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A Combinatorial Analysis of k-pseudo Trees

A. Ehrenfeucht, D. Haussler, E. Knill

Abstract

A k-pseudo tree is a family of sets such that each member U con-
tains at least one element not contained in any member V incomparable
to U, and the intersection of k + 1 incomparable members is empty.
We show that the maximum cardinality of a k-pseudo tree consisting
of subsets of an n-element set is (k + 1)n — (k + 1)k/2.

Definitions: Let F be a family of subsets of an n-set X. We will consider
F partially ordered by the subset relation. Thus, {Us,...,U,} is a chain if
the U; are linearly ordered by containment and it is an antichain if no U;
is contained in any U; with j # ¢. U and V are comparable if either U is
contained in V or V is contained in U, else they are incomparable.

The center of a member U of F is the set of all elements of U not
contained in any member of F incomparable to U.

F is a pseudo tree if the center of everyone of its members is non-empty
and it contains all the singletons and X.

F satisfies the k-intersection property if every antichain in F of size
greater than & has empty intersection.

Fis a k-pseudo tree if F is a pseudo tree and satisfies the k-intersection
property.

Further information on families of sets and partial orders can be found
in [1], [2] and [4]. [3] discusses commonly studied intersection properties of
structures.

Observation 1 For any familiy F on X containing X and the singletons,
if U is X or a singleton, the center of U is itself.

Observation 2 F is a 1-pseudo tree if and only if it is a tree, that is, if
and only if any two of its members are either disjoint or comparable and it
contains the singletons (the leaves) and X (the root).



Observation 3 In a pseudo lree, the centers of the members of an antichain
must be mutually disjoint and also disjoint from the intersection.

Therefore, an antichain of size & with non-empty intersection contains
at least & + 1 elements in its union.

Observation 4 A pseudo tree on an n-set is an n — 1-pseudo tree.

This implies that if F is a k-pseudo tree on an n-set we may assume that
k< n.

Theorem 5 The mazimum cardinality of a k-pseudo tree F on an n-set X
is (k4 1)n — (k4 1)k/2.

Proof of the lower bound:
Example: Let X = {1,2,...,n} with n > k.

F={{}li<n}J{1,.. . 5}u{i+111<j1<i<kj+1<n}

Note that the second component of F consists of initial segments of X with
one of the next k singletons adjoined.
The cardinality of F is n+kn—(k+(k-1)+...+1) = (k+1)n—(k+1)k/2.
For any set U in F observe that if V is in F and V contains the greatest
element of U, then either V. C U or U C V. Therefore the center of U

contains {’s greatest member and we can conclude that F satisfies the
second condition on k-pseudo trees.

To show that F satisfies the k-intersection property suppose that {Uy,...,U;}
is an antichain. Let z; be the greatest member of U;. Since z; is in the cen-
ter of U;, observation 3 implies that the z; are distinct. Without loss of
generality assume that z; < 29 < ... < z;. Then [ must be less than or
equal to k, for if u and v are the greatest members of I/ and V respectively,
and v —u >k then U C V or U NV is empty. '

Proof of the upper bound: By identifying some of the sets in F with
their centers in a one-to-one way, and then identifying the remaining sets in
F with elements of X in a k-to-one way, we first establish a coarse upper
bound of (kA + 2)n — 1. To reduce this to the bound given in the theorem,
we will define a notion of deficiency for arbitrary centers of fixed size. The
deficiency measures the minimum reduction of the size of F relative to the
coarse bound due to such a center.

Observation 6 Let A be any subset of X. The set of members of F with
center A forms a chain.



By definition, if U intersects the center of V', then U must be comparable
to V.

Lemma 7 If U is contained in V and U intersects the center of V, then
the center of U is contained in the center of V.

Proof of Lemma 7: If z is any element not in the center of V, there is a
set W in F incomparable to V with z € W. W does not intersect the center
of V, so W must be incomparable to U. Therefore z is not in the center of
U.o

Corollary 8 C, the set of centers of members of F, is a tree. That is, any
two centers are either comparable or disjoint.

Proof of Corollary 8: If A and B are centers of U and V respectively,
and A and B have non-empty intersection, U and V must be comparable.
The result now follows by Lemma 7. O

Lemma 9 IfG is a tree on X, then the cardinality of G is at most 2n — 1.

Proof of Lemma 9: Consider the members of G smallest sets first. That
is, write G = {Uy,...,U;} where U; is maximal in G; = {Uy,...,U;} and
the singletons are listed first. Let M; be the set of maximal members of G;.
Suppose i > n. Then M; is a partition of X. Since the sets in G are distinct
and U;;; is maximal in G;j1, M4y is strictly coarser than M;. We obtain
l—n<n-1,thus! <2n - 1.0

If Aisin C,and U is the smallest set in F with center A (see Observa-
tion 6), identify U with A. This identification (which is one-to-one) accounts
for | C |< 2n — 1 many sets in F.

For each set not yet accounted for, we will select one of its element not
in its center in such a way that if the same element is associated with [ many
sets in F, then these sets form an antichain.

Lemma 10 Let Vi,...,V, be a decreasing chain of sets in F such that for
any j, Vi41 1s mazimal below V; with respect to the sels in F inlersecting
the center of V;. If W € F intersects the center of V. and is not properly
contained in'V,, then eithcr the center of W contains the center of V. or W
properly contains V.

Proof of Lemma 10: DBy Lemma 7, the centers of the V; form a decreasing
chain. Suppose that ¥ does not contain Vj. Since " intersects the center of



every V;, IV is comparable to every V;. In particular, it must be contained
in V;. Let j be the largest index such that W C V;. If j # r we have
V; O W D Vjiq, so by the maximality assumption, W = V; or W = V4,
and the result follows.O

Lemma 11 Let U be a set in F not identified with its center. Let V be the
greatest sct in F contained in U such that the center of V' is the same as
the center of U. Then there is a ¢ € U \'V contained in the center of every
member W of F properly contained in U with z € W.

Proof of Lemma 11: To find the desired z, let W; be maximal below
U among members of F below U intersecting U \ V. Since the singletons
are in F, such sets exist. Since Wi is incomparable to V, the center of W;
is contained in U \ V. Let W1,..., W, be a decreasing chain starting with
W, satisfying the conditions given in Lemma 10 with W, minimal in F.
Suppose Y is properly contained in U and intersects the center of W,. By
minimality of W,, Y is not properly contained in ¥,.. By the maximality
condition on Wi, Y does not properly contain W;. Hence, by Lemma 10,
the center of ¥ contains the center of W,. It follows that any z in the center
of W, satisfies the desired conditions (note that I, must be a singleton).O

For any U in F not identified with its center, we select any one of the
z satisfying the conclusion of Lemma 11. By the lemma, if 2 is selected
for [ many distinct sets, these sets must form an antichain, so, by the &-
intersection property, no z is selected more than % times. Since we have
now accounted for all the sets in F, we obtain the primary upper bound of
| Fl<by=2n—-1+4kn=(k+2)n-1.
Definition: To reduce b, we associate with each z € X a positive integer
d(z), the deficiency due to z, in such a way that | F | is at least the sum
of all these deficiencies less than b,. Let s(z) be the number of times z is
selected for sets in F. Clearly, we can let d(z) be any number less than or
equal to £ — s(z). Let [ be the maximum size of any antichain in F with z
in its intersection. If z is selected exactly [ times, we may set the deficiency
of x to be as great as k + 1 — s(z). This is due to a forced reduction in the
size of the tree of centers (Lemma 12 below). Since in either case the given
value is at least k + 1 — [ we define d(z) =k +1 - L.

Lemma 12 Let X' be the set of all x € X selected exactly | times, where |
is the mazimum size of any antichain containing z in its intersection. Then

[Cl<2n—1-| X'

Proof of Lemma 12:  For each z in X/, let C, be the least set in C
containing both z and the centers of the (antichain of) sets for which 2 was



selected. Since the center of X is X, such a set exists. We will show that
C, has at least r + 2 many children (i.e. members of C maximal below C3),
where 7 is the number of y’s in X’ for which Cy = C;. An analysis of the
proof of the bound on the size of trees then shows that | C | is reduced by
at least r for this C,, and the result follows.

Suppose that z € X/, and Cy, ..., C| are the centers of the sets Uy, ..., U
in F for which z was selected. First we observe that { > 2: Otherwise, the
sets in the pseudo tree containing z form a chain, which implies that z is in
the center of every one of these sets, so that z is never selected. Since the
maximum size of an antichain containing z is at least 1, it follows that z is
not in X', contrary to assumption.

Lemma 12.1 IfC € C contains z and intersects at least one of the C; then

C>C;.

Proof of Lemma 12.1:  Without loss of generality, assume that C in-
tersects C';. Remember that the C; are disjoint, and 2 is not contained in
any of the C;. Let W be any set in F with center C'. Since z is in the
center of W, all of the U; are comparable to W. If W were contained in
Uy, by Lemma 7, C would be contained in Cy, which is not the case. Hence
W contains U;. Since Uy is incomparable to any of the other U;, W also
contains all the other U;. Since all the U; contain z which is in the center
of W, again by Lemma 7, all the C; are contained in C. The result now
follows by definition of C,. O

Lemma 12.2 If C € C contains all the C;, then C D Cy.

Proof of Lemma 12.2: Again, let W be a set in F with center C. W
contains all the U, for else (by comparability), its center would be contained
in one of the C;, but there are at least two of these, both contained in C.
Suppose that z is not in C. Let V be a set in F incomparable to W
containing z. Since C is disjoint from V (otherwise it wouldn’t be the
center of 117), V is incomparable to all the Uj, so V together with the U;
form an antichain with non-empty intersection containing z, contradicting
the maximality assumption on /. Hence z must be in . O

The last two lemmas show that C, has at least three children: one
containing z, and at least two partitioning {Cy,...,C}}, since { > 2. It
remains to consider what happens when C, = C for y # z. Let Vy,..., Vp
be the sets for which y was selected.

Lemma 12.3 If C is the center of W in F and C contains both x and y,
then C contains Cp = C'.



Proof of Lemma 12.3: First suppose that for some i, y is not contained
in U;. Then U; is contained in W, and by Lemma 7, C; is contained in
C. Lemma 12.1 now implies that C contains C,. Suppose then that y is
contained in U;. By the k-intersection property, U; must be comparable to
at least one of the V;. Suppose U; C V; (the other case is symmetric). By
Lemma 11, y is in Cy, so by Lemma 12.1, C, which also contains z, contains
C,. O

Let z1,...,2, be all the z such that C, = C. By the above lemmas, C
must have at least one child for each z;, none of which may intersect any of
the centers of sets for which one of the z; was selected. In addition C must
have at least two children for, say, the centers of the sets for which z; was
selected. This adds up to at least r + 2 many children, as desired. O

Let d(m,!) be the minimum possible value of the sum of the deficiencies
of elements in the center of a member U of a k-pseudo tree where m is
the cardinality of the center, and [ is the maximum size of any antichain in
the pseudo tree with U contained in its intersection. We may assume that
1<1<k.

Lemma 13

d(m,l) > m-1
+ (k+1-D+k+1-1-1)+...+(k+1-1~-min(m-1,k

In particular, this shows that the total deficiency of X, the center of
which is X, is at least d(n,1) =n -1+ (k(k+1))/2,s0| F|< by—d(n,1) =
(k4 1)n — k(k + 1)/2 thus completing the proof of the theorem.

Proof of Lemma 13: If [ = k the lemma asserts d(m,k) > (m - 1) +
(k= k4 1) = m. Since for any z, d(z) > 1, this part of the lemma is true,
so we may assume [ < k.

The remainder of the proof proceeds by induction on the first argument.
Consider first m = 1. Let U be a set in a k-pseudo tree with center C' = {z}.
Suppose the maximum size of an antichain containing U in its intersection
is [. By Lemma 7, every member of the pseudo tree contained in U which
contains z, has z as its center. Therefore, if Uy,..., U, is an antichain with
z in its intersection, each U; contains U so that r < [. It follows that
d(z) =k + 1 = [. By generality, d(1,1) > k 4+ 1 — [, which is as desired.

Let U be a set in a k-psecudo tree with center C of cardinality m > 1.
We may assume that U is the least set in the pseudo tree with this center,
for if C'is contained in the intersection of an antichain of size greater than
one, so is every set in the pseudo tree with center €' (if it contains one of
the members of the antichain, then by Lemma 7 its center must also contain
the center of that member).

6
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Every set in the pseudo tree contained in U intersecting C has its center
strictly contained in C. Since the singletons are in the pseudo tree and
m > 1, C has at least two children in the tree of centers. For each child of
C, the greatest set in the pseudo tree with this child as its center is contained
in U. Let U consist of these sets, one for each child of C.

Observe that ¢/ has at least two maximal members U; and U,, respec-
tively: If V is maximal in U, and C’ is the center of V, let o be any element
in C'\ C'. Let V' be a set maximal with respect to the familiy of sets in the
pseudo tree incomparable to V' containing z. Since = is not in the center of
V, such sets exist. Since C’ C C is not contained in V/ and z is in C, V' is
contained in U, so its center is contained in C, and by maximality, V'’ is in
U. V'is also maximal in U.

Let ¢; and ¢ be the cardinalities of the centers of U; and U, respectively.
Let U3 be U excluding Uy and U;. Let Us be any maximal set in U3 and
c3 the cardinality of its center. Let Uy be Uz excluding Us and let Uy be
any maximal set in Uy and c4 the cardinality of its center. Continue in this
fashion obtaining U; until maa(s;, ) > k where s; = ¢; + ...+ ¢;. Let 7 be
the index of the last set thus obtained. For r < i < t, where ¢t =| U |, let

Crily---,Ct be the cardinalities of the centers of the remaining members of

U.

Lemma 13.1 For 2 < i < r, the mazimal size of any antichain with U; in
its intersection is at most max(s;_1,0). Fori =1 ori = 2, this quantity is
at most [.

Proof of Lemma 13.1:  Let Vj,...,V; be an antichain in the pseudo tree
with U; in its intersection. All the members of the antichain are comparable
to U, since they intersect U’s center. Suppose Vi, (say) contains U. Then,
all the other members of the antichain contain U (else it would not be an
antichain). In this case, j < [. So, suppose that all the V} are contained
in U. Since they intersect C, the centers of the Vj, are (strictly) contained
in C. In particular, each one is contained in or equal to at least on set in
U. By the maximality condition on Uy and Uj, this is impossible for ¢ =1
or ¢ = 2 unless 7 = 1. Suppose then that ¢ > 2. Since U; is maximal in
U;, unless 7 = 1, the ¥}, are not contained in any member of U;. Let Cj be
the center of V. (), must be contained in C. Let U’ be the member of i/
the center of which contains Cj. Then, since U’ contains V,, O U;, U’ must
be U; for i/ < i. Since h was arbitrary, the union of the centers of the V)
must be contained in the union of the centers of the U; with ¢ < i, which
has cardinality s;_;. Since the centers of the V), are disjoint, j < s,_1. The
result now follows. O



For 2 < ¢ < r,let [; = max(s;_1,1). Let [y = I; = [. By choice of r, for
all ¢ < r,l; < k. We can now bound the total deficiency d of the center of
U from below:

d > d(er, 1)+ d(ca, 1) + d(esyla) + ..+ d(er, 1) + d(epgr, k) + ...+ d(eg, k)

The summands of the form d(c;,k) are equal to ¢;. Using the induction
hypothesis:

d> m-—r
+k+1-0) + (k+1-1l-1D)+...+(k+1~1=r)
+1 + (k=D+Gk-D+...+(k+1-1-13)
+1 + (k=-L)+k-0)+... +(k+1=1-7)

where r; = min(c; — 1,k - [;).

The leading 1’s together with the term m—7 sum up to m~—1. It remains
to show that the sum of the first min(m — 1,k — 1) + 1 many remaining
summands dominate the series (k+1—-0)4+ (k+1-1-1)+...+(k+1-
I — min(m — 1,k — [)) consisting of the descending sequence of consecutive
integers starting at £ + 1 — [ with min(m,k — [+ 1) many terms. Here are
the remaining summands again:

(B+1-0) + (k+1-1-D+...+(k+1-1-7r)
+ (k=D+(k-D+...+(k+1=1-r9)

+ (k=L)+(k=-0)+. .. +(k+1=-1, -1,
This is greater than or equal to:

(1) +1-0) + (bh=I-D+...+(k=1-r1)
(2) + (k=D =—t=+ .+ (k=l=1)

(r) + (k=L)+Gk-L-D+...+ (k=1 —-7)
Note that all the terms are at least 0.
Let » > i > 1. By definition, ; <[+ s;_1 + 1. Thus, if s; <k -1
Ci——lzsi——sz'_l—1§/€——l—$i__1-1S/C-——li.

This inequality implies that r; = ¢; — 1. Since s; = I; < ¢;, this in turn
implies:

k=l k — max(l, s;)

> k — max(l;, s;)
= k—~1{;—maz(s; - 1;,0)
> k-1 — ¢
= k—l,‘—T‘,‘-' 1



That is, the first term on the ¢+ 1’th line is at least as great as the last term
on line 7 less one.

This shows that if s; < k—1, the terms of this sum up to and including the

last term of the (¢4 1)’th line, dominate consecutive non-negative decreasing
integers starting with k + 1 — [ (‘excess’ terms dominate 0’s).

The number of terms on the (z)’th line is min(c;, k — {; + 1). Suppose
that ¢; — 1> k-1 If s;_1 <, l; =1,s0¢; > k—1+1, and line (¢) has
k — 1+ 1 many terms. If 7 = 1, since the first term on line (1) is A4+ 1 -1,
the induction is complete. Else, the first term is k¥ — [ (since [; = [), so we
simply add in the first term of line (1), and again we are done. If 5,1 > [,
li=8i_1,50 8 =¢;+8i_1>k—-1;+1+s_1=k+1hence:=7r. Wecan
subsume this case in the next one.

Let h be the least 7 such that s; > k—1[ or r if no such ¢ exists. In either
case, the terms in the first A lines dominate term by term the descending
series of consecutive integers starting with (k + 1 — [) and for 7 < h, the
number of terms on line (2) is r; + 1 = ¢;. We have already dealt with the
case where ¢; > k — [; -+ 1 with ¢ < 7, so we may assume this is not the case
except possibly for ¢ = A = r. The number of terms in lines (1) through
(h) is therefore ¢; + ...+ cho1 + Th + 1 = sp_1 + min(ep, k= [ +1). If
h # r, the last term is ¢, so we get at least s > &k — [+ 1 many terms the
sum of which dominates (k+1—-0)+ ...+ 1. fh=randecy, <k -1l +1
we get s, many such terms. By construction, either s, > k > k- 141,
or s, = m (which is the case where m < k — [+ 1), and we are done.
Otherwise, by the previous paragraph, we may assume that [, = sp_1, so
weget sp_1 +k—8p1+1=k+12>k—10+1many terms. O

The proof of the theorem is now complete.

References

[1] I. Anderson, Combinatorics of Finite Sets, Clarendon Press, Oxford,
1987.

[2] B. Bollobas, Combinatorics, Cambridge University Press, Cambridge,
1986.

[3] M. Simonovits, V. T. Sés, “Intersection theorems on structures”, An-
nals of Discrete Mathematics 6 (1980) 301-313.

4] R. P. Stanley, Enumera-
tive Combinatorics, Vol I, Wadsworth&Brooks/Cole, Monterey Cal.,
1986.



