated permeability, α and n are fitting parameters of van Genuchten equation.

For transient seepage analysis of rainfall infiltration, various factors of the subsurface prop-

erties affect the process of partially saturated flow into soil, such as the intensity and duration of

rainfall, and the initial water content and hydraulic properties of the subsurface. The instanta-

neous infiltration rate is maximal at the start of a rainfall event. While rainfall duration, the rate

decreases or increases gradually to a value approaching the saturated conductivity of the surface

soil with increasing the wetted depth of soil. Thus, in the initial stage, infiltration is controlled by

the supply of water and then it is controlled by the initial matric suction profile of soil by calculat-

ing the partially saturated permeability of soil depended on the soil-water characteristic curve to

transmit water downward.

Three soil types are used in UNSAT-H, SEEP/W and Matlab code as shown in Table 4.1.

The simulation of UNSAT-H (finite difference) is modeled in one dimension in the vertical direction

and requires discretization (i.e., nodal spacing). For a correct solution, the node spacing should be

very small beneath the ground and become gradually larger downward through the profile as shown

in Figure 4.1(left). Therefore, the number of node is 28 in soil column height of 3m. The first node

(node 1) is at the surface and the last node (node 28) is at the bottom of the soil profile to be
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Figure 4.4: Suction profile of loam(left) and silt(right) by use of Sr

Figure 4.5: Suction profile of loam at Sr = 0 and zoom in top area(right)

Figure 4.6: Suction profile of clay and and zoom in top area(right)
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simulated. Total water applied is infiltration rate 0.21 cm/hr = 5.83 × 10−7 m/s for loam and silt

and 0.00324 cm/hr = 9×10−9 m/s for clay. Two infiltration rates is applied because SEEP/W and

Matlab codes have some troubles to converge when infiltration rate of 5.83 × 10−7 m/s is applied

on clay.

As shown in Figures 4.4-4.6, qualitatively these suction profiles are similar to analytical

solution[81] as shown in Figure 4.3 and experimental data in the field[32]. The left figures show the

profiles of real size(H:3m × W:1m) and the right figures show the size-enlargement of the profiles.

UNSAT-H and SEEP/W use partially saturated hydraulic conductivity as function only of suction,

and Matlab code uses hydraulic conductivity as function of both suction and porosity. However this

comparison does not consider the effect of porosity due to fixed mesh. The profiles of UNSAT-H

for three kinds of soil generally show surface boundary problem. It makes iteration trouble for

convergence because the first node on surface boundary node in UNSAT-H affects the second node

and other nodes of the geometry due to 1D analysis[89]. Hence, the suction profiles of UNSAT-H

show some different pattern comparing with those of SEEP/W and Matlab codes.

Figure 4.7: Distribution of volumetric water content in loam (Matlab), Sr = 0
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When the residual degree of saturation Sr is considered in the flow analysis, the profile of

loam shows big differences between two codes and Matlab code because there are two important

factors applied. One is relative permeability for a partially saturated soil. SEEP/W used the

function of suction and Matlab used the function of degree of saturation for relative permeability.

Both equations are derived by van Genuchten[90], however the relative permeability of the function

of suction is derived from the effective degree of saturation Se. It has to include the assumption

that the residual degree of saturation is equal to zero (Sr = 0). If the residual degree of saturation

is considered as some values, not zero, in the simulation, two equations (krw(S), krw(s)) will provide

different results. The other is the effect of capillary zone. In SEEP/W, the amount of water above

the water table that is stored in a soil depends on capillary force. The capillary force exists below

saturated zone of soil surface due to rainfall as well as above the water table.

krw(S) =
√
S
(

1 −
(

1 − S
1
m

)m)2

S = Sr + Se(1 − Sr) = Sr +
1 − Sr

[

1 + (αs)n
]m







in Coupled code (4.8)

krw(s) =

[

1 − (αs)n−1 (1 + (αs)n)−m
]2

[

1 + (αs)n
]m/2

S =
Θw

n
= S̄r + S̄e(1 − S̄r)







in SEEP/W (4.9)

where Θw is volumetric water content, S̄r is degree of saturation due to capillary forces and

S̄e is bounded degree of saturation due to adhesion (S̄∗
e ), S̄e =< 1 − S̄∗

e > +1. The adhesive

component[40] is a bounded value since it is possible at low suctions for the value S̄∗
e to be greater

than 1. The bounded value ensures that for a S̄∗
e greater or equal to 1, S̄r = 1 and if S̄∗

e is less than

1, then S̄e = S̄∗
e . The capillary saturation S̄r, which depends essentially on the pore diameter and

the pore size distribution, is given by[40],

S̄r = 1 −
[(

hcap

s

)2

+ 1

]m

exp

[

−m

(
hcap

s

)2
]

(4.10)
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where hcap is mean capillary rise.

The suction profiles of Figure 4.4 through SEEP/W is plotted by the effect of capillary force

on soil surface. The surface of loam can be easily saturated due to seepage force because the

permeability of loam is larger than infiltration rate. Thus, results of loam show more different

suction profiles.

The consideration of the residual degree of saturation as shown in Figure 4.8 illustrate that

two relative permeabilities in equation (4.8) and (4.9) can cause different soil-water characteristic

curves. The relative permeability of the function of saturation rate takes the residual degree of

saturation into account, but that of the function of suction (UNSAT-H also uses this function for

relative permeability) does not because the effective degree of saturation is calculated by hydraulic

relation of van Genuchten[90]. SEEP/W controls the residual degree of saturation using their own

method as shown in equation (4.9).

Figure 4.9 shows plots of relative permeability (krw) versus suction (s) and effective degree

of saturation rate (Se) by using hydraulic parameters (α, n) summarized in Table 4.1. At 30 kPa

of initial suction state, the effective degree of saturation and degree of saturation on loam surface

shows dry condition rather than silt and clay as shown in Table 4.2. The relative permeability of

loam surface also shows slower infiltration rate than silt and clay.

In Figure 4.5 and 4.6, the profiles of loam (Sr = 0), silt and clay show similar patterns

between SEEP/W and Matlab codes. For the suction profile of clay, Matlab code makes bouncing

point on the second node at the ground surface because of too small hydraulic conductivity when

8 elements (Figure 4.4) for the soil column mesh are used, so the top portion of soil column which

needs to discretize for the calculation of infiltration is split by 12 elements (Figure 4.5 and 4.6).
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Figure 4.8: Difference of soil-water characteristic curves by use of Sr

Table 4.2: Values at initial suction state (30 kPa) on soil surface

Loam Silt Clay

Se 0.0425 0.599 0.952

S 0.521 0.731 0.953

krw 4.2 ×10−6 3.5 ×10−2 2.7 ×10−2

Figure 4.9: Curves of relative permeability (krw) versus suction (s) and effective of saturation rate
(Se)
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4.2 Verification of Coupled Finite Element Analysis

4.2.1 Consolidation analysis in saturated condition

The one-dimensional saturated consolidation example was simulated to verify first the bipha-

sic mixture finite element formulation as compared to theory for 1D consolidation settlement. The

stress within a semi-infinite, homogeneous, and isotropic mass has a linear stress-strain relationship

due to a load on the surface[24]. The stress due to surface loads distributed over a large area can

be obtained by integration from the load. In order to estimate consolidation settlement of the ana-

lytical solution, it is assumed that the layer of saturated soil of thickness of H0, total displacement

∆H and the total vertical stress in an elemental layer of thickness dz at depth z is increased by

∆σ due to the traction tσ on the surface as shown in Figure 4.10.

z

dz

σ∆

0H

H∆

σ ′∆

0σ ′ 1σ ′

1e

0e

σt

Figure 4.10: 1D Consolidation settlement theory[24]

It is also assumed that the lateral strain in the soil layer is equal to zero (similar to oe-

dometer test). At the completion of total displacement, the effective vertical stress ∆σ′ increases

corresponding to a change from σ′0 to σ′1 and a decrease in void ratio from e0 to e1 on the e − σ′

curve in Figure 4.10. The reduction of volume per unit volume of soil can be written in terms of
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void ratio,

∆V

V0
=
e0 − e1
1 + e0

∆H =

(
e0 − e1
σ′1 − σ′0

)(
σ′1 − σ′0
1 + e0

)

dz = mv∆σ
′dz

(4.11)

The reduction in volume per unit volume is equal to the reduction in thickness per unit

thickness, so this summation means the total displacement ∆H per initial thickness H0.

∆H =

∫ H

0
mv∆σ

′dz = mv∆σ
′H0 (4.12)

where, mv is the coefficient of volume compressibility (= 1/(λ+ 2µ)), hence the total displacement

of the analytical solution is (Figure 4.12)

∆H =
tσH0

λ+ 2µ
≈ 2.8 mm (4.13)

The stresses due to surface traction act in addition to the in-situ stresses due to the self-weight

of the soil. Thus, the result of analytical solution does not consider the gravity. The example used

the plane strain 2D finite element in saturated condition considering the deformation and pore

water pressure of each node. Soil parameters for simulation is as shown in Table 4.3 and geometry

is as shown in Figure 4.11.

In Table 4.3, λ and µ are Lamé constants, tσ is traction, ks is saturated permeability, ns0

and nw0 are initial solid and water volume fraction, ρsR and ρwR are real mass densities, and then

initial mass density of the mixture finite element ρ0 = ns0ρsR + nf0ρfR. Geometry shows normal

displacements fixed and impermeable boundary at sides and bottom as shown in the Table 4.3 and

Figure 4.11 to generate the 1D case.

In the implementation of numerical analysis in consolidation of 2D plane strain soil column,

the element force vectors, such as body force f
e,d
f , traction force f

e,d
t , fluid force fe,θ, air force f e,ζ ,

seepage force fe,θ
s , and air pressure force fe,ζ

s , are then written as equations (4.14) and (4.15),



124

Table 4.3: Soil parameters for saturated consolidation test

Soil parameters Value

λ 2.9 × 107 Pa

µ 7 × 106 Pa

tσ 4 × 104 Pa

ks 10−6 m3 · s/kg

ns0 0.58

nw0 0.42

ρsR 2700 kg/m3

ρwR 1000 kg/m3

ρ0 1986 kg/m3

y
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1m
x

σt

0=wp
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Figure 4.11: 3 element mesh for Matlab code for saturated consolidation
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f
e,d
f (de,θe, ζe) =

∫

Be

ρ(de,θe, ζe)(N e,u)T · gda

=

∫ 1

−1

∫ 1

−1
ρ(de,θe, ζe)(N e,u)T · g jedξdη

f e,θ(de,θe, ζe) =

∫

Be
w

ρwR(Be,p)T · kw(de,θe, ζe) · g da

=

∫ 1

−1

∫ 1

−1
ρwR(Be,p)T · kw · g jedξdη

fe,ζ(de,θe, ζe) =

∫

Be
a

ρaR(ζe)(Be,p)T · ka(de,θe, ζe) · g da

=

∫ 1

−1

∫ 1

−1
ρaR(ζe)(Be,p)T · ka · g jedξdη

(4.14)

f
e,d
t =

∫

Γe
t

(N e,u)T · tσds =

∫ 1

−1

[

N e,u(η = 1)
]T

· tσ(0.5) dξ

fe,θ
s =

∫

Γe
s(w)

(N e,p)T Swds =

∫ 1

−1
(N e,p)T Sw(0.5) dξ

f e,ζ
s =

∫

Γe
s(a)

(N e,p)T Sads =

∫ 1

−1
(N e,p)T Sa(0.5) dξ

(4.15)

Note that air terms (ζe,f e,ζ ,f e,ζ
s ) are ignored in the saturated problem, but these terms will be

applied to triphasic mixture problem.

The element body force vector may use 3 × 3 Gauss integration (because of biquadratic

displacement interpolation), the element fluid force and air force vector may use 2 × 2 Gauss

integration (because of bilinear pore pressure interpolation), and element traction, seepage, air

pressure force vectors as the equation (4.14) use 3 point Gauss integration along ξ in quadrilateral

finite element.

N e,u =
[

Nu
1 Nu

2 · · · Nu
9

]

, Be,p =
[

B
p
1 B

p
2 B

p
2 B

p
4

]

Nu
a =






Nu
a 0

0 Nu
a




 , B

p
b =







dNp
b

dx

dNp
b

dy






, tσ =






tσx(= 0)

tσy (= −tσ)




 , g =






0

−g






(4.16)
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Ne,u(η = 1) =
[

0 0 Nu
3 Nu

4 0 0 Nu
7 0 0

]

=






0 0 0 0 1
2ξ(ξ + 1) 0 1

2ξ(ξ − 1) 0

0 0 0 0 0 1
2ξ(ξ + 1) 0 1

2ξ(ξ − 1)

0 0 0 0 1 − ξ2 0 0 0 0 0

0 0 0 0 0 1 − ξ2 0 0 0 0






(4.17)

If soil surface is horizontal (no slope), tσ, Sw and Sa are respectively traction, seepage and

air pressure force acting on the top surface of a soil (η = 1, in top element), g is the vector of

gravity acceleration, 9.8 m/s2.

SEEP/W–SIGMA/W, Abaqus and Matlab codes are compared to perform a fully coupled

consolidation analysis in saturated condition. A fully coupled analysis is required to correctly model

the pore water pressure response to an applied load on the top surface. The maximum pore water

pressure under an applied load can be greater than the applied load. The excess pore water pressure

increase at the initial stage with reaching the peak, and then dissipate gradually. It is different

from what assumed by Terzaghi[87]’s consolidation theory. This phenomenon is then called the

Mandel-Cryer effect[68, 26]. The Mandel-Cryer effect can be seen in the results of consolidation

analyses carried out with three codes.

Figure 4.12 shows the comparison of analytical solution for steady-state displacement[87],

SEEP/W–SIGMA/W, Abaqus and Matlab code for 2D plane strain consolidation simulation, and

it is a saturated case without gravity (SEEP/W–SIGMA/W should use gravity to simulate for pw,

so its result does not match with other results in the profile of pw without gravity in Figure 4.12).

Figure 4.13 shows the comparison of consolidation simulations from Abaqus, SEEP/W–

SIGAM/W, and Matlab code, and it is a saturated case with gravity. The difference of monolithic

analysis, Abaqus and Matlab code, and staggered analysis, SEEP/W–SIGMA/W is negligible.

The results of Matlab code was obtained from triphasic mixture finite element implementation

with suction value is equal to zero(s = 0) that is assumed in saturated condition. The first case

is the consolidation result without the gravity and compared also to analytical solution, and the

second case is with the gravity.



127

Figure 4.12: Verification of two-field(pa ≈ 0) mixture for saturated case (s = 0, without gravity)

Figure 4.13: Verification of two-field(pa ≈ 0) mixture for saturated case (s = 0, with gravity)
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The comparisons are close, giving me confidence that the three coupled deformation-pore

fluid flow codes (SEEP/W–SIGMA/W, Abaqus, and Matlab) are being used correctly for saturated

analysis.

4.2.2 Semi-implicit linear and fully-implicit nonlinear solution for partially satu-

rated flow and deformation, and analytical solution

This example is a verification of the numerical finite element implementation and time inte-

gration schemes between semi-implicit and fully-implicit for two-field (pa ≈ 0, Section 2.3.2) and

three-field (pa 6= 0, Section 2.3.1) formulations and implementations. To verify, we take the ana-

lytical solution of Srivastava and Yeh[81], for water flow through partially saturated rigid porous

media with water table pw = 0 at z = 0m, and infiltration seepage Sw at z = 1m as shown in

Figure 4.14. The normal displacements are fixed at sides and bottom and it is impermeable at

sides. The right figure of Figure 4.14 shows the profile of negative pore water head in vadose zone

as the analytical solution for transient partially saturated flow[81].

All simulations are conducted in plane strain condition, but the analytical solution of Sri-

vastava and Yeh[81] is essentially 1-Dimensional for the flow problem as is our solution for the

flow. The BCs in Figure 4.14 lead to a 1D solution for partially saturated flow. After verification

and comparison between semi-implicit linear and fully-implicit nonlinear solution methods, a top

traction is applied to simulate coupled change in pw and downward displacement.

For verification, the constitutive equations for the water phase are modified slightly as

follows[81]

kw(s) =
Ks

γw
exp(−αs/γw)

S(s) =
1

Θ

[

Θr + (Θs − Θr) exp(αs/γw)
]

(4.18)

where Ks is the saturated permeability, γw the unit weight of water, α a parameter, Θr the residual

volumetric water content (same concept with volume fraction of water, Θr = nw
r ), and Θs the

saturated volumetric water content (Θs = nw
s ). Table 4.4 shows these parameters applied to the
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Figure 4.14: Mesh for numerical analysis(left) and analytical solution of partially saturated flow in
vadose zone(right; Fig. 1 of Srivastava and Yeh, 1991)

Table 4.4: Soil parameters for semi- and fully-implicit implementation

Soil parameters Value

Ks 2.8 × 10−6 m/s

α 1/m

Θs 0.45

Θr 0.2

Sw
0 (t = 0, initial) 2.8 × 10−7 m/s

Sw (t > 0, f inal) 9Sw
0

γw 9800 N/m3

t (total) 100 hrs
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numerical examples.

The three element mesh with height 1m is shown with boundary condition in the left of

Figure 4.14. All simulations are conducted in plane strain condition, but analytical solution, the

right of Figure 4.14, is essentially 1 dimensional for the flow problem (and so is the FE solution

with BCs prescribed). When a traction is applied in the next example, horizontal stress develops.

The results of the semi-implicit linear and fully-implicit nonlinear finite element solutions are

shown in Figure 4.15, respectively for a constant time increment of ∆t = 10hr. The node 1, 7, and

13 refer, respectively, to pore water pressure nodes on the left hand side of the mesh (open circle

nodes) from top, middle, to low nodes (Figure 4.14). The bottom pore water pressure nodes have

pw = 0 zero because ground water table is assumed to locate at the bottom of geometry mesh.

The results compare well with the analytical solution[81]. The analytical solution is not replicate

exactly in closed form in this paper, but the negative water pressure head ψ values from the right

of Figure 4.14 pw = ψγw, and plotted against the finite element solution here. Beginnings of an

oscillation are apparent for the semi-implicit linear method in the left of Figure 4.15, but it remains

stable in the steady-state. For fully-implicit nonlinear, the right of Figure 4.15, the solution is

smoother. Comparing CPU times, for ∆t = 10hr, it took 9.3 seconds to run the fully implicit

nonlinear solution and 6.6 seconds to run the semi-implicit linear solution in Matlab.

To compare the two solution methods, the time increment is decreased to ∆t = 1hr in Figure

4.16. The fully-implicit nonlinear solution is slightly more accurate for t < 5 × 104 than the semi-

implicit linear solution in Figure 4.15. The difference becomes unnoticeable as the time increment

is made smaller ∆t→ 0.

Figure 4.17 shows suction profiles at different time steps for transient flow problem. Semi-

implicit time integration scheme needs small time step ∆t = 0.1hr to get accurate solution com-

paring analytical solution of Srivastava and Yeh[81]. Fully-implicit time integration scheme shows

more stable solution in larger time step ∆t = 1hr. The numerical flow problem is simulated in

non-deformable soil column of 8 elements mesh for 100 hrs of total time.

In general, for smaller time steps, like those needed to resolve a sharp ramp in traction (next
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Figure 4.15: Semi-implicit linear(left) and fully-implicit nonlinear(right) solution with ∆t = 10hr

Figure 4.16: Semi-implicit linear(left) and fully-implicit nonlinear(right) solution with ∆t = 1hr
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example), the semi-implicit linear method is just as accurate as the fully-implicit nonlinear method,

but approximately three times as fast. When accounting for elasto-plasticity through the effective

stress σ′(de,θe, ζe), a nonlinear solution will be required, and I compare in Section 4.4 whether a

semi-implicit nonlinear solution method will be more efficient computationally than a fully-implicit

nonlinear solution.

Figure 4.17: Suction variation at different time steps for Semi-implicit linear (left; ∆t = 0.1hr) and
fully-implicit nonlinear(right; ∆t = 1hr) solution

The next example considers an application of traction tσ, as depicted in Figure 4.14 using

the relative permeability and degree of saturation in equation (4.18), linear isotropic elasticity is

assumed to govern the effective stress σ′, and we use χ = S in the definition of the effective stress

(equation (2.24)). The additional parameters needed are shown in Table 4.5.

Figure 4.18(left) shows that the traction is ramped up over 6min, with total simulation time

of 10hrs. Because the time step must be equal to or smaller than 6min to resolve the ramp up of tσ,

there is little difference in results between semi-implicit liner and fully-implicit nonlinear solution.

Thus, the semi-implicit linear scheme is used because it is faster. The various pw with and without

traction applied is shown in Figure 4.18. This figure(left) shows that pw increases upon application
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Table 4.5: Parameters of monolithic coupled deformation-flow for partially saturated analysis

Soil parameters Value

λ 2.9 × 107 Pa

µ 7 × 106 Pa

tσ 1 × 106 Pa

n0 0.42

Sw 5Sw
0

Figure 4.18: Effect of traction of pw for short term, 10hrs(left) and long term, 100hrs(right),
∆t = 0.05hr

Figure 4.19: Effect of porosity of pw and displacement due to traction
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of tσ, then decreases as the infiltration water seepage Sw continues to increase the volume fraction

of water nw. This figure(right) shows that each level result obtained from pw with and without

traction merges into the same value through the simulation time of 100hrs (steady state).

Figure 4.19(left) shows the difference when including the porosity dependence of permeability.

When considering the porosity dependent permeability, the deformable soil by seepage and flow

processes saturates faster than the case using the permeability without porosity factor. The reason

is why pore size shrunk due to traction makes a deformable soil saturated at the same volume

fraction of water.

The displacement in Figure 4.19(right) shows that without traction there is a small displace-

ment as a result of gravity, while with it there is no noticeable ‘consolidation’ of the displacement,

although it does increase slightly, and becomes more negative as the excess pw is dissipated. This

analysis currently assumed that pa = 0. But, there could be a build up and dissipation of excess

pore air pressure pa during application of the ground surface traction tσ (Section 4.2.4). Hence,

the formulation can be extended to solve for pa as a separate nodal degree of freedom with results

in Section 4.2.4. The triphasic mixture approach considering the pore air pressure(pa) may lead

to provide more information and include the real physical behavior at the specific condition, for

example, an air storage problem in an aquifer[70] and CO2 geo-sequestration problems[56].

The evolution of relative and saturated permeability plotted in Figures 4.20 and 4.21 shows

the effect of porosity on partially saturated consolidation simulation. When considering the porosity

of soil, the relative permeability krw increases due to increment of water part in soil porosity, as the

increase of saturation in Figure 4.20(right). While the saturated permeability ks decreases due to

the compression of porosity caused by a traction when considering the porosity due to a traction.

The saturated permeability is the intrinsic permeability κ divided by water viscosity ηw, ks =
κ

ηw
.

And then, the intrinsic permeability is κ = l2δ(n). The expression of δ(n) is given as δ(n) =

n3

(1 − n2)
by Kozeny-Carman’s formula. Consequently the saturated permeability ks decreases as

the value of δ(n) decreases. In this example, the total permeability kw with consideration of porosity

is decreased because the reduction of saturated permeability is larger than the increment of relative
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Figure 4.20: Comparison of relative permeability krw(left) and saturation S(right)

Figure 4.21: Comparison of saturated permeability ks(left) and permeability kw(right)
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permeability.

4.2.3 Two-field coupling analysis of flow and deformation for linear elastic soil

solid skeleton

The flow and deformation coupled analysis of a partially saturated soil is simulated with both

staggered and monolithic numerical codes, SEEP/W–SIGMA/W and Matlab. The simulation of

infiltration and total displacement during an external load(traction) using 3, 8 and 30 element

meshes for both programs is performed. In order to compare the negative pore water pressures

(or matric suction) in both codes, the silty soil that numerical results of seepage profile were

similar each other is used. The partially saturated hydraulic conductivities applied to the codes is

van Genuchten relationships[90] (equation (4.9)). The size of soil column is H:3m × W:1m and the

pore water pressures at top(node 1), mid(node 7), and low(node 13) point with the same initial and

boundary conditions as shown in Figure 4.14 are plotted. The geometry of simulation composes of 3

nine-node isoparametric Lagrangian elements, a two-dimensional plain strain with nine integration

Gauss points has been used, and a backward semi-implicit scheme was used for time integration.

Figure 4.22: Time-step refinement study with SEEP/W–SIGMA/W(left) and Matlab(right)
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SIGMA/W is used together with SEEP/W to perform the staggered coupled analysis. Al-

though SIGMA/W calculates the deformations resulting from pore water pressure changes while

SEEP/W calculates transient pore water pressure changes, the stress-deformation and seepage dis-

sipation equations are solved by a fixed way regardless of various time-steps. Figure 4.22 shows the

time-step refinement study with SEEP/W–SIGMA/W and Matlab codes. The total time period is

1 day (= 86400 sec) and the results are plotted by 4 kinds of time-steps (∆t), such as 8.64, 86.4,

864 and 8640 sec. The traction (1000 kPa) is applied at the initial time-step of each simulation in

8 elements. The staggered coupled analysis is unrelated to small time step for better accurate solu-

tion as shown in time-step refinement study. Predicted pore water pressure estimated in SEEP/W

for total time is used for stress-strain analysis in SIGMA/W.

Monolithic coupled analysis used in Matlab code can describe that negative pore water pres-

sure change due to seepage leads to changes in stresses and to deformation of a soil. Similarly, stress

changes modify the seepage process since soil hydraulic properties such as porosity, permeability

and water storage capacity are affected by the changes in stresses. While the analysis of coupled

SEEP/W and SIGMA/W is performed in a staggered manner separately. When traction is applied

at the first time step, water flow causes a compacted soil obtained from Sigma/W to be saturated

quickly, and their hydraulic relationship calculates that soil skeleton behavior by external loading

influences partially saturated permeability in each time step. Two manners of coupled analysis

produce a difference of negative pore water pressure with the passage of time as shown in Figure

4.23 and 4.24(left). The comparisons of suction profiles describe the behavior resulting from both

programs used the same elements, such as 3, 8 and 30 elements, to carry out more accurate results

as well as sufficient conditions for stability in finite element analysis. The effect of porosity that per-

formed by Matlab code shows a small difference between dotted and solid lines because of one time

loading at the first time step and the variation of pore water pressure due to porosity consideration

is larger at top level than low level of the soil column. Figure 4.24(right) shows that displacements

on ground surface of both coupled analyses are similar due to the same elastic moduli.

Staggered coupled analysis estimates individually for seepage and stress analysis. Namely,
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Figure 4.23: Comparison of SEEP/W–SIGMA/W and Matlab in coupled analysis; pwp by 3 ele-
ments(left) and pwp by 8 elements(right)

Figure 4.24: Comparison of SEEP/W–SIGMA/W and Matlab in coupled analysis; pwp by 30
elements(left) and displacement(right)
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after completing seepage and flow process in rigid soil body in Seep/W, Sigma/W is computed

for soil deformation using results obtained from Seep/W. Although these results obtained from

the simulation with the same initial and boundary conditions should be verified by field data or

experimental test, two different formulations of coupled analysis represent a different mechanism

that couples solid deformation with fluid pressure in a partially saturated soil as shown in Figure

4.23 and 4.24(left). The monolithic coupled hydromechanical model would be preferred to estimate

the behavior and stability of a partially saturated soil subjected to external loads, especially rainfall

because the seepage and stress-deformation problems occurred in the site are linked each other

simultaneously.

4.2.4 Two- & three-field coupling analysis for linear elastic soil

Numerical models of partially saturated soil developed by many authors are based on a

common assumption that the air phase remains constantly at atmospheric pressure in the partially

saturated zone. This means that air pressure is equal to zero which can be ignored in a soil.

Morel-Seytoux and Billica[72] presented that the two-phase flow theory for water and air is more

realistic than one-phase flow model for water with a one-dimensional mode of a rigid porous medium

(semi-infinite soil column). Schrefler and Zhan[76] proposed a fully coupled model to simulate the

slow transient phenomena, like consolidation, involving flow of water and air in deforming porous

media, and Schrefler and Scotta[75] applied the numerical solution for two-phase fluid flow to an

air storage problem in an aquifer.

The numerical simulation for the effect of pore air pressure is performed by comparing Sri-

vastava and Yeh[81]’s analytical solution. As a first approach, the air pressure in triphasic mixture

is considered by adding the air permeability of Coussy[23] based on initial, boundary conditions

and permeability equations of Srivastava and Yeh.

The pore water pressure(s = 0 − pw) in biphasic mixture due to pa ≈ 0 means soil suction,

but the soil suction in triphasic mixture is significantly subjected to the pore air pressure due

to pa 6= 0. The occurrence of pore air pressure within a soil is working for value of suction in
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Figure 4.25: Application of (pa 6= 0) to Srivastava and Yeh example

Figure 4.26: Application of pore air pressure pa in silt
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positive. Soil suction increases much by action of pore air pressure at the flow-deformation coupled

analysis rather than partially saturated flow analysis. In Figure 4.25(left), the pore water pressure

in triphasic mixture closer approaches zero (saturated condition) than that of biphasic mixture,

but triphasic mixture has larger suction due to action of pore air pressure in consolidation test

with a traction as shown in Figure 4.25(right). Generally the biphasic formulation matches the

experimental results better than the triphasic formulation in the geotechnical problems such as a

vadose zone, and then considering pore air pressure should be applied to the specific condition such

as an air storage problem in an aquifer or CO2 geo-sequestration to reduce greenhouse gas emission

from fossil fuels.

The effect of pore air pressure in triphasic mixture is estimated to observe the profile of

suction in the soil as shown in Figure 4.6. By using the same initial and boundary conditions, the

profile of suction in silt soil is compared with that of suction in triphasic silt condition. The left of

Figure 4.26 shows the distribution of pore air and water pressure, and the right shows difference

of suction profile between triphasic and biphasic silt conditions. The result also shows that the

soil has the bigger magnitude of suction when considering the pore air pressure in the soil. The

bouncing point occurs at the first node beneath the ground surface such that the mesh around the

surface is needed to discretize more.

As previously said, since there is no exact solution of a problem of water and air flow in

deformable partially saturated soils, numerical modeling of experimental results on the drainage of

a sand column is performed. For validation and application of coupling model of solid, water, and air

in partially saturated soils, based on the water drainage experiment from a sand column conducted

by Liakopoulos[60], the numerical solutions given by Schrefler and Scotta[75] and Gawin et al.[38]

are compared to various results obtained from Matlab code. The mesh of this example composed

of a column of 20 nine-node isoparametric Lagrangian elements of equal size were employed for all

numerical simulations. Numerical integration was semi-implicit and triphasic model associated to

linear elasticity has been used with a 2D plain strain of nine integration Gauss points.

The physical experiment consisted of a soil column in 1m high, and a constant flow through
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Table 4.6: Soil parameters for triphasic mixture implementation

Soil parameters Value

Young’s modulus, E 1.3 MPa

Poisson ratio, ν 0.4

Solid real density, ρsR 2000 kg/m3

Bulk modulus of air, Ka 0.1 MPa

Water real density, ρwR 1000 kg/m3

Air real density, ρaR 1.2 kg/m3

Initial porosity, n 0.2975

Intrinsic permeability, κ 4.5 × 10−13 m2

Water viscosity, ηw 1.0 × 10−3 Pa s

Air viscosity, ηa 1.8 × 10−5 Pa s

the soil column corresponding to a water pressure gradient is equal to zero initially. Starting

time steps, water inflow is cut at top of the soil column and water is flowed out at the bottom.

Air pressure is equal to atmospheric pressure at both for top and bottom of the column with

zero vertical load at the top, and no deformation is at the bottom and on lateral walls of the

column. The gravity-governed changes in constituent volume fractions only depend on soil and

water parameters. In numerical test, in the same way as Schrefler and Scotta[75], Matlab code also

uses the relationship of Brooks and Corey[18] for the relative permeability of gas pressure, and the

experimental function of Schrefler and Scotta[75] for hydraulic properties of the soil as shown in

equation (4.19). The material properties used for the numerical test are summarized in Table 4.6.

kra = (1 − Se)
2
(

1 − S
(2+3λ)/λ
e

)

, Se =
S − Sr

1 − Sr

krw = 1 − 2.207(1 − Se)
1.0121, S = 1 − 1.9722 × 10−11 · s2.4279

kα =
κ

ηα
krα, α = w, a

(4.19)

where ηα the dynamic viscosity and krα is the relative permeability of the α phase which depends

on the relative saturation Sα through suitable experimental relationship krα = krα(Sα), κ is the

intrinsic permeability, and the respective degrees of saturation Sw and Sa sum to one, Sw +Sa = 1.

Even if the data for the mechanical behavior and parameters of the Del Monte sand used by



143

Liakopoulos were missing and unpublished, they have been obtained numerically their solutions by

trial and error techniques. Thus, λ is 0.1 and the residual saturation Sr is 0.06689 for sand[75, 38].

Figure 4.27: Numerical results and experimental measurements from Liakopoulos’ test in pore
water pressure and suction

The numerical solutions of triphasic mixture analysis obtained from Schrefler and Scotta[75]

based on the Liakopoulos’ experimental test are compared to that of Coupled code as shown in

Figures 4.27-4.29. As no measurement of pore air pressure was made by Liakopoulos, numerical

results are plotted and also compared to Schrefler & Scotta[75] and Gawin et al.[38]. The evolution

of air pressure is more sensitive to the analysis method than that of water pressure. The comparison

of pore water pressure in Figure 4.27(left) is similar to that of Schrefler and Scotta[75], but the

results (right figure) of Coupled code have obtained suction increases slower than that found by

Schrefler and Scotta since air pressure response from methods applied has sensitive characteristic

as shown in suction evolution of Figure 4.28.

Comparing with Gawin et al.[38] and Schrefler and Scotta[75], the air pressure profiles from

Matlab code fit closer to that of Gawin et al. than that of Schrefler and Scotta. These differences
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Figure 4.28: Numerical results of pa compared to Gawin et al.(1997) and Schrefler & Scotta(2001)

Figure 4.29: Displacement of top surface in drainage test of triphasic mixture
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are produced by choosing different sets of governing equations and numerical algorithms between

Schrefler and Scotta, and Gawin et al.. Particularly, the averaged density of the mixture ρ =

(1 − n)ρsR + nSρwR + (1 − n)(1 − S)ρaR and bulk modulus of solid grains (106 MPa) and water

(2 × 103 MPa) used by Schrefler and Scotta are different from those used by Gawin et al. and my

own Matlab code. Gawin et al. and Matlab code derived the mass balance equation assuming the

bulk moduli (Ks and Kw) are infinite due to large values and the averaged density of the mixture

is ρ = (1 − n)ρsR + nSρwR + n(1 − S)ρaR.

In Figure 4.29, the vertical displacements at the top surface of soil sample shows a little

difference during the intermediate progress, but the final vertical displacement coincides with those

of Schrefler and Scotta[75], and Gawin et al.[38] using identical initial conditions.

4.2.5 Application of various effective stress equations for linear elastic soil

The effective stress plays an important part in the deformable soil because the deformation

and constitutive response of soil mainly depends on the principle of effective stress. Recently,

Khalili et al.,[49] and Lu et al.[63] proposed effective stress parameter χ and suction stress using

Se respectively in a partially saturated soil referred in the previous Section 3.3.2. For Khalili

et al.’s concept, in order to apply the effective stress parameter χ, the air entry value of soil-

water characteristic curve is necessary to implement in partially saturated soil. In the study, it

is assumed that the air entry value of each soil obtained from the literature[32, 65], for example

loam=5, silt=10, clay=100 (kPa). Suction stress of Lu et al. uses the effective degree of saturation

Se for the effective stress parameter.

By using the same boundary and initial conditions (but, soil column height=3m) in Figure

4.14, the typical effective stress parameter with degree of saturation S (Lewis & Schrefler et al.[58]

and Borja[12]) is compared to that with the effective stress parameter χ of the function of suction

and air entry value (Khalili et al.[49]) and that with suction stress using effective degree of saturation

Se (Lu et al.[63]). Figure 4.30 shows the comparison of pore water pressure pw and displacement at

top surface under traction(1000 kPa). Even though negative pore water pressure at each node (top,
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Figure 4.30: Comparison of effective stresses with S, χ and Se

Figure 4.31: Difference between Lewis & Schrefler and Lu et al.’s curves at Sr = 0.33, 0.1 and 0
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middle, low node) obtained from Khalili el al.’s parameter (χ) is slightly smaller than the result

of Lewis and Schrefler’s parameter (S), both results have the process with a same pattern because

the parameter χ is defined by the average saturation rate according to various suction values as

shown in Figure 3.3.

There is some differences between the effective stress concept of Lewis and Schrefler (or

Borja[12]) and that of Lu and Likos in Figure 4.30. The reason is difference between degree of

saturation S and effective degree of saturation Se.

S = Sr + Se(1 − Sr) (4.20)

Se =
1

[

1 + (αs)n
]m =

S − Sr

1 − Sr
(4.21)

The numerical simulations (Figure 4.30) of three effective stress concepts are estimated by

applying 0.33 of residual degree of saturation Sr to the same material parameters of silty soil used

in previous simulations(Table 4.1). If Sr approaches zero, both of Lewis & Schrefler and Lu et al.’s

plot will agree on the same curve as shown in Figure 4.31. The final displacements obtained from

three equations show the same results (Figure 4.30(right)). Khalili et al.’s effective stress equation

will also be similar to the pattern of Lewis and Schrefler’s curve variation. Basically clayey soils

have higher residual degree of saturation than those of silty or sandy soils, and so clayey soils would

retain larger matric suction with pass the time during this simulation. The variation of pore water

pressure calculated by Lu et al.’s effective stress (Figure 4.31(right)) show a solution appropriate

for the response of soil types. The displacement solution in Figure 4.30(left) is expected to be

different when an elastoplasticity model as a function of suction s is included.

If the elastic bulk moduli ratio (1 − K/Ks) which Borja and White[17] present is used, a

certain material may have different displacements on the top surface. In this study, however,

the deformation of elastic soils is rarely affected by effective stress parameters because the elastic

moduli are the same and it is assumed Ks ≈ ∞ for all cases, but for elastoplasticity their should

be a difference. All effective stress concepts are the function of matric suction and then these

are related to the hydraulic properties of a soil such as pore water pressure, water storage and
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soil-water characteristic curve. The variation of matric suction in a partially saturated soil may

be significant factor to estimate the effective stress response for constituent modeling of the solid

matrix for elastoplasticity.

4.3 Numerical Simulation of Hyperelasto-Plastic Model for Saturated Soil

The behavior predicted by the hyperelasto-plastic model is compared to those predicted by the

conventional modified Cam-clay model[15] and coupling plasticity and energy conserving elasticity

Cam-clay model[16]. The plasticity problem of the conventional Cam-clay model, hypoelasto-plastic

model, is solved by integrating of the rate-constitutive equation.

11σ

1x1m

1m

2x

22σ

Figure 4.32: Diagram for plane strain example

σ̇ij = ceijklǫ̇
e
kl; ǫ̇ekl = ǫ̇kl − ǫ̇pkl

K =

(
1 + e

κ

)

p′ , µ =
3K(1 − 2ν)

2(1 + ν)

(4.22)

where σij is effective Cauchy stress tensor, ǫkl is small strain tensor, ceijkl is elastic stress-strain

tensor, and overdots imply a time differentiation. The linear elasticity ceijkl can be expressed in
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Table 4.7: Soil parameters for Cam-clay simulations

Material parameters Hyperelastic Hypoelastic

Initial shear modulus, µ0 5400 kPa 5400 kPa

Constant coefficient regarding µ, ᾱ 60 -

Initial Young’s modulus, E 11880 kPa 11880 kPa

Poisson ratio, ν - 0.103

Initial porosity, n0 0.7 -

Initial void ratio, e0 - 4.28

Elastic compressibility index, κ̃ 0.018 -

κ(= v0κ̃) - 0.060

Virgin compressibility soil index, λ̃ 0.130 -

λ(= v0λ̃) - 0.433

Slope of critical state line, M 1.05 1.05

terms of the elastic bulk modulus K and shear modulus µ, and the elastic moduli depend on the

effective confining stress. But the formulation of hyperelasticity has the nonlinear elasticity based

on a stored energy function ψ(ǫeij) expressed in terms of elastic component of the small strain tensor

ǫeij as referred in the previous Section 3.1.

ψ(ǫeij) = ψ(ǫev, ǫ
e
s) = ψ̃(ǫev) +

3

2
µ(ǫes)

2

σ′ij =
∂ψ

∂ǫeij
, ceijkl =

∂σ′ij
∂ǫekl

=
∂2ψ

∂ǫeij∂ǫ
e
kl

(4.23)

Figure 4.32 shows diagram for soil sample test with unit dimensions in 2D plane strain in

Borja et al.[16]. The soil specimen is assumed to be normally consolidated and confined by an initial

stress of σ11 = 90 kPa. Three kinds of simulation are compared to show the difference between

hyperelasto-plastic and hypoelasto-plastic model. The elastic shear modulus of hyperelasto-plastic

material varies with mean normal stress p′ and the hypoelasto-plastic material has a constant

Poisson’s ratio. The parameters used for this comparison are summarized in Table 4.7. Note

that the compression indices λ and κ of hypoelasto-plastic material are related to the compression

indices λ̃ and κ̃ of hyperelasto-plastic material by the initial specific volume v0. The parameters of

each material have been selected in order to provide the same initial values of elastic shear moduli
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Figure 4.33: Stress-strain curves in 2D plane strain test

Table 4.8: Stress path for triaxial test simulations

State p (kPa) q (kPa) Description

A 90 0 Initial condition

B 90 45 Deviatoric loading

C 180 45 Isotropic loading

D 180 90 Deviatoric loading

E 180 0 Deviatoric unloading

Figure 4.34: Deviatoric Stress-deviatoric strain curves through 3D triaxial loading
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at the beginning of shearing.

Figure 4.33 shows a plot of the deviator stress (σ22 − σ11) versus nominal axial strain ǫ22

as the soil is compressed vertically on the 2D plane strain test. A confining stress equal to σ11 is

applied and then deviator stress is applied, which causes shearing of the sample, under a stress-

controlled condition. The sample is unloaded at a stress difference of σ22 − σ11 = 60 kPa and then

reloaded following the same paths. Although both models have the pressure-dependent nature of

the elastic shear modulus, hyperelasto-plastic material used an energy-conserving model behave

slightly stiffening for the elastic response with increasing vertical stress. The difference between

blue and black lines is become the blue line is plotted by pulling off values from the figure in Borja

et al.[16].

Figure 4.34 shows a sequential isotropic and deviatoric loading and unloading triaxial soil test

as described in Table 4.8. It shows a plot of the deviatoric stress q versus deviatoric strain ǫs with

the same material models subjected to initial all-around confining stress of p0 = 90 kPa (state A).

During the first deviatoric loading (state A-B), the response of all three curves are almost the same

since all three codes uses the same elastic shear modulus. But at the end of the isotropic loading

phase (state B-C), the deformation of hyper-model is different from that of hypo-model. The hypo-

model has larger deviatoric strain than hyper-model at the end of the isotropic compression phase.

The deviatoric strain differentials from isotropic loading are carried over by deviatoric loading (C-

D). Finally, the slopes of the deviatoric unloading curve is nearly parallel each other (D-E), but

there is an offset between hyperelastic and hypoelastic models.

The comparison between hyperelasto-plastic code and Borja et al.[16]’s curve shows good

agreement as shown in Figure 4.33 and 4.34. As a result, the simulations demonstrate that the

effective mean normal stress affects the elastoplastic soil behavior and the predicted significant

behavior of soil specimen by an isotropic loading shows that the appropriate model for this soil

should be applied to many geotechnical applications.

As another example of Cam-clay model, consolidation test(2D plane strain) is performed

using hyperelasto-plastic, hyperelastic and linear elastic model under saturated condition. In order
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Table 4.9: Soil parameters for consolidation test of Cam-clay model under saturated condition

Initial stresses, σ0(11), σ0(22) -84.13, -100 kPa

Initial shear modulus, µ0 5400 kPa

Constant coefficient regarding µ, ᾱ 60

Initial Young’s modulus, E 11880 kPa

Poisson ratio, ν 0.103

Initial porosity, n0 0.7

Saturated permeability, ks 1 ×10−7 m/s

Initial elastic strain, ǫev0 2.0446 ×10−4

Elastic compressibility index, κ̃ 0.018

Initial traction, tσ0 -100 kPa

Final traction, tσ -200 kPa

Initial preconsolidation pressure, pc -91.975 kPa

Virgin compressibility soil index, λ̃ 0.130

Slope of critical state line, M 1.05
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Figure 4.35: 3 element mesh for consolidation test of Cam-clay model
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to maintain the same initial conditions of three types of model, a traction on the top surface is

loaded to carry out by plastic behavior of a soil. The soil behaviors of hyperelastic and linear

elastic model due to the traction shows different responses. The parameters used for the material

is summarized in Table 4.9, and 3 element mesh for consolidation test is described in Figure 4.35.

Figure 4.36 shows the plots of three models. The left figure shows the results of excess

pore water pressure at the bottom node 19 and the right figure shows the vertical displacement

at the top node 1. Excess pore water pressure quickly increases at the first time step, and then

it is dissipated to zero with passing time, but the dissipation of excess pore water pressure of

hyperelasto-plastic model will take a long time because of volumetric compacting state by plastic

behavior. Hyperelastic model which has stiffer response than linear elastic model due to pressure-

dependent elastic shear modulus shows smaller increment excess pore water pressure than that of

linear elastic model.

Figure 4.36: Pore water pressure and displacement of Cam-clay model at saturated condition

The displacement of hyperelasto-plastic model also need a lot of time to complete entire

consolidation because NC (normally consolidation) soil is still compacting within plastic behavior.

Hyperelastic model which shows stiff response has smaller vertical displacement than that of linear
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Table 4.10: Parameters for hyperelastic Cam-clay plasticity under partially saturated condition

Constant coefficient regarding µ, ᾱ 60

Initial Young’s modulus, E 11880 kPa

Poisson ratio, ν 0.103

Elastic compressibility index, κ̃ 0.018

Confined and Axial stress -90, -190 kPa

Initial preconsolidation pressure, pc -90 kPa

Virgin compressibility soil index, λ̃ 0.130

Slope of critical state line, M 1.05

Plastic parameters

N=2.76, k=0.6, β′=1, c1=0.185, c2=1.42

van Genuchten parameters

a=50 kPa, n=2.5, m=0.6, S=1, Sr=0.25

elastic model.

4.4 Numerical Simulation of Hyperelasto-Plastic Model for Partially Satu-

rated Soil

The numerical simulation of hyperelasto-plastic Cam-clay model for partially saturated soil

is compared to Borja[16, 12]’s results. Based on hyperelastic Cam-clay plasticity at saturated

condition[16], the assumed hyperelastic model and plasticity model parameters for partially satu-

rated condition[12] are summarized in Table 4.10. The assumed hydraulic relations are used as van

Genuchten function parameters.

In order to satisfy the saturated condition, c(π) = 1, pa(π) = 0, pb(π) = 1, and thus p̄′c = pc.

pc < 0 is the saturated preconsolidation stress and then, p̄′c is varied within the limit of full

saturation. Suction stress and p̄′c are used for plastic deformation at partially saturated condition,

but at saturated condition, the evolution of preconsolidation stress pc which can be obtained from

bilogarithmic compressibility law (saturated soil) varies with the plastic deformation alone.

At 100 kPa of suction value, the stress-strain curve in 2D plane strain test shows stiffer

behavior than that of Cam-clay model in saturated condition as shown in Figure 4.37. The growth
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of p̄′c as the suction is increased from saturated condition allow for a material to raise soil strength.

The plot of partially saturated Cam-clay model is almost same with behavior of Cam-clay model

at saturated condition.

Figure 4.37: Stress-strain curves at different suction applied to Cam-clay model of partially satu-
rated condition

4.5 Simulation of Rainfall Infiltration into Partially Saturated Slope with

Gravity Loading

The process of infiltration into a soil slope due to rainfall and its effect on soil slope behav-

ior are simulated using a two-dimensional finite element formulation for flow-deformation coupled

analysis. Linear isotropic elasticity is assumed for the solid phase constitutive response for now,

and will be extended for an elasto-plastic constitutive model with implementation at small strain.

Conventional method of slope stability analysis, like SEEP/W–SIGMA/W, based on the concept

of limit equilibrium has been widely adopted mainly due to their simplicity. These methods assume

no deformation prior to failure and just give a global safety factor for a specified slip surface, but

the finite element formulation can take into account the history of slope with soil deformation.
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Table 4.11: Soil parameters for simulation of soil slope due to rainfall

Saturated hydraulic conductivity, ks 5×10−6, 5×10−5 m/s

Rainfall intensity 5.556 × 10−6 m/s

Residual degree of saturation, Sr 0.08

Hydraulic parameters, α, n 0.045 (1/kPa), 2.25

Initial porosity, n0 0.42

Solid density, ρs 2.7 Mg/m3

Shear modulus, µ 7 MPa

Young’s modulus, E 20 MPa

Initial porosity, n 0.545

Gravity, g 9.8 m/s2

10m

Rainfall

A

43.8m

30m

10m

20m

B
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���� ����

Figure 4.38: Domain of numerical analysis for slope stability
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The behavior of a partially saturated soil slope is dependent on the distribution of pore

water pressure as well as the deformation of soil skeleton. The flow-deformation coupled analysis

is performed for future estimation of slope stability, comparing with results obtained from coupled

finite element analysis in the literature by Cho and Lee[21].

The initial and boundary conditions of slope stability analysis, based on the numerical sim-

ulation employed by Cho and Lee[21], have been adopted and conducted as shown in Figure 4.38.

The slope geometry has a height of 30m and an inclination angle of 40o to the horizontal plane.

The initial water table is assumed to be horizontal at the bottom of slope. The pore water pres-

sure varies hydrostatically with distance above and below the water table. Above the water table,

maximum negative pore water pressure is -6m (-60 kPa) and the pore water pressure increase hy-

drostatically with depth by 10m (100 kPa) below the water table. The soil behavior depends on

only gravity as body force and rainfall (5.556 ×10−6 m/s) as external force during long duration

of 66 hours (237600 sec). The slope is assumed to be homogeneous and isotropic and solved by

semi-implicit scheme.

The amount of rainfall which infiltrates the ground surface depends on the saturated hydraulic

conductivity ks. If rainfall intensity which occur in a partially saturated soil is higher than ks, the

positive pore water pressures will be indicated on the ground surface. In other words, water

would pond on the surface. If the rainfall intensity is less than ks, a partially saturated zone

would exist within the ground above the water table. Consequently, the infiltration capacity of

the ground surface does not exceed the saturated hydraulic conductivity ks. The simulations use

two saturated hydraulic conductivities which are 5 × 10−5 and 5 × 10−6 m/s magnitudes greater

and smaller than the rainfall intensity respectively, in order to study the effect of infiltration in

the partially saturated soil corresponding to the rainfall intensity. Hydraulic properties, such as

relative permeability and degree of saturation, are assumed according to the relationship of van

Genuchten[90], and the material data used for the numerical test are summarized in Table 4.11.

Numerical simulations for rainfall-induced seepage problem on soil slope are estimated for two

kinds of situation. One is that rainfall and consolidation due to gravity load are together applied
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Figure 4.39: Distribution of pore water pressure at initial state

Figure 4.40: Time histories of pore water pressure at A and B points



159

to soil slope. The other is that rainfall is applied to the slope after completing consolidation due to

gravity load. It takes around 32 hours to complete consolidation by gravity load in this simulation.

Figure 4.40 shows the time histories of pore water pressure at Gauss point A and B denoted

in Figure 4.38. The point A is located near the ground surface, but the point B is the place

which has some distances from the surface. When the distance of infiltration from slope surface is

short, the smaller the hydraulic conductivity, the faster the negative pore water pressure reduces as

shown in Figure4.40(left). When the infiltration rate is higher than the hydraulic conductivity, the

excess pore water pressure occurs in the ground surface. Then, the negative pore water pressure of

ks = 5×10−6 case quickly decreases at the point A near the surface. While the negative pore water

pressure of the case (ks = 5× 10−6) at the point B decreases slower than that of ks = 5× 10−5 due

to the small partially saturated permeability. It takes long time for water flow to approach to the

point B[21]. At the case of point B, suction increases initially and then decreases by lapse of time

during the rainfall event. We should use a finer mesh to solve this problem.

Figure 4.39 shows the distribution of pore water pressure of the slope with maximum matric

suction of -60 kPa at the initial state. At the end of rainfall (after 66 hrs), the excess pore water

pressure(0∼5 kPa) occurs in the ground surface of slope(ks =5×10−6 m/s), and the surface of

slope(ks =5×10−5 m/s) still keeps reduced magnitude(≈ −20 kPa) of negative pore water pressure

due to rainfall as shown in Figure 4.41 and 4.42. These two contours of pore water pressure

distribution are the results obtained from rainfall applied after finishing consolidation.

The vertical displacements at the nodal point of element 1 and element 4 as shown in Figure

4.38 are estimated. Figure 4.43 shows the difference between the edge and middle area on the crest

of soil slope due to gravity. The displacement at the middle area on crest of slope larger than

that at the edge area because of acting bigger body force in the middle area. The displacement by

rainfall after consolidation due to gravity load is slightly smaller than that of both applied.
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Figure 4.41: Distribution of pore water pressure after 66 hrs(ks =5×10−6 m/s)

Figure 4.42: Distribution of pore water pressure after 66 hrs(ks =5×10−5 m/s)
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Figure 4.43: Vertical displacement at the crest of the slope(5 × 10−6 m/s)



Chapter 5

Summary and Recommendation for Future Research

5.1 Summary

The objectives of this research have been the following,

(1) formulating and implementing a small strain nonlinear triphasic mixture finite element in

a Matlab code to better understand the coupling of deformation and pore air/water flow,

and the difference for various effective stress equations.

(2) formulating and implementing the hyperelasto Cam-clay plasticity model for the partially

saturated soil.

(3) verifying the triphasic mixture element in Matlab code to partially saturated water flow

simulated by commercial codes and analytical solutions.

(4) Obtaining constitutive parameters for flow and plasticity from experimental data available

in the literature.

(5) Conducting coupled finite element analysis in plain strain regarding rainfall infiltration

with soil weight loading in slope.

The features of the research are as follows:

(1) Semi-implicit linear finite element solution and fully-implicit nonlinear finite element solu-

tion as time integration schemes are used for seepage and deformation problems by rainfall
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and external loading, and verified by analytical solution of Srivastava and Yeh[81] for tran-

sient flow analysis of a partially saturated soil.

(2) For ignoring the pore air pressure in geotechnical engineering problems, the role of the

air phase among solid skeleton and water phases is reviewed to implement three-phasic

deformable mixture. During infiltration and surface loading on soil column, two-phasic

mixture and three-phasic mixture are compared with experimental results and numerical

solution in the literature.

(3) Staggered coupled model based on estimating solid deformation after completing seepage

analysis, i.e., SEEP/W–SIGMA/W and PlaxFlow-Plaxis, is compared with Matlab code

based on monolithic coupled model analyzing both events each time step simultaneously.

Difference of both codes influences the calculation of hydraulic conductivity and pore water

pressure each step.

(4) The Matlab code applies the porosity-dependent partially hydraulic conductivity. The

effect of the function of porosity in permeability gradually causes the difference of results

for the pore water pressure and matric suction along passing time.

(5) The implementation of various effective stress, such as Bishop[9], Lewis and Schrefler[58],

Borja[12], Borja and White[17], Khalili et al.[49], and Lu et al.[63] in the coupled FE im-

plementation presents the merit and shortcoming of each implementation, and is reviewed.

(6) The constitutive model applies a hyperelasto Cam-clay plasticity model to enhance the

elastic behavior of soils[16, 12]. The pressure-dependent elastic shear modulus in a soil needs

to be energy-conserving model and is nonlinear elastic. The model provides a fundamentally

correct description of elastic material behavior even in the regime of plastic responses.

For lessons learned when running UNSAT-H (flow problem), SEEP/W–SIGMA/W (stag-

gered coupled program), PlaxFlow–Plaxis (staggered coupled program), and ABAQUS (monolithic
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coupled program), although PlaxFlow–Plaxis and ABAQUS programs is tried to work for the par-

tially saturated flow analysis coupled to soil solid skeleton deformation and stress, PlaxFlow and

Plaxis programs held in computer lab (Bechtel lab) of Civil Department at CU Boulder do not

allow for fully coupled flow-deformation analysis. ABAQUS program also works monolithic cou-

pled analysis for partially saturated flow-deformation problems, but it is necessary to get a lot of

experimental data and hydraulic information regarding partially saturated conditions, and thus

those expert knowledge should be needed to run the program. UNSAT-H program for partially

saturated flow problem was developed at Pacific Northwest National laboratory (PNNL) and it can

easily be downloaded at http://hydrology.pnl.gov/resources/unsath/unsath.asp. SIGMA/W cou-

pled with SEEP/W could be modeled flow-deformation analysis for partially saturated conditions

as staggered coupled finite element analysis.

5.2 Future Work

I need the numerical simulation for partially saturated soil slope stability due to rainfall using

hyperelastic Cam-clay plasticity model. Also, I need application of triphasic mixture analysis to

air storage problem in an aquifer and C02 geo-sequestration problem.
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Géotechnique, 40(3):405–430, 1990.

[7] J. Bear. Dynamic of Fluids in Porous Media. Dover Publications, Inc., New York, NY, 1972.

[8] A.W. Bishop. The principle of effective stress. Teknisk Ukeblad I Samarbeide Med Teknikk,
106(39):859–863, 1959.

[9] A.W. Bishop and G.E. Blight. Some aspects of effective stress in saturated and partly saturated
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[12] R.I. Borja. Cam-Clay Plasticity. Part V: A mathematical framework for three-phase deforma-
tion and strain localization analyses of partially saturated porous media. Computer Methods
in Applied Mechanics and Engineering, 193:5301–5338, 2004.

[13] R.I. Borja. On the mechanical energy and effective stress in saturated and unsaturated porous
continua. International Journal of Solids and Structures, 43:1764–1786, 2006.



166

[14] R.I. Borja and A. Koliji. On the effective stress in unsaturated porous continua with double
porosity. Journal of the Mechanics and Physics of Solids, 57:1182–1193, 2009.

[15] R.I. Borja and S.R. Lee. Cam-Clay Plasticity, Part I: Implicit integration of elasto-plastic
constitutive relations. Computer Methods in Applied Mechanics and Engineering, 78:49–72,
1990.

[16] R.I. Borja, C. Tamagnini, and A. Amorosi. Coupling plasticity and energy-conserving elasticity
models for clays. Journal of Geotechnical and Geoenvironmental Engineering, 123(10):948–957,
October 1997.

[17] R.I. Borja and J.A. White. Continuum deformation and stability analyses of a steep hillside
slope under rainfall infiltration. Acta Geotechnica, 5:1–14, 2010.

[18] R.N. Brooks and A.T. Corey. Properties of porous media affecting fluid flow. J. Irrigation
Draining Div., ASCE, 92:61–68, 1966.

[19] R. Butterfield. A natural compression law for soils. Géotechnique, 29:469–480, 1979.
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Correspondence to Géotechnique, 12(4):348–350, 1962.

[23] O. Coussy. Poromechanics. Wiley, Chichester, Hoboken, NJ, 2004.

[24] R.F. Craig. Craig’s Soil Mechanics, page 235. Spon Press, New York, NY, 7th edition, 2004.

[25] D. Croney, D.J. Coleman, and W.P.M Black. Movement and distribution fo water in soil in
relation to highway design and performance. Special report 40, Water and Its Conduction in
Soils Highway Res. Board, Washington, DC, 1958.

[26] C.W. Cryer. A comparison of three dimensional theories of Biot and Terzeghi. Quarterly
Journal of Mechanics and Applied Mathematics, 16:72–81, 1963.

[27] R. de Boer. Trends in Continuum Mechanics of Porous Media. Springer, 2005.

[28] P. Delage and J. Graham. Understanding the behaviour of unsaturated soils requires reliable
conceptual models. In In Proceedings of the 1st International Conference on Unsaturated Soils,
Paris, volume 3, pages 1223–1256, 1995.

[29] W. Ehlers, T. Graf, and M. Ammann. Deformation and localization analysis of partially
saturated soil. Computer methods in applied mechanics and engineering, 193:2885–2910, 2004.

[30] A.R. Estabragh, A.A. Javadi, and J.C. Boot. Effect of compaction pressure on consolidation
behaviour of unsaturated silty soil. Canadian Geotechnical Journal, 41(3):540–550, 2004.

[31] D.G. Fredlund and N.R. Morgenstern. Stress state variables for unsaturated soils. Journal of
Geotech. Engng Div. ASCE, 103(GT5):447–466, 1977.



167

[32] D.G. Fredlund and H. Rahardjo. Soil Mechanics for Unsaturated Soils. John Wiley and Sons,
INC, 1993.

[33] D.G. Fredlund, A. Xing, and S. Huang. Predicting the permeability function for unsaturated
soil using the soil-water characteristic curve. Canadian Geotechnical Journal, 31:533–546,
1994.

[34] M.M. Futai, M.S.S. Almeida, W. Conciani, and Filho F.C. Silva. In In Proceeding of the
3th International Conference on Unsaturated Soils, Recife, Brazil, Swets and Zeitlinger, Lisse,
pages 721–726, March 2002.

[35] D. Gallipoli, A. Gens, R. Sharma, and J. Vaunat. An elasto-plastic model for unsaturated
soil incorporating the effects of suction and degree of saturation on mechanical behaviour.
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of soil properties. Géotechnique, 55(2):183–188, 2005.



Appendix A

Notation

Greek

α phases of soil, such as air, water, solid

or, van Genuchten curve fitting parameter in SWCC(= 1/a)

or, parameter in trapezoidal rule procedure

ᾱ constant coefficient of elastic shear modulus

β parameter controlling the rate of increase of soil stiffness with suction

β′ constant regarding direction of plastic strain rate

Γ boundary condition in finite element field

∆γ, γ̇ plastic multiplier

π bonding variable

ǫ total solid strain

ǫes elastic deviatoric strain

ǫev elastic volumetric strain

ǫps plastic deviatoric strain

ǫpv plastic volumetric strain

ǫv volumetric strain

ζe nodal air pressure vector for element

η weighting function of water pressure

ηa, ηw dynamic air, water viscosity

θs, θr saturated, residual volumetric water content

θe nodal water pressure vector for element

κ slope of the unloading − reloading line

κ̃ elastic compressibility index in hyperelastic model

λ slope of the normal consolidation line, or Lame constant

λ̃ virgin compression index of a soil in hyperelastic model

µe elastic shear modulus

ν specific volume(= 1 + e)

ξ coordinate variable in finite element field

δij Kronecker delta

ρ total mass density of the mixture

ρα partial mass density of the α phase(= nαραR)
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ρaR, ρwR, ρsR real air, water, solid density

σ̂ij Bishop′s effective stress

σ∗ij Jommi′s stress tensor

σ Cauchy stress tensor

φp negative pore water pressure head

χ effective stress parameter

χep continuum elastoplastic tangent

Ψ free energy function

ψ, ψ̃ stored energy function

ψa, ψw air, water volume ratio(ψw = S, ψa = 1 − S)

ω = −(ǫev − ǫev0)/κ̃ in hyperelastic model

Alphabet

a curve fitting parameter in SWCC

ae material parameter of a soil

A
nel

e=1
element assembly operator

B, Bh
a , B

h
w discretization domain and spaces in Galerkin Form

B Biot′s coefficient

Be,u strain − displacement matrix for element

C combination of damping and stiffness matrix

C(s) Fredlund et al.′s correcting function

ce weighting function variation of displacement for element

D, ce elastic modulus matrix

de nodal displacement vector for element

e void ratio, or element in finite element field

F , f forcing vector

f yield locus

G, g plastic potential function

g vector of gravity acceleration

h discretization parameter

h resultant body force per unit current volume

i interval between the range of j to N

j the least negative pore water pressure in Fredlund et al.′s equation

K, Ks elastic bulk modulus(solid bulk modulus)

Ka, Kw air, water bulk modulus

K, k stiffness matrix

k material parameter regarding partially saturated soil

ka, kw air, water permeability

kw, ka = kw1, ka1

kra relative permeability of air

krw relative permeability of water

ks measured saturated conductivity
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l2 unique length for characterizing the porous network geometry

M slope of the critical state line

m total mass

mv coefficient of volume compressibility

mα net mass flux

m curve fitting parameter in SWCC

N(s) initial specific volume in Alonso′s graph

N e shape function for element

n porosity

n curve fitting parameter in SWCC

n̂ direction of deviatoric stress

ns, nw, na solid, water, air volume fraction

p mean total stress

p′ effective mean total stress

pa pore air pressure

p′c preconsolidation pressure

pw pore water pressure

Q Neumann boundary condition(= Sw)

q deviatoric stress, or infiltration rate

R(x) residual matrix for Newton − Raphson method

r parameter defining the maximum soil stiffness

S degree of saturation

Sa, Sw seepage air, water flow force in boundary of finite element

Se effective degree of saturation

Sr residual degree of saturation

s suction

s∗ function of porosity and suction of a soil

sc critical soil suction in elastic regime

sae, se air entry value

t time(second)

t, tσ traction vector, traction

u displacement vector

v specific volume(= 1 + e), or total volume

v solid velocity

ṽa, ṽw air, water velocity relative to the solid velocity(ṽα = vα − v)

ṽw superficial Darcy velocity(= nwṽw)

w weighting function of displacement

x location vector

y elevation coordinate

z depth under ground surface



Appendix B

Tutorials

B.1 ABAQUS

ABAQUS is a finite element software that can be used to perform monolithically flow and

deformation analyses of geotechnical problems. Numerical simulation for consolidation test is tran-

sient analysis at saturated condition.

(1) under the CAE pull-down menu Module, select Part

• select Create, and type column for name

-2D Planar, -Type: Deformable, -Base Feature: Shell, -Approximate size: 10m

• Click Create Lines: Rectangle

0,0 → 1,3m → Esc → Done

(2) under Module, select Property

• Click Create Material (stress-strain curve symbol) and call porous

-General, Density, 1566 kg/m3, -Mechanical, Elasticity, Elastic, Isotropic, E = 19.64e6

Pa, ν = 0.4, -Other, Pore fluid, permeability, isotropic, specific weight of wetting

fluid=9810 N/m3, k = 9.8e-3 m/s, void ratio e0 = nf0/ns0 = 0.72

• Click Create Section

-Name: column section, -Solid, Homogeneous, -click OK

• Click Assign Section

-click part and assign section appropriately

(3) under Module, select Assembly

• Click Instance Part

-instance part

(4) under Module, select Step
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• Click Create Step

-leave default name or create your own, -select Soils, -click Continue to popup Edit

Step window, -unselect creep/swelling option, -time period 1s, -initial time step 0.01s,

-max pore pressure change 1e8 Pa

(5) under Module, select Load

• Click Create Load

-name top pressure, -click Pressure, -click Continue, and select top edge, -in Magni-

tude, enter 4e4 Pa

• Click Create Boundary Condition

-name fix bottom, -click Displacement/Rotation, -click Continue, and select bottom

edge, -in Magnitude, enter 0 for U2

• Click Create Boundary Condition

-name fix sides, -click Displacement/Rotation, -click Continue, and select left and right

edges, -in Magnitude, enter 0 for U1

• Click Create Boundary Condition

-name top pore press, -click Pore pressure, -click Continue, and select top edge, -in

Magnitude, enter 0 Pa

• Click Create Predefined Field

-name initial void ratio, -click Step, Initial, -Other, Temperature, -Continue, select

column part, -in Magnitude, enter 0.72, -under top menu: Model-Edit Keyword-9.

Model-1

you’re now looking at the input file; change Temperature to Ratio, -OK

(6) under Module, select Mesh

• Click Assign Mesh Controls

-select Structured and Quad

• Click Seed Part Instance, and select part

-Approximate global size: 1m

• Click Assign Element Type

-Pore Fluid/Stress, Quadratic, -unselect Reduced Integration

• Click Mesh Part

(7) under Module, select Job

• Click Create Job

• Click Job Manager and Submit, and wait until completed successfully; ignore History

output warning, if there is one

-click Results

(8) under Module, select Visualization



176

• Click Result Options

-unselect Average element output at nodes

• pull-down Result, Field output, and choose data to view and Plot pore pressure

• select Create XY Data, Path, to view displacement of top node versus time

you could turn on Nlgeom to see nonlinear geometric effects, but since load is so small,

there is little difference between the two solutions

Figure B.1 shows the result of consolidation simulation at saturated condition. It describes contour

of excess pore water pressure due to top pressure in ABAQUS program.

Figure B.1: Contour of excess pore water pressure in ABAQUS



177

B.2 SEEP/W–SIGMA/W

SIGMA/W is a finite element software that can be used to perform stress and deformation

analyses of geotechnical problems. Also SIGMA/W can be used together with SEEP/W to perform

a coupled consolidation analysis. SIGMA/W calculates the deformations results from pore water

pressure changes while SEEP/W calculates transient pore water pressure changes. This procedure

is used to simulate the consolidation process in partially saturated soils.

(1) In Set–Page option, default size is Width:266.7, Height:203.2, and Units is mm.

(2) In Draw option, draw (3m x 1m) size of soil column as shown in Figure B.2

Figure B.2: Insitu

(3) In KeyIn Analyses–settings option, Analysis Type: Insitu, and Initial PWP Conditions

from: Water Table.

(4) Change KeyIn Analyses into Analysis Type: Coupled Stress/PWP and Parent: Insitu.

(5) In this option, decide Time: Duration and Time Steps, for example 86400sec (1day) and

100 time steps.
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(6) In KeyIn Materials option, decide Vol. Water Content Fn and Hyd. Conductivity Fn using

Hydraulic Properties section as shown in Figure B.3.

Figure B.3: KeyIn Materials

(7) in KeyIn Vol.Water Content Functions option, input van Genuchten parameters and then

input other parameters based on Vol.Water Content Functions in Hydraulic Conductivity

Functions option.

(8) in KeyIn Boundary Conditions option, fix both sides of soil column and bottom as shown

in Figure B.4.

(9) in KeyIn Hydraulic Boundary Functions option, input seepage force (5.83e-7 m/s) and

input traction (1000 kPa) in KeyIn Stress Boundary Functions as shown in Figure B.5.

(10) in Draw Mesh Properties option, decide element size as shown in Figure B.6.

(11) After input is completed, run this problem using Tools–Solve Analyses option.

(12) Click Contour, and then check the distribution of pore water pressure and displacement as

select Set Locations option.
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Figure B.4: KeyIn Boundary

Figure B.5: KeyIn Stress Boundary Functions
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Figure B.6: Draw Mesh Properties

Figure B.7: Contour Draw Graph
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B.3 UNSAT-H

UNSAT-H model was developed at Pacific Northwest National Laboratory (PNNL) to assess

the water dynamics of arid sites and, in particular, estimate recharge fluxes for scenarios pertinent

to waste disposal facilities at the Hanford Site. The UNSAT-H model accomplishes this goal by

simulating soil water infiltration, redistribution, evaporation, plant transpiration, deep drainage,

and soil heat flow.

The UNSAT-H code is designed to simulate water and heat flow processes in one dimension

(typically vertical). UNSAT-H can simulate the isothermal flow of liquid water and water vapor,

the thermal flow of water vapor, the flow of heat, the surface energy balance, soil-water extraction

by plants, and deep drainage. Information about where to find the code, updates, and lessons

learned can be found at http://hydrology.pnl.gov/.

UNSAT-H code composes of three *.exe files, such as din301, uns301, dout301. Start to work

din301.ext with input file, and then execute uns301 and dout301 in due order. In Window OS, the

code can be worked with ‘Command Prompt’ as shown in Figure B.8. Figure B.8 shows Command

Prompt window and input file which has all information to simulate a flow problem of partially

saturated soil. User makes *.inp based on UNSAT-H Input Manual. The manual is organized into

five sections:

(1) Options, Constants, and Limits

(2) Soil Property Information

(3) Initial Conditions

(4) Plant Information (optional)

(5) Boundary Conditions

For example, input file (*.inp) in Figure B.8 shows information for flow problem in silt in this study.

Figure B.9 shows the output file obtained from executing dout301.exe.
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Figure B.8: Start of UNSAT-H code

Figure B.9: Output file of UNSAT-H code


