
University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

Flexible Intrusion Tolerant Group Membership Protocol

Narasimha Prasad Subraveti, Soontaree Tanaraksiritavorn, and Shivakant Mishra
Department of Computer Science

University of Colorado, Campus Box 0430
Boulder, CO 80309-0430, USA.

Email: [subravet | tanaraks | mishras]@cs.colorado.edu

Abstract

Intrusion-tolerant group membership protocols constitute an important part of intrusion-
tolerant group communication systems. These protocols maintain a consistent system-
wide view of correct group members in the presence of malicious failures. This paper
presents a new intrusion-tolerant group membership protocol. This protocol provides two
unique features. First, it introduces a new membership state called a suspended
membership state. A suspended group membership state provides a good balance
between the amount of time a malicious/compromised group member gets to launch
attacks before being removed from the group and the increased vulnerability to denial-of-
service attacks if a suspected member is removed too early from the group. Second, it
introduces a clean, logical separation between the functionality of detecting malicious
processes and removing malicious group members from the group. This logical
separation aids in simplifying the group membership protocol design and efficiently
detecting suspicious process behaviors. The protocol has been implemented and the paper
provides a detailed performance analysis.

1 Introduction

High availability and trustworthiness are perhaps the most important requirements of modern
computing systems. Group communication services have been successfully used to construct a
large number of highly available, fault-tolerant, and high performance applications that can run in
a heterogeneous, wide-area network [1, 2, 3, 7, 17, 20, and 33]. Informally, these services are
comprised of a set of protocols that provide system-level support for object replication in the
presence of node and communication failures.

A group membership protocol is an important part of a group communication service. Informally,
it maintains a system-wide, consistent view of correct group members at any point in time.
Designing a correct group membership protocol is very complex because of the difficulty in
distinguishing between a process failure and a communication failure in an asynchronous
distributed computing system. A large number of group membership protocols have been
designed and implemented over the past 15 years [1, 2, 3, 8, 17, 20, and 33]. Almost all of these
protocols (exceptions: [16, 25, 31]) have been designed to tolerate only crash/performance
failures [9] of communication or computing components. Given the recent threat of security
attacks with malicious intentions on modern computing systems, it is important that the next
generation of group communication services be designed to tolerate more complex types of
component failures, such as Byzantine failures.

This paper presents the design, implementation, and evaluation of a group membership protocol
that can tolerate Byzantine failures. This group membership protocol is a part of a trustworthy
group communication system called FITS (Flexible Intrusion Tolerant Group Communications

 1

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

System) that we are currently building. FITS consists of a trustworthiness detector [21], a
trustworthy group membership protocol (presented in this paper), and an atomic broadcast
protocol. It provides two unique features. First, unlike most group communication services
proposed in the past, FITS is designed to support object replication in the presence of Byzantine
failures. Second, FITS explicitly incorporates techniques to address the fundamental problem of
correctly detecting Byzantine failures in a timely manner. It is intended to be a practical solution
for providing object replication support in a hostile computing environment, where the security of
a small number of nodes may be compromised and adversaries may attempt to launch malicious
security attacks including denial-of-service attacks.

The group membership protocol presented here provides group membership support in the
presence of Byzantine process failures. In particular, there are three important contributions that
this group membership protocol provides. First, it introduces a new concept of suspended group
membership state. A suspended group membership state provides a good balance between the
amount of time a malicious/compromised group member gets to launch attacks before being
removed from the group and the increased vulnerability to denial-of-service attacks if a suspected
member is removed too early from the group. Suspected membership state is a new concept that
has the potential to significantly improve the robustness of group communication systems. The
second contribution of this paper lies in introducing a clean logical separation between the
functionality of detecting malicious processes and removing malicious group members from the
group. Existing intrusion-tolerant group communication systems tend to integrate the failure
detection process with group membership or atomic broadcast protocol. This logical separation
aids in simplifying the group membership protocol design and efficiently detecting suspicious
process behavior. Finally, a prototype of the proposed group membership protocol has been built,
and the paper provides performance evaluation. This is important, because there is a significant
lack of any quantitative analysis of the cost of intrusion tolerance at present. There is a critical
need for performance data quantifying the cost of providing intrusion tolerance in modern
computing systems. The performance evaluation discussed in the paper has provided useful
insight into detecting malicious behaviors of group members and removing suspected processes
from the group.

The rest of this paper is organized as follows. Section 2 describes some of the related work in
building intrusion-tolerant group membership protocols. Section 3 describes the main motivation
behind designing a new intrusion-tolerant group membership protocol. This section also
introduces the new suspended group membership state. Section 4 describes the details of our
group membership protocol and Section 5 describes the prototype implementation and
performance evaluation of the protocol. Finally, Section 6 concludes the paper.

2 Related Work

Group Membership Protocols are a common paradigm in providing process group level
consistency. To build highly available and correct services, there was a need to replicate servers.
This led to development of fault tolerant group communication systems. Several group
communication systems were built to handle different kinds of faults. The earlier efforts to build
fault tolerant reliable group communication systems were equipped to only handle crash failures.
Some of the earlier systems that handled crash failures are Isis [3], Consul [17], Totem [1],
Ensemble [28], Horus [33], Spread [2], Pinwheel [10] and Timewheel [20].

Related projects aiming to provide intrusion tolerance at the middleware level using a group
communication service include Rampart [29, 30, 31], ITUA [25, 26, 27], and SecureRing [15,

 2

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

16]. Practical Byzantine Fault Tolerance [4] is another work that describes a state machine
replication protocol that correctly tolerates Byzantine faults. Rampart [29] is the first group
membership protocol that aims to tolerate malicious intrusions. It uses a three-phase commit
protocol and provides strong consistency guarantees. Rampart’s fault detection mechanism relies
on fault detection from an external fault detector. The Three-phase commit protocol starts when
at least one-third of group members agree to remove a faulty member. Rampart uses a manager-
based structure, where the manager is responsible for suggesting the new view. Rampart can
handle only one fault at a time. If multiple failures occur, they are treated one by one in a
sequential order.

SecureRing [16] uses the logical token ring mechanism to disseminate data and maintain
membership information. SecureRing also tolerates malicious faults and it claims to have lower
cost of digital signatures due to message packing. Message digests in a signed token allow a
single digital signature to cover multiple messages. Like Rampart, the membership protocol starts
when at least one-third of group members agree to remove a faulty member. SecureRing can
handle multiple faults during a single membership round by adding all faulty members into a to-
be-remove set.

ITUA [26] adopts the Rampart approach, but adds capability to handle multiple faults in a single
round. ITUA group membership protocol provides a suspect interface [of the form suspect to all
the protocols in its group communication stack with the capability that any protocol in that stack (
including the group membership protocol) can invoke the interface if it suspects the peer protocol
has deviated from its specification. The leader of the group initiates the group membership
protocol when at least one-third of the group member suspects a faulty member. The group
membership ends when all faulty members are removed from the group and the new view is
installed. The protocol uses many time-outs to measure faulty behavior; hence it can suffer from
the long idle time of applications during view installation if new faulty member is detected when
the protocol is in the last phase.

3 Motivation

Intrusion-tolerant group membership protocols must deal with two difficult issues. First, they
need to deal with the difficulty of detecting Byzantine failures. In particular, group membership
protocols are time consuming and any application implemented on top of group communication
system becomes unavailable while the underlying group membership protocol is in progress. As a
result, these protocols must ensure that they are invoked only when it is fairly certain that the
security of a member has been compromised. Second, they must ensure that a compromised
group member gets as little time as possible to launch malicious attacks on the group
communication system. In particular, a compromised group member should be removed from its
group as soon as possible, so that it does not get much time to inflict damages in the group
communication system. These two issues are contradictory in nature. The first issue entails that
the group membership protocol be invoked only after it is fairly certain that the security of a
group member has been compromised. However, because of the inherent difficulty in detecting
Byzantine failures, it may take a relatively long period of time to be fairly certain that the security
of a group member has been compromised. Thus, the first issue essentially results in delaying an
invocation of a group membership protocol. The second issue, on the other hand, entails that a
group membership protocol be invoked as soon as there is even a slight suspicion that a group
member is faulty [32].

 3

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

For a group membership protocol to start, more than 1/3rd of the total number of group members
should agree on the removal of the suspected group member. The problem with this requirement
is that this can result in a long waiting period for taking action on suspected group members. We
observed in [19] that the detection time to suspect a compromised group member by 1/3rd of the
group members is significantly larger than the detection time by a first group member. During the
time interval between the time the first group member suspects a compromised group member
and the time when 1/3rd of the group agree on the suspicion of that member, there is a high
potential that this “suspect” member can harm the system. This would be potentially dangerous as
the suspected group member cannot only harm the system but also spread its effects and
consequently achieve inconsistencies in the group (despite its removal from the group). All
existing intrusion tolerant group membership protocols [16, 26, and 29] suffer from this problem.
This issue can be addressed by making a slight modification to the mechanism of initialization of
the group membership protocol. The mechanism of preventing/limiting the effects of a suspected
member from harming the group activity is handled by the Pre-Membership phase of our
protocol.

We introduce this phase so that a malicious group member who is suspected by another group
member is immediately suspended (“ineffective with respect to the group activity”) on consent
from the sequencer (leader) so that it is prevented from causing any damage to the group
membership and hence the application service built on top of it. A member that is suspended
enters a new membership state called Suspended Membership State. This mechanism waits to
start the actual membership (Three Phase Commit) protocol only after it is guaranteed that the
members in the group have suspected the actual faulty/malicious processes and have the
agreement from more than 1/3rd of the group in doing so. If there is a case of false alarm
introduced by the leader or by any other member, the protocol reinstates the suspended process
when the sequencer (leader) is not able to gather enough proof to brand the member as
faulty/malicious. We proceed to remove the faulty/malicious members through the Three Phase
Commit protocol.

4 Protocol Details

4.1 Assumptions

In our protocol, we assume that there are ‘n’ members in the group. Each view of a group is
represented by a group id (gid). We assume a timed asynchronous communication model [11],
where processes in the group do not need to synchronize clocks. Hence the model is
asynchronous; but we use timeouts as a means to handle the difficult problem of distinguishing
between a communication failure and a failure/corruption of the group member. We assume that
any group member can suspect failure/corruption of another group member.

We assume the existence of a trustworthiness detector and an atomic broadcast protocol. The
trustworthiness detector of FITS [21] has been specifically built for a group communication
system. Its design is based on two important principles: (1) focusing on observable effects, and
(2) detection in depth. This detector is generic in the sense that it is independent of the actual
broadcast or group membership protocol being supported by the group communication system. It
acts on inputs received from a variety of sources, including the atomic broadcast and group
membership protocols. Based on the information received from all these sources and a policy file,
the detector raises a suspicion event whenever it suspects a group member. The detector provides
a generic interface through which an atomic broadcast or a group membership protocol can
communicate any abnormal behaviors they observe.

 4

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

The atomic broadcast protocol of FITS is a rotating sequencer-based protocol similar to the
Pinwheel atomic broadcast protocol described in [10]. This protocol adopts a rotating
sequencer/leader mechanism, i.e. the group member that assigns global ordering on broadcast
messages changes on every broadcast of a control message. The sequence of the leader is fixed in
advance based on its unique rank. The member with highest rank acts as the leader first; the
member with next lower rank acts as the leader next, and so on. This rotating feature helps in
balancing the processing load, which is the main limitation of a fixed leader-based broadcast
protocol. Since the leader performs the task of a sequencer in this reliable broadcast protocol, we
use the terms leader and sequencer interchangeably. The member’s fault detector (trustworthiness
detector) invokes the suspect function thereby instructing the group membership protocol to
broadcast a suspect message to all the members of the group. We assume a public key
cryptosystem where each group member possesses a private key PKi known only to itself with
which it can sign messages digitally. We also assume that each group member can obtain the
public keys of other group members as needed with which it can authenticate the messages.

Each Member maintains four lists i.e. Member List (ML), Suspected List (SL), Suspended List
(SusL) and Faulty List (FL) to keep track of the status of all members in the group.

1. Member List (ML): List of all correct members that are currently part of the group. For

convenience let us say that there are ‘n’ correct members.
2. Suspected List (SL): List of members that is suspected as being faulty/corrupt. Each member

has its own copy of the Suspected List.
3. Suspended List (SusL): List of members that have been suspended by the sequencer. Now

each member ‘i’ in the above list is the header to a list of all members that agree on the
suspension of the ith Suspended member. Let us call this list- SusL[i].

4. Faulty List (FL): List of members that are considered faulty and are to be removed by the
group membership protocol.

Members discard any messages sent from any member in SusL. Each group member has to agree
to another member’s view of status of the group. The system is in the stable and consistent state
when there is agreement on the above. We adopt a sequencer based Pre-Membership protocol
until the Three-phase Commit protocol is initiated. The output of the group membership protocol
at any time will be the view generated from the two lists i.e. the member list (ML) and Faulty List
(FL).

4.2 Group Membership Protocol

The intrusion tolerant group membership protocol can be classified into three independent
protocol modules that are closely coupled with the reliable broadcast mechanism. We classify
them as follows:

Pre-Membership Suspension Protocol: This protocol is started when members of a group raise
suspicion/suspicions on one or more of the current group members. The other group members and
the leader (sequencer) decide on whether to remove the suspected member or reinstate the
suspected member in case of a false alarm.

Three Phase Commit Protocol: It is agreed upon that one or more group members have to be
removed and the suspended list is empty. The members in the faulty list (FL) are to be removed
from the group. These members are removed based on the standard 3 Phase commitment strategy
with the following phases:

 5

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

- Consensus on New group
- New View Agreement
- Commit and Message Stabilization.

Group Join Protocol: The group members have to agree upon any new member joining the
group. A mechanism to ensure the group members join correctly is to allow more than one group
member to agree on allowing the new member to join the group. We devise a method of
incorporating “Trusted Group Join” using the standard three-phase commitment strategy. The
members in the group go through the Pre-Join phase before the actual Join phase where the
member joins the group.

4.3 Pre-Membership Suspension Protocol

An important requirement to build an intrusion tolerant service is to ensure that the application is
providing service to its clients as long as possible. This leads to a situation where it is important
to remove the faulty/malicious member as soon as possible but without sacrificing on correctness
of choice of the faulty/malicious member. We introduce the Pre-Membership phase where the
application is still providing service to the clients but a suspension protocol would be run in the
background. The state transition diagram of the pre-membership phase is shown in Figure 1.

 6

 7

 3

Operational
Leader

Leader_Wait
Phase

 9

 1 2

 10
 5
 4
 8

Figure 1: State Transition Diagram for the Pre-Membership Suspension Protocol

1) Operational Member multicasts a Control message (Suspect, Ordering)
2) Operational Leader multicasts Control message (Update_Ordering, Suspect, Suspend or
Reinstate).
3) Operational Leader multicasts Suspend (m’) and adds m’ to its SusL.
4) Operational Member receives Suspend (m’) from Leader and adds m to its SusL.
5) Operational Member receives Reinstate (m’) from Leader and removes m from its SusL.
6) Operational Leader receives Suspect (m’) message from member m

Operational
Member

Member_Wait
Phase

Suspended
State

Group
Membership

Protocol

 6

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

7) Leader moves to wait phase when gathering |Suspend[i]| > n/3 for some i
8) Member moves to wait phase when gathering |Suspended[i]| > n/3 for some i
9) Leader multicasts Suggest_New_View message
10) Member receives Suggest_New_View message

Since we adopt a rotating sequencer in our multicast protocol, it is imperative to handle the
different cases that arise carefully. We assume that a group is a priory in existence, and its
members are ranked by the protocol initiator. This protocol begins when a member in the group
of processes issues a suspect message based on the suspicion raised by the Trustworthiness
Detector (TD) [21]. A group member ‘m’ receives a suspect event from its TD. The member
broadcasts a suspect (m, m’) message i.e. member m suspects m’ to the sequencer (Operational
leader). It updates its Data Structures and starts a timer - Snd_Suspect [m’]. It waits for the
sequencer to respond to the suspect message. On expiry of the timer (which means there is no
response from the sequencer), TD of the member is informed of a suspicion on the sequencer.
The sequencer waits for one or more group members (other than its own suspicion) to receive
suspect (m, m’) messages on the suspected member by populating a data structure called
Agreement List (AL). The value of |AL [i] = m’] is an indicator of how many members agree on
the suspicion of a particular member m’ and when this value crosses a threshold (flexibly set by
the sequencer). The sequencer updates the suspended list by checking if there is an entry of m’ in
SusL[i] where i = m’. If there is none, add SusL [m’]. Then, add the signed message, Suspect (m,
m’) to SusL [m’]. We add the signed message as a confirmation that there is a member m who
suspects m’. The sequencer finally multicasts a Suspend (m, m’) message i.e. member m’ is
suspected by m. Each member starts the Recv_Suspend (m’) timer on receipt of this message. If
this timer expires, it means m’ is in the suspended state for quite a period of time without further
suspicions on the member. So, we assume it is wrongly suspected and we should remove it from
the suspended list so that it can participate in future communication of the group. The sequencer
then issues a reinstate (m’) message and performs an out-of-band state transfer to the rejoining
member.

All operational members who receive a Suspend (m, m’) message from the sequencer update their
own SusL [m’] lists; start the timer Recv_Suspend [m’] and check if the number of suspicions on
a particular suspended member exceeds 1/3rd the total number of the group. If this timer expires,
and the member is not reinstated, the member informs its trustworthiness detector to raise a
suspicion on the sequencer as a suspended member should be either deemed faulty or be
reinstated into the group within the expiry of the above timer. We check if the number of
members under SusL [m’] is more than 1/3rd +1. We require to use this value because of the
assumption that there can be at most one-third of group members that can turn malicious and the
value 1/3rd +1 means that at least one correct group member agree that m’ is faulty. The
operational member enters the Member_Wait phase whenever the number of members in its SusL
[m’] exceeds 1/3rd +1. Similarly, the Leader (sequencer) enters the Leader_Wait phase when it
has received support for the suspension from more than 1/3rd of the group members and starts the
Leader_Wait timer. On expiry of the timer the suspected members are moved into either the
faulty list or are reinstated into the group.

When this wait phase is reached, the member stops accepting application messages, the sequencer
role does not rotate when it reaches the Leader_Wait phase. The suspected members are updated
as being either faulty members in the FL list of each of the members or reinstated in the event of
Leader_Wait timer expiry. Each member knows who the next sequencer in the group is, based on
the rank. Once the sequencer enters its wait phase, it issues a Suggest_New_View message to the
group. Each member also maintains a queue of members that are to be reinstated so that when it
assumes the role of the Sequencer, it has to reinstate all the members who are in the Reinstate

 7

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

Queue (RQ). Another important function is the clearance of the buffers created to model
suspicion supports in Suspended List. A buffer clearance timer is started when this list is formed
and it expires when the members are moved either to the Faulty List (FL) or are reinstated. This
phase culminates when the leader issues Suggest_New_View message; thereby indicating the
beginning of the membership protocol to remove the faulty/malicious members.

4.4 Three Phase Commit Protocol

The Three Phase Commit protocol starts when any group member receives a Suggest_New_View
message from the Leader. The protocol we use to remove the faulty/malicious members is very
similar to Rampart, except that we handle multiple failures received as input from the Pre-
Membership Suspension protocol. The state transition diagram explains the stages of a group
member while executing the Three Phase Commit protocol. It is important to know the leader role
does not change once this protocol begins and no suspect messages are entertained except for
suspicions on the Leader. Hence membership failures raised in the Pre-Membership Suspension
protocol guide the removal of the members in the Faulty List (FL). The leader election protocol is
one of the most common problems in distributed systems. So we adopt the standard strategy of
deputy initiating a leader election protocol and ensuring message consistency.

Leader_Wa
it Phase

 1 2 3 Consensus Agreement
 Phase Phase

Commit
Phase

Member_
Wait phase

Figure 2: State Transition Diagram for a Group Membership Protocol

1. Received Suggest_New_View from the leader(sequencer)
2. Received Ready_to _Commit from the leader(sequencer)
3. Received Commit_New_View from the leader(sequencer)

The first phase of the Three Phase Commit protocol is the Consensus phase. This is the phase
where the sequencer broadcasts to all the members of the new view, |ML-FL-SusL|. As soon as a
group member enters this phase, it starts a timer for the leader to proceed to the next phase. Once
this timer expires, and if the sequencer does not issue the “Ready to commit” message, the
Trustworthiness Detector [21] is informed to raise a suspicion on the leader thereby starting the
leader election protocol.

During the Consensus phase, the group member broadcasts an acknowledgement if it agrees on
the new view. It starts a timer on this broadcast, which on expiry informs the TD to suspect the

 8

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

Leader as faulty or malicious. Once the Leader receives the acknowledgments from majority of
correct members (more than 2/3rd of the current value of |ML-FL-SusL|), then the Leader sends a
“Ready to Commit” message. On receipt of this message, the group members move to the
“Agreement” phase. The group members start a timer so as to ensure the correct operation of the
Leader and raise a suspicion if its behavior is inconsistent with the group. The Leader must issue
a “Commit” message to all the members of the group within the timer expiry. During the
Agreement phase, the Leader waits for more than 2/3rd of the |ML-FL-SusL| (majority response)
to respond to its “Ready to Commit” message. On receipt of majority response, the Leader issues
a Commit message. On receipt of the Commit message, the protocol commits to the new view
and each group member update the membership status of the group accordingly. The Leader
ensures final message stabilization at the end of this protocol.

4.5 Group Join Protocol

One of the requirements of a group membership protocol is to allow membership joins provided
the members are correct and verified to be so. This protocol provides a mechanism for new
members to join securely. We assume the existence of a Public Key infrastructure. An important
thing to note is the join protocol is an independent protocol i.e. it cannot run in the background
while a member or a set of members are being suspected/removed. It is clear that when a member
has to be added to a group or a set of processes, then it should be efficiently authorized to join
and also authenticated. One of the key issues while building a join protocol is the matter of trust.
If the joiner(i.e. the member who intends to join) contacts one member in the group and issues
proof to the group, that he is correct and has authenticated with a member of the group, then we
cannot automatically include the process into the group. This is because the group member that
took part in the join protocol may have been suspected/deemed faulty. The alternative solution is
entrust the protocol to rely on the Byzantine agreement i.e. more than 1/3rd of the group have to
agree on the new member to be included in the group. This ensures that atleast one correct
member has accepted the member to join the group. The state transition diagram for each group
member is given below. The dashed-joiner and interactions with operational member/leader (in
figure 3 shown below) indicate the control flow in the Pre-join protocol.

Pre-Join protocol:

We adopt the strategy of having an out of band mechanism through which the member that
intends to join the group (joiner) contacts various members of the group and issues his intent to
join the group with his signature. This is the start point of our Join protocol. The biggest
challenge during the Pre-Join phase is to securely join a new member to the group with proof that
more than 1/3rd of the group having accepted his intention to join. This can be solved by a
challenge-respond protocol between the leader and the joiner of the group. Let PKj, PKm,PKl
represent the public key of the joiner, operational member and operational leader respectively.
The joiner i.e. the joining member contacts one or more members of the group with a
Join_Interest (gid, PKj) message i.e. SKj (gid, PKj). The members of the group respond back with
a ticket of their own (although without timestamp). This ticket is the acknowledgement to the
Join_Interest message i.e. Ack_Join_Interest (memberid, SKm (gid, PKj)). This is collected from
more than 1/3rd of the group members. The next phase is the challenge-respond phase where the
leader challenges the joiner before allowing him to join the group. The joiner sends a
Request_to_Join (gid, PKj) message. The leader generates a challenge by creating a nonce which
is encrypted with PKj i.e. PKj (nonce) in response to the Request_to_Join message and requests
the joiner to send the nonce signed with the leader’s public key. The joiner responds to the
challenge by extracting the nonce and sending this back encrypted with the public key of the

 9

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

leader. After this message, the joiner is authenticated by the leader. So, after the leader issues an
acknowledgement of receipt of the response to the challenge he set, then a signed message (gid,
X) is sent by the joiner, where X is the collected Ack_Join_Interest tickets. This cryptographic
authentication mechanism ensures protection from replay attacks or any other man-in-the-middle
attacks. The leader issues an Ack_Joiner_Request_to_Join message to the joiner and starts the
Group Join protocol. Since, the joining member is still not a part of the group, it waits until it
receives the New_Group message.

 Suggest_New_Group Join

Consensus
Join

Agreement

 Request_to_Join New_Group
 Message Message

 leader

 Challenge Receive Send
 Respond Join_Interest Ack_Join_Interest
 Mechanism Message Message

Figure 3: State Transition Diagram of a Group-Join protocol with the Control flow transitions in

the Pre-join phase.

Join Protocol:

We propose a join protocol which is similar to the Three Phase Commit protocol used to remove
group members. So each member goes through the following phases once the joiner is approved
to join the group by the Pre-Join phase. On receipt of the signed Request_to_Join from the leader,
each group member moves to the Join Consensus phase. The current sequencer performs the role
of leader and allows the joiner to enter the group when more than 1/3rd of the total group members
have acknowledged the Request_to_Join message. On receipt of more than 1/3rd the number of
Ack_Request_to_Join messages the sequencer issues a Suggest_New_Group message (gid, pid of
the new joiner, signature of joiner, proof for New View) and all group members enter the Join
Agreement phase on receipt of the Suggest_New_Group message. The application is stopped at
this phase. The Leader awaits Suggest _Ack_New_Group messages from more than 2/3rd the
number of members in the group. On receipt of more than 2/3rd Suggest_Ack_New_Group
messages, the leader issues a New_Group view message to the group. All members move to the
Join Commit Phase on receipt of this message. The leader should also transmit state of the

Join
Commit Operational

Member/Leader

Joining
Member

Pre-Join Control Flow Transitions

 10

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

protocol to the new group member. We assume this is done by an out-of-band mechanism of state
transfer. The group members form the new view, include the group member; but they do
acknowledge New_Group messages. On receipt of this message all members check their state and
see to that it’s up to date with inclusion of the new group member.

5 Implementation and Performance
As observed in [30], all intrusion-tolerant group membership protocols adopt a three-phase
commit protocol mechanism to remove failed members from a group. Our protocol also makes
use of this mechanism. The main difference between our group membership protocol and other
intrusion-tolerant group membership protocols is the introduction of the new state called
suspended group membership state. This state is introduced to balance the effect of false alarm
and tardiness of confining malicious behaviors. So, we have focused on the effect of this new
suspended group membership state in our performance measurements. In particular, we want to
measure the additional cost imposed by the suspended group membership state and the benefit
that we can get from it.

We implemented our intrusion group membership protocol in C++ in NS2 that was developed at
UC Berkeley. We also implemented the rotating-sequencer based atomic broadcast protocol using
negative acknowledgement mechanism. To measure the performance of our group membership
protocol, we experimented with groups of sizes four to twelve. All group members join a single
multicast network. During group formation, each member is assigned a unique rank i, where i = 1
to n and n is the group size. The member with the highest rank is the first leader. We simulated
failures of one and two members in the group. For one member failure, we triggered a member to
send Suspect (m, m’) immediately after the group was formed. No background traffic was
generated in this test. So the performance that we measured represents the protocol cost only.
Based on our failure model, a group whose size is larger than six members can tolerate two
failures. For these groups, we triggered two member failures detected by different members in the
group at the same time.

In order to measure the effect of the suspended group membership state, we compare our protocol
with a standard three-phase commit based group membership protocol (e.g. [29], termed as STD
GMP in Figures 4 and 5). For STD GMP, the protocol cost consists of the time interval starting
from the beginning of the first phase until the end of the third phase. Recall that the first phase
starts after one-third of the group members have suspected a faulty member. For our protocol
(termed as FITS GMP in Figures 4 and 5), the protocol cost consists of the time interval starting
from the beginning of the pre-membership suspension phase until the end of the third phase of the
three-phase commit protocol. Recall that the pre-membership suspension phase starts when a first
member suspects a group member and sends a suspect message.

Figures 4 and 5 show the protocol cost in milliseconds for removing one and two group members
respectively. The line marked “STD GMP” illustrates the protocol cost for a standard three-phase
commit group membership protocol, while the line marked “FITS GMP” illustrates the protocol
cost for our intrusion-tolerant group membership protocol. The difference between these two
lines is the time a compromised group member remains suspended before being considered
faulty.

There are three observations we make from these two figures. First, the protocol cost increases
with increase in the size of the group. This is an expected behavior, because the number of
messages exchanged in the group by the group membership protocol depends directly on the size

 11

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

of the group. Second, there is a sudden increase in protocol cost when group size increases from 6
to 7 and from 9 to 10. This is because the three-phase commit protocol starts only after one-third
of the group members have suspected a faulty member. This number (one-third) increases when
the group size increases from 6 to 7 and from 9 to 10.

Finally, the time a faulty group member remains in suspended group membership state varies
from about 50 milliseconds to 100 milliseconds. This is the time interval during which this
member is considered a normal (non-faulty) group member by earlier intrusion-tolerant group
membership protocols. In other words, the introduction of the suspended group membership state
results in reducing the time a compromised group member gets to launch attacks by as much as as
100 milliseconds. Notice that the application running on top of the group communication system
observes a similar behavior, whether FITS group membership protocol is used or a standard
three-phase commit group membership protocol is used. We can see that the introduction of the
suspended group membership state does not adversely affect an application, but does reduce the
amount of time a compromised group member gets to launch attacks and damage the state of a
group communication system.

0

100

200

300

400

500

600

4 5 6 7 8 9 10 11 12
Group Size

Ti
m

e
(m

s)

INT GMP
RG GMP

Figure 4: Protocol cost when one member in the group is faulty.

0

100

200

300

400

500

600

700

800

7 8 9 10 11 12
Group Size

Ti
m

e
(m

s)

INT GMP
RG GMP

Figure 5: Protocol cost when two members in the group are faulty.

 12

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

6 Discussion

With increasing use of computing systems to construct critical as well as non-critical applications,
it is clear that high availability and trustworthiness are the most important requirements of
modern computing systems. Building intrusion-tolerant group communication systems is a step
towards fulfilling these requirements. A group membership protocol is a very important and
perhaps the most complicated part of a group communication system. Research in building
intrusion-tolerant group membership protocols is at a preliminary stage at present. In this paper,
we have described the design, implementation, and performance evaluation of a new intrusion-
tolerant group membership protocol.

The main contribution of this protocol is the introduction of a new group membership state called
the suspended membership state. A group member is suspended as soon as it is suspected by a
small number of group members. However, the protocol to remove a suspected group member
from its group is initiated only after the suspicion has been confirmed by at least 1/3rd of the
group members. Once a member is suspended, it is not allowed to participate in any group
communication activity. As a result, a member whose security is compromised gets only a very
small amount of time (until it is suspected by a small number of group members) to launch any
attacks in its group. It may be reinstated into the group if the initial suspicions turn out to be false
at some later point in time. This concept of suspended membership state allows us to severely
limit the damages a compromised group member can cause.

We have implemented this group membership protocol and measured its performance when a
single member is compromised, and when two members are compromised. To evaluate this
performance, we have also measured the performance of a three-phase group membership
protocol that does not include a suspended membership state. The performance measurements
show that the introduction of the new suspended membership state reduces the amount of time
during which a compromised group member can launch attacks by as much as 100 milliseconds.
We are currently building a complete group communication system called FITS integrating the
group membership protocol proposed in this paper with the trustworthiness detector proposed in
[21], an atomic broadcast protocol similar to the one proposed in [10], and an appropriate
cryptographic package integrated to the system.

References

[1] Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agrawal, and P. Ciarfella, The Totem single-

ring ordering and membership protocol. ACM Transactions on Computer Systems, 13(4),
pages 311-342, Nov 1995.

[2] Y. Amir and J. Stanton. The Spread Wide Area Group Communication System. Technical

Report CNDS-98-4, Johns Hopkins University, 1998.
.
[3] K. Birman, Building Secure and Reliable Network Applications, Manning, 1996.

[4] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In Proceedings of the 3rd

Symposium on Operating systems design and Implementation, Feb 1999.

 13

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

[5] T. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus.
In Proceedings of the Eleventh ACM Symposium on Principles of Distributed Computing,
pages 147-158, Aug 1992.

[6] T. Chandra and S. Toueg. Unreliable failure detectors for asynchronous systems. In

Proceedings of the Tenth ACM Symposium on Principles of Distributed Computing, pages
325-340, Aug 1991.

[7] G. V. Chockler, I. Keidar, and R.Vitenberg. Group Communication Specifications: A

Comprehensive Study, In ACM Computing Surveys, 33(4), pages 1-43, Dec 2001.

[8] T. Courtney, et al,. Providing intrusion tolerance with ITUA. In Proceedings of the 1st

Workshop on Intrusion Tolerant Systems, Washington D.C., June 2002.

[9] F. Cristian. Understanding fault-tolerant distributed systems. Communications of ACM,

34(2), pages 56-78, Feb 1991.

[10] F. Cristian, S. Mishra and G. Alvarez. High Performance Asynchronous

Atomic Broadcast. Distributed Systems Engineering Journal, 4(2) June 1997.

[11] F. Cristian and C. Fetzer. The Timed Asynchronous Distributed System

Model, IEEE Transactions on Parallel and Distributed Systems, 1999.

[12] M. Cukier, et al. Intrusion Tolerance Approaches in ITUA. In Supplemental of the 2001

International Conference on Dependable Systems and Networks, pages B64-B65, 2001.

[13] B. Dutertre and V. Crettaz. Intrusion-tolerant enclaves. In The 2002 IEEE Symposium on

Security and Privacy, Oakland, CA, May 2002.

[14] B. Dutertre, H. Saidi, and V. Stavridou. Intrusion-tolerant group management in enclaves. In

International Conference on Dependable Systems and Networks (DSN’01), pages 203-212,
Goteborg, Sweden, July 2001.

[15] K.P. Kihlstrom, L.E. Moser, and P. M. Melliar-Smith. The securing protocols for secure

group communication. In Proceedings of the IEEE 31st Hawaii International Conference on
System Sciences, Kona, Hawaii, Jan 1998.

[16] K.P. Kihlstorm, L.E. Moser and P.M. Melliar-Smith. The SecureRing Group
Communication System, ACM Transactions on Information and System Security 4(4), page
371-406, Nov 2001.

[17] S.Mishra, Peterson, L. L., and Schlichting, R. L. Consul: A Communication Substrate for
Fault-Tolerant Distributed Programs. Distributed Systems Engineering Journal 1,Dec 1993.

[18] S. Mishra. A middleware for constructing highly available, fault-tolerant, and attack tolerant

services. In Proceedings of the 17th ISCA International Conference on Computers and
Applications, San Francisco, CA, Apr 2002.

[19] S. Mishra and L.Wu. An evaluation of flow control in group communication. IEEE/ACM

Transaction on Networking, 6(5), Oct 1998.

 14

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

[20] S. Mishra, C.Fetzer and F.Cristian “The Timewheel Group Communication System,” IEEE

Transactions on Computers, 51(8) , pages 883 -899, Aug 2002.

[21] S. Tanaraksiritavorn and S. Mishra. A Trustworthiness Detector for Intrusion-Tolerant

Group Communication Systems. In Proceedings of the 2004 Hawaii International Conference
on Computer Sciences, Honolulu, Hawaii, January 2004.

[22] P. Pandey, Reliable Delivery and Ordering Mechanisms for an Intrusion Tolerant Group

Communication System, MS Thesis, University of Illinois at Urbana-Champaign.

[23] P. A. Porras, and P. G. Neumann. EMERALD: Event Monitoring Enabling Responses to

Anomalous Live Disturbances. In Proceedings of the 19th National Information Systems
Security Conference, Baltimore, USA, Oct 1997.

[24] R.Power. 2002 CSI/FBI computer crime and security survey. Technical report, Computer
Security Institute Publication, Spring 2002.
Available at http://www.gocsi.com/forms/fbi/pdf.html.

[25] H.V. Ramasamy, P.Pandey, J. Lyons, M. Cukier, and W. Sanders. Quantifying the cost of

providing intrusion tolerance in group communication systems. In Proceedings of the 2002
IEEE International Conference on Dependable Systems and Networks, June 2002.

[26] H.V. Ramasamy. Group Membership Protocol for an Intrusion Tolerant Group

Communication System, MS thesis, University of Illinois at Urbana-Champaign, 2002.

[27] H.V.Ramasamy, M. Cukier, and W. Sanders. Formal Specification and Verification of a

Group Membership Protocol for an Intrusion-Tolerant Group Communication System. In
Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing,
(PRDC-2002), pp 9-18, 2002.

[28] M. Hayden, and van R. Van Renesse. Optimizing Layered Communication Protocols.

Technical Report TR96-1613, Dept. of Computer Science, Cornell University, Ithaca, NY
14850, USA. Nov 1996.

[29] M.K.Reiter. A Secure Group Membership Protocol. In Proceedings of the IEEE Symposium

on Research in Security and Privacy, pages 176-189, 1994.

[30] M.K.Reiter. Secure Agreement Protocols: Reliable and Atomic Group Multicast in Rampart,

In Proceedings of the 2nd ACM conference on Computer and Communication Security, pages
68-80, 1994.

[31] M.K.Reiter. The Rampart toolkit for building high-integrity services. In Theory and Practice

in Distributed Systems, volume LNCS 938. Springer Verlag 1995.

[32] N.Subraveti, S. Tanaraksiritavorn and S. Mishra. Issues in building intrusion tolerant group

membership protocols. In the 16th ISCA International Conference on Parallel and
Distributed Computing Systems (PDCS 2003), Reno, NV, August 2003.

[33] R.VanRenesse, K.P. Birman, and S. Maffeis. Horus: A flexible group communication

system. Communications of the ACM, 39(4), Apr 1996.

 15

http://www.gocsi.com/forms/fbi/pdf.html

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

APPENDIX: Pseudo Code for Pre-Membership Phase

Global:
State[i] = {Operational Member, Operational Sequencer, Suspend, Member_Wait,
Sequencer_Wait, Consensus, Join Consensus, Agreement, Join Agreement, Commit, Join
Commit}
ML: Member List; SL: Suspected List; SusL: Suspended List; FL: Faulty List;
RQ: A Queue of processes that are to be reinstated by the Leader;

Function Member (State[i], s)
Start
LSN, GSN, gid, m, m’, s, MyRank: integers
Current_State: String
Event-While the message is a GMP message start membership protocol:

While (Recvd_Message (M, State[i]) is not a Join message) do

Event-Received message M:
if (Cryptocheck(M) fails) then
 Inform_TD (m); //Inform TD to raise suspicion on member who sent the message

exit;
else // the Cryptographic verification of the message is successful

 Current_State = State[i];

Event-Suspect (m’) initiated by the Trustworthiness Detector event:
if (M = Send_Suspect_Message (m, m’) & Current_State = Operational Member) then

Increment LSN;
Update the Suspected list (SL) to include m’
Start Snd_Suspect (m’) timer;
Run Multicast (m, gid, Send_Suspect_Message, Current_State, LSN, GSN);

endif

Event-Received Suspect (m’) from member m:
if (M = Recv_Suspect_Message (m, m’) and Current_State = Operational Member) then
 if (m’ is one of the suspended members) then

Update SuspendedList[i] i.e. SusL[i] =m’ by building the list of nodes that
 suspect m’ (SusL[i]);

//Check if the total number of nodes exceeds the requirement to start GMP

if (SusL[i].totalnodes > ⎣ ⎦3/)1(−n) then
 Update Faulty List to include m’ i.e. SusL[i]
 Start Member_Wait timer;
 Current_State= Member_Wait;

 Run Member_Wait (Current_State, s);
endif
// I am the next sequencer; so change state to Operational Sequencer
if (MyRank = s – 1) and m = s) then

 Current_State = Operational Sequencer;
 Run Leader (Current_State);
 endif

 16

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

 else
 // Build the database of members suspecting m’. Clear buffer after timer expiry
 Start Buffer_Clearance timer;

Create/Update SuspendedList[i] i.e. SusL[i] =m’ by building the list of nodes that suspect
m’ (SusL[i]);

 endif
endif

Event-Received Suspend (m’) from leader s:
if (M = Recv_Suspend_Message (s, m’) and Current_State = Operational Member) then
// If the current member is the suspended member

Start Recv_Suspend (m’) timer;
if (m’=MyRank) then

 Current_State=Suspend;
 Run Suspend (Current_State, s);
 break;
 else if (m’=s) then

Inform_TD(s); //Inform TD to raise suspicion on sequencer
break;

else
Update the Suspended List to include m’

endif

Event-Received Reinstate (m’) from leader s:
if (M = Recv_Reinstate_Message (s, m’) and Current_State = Operational Member) then
 Update RQ to remove m’

if (m’ is part of SusL)
 Remove reinstated member from SusL
 Add the reinstated member to ML

else
 Inform_TD(s); //Inform TD to raise suspicion on sequencer
 break;

endif
endif

Event-Received Ordering (s, GSN, LSN) from leader s:
if (M=Update_Ordering (s, New_GSN, last_received_LSN)) then
 if (New_GSN=GSN+1) then // if GSN is the correct one received
 if (last_received_LSN=LSN-1) then
 GSN=new_GSN; // if the LSN last sent
 else
 Send message with LSN=last_received_LSN+1;
 endif
 else
 Request all messages from GSN+1 to New_GSN //Use Negative ACKs
 endif
endif

 17

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

Event-Expiry of Snd_Suspect (m’) or Member_Wait timer
if (Snd_Suspect(m’) or Member_Wait timer expires) then

Inform_TD(s); //Inform Trustworthiness Detector to raise suspicion on sequencer
 break;
endif

Event-Expiry of Recv_Suspend(m’) timer
if (Recv_Suspend(m’) timer expires) then
 if (m’ belongs to SusL and is not a part of ML or FL) then
 Create/Update the RQ by including m’
endif

Event-Expiry of Buffer_Clearance timer

Clear Suspended List[i] i.e. SUSL[i] =m’;
Inform_TD(s); //Inform Trustworthiness Detector to raise suspicion on sequencer
break;

endif // Successful Cryptocheck
end while-do
Run Join (Current_State, s); // If the multicast message is not a membership protocol message
end Member

//This explains how the protocol behaves when a correct member is accidentally suspected and
enters Suspended Membership State.
Function Suspend (Current_State, s)
Start
Seq_rank: integer
While (Recvd_Message (M, State[i]) and Snd_Suspend (m’) has not expired) do
 Seq_rank=s;
 if (Cryptocheck(M) fails) then
 Inform_TD (m);

exit;
 else if (M = Recv_Reinstate_Message (s, m’) and Current_State = Suspend) then

// Let the current sequencer do the State transfer
 Current_State=Operational Member;
 Run State_Transfer(s, Current_State);
 endif
 end while-do
End Suspend

// This function explains the Member_Wait phase where the sequencer becomes the leader and no
suspect messages are entertained
Function Member_Wait (Current_State, s)
Start
While (Recvd_Message (M, State[i]) and Member_Wait timer has not expired) do
 // While only the faulty list is updated
 if (M=Update_Member_Wait(m’)
 Update Faulty List to include m’
 endif
 if (M=Recv_Suggest_New_View(gid, ML, FL, SusL, SL, s) then

 18

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

 Current_State=Consensus;
 Start Leader_Consensus timer;
 // Run the Standard Three Phase Commit Protocol
 Run ThreePC (MyRank, gid, ML, FL, SusL, SL, s, Current_State)
 endif

Event-Expiry of Leader_Consensus timer
 if (Leader_Consensus expires) then

 Inform_TD(s); //Inform Trustworthiness Detector to raise suspicion on sequencer
 break;
endif

end while-do
End Member_Wait

Function Leader (State[i])
Start
Current_State=State[i];
MyRank, m, m’, gid, t, s, LSN, GSN: integers
AL=List of Members that agree to suspect a particular member m’;

Event-Reinstate Queue (RQ) is not empty:

if (RQ is not empty) then
 while (RQ[i] not in FL or ML for all i) do
 Run Multicast(s, gid, Send_Reinstate_Message, Current_State, LSN, GSN);
 Remove RQ[i] from the SusL;
 Run State Transfer ();
 end while-do
endif

Event-Received Suspect (m’) from member m:
if (M = Recv_Suspect_Message (m, m’) and Current_State = Operational Leader) then
 if (m’ is one of the suspended members) then

Update Suspended List by building the list of nodes that suspect m’ (SusL[i]);
 //Check if the total number of nodes exceeds the requirement to start GMP

if (SusL[i].total nodes > ⎣ ⎦3/)1(−n) then
 Update Faulty List to include m’ i.e. SusL[i]

 Start Leader_Wait timer;
 Current_State= Leader_Wait;

 Run Leader_Wait (Current_State, s);
endif

 else // A suspect message has arrived but wait for agreement
 Add m to the Agreement List where AL[i] =m’;
 if (|AL|>= t) then
 Increment LSN, GSN;
 Run Multicast (s, gid, Send_Suspend_Message, Current_State, LSN, GSN);

 Current_State=Operational Member;
 Run Member (Current_State);

 endif

 19

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

 endif
endif

Event-Received Suspect (m’) from Trustworthiness Detector:
if (M = Send_Suspect_Message (s, m’) & Current_State = Operational Leader) then

Add s to the Agreement List where AL[i] =m’;
Update the suspected list (SL) to include m’

 if (|AL|>=t) then
 Increment LSN, GSN;

 Run Multicast (s, gid, Send_Suspend_Message, Current_State, LSN, GSN);
else
 Increment LSN;
 Run Multicast(s, gid, Send_Suspect_Message, Current_State, LSN, GSN);
endif
Current_State=Operational Member;
Run Member (Current_State);

endif

Event-Received Suspend (m’) from leader s:

if (M = Recv_Suspend_Message (s, m’) & Current_State = Operational Leader) then
 Start Recv_Suspend timer
 Update the Suspended List to include m’
endif

Event-Expiry of Leader_Wait timer
if (Leader_Wait expires) then

 Run Multicast (s, gid, Suggest_New_View, Current_State, LSN, GSN);
endif

Function Leader_Wait (State [i], s)
Start
while (Recvd_Message (M, State[i]) and Leader_Wait timer has not expired) do
 if (M = Recv_Suspect_Message (m, m’) and Current_State = Leader_Wait) then
 if (m’ is one of the suspended members and not in FL) then

Update Suspended List by building the list of nodes that suspect m’ (SusL[i]);
 //Check if the total number of nodes exceeds the requirement to start GMP

if (SusL[i].total nodes > ⎣ ⎦3/)1(−n) then
 Update Faulty List to include m’ i.e. SusL[i]
 endif
 endif
 endif
end-while-do

while (SusL[i] is not empty) do

Run Multicast(s, gid, Send_Reinstate_Message, Current_State,LSN, GSN);
Update the RQ by removing m’;

 Run State Transfer ();
Current_State=Operational Member;
Run Member (Current_State);

 20

University of Colorado, Department of Computer Science Technical Report CU-CS-967-04

end-while do

Event-All Suspended Members are Faulty

if (SusL[i].total nodes > for all i) then ⎣ 3/)1(−n ⎦
 // Send the Suggest New View Message

Run Multicast (gid, Suggest_New_View, Current_State, LSN, GSN);
Current_State=Consensus;
Run Leader-ThreePC (s, gid, ML, FL, SusL, SL, Current_State)

endif

Event-Expiry of Recv_Suspend(m’) timer
if (Recv_Suspend(m’) timer expires) then
 Run Multicast(s, gid, Send_Reinstate_Message, Current_State, LSN, GSN);

Update the RQ by removing m’;
 Run State Transfer ();

Current_State=Operational Member;
Run Member (Current_State);

endif

End Leader_Wait

 21

