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Oscillators used in timing standards aim to provide a universal, well defined frequency output

with minimal random fluctuations. The stability (precision) of an oscillator is highlighted by its

quality factor Q = ν0/δν, where ν0 is the output frequency with a frequency linewidth of δν. To

achieve a high timekeeping precision, an oscillator can operate at high frequency, allowing each

partition of time, defined by one oscillation, to be short in duration and thus highly precise. In

a similar fashion, because oscillator linewidth determines resolution of the output frequency, a

narrow linewidth will yield a highly precise measure of time or frequency. High quality factors are

advantageous for two reasons: i) frequency stability sets a fundamental limit to the consistency a

clock can partition units of time and ii) measurement precision aids in the the study of physical

effects that shift the clock frequency, leading to improved oscillator output control. In the pursuit

of high quality factors, state-of-the-art microwave clocks match microwave oscillators to narrow

atomic transitions achieving starting oscillator quality factors approaching Q ∼ 1010. Exploiting

their starting quality factor in tandem with atomic transition properties allows microwave standards

to reach a clock frequency uncertainty and precision of a few parts in 1016 after a month of averaging.

Indeed, with this level of timekeeping, microwave clocks now define the SI second and play central

roles in network synchronization, global positioning systems, and tests of fundamental physics.

Naturally, a direct approach to better timekeeping is forming oscillators with higher quality

factors, partitioning time into finer intervals. This is realized in the next generation of atomic clocks,

based on ultra-narrow optical transitions in an atom, capable of reaching quality factors of Q > 4×

1015. Optical clock quality factors allow operation of frequency standards in a measurement regime

unobtainable by microwave standards, promising orders of magnitude improvement in frequency

metrology. This thesis describes the design and realization of an optical frequency standard based
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on an ensemble of optically trapped, laser-cooled 171Yb atoms. The frequency stability between

two 171Yb clock systems is presented here, demonstrating the first realized 10−18 level measurement

precision reaching 1.6 × 10−18 after 25,000 s of averaging, a 100 fold improvement over state-of-

the-art microwave sources. Leveraging a much improved measurement precision allows a detailed

investigation of key physical phenomena that shift the atomic transition frequency. An in-depth

study of these systematic shifts is discussed in detail here, with a focus on blackbody radiation

shift and trap light induced frequency shifts. This study results in a total fractional uncertainty

in the ytterbium clock transition frequency of 2.1 × 10−18. Finally, the robust operation of 171Yb

clock systems at the 10−18 fractional level is discussed in detail here.
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Chapter 1

The Atomic Clock

Periodic physical systems are the basis we use to establish standards of time and frequency.

Our unit of time, both conceptual and realized, provides the foundation for our base International

System of Units and plays a central role in network synchronization, global positioning systems,

and tests of fundamental physics. The next generation of timekeeping at 1 part in 1018 permits new

timing applications in relativistic geodesy, enhanced Earth- and space-based navigation, telescopy,

and new tests of physics beyond the Standard Model. This thesis details the experimental inves-

tigation and operation of two spin 1/2 ytterbium optical lattice clocks with timekeeping ability at

the 10−18 level. This includes: i) A detailed description of the realized operation of a ytterbium

optical lattice clock. ii) An experimental examination of optical clock noise characteristics and

measurement precision. iii) A Careful study of all physical mechanisms responsible for systematic

shifts of the clock frequency, with an emphasis on blackbody radiation and lattice light shifts.

1.1 Short history of timekeeping

Since antiquity we have incorporated the notion of time to order events in the past, present,

and future, and exploited natural bodies to provide fully adequate timekeeping. The beginning of

maritime travel represented the first widespread desire for ultra-precise and highly accurate man-

made timekeepers [119]. Specifically, a ship’s latitude could be obtained from angle referencing

celestial objects; however, longitude required knowledge of local ‘ship’ time relative to starting

location time [119]. To push the limits of chronography, clockmakers connected a robust periodic
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mechanical oscillating mechanism to a counter, setting the ground work for timing instrument

construction and the concept of clock performance. That is, the practical realization of a timing

system must adequately divide time (be precise), it must order events into the past, present and

future (be accurate) and it must perform the latter measurements promptly so they are of value.

Oddly, transportation by sea is responsible for some of the best mechanical oscillators ever created.1

The conception of Quantum Mechanics at the onset of the 20th century provided the next

great leap in timing innovation. Now the natural properties of atoms could be utilized in man-

made timekeeping devices. Atomic transitions are beautifully suited for timekeeping: they “tick” at

high and well-defined transition frequencies, they are isolatable, immune to environmental effects,

and exist in abundant identical copies. By 1967 the second was redefined in terms of an energy

oscillation in the cesium atom rather than the Earth’s motion. The second is now: “the duration of

9, 192, 631, 770 periods of the radiation corresponding to the transition between the two hyperfine

levels of the ground state of the caesium-133 atom”[91]. This definition exploits the fast cesium

microwave transition oscillation (∼9 billion times a second) and provides a highly precise measure

of time or frequency. With over 50 years of development, microwave clocks have provided immense

insight into the physical mechanisms that modify transition frequencies in cesium and cesium-like

atoms. Uncertainties (accuracies) of state of the art cesium standards now reach a few parts in

1016 [53]. Derivatives of this effort include: Timekeeping and timing transfer at the 10−16 level,

International Atomic Time (TAI), Coordinated Universal Time (UTC), direct verification of general

relativity, GPS navigation, definition of geoid potential, the leap second, etc.[77, 78, 128, 25]

A natural progression to higher timekeeping performance is the use of higher frequency (op-

tical) transition oscillators. Indeed the finer we divide time, the more precisely we can order events.

Consequently, the invention of the laser in 1960 represents an important milestone shaping time-

1 This was serious business as incorrect perception of ship location could mean life or death on an open body of
water.
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keeping today [110]. Still under development, laser technology in the visible spectrum is providing

gains in frequency metrology, laser cooling, ultra-narrow atomic spectroscopy, quantum manipula-

tion of atoms, and frequency comb metrology [107, 120, 65, 14, 137]. As optical technology matures,

the next generation of timekeepers based on optical oscillators matched to atomic transitions will

subdivide the second into quadrillions of pieces giving an even more precise measure of time. The

ability for an optical clock to measure mHz shifts in its optical frequency or 1 part in 1018, ushers in

the next generation of timing, enabling new and exciting applications for precision measurements.

1.2 Oscillator measurement precision and accuracy

As described above, two qualities determine the nature of a frequency standard: timing

accuracy and timing precision. The former results from a combination of systematic uncertainty

(effects that alter the standard’s periodicity from its natural, unperturbed state), and statistical

uncertainty from repeated measures. The latter describes our ability to subdivide time set by

oscillator instability or how the ticking fluctuates over a measurement period.2 To illustrate these

essential properties, imagine a pendulum clock. The periodicity of the pendulum swing provides the

clock timebase. With ample measurements, the correct value of period or frequency is determined by

the pendulum design, with deviations resulting from systematics (e.g., slow changes in temperature

and air pressure which affect the pendulum clock). How the pendulum period or frequency changes

over time limits the consistency we can partition units of time, setting the measurement precision.

Oscillator instability and uncertainty form a symbiotic relationship: we use instability to

study systematic effects, and knowledge and control of systematic effects gives better oscillator

instability. However, no time or frequency standard can make a timing measurement better than

the statistical precision set by its instability. Further, the systematic uncertainty of an oscillator’s

frequency is often constrained by its long term instability. Therefore, although accuracy is essential

for completely characterizing a frequency oscillator, the instability may be the most important (and

2 This will also have a statistical uncertainty set by the measurement taken.



4

limiting) property of an atomic standard.

1.3 Optical atomic quantum oscillators

In the pursuit of exquisite timekeeping, we turn our attention to optical quantum oscillators,

exploiting ultra-fast optical transition oscillations as a periodic pendulum. An optical atomic clock

in its most basic sense is a local oscillator (laser) whose frequency is stabilized relative to an atomic

transition, usually in a collection of neutral atoms or a single trapped ion. Ticking ∼105 times faster

than microwave systems, optical clocks divide the second into finer intervals, allowing a more precise

measure of time. To illustrate this, we consider the starting stability (precision) of a frequency

standard, given by the product of the resonance quality factor, Q, and the measurement signal-to-

noise ratio (S/N). For an optical source, Q is determined by the transition frequency divided by the

transition linewidth, typically 1014. In many optical atomic clocks, the clock transition is detected

using an electron shelving technique with a typical S/N of up to ∼100. Therefore, with a single

clock measurement (about 1 s) a fractional precision of 10−16 can be achieved; a level of precision

reached by cesium microwave frequency standards only after a month of operation [53].

To enjoy the potential stability of a universal optical quantum oscillator we must account for

all systematics that modify the natural transition frequency. Exploiting high optical measurement

stability to characterize systematics can produce optical clocks with uncertainties superior to those

of the best microwave atomic clocks. Of course, further reduction and control of a system’s uncer-

tainties will likely offer improved instability. Consequently, both oscillator stability and uncertainty

play a role in realizing the true potential of a high frequency quantum oscillator, thereby unlocking

measurements unobtainable by microwave standards: timekeeping at 10−18 and beyond.

1.4 Alkaline earth and alkaline earth-like atoms

Ideal quantum oscillators in an atomic clock would possess a means to achieve high S/N

measure of an optical transition, easy quantum control, ultra-narrow atomic resonance (giving
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a high Q value), and limited sensitivity to systematic effects. Fortunately alkaline earth and

alkaline earth-like atoms, which are characterized by an atomic structure with two outer electrons,

have these qualities freely provided by nature through the interaction of two valence electrons

and internuclear structure. These atoms have ground state electrons in the S orbital and optical

transitions to a low lying P orbital. The combination of two spin 1/2 particles divides the electronic

spin structure, S, into a singlet spin state (electronic spin configuration S = 0) and triplet spin

states (electronic spin configuration S = 1). Considering only the dipole interactions, transitions

would be forbidden between spin singlet and spin triplet states [116]. As a consequence, 3Pj triplet

manifold lifetimes can be extremely long (few thousand years), that is to say, they can posses a

vanishingly narrow atomic transition linewidth (Q that is effectively infinity). However, beautiful

atomic structure develops when these two electron systems are naturally or artificially perturbed

from the ideal.3 In the perturbed case the 3Pj manifold lifetimes become quenched, broadening

their transition linewidths and shortening state lifetimes. This can produce a quantum system

adaptable for collection, cooling, and spin-polarizing of atoms [101]. States with limited angular

momentum grant reduced sensitivity to light field polarization effects [64]. Strong dipole transitions

out of the 1S0 ground state facilitate fast photon scattering for high S/N detection of long lived,

ultra-narrow atomic transitions. The combined properties of alkaline earth and alkaline earth-

like atoms provide quantum systems favorable for a high-performance clock: adaptability for the

collection and isolation of atoms, high S/N detection, high but realistic Qs, and potentially low

sensitivity to external environments.

1.5 Ytterbium characteristics

Ytterbium, an alkaline earth-like atom from the lanthanide series, offers seven stable isotopes

from which one can select the perfect quantum oscillator specimen. Of particular interest is the

fermionic isotope 171Yb because it enjoys hyperfine interaction from its simple nuclear spin (I=1/2)

3 From LS coupling, a nonzero nuclear spin, and an external magnetic fields
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and possesses the qualities described above for a high-performance clock [136]. The hyperfine

interaction mixes a small amount of the 1P1 and 3P1 states into 3P0. The result is an ultra-narrow,

laser accessible, limited sensitivity, transition at 578 nm with a natural linewidth of ∆ν≈10 mHz.

The hyperfine interaction with a J = 0 → J = 0 states produces two energy levels, ±1/2mF in

the ground and excited sates with opposite magnetic sensitivity that can be averaged to eliminate

first order magnetic effects shifting the clock frequency. Furthermore, the 1S0-1P1 and 1S0-3P1

transitions provide a way to cool and collect 171Yb, first using the strong dipole transition at

399 nm (∆ν≈30 MHz) and then the weaker intercombination transition at 556 nm (∆ν≈180 kHz),

respectively. Atomic population can be shuffled to one of the mF = ±1/2 ground states by applying

circularly polarized light, resonant with 3P1. Additionally, because the 1S0-1P1 transition has a fast

scattering rate, it can be used for a high S/N detection of ground state atom population. Combined,

the properties of 171Yb make this atom an ideal optical quantum oscillator: high S/N detection,

a high (but realistic) Q with limited magnetic sensitivity (J = 0), straight forward laser cooling

systems, and quantum control on the 1S0-3P1 transition. Moreover, the 3Pj manifold transitions

are easily accessible with robust laser systems, advantageous for continuous clock operation. An

energy level diagram and relevant electronic states of 171Yb are given in Figure 1.1.

1.6 Interrogation of free space atoms

To this point we have only considered ideal quantum oscillators free from motion. However,

in nature a collection of gaseous atoms will have a characteristic temperature, with a corresponding

velocity distribution given by the Maxwell-Boltzmann law. Additionally, a single atom moving in

a laser field will experience a detuned field frequency relative to an atom at rest of

ω = ω0

(
1∓ v

c

)
(1.1)
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  λ = 578 nm Δν =10 mHz 

  λ = 556 nm Δν =180 kHz 

1P1 

3Pj 

1S0 

3P2 

3P1 

3P0 

e- 
 

e- 
 

171Yb 

  λ = 399 nm Δν = 28 MHz 

  λ = 507 nm 
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m-1/2 

m+3/2 
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Fine structure Hyperfine structure 

Figure 1.1: Relevant Yb atomic energy levels and transitions, including laser cooling transitions
(399 and 556 nm), and the clock transition (578 nm). Resonant 556 nm circularly polarized light
moves atomic population to one of the ground mF states through the 3P1 hyperfine manifold, spin
polarizing the atomic sample. The two clock transitions are averaged, exploiting opposite magnetic
sensitivity of mF = +1/2 vs. mF = −1/2. 1P1 provides a closed, fast, cycling transition for high
S/N detection of ground state occupation.
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where v is the velocity component parallel to the source, ω is the transition frequency (in radians

per second), and c is the speed of light [23].4 This phenomenon is commonly known as the Doppler

effect. At finite temperature, T , our collection of clock atoms will have a Gaussian distribution of

velocities with a cumulative effect of broadening a transition spectrum beyond the natural linewidth,

with full width at half maximum (FWHM) of

∆νFWHM =

√
8kBT ln(2)

mc2
ν0 (1.3)

where kB is Boltzmann’s constant, ν0 is the natural transition frequency (in Hz), and m is the

mass of the atom [23]. Consequently, the Doppler width of our clock transition at room temper-

ature is ∼488 MHz or 9.5 × 10−7 in fractional frequency (∆ν/ν0). Indeed the most direct way

to limit ∆νFWHM is reducing the gas temperature. Commonly this is done via Doppler cooling,

where red detuned lasers cool the atomic sample by exploiting the presence of a Doppler shift to

preferentially absorb a photon momentum opposite the motion of an atom [30, 97]. Excited atoms

spontaneously decay, re-emitting photons in all directions, resulting in net kinetic energy removal

from the ytterbium gas, lowering its characteristic temperature. As this process requires the re-

peated preferential photon absorption (cooling) followed by re-emission in all directions (heating),

atom-photon momentum exchange reaches thermal equilibrium with final atomic temperature on

the order of

TDoppler =
~
2

Γ

kB
. (1.4)

where Γ is the natural linewidth of the resonance (in radians per second) [86]. In our ytterbium

system we cool atoms on the 1S0-3P1 intercombination transition at 556 nm, with a linewidth of

∼ 180 kHz, reaching temperatures of several micro-Kelvin. Assuming a final atomic temperature

4 This Doppler shift equation is only accurate to first order in v/c. Expanding the relativistic Doppler formula as
a power series in v/c will give

ω = ω0

(
∓v
c

+
1

2

v2

c2
. . .

)
(1.2)

where the linear term is the first order Doppler effect and the quadratic term yields the second order Doppler effect.
See chapter 6 for more details.



9

of 6 µK, the Doppler broadening is limited to ∼70 kHz or 1.3 × 10−10 fractionally, some 8 orders

of magnitude above our desired level of performance.

Finally, even considering an ideal case of a single photon absorbed by a stationary atom,

conservation of momentum and energy requires the atom to recoil, shifting the perceived transition

frequency. Although this recoil energy is small, it has the consequence of an emitted photon (from

a stationary atom) having incorrect energy for absorption for the exact same transition by another

identical motionless atom. If our clock uncertainty was limited by the recoil energy of the emitted

photon,

∆νrecoil =
h

2mλ2
, (1.5)

that would correspond to a linewidth of ∼3.5 kHz or 6.7×10−12 fractionally. Consequently, Doppler-

free, and recoil free techniques are required if performance reaching microwave standards and

beyond is desired.

1.7 Spectroscopy of ultra-narrow optical transitions at the Hz level

An atom interrogated in free-space requires the conservation of both energy and momentum

giving rise to recoil and Doppler effects. However, a quantum oscillator confined to a dimension

less than a transition wavelength (known as the Lamb-Dicke regime) experiences no Doppler or

recoil shifts, rather, its motional characteristics are dictated by the trapping potential [36]. We

can explain this behavior semi-classically by considering an atom confined to a quantum harmonic

potential, submerged in a large (relative to harmonic confinement) electromagnetic wave. As the

atom oscillates within the trap, it experiences a corresponding phase oscillation of the electromag-

netic wave at the trap frequency. Because the phase oscillation amplitude is < 2π and sinusoidal,

the atom enjoys a time averaged atomic velocity of zero, with sideband features at the motional

frequency. Additionally, in the limit of tight atomic confinement in the harmonic potential, the

recoil shift is absent as well because the net momentum change relative to the trapping energy is

minimal. The light momentum is not lost, but simply transfers to the atom-harmonic potential
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‘structure’ with minimal system momentum change.

To eliminate Doppler related broadening using the Lamb-Dicke suppression, we engineer an

off resonant, conservative dipole light trap, or optical lattice, spatially confining our ytterbium

atoms in a harmonic oscillator-like potential. The extent of confinement is quantified by the Lamb-

Dicke parameter, η, which gives the relative spacial confinement of the atomic wave function, ∆x,

to the clock transition laser wavelength,

η ≡ k∆x = k

√
~

2mω0
=

√
ωr
ω0

(1.6)

where ω0 is vibrational frequency of the harmonic potential, and ωr is the recoil shift (in radians

per second). Operating in the Lamb-Dicke regime (η << 1), we can make two types of transitions:

carrier transitions where the internal quantum state changes but not the atomic motion and side-

band transitions when the atomic motional state is changed along with its quantum state. The

Hamiltonian of the combined atom- and quantum harmonic oscillator- system interacting with a

electromagnetic plane wave has solutions to the time-dependent Schrodinger equation analogous

to the Rabi flopping solution of a two level system. The Rabi flopping frequencies between ground

and excited states in motional state, n, can be expressed as [134, 72]:

Ωn,n−1
∼= η

√
nΩ0

Ωn,n
∼= Ω0 (1.7)

Ωn,n+1
∼= η

√
n+ 1Ω0

where Ωn,n−1, Ωn,n, and Ωn,n+1 are the Rabi rates for the first order red sideband, carrier, and first

order blue sideband respectively, and Ω0 is the Rabi flopping frequency of the atom-electromagnetic

wave interaction. The relative strength of sideband transitions to the carrier is proportional to η2,

consequently as η → 0, red and blue sideband intensities become greatly reduced [72]. This has

added effects of suppressing sideband line pulling of the (natural) carrier frequency and promoting

homogenous excitation of the clock transition in large atomic populations as the dominant Rabi

rate, Ωn,n, remains independent from motional state occupation.
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The optical lattice is generated by interfering counter-propagating laser beams of the same

frequency that result in an optical standing wave with periodic electric field potentials every λ/2.

Using a Gaussian beam, counter-propagating wave interference creates a spatially periodic array

of 2-D pancake shaped potentials, confined radially by the Gaussian parameters. Atom trapping is

a consequence of the atomic electronic polarizability interacting with the spatial gradients of the

electric field. Additional laser beam interference can create multi-dimensional (1-D, 2-D and 3-D)

confinement of arbitrary construction. Ultimately we can adjust four components when engineering

an optical lattice: laser frequency, polarization, electric field intensity (potential depth), and optical

wave interference via laser alignment.

Aligning the clock interrogation laser along the direction of tight lattice confinement elimi-

nates Doppler and motional effects while probing the ultra-narrowband electronic ‘clock’ transition.

With the clock transition well resolved, we match our optical local oscillator to the atomic frequency,

creating our clock timebase. Although the optical lattice induces a Stark shift on the atoms’ elec-

tronic states, the net effect can be nearly canceled by operation at the so-called ‘magic’ wavelength,

λm, where both electronic states of the clock transition are shifted equally [64]. A key advantage of

the optical lattice is that many (103 to 106) atoms are isolated and confined in the lattice potential.

All of these atoms are interrogated simultaneously, thereby improving the atomic detection signal-

to-noise and thus the instability beyond that of a single quantum oscillator. Assuming a starting

ytterbium transition of ∼ 1 Hz, and a S/N of 100, we find our beginning fractional measurement

precision at 1 s to (theoretically) be ∼ 2×10−17,5 where atomic noise properties allow enhancement

of measurement precision via averaging of frequency information. As lattice clocks combine high

S/N with an ultra-narrow optical transition, many have anticipated these clocks realizing the goal

of 10−18 fractional time and frequency measurement precision and accuracy.

5 See Chapter 3 for more detail. At the time of this writing, clock performance at this level has yet to be achieved
for times < 10 s.
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1.8 Applications of atomic clocks at the 10−18 level

A measurement at 1 part in 1018 is equivalent to specifying the age of the known universe

to a precision of less than one second or Earth’s diameter to less than the width of an atom. To

illustrate the power of this measurement capability, we first consider the gravitational redshift, a

consequence of general relativity dictating that clocks ‘tick’ more slowly in gravitational fields. This

phenomenon has long been accounted for when remotely comparing atomic clocks with gravitational

elevations differing by many meters or km. A clock measurement at the 10−18 fractional level can

be used to resolve spatial and temporal fluctuations in Earth’s gravitational field equivalent to

1 cm of elevation, offering a new tool for geodesy, hydrology, geology, or perhaps even climate

change studies [112, 29, 66, 113]. Space-based implementations can probe alternative gravitational

theories, e.g., by measuring red-shift deviations from general relativity with a precision that is

three orders of magnitude higher than the present level [113]. Additionally, although present-

day temporal and spatial variation of fundamental constants is known to be small, 10−18-level

clock measurements offer up to two orders of magnitude tighter constraint on these variations,

the theories predicting them, and may provide insight into dark mater [43]. Finally, timekeeping

improvements directly benefit navigation systems, telescope array synchronization (e.g., very-long-

baseline interferometry), secure communication, quantum control of atomic systems, interferometry,

and likely lead to redefining the SI second [68, 15, 43].

1.9 Thesis overview and perspective

With the realization of the first optical clocks around 2000, there was great excitement over

the potential high strides atomic clocks were poised to make. One of the first optical clock proposals,

even speculated that with a continued effort, frequency metrology at 1 part in 1018 could be possible

[64]. In a field where historically
√

2 improvement was an immense achievement, we now where

faced with opportunities to advance our timekeeping abilities by 100x, 1000x, or more. Indeed, over
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the past 15 years, such strides have been realized, with each milestone opening new applications

and measurement possibilities. In this thesis I describe the first experimental realization of atomic

clocks operating at the proposed 10−18 level. These results require the understanding and control

of multiple key physical effects, which will be described in detail here. As a result, we demonstrate

clocks that not only reached 10−18 in terms of fractional frequency measurement precision but also

in terms of uncertainty relative to the natural ytterbium ‘clock’ transition frequency.

The experiments done to complete this study used two complex apparatus, each formally

referred to here as a ‘ytterbium optical lattice clock’. The complete study was a result of a ded-

icated research team effort, however, I was involved in virtually all aspects of the measurements

performed here. In particular, my efforts focused on the ytterbium apparatuses, primarily the first

ytterbium system, which I operated independently for multiple years. Our goal as a team was

simple: demonstrate the best measurement performance possible, then use this capability to study

physical effects altering the natural ytterbium clock transition. My efforts originally concentrated

on the construction and stabilization of laser systems used to control and manipulate ytterbium

atoms. In parallel I began working with Jeff Sherman, Nathan Lemke, and Andrew Ludlow on

measuring the differential static polarizability of the ytterbium clock transition (Chapter 4). We

continued our efforts with Kyle Beloy to measure the dynamic correction factor needed to de-

scribe blackbody radiation interaction with ytterbium. At this time, Jeff, Andrew, Nathan, and

I worked on construction of a second ytterbium system. After completing the second ytterbium

clock apparatus we began investigations of our measurement performance. This resulted in the

first demonstration of atomic clocks operating at the 10−18 level, and my first author publication

of our stability result in Science in 2013 [55].

After this effort I continued to work with Andrew Ludlow and Kyle Beloy on the construction

of a blackbody radiation shield as we preceded with the second part of our group goal. With the help

of Nate Phillips running the second ytterbium system we directly observed a blackbody radiation

shift in our ytterbium clock. After a long, and dedicated effort, we completed our study of the
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blackbody radiation shift at the 10−18 fractional level (Chapter 4 of this thesis) and resulted in my

second author publication in Physical Review Letters.

Then I started to work with Nate Phillips on the first lattice light shift measurements on the

second ytterbium clock system (Chapter 5). Work progressed to a point where lattice light shift

measurements could continue with a single system, and I began to measure other systematics on

the first ytterbium system. At this time, a visiting professor from University of Korea, Tai-Hyun

Yoon, spent a sabbatical year working in our group. With my lead, Tai and I measured a host of

systematic effects for the ytterbium optical lattice clock (Chapter 6), notably the DC stark shift

and Zeeman shift (joined later by Will McGrew on the Zeeman measurements). At this time, a

postdoc, Marco Schioppo, was making improvements to the clock laser. Marco Schioppo, Will

McGrew, and I continued to study Doppler related light shifts, and phase chirps that can develop

from delivering stabilized clock light to the ytterbium atoms.

Parallel to this investigation, I began forming a new lattice laser system to be used by both

ytterbium apparatus. This included providing an interface with the existing second ytterbium

lattice system, and constructing a new optical system around the first ytterbium apparatus to

accommodate trapping ytterbium in a vertically oriented lattice with density shifts in the 10−18

level, able to be characterized to the 10−19 level. This began our efforts to quantify lattice light

shifts for different lattice sources on both ytterbium systems, and complete the study of lattice light

shifts, an effort headed by a postdoc Roger Brown. With Marco Schioppo’s dedicated efforts on

the clock laser, combined efforts to characterize clock derived systematic shifts, and my vertically

oriented lattice that could transfer stabilized clock light to the atom reference frame, our group

demonstrated a clock construction with near elimination of Dick noise using Ramsey spectroscopy,

with a potential, four clock stability of 6 × 10−17/
√
τ with τ in seconds of averaging [114]. My

final work involved a second investigation of the background gas shift headed by Will McGrew. We

investigated two atomic background gasses (ytterbium and hydrogen) and the measurement and

control of these shifts at the 10−19 level. This completed the last systematic study needed for 10−18
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level clock uncertainty relative to the natural ytterbium ‘clock’ transition frequency.



Chapter 2

Experimental Operation of the NIST Ytterbium Clock

Ytterbium is a metallic element with a bulk property appearance similar to the mineral iron

pyrite, more commonly known as fool’s gold. Realization of an atomic clock based on this quantum

oscillator requires performing high resolution spectroscopy on a single isotope of ytterbium and

matching the frequency of an optical local oscillator to its electronic resonance. Here we detail

the procedure transforming metallic ytterbium to an optical frequency timekeeper. This includes

the trapping of 171Yb, formation of a specially designed optical lattice, constructing a high quality

local oscillator for spectroscopy on the 1S0-3P0 clock transition, and a control system linking each

clock component for autonomous operation.

2.1 Laser cooling and trapping of ytterbium atoms

Our two clock apparatus, referred to here as Yb-1 and Yb-2, independently heat a solid

nugget of ytterbium in an effusive Knudsen cell (atomic oven) housed in a high vacuum (10−7

Torr) enclosure. When heated (∼ 800 K) the oven produces a thermal beam of ytterbium atoms

that propagates along the axis of the vacuum chamber through a differential pumping area to a

separate ultra-high vacuum (10−9 Torr) section constructed to have optical axis for laser cooling

and trapping. In the ultra-high vacuum section, Yb-1 and Yb-2 cool and collect 10 - 50 million

171Yb atoms from the thermal beam utilizing the strong, closed 1S0-1P1 dipole-allowed transition

at 399 nm. First, a counter-propagating 10 mW, 399 nm, laser beam detuned ∼ 120 MHz below
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resonance slows 171Yb atoms from the thermal beam as they approach the trapping volume.1 Then,

the slowed atoms are confined and laser-cooled in a blue magneto optical trap (MOT) consisting

of three nearly-orthogonal, retro-reflected 1 mW, 399 nm beams detuned 15 MHz below resonance

and a magnetic field gradient of ∼3 mT/cm, generated by a pair of anti-Helmholtz coils [104]. The

fast decay rate of the 1S0-1P1 transition ultimately limits the temperature of the 399 nm MOT to

∼ 1 mK from random photon scattering. Trap loading times can rage from 30 ms to 1 s depending

on desired MOT population.

A second stage of laser cooling using the weaker 1S0-3P1 intercombination transition at 556 nm

forms a green MOT, which further reduces the atomic temperature to the µK level. We step the

magnetic field gradient and apply increasingly resonant 556 nm light in three stages to efficiently

transfer atoms from the blue MOT into the green MOT, while preparing the atomic sample for

the lattice. Typical transfer efficiencies from 399 nm MOT to 556 nm MOT are > 90%, largely

dependent on initial green MOT parameters. The first stage of green MOT cooling, initiated during

the blue MOT, applies 300 µW of 556 nm laser light red detuned by 2 MHz for ∼17 ms after the

blue MOT cooling. In the second stage we step the 556 nm frequency closer to resonance by 1 MHz,

doubling the first stage green MOT field gradient to ∼2 mT/cm, which compresses the atomic cloud

and ensures a better overlap with the optical lattice potential. Third-stage green MOT detuning

and optical power are reduced to <500 kHz and <30 µW respectively, both tuned to regulate the

final atomic atom number, and temperature between 4-25 µK, with a minimum largely defined by

the Doppler-cooling limit. Second- and third-stage green MOT cooling times last 20 ms and up to

50 ms respectively, depending on desired ensemble temperature. At the tens of µK level, our final

atomic sample of several million ytterbium atoms is sufficiently cold to be trapped in our lattice

potential.

1 No Zeeman slower is employed
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2.2 The optical lattice

The lattice light trap is an electromagnetic standing wave formed by interfering two counter

propagating laser beams, generally of the same frequency and polarization. The lattice wavelength

is fixed at λm ∼759 nm where the 1S0 and 3P0 states in ytterbium have equal Stark shifts [73]. We

employ a red-detuned lattice where the polarizability of 171Yb enables dipole traps in areas of high

laser field intensity.2 In this way, atoms are localized to a volume less then a transition wavelength

and normally large ac-Stark shifts cancel, preserving the natural 1S0 to 3P0 transition frequency.

Consequently, special attention is given to lattice characteristics (spectral purity, frequency, formed

dipole trap...) so this potentially highly perturbative effect can be well controlled.

2.2.1 Lattice light source

The optical lattice potential must be sufficiently deep to trap atom ensemble temperatures

determined by the final green MOT. Additionally, high spectral purity is required for exactly

matching the ac-Stark shifts of 1S0 and 3P0. Fortunately the common Titanium Sapphire laser

(Ti:S) offers excellent power and spectral purity at the desired lattice wavelength λm. Each Yb

system’s lattice is derived from a distinct (Ti:S) laser; one is built with all intracavity elements tuned

to operate at 759 nm (Yb-1), and the other is injection locked by an external cavity diode laser

near 759 nm (Yb-2). Power output can range from 2 W-5 W depending on operation parameters

with a typical line-width of 50 kHz. The Ti:S output power spectrum is further filtered by an

interference Bragg grating (∆λ = 0.05 nm) eliminating amplified spontaneous emission away from

λm. For additional frequency stabilization, a small fraction of the output from ether lattice system

can be sent via polarization-maintaining (PM) optical fiber to a reference optical cavity, fixing the

lattice frequency.3 Feedback to an intra-cavity piezoelectric transducer (PZT) stabilizes the Ti:S

2 1S0 and 3P0 Stark shift can be matched in a blue-detuned lattice where atoms are trapped in regions of low
electric field intensity

3 Reference cavity drift is ≤ 100 kHz/day
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lattice laser frequency to a reference cavity resonance.4 A small fraction of lattice light is sent to

a frequency comb for an absolute frequency measurement.

2.2.2 Lattice frequency, amplitude, and polarization control

Each Ti:S output is frequency controlled by a unique acousto-optic modulator (AOM) that

shifts its respective output laser frequency to 394,798,271.1(5) MHz for confinement of ytterbium

atoms near λm. The laser frequency difference between the Ti:S of Yb-1 and that of Yb-2 can

be directly detected in a heterodyne optical interferometer. This heterodyne beat is stabilized

to 162 MHz using an radio frequency (RF) delay line interferometer, with Yb-1’s laser frequency

chosen higher than that of Yb-2. An AOM downshifts Yb-1’s laser frequency by 82 MHz, where

another AOM upshifts Yb-2’s frequency by 80.0 MHz, ultimately leading both to 394,798,271.1(5)

MHz, before the light is sent via PM fiber to the atomic systems. We efficiently transfer up to

∼2 W of optical power to the vacuum system for our lattice configurations. Feedback to AOM RF

power is used to intensity stabilize light delivered from each lattice system. For additional intensity

control at higher bandwidth, we employ an electro-optic amplitude modulator. A polarization cube

assures pure linear lattice polarization before the vacuum chamber. Additional λ/2, λ/4 waveplates

following the polarization cube are tuned to minimize birefringence induced ellipticity from fused

silica vacuum viewports.

2.2.3 Optical lattice potential

Yb-1 and Yb-2 are designed to accommodate multiple lattice configurations. We adopt

two techniques that generate lattice standing waves: a simple retro-reflected lattice beam, and

an optical buildup cavity. For the retro-reflection technique, incoming light is focused and retro-

reflected from the opposite side of the vacuum chamber and mode-matched to the incoming beam,

thereby forming trap at the focus. Alternatively, we generate standing waves by locking the lattice

4 Lattice frequency control at the MHz level is routine.
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laser output to an optical buildup cavity overlapped with our green MOT atoms. The enhancement

cavity exploits lattice power buildup to form a large lattice mode volume providing greater transfer

efficiency (higher atom number) from the green MOT while limiting atom-atom interaction effects

and allows for deep trap depths.

Both Yb-1 and Yb-2 enjoy a horizontally-oriented retro-reflected lattice. In this simple and

robust technique, 500 mW to 1 W of laser power is focused to 60 µm (1/e2 intensity diameter)

allowing for trap depths of ∼600 Er, routinely trapping 25,000 atoms. (recoil energy Er/kB =

100 nK) In later experiments, Yb-1 employed a retro-reflection lattice with different lattice param-

eters in the vertical direction. This vertical lattice possesses 400 mW to 2 W focused to 120 µm

(1/e2 intensity diameter) for trap depths of ∼ 400 Er, regularly trapping 100,000 atoms. Yb-2

employs an optical buildup cavity in the vertical direction by locking ∼200 mW of laser power into

a Fabry-Perot buildup cavity by means of the Pound-Drever-Hall (PDH) technique [37]. The lattice

enhancement cavity has a finesse ∼200, which increases the lattice power by ∼70x and allows trap

depths of ∼ 2000 Er for a focus of 320 µm. With this large trap mode volume, the Yb-2 vertical

lattice routinely traps ∼1 million or more ytterbium atoms. Light transmitted through the cavity

is intensity stabilized, preventing heating of atoms from amplitude fluctuations. In general, vertical

lattice potential configurations also include potential energy differences between lattice sites due to

the presence of Earth’s gravitational field.5 The above lattice configurations allow trapped atoms

to range in number from several hundred to 1 million depending on final atomic temperature and

original blue MOT population.

2.3 Optical local oscillator

To approach the natural Q factor of the ytterbium clock transition, it is necessary to provide

additional stabilization of the stable laser source used as the optical local oscillator (LO) before

performing spectroscopy on the lattice trapped atoms. Standard practice is to pre-stabilize the clock

5 see Chapter 5
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laser to an isolated, high-finesse Fabry-Perot interferometer (optical cavity), thereby transforming

the problem of frequency stability to one of length stability. Current state-of-the-art optical cavity

performance achieves a length stability limited by thermal mechanical fluctuations of the mirror

surfaces corresponding to a thermal noise floor limited fractional frequency of ∼ 1×10−16 [90, 130,

61].6 A well-designed optical cavity will have well defined and fixed frequency resonances (high

finesse, high S/N, and limited length deviations), and be insensitive to the outside environment

(temperature, vibrations, electronic noise etc.). Current state-of-the-art optical clocks are still

limited by optical cavity noise, with notable performance advances resulting from more advanced

and higher performing optical cavities [62, 55, 89, 50, 4].

Our local oscillator starts as a tapered amplified quantum dot laser operating at 1156 nm

with a free running linewidth of 30 kHz. Using the PDH technique, we servo-lock its frequency to

a resonating mode of an isolated high-finesse, Fabry-Perot optical cavity to reduce the clock laser

linewidth from 30 kHz to ≤ 100 mHz for ultra-high resolution spectroscopy [37, 61]. To control

the thermal expansion (i.e. the frequency) we chose ultra-low expansion (ULE) glass as the cavity

spacer material with a thermal expansion zero crossing slightly elevated from room temperature. To

minimize and control the linear drift of the ULE spacer, we use a passive thermal isolation system.

The cavity is housed in box shaped vacuum enclose at ∼ 10−8 Torr. Inside of the vacuum there

are 3 nested layers of box shaped polished aluminum radiation shields providing passive thermal

isolation. The vacuum enclosure has an estimated thermal time constant of 4 days, providing 7

orders of magnitude thermal low-pass attenuation to 1 h time-scale temperature fluctuations. To

regulate the external vacuum enclosure surface temperature, there are 6 in-loop and 6 out-of-loop

thermistors (1 for each side) with corresponding resistive heaters. The temperature is set slightly

elevated from room temperature and servo-locked to the thermal expansion zero crossing of the

ULE cavity spacer. Five additional layers of silica aerogel cover the heater elements to provide

thermal insulation, decoupling the temperature servo control from the surrounding environment.

6 For perspective, usual length fluctuations in high performance optical cavities are less than the width of an atom.
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After ensuring stable temperature operation at the thermal expansion zero crossing, we im-

plement a vibration insensitive cavity construction [130, 129]. Acceleration induced deformation

of the ULE along the direction of gravity is reduced by suspending the cavity about points where

outer cavity mass slump matches inner cavity suspension contraction, preserving net cavity length.

Resting the cavity on four hemispherical Viton supports placed symmetrically about the cavity

center of mass reduces vibration insensitivity in the horizontal plane [130, 129]. With the optical

cavity now insensitive to both temperature fluctuations and mechanical vibrations we can reach

the fundamental Brownian thermal noise limit. To push the Brownian limit we employ several

room temperature strategies: (1) long ULE cavity (30 cm), (2) large beam size to average ther-

mal mechanical fluctuations of the mirror surfaces, and (3) mirror coatings and mirror substrates

with high mechanical quality factors [61, 50]. We also obtain several advantages from operating

in the near-infrared including low-loss dielectric mirrors, a more convenient wavelength for inter-

facing with frequency combs, and the potential use of crystalline mirror coatings. The stabilized

1156 nm light is sent to a periodically polled lithium niobate (PPLN) waveguide crystal that pro-

duces 20 mW of 578 nm light via second harmonic generation with a conversion efficiency of ∼20%

at a phase matching temperature of ∼ 36.4 C. Optical elements used in the clock laser system

are held on a breadboard suspended on an actively canceled vibration isolation platform providing

30-40 dB of isolation from noise ranging 5 Hz-100 Hz. The 578 nm light is distributed to Yb1

and Yb2 through fiber-noise-canceled optical fibers, and matched to 1S0-3P0 clock transition by

independently controlled AOMs. (See the Chapter 6 section of ‘Doppler shift, 1st and 2nd order’

for more detail)

2.4 Spectroscopy of the ytterbium clock transition

In the lattice, the ytterbium atoms are confined to the sub-wavelength level (also known

as the Lamb-Dicke regime), thereby eliminating Doppler effects in the direction of the clock laser

propagation, allowing high resolution spectroscopy of the ultra-narrow 3P0 triplet transition. Atoms
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Figure 2.1: Schematic of the NIST ytterbium optical lattice clock. All laser beams are fiber coupled
to the clock vacuum chamber platform. Not shown are the slowing, trapping and cooling 399 nm
and 556 nm laser beams, probe laser, repump 1388 nm laser, vacuum chamber structure, and optical
cavity isolation.
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captured by the lattice are optically pumped to one of the mF = ±1/2 ground states using the

1S0-3P1 transition, which leaves the ytterbium sample ready for clock spectroscopy. After state

preparation, we employ a simple Rabi spectroscopy scheme to excite atoms to the 3P0 upper clock

state. Applying a 560 ms long π-pulse of 578 nm light resonant with 1S0-3P0 clock transition yields

the spectroscopic line shape shown in Figure 2.2 with a Fourier-limited line width of ∼2 Hz.7

Experimental clock cycles alternately interrogate the two mF spin states, and then averages their

frequency. To obtain a high S/N readout of the electronic population in the long lived upper clock

state, we use a normalized electron shelving technique to detect excitation. Normalized electron

shelving works as follows: we apply a series of resonant ‘probe’ pulses of 399 nm light to count

the atomic population in the ground state - |1〉, background - B, and excited state - |2〉, via

scattered fluorescence from 1S0-1P1. We probe the atomic sample until all atoms that are scattering

399 nm photons are laser heated out of the lattice, while collecting the florescence signal on a

photo-multiplier tube (PMT). The first readout in the sequence measures ground state population,

recorded as P1 = |1〉 + B. Following this, a second identical pulse generates an integrated signal

P2 = B, quantifying background noise. Then, application of resonant 1388 nm light optically

pumps nearly all (>90%) trapped atoms from the 3P0 clock state to the 1S0 ground state through

a quickly decaying, nearby, 3D1 state. Finally, a third identical 399 nm probe pulse yields the

integrated signal P3 = |2〉+B. We compute an atomic excitation fraction, normalized against total

atom number and suppressing background effects, from the three records P1;2;3:

Ψ ≡ |2〉
|1〉+ |2〉

≈ P3 − P2

P1 + P3 − 2P2
(2.1)

In order to cleanly implement the atomic state detection, the 399 nm laser is: (1) frequency

stabilized to the 1S0-1P1 transition using a modulation transfer spectrometer [51, 117], (2) intensity

stabilized, (3) polarization filtered, and (4) sufficiently intense to drive the 1S0-1P1 transition into

saturation. The total photon collection efficiency from our atomic sample is < 1%, due to small

7 Rabi π-pulse duration is optimized for desired application. Rabi pulse times can range from 140 ms-1500 ms,
limited by optical LO coherence time.
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Figure 2.2: Normalized excitation spectrum of 1S0-3P0 clock transition at 578 nm in ytterbium with
560 ms Rabi Spectroscopy time. The black line is a free-parameter sinc2 function fit.
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observational solid angle, PMT quantum efficiency, and transmission efficiency of a 399 nm band

pass filter. However, by retroreflecting the probe light to improve the balance of optical forces, each

atom scatters >103 399 nm photons before being laser-heated out of lattice confinement. To avoid

standing wave effects, forward going and retroreflected probe beams have orthogonal polarization.

Unfortunately, excited state detection via decay from 3D1 is not perfectly efficient, as atoms

excited to 3D1 can decay to any state in the 3Pj manifold. We compute the branching fractions to

3P0, 3P1, and 3P2 from matrix elements (assuming perfect LS coupling) and energy level separations,

to be 0.64, 0.35, and 0.01 respectively, with ∼10% uncertainty. Application of resonant 1388 nm

light is sufficiently long to drive atom population out of 3P0, forcing decay through 3P1 or 3P2. Even

with a small branching ratio to 3P2, repeated cycling from 3D1 to 3P0 during optical pumping can

force a small fraction of atoms to the long lived 3P2 state, degrading the normalization process. A

separate test to improve Ψ beyond 90% by applying 776 nm light resonant with the closest 3P2-3S1

transition, exciting atoms out of 3P2 back to 1S0 during normalization, gave no observable advantage

to detection efficiency.

2.5 Autonomous clock operation and control

Continued operation is essential for measurements beyond the starting instability set by the

LO as it allows averaging of frequency information derived from the atomic ensemble. Moreover, a

control system links each clock component forming a working timekeeper. Yb-1 and Yb-2 atomic

systems have independent but similar (in design) autonomous operating control. Each component in

the atomic clock is governed by 5 V Transistor-Transistor Logic (TTL). Timing control is done with

a 64 channel, field programmable gate array (FPGA) that sends TTL pulses in the desired order and

duration on a designated digital output TTL channel. The FPGA is programed for each individual

channel TTL output and to repeat its timing sequence for autonomous operation.8 Additionally,

each ytterbium system has an independent atomic servo consisting of a micro-controller unit (MCU)

8 The FPGA can be programed to repeat a timing sequence indefinitely.
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updating a direct-digital synthesizer (DDS). When the MCU receives a TTL pulse, it applies

a correction signal f1;2 derived from the respective atomic excitation fraction signal - Ψ, with

necessary frequency control for locking to mF = ±1/2 transitions. After clock spectroscopy, the

MCU records the probe pulse signals, P1;2;3, computes a new Ψ′, and new correction signal f ′1;2. The

FPGA timing sequence shown in Figure 2.3 is repeated with a characteristic cycle time Tc. Yb-1 and

Yb-2 atomic servos apply discrete corrections fn(t(n)i) at unsynchronized times t(n)i. Independent

computers record and timestamp each correction fn(t(n)i) from the MCUs. If a comparison between

Yb1-Yb2 is needed, we employ a piecewise-cubic Hermite interpolating polynomial during post-

processing to establish f1 and f2 on a common set of timestamps separated by the average of the

two systems cycle durations, T12 = 1
2(T1 + T2) and generate a difference frequency ∆f = f1 − f2.

By design, Yb-1 and Yb-2 atomic systems are largely independent of each other. If system-

atic variations of each atomic frequency existed and they were positively correlated, then these

variations would reduce the frequency difference and fluctuations giving false operating perfor-

mance. Their most significant shared attribute is co-location in the same laboratory. While local

heat loads independently influence each atomic apparatus, the ambient laboratory temperature can

drive temperature correlations that equally influence the blackbody Stark shift for each system.

However, most technical systematic effects, like stark shifts, Zeeman shifts, and lattice light shifts

are independent for each system.
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Figure 2.3: An example of the Field Programmable Gate Array (FPGA) TTL output timing
sequence used by both ytterbium systems. Total FPGA output can accommodate 64 digital TTL
channels with 50 ns resolution.



Chapter 3

Atomic Clock Instability

The instability of a time or frequency standard is a fundamental property defined by variations

in its periodicity over different timescales. Essential first steps for timing metrology are charac-

terizing the statistical measurement precision of the clock oscillator and exploring noise processes

which govern the timekeeper operation. Here we study the fundamental instability limitations of

atomic clock oscillators and review the history of instability performance of lattice clocks, leading

to the observed 1.6 × 10−18 measurement precision of our Yb atomic systems. Finally, we discus

further improvements to enable routine measurements at 10−18 precision and beyond.

3.1 Instability of a clock oscillator

An ideal oscillator would emit an exact oscillation of its design, producing the correct phase

and frequency. To construct such an ideal device is impossible, therefore we must account for

errors and fluctuations the emitted oscillation will exhibit. If we consider a real oscillator with

output frequency, f0, we can define the oscillator noise as fluctuations in the instantaneous output

frequency about f0. In the most elementary case, the instability of a frequency standard, scales

with the product of its signal to noise ratio, S/N, and quality factor, f0/δf (fractional instability, σ,

as the inverse). However, this simple representation only quantifies the initial oscillator instability.

Looking at the spectrum of frequencies that form the fluctuations, typically reported as a noise

power spectral density, we can deduce the character of noise governing the oscillator [5]. Impor-
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tantly, if the noise is favorable, averaging frequency information can achieve improved measurement

precision.

The noise power spectral density for every object is unique, however, most man-made oscil-

lators (e.g. optical cavities, quartz crystal oscillators...) have ‘flicker’ noise characteristics [10, 90].

Flicker noise processes produce a power spectral density that scales as f−α for α ≥ 1, often referred

to as a ‘pink’ noise spectral density. Unfortunately, flicker noise yields no benefit from averaging

frequency information. Conversely, general quantum systems (e.g. atoms) have distinct energy

(frequency) eigenstates that can be repeatedly observed in a statistically uncorrelated way, pro-

ducing white noise frequency statistics. White noise processes produce a constant power spectral

density over the frequency spectrum and benefit from averaging frequency noise information. We

aim to transfer this favorable atomic noise characteristic to our constructed oscillators, suppressing

the flicker-type noises inherent to man-made systems.

One way to transfer a quantum oscillator’s inherent stability to an optical oscillator is to

allow the oscillator output to perturb the quantum oscillator (atom). As the atom experiences

the harmonic, resonant, perturbation from the oscillator’s electric field, the transition amplitude

begins to oscillate sinusoidally, a phenomenon commonly known as Rabi flopping [116, 23]. The

probability of provoking a transition in such an ideal perturbation can be written as

P|1〉→|2〉(t) ∝ sin2(ωrt/2) (3.1)

where ωr is the Rabi flopping frequency [23]. By applying servo feedback to the oscillator frequency

output to excite a transition with a desired probability fraction (e.g. P|1〉→|2〉 = 50%), we tune the

oscillator frequency relative to an atomic transition probability. In this way, the probabilistic nature

of the atom’s electronic wave function is written on the oscillator’s frequency output, producing a net

oscillator output governed by ‘white’ frequency noise. Furthermore, in a clock with N atoms, this

process takes place for each atom, implying the total uncertainty in measurement of the transition

frequency reduces by
√
N for a single quantum measurement.
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As an atomic clock attempts to servo an oscillator to an atomic sample, any reduction in

atomic sensitivity to oscillator noise components will degrade this transfer process, limiting clock

performance. Let us consider the case of a non-ideal oscillator, where δP is the change in a

transition’s probability of occurrence due to oscillator output fluctuations δω(t). We can write this

interaction as

δP =
1

2

∫
g(t)δω(t)dt (3.2)

where g(t) is the atomic sensitivity function to deviations in the frequency of the perturbative

laser field [109]. For an atomic clock, g(t) is determined by the type and duration of spectroscopy

executed on the clock transition and is generally a time-varying function over atomic interrogation

[109]. Furthermore, because radiation-absorption-type clocks (e.g. the optical lattice clock) operate

in an intrinsically pulsed mode, where some duration of the clock cycle is spent preparing the atomic

sample, g(t) is identically zero for a fraction of the clock cycle. A ‘dynamic’ g(t) is fundamental

to sequentially operated frequency standards and is commonly the root cause in degradation of an

atomic oscillator’s frequency stability. A time-varying g(t) results in a technical noise source known

as the Dick effect, which arises when an oscillator is periodically observed [109, 35]. Higher frequency

Fourier noise components that are near harmonics of the clock cycle are aliased by the stroboscopic

nature of clock operation. From the atom’s perspective, these aliased noise components appear

as low frequency noise on the oscillator output, indistinguishable from the oscillator’s natural

low frequency noise. The atomic servo corrects for both aliased noise and low frequency noise,

introducing extra instability into the oscillator frequency output; setting a fundamental ‘Dick noise’

limit to oscillator instability. We can write instability limit due to Dick effect as [109]

σDick =

√√√√1

τ

∞∑
m=1

((
gcosm
g0

)2

+

(
gsinm
g0

)2
)
S(m/Tc) (3.3)

where S(m/Tc) is the single-sided power spectral density of the free running oscillator frequency

fluctuations at Fourier frequencies m/Tc, Tc is the clock cycle time, and the parameters g0, gcosm ,
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and gsinm are defined as [109]:

g0 =
1

Tc

∫ Tc

0
g(x)dx (3.4)

gcosm =
1

Tc

∫ Tc

0
g(x)cos(2π

m

Tc
x)dx (3.5)

gsinm =
1

Tc

∫ Tc

0
g(x)sin(2π

m

Tc
x)dx. (3.6)

The most direct way to reduce the Dick effect is to build a better oscillator, where noise overall,

and pink noise components are simply suppressed. Other techniques to construct uniform, and

continuous g(t) functions are currently under study, however, at the time of this writing, state-of-

the-art atomic clocks are still limited by the Dick effect.

The measure of frequency stability in clocks and oscillators is quantified by the Allan Variance

or the Allan deviation (square root of Allan variance) [5]. The Allan deviation, σy(τ), describes

instability of an oscillator for various averaging intervals τ . The slope of σy(τ) reveals the nature of

frequency noise exhibited by the system. Notably, flicker frequency noise results in a τ -independent

Allan deviation and white frequency noise has a functional form of σy(τ) ∝ τ−1/2, yielding a

linear slope of -1/2 on a traditional log-log Allan deviation plot. Also, since long-term instability

is typically limited by drifts in systematic effects we can use the Allan deviation to investigate

systematic frequency errors in the oscillator. Finally, the Allan deviation is insensitive to absolute

frequency offset, and only sensitive to changes of frequency.

3.2 Lattice clock instability

An optical lattice clock typically employs a destructive measurement to detect atomic exci-

tation fraction each clock cycle. This quantum measurement procedure includes random processes

that produce fundamental noise sources affecting the clock instability. We can write the total

instability of a many atom clock system as

σy(τ) =
1

π

δf

f0

√
Tc
τ

(
1

N
+

1

Nnph
+

2σ2
N

N2
+ γ

)1/2

(3.7)
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where N is the number of atoms, Tc is the experimental cycle time, nph is the average number of

collected photons from each quantum oscillator, σN is the uncorrelated RMS atom number fluctu-

ation, and γ accounts for frequency noise from a periodically observed optical oscillator [81]. Each

term can be attributed to a unique noise source in the lattice clock’s operation, and be divided

into two classes: detection noise and local oscillator noise. The first three terms in Equation 3.7

represent detection noise and incorporate all sources of instability originated from atomic state

measurement. The remaining term represents noise originating from the local oscillator. Impor-

tantly, noise processes in Equation 3.7 only affect the clock instability magnitude but do not change

the white frequency character of the atomic timekeeper.

3.2.1 Atomic detection noise

The first term in Equation 3.7 gives the quantum projection noise of the atomic population

of trapped atoms in the optical lattice. This term represents a fundamental ‘atom shot noise’ limit

set by quantum mechanics for independent atoms when measuring our transition probability. To

illustrate, consider a single two level system with eigenstates |1〉, |2〉. Starting with the system

in the ground state, |1〉, we attempt to change eigenstates by perturbing our system with a laser

field. After extinguishing the laser field, we leave the quantum system in a superposition state, α|1〉

+ β|2〉. Then by measuring the state population, we collapse the wave function to a single eigen

state, |1〉 or |2〉. Each measurement result is either |β|2 = 0 (no excitation) or |β|2 = 1 (successful

excitation). In particular, we are interested if the system is in state |2〉, indicating atomic radiation

absorption. While repeated measurements, or simultaneous measurements of identically prepared

atoms, would produce an average value of |β|2, individual measurements are susceptible to discrete

fluctuations, a phenomenon called quantum projection noise [59]. The instability resulting from

quantum projection noise can be calculated from Equation 3.7 after measuring the number of lattice

trapped atoms, typically through 1S0-1P1 laser-induced-fluorescence electron shelving detection. In

an optical lattice clock there are 103-106 atoms acting as single two level systems performing the
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above quantum experiment with the cumulative effect of dramatically reducing quantum projec-

tion noise. Combining large number of atoms with the typical narrow band electronic transition

linewidths ( δff << 10−14) enables optical lattice clocks to have a potential quantum projection

noise limited fractional measurement precision of σy(1 s) ∼ 1× 10−17 or better.

The second term Equation 3.7 accounts for photon shot noise associated with the laser-

induced-florescence detection method. Because the 3P0 clock state is long lived, we utilize flores-

cence from 1P1-1S0 for state detection.1 Photons entering the photo multiplier tube detector are

susceptible to detection signal shot noise. Each atom in 1S0 scatters > 103 photons before being

heated out of the lattice potential, so even with our small collection solid angle, we expect nph >> 1

in Equation 3.7. This term is easily calculated from knowledge of the collection solid angle, atomic

scattering rate, and photo multiplier tube detection efficiency. In our experimental setup we have a

combined collection efficiency (captured solid angle and PMT efficiency) of ∼ 1% and we saturate

the 1P1-1S0 transition (saturation parameter > 1, linewidth ∼ 30 MHz). In the most pessimistic

case, assuming 103 photons are scattered, nph ≈ 10, implying photon shot noise is well below the

atomic quantum projection noise limit.

The third term in Equation 3.7 results from fluctuations in atom number between periodic

load/probe cycles and the normalized electron shelving technique. We load a new atomic sample

each clock cycle, and expect some fluctuations in atom number between cycles as well as inefficien-

cies in our normalization method. Unfortunately, the clock servo error signal cannot distinguish

excited state atom number fluctuations and changes in excitation probability due to changes in

detuning. Because both types of changes are corrected in the clock servo, the clock stability de-

grades. Shot-to-shot atom number fluctuations on our system are ∼ 30% but the effects from

this fluctuation are strongly suppressed by the normalization scheme where the excited state is

measured as a fraction of the total atom number.2 Although the normalized atomic excitation

1 See Chapter 2
2 See Chapter 2 for more details.
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signal greatly reduces our sensitivity to σN , inefficiencies in the normalization process technique

(e.g. imperfect electron shelving, finite lattice trap lifetime, etc.) increase uncertainty in |1〉 and

|2〉 populations. To measure the atom fluctuation term, we Fourier-broaden the clock transition

and record our normalized atom signal for several minutes on resonance. We measure an RMS

normalized fluctuation, σn/N , of ∼ 2%, implying a fractional frequency instability of σy(1 s) =

2× 10−17 due to residual technical noise.3

3.2.2 Local oscillator noise

The final instability term in Equation 3.7 originates from the local oscillator. This instability

term can be calculated from the local oscillator cavity noise and atomic sensitivity function, g(t).

We measured our optical cavity noise by utilizing the atomic transition as an independent frequency

discriminator. We found a flicker frequency instability of σLO ∼ 1.5× 10−16 for averaging intervals

of 1 s to 1000 s. This measurement also includes atomic detection noise, however, we note that

these noise components are approximately an order of magnitude below the expected cavity thermal

noise floor. We evaluate the resulting Dick instability from Equation 3.3 by calculating the atomic

sensitivity function for our given spectroscopy configuration and the correct noise power spectral

density evaluated at m/Tc yielding [109, 105]:

σ2
Dick =

σ2
LO

2ln(2)

Tc
τ

∞∑
m=1

(
gcosm + gsinm

g0

)2
1

m
(3.8)

where g0, gcosm , and gsinm , are given by Equations 3.4, 3.5, 3.6, S(f) = 1
2ln(2)

σ2
LO

1
f is the noise power

spectral density of flicker frequency modulation [105], and σLO is the thermal noise limited cavity

stability. With a state-of-the-art thermal noise limited cavity and typical operating conditions,

we find a Dick instability limit of σDick(1 s) ∼ 5 × 10−17 and σDick(1 s) ∼ 3 × 10−17 for Rabi

and Ramsey spectroscopy, respectively. Unfortunately these instability limits are still above the

lattice clock potential of 10−17/
√
τ or better, set by the quantum projection noise. Additional

3 Assuming a clock cycle time of 0.3 s
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Figure 3.1: Relevant noise processes limiting fractional instability of a hypothetical atomic fre-
quency standard with 104 atoms and an optical oscillator thermal noise floor of 1.0 × 10−16. For
normalized oscillator comparison, total clock instability is evaluated at τ = 1 s for an ensemble
perpetration time of ∼ 0.200 ms preceding Rabi spectroscopy. We assume nph to be ∼ 700 and rms
fluctuations in the normalized atom number signal to be 1.8%. The blue, red, and green curves
represent the calculated quantum projection noise, combined atomic detection noise, and the Dick
instability limit respectively. The black curve is the calculated total instability of the clock system.
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techniques attempt to lower the Dick limit by maximizing g(t) by employing Ramsey instead

of Rabi spectroscopy, non-destructive state detection, synchronous interrogation, and interleaved

atomic clocks [132, 126, 55]. Unfortunately, the Dick effect continues to limit the measurement

precision of many optical lattice clocks. A summary of each noise component and corresponding

instability contribution for a typical clock operation under Rabi spectroscopy is given in Figure 3.1.

3.3 History of optical atomic clock instability

The first lattice clocks constructed achieved 10−14 to 10−15 level instability performance

simply by taking advantage of high optical transition frequencies, and work has since progressed

rapidly worldwide [82, 69, 123]. An important milestone was achieved with the demonstration

of lattice clock performance with short-term (1 s) frequency instability in the low 10−15 levels,

which averaged to low 10−16 levels at many hundreds of seconds [83]. This level of performance

far exceeded the best cesium standards and was competitive with the most accurate (at that time)

optical clocks, which were based on single trapped ions [93]. However, demonstration of the lattice

clocks’ full potential was still hindered by the Dick effect [109, 35]. One approach to overcoming

this limitation was improving the ultra-stabilized laser used to interrogate the clock transition.

Typical limits to laser stability stemmed from acceleration-induced cavity length fluctuations, and

Brownian thermal mechanical fluctuations of cavity components. Efforts to push laser stabilization

led to acceleration insensitive cavities and cavity designed with reduced thermal noise. These

techniques demonstrated clock instability well below 10−15 at short times with a thermal noise

limited laser at a fractional frequency instability of ∼ 4×10−16 from 1 s to 10 s [62]. Alternatively,

synchronized interrogation of two lattice clocks with the same stabilized laser exploited rejection

of the Dick effect in common mode to probe performance beyond the Dick limit. This technique

produced a correlated measurement instability of 4× 10−16 at short times, approaching 1× 10−17

for averaging times greater than 1,000 s [126]. However, this stability is only representative of

clock lasers that share a common local oscillator. A few years later, an uncorrelated comparison
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of two independent strontium lattice clocks revealed clock instability of 3 × 10−16 at short times,

averaging down to 1 × 10−17 in 1,000 s or, in another case, reaching the 10−17 level in 20,000 s

[88, 68]. Interestingly, even with a relatively quick averaging time of 1000 s, clock stability never

broke the 10−17 barrier, indicating that additional control of systematic shifts was required for

measurement precision extending to the 10−18 level. Work detailed here compares two independent

171Yb optical lattice clocks, demonstrating an uncorrelated measurement precision of 1.6 × 10−18

in 25,000 s, a key milestone for applications that have long sought this level of performance.

3.4 Comparison of spin-1/2 ytterbium systems

As described in the experimental section, the two ytterbium lattice clock systems, referred

to here as Yb-1 and Yb-2, cool and collect 171Yb atoms from a thermal beam into magneto-optical

traps. Two stages of laser cooling, first on the strong 1S0-1P1 cycling transition at 399 nm, followed

by the weaker 1S0-3P1 intercombination transition at 556 nm, reduce the atomic temperature from

800 K to 10 µK. The three green MOT stages, lasting 30 ms, 30 ms, and 20 ms respectively for

both systems, use increasingly resonant 556 nm light and a smaller but varying magnetic field

gradient to further cool and compress the atomic cloud. Each cold atom sample is then loaded

into an optical lattice with ∼300 Er trap depth (recoil energy Er/kB = 100 nK) formed by retro-

reflecting approximately 600 mW of laser power, fixed at the magic wavelength, λm, by a reference

cavity. The frequency difference between the lattice lasers of Yb-1 and Yb-2 is directly detected in

a heterodyne optical interferometer with separate AOMs shifting their frequency to a fixed 1 MHz

offset at the atoms. After extinguishing the green MOT beams, we apply a ∼0.5 mT magnetic field

and spin polarize trapped atoms by optical pumping on 1S0-3P1. For the measurements described

here, about 5,000 atoms, captured by each lattice, are pumped to a single ground state magnetic

sub-level with a fidelity exceeding 95%. After this state preparation, another ∼0.1 mT field lifts

the Zeeman degeneracy during 578 nm clock spectroscopy [73]. Applying a 140 ms long π-pulse

of 578 nm light resonant with the 1S0-3P0 clock transition yields a sinc2 spectroscopic line shape,
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with a Fourier-limited linewidth of 6 Hz, for a starting measurement precision of 3 × 10−16. Rabi

spectroscopy with a 140 ms pulse time provides a convenient combination of narrow lineshape,

short clock cycle, and reliability when locking to the clock transition.

The optical local oscillator (LO) is servo-locked to a high-finesse optical cavity and is shared

by both Yb systems [62]. Experimental clock cycles alternately interrogate both mF spin states

canceling first order Zeeman and vector Stark shifts [73]. Light is frequency-shifted into resonance

with the clock transition of each atomic system by independent acousto-optic modulators (AOMs)

following the 578 nm fiber system.4 During spectroscopy, all resonant laser beams are extinguished

when appropriate by both AOMs and shutters, with the exception of 578 nm light. The optical

lattice beam is continuously applied with actively stabilized intensity. To suppress phase chirps

on the clock light from AOM switching, we drive AOMs with < 10 mW of radio-frequency power.

By measuring the normalized excitation while modulating the clock laser frequency by ±3 Hz, an

error signal is computed for each Yb system. Subsequently, independent microprocessors provide

a digital frequency correction f1;2(t) to their respective AOMs, thereby maintaining resonance on

the line center. In this way, though derived from the same LO, the individual laser frequencies for

Yb-1 and Yb-2 are decoupled, and are instead determined by their respective atomic samples (for

all but the shortest time scales).

During operation of the clock systems, special attention is paid to eliminating residual Stark

shifts stemming from amplified spontaneous emission of the lattice lasers, to eliminating residual

Doppler effects from mechanical vibrations of the apparatus correlated with the experimental cy-

cle, and to controlling the cold collision shift due to atomic interactions within each lattice site.

Computers record the frequency correction signals f1;2(t) for the full comparison time. Because

the experimental cycles for each clock system are not synchronized and have different durations,

the recorded correction frequencies are interpolated to a common time base and then subtracted

4 This technique was modified after this measurement to reach an overall systematic clock uncertainty at the
10−18 level, see Chapter 6 for details.
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to compute the frequency difference between Yb-1 and Yb-2.

To evaluate the Allan Deviation for these clock systems measurements such as these were

repeated several times for intervals of ∼15,000 s, demonstrating a clock instability reaching 4×10−18

at 7,500 s. While collecting data over a continuous 90,000 s interval, we observed the instability

curve in Figure 3.2, shown here as the total Allan deviation for a single Yb clock. Prior to data

analysis, approximately 25% of the attempted measurement time was excluded due to laser unlocks

and auxiliary servo failures. Each servo used to stabilize the laser to the clock transition had an

attack time of a few seconds, evidenced by the instability bump near 3 s. At τ = 1 − 5 s, the

instability is comparable to previous measurements of the free-running laser system, and at longer

times the instability averages like white frequency noise as 3.2×10−16/
√
τ (for averaging times τ in

seconds), reaching the instability of 1.6× 10−18 at 25,000 seconds. For all measurements described

here, the mean frequency difference f2(t) − f1(t) were within the Yb-1 Yb-2 uncertainty of 10−16

at the time of operation. Also shown in Figure 3.2 is an estimate of the combined instability

contribution (blue dashed) from the Dick effect and quantum projection noise (QPN), with the

shaded region denoting the uncertainty in these estimates. As can be seen, the observed instability

lies close to the combined contributions. We anticipate that significant reductions are possible in

the QPN limit by simply using higher atom numbers and longer interrogation times. However,

despite earlier reductions in the Dick effect from improved local oscillators, Dick noise continues to

limit the performance of this clock.

3.5 Frequency measurement at 10−18 and beyond

For future measurements to be practical, the Dick effect must be reduced so that 10−18 mea-

surement instability can be realized in 100 seconds or less. Further stabilization of the optical LO

will continue to reduce the Dick limit, both by lowering the laser frequency noise (which is down-

converted in the Dick process) and by allowing increased spectroscopy times and thus higher duty

cycles. Such laser systems will use optical cavities exhibiting reduced Brownian thermal-mechanical
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Figure 3.2: Total Allan deviation of a single Yb clock, (f2(t) − f1(t))/

√
2 (red circles), and its

white-frequency-noise asymptote of 3.2×10−16/
√
τ (red solid line). The blue dashed line represents

the estimated combined instability contribution from the Dick effect (1.4 × 10−16/
√
τ) and QPN

(1× 10−16/
√
τ), with the shaded region denoting uncertainty in these estimates.
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noise by exploiting cryogenic operation, crystalline optical coatings, longer cavities, or other tech-

niques [65, 62, 31]. Figure 3.3 demonstrates the benefit of using an optical LO improved over that

used in this work, with four times less laser frequency noise and with four times longer interroga-

tion time (corresponding to a short-term laser instability 5× 10−17). The red dotted line gives the

Dick instability, while the black dashed line indicates the QPN limit with the same interrogation

time, assuming a moderate atomic population of 50,000. Noting that the calculated Dick effect

remains several times higher than the QPN limit, we consider an alternative idea first proposed for

microwave ion clocks: interleaved interrogation of two atomic systems [35]. By monitoring the LO

laser frequency at all times through the use of two interleaved atomic systems, the aliasing problem

at the heart of the Dick effect can be highly suppressed. The solid blue line in Figure 3.3 illus-

trates the potential of a simple interleaved-clock interrogation using basic Ramsey spectroscopy.

Even with LO noise levels unimproved from the present work, the Dick effect lies well below a

much improved QPN limit (black dashed line). In this case, spin squeezing of the atomic sample

could reduce the final instability beyond the standard quantum limit set by QPN (e.g., [115]). The

two-system, interleaved technique requires spectroscopy on each atomic system to last one half or

more of the total experimental cycle. By extending the clock spectroscopy time to ≥ 250 ms, we

have achieved a 50% duty cycle for each Yb system, demonstrating the feasibility of this technique.

Duty cycles of 50% can also be realized with the aid of nondestructive state detection [132].

With current instability performance, we can efficiently explore systematic effects on each

system at the 10−18-level uncertainty. Conversely, because long-term instability is typically limited

by systematic drifts, further reduction and control of our systems uncertainties will likely offer

improved instability. With continued progress, we envision that 10−18 instability at 100 s and

long-term instability well below 10−18 can be achieved.
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Figure 3.3: Calculated instability limits for an improved lattice clock towards the goal of 1× 10−18

in 100 s. The Dick limit (red dotted) is reduced by using a LO which is four times as stable as
that used in this work. The QPN limit is also shown under the same conditions (black dashed)
with a total atom number of 50,000. The inset illustration represents an interleaved interrogation
of two atomic systems, allowing continuous monitoring of the LO for suppression of the Dick
effect. Dead times from atomic preparation or readout in one system are synchronized with clock
interrogation in the second system. The solid blue line indicates the suppressed Dick instability
in the interleaved-interrogation scheme of two atomic systems using Ramsey spectroscopy with an
unimproved LO.
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3.6 Elimination of Dick noise in an optical clock

Key to realizing the full performance of an optical lattice clock is the reduction or elimina-

tion of Dick noise from the optical local oscillator. A multi-clock architecture is the most direct

way to eliminate noise arising from the local oscillator. When merged together, the ensemble of

clocks remains sensitive to an atom sample at all times, allowing continuous frequency corrections

and therefore extreme suppression of Dick noise. As mentioned above, we directly realized an

asynchronous two clock system with improved atom sensitivity by extending our clock duty cycles

beyond 50%. While a direct instability measurement of such a system is impossible because we

lack two pairs of atomic clocks, we can evaluate the potential stability of a four clock architecture

through comparisons between two atomic clocks in a synchronized interrogation scheme [126]. In

such a configuration the Dick noise is correlated and common-mode rejected from the two clocks.

Recent comparisons between our two Yb systems employing Ramsey synchronized scheme found a

measurement stability of 8× 10−17/
√
τ . Assuming each clock in an ensemble performs identically,

the clock ensemble would be
√

2 more stable than the synchronized measurement because it accu-

mulates atomic measurements and local oscillator corrections twice as quickly. This would yield

an single clock instability of 6 × 10−17/
√
τ with a Dick instability limit of < 3 × 10−18/

√
τ , or a

1× 10−18 frequency measurement in a mere few thousand seconds. Further reduction of the Dick

effect could likley be realized by constructing even more uniform composite g(t) functions from

additional atomic systems or adjustment of the spectroscopy parameters.

Alternatively, two systems can be combined so that one uses short interrogation periods on

one atomic system to pre-stabilize the optical local oscillator for increased interrogation time on

a second atomic system [67, 19]. The longer interrogation time improves the clock quality factor,

reducing the detection noise processes in the atomic state measurement. Unfortunately, a simple

two-clock configuration of this technique would still suffer reduced stability performance in dead

times of the longer interrogation clock, implying the need for an architecture with more atomic
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clocks.



Chapter 4

Blackbody Radiation Shift

Ytterbium clocks are remarkably insensitive to environmental effects. However, striving for

10−18 level performance, requires accounting for even miniscule perturbations to the clock frequency.

Perhaps the most important clock perturbation results from the emission of electromagnetic radi-

ation by all bulk matter with a non-zero temperature. As a consequence, the ytterbium atoms in

our apparatus experience an ocean of thermal photons from the surrounding environment. This ra-

diation stretches the electronic cloud, shifting the natural transition frequencies. Not surprisingly,

this effect contributes the biggest source of uncertainty in many atomic clocks including cesium

fountains, single ions, and optical lattice clocks [60, 84, 41]. Here we dissect the thermal radiation

systematic by studying the ytterbium atom response to static and dynamic electric fields. Then we

construct a well-defined thermal environment, controlling the shift at 1 part in 1018 [11]. Finally

we heat our system to induce a thermal shift, directly testing our treatment of this effect.

4.1 Blackbody radiation and the ytterbium atom

In thermal equilibrium, electromagnetic energy is absorbed and re-emitted by all bulk matter

in a constant photon exchange. Characterizing a system on a photon-to-photon basis would be

a cripplingly complex undertaking. To this end, we approximate the thermal exchange between

matter: (1) we envision an idealized ‘blackbody’ that absorbs all incident electromagnetic radiation,

regardless of frequency or angle of incidence, and (2) this blackbody emits energy at a particular
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rate according to its surface area and temperature. The power (photons per unit time) emitted by

a blackbody is given by the Stefan-Boltzmann law, simply energy radiation per unit area per unit

time is proportional to a blackbody’s temperature to the fourth power:

P = σT 4 (4.1)

where σ is the Stefan-Boltzmann constant. Furthermore, we describe the spectral radiance at

frequency ω emitted by a blackbody in terms of temperature T with Planck’s Law:1

uω(ω, T ) =
~

4π3c2

ω3

e
~ω
kBT − 1

(4.2)

Planck’s law and the Stefan-Boltzmann law provide a foundation for our investigation of ytterbium’s

interaction with thermal photons or blackbody radiation (BBR). In general, the energy shift on a

electronic state n from dipole coupling to an electric field wave of angular frequency, ω, is given by

∆En = −2π

∫ ∞
0

uω(ω, T )αn(ω)dω (4.3)

where αn(ω) is the frequency dependent atomic polarizability,

αn(ω) =
2

3

∑
n′ 6=n

∣∣〈n′ ‖D‖n〉∣∣2 ωn′n
ω2
n′n − ω2

(4.4)

Qualitatively speaking, the above integral is a calculation of the cumulative extent that BBR en-

ergy overlaps with the polarizability of an atom. In Figure 4.1 we see the spectral radiance of

a room temperature blackbody as predicted by Planck’s law overlapped with relevant ytterbium

polarizability. Fortunately near room temperature the radiation density is firmly peaked around

9.6 µm, far red-detuned from any strong electronic transitions in ytterbium (i.e. low atomic elas-

ticity). Consequently, the polarizing effect of BBR is reduced and largely mimics that of a static

electric field. In this far detuned limit, αn(ω) can be expressed as a static polarizability where the

evaluation of Equation 4.3 only yields a small dynamic correction to the overall BBR shift of the

clock transition. The frequency shift due to BBR can thus be expressed as:

∆νBBR = ∆E|2〉 −∆E|1〉 ∼= −
1

2

αclock
h

〈
E2
〉
T

[1 + ηclock(T )] (4.5)

1 Net radiated flux per unit solid angle, per unit projected area, per unit frequency. (W · m−2 · sr−1 · Hz−1)
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where αclock ≡ αe(0)−αg(0) is the differential static polarizability between the two clock states 3P0

and 1S0, h is Planck’s constant,
〈
E2
〉
T

is the mean-squared time-averaged electric field intensity in

a BBR environment of absolute temperature T, and ηclock(T ) ∼= η1(T/300K)2 + η2(T/300K)4 is a

small dynamic correction to account for frequency dependence of atomic state polarizabilities across

the BBR spectrum [7, 102]. Ultimately quantifying the BBR shift in our ytterbium lattice clock

requires: (1) knowledge of the static atomic polarizability, (2) knowledge of the dynamic correction

factor, and (3) knowledge of the physical BBR environment, given by absolute temperature T .

4.2 Ytterbium atomic polarizability

The shifting and splitting of spectral lines in atomic spectra due to the influence of an external

electric field, ~E, was one of the first investigations in atomic physics. Formally this interaction is

known as the Stark effect. Generally, atomic energies of the lowest-lying electronic quantum states

reduce in an electric field by 1
2αn

〈
~E
〉2

where αn is defined as the state’s static polarizability. The

scaling is second order in ~E, because ~E is responsible for inducing, as well as interacting with, an

atomic dipole moment.

Our first investigation of the BBR shift focused on quantifying the net static Stark effect

on the clock states in ytterbium. This originally represented the largest uncertainty in the BBR

shift because previous knowledge of α|2〉, α|1〉 for ytterbium’s clock states was only theoretical and

limited to 10% uncertainty due to its many electron complexity [102, 39, 100]. Specifically, we

are interested in the differential static polarizability αclock = α|2〉 − α|1〉, because any common

mode shift due to BBR in 1S0 and 3P0 states can be neglected. The procedure for measuring

αclock is straight forward: apply a well defined ~E and measure the change in clock frequency, ∆ν,

shifted by 1
2αclock

〈
~E
〉2

. For a direct measurement, we constructed an in-vacuum parallel plate

capacitor around our lattice-trapped ytterbium atoms in the existing experimental system [58]. In

the parallel plate capacitor limit, applying a voltage, V, creates a well defined, uniform electric field

( ~E = V
d , where d is electrode separation). The capacitor electrodes were composed of rigidly spaced,
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Figure 4.1: Blackbody spectral energy density as a function of radiation frequency (solid red). Also
shown are the 3P0 (back dash) and 1S0 (solid blue) state polarizabilities. The magic wavelength
used by our optical lattice dipole trap, where 1S0 and 3P0 match, is at frequency ω∗.
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parallel fused-silica cylindrical plates [101.6(1) mm in diameter, with better than λ/10 flatness] with

a transparent indium-tin-oxide (ITO) conductive coating on the inner surfaces [58]. The electrode

separation, d = 15.03686(8) mm, was determined interferometrically by measuring the real time

free spectral range (fsr) of four planar etalons formed between the inner silica plates by off axis,

90% reflective metallic pads (33 nm gold on 2 nm chromium) deposited over the inner electrode

faces. Specially separated measurements of d constrained electrode parallelism to θwedge < 7 µrad.

Additional numerical modeling of the electrodes confirmed that electric field deviations from the

infinite-parallel plane capacitor model were bounded at the 10−6 (1 ppm) level by designing a large

electrode diameter-to-spacing ratio, ensuring a high degree of parallelism, and centering the atoms

radially within the electrodes. Perturbations due to dielectric and conducting mounting structure

contribute similar amounts of field uncertainty.

To apply a voltage we constructed a regulated source producing 100 V-1050 V with 1× 10−6

instability over 1 s - 1000 s with a measurement uncertainty at the 16 ppm level [56]. A 100 ms

π-pulse of 578 nm light excites atoms from 1S0 to 3P0 with Fourier-limited clock linewidth of

∼ 10 Hz. We record the clock transition frequency relative to our optical local oscillator (LO)

in three independently locked interleaved voltage conditions: ∆νA - Both plates grounded, ∆νB -

Top plate high voltage, Bottom plated grounded, ∆νC - Top plated grounded bottom plated high

voltage. The quadratic Stark shift is then given by

∆ν =
1

2
(∆νB + ∆νC)−∆νA (4.6)

Reversing ~Ea, the applied electric field, reveals information about stray electric fields, ~Es, parallel

to ~Ea. The difference ∆νB −∆νC = 2αclock ~Ea · ~Es was measured to be ~Es ≈ 0.1 V/cm. However,

truly static ~Es fields subtract completely in Equation 4.6. Varied voltage ‘relaxing time’ yielded no

time dependance on ~Es over relevant applied fields. Figure 4.2 shows the observed quadratic clock

frequency shift as a function of ~Ea. Fitting the data to a polynomial we found no quartic, cubic,

linear, or offset terms, consistent with an ideal Stark shift in nondegenerate perturbation theory.
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Figure 4.2 also plots the polarizability inferred at each ~Ea. Taking the mean of all measurements,

weighted by the total standard errors, we determine αclock = 36.2612(7) kHz(kV/cm)−2, in good

agreement with previous theoretical results. No inhomogeneous line broadening was observed with

increased shift, so the statistical uncertainty was reduced with increasing ∆ν. However, the uncer-

tainty of the applied voltage (the dominant systematic uncertainty) was limited by the performance

of available commercial voltmeters.2 We ensured that our systematics were well controlled with

Table 4.1: Uncertainty budget for αclock measurement. Errors on Ea contribute twice the uncer-
tainty and is included in the tabulation below. Total uncertainty in αclock is from the quadrature
sum.

Uncertainty Source ×10−6 Notes

Clock frequency errors:
Shift statistical error 8.3 ∆ν = -3603.77(3) Hz (1800 s averaging
Higher-order Stark shifts 0.01
Electric field (Ea) errors: Ea= 445.836(4) V/cm
Voltmeter systematic 16.4 Regulated 670.3966(55) V
Rleak voltage division 0.1 Ileak=2.1 nA; 20 kΩ leads
Finite electrode size 1 Atoms centered ±10 mm
Electrode parallelism 4 θwedge < 7 µrad
Electrode deformation 0.8 Warping of fused silica by gravity
Dielectric spacers 2 Perturbation of ideal field due to three

fused silica posts
Spacing d (statistical) 1.6 Nf > 17000 fringes spanned
Spacing d (systematic) 9 Fringe centering, wave meter accuracy,

stray etalons, stability
Etalon probe tilt, φ 0.3 (1-cos θ) error, φ << 0.5 mrad; retro-

coupling single-mode fiber
Yb thermal beam 0.06 Dielectric (εr − 1) ∼ 8× 10−9

Stray fields, static 0.04 Uncertainty in ~Ea reversal
Stray fields dynamic 2 ∆ν correlation with τν
Total uncertainty in αclock 21

the application of ~Ea. No systematic effect resulted from varying the lattice intensity or polariza-

tion. Contamination from higher third order and fourth order effects due to mixing of ~Ea with

the optical lattice appear at the 10−9 fractional error in αclock at high ~Ea [106]. Vector and tensor

2 Voltmeter measurement uncertainty increases at high voltages



53

Stark shifts are absent as BBR has no net polarization and our clock transition has limited total

angular momentum (I = 1
2). We ensured constant atomic density with application of ~Ea prevent-

ing contamination αclock from the cold collision shift. By alternate interrogation of mF = ±1
2 spin

states we observed no magnetic field dependance on ~Ea. Finally, to test for stray charge buildup

we recorded ∆ν while varying the electrodes between grounded and floating configurations, mea-

suring a null result. Table I lists the sources of measurement uncertainty for αclock. The differential

static polarizability component in the BBR shift was determined to a 5 × 10−20 fractional clock

uncertainty, four orders of magnitude improved over previous theoretical values.

4.3 Dynamic blackbody correction factor

The polarizing effect of BBR largely mimics that of a static electric field due to the low

frequency nature of BBR relative to optical transitions in ytterbium. However, accurate knowledge

BBR radiation requires understanding of ytterbium’s response to time varying BBR, represented

by ηclock(T ) in Equation 4.5.3 Recalling Figure 4.1, the strongest overlap of BBR spectral density

is with a single electronic dipole transition, 6s6p3P0-5d6s3D1. Indeed, over 90% of ηclock(T ) depends

on the electronic dipole coupling between 3P0 and neighboring 3D1 [102]. As a result, the relatively

complex problem of computing Equation 4.3 largely reduces to determining a single electronic

dipole matrix element, D ≡
∣∣〈6s6p3P0

∣∣D ∣∣5d6s3D1

〉∣∣. In an effort to compute ηclock(T ), we take a

fluorescence radiative lifetime measurement of 3D1 via the cascade decay 5d6s 3D1 → 6s6p 3P1 →

6s2 1S0 (see Figure 4.3). Applying the Wigner-Eckart theorem to a closed two level system we can

write atomic spontaneous emission in terms of Clebsch-Gordan coefficients and the reduced matrix

element, 〈g, J |D |e, J ′〉 as [24]

1

τ
=

ω3
0

3πε0~c3

|〈g, J |D |e, J ′〉|2

2J ′ + 1
(4.7)

3 ηclock(300K) < 0.02
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where J ′ is the total orbital angular momentum of the excited state and ω0/2π is the radiated

frequency. Rewriting for multiple state decay, given by the branching fraction ζ0, and solving for

our electronic dipole matrix element we find

D2 = 3πε0~c3ζ0
(2J + 1)

(ω3
0τa)

. (4.8)

We compute the excited state branching fractions from matrix elements (assuming perfect LS

coupling) and energy level separations, yielding a 3D1 →3 P1 branching factor of ζ0 = 0.638(10).

Atoms excited to 3D1 emit an infrared photon followed by a 556 nm photon producing a florescence

signal flowing the double exponential decay:

y(t) = A×Θ(t− t0)
[
e−(t−t0)/τa − e−(t−t0)/τb

]
+ y0 (4.9)

where τa is the radiative lifetime of 3D1, τb is the radiative lifetime of 3P1 (τb > τa), A is a

normalization scaling factor, y0 is an offset term, and Θ(t− t0) is the Heaviside unit-step function

accounting for rapid atom excitation to 3D1 at t0 [20, 24]. Collecting scattered photon decay then

fitting the fluorescence data to Equation 4.9 will give τa and ultimately D. Other states populated

by decay (3P0 and 3P2) are long lived compared to our florescence decay times, limiting unwanted 3Pj

florescence. We note that 3D1 state depletion via different decay channels only effects normalization

of Equation 4.9, not measured τa.

To populate atoms in 3D1, we operate our clock in the normal sequence, exciting atoms to

the long-lived 3P0 with a resonant ‘π-pulse’ of 578 nm light. Then, a brief (25 ns) resonant pulse of

1388 nm light excites > 50% of 3P0 atoms to 3D1. Because 556 nm photons are technically easier to

detect, we employ a dichroic filter in our normal collection system to extract the decay florescence,

sending radiated 556 nm photons to an additional photo-multiplier tube (PMT). An event counter

accumulates the arrival times of PMT signals corresponding to single 556 nm photons into 5 ns

bins. Typically we observe Natoms × (1.5 × 10−5) green photons per excitation (assuming ∼ 0.1%

collection efficiency). Low photon count allows single emission detection and negligible saturation



55

D

1
3
8
8

Figure 4.3: Relevant Yb atomic energy levels for the 3D1 lifetime measurement. A florescent
radiative lifetime measurement of 3D1 was measured via the cascade decay 5d6s 3D1 → 6s6p 3P1 →
6s2 1S0
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of high resolution event counter binning. After ∼1 ms the decay process is complete and we repeat

the excitation process. Atoms are excited approximately 200 times before we reload the atomic

sample, limited by photon scattering, background gas collisions, and accumulation of atoms to 3P2.

After data collection, we fit our fluorescence signal to Equation 4.9. With sufficiently high counts

per bin covariance between A, τa, and τb is negligible. By varying atomic density ρ excited to 3D1,

we investigate atomic interaction induced effects on τa and τb . At high ρ we find that τa decreases

and τb increases, requiring extrapolation to zero ρ for natural decay times. As quenching of τa due

to cold collisions and lattice scattering was negligible, we suspect the presence of some other atomic

interaction physics such as collective emission (super radiance, sub radiance) or radiation trapping.

Further investigation is warranted but beyond the scope of the BBR investigation. We find the

radiated lifetimes τa = 329.3 ± 7.1 ns and τb = 866.1 ± 7.4 ns. Table 4.2 gives the measurement

uncertainties of τa and τb.

Table 4.2: Uncertainty budget for lifetimes τa, τb. Uncertainty from atomic interaction is statisti-
cally limited by extrapolations to zero atomic density. Covariance fit biases and distortions due
to Zeeman oscillations are estimated from Monte-Carlo simulations. Uncertainties due to 1388 nm
pulse duration and stray light are statistically limited. Total uncertainty is given as the quadrature
sum.

Uncertainty Source τa (ns) τb (ns)

Atomic interactions 4.3 3.3
Fit biases 0.9 1.5
Zeeman quantum beats 3.0 3.0
1388 nm finite excitation 3.3 4.3
1388 nm stray light 3.4 4.6
Event counter timing 0.2 0.4

Total uncertainty 7.1 7.4

To this point, we have only described the dominant electric dipole (E1) coupling to the BBR

field. Additionally, atoms couple to the BBR field via magnetic dipole (M1) and higher multipolar

(E2, M2,. . . ) interactions. For room temperature BBR, M1 dipole coupling in alkaline earth-like

atoms could cause fractional frequency shifts at the 10−18 level [102]. However frequency shifts
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resulting from higher multipolar (E2, M2,. . . ) terms were shown to yield fractional shifts below

10−18 for alkaline earth-like atoms. As such we evaluated the M1 dipole shift in ytterbium for room

temperature BBR. Mathematically the M1 BBR shift is analogous to the E1 shift, where ∆En is

given by Equation 4.3 but with a frequency dependent magnetic polarizability, α(ω)→ β(ω)/c2 and

dipole operator, µ. The M1 shift is evaluated by assuming the non-relativistic limit and an absence

of configuration mixing between states, specifically, µ = −µB(L+ 2S) where L and S are orbit and

spin angular momentum respectively. Of particular interest is a low-frequency M1 transition, 3P0-

3P1 in the 3Pj fine structure manifold which accounts for a majority of the M1 shift.4 With the

above approximations my colleague K. Beloy evaluated Equation 4.3 analytically to find the energy

shift from the 3P0- 3P1 matrix element, then expressed it as an additional contribution to ηclock(T ).

The M1 BBR shift to the 3P0 clock level is found to be η
(M1)
clock (300K) ≈ 1 × 10−5, indicating that

ytterbium M1 coupling to the BBR field is negligible at room temperature.

To complement our radiative lifetime measurement, we independently compute D via a semi-

empirical technique by combining existing ytterbium polarizability data with atomic theory [12].

We report the reduced matrix element D to be 2.77(4) a.u. and 2.80(7) a.u. for our experimental

determination and semi-empirical calculation respectively [12]. Additional work conducted shortly

after our decay measurement featuring ab initio theoretical treatment was in good agreement with

our findings [108]. Assuming an ideal BBR environment at 300 K we can evaluate Equation 4.3

making the substitution of αn(ω) → αclock + (2/3~)(D2/ω3
0)ω2. Taking the weighted mean of all

reported reduced diple matrix results, and integrating over ω we find ηclock(T ) to be:

ηclock(T ) = 0.0173(5)

(
T

300 K

)2

+ 0.0006

(
T

300 K

)4

(4.10)

with a fractional clock frequency uncertainty from the dynamic correction to BBR of < 1.0×10−18.

4 µ is an even-parity operator, where D is an odd-parity operator
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4.4 Defining the blackbody environment

An imprecise knowledge of the BBR environment prevents quantifying the characteristic

temperature, T , contained in
〈
E2
〉
T

[1 + ηclock(T )] from Equation 4.5. To overcome this issue we

constructed a passive, room temperature, in-vacuum radiation shield that furnishes a uniform,

well-characterized BBR environment for clock spectroscopy. Here we describe the construction of

our BBR shield with a defined radiation environment corresponding to fractional ytterbium clock

uncertainty contribution of 5.5× 10−19.

4.4.1 The blackbody radiation shield

The BBR shield, shown in Figure 4.5, possesses a number of important features to approxi-

mate an ideal blackbody environment. The experimental requirements of our shield are as follows:

it must possess excellent temperature uniformity, accommodate the collection, cooling and trap-

ping, interrogation, and state-detection of the atoms, prevent static Stark shifts from stray charges

that might accumulate on the vacuum apparatus, limit atom exposure to uncharacterized BBR,

and provide an accurate absolute temperature reading. The bulk material of our shield is con-

structed from thermally conductive copper stock. Two apertures on opposing sides of the shield

allow a collimated thermal beam of atoms to pass through the central region, providing a source

for the lattice-trapped sample. Additionally, six 2.54 cm countersunk insets accommodate round

glass windows for optical laser cooling and trapping of our atomic sample. A seventh window

inset is used for PMT detection of lattice trapped atoms. While the glass windows are nearly

opaque to room-temperature BBR, they are highly transmissive and anti-reflection coated for the

appropriate ytterbium laser wavelengths. Because the shield apertures allow outside radiation

to enter the shield, we apply a high-emissivity, carbon nanotube coating to all internal surfaces

of the shield body to minimizing reflections and maintain a well defined radiation environment.

All internal shield surfaces are conductive and grounded, protecting the clock atoms from stray
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charge that might accumulate on the vacuum apparatus [80]. The copper construct provides a

naturally conductive surface where the recessed windows have a transparent ITO layer. The black

carbon nanotube coating has low resistance and is in good electrical contact with the surrounding

highly conductive copper shield. To frustrate Eddy currents in the copper, we split the shield

in half with an electrically insulative, thermally conductive thin spacer. The shield construction

is held together with boron nitrite retaining rings placed on the upper and lower sections of the

copper halves. Approximately five calibrated platinum resistance temperature detectors (RTDs)

distributed throughout the shield provide an accurate, real-time measure of the shield’s absolute

temperature, T . The final shield sits thermally isolated on four PEEK plastic support posts inside

ultra-high vacuum (UHV) at 2× 10−9 torr.

4.4.2 Characterizing blackbody temperature inhomogeneities

In normal operation, the BBR shield has high temperature uniformity afforded by its copper

construction. However, passively coupled BBR from the surrounding environment via conductive

and radiative heat transfer along with BBR window leak-through can cause small temperature

inhomogeneities. To account for departures from an isothermal environment, my colleague K. Beloy

developed the following model for the BBR shield. The internal surfaces of the shield and windows

are modeled as opaque, diffuse, graybody surfaces having temperature-independent emissivities.

We accurately portray the shield apertures by creating two circular blackbody surfaces matched to

the aperture size and blackbody characteristics. Collectively these surfaces fully enclose the atoms

residing in the center of the shield. The effective temperature at the center, Teff , is given by the

local field energy density, u, a superposition of surrounding radiating surfaces as derived from the

Stefan-Boltzmann law:

T 4
eff =

c

4σ
u =

∑
i

(
Ωeff
i

4π
T 4
i

)
(4.11)

where c is the speed of light, σ is the Stefan-Boltzmann constant and the index i runs over all

surfaces where Ti is the temperature and Ωeff
i is the effective solid angle of surface i. We assign
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Figure 4.5: CAD rendering of the radiation shield installed in our ytterbium lattice clock from
modeling done by K. Beloy. Features include (a) copper bulk material (b) BK7 glass windows with
AR coatings (c) atomic thermal beam entry and (d) exit aperture (e) carbon nanotubed coating
(f) boron nitride retaining rings (g) PEEK plastic posts and (h) vacuum system support plate
(stainless steel). BBR shield is only connected to the vacuum system through PEEK supports and
rests entirely in ultra high vacuum.

an ‘effective solid angle’ to surfaces to assess the dependance of u to individual surface radiation.

For example, if our shield was completely reflective to BBR, an infinitely small geometric opening

would define the effective temperature at the atoms (Ωeff
i subtending all space). In the limit of a

completely black (unit-emissivity) enclosure, Ωeff
i reduces to the geometric solid angle subtended by

surface i as perceived by the atoms. Effective solid angles are non-negative, depend on the geometry

and emissivity of all enclosure surfaces, and satisfy the normalization
∑

i Ωeff
i = 4π. We compute

effective solid angles for our shield enclosure with a finite element radiation analysis, constructing

a model enclosure with new Ωeff
i solid angles. Introducing a small blackbody sphere, or probe,

centered in the shield we calculated the BBR effective temperature, Te, as governed by radiative
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Figure 4.6: Finite element radiation analysis of effective solid angels for atomic beam entry and exit
apertures with different window emissivity. ε denotes emissivity value. The inset diagram displays
a two-dimensional cross section of the blackbody radiation shield, with entry and exit apertures
on the left and right respectively. Top and bottom windows are illustrated as light blue substrates
and the yellow cylinders represent RTDs embedded in the shield.
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photon exchange with the molded finite element enclosure [1]. Calculating the probe temperature

for different input configurations of the surface temperatures and emissivities allows extraction of

individual Ωeff
i from Equation 4.11. Highlighted in Figure 4.6 are the entry and exit apertures

Ωeff
i as a function of various combinations of coating and window emissivities. Importantly, for

a perfectly black coating, both the Ωeff
i are independent of the window emissivity and reduce to

their respective geometric solid angles because, by design, the apertures are not permitted direct

line-of-sight to the windows. As the coating emissivity departs from unity, Ωeff
i increase while

acquiring a dependence on window emissivity. Also seen in Figure 4.6 is largely constant Ωeff
i over

a range of moderately-high coating emissivity. This illuminates a two-fold advantage in using a

high-emissivity coating: (i) it minimizes the overall influence of BBR entering through the apertures

and (ii) it minimizes the sensitivity to exact emissivity values. For the interior shield body surfaces,

we employ a high emissivity coating that consists of multi-wall carbon nanotubes [71, 70]. The

coating is highly-thermally and -electrically conductive with a surface emissivity measured to be

εcoating > 0.8 for wavelengths from visible to 20 µm.5 With the above data and a high emissivity

coating, we can equate our modeled effective solid angles to the shield geometric solid angles, with

the finite element analysis providing a means to gauge corresponding environment uncertainties.

4.4.3 Measuring absolute temperature

After characterization of inhomogeneities in the ideal BBR environment a special effort must

be made to measure the absolute temperature, T , of the BBR shield. While some systematics

can be absolutely calibrated with the atoms, there is no means to detect absolute temperature

with the clock atoms. Thus we employ highly precise, calibrated platinum resistance temperature

detectors (RTD)s to provide a real time measure of the shield’s absolute temperature. After a

thermal-cycling process, a NIST-traceable absolute temperature calibration is performed on each

RTD by the manufacturer. The simultaneous use of many (up to seven) sensors for temperature

5 This is done by hemispherical reflectance measurements linked to a NIST blackbody standard
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measurement aids in the detection of calibration shifts and sensor reading errors. For high accuracy

resistance evaluation we adopt the four wire resistance measurement technique. Self-heating from

ohmic dissipation of the RTD sense current can be meaningful, especially in vacuum where thermal

transfer from the platinum wires is significantly reduced. We have directly measured self-heating

of 7 K/mW, which for our low sense current (96 µA into 109 Ω) yields an effect of 7 mK. Reduced

thermal transfer from the platinum wires also enables parasitic heat flow through the RTD leads.

To counter these effects, a thermally-conductive (but electrically-insulative) epoxy covers the entire

RTD and its leads, making excellent thermal contact between the shield and all parts of the sensor.

Window temperatures are not directly measured in real-time to maintain optical access to the

atomic sample. A thin carbon-loaded polyimide layer provides a high but finite thermal contact

between the glass-copper contact leading to some window temperature uncertainty. We measure

the temperature conductance from the window substrates to copper shield by temporarily fitting a

temperature sensor and heater to a glass substrate, then record the shield temperature as a function

of heater power. We found the measured temperature discrepancy between the window and shield

leads to a clock uncertainty of 3×10−19 at room temperature. Additionally, BK7 windows are also

weakly transparent to BBR radiation but we find this correction factor to be negligible provided

both the shield and surrounding apparatus are at similar temperatures.6

4.4.4 Blackbody radiation shift uncertainty

Table 6.1 summarizes the BBR shift uncertainties for our ytterbium lattice clock. In addition

to items that have been described so far, we note that variations in the position of the lattice-

trapped atoms from the geometric center of the chamber, non-scalar Stark shifts from anisotropy

in the BBR, and the application of Teff in the dynamic correction, all leading to comparatively

small uncertainties. Table 6.1 is divided into BBR environmental uncertainty, ytterbium atomic

response uncertainty, and total BBR ytterbium clock uncertainty. All reported uncertainties are in

6 BK7 is mostly transparent to radiation below 3 µm and weakly transparent (< 1%) to radiation above 3 µm.
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fractional clock frequency units and result from the quadrature sum of component uncertainties.

We find a total uncertainty associated with the BBR environment to be 5.5× 10−19. The reported

dynamic correction η1 is taken as the weighted average of three distinct determinations of its value

[12, 108]. Magnetic dipole (M1) interaction with the BBR leads to a clock shift of ∼ 3 × 10−20,

with a small uncertainty included in the atomic response factor. Finally, combining the BBR

environment and atomic response uncertainties yields a total uncertainty for the BBR shift given

by Equation 4.5 of 1.0× 10−18.

Table 4.3: BBR shift uncertainty in fractional clock frequency at room temperature operation
(∼ 296.7 K).

BBR environment ×10−19

RTD temperature measurements
manufacturer calibration (5 mK) 1.6
post-calibration fidelity 2.4
digital multimeter (4-wire) 2.2
self heating 1.6
parasitic conduction/radiation 0
Temperature inhomogeneity/effective solid angles
BK7 glass windows 2.9
entry aperture (oven shielded by shutter) 2.4
exit aperture 0.3
Other
application of Teff in dynamic correction 0.1
residual transmission through windows 0.2
atomic position/dimensional tolerances 0.5
BBR anisotropy (non-scalar Stark) 0

Total BBR environment uncertainty 5.5

Atomic response ×10−19

dynamic correction η1 8.5
dynamic correction η2 0.4
BBR Zeeman (M1) factor 0.1

Total atomic response uncertainty 8.5

Total BBR clock shift uncertainty 1.0× 10−18
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4.5 Direct measurement of the blackbody Stark shift

Since the determination of the blackbody environment plays such a critical role in the final

uncertainty budget of a 10−18 level optical lattice clock, it is imperative to experimentally validate

our treatment of this effect. To this end, we heat the BBR shield to directly observe the tempera-

ture dependence of the BBR shift. In principle, this measurement could be used to determine the

atomic response parameters, αclock and ηclock(T ) in Equation 4.5. However, since these parameters

have been independently determined to a high level of accuracy, here we make the more meaningful

comparison between measured and expected BBR shift as characterized by Teff . To uniformly heat

the copper shield we fit annulus-shaped resistive heaters on the top and bottom of the copper mass,

nested below the boron-nitride holding rings. This enables us to raise the shield temperature by up

to 100 K above room temperature during operation of the lattice clock. We operate two Yb lattice

clocks and make direct frequency measurements between them. One lattice clock is fitted with the

BBR shield and heaters, while the second serves as an optical frequency reference. The uncharac-

terized ambient BBR environment within the second system is known to be sufficiently stable over

the course of a measurement (several hours). While comparing the atomic clock frequencies, we

gradually raise the temperature of the BBR shield of the first clock and then allow the shield to

cool to room temperature (1/e time of ∼3 hours). The hottest shield temperature was limited by

vacuum degradation, frustrating lattice clock operation. Each BBR data point was a result of bin-

ning difference frequency data segments that averaged to a measurement precision of ∼ 3× 10−17.

The observed clock shift versus temperature is plotted in Figure 4.7. The results from three dis-

tinct measurement protocols are shown: (1) the top curve shows measurement for the case of a

slow continuous heating of the shield temperature, (2) the middle curve for the case of controlled

intermittent heating to allow the shield to settle at a nearly-constant temperature for each mea-

surement point, (3) and the bottom curve for the case of passive cooling of the shield after a heating

cycle. Red solid curves fit the data to Equation 4.5. The temperature of the shield windows closely
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follows that of the shield body, with a difference determined by thermal conductance measurements

described above together with the estimated radiative heat transfer from its surfaces. While the

shield body is heated and subsequently cooled, the apertures expose the atoms to unchanging room

temperature BBR. However, given our measurement precision of ∼ 3 × 10−17 per point, limited

exposure from room temperature BBR gives a negligible systematic effect. Whichever measure-

ment protocol was employed, we ensured that temperature changes were sufficiently slow to avoid

any meaningful temperature dependent Doppler shifts.7 Also shown in Figure 4.7 is the resulting

static polarizability from ten different direct BBR shift measurements. We fix η1 = 0.01745(38) and

η2 = 0.000593(16) allowing αclock to be the free parameter.8 The weighted mean of the measured

differential static polarizability is found to be αclock = 146.1(1.3) a.u., in excellent agreement with

static Stark measurements, αclock = 145:726(3) a.u. or 36.2612(7) kHz(kV/cm)−2.

In conclusion, we demonstrated control and characterization of room-temperature BBR shift

at 1× 10−18 with a radiation shield in an ytterbium optical lattice clock. The resulting BBR shift

uncertainty from the thermal environment is 5.5×10−19 with an atomic response uncertainty of 8.5×

10−19 [11]. We note that this level of control is achieved with the simplicity of room-temperature

operation, without the special transport of lattice trapped atoms to a cryogenic environment and

offers a real time measurement of the BBR shift. Moreover, our shield design is expected to be

applicable to optical lattice clocks based on other atomic species. For example, replacing ytterbium

inside our shield with Mg, Ca, Sr, or Hg, would yield an uncertainty from the BBR environment of

9×10−20, 6×10−19, 1×10−18, or 4×10−20, respectively [102, 49]. Finally, our explicit measurement

of the BBR shift temperature dependence supports out treatment of this shift at the 10−18 level.

7 Specifically, Doppler shifts from optical phase chirps from window thermal expansion or temperature dependent
indices of refraction.

8 This includes additional independent efforts to determine the dynamic correction factor beyond our decay
measurement technique.
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Figure 4.7: Measurement of ytterbium clock frequency shift relative to defined blackbody environ-
ment temperature. Upper plot displaying measured frequency shifts for different shield temerature
cases with corresponding fit (red solid curve): (a) measured frequency shift for shield heating (dots)
and cooling (triangles). Frequency offset was intentionally applied to aid in visual clarity. (b) The
extracted differential polarizability value, ∆αclock, from ten measurements of blackbody radiation
shift versus temperature. Circles denote heating the shield and tangles denote cooling the shield
with ±1σ weighted standard error given by the red shaded region. The dotted blue line gives the
expected result from previous measurement.



Chapter 5

Lattice Light Shifts

Elimination of motional effects is essential for studying ultra-narrow transitions in atomic

frequency standards. A quantum oscillator must be fixed in space, insensitive to external pertur-

bations, free from Doppler shifts, atomic collisions, and gravitational acceleration before realizing

ultra-precise spectroscopy. The lattice clock achieves these requirements via an engineered light

trap or optical lattice potential. The stark shift resulting from this lattice potential on the clock

states can exceed 100 kHz to realize sufficient trap depths for containment of cooled clock atoms.

However, to reach 10−18 clock operation these stark shifts need to be characterized at the 1mHz

level. Fortunately lattice clocks have been spectacularly successful at creating trap potentials with

near zero net stark shift on an ensemble of atoms. Even the first reported optical lattice clocks

realized < 1 kHz, laser limited clock linewidths [125]. Here we study the lattice confinement of

ytterbium atoms and our ability to cancel and control lattice induced light shifts for 10−18 clock

operation.

5.1 Optical dipole potential

Matter exposed to an electric field becomes polarized via the Coulomb force. Classically we

express this electric field and matter interaction of an isotropic media as:

→
d= α(t)

→
E (5.1)
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where
→
d =

→
d (r, t) is the induced dipole moment, α(t) represents the polarizability of an object,

and
→
E =

→
E (r, t) is the surrounding electric field [47]. The Coulomb force between

→
d and

→
E, will

result in an interaction energy, expressed as:

U = −
→
d ·
→
E (5.2)

with a net torque about an object’s center of mass [47]. In a nonuniform electric field, the object

will experience different Coulomb forces across its structure, resulting in an additional nonzero net

force. In the case of a conservative potential, we can express the force,
→
F, from a nonuniform

electric field as:[47]

→
F= −

→
∇ U = (

→
d ·

→
∇)
→
E= α(t)(

→
E ·

→
∇)
→
E . (5.3)

The above relation reveals several important consequences of controlling matter with an electric

field: (1) the net force scales with the object polarizability, (2) a nonzero force requires an electric

field gradient, and (3) the force scales with E2 because the electric field induces, as well as interacts

with, a dipole moment. Similarly, an atom confined in an optical lattice experiences an induced

atomic dipole moment. Of course, atoms absorb and re-emit photons at specific frequencies, leaving

α(t) complex and dependent on electric field frequency.

To calculate the polarizability of an atom, we consider the equation of motion of an electron

in an external electric field that is bound (classically) to a potential,

ẍ+ Γwẋ+ ω2
0x =

−e
me

E(t) (5.4)

with ω0 identified as the atomic transition frequency, and Γw is the damping coefficient do to

radiative energy loss [48]. We find α(t) to be

α(t) =
e2

me

1

ω2
0 − ω2 − iωΓw

. (5.5)

with the imaginary part of α(t) responsible for absorption of energy (re-emitted as dipole radiation,

heating the sample) and the real part of α(t) responsible for the interaction potential in Equation 5.2
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[48]. The dynamic dipole polarizability can be calculated semi-classically for a two level quantum

system however we forgo that derivation here (e.g. [23]).

Careful control in the optical lattice confinement requires the atom-trapping light interaction

be well defined and uniform over the quantum ensemble. To this end we construct a 1-D opti-

cal standing wave potential providing a simple, near ideal trap for confinement of the ultra cold

ytterbium. The optical lattice is formed by interfering high power, counter-propagating, focused

Gaussian laser beams of the same mode structure, frequency, and polarization resulting in a time

averaged intensity distribution given by:

〈I(r, z)〉 =
2P

πω2(z)
e
−
(

2r2

ω2(z)

)
(5.6)

where z is in the direction of laser light propagation, r denotes the radial coordinate, and P is the

power in a single direction [54]. Naturally, the 1/e2 intensity radius, ω(z), depends on position

relative to the focus, given by

ω(z) = ω0

√
1 +

(
z

zR

)2

(5.7)

where ω0 is the minimum beam radius, and zR = πω2
0/λ gives the Rayleigh length [54]. For

dimensions close to the lattice focus we can approximate the electric field as two one-dimensional,

linearly polarized, interfering plane waves, creating a standing electric filed wave with frequency

ωL given by:

→
E (z, t) = E0e

i(kz−ωt) + E0e
−i(kz+ωt)ẑ. (5.8)

Combining Equation 5.1, Equation 5.2, and Equation 5.5 for an oscillatory field, we find

〈U(r, z)〉 = − 1

2ε0c
Re[α(t)]I(r, z) (5.9)

where I(r, z) = 2ε0c|E|2 is the field intensity [48]. Around the focus, if we take the averaged value of

→
E (z, t) over a period, τ = 2π/ω we find the trapping potential is modulated sinusoidally according

to

〈U(r, z)〉 = −U0cos2(kz)e−2r2/ω2
0 . (5.10)
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We define the trap depth for a given state polarizability, αi, at U(r = 0, z = 0) found to be

U0 = αi
4P

cε0πω2
0

(5.11)

where U0 accounts for the constructive interference of two identical counter propagating laser

beams [48]. From Equation 5.10, for small deviations about the focus we can write the time

averaged trapping potential as periodic array of 2-D discus shaped electric field potentials every λ/2,

confined radially by the Gaussian parameters. We can approximate confinement in in the radial and

longitudinal directions using the quantum harmonic oscillator potential, V (x) = 1
2mω

2x2, where

m representing the atomic mass. We find the radial and longitudinal frequencies to be:[6]

fradial =
1

πω0

√
U0

m
(5.12)

flong. =
1

λ

√
2U0

m
. (5.13)

These represent the eigen trap frequencies and, consequently, the energy spacing between motional

states of our quantum harmonic oscillator model used to describe our system.

5.2 Frequency shifts in a 1-D lattice trap

The presence of an external electric field results in the shifting and splitting of spectral

lines in atomic spectra, altering the frequency of our clock timebase. Critical to reaching the true

performance of an optical lattice clock is canceling the > 100 kHz light shifts induced by the off

resonant (conservative), electric field trap. The dominate Stark shift when optical trapping is

from the atoms’ electronic dipole polarizability, αE1. However, by choosing a lattice frequency

where αE1 of the two clock states match (∆αE1 is minimized), we engineer a trapping environment

that is virtually free of (net) lattice light shifts, preserving the desired natural atomic transition.

As lattice clocks reach a level of performance beyond state-of-the-art microwave standards, Stark

shifts stemming from higher multipolarizabilities contributions (e.g. magnetic dipole and electric

quadrupole) prevent a simple cancellation of the lattice Stark shift. For a harmonic electromagnetic
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fields with shared time dependance we can write E(x,t)=Re[Ee−iωt]. The resulting time averaged

energy shift is given by:

U = −1

4
(E · E∗)αE1(ω)

− 1

4k2
[(∇× E) · (∇× E∗)]αM1(ω)

− 1

2k2
[{∇ ⊗ E}2 · {∇ ⊗ E∗}2]αE2(ω)

− 1

16
(E · E)(E∗ · E∗)βE1(ω)

(5.14)

where k = ω/c (c is the speed of light), αM1 and αE2 are the magnetic dipole and electric quadrupole

polarizabilities respectively, and {∇⊗E}2 · {∇⊗E∗}2 is a second rank tensor. For our 1-D linearly

polarized optical lattice where ω0 >> λ, we model E as

~E = E0e
(−r2/ω2

0)cos(kz)ẑ. (5.15)

However, by Maxwell’s equation, ∇×
→
E = -1

c
∂
→
B
∂t , we find the spatial distribution of the magnetic field

is 90◦ out of phase with the electric field, giving the strongest magnetic field gradients at regions

of high electric field intensity and weakest magnetic field gradients at regions of low electric field

intensity [122]. Consequently, the time-averaged trapping potential felt by each atomic component

in α(ωL), and β(ωL), in the direction of tight lattice confinement, is given by:

UE1(z) = −
(
E0

2

)2

αE1(ω)e(−2r2/ω2
0)cos2(kz) (5.16)

UM1(z) = −
(
E0

2

)2

αM1(ω)e(−2r2/ω2
0)sin2(kz) (5.17)

UE2(z) = −
(
E0

2

)2

αE2(ω)e(−2r2/ω2
0)sin2(kz) (5.18)

UE1(z) = −
(
E0

2

)4

βE1(ω)e(−4r2/ω2
0)cos4(kz) (5.19)

In general, we can write the total potential as:

U(ω) = −U0a(ω)e(−2r2/ω2
0)cos2(kz)−U0a

′(ω)e(−2r2/ω2
0)sin2(kz)−U2

0 b(ω)e(−4r2/ω2
0)cos4(kz) (5.20)
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where U0 ≡
(
E0
2

)2
α(ω∗) (where ω∗ is the magic frequency), and quantities a(ω), a′(ω), b(ω) are

atomic properties given by:

a(ω) ≡ αE1(ω)

α(ω∗)

a′(ω) ≡ αM1(ω) + αE2(ω)

α(ω∗)

b(ω) ≡ β(ω)

α(ω∗)

To proceed, we approximated motional sates as decoupled harmonic oscillator states in the x̂, ŷ,

and ẑ dimension (r2 = x2 +y2). Expanding the spatial part of Equations 5.16, 5.17, and 5.19 yields:

e(−2ρ2/ω2)cos2(kz) ≈ 1− (kz)2 +
(kz)4

3
+ (− 2

ω2
+

2(kz)2

ω2
− 2(kz)4

3ω2
)ρ2 . . .

e(−2ρ2/ω2)sin2(kz) ≈ (kz)2 − (kz)4

3
+ (−2(kz)2

ω2
+

2(kz)4

3ω2
)ρ2 . . .

e(−2ρ2/ω2)cos4(kz) ≈ 1− 2(kz)2 +
5(kz)4

3
+ (− 2

ω2
+

4(kz)2

ω2
− 10(kz)4

3ω2
)ρ2 . . . (5.21)

taking the form of a quantum harmonic oscillator with higher order corrections. To calculated

the lattice trap eigen energies, we express powers of kz and ρ in terms of the raising and lowering

operators, ai and a†i , and ξ =
√

2
kω to the corresponding to the i-th harmonic mode.

kx =
1√
2
U−1/4ξ−1/2(ax + a†x) (5.22)

ky =
1√
2
U−1/4ξ−1/2(ay + a†y) (5.23)

kz =
1√
2
U−1/4(az + a†z) (5.24)

For the case of the above Equations:

〈ni| e(−2ρ2/ω2)cos2(kz) |ni〉 ≈ 1− U−1/2

(
nz +

1

2

)
+

1

2
U−1

(
n2
z + nz +

1

2

)
− U−1/2

√
2

kω

(
nρ +

1

2

)
. . .

〈ni| e(−2ρ2/ω2)sin2(kz) |ni〉 ≈ U−1/2

(
nz +

1

2

)
− 1

2
U−1

(
n2
z + nz +

1

2

)
+ U−1

√
2

kω

(
nz +

1

2

)
(nρ + 1) . . .

〈ni| e(−2ρ2/ω2)cos4(kz) |ni〉 ≈ 1− 2U−1/2

(
nz +

1

2

)
+

5

6
U−1

(
n2
z + nz +

1

2

)
− U−1/2

√
2

kω

(
nρ +

1

2

)
. . .
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where nρ = nx + ny. Substituting these equations into Equation 5.20 we find the net energy shift

from our optical lattice harmonic potential to be:

∆E =

(
nz +

1

2

)(
nρ +

1

2

)
∆τ(ω) +

(
nz +

1

2

)
∆γ(ωL)U1/2 +

∆α(ωL)U +

(
nz + nρ +

3

2

)
∆σ(ωL)U3/2 + ∆β(ωL)U2 + . . . (5.25)

where n = 0, 1, 2, . . . is the vibrational quantum state in the harmonic potential, and the terms

τ(ωL), γ(ωL), σ(ωL), and β(ωL) are composed of U0, a(ω), a′(ω), and b(ω). Astonishingly, the

quantization of motion yields frequency shifting terms with U1/2, and U3/2 (and higher-order)

dependance. With the above equation, we proceed to minimize the net scalar stark shift and

examine the terms τ(ωL), γ(ωL), σ(ωL), and β(ωL) which further reduce in the experimental

measurement, hence we forgo their full derivation here (see section 5.5).

5.3 Minimizing the net scalar Stark shift

The lattice light and atom interaction is dominated by the polarizability term in Equation

5.25, α(ωL). Crucial to measuring higher order effects is our ability to first minimize the net scalar

Stark shift on our clock frequency. As αE1 term is ∼ 106 times larger than αM1 and αE2 in

two-electron atoms, it represents by far the largest shift in the polarizability coefficient [64, 122].

Therefore, we must carefully consider the electronic dipole interaction and our methods to zero this

effect. We can write the net frequency shift from αE1 into scalar, vector, and tenser components

in terms of |F,mF 〉 for a given quantum oscillator by expanding αE1 as:

αE1(ωL, e) ∼= ∆κs(ωL) +mF ξ(k·
→
B)∆κv(ωL) +

[
3m2

F − F (F + 1)
](

3
∣∣∣e· →B∣∣∣2 − 1

)
∆κt(ωL) . . .

where ξ is the lattice polarization ellipticity, e and k are the lattice polarization and propagation

vectors, respectively,
→
B is the spectroscopy bias field, and the differential scalar, vector, and tensor

coefficients are ∆κs,∆κv, and ∆κt, respectively [131]. Our choice of ytterbium isotope forces the

tensor term coefficient to zero because the 171Yb quantum system, where mF = ±1/2, possesses
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insufficient angular momentum to support a tensor component. Alignment of the bias magnetic

field,
→
B, is perpendicular to lattice propagation, k, implying the coefficient in front of the vector

stark term is near zero as well, with any residual shift removed by averaging mF = ±1/2 spin

state frequencies. We also choose to operate in a 1-D lattice configuration with linear lattice light

polarization (ξ = 0), further suppressing vector stark effect. With the above techniques, we are

free to choose ωL were the net scalar Stark shift, ∆κs(ωL), is minimized. Additionally, because

frequency is such a precisely measured quantity, reducing αE1 to a single, frequency-dependent

component facilitates high accuracy measurements of clock shifts relative to lattice intensity.

5.4 Ultra-cold ytterbium ensemble in an optical lattice

The preceding formulation of lattice light shifts only considers a single atom in a particular

motional state n. However, as an optical lattice clock contains an ensemble of atoms, forming a

diverse array of transverse and longitudinal motional states, we must make an additional effort

to quantify our atomic ensemble motional state characteristics before pursuing an absolute lattice

light shift measurement. When simultaneously probing an ensemble of atoms, we define an average

value of motional state occupation, 〈n〉, as no single state can be selected. Standard practice is to

assume a Boltzmann distribution over bound lattice states, implying 〈n〉, is given by

〈n〉 =

∑
n ne

(
− εn
kBT

)
Z

(5.26)

where εn are eigen-energy states of the Hamiltonian, Z =
∑

n e

(
− εn
kBT

)
is the partition function,

kB is Boltzmanns constant, and T is the temperature of the atomic sample [48]. Trap frequencies

and eigen-energy spacing are determined by Equations 5.12 and 5.13. Unfortunately this picture is

incomplete, as we require an accurate value of atomic ensemble temperature to find 〈n〉.

Initial intuition supports using an ensemble temperature given by the Doppler cooling limit

of our final stage of laser cooling. However, this approach makes the (unlikely) assumption that

no alternative cooling is present (e.g. Sisyphus cooling). Furthermore, because optical lattice trap



77

potential depths can be slightly below final average atomic motional energy, evaporative filtering of

atoms from the atomic ensemble can yield Boltzmann distributions inconsistent with the minimum

Doppler temperature. Consequently we use only lattice trapped atoms to determine ensemble

temperature, utilizing characterization techniques from sideband spectra of single atoms bound in

the Lamb-Dicke regime. In such a system, the measure of longitudinal ‘temperature’ is manifested

in the suppression of the red-detuned sideband with respect to the blue detuned sideband [13]. In

contrast to the single, well-defined peaks found in single atom spectra, an atomic ensemble will have

an integral effect of asymmetrically broadening the oscillator’s sideband spectra (see A in Figure

5.3) [16]. The sideband skewing results from longitudinal motion coupling to radial motion, because

the potential (Equation 5.9) is not fully separable into longitudinal and radial components, and

expansion of cos2 in Equation 5.10 is not perfectly harmonic. Fortunately, component line shape

temperature suppression is still conserved, allowing the measure of atomic ensemble temperature

by analyzing total area under the red-detuned and blue-detuned sidebands. Borrowing previous

knowledge from the well known single atom spectra, the cumulative sideband line shape can be

expressed as a Boltzmann-weighted superposition of motional component line shapes (see [16] for

full details). Assuming single dimension excitation, we can write the integrated sideband cross

section relation to longitudinal temperature as:

σtotalred

σtotalblue

= 1− e−E0/kBT∑N
n=0 e

−En/kBT
(5.27)

where σtotal is that area of the normalized sideband, kB is Boltzmann’s constant, E0 is the zero-

point energy, determined by sharp sideband edge furthest from the carrier, and En is the energy

of the motional state n. Experimentally we probe the atomic sample along the longitudinal trap

direction, recording a frequency scan including both first order blue and red detuned sideband

spectra, normalized for atom number. Sideband area is calculated after identifying sideband edge

frequency and fitting a curve to the blue and red sidebands separately. We ensure atomic sample

depletion is minimal during spectroscopy, preventing a false sideband area ratio. After determining
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flong., σ
total
red , and σtotalblue , solving Equation 5.27 numerically yields the corresponding temperature

in the longitudinal dimension. Several atomic ensemble spectroscopic line shapes for temperatures

ranging from 3-30 µK are displayed in Figure 5.3 A.

Radial sideband excitation is limited by probe light orthogonality and detuning (fradial ∼

100− 400 Hz and flong. ∼ 18− 200 kHz), complicating the determination of radial temperature in

our experimental setup. Slight probe beam misalignment will excite transverse trap motional states

allowing accurate measurement of fradial. Based on Equations 5.12 and 5.13, longitudinal sideband

spectrum, and the methods in used reference [16], we can determine the radial temperature from

the longitudinal sideband spectra. Notably, the width of the sideband broadening from dimensional

coupling (e.g. Figure 5.3 A) is proportional to transverse ensemble temperature.

5.5 Experimental determination of lattice light shifts

Experimental determination of our lattice light shifts has been reported by our group previ-

ously [73, 9]. However, realizing a 10−18 uncertainty in these shifts requires accounting for addi-

tional systematics introduced when varying lattice power in a similar, but more accurate, lattice

light measurement. To this end, we implemented several features in a new lattice construction to

facilitate our high accuracy measurement. First, as completing a lattice light shift measurement

requires interleaving measurments with alternating lattice power, we constructed a build-up cav-

ity around our atoms, substantially amplifying the relativity small light shifting effects. Second,

with an enhanced lattice intensity, we expanded the trap mode volume such that single clock cycle

collisional shifts where limited at ∼ 5 × 10−18, which were then measured with an uncertainty of

∼ 3×10−19.1 Third, to frustrate atomic tunneling between lattice sights, we employ a simple, 1-D

vertical lattice, lifting the degeneracy from each motional state via the gravitational potential. In

this configuration, atoms trapped in a lattice potential must gain or lose a quanta of Bloch energy

1 See Chapter 6, Section 6.1.4 for more details
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when tunneling, greatly suppressing this effect.2 Finally, we applied advanced filtering to the

lattice light, significantly suppressing background laser amplified spontaneous emission not at the

operating lattice frequency.3 Our lattice engineering enables trap depths reaching 2000 Er (lattice

recoil energy, Er/kB = 100 nK), thereby trapping up to several million atoms in a well defined and

uniform periodic potential.

Previous lattice light measurements required little knowledge of atomic ensemble tempera-

tures for the desired clock performance. However as previous theoretical work predicted motional

state dependent lattice frequency shifts, we began to investigate motional temperature dependance

relative to lattice trap potential. Figure 5.3 B shows the corresponding trap temperature with lat-

tice potential depth in Er. The data reviled a near perfect linear dependence of trap temperature

on trap depth, implying components of ∝(n+1) in Equation 5.25 gain an U1/2 dependance. We

find that intensity terms with root dependance (Um/2 where m is an integer) collapse to coefficients

of linear, quadratic, and higher order powers. The relatively complex lattice clock frequency shift

from Equation 5.25 reduces to

∆ν = α(ωL, T )U + β(ωL, T )U2 (5.28)

where the coefficients α(ωL), β(ωL) gain a temperature dependance. Therefore, we must report

the lattice atomic temperature at each set-point when recording a light shift measurement. Also,

great care must be taken when relating α(ωL) to α(ωL, T ) etc. as these coefficients are not, strictly

speaking, well resolved into pure atomic polarizabilities of ytterbium. Additionally, because dif-

ferent motion states |n〉 sample different magnetic and electric field intensities we must precisely

control the atomic temperature loaded into the lattice.

At a unique lattice frequency, we make an absolute frequency measurement referenced to a

NIST traceable Hydrogen maser. After confirming the absolute lattice frequency, we take sideband

spectra for two clock configurations, the first is the ‘reference’ clock (based on a given lattice

2 See Chapter 6, Section 6.1.6 for more details
3 See Chapter 2 for more details
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intensity) used throughout all measurements and a second perturbed light shifted case. With the

sideband spectra we are able to confirm accurate temperature dependance vs. lattice intensity and

absolute temperature values [16]. We record the differential frequency shift between the two clock

configurations, to an uncertainty of∼ 1×10−17 for a particular change in lattice intensity. Repeating

the above procedure for different lattice intensities produces a single curve found in Figure 5.2.

With sufficient data, we fit our curve to Equation 5.28, producing linear and quadratic coefficients
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Figure 5.2: Recorded clock shift dependance on optical lattice trap depth for different lattice
detuning around 394,798,270 MHz

with one sigma uncertainties given by the reduced χ2. In our range of curve detuning there is
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negligible frequency dependance on β(ωL, T ) for our required accuracy measurement. As such,

we use a fitting protocol to globally fit β(ωL, T ) while locally fitting α(ωL, T ), yielding improved

uncertainty results. We estimate our differential temperature uncertainty between measurement

points to be < 10%, with an absolute value limited by our understanding of the thermal ensemble.

Special attention must be given to the spectral purity of the lattice laser light source. Laser sources

have amplified spontaneous emission that forms (usually) time-dependent, background spectrum

of off resonant light that can Stark shift the atoms, yielding a false determination of the magic

wavelength [118]. The Ti:Sapphire lasers used here exhibit a low amplified spontaneous emission

background spectrum (> 60 dB below carrier) and pass through additional Bragg grating filters of

various bandwidths (1 nm to 50 pm). Also excessive heating can result from amplitude noise and

frequency noise resonant with the motional sideband. Careful control of servo resonances limited

these unwanted heating effects.

5.5.1 Lattice polarizability

In 2008 we made a first attempt to find a working wavelength for our optical lattice starting

from a theoretical calculation of the lattice magic wavelength, where the ac-Stark shift of the

upper and lower clock state match, preserving the natural transition frequency [103, 9]. By tuning

the lattice laser frequency around the calculated value, and monitoring the asymmetry of the

clock spectroscopic line shape, we reduced the sensitivity of motional state occupation to lattice

intensity. After minimizing line-shape asymmetry, we recorded the clock frequency shift relative

different lattice intensities for a unique lattice frequency and fit the data to a linear dependance.

The slope of each record is proportional to the differential polarizability (at that lattice frequency).

Plotting the linear coefficients as a function of lattice frequency reveals a ‘zero crossing’ or intensity

independence in lattice frequency, defined as the magic wavelength.

Here we repeat the above measurement in a similar fashion with several improvements. First,

the precision of our clock frequency shift uncertainties are reduced by ∼ 100x (< 3 × 10−17 vs.
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< 3×10−15). Second, we doubled the lattice trap depth (measurement leverage) to ∼ 2000 Er from

our previous depth of ∼ 1000 Er. Third, we fix and record the temperature for each measurement

set-point. Finally, we independently measure the density shift as a function of trap depth and apply

the correction (∼ 4 × 10−18 fractional shift with a 10% uncertainty) to our measured fractional

frequency shift. For a unique lattice frequency we vary lattice power as described above and fit our

data to Equation 5.28. In Figure 5.3 we plot the resulting linear differential polarizability coefficients

per unit of recoil energy, Er, as a function of lattice detuning (corrected for the density shift). Taking

a linear weighted fit of our data we find the zero crossing frequency, to be 394,798,271.3(6) MHz with

a α(ωL, T ) slope (in fractional frequency units) of −1.84(5)× 10−20 1
ErMHz at 3 µK. For a 100 Er

potential, we find a systematic fractional frequency uncertainty for this system of 1.0× 10−18.

5.5.2 Lattice hyperpolarizability

The hyperpolarizability effect, ∝ U2, is a result of fourth order electric dipole interactions

between the quantum oscillator and lattice light field. By the nature of this effect, the induced

clock frequency shift should be quite small unless an atom experiences high lattice intensity or the

lattice frequency is close to any two-photon resonances. After experimentally determining the magic

wavelength in our original 2008 measurement, we found three two-photon resonances close enough

in frequency to warrant a direct measurement of this effect. The nearby, off resonant transitions

are: 6s6p3P0↔6s8p3Pj=0,2 at 759.7082 nm (j = 0), and 754.23 nm (j = 2), and 6s6p3P0↔6s5f3F2

resonances at 764.95 nm. Of particular concern is the 3P0↔3P0 transition as it is close to the magic

wavelength and has an ∼ 10 times larger shift than 3P0↔3P2 and 3P0↔3F2 resonances.

In our previous hyperpolarizability measurement, the clock frequency shift was recorded near

each two photon resonance relative to a frequency comb stabilized to a Ca clock. The shifted Yb

clock frequency line was fit to a Lorentzian, and plotted relative to lattice laser detuning. Frequency
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Figure 5.3: Differential polarizability coefficient per unit of lattice recoil energy plotted as a function
of lattice detuning around 394,798,271.3 MHz.

shift data was fit to dispersion line shape of the from

∆ν = δ
Ω2

2γ

4δ2 + Γ2
(5.29)

where ∆ν is the clock shift, δ is the lattice detuning from λm, Ω2
2γ is the rabi rate of the two-

photon transition, and Γ is the linewidth of the resonance. After a careful line shape fit and lattice

intensity calibration, the corresponding clock shift is calculated at the magic wavelength, with a

hyperpolarizability shift of 0.80(12) µHz/E2
r [9]. At 100 Er, this corresponds to a total frequency

shift of ∼ 8 mHz or fractional shift of 1.5× 10−17 with an uncertainty of < 5× 10−18.
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In our second hyperpolarizability treatment, we extract ∝ U2 dependance from a global free

parameter fit of Equation 5.28 an collected polarizability data. The β(ωL, T ) coefficient at 3 µK

was found to be 3.6(2)×10−22 ∆ν
ν0

1
E2
r

or 0.19(0.02) µHz/E2
r . We note the large discrepancy between

our previously reported hyperpolarizability value and second treatment. The observed β(ωL, T )

coefficient is reduced in magnitude relative to the bare atomic value by the finite ensemble temper-

ature; since atoms in higher motional states experience lower time averaged lattice laser intensity.

Further modeling of motional state affect on the hyperpolarizability shift supports our lower ‘op-

erational’ hyperpolarizability coefficient, but remains in disagreement with theory (within a factor

of 1.5) implying more investigation is warranted. However, at the time of this writing we report an

‘operational’ hyperpolarizability coefficient of 0.19(0.02) µHz/E2
r at 3 µK. This corresponds to an

induced fractional frequency shift of 3.6× 10−18 with an uncertainty of less than 4× 10−19.

5.5.3 Multipolar polarizability

Initial theoretical work proposing the presence of an M1-E2 related shift estimated the effect

could lead to fractional frequency shifts as large as 10−16, limiting the clock’s ultimate performance

[122]. However, a subsequent experimental investigation in a Strontium optical lattice clock indi-

cated a shift consistent with zero at 10−17 level [131]. In our experimental study of lattice light

shifts the M1-E2 term is absorbed into α(ωL, T ) and β(ωL, T ) therefore we make a theoretical

calculation of this systematic [2]. For ytterbium, we compute the M1 and E2 polarizabilities to be

roughly equivalent and ∼ 4.0(0.4)× 10−7 less then the E1 polarizability. Starting from Equations

5.16 -5.18 we can write the total M1-E2 potential as

UM1/E2(z) = −
(
E0

2

)2

αM1(ω)sin2(kz)−
(
E0

2

)2

αE2(ω)sin2(kz) (5.30)

UM1/E2(z) ∼= −2

(
E0

2

)2

αM1(ω)sin2(kz). (5.31)

(5.32)
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We can write the electric field in terms of the potential from Equation 5.16:

−
(
E0

2

)2

=
UE1(z)

αE1(ω)cos2(kz)
(5.33)

Implying,

UM1/E2(z) = −2
αM1(ω)

αE1(ω)

(
sin2(kz)

cos2(kz)

)
UE1

Rewriting in fractional units we have,

∆ν

ν0
= −2

αM1(ω)

αE1(ω)

(
sin2(kz)

cos2(kz)

)
UE1

Er

Er
hν0

(5.34)

Where

αM1(ω)

αE1(ω)
∼= 4.0× 10−7

sin2(kz)

cos2(kz)
∼= 0.01 for a Lamb-Dicke parameter of η = 0.1

UE1

Er
= 100 for our operational lattice depth

Er
hν0

= 3.88× 10−12

Armed with the calculations we find fractional frequency shift to be 3.1× 10−18 with a 10% uncer-

tainty stemming from our calculations of the M1 and E2 polarizabilities.

5.6 A magic wavelength for 10−18 timekeeping

The key to lattice clock operation is correctly canceling large scalar light shifts and measuring

residual systematics created by the trapping potential. After careful study of our first order and

second order coefficients we consider the correct operation frequency of our lattice light. First,

we fix the final atomic ensemble temperature to ∼ 3 µK, the minimum temperature limit we

can experimentally achieve for ytterbium. Then we limit the lattice intensity utilizing a verti-

cal lattice configuration so that a low 100 Er operational trap debt can be employed, minimizing

the second order coefficient uncertainty while providing enough trapping potential to retain be-

tween 5000-100,000 for sufficiently low lattice tunneling, and atomic quantum projection noise
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below the optical local oscillator fractional instability. Finally, to minimize sensitivity to lattice

intensity uncertainty, we operate ∼3.9 MHz blue detuned from the measured magic wavelength

(394,798,271.3(6) MHz), where the polarizability and hyperpolarizability balance, leading to insen-

sitivity to first order changes in lattice intensity as shown in Figure 5.4. The above techniques

produce a robust operational optical lattice with a total lattice light clock shift of ∼ −1.6 mHz

or −3 × 10−18 fractionally, with an uncertainty of 1.1 × 10−18. The uncertainty is increased from

Figure 5.4 because although a particular clock (in this case, the second ytterbium system) can be

well studied, universal understanding of the lattice light shift is limited by modeling of motional

state population at the time of this writing.
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Chapter 6

Systematic Frequency Shifts in a Ytterbium Optical Lattice Clock

Previous chapters featured effects significant to the fundamental operation of an optical lattice

clock for optical based timing performance. Our motivation for these studies was to further our

understanding of the physics governing atoms as well as measure and reduce the systematic effects

of our atomic clock. Here we reflect on other systematic effects that influence 10−18 timekeeping.

Then we report our current physical understanding of the 1S0 −3P0 clock transition at 2 × 10−18

fractional frequency uncertainty. Finally we consider future prospects for 10−18 timekeeping and

beyond.

6.1 Other systematic effects

To reach 10−18 level timekeeping performance, we must consider other important, but perhaps

less relevant systematics effects. In this section we cover a detailed list of all systematic effects that

alter our clock frequency by performing a series of optical frequency comparisons between normal

clock operation and a highly perturbed (leveraged for measurement) clock configurations that

quantify our desired systematic.
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6.1.1 First-order Zeeman effect: with lattice Stark shift

Starting from M. M. Boyd et al. [22], we can write the total frequency shift on the ground

and excited state as

∆e = −mF (gI + δg)µ0B − κSe
UT
Er
− κVe ξmF

UT
Er

(6.1)

∆g = −mF gIµ0B − κSg
UT
Er
− κVg ξmF

UT
Er

. (6.2)

where gI = µI(1− σd)/(µ0I) is the nuclear g factor, µI(1− σd) = 0.491 889(8)× µN is given by L.

Olschewski [92], δg is the differential g factor, κe and κg are shift coefficients for scalar and vector

polarizabilities (note that tensor polarizability is identically zero for mF = ±1/2), and subscripts

e and g refer to the excited and ground states, respectively. Er is the energy of a lattice photon

recoil and UT /Er characterizes the lattice intensity.

If we assume that the 1S0 state vector shift is sufficiently small, and we operate at the

magic wavelength, λ ∼ 394, 798, 220 MHz, we can write the differential frequency shift, ∆ν, using

Equations 6.1 and 6.2 as;

∆ν = ∆e −∆g = −mFe(gI + δg)µ0B − κVe ξmFe

UT
Er

+mFggIµ0B. (6.3)

We can write frequency differences corresponding to π and σ transitions from line center as;

νσ+ − νc = −1

2
(δg + 2gI)µ0B −

1

2
δκU0. (6.4)

νLπ − νc = −1

2
δgµ0B −

1

2
δκU0, (6.5)

νHπ − νc =
1

2
δgµ0B +

1

2
δκU0, (6.6)

νσ− − νc =
1

2
(δg + 2gI)µ0B +

1

2
δκU0 (6.7)

where δκ = κVe ξ. From the above equations, we have

∆π = νHπ − νLπ = δgµ0B + δκU0, (6.8)

∆σ = νσ− − νσ+ = (δg + 2gI)µ0B + δκU0. (6.9)
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Combining Equations 6.8 and 6.9, we have

B =
∆σ −∆π

2gIµ0
. (6.10)

Solving Equation 6.8 for δgµ0 we get

δgµ0 =
1

B
(∆π − δκU0) . (6.11)

To determine B and δg, we need to know a priori δκ. First, we minimize δκ by running the clock

in a low bias field case and rotating a λ/2 and λ/4 waveplates, minimizing π splitting. Then

to quantify δκ, we operate our clock in an interleaved two-clock mode, alternating between two

different lattice potentials U0 = ULT /ER ∝ 567 mW and U1 = UHT /ER ∝ 908 mW, respectively.

For this unique lattice configuration, we calculate the slope δκ by recording differential π transition

spacing between U0 and U1 lattice potentials, measuring δκ = 0.28(3) mHz/mW.

With this formulation we measure the first order Zeeman coefficient, δgµ0, by recording the

frequency spacing between each hyperfine component in an artificially stretched clock configuration.

Due to a small drifting B field (several mG/hour), it was necessary to calculate δgµ0 ‘line-by-line’ as

frequency information was recorded from the π and σ transitions. This data exhibited a statistically

significant dependence on the magnetic field, due to the vector Stark shift. As such, calculating

δgµ0 at higher magnetic fields proved more advantageous because the fractional contribution of δκ

in Equation 6.11 is highly suppressed. Figure 6.1 displays the calculated (average) value of δgµ0

for different magnetic bias fields. Error bars, representing one sigma uncertainty on each first order

coefficient, are taken from a total Allan deviation of computed line-by-line δgµ0 data. We find a

weighted averaged of δgµ0 to be 399.031(4) Hz/G.

For normal clock operation we configure a 1 G bias field and alternately interrogate both

mF = ± 1/2 Zeeman states, dramatically suppressing the first order Zeeman effect [73]. However,

any magnetic field drift between mF = ± 1/2 clock interrogations can result in a residual first order

Zeeman shift. Therefore we interrogate the π transitions in an interleaved forward and reverse
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Figure 6.1: First order Zeeman coefficient, δgµ0, measured at different bias magnetic fields. We
report a δgµ0 weighted average (solid line) of 399.031(4) Hz/G. Dotted line represents one sigma
error.

frequency detuning, removing first order drift sensitivity. After implementing a drift insensitive

frequency interrogation, we Allan deviate the in-loop error signal from the Zeeman component in

the atomic system lock. We find an offset consistent with zero with a one sigma uncertainty of

3× 10−7 Hz, limiting the residual first order Zeeman shift uncertainty to < 6× 10−22. Concurrent

work demonstrated frequency agreement between a +B direction clock and a −B direction clock

that was consistent with zero with an uncertainty of 3.9× 10−19, shown in Figure 6.2.
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6.1.2 Second-order Zeeman effect: with lattice Stark shift

After measuring δgµ0 and δκ, we can measure the second-order Zeeman shift coefficient α by

running our lattice clock at two different magnetic fields, B0 and B1 at constant lattice potential

U0. Writing optical frequency differences from line center, νc, corresponding to π transitions for

clock 0 at B0 and for clock 1 at B1 gives;

ν(0,1)
L
π
− νc = −1

2
δgµ0B(0,1) −

1

2
δκU0 + αB2

(0,1), (6.12)

ν(0,1)
H
π
− νc = +

1

2
δgµ0B(0,1) +

1

2
δκU0 + αB2

(0,1). (6.13)

Because the second order Zeeman shift ∝ B2, it cannot be averaged away like the first order

component. Writing the above equations to show the averaged frequency offset from νc from a bias

field B(0,1), we have

Avg0
π =

1

2
(ν0

H
π + ν0

L
π − 2νc) = αB2

0 , (6.14)

Avg1
π =

1

2
(ν1

H
π + ν1

L
π − 2νc) = αB2

1 . (6.15)

Solving for the second order Zeeman coefficient, α, we find

α =
Avg0

π −Avg1
π

B2
0 −B2

1

(6.16)

where B is measured using Equation 6.11. This formulation can be used to do a line-by-line

calculation of the second order coefficient. However, as our measurement leverage is increased from

large, hard to control magnetic bias fields, our clock stability can degrade, limiting our measurement

of α.

Alternatively we can obtain the second order coefficient from recording the clock shift between

bias fields, fitting data to the function ∆ν = b(B1−B0) + c(B2
1 −B2

0). To extend our measurement

leverage we build a bidirectional bias field controller, interleaving clock measurements at high +B

and -B bias fields (∆B ∼ 18 G). To verify cancellation of the first order Zeeman shift, as well as

the concatenation of +B and -B field measurements in the second order Zeeman shift data, we
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needed to demonstrate frequency agreement between a +B direction clock and a −B direction

clock. Shown in Figure 6.2 is a +B,−B clock difference consistent with zero with a one sigma

uncertainty of 3.9 × 10−19. After demonstrating +B and −B bias field agreement, we recorded

0 1 2 3 4 5 6 7 8 9
- 6 x 1 0 - 1 8

- 4 x 1 0 - 1 8

- 2 x 1 0 - 1 8

0

2 x 1 0 - 1 8

4 x 1 0 - 1 8
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c∆
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S l o p e 0 - -

Figure 6.2: Frequency agreement between a +B direction clock and a −B direction clock. The
weighted average frequency difference (dotted line) was found to be consistent with zero with an
uncertainty of 3.9× 10−19. Solid lines represent one sigma error.

the the frequency difference for interleaved high +B and -B bias fields. Using a nonlinear 2-D

surface fitting method yielded a second order coefficient of -0.06095(7) Hz/G2. Additionally we

found the line by line calculation of α to give -0.06100(13) Hz/G2, in good agreement with our

measured quantity. A summery of our results are shown in Figure 6.3 and 6.4. Shown in Figure
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Figure 6.3: Line by line calculation of second order Zeeman coefficient, α, vs. bias field ∆B (B0

was 1.25 G.). The weighted average value of α, (solid line) is -0.06100(13) Hz/G2. Dotted lines
represent one sigma error.

6.5 is an Allan deviation of the computed second order Zeeman shift from a typical data set. We

report an estimated fractional uncertainty of 4× 10−19. Additionally, because the combined noise

characteristics of our applied and stray B fields are not white, we note the second order Zeeman

shift could be a limiting effect when averaging through the 10−19 decade for our standard 1 G field.

Further efforts to improved instability would greatly benefit from a lower bias field as this shift is

∝ Hz/G2.
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Figure 6.4: 2-D surface fit of fractional clock frequency shift, ∆ν vs. bias field B0, B1 to the
function ∆ν = b(B1 − B0) + c(B2

1 − B2
0). The coefficients b, c were found to be -0.0011(7) Hz/G

and -0.06095(7) Hz/G2, respectively.
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Figure 6.5: A real time measure of the second order Zeeman shift for typical data collection. The
peak at ∼2 s results from our atomic servo.
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6.1.3 DC Stark shift in a radiation shield

Any stray charge accumulating on the inner surface of the vacuum system creates an electric

field that could Stark shift our clock frequency [80]. Fortunately our blackbody radiation enclosure

also provides our atoms with a Faraday cage, shielding stray electric fields at the lattice potential.

To demonstrate this enclosure feature, we apply voltages to opposing windows of our blackbody

radiation shield to produce a well defined perturbed electric field along each orthogonal axis. As-

suming a stray electric field Es is independent of all applied fields, we find the clock shift can be

expressed as

∆ν = − 1

2h
αclock |Es + Ea|2

= − 1

2h
αclock

(
E2
s + E2

a + 2E(i)
s E(i)

a

)
where Es ≡ |Es|, and E

(i)
s ≡ Es · ê. We implement the three following experiment conditions:

An applied electric field E
(i)
a = +E0, with resulting clock frequency ν

(i)
+ , an applied electric field

E
(i)
a = −E0, with resulting clock frequency ν

(i)
− , and a ground plate voltage with with resulting clock

frequency ν
(i)
G . With the above equation we can write the interleaved clock frequency difference as

∆ν
(i)
+− ≡ ν

(i)
+ − ν

(i)
− = − 1

2h
αclock

(
4E(i)

s E0

)
∆ν

(i)
+G ≡ ν

(i)
+ − ν

(i)
G = − 1

2h
αclock

(
E2

0 + 2E(i)
s E0

)
∆ν

(i)
−G ≡ ν

(i)
− − ν

(i)
G = − 1

2h
αclock

(
E2

0 − 2E(i)
s E0

)
Solving for the stray field in the direction êi, independent of E0 by taking an algebraic combination

of the above equations gives,

δν(i)
s ≡ −

1

2h
αclock

(
E(i)
s

)2
=

1

16

(∆ν
(i)
+−)2

∆ν
(i)
+G −

1
2∆ν

(i)
+−

=
1

16

(∆ν
(i)
+−)2

∆ν
(i)
−G + 1

2∆ν
(i)
+−

=
1

8

(∆ν
(i)
+−)2

∆ν
(i)
+G + ∆ν

(i)
−G
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=
1

8

(∆ν
(i)
+G −∆ν

(i)
−G)2

∆ν
(i)
+G + ∆ν

(i)
−G

(6.17)

A small angle misalignment between windows in the blackbody shield is employed to frustrate

etalon formation. Unfortunately, this plate tilt could lead to a non-orthogonal application of Ea.

Using ANSYS modeling of the applied electric field we find that window tilt could be as large as 10%

fractionally before measurement degradation, well within our shield design. We constructed a high

voltage supply to deliver ±1500-0 V in the three experimental conditions to orthogonal directions

[56]. In the vertical direction, êz, shown in Figure 6.6, the stray charge shift was consistent with

zero with a one sigma confidence of < 1× 10−20. The horizontal directions, larger window spacing

and increased grounded shield exposure limited Ea. We found the stray charge to be consistent

with zero with a one sigma confidence < 3 × 10−19 and < 5 × 10−19 in the êx and êy directions

respectively. The total stray charge at the atoms was consistent with zero with a one sigma

uncertainty of < 5.8× 10−19.

6.1.4 Cold collision shift

Optical lattice clocks possess the ability to simultaneously interrogate many quantum ab-

sorbers with an ultra-narrow-band electronic transition. While this characteristic is essential for

exquisite clock performance, tight spatial confinement of quantum oscillators leads to atom-atom

interactions in multiple atom occupancy of trap potentials, giving rise to a systematic known as the

cold collision shift [83, 73]. Importantly, because the cold collision shift becomes more pronounced

with growing atomic population we start to trade systematic uncertainty for improved clock signal

to noise. Therefore, suppression and characterization of this shift is critical to realizing optimized

clock performance.

In our previous work, we explored methods to minimize, control, and quantify the cold colli-

sion shift in our optical lattice clock [74]. In theory, by using an ultra-cold, spin polarized, fermionic

isotope of ytterbium we benefit twofold: First, because of odd fermionic exchange symmetry, truly

identical fermions cannot collide via even-partial-wave collisions, and second, for the lowest odd-
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Figure 6.6: Recorded Stark shifts to the clock frequency as a function of applied voltage to the
vertically oriented blackbody shield windows. The one sigma standard error for each recorded Stark
shift in the vertical direction was ∼ 3× 10−17
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partial-wave collisions there exists a centrifugal barrier between atoms but ultra-cold atomic en-

semble temperatures possess insufficient energy to overcome this barrier [121, 27]. We found clear

evidence of p-wave interactions leading to a cold collision shift in our atomic system, indicating

that the collisional energy of the atoms (∼10 µK) facilitates meaningful tunneling through the p-

wave barrier. Fortunately, higher partial wave collisions where frozen out and Fermi suppression

was significant provided ground state atoms where truly indistinguishable particles (i.e. uniform

lattice potential). We proposed cancellation of the cold collision shift using Ramsey spectroscopy

with ∼50% population excitation, where excited and ground states experience identical collisional

shifts, leaving a net zero shift for the atomic ensemble [74].

To construct a clock for 10−18 level timekeeping we borrow from our knowledge of cold col-

lisions and take a direct approach to reduced this shift by dramatically expanding our trapping

potential volume. We measure the frequency shift from two interleaved clock configurations; one

operational with high atom number, and one operational with low atom number. The two indepen-

dent atomic systems are identical in operation with differing 399 nm slowing beam optical power.

In this way, all systematic are common mode with the resulting clock frequency difference resulting

from the different densities. Shown in Figure 6.7 is the density shift per atom number for different

trap potentials. We use a linear relationship approximation between the cold collisional shift and

trap potential over high trapping depths. With lower trapping potentials we find suppression of

the collisional shift as our atomic ensemble temperature suppressed tunneling through the p- wave

barrier. Our uncertainty in this characterization is largely limited by atom number fluctuations.

For 100 Er and 10000 atoms we find density shift correction to be 4× 10−18 with an corresponding

uncertainty of 3× 10−19.

6.1.5 Probe light shift

Interrogation of the clock transition can generally be modeled using a quantum two level

system. However, a complete representation includes off-resonant coupling of 1S0 and 3P0 to other
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Figure 6.7: The measured collisional shift per unit atom as a function of trap potential in lattice
recoil energy. Thermal suppression of p- wave collisions is evident for Er < 300, as atomic ensemble
temperatures required for these trap potentials prevent tunneling through the p- wave barrier (30-
45 µK).

states, leading to an ac-Stark shift from 578 nm clock light during clock spectroscopy [99]. Direct

calculation of the ac-Stark shift from the dynamic polarizabilities of 1S0 and 3P0 at 578 nm gives

a shift coefficient of ∼17 mHz/(mW/cm2) [98]. For our experimental setup, we operated with

a Gaussian 1/e2 intensity clock laser to lattice laser waist ratio of 5 to 1 ensuring a uniform

electromagnetic wavefront intensity for clock spectroscopy. A 140 ms Rabi clock spectroscopy

time requires ∼0.100 mW/cm2 of 578 nm light intensity, governed by our operating waist ratio,
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producing a probe light shift of only a few mHz. Typical Rabi interrogation times last 280 ms -

560 ms, easily placing this effect in the 10−19 range.

To directly measure our probe light shift we illuminate our lattice trapped atoms with off

resonant 578 nm light while performing clock spectroscopy and record the resulting shift in our

clock frequency. Before entering the vacuum enclosure, we send clock light through an electro-optic

modulator (EOM) producing first order sidebands at a fixed drive frequency, ω, (from 500 kHz to

10 MHz) with with a fixed amplitude ∼ 20− 40 dB below the (carrier) clock light frequency. Then

we perform an interleaved clock measurement: the first clock is carrier resonant with the ytterbium

clock transition, and the second clock is sideband resonant with the ytterbium clock transition.

We modulate the RF power and frequency to the acousto-optic modulator controlling the 578 nm

light frequency such that clock light interrogating the atoms is π-pulse resonant with the 1S0-3P0

clock transition for the respective clock configuration. In this way carrier excitation represents

our normal clock operation and sideband excitation represents a highly leveraged probe light shift.

Shown in Figure 6.8 is the frequency shift at different off-resonant intensities for our horizontal

lattice configuration, (lattice waist of 60 µm). We find a linear shift dependance with a slope of

−4.7(1) × 10−17/µW. The frequency difference between our two interleaved clocks was a result of

servo noise on the clock laser. We operated at 500 kHz and 10 Mz where this effect was minimized.

Other detuning with larger frequency offsets produced consistent linear shift dependence. Even

operating at a short 140 ms Rabi time, we experience a fractional probe light shift of < 9.4×10−19,

with a one sigma uncertianty of 2× 10−20.

6.1.6 Tunneling in lattice

Tunneling is a consequence of quantum systems constrained in finite periodic potentials.

For atoms contained in a optical lattice, this phenomenon can result in coherent atomic motion

along the lattice potential, producing Doppler or recoil related effects. Although tunneling is

unavoidable, of particular concern are tunneling rates similar to clock spectroscopy times. By
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Figure 6.8: Measured Probe light shift on the 171Yb clock frequency for off-resonant frequencies of
500 kHz and 10 MHz detunings at various probe light intensities.

means of the Heisenberg uncertainty principle, we anticipate the tunneling time between adjacent

lattice sites to be inversely proportional to energy bandwidth (∆t ∝ ~
2∆E ). For example, assuming

a lattice motional bandwidth of ∼ 1 Hz (motional bandwidth ∝ tunneling energy, J) we estimate

a transmission time between potential wells of ∼ 0.1 s, potentially delocalizing an atom as much

as fifteen lattice wells during our longest spectroscopy times.

In an attempt to limit this effect, we exploit two techniques: gravity induced energy offset

between adjacent lattice sites in a vertical lattice configuration, and sideband spectroscopy cooling
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technique to force atoms to the ground motional state in the direction of tight lattice confinement

(motional bandwidth is a minimum) [76]. This potential energy offset results in a suppression of

tunneling rates between lattice sites [76]. Specifically, with the gravitational potential energy offset

(∆ = mgλ/2h ∼= 1.6 kHz for ytterbium, where m is atom mass, g = 9.81 m/s2 and λ is the lattice

wavelength) the tunneling rate is suppressed by the tunneling energy and site detuning, scaling as

J2/
√
J2 + ∆2 [75].

In an effort to add additional suppression, we employ a sideband spectroscopy cooling tech-

nique by applying off resonant clock light, detuned by the sideband frequency. After higher motional

state atoms are excited to the upper 3P0 clock state, we force them back to the ground state 1S0

through the 3D1 state decay (see Chapter 2). In this way, with repeated cycling, we force all atoms

to the ground motional state, with the compromise of an extended clock cycle time (increased Dick

noise). For a 100 Er lattice we find the corresponding single-sided velocities in a vertical lattice

configuration to be 8.2 × 10−15 m/s, 6.3 × 10−11 m/s, 1.6 × 10−7 m/s, and 2.53 × 10−5 m/s for

n = 0, 1, 2, 3 respectively. This corresponds to a fractional frequency Doppler shift of 2.7× 10−23,

2.1× 10−19, 5.2× 10−16, and 8.4× 10−14 respectively. For n > 2, tunneling will result in frequency

shifts significantly detuned from our clock laser (assuming typical spectroscopy times) with negli-

gible line-pulling. For n = 2 we find a special case where the doppler shift is comparable to the

linewidth given by our spectroscopy times, potentially contributing the largest source of uncertainty

from tunneling in our lattice. For n < 2, tunneling related shifts are contained to a level that is

inconsequential for 10−18 clock operation.

As indicated above, key to containing tunneling related frequency shifts to below 1 × 10−18

is depopulating the n = 2 motional state. This requires sideband cooling an atomic sample to

< 100 nK in a 100 Er lattice, reducing the Boltzmann weighted line-pulling from n = 2 excited

atoms to less than 1×10−18. We note that this corresponds to a “worst case scenario” where atoms

tunnel only in one direction. Likely tunneling takes place bi-directionally such that line pulling is

at some level symmetric, resulting in a lower normalized atomic sample, with a “balanced” Doppler
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shift. Taking a conservative estimate, (single-sided tunneling) we find the tunneling effect to be

∼ 5× 10−19 fractionally with a realistic clock cycle time for continuous clock operation in a 100 Er

lattice.

6.1.7 Doppler shift, 1st and 2nd order

The motion of atoms relative to the clock laser wavefront can result in a systematic Doppler

shift in the clock frequency. Harmonic confinement provided by the optical lattice virtually elim-

inates this effect, with motion in the trap averaging to a zero net Doppler shift. Unfortunately,

suppression of the Doppler effect degrades with any movement of the trap potential relative to the

clock laser wavefront [133].

To faithfully transfer our stabilized clock light through a potentially noisy laboratory (optical

fiber) environment, we implement a fiber noise cancelation scheme that works as follows: preceding

the optical fiber in-coupler we place an optic that picks off a small amount of stable laser light.

After the light has propagated through the optical fiber we designate a ‘reference point’ at which

we wish to transfer our stabilized light. A fraction of the laser light is reflected from the reference

point and sent, counter propagating, back through the optical fiber. The reflected light contains

noise from the optical fiber environment which, when mixed with the stabilized light, forms a beat

note that can be used to write opposing frequency corrections on the stabilized light to effectively

cancel the noise from the optical fiber.

In our fiber noise cancelation system we use an acousto-optic modulator in the beam path

after the stable light pickoff. This allows us to write frequency corrections on the laser light

before entering the optical fiber with relatively high bandwidth, and to detect our error signal at

twice the modulation frequency of 81 MHz. We mix the beat note error signal with a 162 MHz

source that is referenced to a Hydrogen maser. This technique transfers the superb stability and

spectral coherence of our stabilized clock light to the desired reference frame. Specifically, we aim

to minimize any phase chirp (motion) between the atoms and clock light phase front therefore we
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reference the lattice retro-reflecting optic that defines the standing wave. Monitoring the fiber noise

cancellation signal to noise indicates a 99.9% fidelity in transferring the clock light to the rest frame

of the lattice.

In order to quantify the remaining noise from a 0.1% uncertainty in π radian of reference

phase, we consider the residual Doppler shift resulting from three oscillatory periods, τ , relative to

our spectroscopy period, τs: τ > τs, τ < τs, and τ= n×τs (where n = 1,2,3. . .). For long Doppler

oscillation periods, τ > τs, our clock frequency would appear sinusoidal in time, with a zero average

Doppler shift.1 For short Doppler periods, τ < τs, we find a behavior analogous to the atom in the

trap potential, high frequency trap motion should average to zero, causing no net frequency shift.

However, excess trap motion correlated with clock spectroscopy time could lead to a net nonzero

Doppler shift during spectroscopy. If we assume the 0.1% uncertainty in π radian of reference phase

translates to a constant linear phase chirp over the duration of a spectroscopy cycle, we can write

the total phase as a function of time as

φ(t) =
π × 10−3 rad

τs
t+ φ0 (6.18)

where τs is the spectroscopy duration, and φ0 is an arbitrary phase offset. Noting that the time

derivative of the phase is the radian frequency, we find a fractional frequency shift of 6.4 × 10−19

for a spectroscopy time of 1500 ms. However, we suspect > 99.9% fidelity is realized with repeated

clock cycles as our largest noise source in the phase lock stems from the incoupling lens to the fiber,

located in a separate room on a active vibration isolation platform, mechanically decoupled from τs.

In our current laboratory configuration a spectroscopy time of 1500 ms is achievable but atypical for

robust clock operation. A simple interleaved clock measurement recording the frequency difference

between two clocks with different delay times preceding a common τs would quantify this statistic

below 1× 10−18 for spectroscopy times < 1 s.

1 A clock frequency output that is sinusoidal in time would degrade instability performance, see Chapter 3 for
more details. We note that our measured Allan deviation is consistent with our optical lattice clock construction (see
Figure 3.1, Figure 3.2) indicating the absence of long Doppler oscillation periods.
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To test the robustness off the phase transfer process, we attach a piezoelectric (PZT) device

to the retro-reflecting mirror that defines the lattice standing wave to induce vibrations up to

40 dB greater then that during normal clock operation. Figure 6.9 shows clock spectroscopy during

a 40 Hz sine wave PZT modulation while referenced to lab frame (red dots) and referenced to the

retro-reflecting lattice frame (blue dots). As expected, the harmonic motion of the trap potential

relative to the phase of the clock laser light produces sidebands at the drive frequency. When

referencing to the lattice retro-reflector while modulating the PZT we find no sideband presence,

and experience no degradation of the phase lock, demonstrating faithful transfer to the atom frame

(for noise frequencies near 40 Hz).
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Figure 6.9: Spectroscopy on a trap potential oscillating with an amplitude 40 dB greater than
normal clock vibrations. Image displays a frequency trance of the carrier when phase referencing
clock laser to the atom frame (blue dots) and the lab frame (red dots).

Expanding the Doppler effect to second order we find a relativistic component with a frac-
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tional frequency shift given by

∆ν

ν0
=

1

2

〈
v2
〉

c2
(6.19)

where
〈
v2
〉

is the time-averaged atomic velocity and c is the speed of light. Assuming a final

green MOT temperature of ∼ 4 µK with an RMS velocity of ∼ 2.4 cm/s we find this effect to be

< 5× 10−21 fractionally.

6.1.8 Background gas

Analogous to the density shift discussed previously, background gas, predominantly hydrogen

and ytterbium, can collide with our lattice trapped ytterbium atoms, perturbing the natural clock

frequency [44]. However, these elements exhibit distinctly different behavior in a vacuum system,

determined by their interaction with the vacuum enclosure. Hydrogen spends little time adhered to

overall vacuum system, where ytterbium sticks readily to other metal surfaces. To experimentally

characterize the background gas shift we independently study both hydrogen and ytterbium in two

separate leveraged measurements.

As our atomic oven produces a large source of ytterbium, we measure the background gas

frequency shift from ytterbium in an interleaved clock configuration: 1) a normal clock, operating

with a shuttered atomic beam and 2) a clock with various atomic beam fluxes hitting the atoms.

The interleaved atomic systems eliminates many systematic shifts via common mode rejection,

however; we expect an additional blackbody radiation shift in our perturbed clock of ∼ 5× 10−18

[11]. By directly monitoring the florescence signal from the atomic beam, we can determine the

ytterbium flux retaliative to normal operation. Shown in Figure 6.10 is the background gas shifts at

different ytterbium flux, corrected for the blackbody radiation shift from the atomic oven tip. Our

normal operation has a ytterbium background signal of < 1 mV, limiting this shift to < 5× 10−19

fractionally with an uncertainty of 2× 10−19.

The different characteristics of hydrogen as background gas requires an alternative measure-

ment procedure. To directly characterize the background hydrogen shift we run two clock systems



110

proven to be stable over the chosen duration of data collection. On our leveraged system we in-

crease the hydrogen pressure up to a factor of ten above normal operating vacuum levels by heating

a non-evaporable getter vacuum pump. Frequency shifts where record over a range of increased

background gas pressures over several days for consent clock configurations. The vacuum pressure

is monitored with a calibrated ion gauge and lattice lifetime decay pre- and post- frequency mea-

surement. We observed a linear background gas fractional shift scaling of 1.76(0.18) × 10−17/τ−1

for lattice decay constant τ in seconds (for τ from 0.1 to 2). Our normal background gas pressure

of 1× 10−9 Torr corresponds to a fractional shift of 8.9× 10−18 with an uncertainty of 8.8× 10−19.

Our treatment of this shift indicates vacuum pressures of < 1 × 10−9 Torr are likley required for

routine operation at the 10−18 level. We note that vacuum pressures below 10−10 Torr in atomic

systems are commonly achieved, however, in the presence of an atomic oven, this may require carful

construction.

An alternative method for measuring background gas collisions exploits a ytterbium lattice

lifetime measurement and knowledge of long-range van der Waals interactions from the C6r
−6

interaction [44]. Importantly, computing the differential C6 coefficient between ground and excited

clock states, coupled with a lattice lifetime will give a measure of the background gas shift. Methods

employing this approach find similar 10−19 level shifts from background gas collisions for a strontium

optical lattice clock [89]. However, we note that the mechanism and nature of background gas

collisions is still under investigation.

6.1.9 Servo error and line pulling

Our atomic servo is designed to lock to the exact center of the atomic response structure by

probing both ±1/2mF states using Rabi spectroscopy [73]. Any effect degrading this process will

result in a systematic frequency shift in our recorded clock transition. The predominate servo error

is a result of uncompensated linear drift in systematics or local oscillator during clock spectroscopy

[98]. For drifting systematics, we implement an interrogation scheme where ±1/2mF states are
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Figure 6.10: The measured fractional frequency shift from an atomic thermal beam in a ytterbium
optical lattice clock.

probed in increasing frequency order followed by decreasing frequency order, averaging any linear

drift. For uncompensated linear drift in the local oscillator we apply a second integrator servo to

hold our first atomic servo near zero offset. Additionally, we used a micro controller updating a

direct digital synthesizer to implement a feed forward drift calculation holding the second integrator

drift to < 1 Hz over 2 hours, with a 24 hour drift of < 20 Hz. Our uncompensated servo error

is consistent with zero with a one sigma error < 3 µHz for a for an averaging time of ∼10000 s.

Asymmetries in the Rabi line-shape are absent as well, provided we execute a well defined Rabi pulse
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and our systematics are controlled over the spectroscopy period. We place a fractional uncertainty

from servo errors at < 1× 10−20.

Line pulling can result when any spectral features are unbalanced about the clock transition

(i.e. σ−transitions, residual π−transitions, and motional state transitions). We suppress this

effect by magnetically stretching, and optically pumping our atoms to the desired clock state

before performing spectroscopy. To quantify residual line pulling effects, we generated a Rabi line-

shape for 560 ms spectroscopy time and compute the frequency shift from σ and π transitions

for a 1 G magnetic bias field as well as motional state sideband excitation. We find line pulling

effects from the σ and π transitions are limited to < 1 × 10−22, provided we achieve 95% optical

pumping efficiency, and 99% pure linear polarization of yellow light. The opposing π transition is

responsible for nearly all of the calculated line pulling as it is closest in detuning and only suppressed

by optical pumping (amplitude imbalance of 20:1). The line pulling from σ transitions is nearly

zero because they enjoy four times larger sensitivity to the magnetic bias field compared to the

π transitions and are further suppressed with linear polarization of clock light. Our ultra narrow

band spectroscopy cleanly resolves the carrier transition between largely symmetric, longitudinal

motional state frequencies of > 50 kHz and transverse frequencies > 50 Hz. Transverse frequency

excitation is greatly suppressed, provided probe light propagation is perpendicular to the radial trap

direction. Computing a worst case scenario shift from transverse motional frequencies at ±50 Hz

with an amplitude imbalance of 3:1, with no suppression from probe light alignment we find this

effect is limited to < 1× 10−19 fractionally.

6.1.10 AOM phase chirp

In our atomic system, we employ acoustic optic modulators (AOM)s to apply the necessary

frequency corrections required for the atomic servo. Although AOMs can add a well defined RF

frequency to an optical electromagnetic wave with high fidelity, phase chirps can result from inef-

ficiency in this process, leading to a net frequency shift. Two distinct physical processes produce
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phase chirps in an AOM; a ringing effect from a burst of RF entering the AOM crystal (micro-

second timescales), and a thermal heating effect from absorption of RF power (second timescales)

[32].

To implement full clock light frequency control for frequency locking and fiber noise cancel-

lation, our atomic system uses separate sequential AOM devices, referred to here as AOMfreq and

AOMnoise. Both AOMs are positioned before the optical distribution fibers, with AOMfreq pre-

ceding AOMnoise. In this configuration, we maintain constant RF power to the control frequency

AOM device, eliminating the thermal phase chirp. The function of AOMnoise becomes two-fold:

it servos noise out of the fiber system, and shutters the clock light on and off for spectroscopy. In

this way, phase chirping effects should be eliminated, provided the servo bandwidth of our fiber

noise cancellation system is adequate. During non-spectroscopy cycle times, a large servo offset

can develop, leading to a nonzero phase chirp when engaging the servo to implement clock interro-

gation. To combat this problem, we feed a dummy RF signal to our fiber noise cancellation servo

electronics, ensuring zero servo offset before spectroscopy. When AOMnoise is activated, symmet-

ric phase excursions resulting from the servo activation can still occur about the servo point. By

employing high bandwidth (∼ 300 kHz) electronics, we ensure our servo attack excursions are held

to < 10 µs, in the limited atomic sensitivity region of Rabi spectroscopy for interrogations times of

140 ms−1.5 s. Nonetheless, the possibility of a significant frequency shift warrants further investi-

gation. To this end, we recorded the maximum induced phase chirp, and the time averaged phase

deviation for several hundred spectroscopy interrogations. We numerically calculated the worst case

servo attack phase chirp frequency shift for a Rabi spectroscopy time of 140 ms to be < 3× 10−19

fractionally [40]. With the above implementations, we find the net phase chirp averages to zero

with repeated clock cycles. Recording and averaging several hundred phase chirp excursions then

repeating our numerical phase chirp calculations we find a systematic frequency shift consistent

with zero with a one sigma fractional uncertainty of < 3× 10−20.
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6.1.11 Phase chirps from thermal effects

Any path taken by clock light that is uncompensated by active noise cancellation can lead

to frequency errors in the atomic servo. By referencing the lattice retro reflector optic we achieve

faithful transfer efficiency of our cavity stabilized light to the lattice frame. However, temperature

changes in optical elements following the retro reflector can cause phase chirps in the clock light

interrogating trapped atoms. To quantify this effect we consider a (large) linear temperature drift

of 1 K/Hr in a 1 cm thick fused silica, the material used in our vacuum viewports. With a thermo-

optic coefficient, dn
dT (where n is the index of refraction), of ∼ 9.0 × 10−6 at 300 K and a thermal

expansion coefficient of ∼ 0.55 × 10−6 we find an effective velocity between lattice trapped atoms

and probe light wave front of ∼ 2.5 × 10−12 m/s [79]. This results in a Doppler like shift of

8.3 × 10−21 fractionally, however, control of our environmental temperature better than 1 K/Hr

is routine, therefore we report this uncertainty to be < 3 × 10−21. A similar calculation for laser

propagation in air (thermo-optic coefficient of ∼ 1× 10−5 at standard pressure around 300 K) over

a distance d = 15 cm yields a fractional shift of ∼ 1× 10−19 assuming a linear temperature drift of

1 K/Hr [52].

6.1.12 Local gravitational potential shift

One of the outcomes of Einstein’s theory of relativity was the abandonment of an absolute

time. A consequence of this paradigm is the gravitational redshift, where the frequency of elec-

tromagnetic radiation will be reduced in the presence of strong a gravitational potential relative

to a weaker one. For example, the gravitational fractional frequency shift, referenced to a specific

location on the Boulder NIST campus, is estimated to be −1798.7× 10−16 with an uncertainty of

±3× 10−17 from an ideal geoid surface at ‘sea level’ [95]. The geoid surface is defined with respect

to an ideal mean-Earth ellipsoid in a tide free system, at the equipotential surface of Earth’s grav-

ity field matching the global mean sea level. The uncertainty in quantifying this definition limits
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the realization of a second over large distances to ∼ 1 × 10−17 [95]. As this value is an order of

magnitude above our clock performance, our ability to quantify this effect is partitioned into two

scenarios, distant and local clock comparisons.

For clock comparisons over large distances we start from the theory of general relativity

assuming a stationary observer in the Schwarzschild metric. We find that the frequency of a

photon in a gravitation potential, ν0, relative to the frequency of a photon infinitely far away, ν∞

(zero gravitational potential) to be:

ν∞
ν0

=

(
1− 2GM

r0c2

)1/2

(6.20)

where G is the gravitational constant, M is the mass of the earth, r0 is the radius of the mass, and

c is the speed of light. With the binomial approximation we can write this equality as:

ν∞
ν0
≈ 1− GM

r0c2
. . . (6.21)

Implying that it is necessary to determine the gravitational potential a clock is operating in for

accurate computation of this frequency shift. For comparison of two clocks at different gravitational

potentials we find:

δν

ν0
=

Φ1 − Φ2

c2
. (6.22)

where one potential is (generally) defined relative to the geoid. Comparison of clocks with this

technique will comprise of two errors: the definition of the geoid and the ability to measure local

potential relative to the geoid. Absolute clock frequency comparison for fractional accuracies reach-

ing 10−18 is limited, impart, by geoid potential at a few parts in 10−17, further study is warranted

and is still under investigation [38, 46].

For clocks in the same location (e.g. same laboratory) we find our relativistic uncertainty

is limited by our ability to measure height differences between two lattice trapped atomic sam-

ples. Assuming variations in g are sufficiently small between measurements locations, we find the
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fractional frequency shift close to the surface of the Earth to be

δν

ν0
=
g∆h

c2
(6.23)

where g is the local acceleration due to gravity, ∆h is the difference in height, and c is the speed

of light. The gravitational shift at the Earth’s surface (g ≈ 9.81 m/s2) has a fractional shift on

the clock frequency of ∼ 1× 10−16 per meter of height [29]. Typical theodolite precision allows for

1 mm level relative accuracy between a height measurement spanning ∼ 0.5 km distance, limiting

this effect to ∼ 1 × 10−19 fractionally.2 We note that absolute measurement of g by gravimeters

at the 10−6 level is routine [42].

2 A theodolite is an instrument used to measure hight differences between locations
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6.2 Total systematic uncertainty of 171Yb lattice clock

With the above discussion of possible systematic errors in ytterbium’s clock frequency, we

can tabulate a total clock uncertainty budget, shown in Table 6.2. Directly evident by the table

6.2 is at the Blackbody radiation shift and lattice light shifts continue to limit the performance of

our optical lattice clock. However, it is encouraging that other shifts have been well characterized

for 10−19 clock operation, indicating further efforts to reduced the Blackbody radiation shift and

lattice light shifts are warranted. Potential next steps to reduced these limiting uncertainties could

be implementing a cryogenic radiation shield, and continued lattice polarizability measurements

further minimizing higher order lattice effects [127, 63]. Additionally, further study of lattice

tunneling combined with sideband cooling could afford lower lattice depths greatly reducing our

current sensitivity to lattice light shifts. We see no formidable obstacle to reducing total 171Yb

lattice clock uncertainty into the 10−19 fractional level.

Table 6.1: 171Yb lattice clock uncertainty in fractional clock frequency operating at room temper-
ature (∼ 296.7 K) with atoms trapped in ∼ 1× 10−9 Torr vacuum.

Systematic Effect ×10−18

Blackbody radiation 1.0
Lattice light shifts 1.1
First-order Zeeman effect 0.4
Second-order Zeeman effect 0.4
DC Stark shift 0.6
Background gas 0.9
Density shift 0.3
Probe light shift 0.4
Tunneling in lattice 0.5
First-order Doppler shift 0.6
Second-order Doppler shift 0.0
Servo error and line pulling 0.0
AOM phase chirp 0.0
Phase chirps from thermal effects 0.1

Total ytterbium clock uncertainty 2.1× 10−18



Chapter 7

Concluding remarks

The staggering advancement of optical based timekeepers in the last decade has been a direct

consequence of unique class quantum systems studied through the perspective of high resolution

spectroscopy. As recently as the mid-2000s to the time of this writing, optical clock measurement

capability has experienced a full three orders of magnitude improvement, sitting on the cusp of

10−19 fractional performance [124, 21, 85, 57, 89]. Indeed the improvement of timekeepers has

far outpaced need for such precise timing application in everyday life, reshaping what the word

‘timekeeper’ has come to define. The worldwide research undertaken on optical clocks, and the

work detailed in this thesis, takes an important first step in providing an ultra sensitive probe to be

used in studying and defining our surrounding world. Optical frequency standards will play a major

role in studying the fundamental constants [15], Einstein’s theory of relativity [29], physics beyond

the Standard Model [43], quantum simulations [17], quantum computing, many-body physics [18],

and more.

As for optical lattice clocks, such as the ytterbium system detailed in this thesis, the outlook

remains encouraging. No major clock limitations exist to push fractional lattice clock uncertainties

into the 10−19 decade. The absolute frequencies of Strontium-87 and Ytterbium-171 optical lattice

clocks have been measured with fractional uncertainties of ∼ 1×10−15. Additionally, many of these

systems (including Mercury-199 at the time of this writing) possess fractional systematic uncer-

tainties below 10−16 [89, 135]. This places frequency metrology in a rather awkward place where
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frequency comparisons can be made far beyond the realized SI limit. Key to reaching systematic

uncertainties past 10−18 is the reduction, control, and quantifying of systematics. Likely additional

atomic system shielding (thermal, electrical, magnetic ect...) accompanied by an improved optical

oscillator with reduced thermal noise will achieve these requirements, enabling 10−18 leveraged

systematic measurements in 100 seconds or less. Even with the above improvements, the next two

orders of magnitude in inaccuracy reduction will be exceedingly challenging.

To date, no single atomic species (Sr, Yb, Hg...) used in an optical lattice clock has proven

advantageous for an ‘ultimate’ time keeper. At this stage, we are blessed to have such a plethora of

quantum species capable of 10−18 or better measurement ability. In due time, with the limitation

of our ability to control systematics, an ultimate optical frequency source will become evident,

and likely be adopted to redefine the standard second. For now, optical standards are reported as

‘secondary representations of the second’, a symbolic ‘first step’ away from the microwave based

definition [34, 45]. It is encouraging to witness the rapid improvement, and implementation of

optical based frequency standards in laboratories around the world. However, the full benefit of

an optical base timescale is still hindered by our ability to transfer time to different locations. As

described in Chapter 6, accuracy of clocks in the presence of Earth’s gravity will be limited by our

ability to measure the gravitational potential and the current definition of the geoid. One solution

for comparison between two remote locations is a transportable operating clock. However, this

would require historical knowledge of the clock speed and geopotential trajectory [81]. Alternatively,

a collection of well-characterized clocks operating in a low gravitational environment (such as orbits

in space) could provide a second geoid with greatly reduced gravitational noise.

A network of optical clocks operating at the level of 10−18 offers a platform for tests of

fundamental physics such as Einstein’s theory of relativity, and physics beyond the Standard Model

[113, 111, 28]. The backbone of general relativity is based on the equivalence principle. This idea

holds for both velocity and position related effects (commonly referred to as local Lorentz invariance,

and local position invariance). A network of optical clocks, such as the one presented in this thesis,
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could be placed in orbits to directly study Lorentz invariance and position invariance. These

relativity tests measure deviations from the predicted theory (either from velocity or position) by

measuring relative or absolute redshift measurements. Other possibilities range from detection of

gravitational waves, and potentially studying the nature of dark matter [3, 33].

One of the intriguing outcomes from the study of optical based timekeepers is the large

number of different quantum oscillators that can be used as a clock timebase. The internal ticking

rate of each quantum oscillator is unique and determined by the substructure of the oscillator. In

this way, the study of quantum oscillator frequencies relative to one another offers a opportunity

to explore subatomic particle interaction with nature (space, gravity, time, etc...) [107, 135].

These measurements are realized by selecting transitions in quantum oscillators that are sensitive

to the desired study. For example, different optical clocks possess varying dependence on the

fine structure constant, α [8]. Thus, a frequency ratio measurement between two clocks with

different α dependence over a duration of time (years) can be used to quantify the rate of change

in α. Together, these measurement possibilities make optical lattice clocks invaluable tools for

interrogating the construction of the universe; as frequency continues to be, and will remain for the

foreseeable future, the most precisely measurable quantity in nature.

As we look to the future, it is important to recall what made optical clocks so metrologically

potent: An incredibly high frequency combined with an ultra-narrow transition. This powerful

strategy is being continued in current work searching for the (illusive) nuclear clock transitions in

Thorium-229, with proposed clock uncertainties reaching the 10−20 level [96, 26]. The advantage

of a nuclear clock is twofold, with clock wavelengths potentially < 200 nm, nuclear clocks ‘tick’

fundamentally faster than conventional optical atomic clocks, and clock shifts are highly suppressed

because the frequency time base is derived from a well isolated nucleus. A clock defined by an atomic

nuclear transition would mark a new era in timekeeping, opening the door for metrology at a level

unattainable by presently realized optical standards.
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