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ABSTRACT 

 

Shah, Parag K. (Ph.D., Chemical & Biological Engineering) 

Investigation and Control of Filler-Matrix Interactions Applied to Dental Composites 

Thesis directed by Professor Jeffrey W. Stansbury, Ph.D. 

The demand and use of polymer-based dental restorative materials continues to rise as 

advances in materials research continue to improve their performance. In spite of the many 

advances, there remain some shortcomings in their behavior. Polymerization shrinkage and the 

associated shrinkage stress continue to be detrimental to the long term performance of these 

materials. A majority of the current research is focused on developing low shrinkage resin 

systems to alleviate the problem of high volumetric shrinkage. There is relatively less focus on 

developing novel fillers and surface modification techniques to improve material properties. This 

thesis focuses on studying the effect of fillers on composite properties, mainly shrinkage stress 

development, and the development of a novel technique to modify the surface of the fillers to 

control shrinkage stress and optical properties of the composites.  

The effect of monomer conversion and filler content was studied on the development of 

shrinkage, modulus and shrinkage stress. Fillers and monomer conversion were found to affect 

all the properties. Shrinkage stress was found to have a complex relationship with both shrinkage 

and modulus, with shrinkage apparently dominating the modulus at high values of monomer 

conversion.  

A novel surface modification technique was developed, utilizing the concept of polymer 

brushes, to alleviate shrinkage stress in composites. Oligomers, both commercial and synthesized 

in the lab, were covalently attached to the surface of fillers and mixed with a model dental resin 
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to form composite pastes. These pastes, when photopolymerized in a shrinkage stress measuring 

apparatus, showed that the composites with the experimental surface modified fillers 

outperformed conventional filler-based composites by achieving a reduced final stress. The final 

stress was found to depend on various characteristics of the oligomers. In general, the higher the 

molecular weight of the brush, the lower was the shrinkage stress. Increased in reactive group 

concentration on the oligomer backbone had the effect of increasing the stress. Flexibility of the 

oligomers appeared to play a less significant role, with low flexibility oligomers showing a 

slightly lower stress than flexible oligomers.  

 Modern dental composites utilize different filler sizes to optimize material properties. To 

explore this practical scenario, composites were made with two different sizes of filler, with 

varying ratios of nano-fillers and submicron-sized fillers. Each filler type was treated with either 

a conventional silane treatment or with the experimental oligomer. It was found that composites 

with the experimental oligomer had reduced shrinkage stress and also better light transmission 

properties. The nano-fillers affected both the properties to a more significant effect than the 

larger fillers.  

 Stress development in polymerizing composites is a combination of stress increase and 

stress reduction. Stress reduction occurs by relaxation processes in the composite, even as the 

composite is polymerizing. There is a potential to increase the magnitude of the stress relaxation 

leading to a lower final stress. Stress relaxation was measured as a function of monomer 

conversion and also filler surface treatment, using a standard stress relaxation experiment. The 

experimental composites exhibited faster stress relaxation as compared to conventional 

composites, showing potential for utilizing the novel surface treatment in commercial 

composites.  



 

v 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my wife and parents for their enormous love, support 

and encouragement and without whom my existence would have no meaning 

 

 

 

 

 

 

 

 



 

vi 

 

Acknowledgements 

 First and foremost, I would like to thank my advisor, Dr. Jeffrey W. Stansbury, for his 

enormous and never-ending support for me throughout my graduate life in his lab. He has 

tolerated me and overlooked all my faults so that I could progress along and do good research. 

Whenever things were hitting a wall, every problem would automatically be solved once I talked 

to him. I appreciate his kindness and generosity over all these years, a debt I can never repay in 

this life time. I would like to thank Dr. Christopher Bowman, who, along with being a committee 

member, has helped me all along the way, right from the time I entered the department. I thank 

my other committee members, Dr. Kristi Anseth, Dr. Dan Schwartz, Dr. Virginia Ferguson and 

Dr. Yifu Ding. They have been very patient with me and helped me along the way whenever 

needed. I appreciate their feedback and the use of their lab facilities, without which this thesis 

would not have been possible.  

 I have met many people on this long journey. All of them have contributed in one way or 

the other towards this thesis. My mentor in the lab, Junhao Ge, was a friend, philosopher and 

guide, in his own quiet way. He gave me a sense of support in my early days in the lab and 

taught me to find my way around. Hui Lu helped me learn the art of making dental composites 

and I will always appreciate him for helping me take my baby steps. There have been many other 

people in the lab and in CU like Ryan Hansen, Leah Johnson, Devatha Nair, Aditya Kausik, 

Navakanth Reddy, Karthik Venkatesh, Prasanna Rao, Sachit Grover, Raveesh Shenoy, Malar 

Azhagan, Tao Gong, Sheng Ye, Heeyoung Park, Richard Sheridan, Dongkwon Kim, Zachary 

Lakeman, Rami Foster, Mitesh Shah, Parag Nemade, Sajjad Maruf, Sanjay Mohanty, Krishna 

Madhavan, Vaibhav Khire, Matthew Barros, Steven Lewis who have helped in many ways and 

in general have been great friends and great company. This list is by no means complete and I 



 

vii 

 

apologize to any person I may have missed. I want to thank Prof. Kiryong Ha from Keimyung 

University in South Korea for many insightful discussions on nanoparticle surface analysis and 

also for doing solid state NMR for me. Prof. John Pellegrino also gave some useful advice for 

characterizing surfaces. There are many people who helped analyze samples using their expertise 

– Virginia Anderson for X-ray reflection, Andrew Cavanagh for XPS, James Goetz from 

University of Southern Mississippi for PALS, Suraj Thiagarajan for DSC and Brandi Jackson for 

MTS – I appreciate all their help. Dr. Sheldon Newman has been helpful in teaching me about 

the practical side of the world of dental materials. Jason Killgore from NIST helped in starting 

work on nanomechanical measurements of my composites.  

 I have to thank my moral support team – Mohan Dunga, Gunjan Thakur and Titas 

Sridharan for their moral support through the difficult times in my life here. Without them, I do 

not think I would have made it in one piece through grad school. I went through a difficult time 

financially and I would have not made it without the generous help given my Mohan Dunga, my 

cousin Paresh Kariya, my wife’s uncle Nitin Dedhia and my parents. I believe in the power of 

positive thinking and also positive praying. I know all my friends and family prayed that I would 

overcome the difficult times that life threw at me and emerge successful. Besides my parents and 

all my friends and family, my mother-in-law Pushpa, has been praying that my wife and I would 

survive the rough times and I am sure the Almighty listened to her ardent and constant praying.  

 I believe in the Force, the positive vibration that goes through all of us and which runs the 

Universe. Although our destinies are in our hands, there is a higher purpose to everything that we 

do and that is what drives us in an invisible manner. Maybe there was a higher purpose to taking 

the long and tortuous path that I had to undertake in finishing my work here. I hope whatever I 

have done ultimately helps people.  



 

viii 

 

CONTENTS 

Chapter                                                                                                                              Pages 

1 INTRODUCTION ......................................................................................................1 

1.1 History and Overview of Polymeric Dental Restorative Materials ...................1 

1.2 Resin Matrix ......................................................................................................3 

1.3 Filler Systems ....................................................................................................3 

1.4 Coupling Agent..................................................................................................8 

1.5 Drawbacks and Limitations of Dental Composites .........................................10 

1.6 Resin Monomer Development .........................................................................12 

1.7 Role of the Interface on Properties of Dental Composites ..............................16 

1.8 References .......................................................................................................20 

2 OBJECTIVES ..........................................................................................................28 

3 DYNAMIC PROPERTY EVOLUTION IN POLYMERIC DENTAL 

RESTORATIVES: ROLE OF FILLER LOADING AND MONOMER 

CONVERSION ........................................................................................................33 

3.1 Introduction .....................................................................................................34 

3.2 Materials and Methods ....................................................................................36 

3.2.1 Materials ...............................................................................................36 

3.2.2 Sample Curing ......................................................................................37 

3.2.3 Infrared Spectroscopy ...........................................................................37 

3.2.4 Shrinkage Stress Measurement .............................................................37 

3.2.5 Shrinkage Measurement .......................................................................39 

3.2.6 Flexure Modulus Measurement ............................................................39 

3.2.7 Scanning Electron Microscopy .............................................................40 

3.2.8 Vicker’s Microhardness Test ................................................................40 

3.3 Results and Discussion ....................................................................................41 

3.4 Conclusion .......................................................................................................56 

3.5 Acknowledgements .........................................................................................56 

3.6 References .......................................................................................................57 

4 SHRINKAGE STRESS REDUCTION IN POLYMER-BASED DENTAL 

RESTORATIVES BY SURFACE MODIFICATION OF FILLERS ......................60 

4.1 Introduction .....................................................................................................61 

4.2 Materials and Methods ....................................................................................64 

4.2.1 Materials ...............................................................................................64 

4.2.2 Modification of Epoxy Oligomers ........................................................64 

4.2.3 Modification of the Filler Surface ........................................................66 

4.2.4 Composite Preparation .........................................................................67 

4.2.5 Characterization of Fillers ....................................................................67 



 

ix 

 

4.2.6 Shrinkage Stress Measurements ...........................................................67 

4.2.7 Shrinkage Measurements ......................................................................68 

4.2.8 Flexural Modulus and Strength Measurements ....................................69 

4.2.9 Infrared Spectroscopic Characterization ..............................................69 

4.3 Results and Discussion ....................................................................................70 

4.3.1 FTIR Characterization ..........................................................................72 

4.3.2 Shrinkage Stress Results .......................................................................73 

4.3.3 SEM Characterization ...........................................................................87 

4.4 Conclusion .......................................................................................................87 

4.5 Acknowledgements .........................................................................................88 

4.6 References .......................................................................................................89 

5 INFLUENCE OF SURFACE MODIFICATION ON SHRINKAGE 

STRESS IN A MODEL DENTAL COMPOSITE: A MECHANISTIC 

STUDY .....................................................................................................................92 

5.1 Introduction .....................................................................................................93 

5.2 Materials and Methods ....................................................................................95 

5.2.1 Materials ...............................................................................................95 

5.2.2 Synthesis of Oligomers .........................................................................96 

5.2.3 GPC Characterization ...........................................................................98 

5.2.4 Differential Scanning Calorimetry .......................................................98 

5.2.5 Modification of the Filler .....................................................................99 

5.2.6 Composite Preparation .......................................................................100 

5.2.7 Thermogravimetric Analysis ..............................................................101 

5.2.8 Shrinkage Stress Measurements .........................................................101 

5.2.9 Shrinkage Measurements ....................................................................102 

5.2.10 Flexural Modulus and Strength Measurements ..................................102 

5.2.11 Infrared Spectroscopic Characterization ............................................103 

5.2.12 Dynamic Mechanical Analysis ...........................................................103 

5.2.13 Rheometery .........................................................................................103 

5.3 Results and Discussion ..................................................................................104 

5.3.1 GPC and DSC Characterization of Oligomers ...................................104 

5.3.2 Shrinkage Stress Measurements .........................................................106 

5.3.3 Crossover Point Measurements ..........................................................112 

5.3.4 Rheology of Composite Pastes ...........................................................116 

5.3.5 Interface Characterization by Staining with RuO4 .............................124 

5.4 Conclusion .....................................................................................................130 

5.5 Acknowledgements .......................................................................................131 

5.6 References .....................................................................................................132 

6 STRESS RELAXATION BEHAVIOR OF A MODEL DENTAL RESIN 

FILLED WITH CONVENTIONAL AND EXPERIMENTAL FILLERS ............135 

6.1 Introduction ...................................................................................................136 



 

x 

 

6.2 Materials and methods ...................................................................................138 

6.2.1 Materials .............................................................................................138 

6.2.2 Oligomer Synthesis.............................................................................139 

6.2.3 GPC Characterization .........................................................................140 

6.2.4 Modification of the OX50 filler ..........................................................141 

6.2.5 Composite Preparation .......................................................................141 

6.2.6 Stress Relaxation Test ........................................................................142 

6.3 Results and Discussion ..................................................................................143 

6.3.1 Stress Relaxation of Unfilled Resin and Composite with 0.7 µm 

Barium Glass Filler ............................................................................................143 

6.3.2 Effect of Surface Modification on Stress Relaxation .........................149 

6.3.3 Stress Relaxation Modeling ................................................................153 

6.4 Conclusion .....................................................................................................160 

6.5 Acknowledgements .......................................................................................161 

6.6 References .....................................................................................................162 

7 INFLUENCE OF NANOFILLER AND MICROFILLER FRACTIONS ON 

SHRINKAGE STRESS AND LIGHT TRANSMISSION IN DENTAL 

COMPOSITES .......................................................................................................164 

7.1 Introduction ...................................................................................................165 

7.2 Materials and Methods ..................................................................................168 

7.2.1 Materials .............................................................................................168 

7.2.2 Synthesis of Oligomer ........................................................................169 

7.2.3 GPC Characterization .........................................................................170 

7.2.4 Modification of the Filler ...................................................................171 

7.2.5 Composite Preparation .......................................................................171 

7.2.6 Shrinkage Stress Measurements .........................................................172 

7.2.7 Flexural Modulus Measurements .......................................................173 

7.2.8 Infrared Spectroscopic Characterization ............................................173 

7.2.9 Light Transmission .............................................................................174 

7.2.10 Refractive Index Measurements .........................................................174 

7.3 Results and Discussion ..................................................................................174 

7.3.1 Shrinkage Stress Study .......................................................................175 

7.3.2 Modulus Measurements ......................................................................181 

7.3.3 Light Transmission .............................................................................182 

7.4 Conclusion .....................................................................................................191 

7.5 Acknowledgements .......................................................................................192 

7.6 References .....................................................................................................193 

8 BIBILIOGRAPHY .................................................................................................201 

 

 



 

xi 

 

 

 

LIST OF TABLES 

   Table                                                                                                                             Pages 

1.1. Types of fillers and filler sizes used in dental composites .....................................15 

4.1. Weight loss contribution on the filler and fraction of the surface silanol 

sites covered by the modified epoxy oligomer series. ...........................................72 

4.2. Storage modulus and Tg of composites .................................................................85 

5.1. Terminology that is used for the synthesized oligomers ........................................99 

5.2. GPC and DSC characterization of oligomers.......................................................105 

5.3. Shrinkage stress, Shrinkage, Flexural Modulus, Glass Transition and 

Storage Modulus for the entire range of samples. ...............................................109 

6.1. Summary of results for unfilled resin and filled composite (0.7 µm filler at 

ca. 60 wt%) ..........................................................................................................147 

 6.2. Listing and terminology for OX50 filler-based samples used in the stress 

relaxation study. ...................................................................................................150 

6.3. Summary of stress relaxation results for composites based on OX50 filler 

particles with different surface treatments. Loading level of OX50 is 30 wt 

%. .........................................................................................................................153 

6.4. Results of fitting stress relaxation data to a two time constant Maxwell 

model....................................................................................................................156 

7.1. Filler combinations used in the mixed filler composites .....................................172 

7.2. Shrinkage stress values for composite systems with a mixture of OX50 

and 0.7 µm fillers. Standard deviation values are in parentheses. .......................178 

  



 

xii 

 

LIST OF FIGURES 

    Figure                                                                                                                             Page 

1.1.  Structure of some common dimethacrylate monomers used in dental   

composites................................................................................................................4 

1.2.  Evolution of filler sizes in dental composites (from reference [21]). .....................7 

1.3. Nanomers and nanoclusters (from [8]). ...................................................................7 

1.4. Structure of 3-methacryloxypropyltrimethoxysilane ...............................................9 

1.5. Simplified reaction of organotrialkoxysilanes with silica surfaces [28]. .................9 

3.1. Variation of volumetric shrinkage as a function of conversion and filler 

loading – lines connecting data points are provided for visual assistance. ............42 

3.2. Flexural modulus development profiles as a function of conversion for 

different filler loading levels. Lines connecting the data points are 

provided for visual assistance. ...............................................................................44 

3.3. Real-time polymerization shrinkage stress versus conversion. Irradiation 

condition – 250 mW/cm
2
 for 60 s. .........................................................................45 

3.4. Plot of shrinkage stress as a function of conversion and filler loading. 

Lines connecting the data points are provided for visual assistance. ....................47 

3.5. Plot of shrinkage, modulus and stress as a function of methacrylate 

conversion. Curves with only lines represent the unfilled resin and lines 

with points represent the 70 wt% composite. (Color legend: - Blue 

=Modulus; Black = Shrinkage; Red = Stress). ......................................................47 

3.6. Plot of shrinkage stress versus fractional conversion. Each line represents 

the same irradiation condition but different filler contents – Condition 1 – 

35 mW/cm
2
 for 5 s; Condition 2 – 35 mW/cm

2
 for 10 s; Condition 3 – 35 

mW/cm
2
 for 20 s; Condition 4 – 700 mW/cm

2
 for 5 s; Condition 5 – 700 

mW/cm
2
 for 10 s; Condition 6 – 700 mW/cm

2
 for 60 s. Lines connecting 

the data points are provided for visual assistance. .................................................50 

3.7. Scanning electron micrographs of polished surfaces of samples: (a) 0 wt%; 

(b) 20 wt%; (c) 40 wt%; (d) 60 wt%; (e) 70 wt%. All images are taken at 

2000x magnification. The scale bar is 10 µm. .......................................................53 

3.8. Contribution to methacrylate peak areas as a function of filler loading 

level from: (1) Composite (♦), (2) Resin (▲) and (3) Interface (■). .....................54 

3.9. Vicker’s hardness number (HV) as a function of filler loading. ............................54 



 

xiii 

 

4.1. Structure of epoxy oligomer series used to modify the OX50 surface (n 

varies from 2 to 20) ................................................................................................65 

4.2. Final structure of the epoxy oligomers...................................................................66 

4.3. TGA curves for the OX50 particles with different surface modifications .............71 

4.4. DRIFTS spectra of OX50 particles at various stages of surface 

modification -  (a) Unmodified OX50, (b) OX50 with MAPTS, (c) 

OX50_6100-10%, and (d) OX50_6100-100%. .....................................................73 

4.5. Shrinkage stress measurements of experimental composites with 10 % 

hydroxyl group modification of oligomers, compared with the γ-MPS 

control. Irradiation conditions – Visible light at 350 mW/cm
2
 for 40s .................74 

4.6. Shrinkage stress measurements of experimental composites with 100 % 

hydroxyl group modification of oligomers compared with the γ-MPS 

control. Irradiation conditions – Visible light at 350 mW/cm
2
 for 40s. ................74 

4.7. Comparison of double bond conversion of experimental composites with 

γ-MPS-based control. Irradiation conditions – Visible light at 350 

mW/cm
2
 for 40s. ....................................................................................................76 

4.8. Comparison of shrinkage of experimental composites with γ-MPS-based 

control. Irradiation conditions – Visible light at 350 mW/cm
2
 for 40s. ................76 

4.9. Flexural (a) strength and (b) modulus of experimental composites 

compared with γ-MPS-based control .....................................................................79 

4.10. Real-time shrinkage stress with respect to conversion. .......................................82 

4.11. Viscosity of composite pastes ..............................................................................84 

4.12. Storage modulus of experimental composites compared with γ-MPS 

control. ...................................................................................................................86 

4.13. Loss tangent of experimental composites compared with γ-MPS control. ..........86 

4.14. SEM fracture surface images of (a) OX50-γ-MPS based composite, (b) 

OX50_4000-100% based composite......................................................................87 

5.1. Monomers used in the synthesis of flexible and rigid oligomers...........................97 

5.2. General scheme for attaching isocyanatoethyl methacrylate (IEM) to an 

oligomer. A generic structure representing the final oligomer is presented. 

R’ and R” represent the different functionalities that can replace the 

existing –OH functionality. 3 cases are presented -1) R’, R” = OH - 0 % 

methacrylate on oligomer; 2) R’ = OH and R” = urethane functionality 

with methacrylate at free end – 50 % methacrylate on oligomer; 3) R’,R” 



 

xiv 

 

= urethane functionality with methacrylate at free end – 100 % 

methacrylate on oligomer. .....................................................................................98 

5.3. Scheme for attaching oligomer to silica particle. .................................................100 

5.4. Comparison of shrinkage stress of the rigid high molecular weight series 

with the γ-MPS control. Visible light irradiation at t = 30s, for 40 s...................106 

5.5. Shrinkage stress values for the rigid oligomer series at varied reactive 

group concentration. Visible light irradiation at t = 30s, for 40 s. Shrinkage 

stress values were taken at the end of the run at t = 16 min. ...............................107 

5.6. Final shrinkage stress values for the flexible brush series at varied reactive 

group concentration.  Visible light irradiation at t = 30s, for 40 s. 

Shrinkage stress values were taken at the end of the run at t = 16 min. ..............108 

5.7. Variation of shrinkage stress with respect to conversion of the rigid high 

molecular weight series with the γ-MPS control. Visible light irradiation at 

t = 30 s, for 40 s. Shrinkage stress values were taken at the end of the run 

at t = 16 min. ........................................................................................................110 

5.8. Variation of shrinkage stress of the rigid and low high molecular weight 

systems that have 0 % methacrylate groups. Visible light irradiation at t = 

30s, for 40 s. Shrinkage stress values were taken at the end of the run at t = 

16 min. .................................................................................................................111 

5.9. Typical plot of crossover of storage modulus (G’) over loss modulus (G)” 

during cure during real time cure in a photorheometer........................................113 

5.10. Effective gel point of photocured composite samples based on rigid 

ologomers. Irradiation intensity = 1 mW/cm
2
 for the duration of the 

experiment............................................................................................................114 

5.11. Effective gel point of photocured composite samples based on flexible 

oligomers. Irradiation intensity = 1 mW/cm
2
 for the duration of the 

experiment............................................................................................................115 

5.12. Complex viscosity as a function of frequency for composites based on 

particles treated with flexible oligomers. (The terms short, medium and 

long refer to high, medium and low molecular weight oligomers, 

respectively). ........................................................................................................117 

5.13. Complex viscosity as a function of frequency for composites based on 

particles treated with rigid oligomers . (The terms short, medium and long 

refer to high, medium and low molecular weight oligomers, respectively). .......119 

5.14. Storage and loss moduli of composites based on particles treated with 

flexible oligomers with no methacrylate coverage compared with the γ-



 

xv 

 

MPS control system. (The terms short, medium and long refer to high, 

medium and low molecular weight oligomers, respectively). .............................121 

5.15. Storage and loss moduli of composites based on particles treated with 

flexible oligomers with 100 % methacrylate coverage compared with the 

γ-MPS control system. (The terms short, medium and long refer to high, 

medium and low molecular weight oligomers, respectively) ..............................122 

5.16. Store and loss moduli of  composites based on particles treated with rigid 

oligomers with no methacrylate coverage compared with the γ-MPS 

control system. (The terms short, medium and long refer to high, medium 

and low molecular weight oligomers, respectively) ............................................122 

5.17. Store and loss moduli of composites based on particles treated with rigid 

oligomers with 100 % methacrylate coverage compared with the γ-MPS 

control system. (The terms short, medium and long refer to high, medium 

and low molecular weight oligomers, respectively) ............................................123 

5.18. TEM images of OX50 particles treated with RH0 oligomer (rigid, high 

molecular weight, 0% methacrylate functionality. (a) Particles sprinkled 

on TEM grid (b) Section of composite with particles embedded in the 

resin ......................................................................................................................126 

5.19. TEM images of OX50 particles treated with γ-MPS (a) Particles 

sprinkled on TEM grid (b) Section of composite with particles embedded 

in the resin ............................................................................................................126 

5.20. TEM images of untreated OX50 (a) Particles sprinkled on TEM grid (b) 

Section of composite with particles embedded in the resin. ................................127 

5.21. TEM images of particles treated with RH100 oligomer (rigid, high 

molecular weight, 100% methacrylate functionality. (a) Particles sprinkled 

on TEM grid (b) Section of composite with particles embedded in the 

resin. .....................................................................................................................127 

6.1. Structures of monomers used for the oligomer synthesis ....................................140 

6.2. Structures of oligomers used to treat fillers .........................................................140 

6.3. Comparison of normalized stress relaxation curves for (a) Unfilled 

BisGMA/TEGDMA resin at approximately 60 % conversion and (b) 

BisGMA/TEGDMA resin filled with 0.7 µm barium glass particles at 60 

wt%. Stress values have been normalized by the peak stress for the 

respective measurement. ......................................................................................146 

6.4. Comparison of fractional residual stress for (♦) Unfilled resin at 60% 

conversion and (■) resin filled with 0.7 µm particles at 60 wt%. All stress 



 

xvi 

 

values have been normalized with respect to the peak stress for the 

respective measurement. ......................................................................................146 

6.5. Comparison of stress relaxation rates for (♦) unfilled resin and (■) resin 

filled with 0.7 micron filler at 60 wt %, as a function of conversion. All 

stress values have been normalized with respect to the peak stress for the 

respective measurement. ......................................................................................149 

6.6. Comparison of stress relaxation of 30 wt% OX50 in BisGMA/TEGDMA 

with three different surface modifications – 1) (●) – γ-MPS; 2) (■) – High 

Mw rigid brush – 100% methacrylate; 3) (▲) High Mw rigid brush – 0% 

methacrylate. ........................................................................................................152 

6.7. Maxwell element, representing series array of springs and dashpots. .................154 

6.8. Generalized Maxwell model, consisting of Maxwell elements connected in 

parallel..................................................................................................................155 

6.9. First time constant, τ1, plotted a function of conversion for composite 

samples based on OX50 filler - – 1) (●)  γ-MPS; 2) (■)  High Mw rigid 

oligomer – 0% methacrylate; 3) (▲) High Mw rigid oligomer – 100% 

methacrylate. ........................................................................................................156 

6.10. Second time constant, τ2, plotted a function of conversion for composite 

samples based on OX50 filler – 1) (●)  γ-MPS; 2) (■)  High Mw rigid 

brush – 0% methacrylate; 3) (▲) High Mw rigid brush – 100% 

methacrylate. ........................................................................................................157 

7.1. Structures of monomers used for synthesis of the oligomer ................................170 

7.2. Structure of final oligomer. ..................................................................................170 

7.3. Comparison of shrinkage stress between 0.7 µm fillers treated with γ-MPS 

control and experimental oligomer at various loading levels of the filler ...........176 

7.4. Comparison of shrinkage stress between OX50 fillers treated with γ-MPS 

control and oligomer ............................................................................................177 

7.5. Comparison of shrinkage stress for composites with varying ratios of 

OX50/0.7 µm barium glass fillers. The total mass fraction of fillers is 50 

wt%. .....................................................................................................................178 

7.6. Flexural modulus of composites with different ratios of OX50 to 0.7 µm 

glass filler. ............................................................................................................182 

7.7. Comparison of optical translucency of composites made with fillers 

treated with 1) γ-MPS and 2) Experimental oligomer. The proportion of 

OX50 is increasing from left to right. ..................................................................183 



 

xvii 

 

7.8. Comparison of light transmission through samples with different filler 

ratios and surface treatments. The light source was an infrared beam from 

the FT-IR with a wavelength of 760 nm. .............................................................185 

7.9. SEM images of polished surfaces of composites with 10/40 ratio of 

OX50/0.7 µm fillers surface treated with (a) γ-MPS and (b) Experimental 

oligomer. ..............................................................................................................185 

7.10. Refractive indices of cured samples with varying OX50 particle loading 

and filler surface treatment. .................................................................................188 

7.11. Refractive indices of cured samples with varying 0.7 µm particle loading 

and filler surface treatment. .................................................................................188 

7.12. Refractive index variation in cured composites with different filler ratios 

and filler surface treatments .................................................................................189 

 



 

1 

 

CHAPTER 1 

1 INTRODUCTION 

1.1 History and Overview of Polymeric Dental Restorative Materials 

With well over 100 million polymer-based dental restoratives placed in the teeth of 

patients in the US annually, these materials have rapidly overtaken traditional amalgam 

restoratives as the demand for more esthetic and environmentally friendly material alternatives 

has grown [1]. The formulations and performance of these materials have improved over the 

years. Earlier esthetic materials used in dentistry included silicate cements, that had the ability to 

release fluoride, but these materials were subject to solubilisation and eroding in the oral 

environment [2], [3].  Acrylic resins then replaced the silicates during the 1950s due to their 

tooth-like appearance, insolubility in the oral cavity, easy workability and low cost. These 

materials however were subject to high shrinkage, which caused them to pull away from the 

tooth walls and cause severe microleakage. Internal stresses would be high due to excessive 

thermal expansion and contraction during intake of hot and cold food. To overcome this issue, 

quartz powder was added to these resins in order to reduce the shrinkage and thermal expansion, 

signaling the beginnings of composites as dental restoratives. These quartz particles, however, 

were not bonded to the resin, and the same issues of thermal expansion and contraction would 

cause defects around the particles as the resin contracted away from the particle surface.  

A major step towards solving this issue came in the form of the development of 2,2-

bis[4(2-hydroxy-3-methacryloxy-propyloxy)-phenyl] propane, now more popularly known as 

BisGMA, by Dr. Raphael L. Bowen [4]. This dimethacrylate monomer, which was designed to 

provide high strength crosslinked polymer networks, continues in widespread use as the major 
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component of dental materials to this day. Bowen’s invention came as a compromise between 

the epoxy and methacrylate resins that were being used at that time, but had problems with 

adhering to the teeth, especially after long exposures to the wet oral environment [5]. BisGMA is 

non-volatile and has relatively low polymerization shrinkage due to its high molecular weight 

and low double bond concentration. It can be used as a binder for reinforcing fillers and it 

polymerizes rapidly in oral conditions when mixed with a suitable initiator system. Introduction 

of the BisGMA monomer provides a high modulus material but at the same time, the rigidity of 

its bisphenol A core structure [6] and the high viscosity due to intermolecular hydrogen bonding 

restricts the reaction progress due to vitrification at moderate levels of conversion [7]. The high 

resin viscosity and high filler loading in dental composites can also lead to poor handling of the 

composite paste and difficulty in placing it properly in the restoration site.  

Modern dental composites have overcome many of the limitations of BisGMA and 

further improved upon the mechanical properties. These materials are a complex mixture of a 

variety of components, the major ones being the following: 1) an organic resin matrix, usually 

based on dimethacrylate monomers, that forms a continuous phase and binds the filler particles; 

2) reinforcing filler –particles that are dispersed in the matrix; and 3) a coupling agent that 

promotes adhesion between the filler and resin matrix phases. In addition to these, the other 

important components are an activator-initiator system that is required to convert the composite 

from its soft, fluid paste state to a hard, long-lasting restoration; pigments that help to match the 

composite to tooth structure; UV absorbers and other additives to improve color stability and 

inhibitors to increase the shelf life of the composites [2], [8].  
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1.2 Resin Matrix 

The high viscosity of BisGMA  (about 1000 cp at 23 
o
C) [9] makes it particularly difficult 

to handle and manipulate. To overcome this problem, comonomers like triethylene glycol 

dimethacrylate (TEGDMA) are added as reactive diluents to reduce the final resin viscosity to 

make it manageable for clinical manipulation while also providing for higher conversion [6]. 

Analogues of BisGMA such as urethane dimethacrylate (UDMA), ethoxylated bisphenol A 

dimethacrylate (BisEMA), are also commonly used in place of or along with BisGMA. The 

lower viscosity of these monomers with respect to BisGMA can lead to improved monomer 

conversion. This has been observed in the case of mixtures of TEGDMA with BisGMA and 

UDMA, where incremental amounts of UDMA led to higher conversion and crosslinking than a 

mixture of TEGDMA with the same molar fraction of BisGMA [10]. BisEMA has the identical 

rigid aromatic core structure as BisGMA, except that it lacks the pendant hydroxyl groups and 

hence no hydrogen bond donating capability, which dramatically lowers its viscosity compared 

with BisGMA. The structure of these common monomers is shown in Figure 1.1.   

1.3 Filler Systems 

Inorganic fillers are used in polymeric dental restoratives to provide reinforcement and 

strength. Fillers are chosen based on their effect on  all of the following desirable properties: (i) 

reinforcement of the resin matrix to impart increased hardness [11], [12], strength [13], fracture 

toughness [14], [15], moduli [11], [16], [17] and wear resistance, (ii) reduction in polymerization 

shrinkage [18–20], (iii) reduction in the coefficients of both thermal expansion and conductivity, 

(iv) radioopacity and diagnostic sensitivity via the introduction of strontium, barium, zirconium 

and ytterbium glass fillers as well as several other heavy metal compounds that absorb x-rays, (v) 

reduction in water sorption, softening and staining [2], [8]. Quartz and silica are also used as 
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non-radioopaque fillers. These fillers display a wide range of densities and refractive indices, 

which when combined with specific resins, offer a means to achieve appropriate esthetic 

character in the composite that can mimic the translucency of dental enamel. 

 

Figure 1.1. Structure of some common dimethacrylate monomers used in dental composites. 

Besides the many different types of fillers that are used in current dental composites, the 

particle morphology varies considerably as well. Micron-sized fillers are typically produced by 

grinding or milling quartz or various glasses to produce particles in the 0.1 – 100 µm range [2]. It 

should be pointed out that the term “microfillers” is a very broad generalization and is used in 

the dental industry for any fillers that are in the aforementioned size range, even if they may 

technically be less than a micron in size. In some cases, nano-sized fillers (2 – 20 nm) are 

produced by sol/gel methods as organically modified ceramics (Ormocer) or based on polyhedral 

oligomeric silsesquioxane (POSS) chemistry in some cases [21], [22]. However, dental 
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composites make much more common use of nanofillers that are obtained by a pyrogenic process 

wherein a silicon compound (for example, SiCl4), is subjected to a continuous flame hydrolysis 

in a hydrogen and oxygen atmosphere to form sintered multi-particle chains/clusters of SiO2 

[23]. These colloidal size (typically 40 nm) inorganic silica particles are widely used in 

conjunction with other micofillers to enhance filler loading levels, to modify composite paste 

handling properties, to improve wear characteristics, and to provide glossy composite surfaces. 

Based on the wide variety of sizes of fillers and the combinations that are used, commercial 

dental composites have been classified according to the following schemes (Figure 1.2): 

1) Traditional resin composites or “macrofills” – These were among the first conventional 

dental composites and had sizes of fillers far exceeding 1 µm and were typically in the range of 

40-50 µm. Although extremely strong, these composites had very low wear resistance and poor 

aesthetic properties.  

2) Microfills – These composites were introduced to overcome the problems due to the 

macrofills. These materials had particles in the size range of 0.01 to 0.05 µm. These were true 

nanocomposites but in typical dental materials misnaming fashion, they were called microfills. 

The filler loading in these composites was low, due to the higher surface area of the nanofillers 

and the attractive interactions that caused the viscosity to increase rapidly, limiting the addition 

of more fillers. The presence of nanofillers gave the composites good polishing ability, but their 

strength was low, especially in areas where high masticatory forces were present.  

3) Hybrid resin composites – A compromise between macrofills and microfills was hybrid 

resin composites, which, as the name suggests, were a hybrid between the two existing 
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composites. These had a mix of micro- and nano- particles and provided good mechanical 

properties and intermediate aesthetics.  

4) Small particle hybrid composites – Further refinements and grinding down of particles 

reduced the overall sizes of fillers being used to produce small particle hybrids that had a mixture 

of the 0.04 µm particles and ground particles with average sizes slight more than 1 µm. These 

were labeled as “midfills” and further gave rise to “minifills” where the larger particles were 

further reduced to sizes below 1 µm. The wide distribution of sizes and irregular shapes that are 

used in these composites helps in packing as much filler as possible, which is a major goal of 

manufacturers. The highly packed microhybrid composites have as much as 60-70 volume % 

filler. These hybrid composites have good wear resistance and mechanical properties but they 

can lose their surface polish with time and become dull.  

More recently, nanotechnology has come to the aid of filler development [24] and has 

aided in driving down particle sizes to the 1-100 nm range, to give what are called “nanofill” 

composites. These were created by making “nanoclusters” (Figure 1.3), made by tethering 

together nanoparticles that have a controlled size distribution, ranging from 5 to 75 nm. If only 

single nanoparticles are used, the rheological properties make it difficult to have a high filler 

loading. Creating nanoclusters solves this problem and also allows for higher filler loading 

giving better strength, while retaining the benefits of using nanoparticles, such as better wear 

properties and better polishing. In addition to these benefits, nanoparticles being much smaller 

than the wavelength of light will scatter less light compared to micrometer sized particles and 

result in composites that are more translucent. This allows further processing in terms of 

matching a wide variety of shades and optical densities of the composite material to that of 

natural teeth.  
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Figure 1.2. Evolution of filler sizes in dental composites (from reference [21]). 

 

 

 

Figure 1.3. Nanomers and nanoclusters (from [8]). 
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1.4 Coupling Agent 

In order for the composite to maintain its mechanical integrity, it is essential to have a 

good bond between the filler particles and the resin matrix phase. Failure to do so can result in a 

weak interface between the fillers and the polymeric phase, resulting in weakening of the overall 

composite properties [25], [26]. Silane coupling agents, as the name indicates, act as adhesion 

promoters between the organic resin matrix and the inorganic filler, by coupling the two phases 

covalently, resulting in a strong bond between them [27]. Attaching the fillers to the resin helps 

prevent filler particles from getting dislodged from the matrix during wear. It is also critical in 

maintaining acceptable levels of fracture toughness for the composite materials. Most 

importantly, the covalent linkage also serves as a bridge to transfer stresses from the polymer 

matrix to the high modulus fillers, which effectively increases the strength and modulus of the 

composite compared with the neat resin.  

The most common silane used in the dental industry is 3-

methacryloxypropyltrimethoxysilane, more commonly known as γ-MPS (Figure 1.4). The silane 

end of γ-MPS attaches to the silica filler through the scheme shown in Figure 1.5 and the 

methacrylate end co-polymerizes with the methacrylate-based dental resin. The methoxy groups 

in γ-MPS undergo hydrolysis in a base or acid catalyzed reaction and generate hydroxyl groups. 

These then undergo condensation with the surface silanols and get covalently attached to the 

filler surface. Bimodal and trimodal silanes can undergo condensation with neighboring silanes 

on the filler surface to form a three-dimensional network [28].  
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Figure 1.4. Structure of 3-methacryloxypropyltrimethoxysilane 

 

 

 

Figure 1.5. Simplified reaction of organotrialkoxysilanes with silica surfaces [28]. 

  



 

10 

 

1.5 Drawbacks and Limitations of Dental Composites 

Despite the steady improvements in properties of dental composites due to new materials 

innovations, several challenges still remain in achieving the “ideal” composite. The most 

significant drawback is due to the volumetric shrinkage that occurs as monomer is converted to 

polymer with the critical challenge being the subsequent polymerization shrinkage stress that 

develops as a consequence of the shrinkage. As polymerization occurs, the van der Waals 

distance between adjacent monomers reduces from about  3-4 Å [29] to the covalent bond 

distance of about 1.5 Å [9], [20], [30], increasing the density of the system. There is a reduction 

in the free volume due to the reduced mobility of the polymer chains and this contributes to the 

densification as well. The shrinkage is a function of double bond conversion of the monomer 

system, depending on the molar concentration of the double bonds, the degree of conversion and 

the shrinkage factor, which is the volumetric shrinkage per mole, for that particular system. The 

average molar shrinkage for methacrylates has been found to be in the range of 22.5 cm
3
/mol 

[31]. The volumetric shrinkage for a typical mixture of BisGMA and TEGDMA in the 70:30 

weight ratio is about 5 % to 7 % (Chapter 3), depending on the final conversion achieved. 

Commercial dental composites can have shrinkage from anywhere between 1 % for highly filled 

composites and about 5.5 % for flowable composites that have a low filler loading [30].  

 In a clinical situation, the composite is placed in between the walls of a cavity and has to 

adhere to the cavity. A liquid paste is placed in the dental cavity and then polymerized. During 

cure, the monomers go from the uncured state, pass the gel point, and reach the glassy state upon 

vitrification, where the samples glass transition temperature exceeds the curing temperature. The 

restriction of the developing shrinkage by the walls of the cavity leads to the build-up of stresses 

within the composite. In the pre-gel phase of the polymerizing monomer, it is possible to 
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compensate the shrinkage by flow of the monomer as its motion is not restricted. Once the gel-

point is achieved, there is formation of a continuous infinite network. The bulk, 

thermodynamically driven contraction of this network is restricted by the cavity boundaries, 

which experience only a small degree of compliance as the polymer network formation 

continues, and this restriction of free shrinkage leads to the development of stress. In 

dimethacrylate systems, the gel-point is reached very quickly and at a very early stage upon 

polymerization. A bulk dimethacrylate monomer or comonomer mixture would be theoretically 

expected to exhibit a  onset of macrogelation at less than 1 % methacrylate conversion. In 

practice, the gel point may occur around 1-5 % conversion due to non-idealities such as 

cyclization, reactivity differences of free vs. pendant groups and chain transfer.  Hence stress 

starts building up at a very early stage in conversion of a dental composite. As the conversion 

proceeds and there is development of a cross-linked network, the modulus of the material, which 

is directly related to crosslink density, also begins to rise. Stress being a function of shrinkage 

and modulus, also starts increasing. As the composite is covalently attached to the cavity walls, 

the developing stress is transferred to the tooth. If the force of contraction with which the 

composite contracts exceeds the bond strength between the tooth and the composite, it can lead 

to adhesive failure at the boundary of the restoration. This can cause microcracks to develop in 

the interface between the tooth and the restoration, leading to micro-leakage and recurrent caries. 

It has been found that secondary caries is the single largest reason for the failure of restorations 

[1], [21], [32–34]. Besides damaging the tooth-restoration interface, the transfer of stress to the 

tooth can result in damage to the tooth structure, by causing deformation of the cusp and 

cracking in the enamel [35–38].  
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 A separate issue with regards to the dental monomers is their incomplete conversion [29]. 

The limiting conversion in dimethacrylate is reached upon vitrification of the system, when the 

development of a highly cross-linked network dramatically limits the mobility of the remaining 

free monomer as well as the pendant reactive groups [39]. It has been observed that the final 

conversion of BisGMA-based resin lies between 55 % and 75 % [29]. The conversion drops even 

further upon addition of fillers [40] . Unreacted monomer can leach out into the body, leading to 

changing polymer properties and potential cytotoxicity or other biocompatibility issues. 

Unreacted monomer acts as a plasticizer, leading to less than optimum mechanical properties of 

the composite. TEGDMA is relatively hydrophilic and being more mobile, it can be leached out 

of a composite into the oral environment more rapidly than BisGMA[29], [41]. Leached 

monomer is typically replaced by water, which serves as an even better plasticizer. 

 All these drawbacks call for better materials and many innovations have been introduced 

to address them. Here the focus is on the developments in composite technology that deal with 

the problem of shrinkage stress, with shrinkage reduction being one of the ways to approach the 

issue. There are two ways to address the problem of shrinkage stress – 1) Materials innovations 

and 2) Clinical procedures.  

1.6 Resin Monomer Development  

Since shrinkage during polymerization leads to the development of stress, it is logical to 

focus on reducing shrinkage to be able to limit the development of shrinkage stress. Many 

approaches have been tried to develop new monomers that have lower shrinkage than the 

existing resins but with the constraint that there be no appreciable reduction in mechanical 

properties. Methacrylate-based monomers show good mechanical properties and can be cured 
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rapidly. Acrylates are more reactive but generally have reduced mechanical properties and since 

they are also more cyctotoxic compared with methacrylates, they are rarely used in dental 

materials. Hence a lot of research has focused on keeping the methacrylate functionality intact 

and modifying the structure of the connecting groups that ultimately form the crosslinking units. 

Bulky methacrylates have been made in order to lower the double bond concentration and reduce 

shrinkage [42], [43]. Multi-methacrylate monomers have also been made in order to take 

advantage of the methacrylate functionality, but these structures tend to lead to higher stress at a 

lower monomer conversion [44], [45]. A very promising development has been the development 

of silorane (siloxane + oxirane) monomers [46], [47].  These polymerize via a ring-opening 

mechanism using cationic polymerization and have a very low molar shrinkage coefficient. 

Hybrid thiol-ene-methacrylate polymerizations have been used with great success in reducing 

shrinkage stress while maintaining good mechanical strength [48]. A novel way to reduce 

shrinkage stress is via the use of covalent adaptable networks [49]. Addition-fragmentation chain 

transfer of allyl sulfide groups in radical mediated polymerizations of thiol-yne monomers has 

been found to alleviate shrinkage stress while maintaining good mechanical strength [50]. A 

recent study found that even low shrinking composites can develop high stress equivalent to 

those produced by conventional composites [51]. The conclusion was that since stress in a 

confined setting is dependent not just on shrinkage but also on other factors like conversion, 

modulus, shape and boundary conditions. So equating low shrinkage to low stress would be an 

error, unless all the other factors are also taken into account. This leads us to the importance of 

fillers in dental composites. Fillers help in reinforcing the polymer to produce a stronger material 

and also reduce volumetric shrinkage by reducing the amount of resin per unit volume of the 

composite.  The type of fillers and quantity added affect the final properties of the composite. 
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Klapdohr et al. [52] have listed the kinds of fillers that are used in modern dental composites and 

this is reproduced in Table 1-1.  

From Table 1-1, it is evident that there is a wide distribution in sizes and properties of the 

particles that are used in dental composites. The loading level of each of the components will 

also affect the overall properties of the composite. The loading level of the fillers is also a major 

factor in deciding how they are used. For example, there are flowable composites that have a low 

volume percent of fillers (42 – 62 %) [8], that have a lower modulus and can only be used for 

anterior applications, since these have a high wear rate. Microfilled composites have an even 

lower loading level – about 32 – 50 volume % - and are used where very high polish and the best 

esthetics are required. These have very high shrinkage and cannot be used in stress bearing areas. 

Multipurpose and packable composites, on the other hand, have a very high filler loading – 

between 60 to 70 volume % - and can be used where high forces have to be sustained. These 

materials contain a mixture of nanofillers and microfillers of a variety of sizes as a strategy to 

maximize the filler content.  

Given the wide range of filler loading levels and the potential variations in the degree of 

conversion achieved, it is evident that the final properties of the dental composites will also be 

quite distinct. This poses a challenge in terms of predicting the final properties of the composites 

attained upon polymerization. Each component of the composite has a different property like 

modulus, thermal expansion coefficient and shrinkage so the bulk mechanics of the entire 

composite would be dictated by the micromechanics of the components and the final properties 

cannot be predicted by simple additive rules. Volumetric shrinkage of dental composites has 

been found to more or less linear with respect to filler loading levels [30], [53–55]. There is an 

inverse correlation between the volume fraction of the filler and the shrinkage level of the cured  
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Table 1.1. Types of fillers and filler sizes used in dental composites 

Filler Composition Particle size 

Highly dispersed SiO2 10-40 nm 

Radiopaque, finely ground Ba or Sr silicate glasses 0.7 µm, 1.0 µm, 1.5 µm or larger 

Radiopaque, finely ground Ba/Sr fluorosilicate glasses 1.0 µm, 1.5 µm or larger 

Ground quartz glass 1.0 – 1.5 µm 

YbF3, YF3 0.10 – 3.0 µm 

Si/Zr mixed oxide 250 – 500 nm 

Ti, Zr and Al oxide as opacifier 250 – 500 nm 

Splinter polymerisate main based on SiO2 10-100 µm 

 

composite. One drawback of most of the studies, especially those done with commercial 

composites, is that the shrinkage is rarely reported as a function of monomer conversion, and if it 

is reported, the final conversion values vary depending on the curing conditions used and the 

associated vitrification limits imposed by each material, providing an inconsistent basis for 

comparisons. The modulus of the composite is also a function of the modulus of the fillers and 

the filler loading level [11]. The results are further complicated by the presence of nanofillers. 

The nano-sized fillers, due to their extremely large surface area to volume ratio, affect the 

properties of the composite in a manner different than that encountered with micrometer sized 

fillers [56], [57] and thus also needs to be considered. Studies have been done evaluating the 

effect of filler loading on modulus [18], [19], [58–60] and in general have found that the 

modulus of the composites increases with filler loading. There is an exponential relation between 

the modulus and both filler loading and degree of conversion. In this case too, monomer 

conversion is rarely reported when evaluating cured composite moduli as a function of filler 
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loading. Shrinkage stress is a function of both the shrinkage and the modulus. Studies have 

looked at the effect of modulus on shrinkage stress [18], [58] and also the effect of shrinkage on 

stress [30] as well as monomer conversion on stress [61]. But there is no study that combines the 

effect of all the factors, namely, shrinkage, modulus, filler loadng and monomer conversion, on 

shrinkage stress. This type of fundamental study has been conducted as an initial stage of this 

thesis in order to bring all these factors together and provide a comprehensive look at stress 

development. A central theme to this thesis is evaluation of properties with concurrent 

measurements of monomer conversion so that there is a rational basis of comparison of these 

critical material properties. 

1.7 Role of the Interface on Properties of Dental Composites   

The interface between fillers and the polymer in a dental composite is essential to the 

mechanical integrity of the composite. The interface refers to the sharp boundary between the 

dispersed fillers and the continuous matrix phase [28]. This is the smallest part of the composite, 

in terms of size [62], but it forms an important link for stress transfer between the two phases 

[63–66], is essential for determining fracture toughness [67–69] and it can affect the hydrolytic 

stability of the material by use of hydrophobic groups [70], [71]. The importance of the interface 

is enhanced in nanocomposites due to the large surface area of the nanofillers, allowing for more 

interactions as compared to composites with micrometer-sized fillers.  

In dental composites, the surface of fillers is generally treated with an organosilane 

coupling agent, 3-methylpropyltrimethoxysilane (γ-MPS) (Figure 1.4). This is the most common 

silane used in the dental materials industry. As described previously, the silane functional groups 

hydrolyze and condense with the surface silanols on the fillers while the methacrylate at the 
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opposite end reacts covalently during the polymerization of the methacrylate-based dental 

monomers. The effect of the surface silane amount on the mechanical properties of composites 

has been studied extensively. A non-optimal concentration of silane can lead to deterioration of 

mechanical properties like flexural strength and modulus and tensile strength [63], [72], [73]. 

Mixed silanes can be used to overcome this problem and express the beneficial properties of 

each individual silane with positive results [70]. Silane treatment of fillers has been found to be 

essential for better wear resistance in composites [74–76]. Stress development is also affected by 

the functionalization of filler. It has been observed that composites made with fillers that are 

silanized with non-functional silanes, that is silanes that do not chemically interact with the 

monomer system, and untreated fillers, show lower stress than composites made with fillers that 

are treated with a silane that can copolymerize with the monomer system [77], [78].  

The utility of the interface as something more than just a link between the two phases that 

provides integrity to the material has not been explored fully in the field of dental composites. 

Research focused on modification of the interface to optimize material properties and 

performance remains limited. This is evident from the fact that the silane of choice for fillers in 

dental composites remains γ-MPS and has been so for many years. Even now, the composites 

literature reports ways to optimize the amount of γ-MPS for better overall performance [79], [80] 

but there has been very little done in terms of entirely changing the surface treatment and 

exploring novel new ways of modifying the filler surface [70], [81–84]. Apart from the near 

universal use of γ-MPS in commercial methacrylate-based dental composites, the new family of 

commercial “silorane”-based composites, which is predicated on use of cationically activated 

oxirane ring-opening resin chemistry, uses fillers treated with 3-

glycidoxypropyltrimethoxysilane [85].  



 

18 

 

So the current state-of-the-art in surface modification of fillers in dental composites 

leaves significant room for improvements. One way of approaching this problem is via the use of 

polymer brushes. Polymer brushes refer to an assembly of polymer chains that are end-tethered 

to a surface or an interface that allows the potential extension away from the substrate [86], [87]. 

Polymer brushes find many applications including stabilizing colloidal particles from 

flocculation, tailoring surfaces for biological applications, as surfactants and compatibilizers, 

among many others [86]. It has been reported that the interface between a solid surface and a 

cross-linked polymer can be strengthened by the addition of such polymer brushes that can 

extend into the adjacent polymer layer. With the effects on strength of the material, there also 

exists the potential to tailor the properties of these brushes to be able to control stress, fracture 

toughness, reactivity at the interface and optical properties. This thesis introduces and details the 

application of polymer brushes in the area of dental composites.  

To conclude, polymeric dental composite materials provide an exciting avenue for 

research in the general field of composite materials. Despite rapid progress in innovations in new 

materials for the composites, there remains considerable room for improvement in material 

properties and performance. Studies on mechanical property evaluation of composites are usually 

carried out without reporting the double bond conversion, making it difficult to interpret the 

results. Systematic studies of conversion-dependent composite properties involving both 

conventional and polymer brush filler surface treatments are explored in this work. The topic of 

the interface between the fillers and monomers/polymers represents an under-exploited route to 

alter bulk composite properties, particularly polymerization shrinkage stress. This approach 

appears highly relevant considering the importance of the filler-resin interface as the link for 
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stress transfer between the two constituent phases of composites. All these issues are addressed 

in this thesis. 
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CHAPTER 2 

2 OBJECTIVES 

Polymer-based dental restorative materials continue to be plagued with the inherent 

problem of polymerization shrinkage and the resultant stress due to their placement in a confined 

setting in a clinical situation. Materials innovations in this field have continued to make 

significant and constant progress, especially in the last few years. However, the problem of 

polymerization stress development, which challenges the dentin adhesive bond formation and 

stability, has not been solved. One of the issues is the complexity of dental restorative 

formulations in terms of filler sizes and loading levels, monomers, initiator systems and curing 

protocols. Minor changes in even one of these factors can result in significantly different double 

bond conversion, which ultimately affects the development of the mechanical properties of the 

final composite modulus, shrinkage and stress. There is an intricate relationship between these 

properties and that needs to be explored and understood to be able to devise mechanisms to 

alleviate stress.  

 The major focus of research in the field of polymeric dental restoratives has been in two 

areas – 1) Fillers and 2) Monomers. Fillers are used in a variety of sizes, from micrometers to 

nanometers, and are also made of different materials, depending on the application. While the 

majority of current commercial dental composite materials continue to rely on a relatively small 

set of common dimethacrylate monomers to formulate the resin matrix phase, new monomer 

development has focused on making low shrinkage materials assuming the lower shrinkage will 

lead to lower stress. A crucial element of the formulation has, however, been neglected and that 

is the interface between the fillers and the monomers. Interface integrity in a composite is 
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extremely essential for the load bearing composite to transfer any developed or applied stresses 

to the high modulus filler particles. Very little innovation has been done in exploring the 

potential contribution of the silane coupling agent-based interface towards stress development or 

reduction.  

 Given this background on the current state of affairs in the area of dental restoratives, this 

thesis has focused on exploring the relationship that shrinkage stress has with other material 

properties. A novel strategy to reduce shrinkage stress has been developed by the modification of 

the interface between fillers and monomers. The following aims form the more specific aspects 

of this research: 

 Investigate the effects of double bond conversion and filler loading on development of 

shrinkage stress. Explore the individual contributions made by modulus and shrinkage in 

the evolution of stress. 

 

 To use the interface between filler particles and the monomer phase as a means of 

reducing shrinkage stress in composites. Explore the effect of the interface modification 

on optical properties of composites. 

 

 

 Investigate stress relaxation as a component of stress evolution in unfilled resin and filled 

composite as a function of double bond conversion. Study the effect of the interfacial 

layer on stress relaxation.  
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Stress development in a polymerizing composite is a complex process that depends on 

the development of modulus and shrinkage. In commercial dental restoratives, this process is 

further convoluted by wide variation in filler and monomer compositions and curing conditions, 

all of which affect monomer conversion. In order to understand this interplay between the 

different parameters, Chapter 3 examines the development of stress and its dependence on 

modulus and shrinkage, as a function of filler loading and double bond conversion. A monomer 

mixture consisting of BisGMA/TEGDMA in the weight ratio 70:30 is used as a representative 

model resin system. Barium glass with average size 0.7 µm is used as the filler. Double bond 

conversion and filler loading are independently varied to cover a wide range. This study enables 

a detailed, systematic evaluation of the relative contributions of modulus and shrinkage as the 

stress develops as a consequence of increasing double bond conversion. Knowing these 

contributions can help in understanding the fundamental aspects of polymerization-induced 

stress and also assist in the design of new materials that exhibit low shrinkage stress based on the 

rational selection of component materials with the appropriate moduli and shrinkage 

characteristics.  

Chapter 4 provides an evaluation of a novel method of reducing shrinkage stress in 

composites by the surface treatment of filler particles. Filler surfaces are modified with 

oligomers of varying molecular weights. Oligomeric species were selected so that they had 

hydroxyl groups that can be readily converted to methacrylate groups by attaching 

isocyanatoethylmethacrylate (IEM), which can then polymerize with the methacrylate-based 

resin. Two levels of functionalization of the hydroxyl groups were selected – in one case, 10 % 

of the hydroxyl groups on the oligomer were reacted with IEM and in the second case, 100 % of 

the hydroxyl groups were reacted with the IEM. The different molecular weights of the 
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oligomers and the methacrylate functionalities were hypothesized to have a significant effect on 

the shrinkage stress and this was indeed found to be the case.  

The results of Chapter 4 are based on commercially available oligomers and the 

encouraging reduction in shrinkage stress that was achieved motivated additional work with in-

house synthesized oligomers. Preparation of the oligomers instead of using commercial materials 

enables specific properties to be tailored. This strategy was employed in Chapter 5, which is a 

more in-depth inspection into the mechanism of stress reduction based on the interface 

modification. Two series of oligomers are made, rigid and flexible, by combining different 

diacrylate and dithiol monomers in various ratios to attain different molecular weights. The rigid 

oligomers have an aromatic backbone and have a higher glass transition temperature than the 

flexible oligomers, which have an aliphatic backbone structure. As in Chapter 4, the monomers 

used to prepare the oligomers are chosen to have available hydroxyl groups that subsequently 

can be converted to methacrylate groups via IEM addition, giving controlled levels of 

functionality to interact covalently with the methacrylate-based resin matrix. The systems 

obtained by mixing of the modified fillers with the resin system are studied using a variety of 

techniques to elucidate the effect of the oligomer modification of fillers on shrinkage stress. 

These include rheology, transmission electron microscopy and positron annihilation lifetime 

spectroscopy, among others.  

Having elucidated a mechanism for reduction of stress in Chapter 5, it is important to 

delve deeper into the overall stress development in polymer-based composites. Stress evolution 

is composed of stress development and stress relaxation. Polymers being viscoelastic materials 

have a tendency to relax stress that is built upon an induced strain. This tendency of the material 

to relax stress is important in a polymerizing system that is constrained by bonded surfaces, as 
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this is the scenario for a restoration placed in a dental cavity. Chapter 6 explores the phenomenon 

of classic stress relaxation in which an instantaneous strain is imposed on various materials. The 

systems studied are 1) the unfilled BisGMA/TEGDMA resin, 2) the same resin system with 0.7 

µm filler at 60 wt % loading, 3) this resin containing a fumed silica filler (Aerosil OX50, average 

diameter 40 nm) surface treated with γ-MPS, which is a control, and 4) OX50 fillers surface 

treated with a high molecular weight rigid oligomer that was used in Chapter 5. The stress 

relaxation behavior for all these systems is examined as a function of double bond conversion. 

The study is important as it helps to draw out differences in the rate and magnitude of stress 

relaxation that can be attributed to the filler surface modification as well as providing a better 

understanding of the overall stress evolution process. This can be instructive in the future design 

and optimization of surface treatments focused on stress reduction in composites.  

After all the fundamental studies of the previous chapters, Chapter 7 looks toward 

applying the knowledge gained to a more practical scenario. Modern dental composites are 

formulated with a variety of fillers with dimensions that range from nanometers to micrometers. 

It is important to test whether the positive effects of the surface treatment on stress development 

can be applied to a situation in which there are fillers of both size ranges. For this, 0.7 µm glass 

particles and 40 nm OX50 particles are combined in various proportions in the model resin. The 

fillers are treated with γ-MPS that acts as the control and the high molecular weight rigid brush 

from Chapter 5. Along with polymerization stress measurements, the optical properties of these 

composites are also evaluated, since the esthetic appearance and potential depth of cure are also 

important considerations for dental composite materials.  

Finally, Chapter 8 provides a conclusive summary and recommendations of future 

research directions and opportunities.  
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CHAPTER 3 

3 DYNAMIC PROPERTY EVOLUTION IN POLYMERIC DENTAL RESTORATIVES: 

ROLE OF FILLER LOADING AND MONOMER CONVERSION 

Abstract 

Shrinkage stress in dental composites varies significantly based on material formulation as well 

as polymerization shrinkage and modulus, which are clearly contingent on reactive group 

conversion. There is a lack of fundamental research to bring these parameters together to get a 

comprehensive understanding of stress development in composite materials. This study 

examined the effect of shrinkage and modulus on the development of shrinkage stress as a 

function of conversion and filler loading. In a model photocurable dimethacrylate-based resin 

with a silane-treated particulate barium glass filler. Degree of conversion was controllably varied 

over a wide range allowing detailed correlated comparisons of shrinkage, modulus and stress 

evolution. Filler loading was varied in steps between 0 wt% and 70 wt%. It was found that 

shrinkage increased nearly linearly with respect to double bond conversion, while for a given 

value of conversion, it decreased proportionally with increasing filler content. At the highest 

level of conversion, the unfilled resin (0 wt%) had the highest shrinkage of 6.46 ± 0.07 vol% at a 

conversion of 69.9 ± 0.1 %, while the 70 wt% filled sample had a shrinkage of 3.88 ± 0.06 vol% 

at a conversion of 65.0 ± 0.1 %. The highest modulus for the unfilled resin was 2.88 ± 0.44 GPa 

at a conversion of 75.0 ± 1.0 % while that for the 70 wt% composite was 6.75 ± 0.30 GPa at 69 ± 

1.5 % conversion with the modulus values rising disproportionately rapidly for the highest filler 

loading. The highest stress level for the unfilled resin sample was 3.00 ± 0.12 MPa at 68.9 ± 0.1 

% conversion while that for the 70 wt% sample was 2.88 ± 0.07 MPa at 57.8 ± 0.1 % conversion. 

The effect of filler loading was to hasten the development of modulus and stress as conversion 
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progressed. It was concluded that the stress was proportional to the modulus and shrinkage when 

the actual shrinkage of the polymer was considered by taking the volume fraction of filler into 

account.  

3.1 Introduction 

Dental composite restoratives comprise a tremendously large segment of the biomaterials 

market. While these esthetic materials continue to be improved, polymerization shrinkage and 

the resulting shrinkage stress can be extremely detrimental to the performance of polymer-based 

dental restoratives [1–5]. The vast majority of these dental restoratives continue to be 

dimethacrylate-based and the monomers undergo significant shrinkage during polymerization 

[6], [7]. In a clinical setting, shrinkage is not allowed to occur freely as the polymerizing 

composite is covalently bonded to the tooth substrate to maintain mechanical integrity and an 

effective seal between the restoration and tooth. Failure to do so can result in marginal leakage 

between the tooth and the restoration further leading to problems such as marginal staining, 

secondary caries and post-operative sensitivity [8]. This constraint placed on shrinkage as the 

viscous composite paste converts into a glassy, high modulus material is the primary source for 

the buildup of stress within the composite [5]. The resulting stress is also transferred to the 

adhesive interface and into the adjacent tooth structure. The magnitude of the stress depends on 

the shrinkage and modulus of the composite, the interaction between the filler particles and the 

polymer, the exotherm generated due to the polymerization reaction and the boundary conditions 

under which the composite is cured.  All the parameters responsible for stress development are 

affected by the formulation of the composite, which at the most basic level is composed of an 

organic resin matrix, reinforcing filler particles, coupling agent between the resin matrix and 

filler and an initiator system.  
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 Since their introduction in the 1950s, polymeric dental restoratives have undergone 

significant changes in their formulation [9], along with a steady improvement in performance 

characteristics. Until the 1990s most of the research contributing towards the evolution of dental 

composites was in the area of filler development [10]. Filler sizes and composition changed 

drastically down from a diameter of 10-50 µm or more in the early dental composites to sub-

micron range and even extending down to 5 nm in some of the modern nanocomposites [11]. 

Along with variations in size and composition of the fillers, the filler loading level has also been 

varied over a considerable range. The volume fraction of fillers in commercial composites span 

from about 25 % up to about 70 % [12], [13]. Low filled composites typically show lower 

moduli and strength but exhibit significant flow and adaptability prior to curing. Materials of this 

type are used in applications like anterior restorations in the oral cavity where there are lower 

masticatory forces as well as flowable composite liners that produce a somewhat adaptable 

interface [13]. Highly filled composites are used in posterior restorations where there is a need 

for sustaining higher recurring loads and greater wear resistance. As shrinkage is one of the main 

factors leading to high stresses in polymerizing dental restoratives, research over the last few 

years has focused on developing low shrinkage resins [1], [7], [14]. The changes in formulations 

also lead to a range of different limiting double bond conversions of the resin systems that form 

the matrix phase of the composite, due to progressive increases in light intensity used, light 

penetration through the material, activation system, kinetics and reaction exotherms. 

 Given a certain formulation, shrinkage stress would depend on shrinkage and 

modulus, the C-factor (configuration factor, representation of the constrained or bonded to 

unbonded surface area), viscoelastic behavior of the material, curing and boundary conditions. In 

this study the C-factor and boundary conditions were kept constant. The aim of this work is to 
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study the development of shrinkage, stress and flexure modulus as they change when a 

restorative goes from an uncured state to a fully cured material, with methacrylate conversion 

used as a coordinating index. In addition to this, filler loading has been varied to represent 

different loading levels in current commercial dental restoratives. Several studies have looked at 

the effect of filler loading on each of shrinkage, modulus and stress in isolation or some 

combination [15–18]. However, only a few ever report the conversion levels at which the 

measurements are done. The contention here is that an assessment of conversion is necessary to 

accompany any property measurement that displays conversion dependence to ensure that 

comparisons between different materials or even within a given material are legitimate. There is 

a lack of understanding of the effect of filler loading and monomer conversion on shrinkage, 

modulus and stress as well as how all these factors relate to the development of physical and 

mechanical properties of composite materials.  

3.2 Materials and Methods 

3.2.1 Materials 

2,2-bis[4(2-hydroxy-3-methacryloxy-propyloxy)-phenyl] propane (Bis-GMA) and 

triethylene glycol dimethacrylate (TEGDMA) (donated by Esstech Inc., Essington, PA) were 

used in a 70:30 weight ratio as a model dental resin. A visible light initiating system consisting 

of 0.3 wt% camphorquinone (CQ) as initiator and 0.8 wt% ethyl 4-dimethylaminobenzoate 

(EDAB) (Sigma-Aldrich, Milwaukee, WI) as co-initiator was incorporated. Barium glass (mean 

particle size 0.7 µm) surface treated with a coating of 5 wt% γ-

methacryloxypropyltrimethoxysilane (γ-MPS), was used as the inorganic filler (Esstech, Inc., 

Essington, PA). The filler was mixed with resin in varying amounts to obtain total final weight 



 

37 

 

percentages of 0, 20, 40, 60 and 70 which correspond to filler volume fractions of 0, 9.4, 21.6, 

38.3 and 49.1 respectively, based on densities of filler (2.71 g/cm
3
) and uncured resin (1.12 

g/cm
3
) [19]. Fillers and resin were blended in a centrifugal mixer (DAC 150 FVZ, Flakteck Inc.) 

to ensure thorough mixing.  

3.2.2 Sample Curing 

Visible light irradiation was provided by a halogen dental curing lamp (VIP, Bisco Inc., 

Schaumburg, IL). Light intensities and irradiation times were varied in order to achieve a wide 

range of conversions for specimens used in the various testing protocols. A Demetron Model 100 

radiometer (Demetron Research, Danbury, CT, USA) was used to measure the output light 

intensity.  

3.2.3 Infrared Spectroscopy 

Double bond conversion in the resin and composite specimens was monitored in 

transmission mode using near-infrared (NIR) (Nexus 670, Nicolet Instruments, Madison, WI) 

spectroscopy. The area of the peak at 6165 cm
-1

 signifying the =CH2 absorption was used to 

track the double bond conversion. All NIR measurements were taken at a wavenumber resolution 

of 4 cm
-1

. For the static measurements, 64 scans per spectrum were taken for, while 2 scans per 

spectrum were used for collection of real-time series measurements.   

3.2.4 Shrinkage Stress Measurement 

Shrinkage stress was measured using a cantilever beam-based tensometer, which was 

designed and fabricated at the Paffenberger Research Center of the American Dental Association 
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Health Foundation (ADAHF – PRC, Gaithersburg, MD, USA). This device measures the 

dynamic tensile forces generated by a polymerizing sample that causes deflection of the 

calibrated beam. This force is used to calculate the stress generated in the sample. A more 

detailed description of the experimental technique has been reported in a previous study [1]. 

Briefly, a composite sample is placed between two cylindrical quartz rods that have been treated 

with a methacrylate functional silane to promote bonding with the resin in the composite. The 

lower quartz rod is fixed whereas the upper quartz rod is attached to the cantilever. A dental light 

is placed at the bottom of the lower quartz rod and light is transmitted through the rod and to the 

composite causing deflection of the cantilever based on the beam compliance. An LVDT (linear 

variable differential transformer) continuously tracks the beam deflection and this data is 

converted to a force measurement, which when divided by the composite cross-sectional area, 

provides the stress in the composite. The cavity in which the samples were placed was 6 mm in 

diameter and 1.5 mm in thickness. For the simultaneous measurement of conversion with 

shrinkage stress, the NIR signal was guided to/from the sample using optical fiber cables (1 mm 

diameter). 

 For the stress measurements, the samples were irradiated with the VIP curing light at an 

incident irradiance of 250 mW/cm
2
 for 60, 10 and 5 s and also at 35 mW/cm

2
 for 20, 10 and 5 s, 

to obtain a wide range of conversion and associated stress values. Irradiance was measured at the 

end of the quartz rod in contact with the sample. The coupled stress/conversion data was 

collected continuously for 15 min. 
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3.2.5 Shrinkage Measurement 

Shrinkage was measured using a linometer (ACTA Foundation, Netherlands). In this 

method a liquid monomer or uncured composite paste sample was placed between a fixed upper 

glass plate and a freely moving aluminum disc, both of which are greased to provide radial 

freedom of movement for the shrinking sample, which allows the linear post-gel shrinkage to be 

recalculated in terms of volumetric shrinkage. Disc specimens of 6 mm in diameter and 1.5 mm 

in thickness were irradiated from the upper surface and the displacement of the aluminum disc 

was monitored by a LVDT to provide linear shrinkage. Irradiation intensity and times were used 

to coincide with those used for the stress measurements. Shrinkage was monitored continuously 

for 10 min. NIR scans of the sample were taken prior to polymerization and immediately after 

removal from the linometer to avoid any significant post-cure conversion development. 

3.2.6 Flexure Modulus Measurement 

Flexural modulus was measured in three-point bending (MTS 858 Mini Bionix II). The 

specimen dimensions were 2x2x10 mm. Samples were irradiated on one side and immediately 

inverted and irradiated from the opposite side in an effort to get uniform conversion throughout 

the sample. A range of light intensities, from 25 mW/cm
2
 to 575 mW/cm

2
, were used. Samples 

were cured for 30 to 60 s on each side. NIR spectra were obtained directly from the flexural test 

specimens before and immediately after curing. As soon as the NIR polymer spectrum was 

collected the sample was submitted to mechanical testing. Again this was done to ensure well 

correlated conversion and mechanical property results. 
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3.2.7 Scanning Electron Microscopy 

Distribution of fillers in the polymer matrix was observed using a Field Emission 

Scanning Electron Microscope (JSM-7401F FESEM, JEOL, Japan). For this, samples were 

thoroughly polished using the following protocol. Each sample was first polished with different 

silicon carbide abrasive papers in increasing order of their grit numbers (240, 320, 600). After 

every polishing step, the samples were washed with copious amounts of DI water to remove all 

traces of material from the surface. The samples were further polished by rubbing them on three 

different cloth pads that had solutions of alumina powder (mean sizes – 5.0 µm, 0.3 µm and 0.05 

µm) in DI water spread on them. The polished specimens were mounted on stubs and sputter 

coated with gold with an average thickness of 2 nm.  

3.2.8 Vicker’s Microhardness Test 

Disc shaped specimens (2 mm thickness and 10 mm diameter) of each formulation were 

obtained by photopolymerization with the dental light at 700 mW/cm
2
 for three minutes on each 

flat surface. The Vicker’s hardness was measured using a microhardness tester (LM700AT, 

Leco). The specimens were indented with a diamond tip using a force of 300 gf for 15 s. The 

length of the indents was measured and the VHN was calculated using the following formula –   

   
       

  
 [3.1] 

Where, F is the applied force in gf and d is the size of the indent in millimeters.  
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3.3 Results and Discussion 

This work examined the dynamic evolution of material properties including volumetric 

shrinkage, flexural modulus and stress in photopolymerizing dental composites with respect to 

methacrylate conversion and filler content as independent parameters. Both the parameters were 

systematically varied over a wide range to study the changes in the material property values. For 

each filler loading level, shrinkage, flexural modulus and stress were measured in separate 

experiments with essentially simultaneous measurement of conversion. The conversion 

measurements allowed rational comparison of all the interrelated properties and it facilitates 

understanding of the trends in their conversion-driven development.   

 The variation in volumetric shrinkage of the resin system as a function of methacrylate 

conversion for each filler loading level is represented in Figure 3.1. The maximum shrinkage for 

the unfilled resin was 6.5 ± 0.1 % at 69.9 ± 0.8 % conversion while that for the sample with 70 

wt% filler loading was 3.9 ± 0.1 % at 65.0 ± 0.7 % conversion. The extrapolation of the static 

data in Figure 3.1 to zero shrinkage provides a slightly positive conversion intersect that can be 

expected from this post-gel shrinkage measurement technique. Shrinkage varied linearly with 

respect to conversion for low to moderate levels of conversion.as has been observed by several 

authors [20–22]. Studies have also noted the linear variation of shrinkage with respect to filler 

loading [15], [21], [23]. What is not noted normally, however, is a deceleration in the shrinkage 

rate as the limiting conversion is attained for all the samples. This phenomenon has been 

reported before in coupled dynamic shrinkage/conversion measurements [6] involving glassy, 

crosslinked networks. In the vitrified state, the bulk network densification and the continued 

molecular level reaction of free monomer and pendant groups tend to occur on diverging time 

scales, which results in excess free volume. Based on the broad structural heterogeneity that 
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characterizes dimethacrylate networks, residual monomer pockets may exist throughout the 

network that can still undergo polymerization. It is this increase in conversion that is seen to 

occur without significant change in shrinkage. It is expected that the cured composite sample 

will continue to densify over time and eventually more closely approximate the equilibrium 

thermodynamic free volume associated with a given conversion.   

 

Figure 3.1. Variation of volumetric shrinkage as a function of conversion and filler loading – 

lines connecting data points are provided for visual assistance. 

 When variation of flexural modulus as a function of filler loading was considered with 

respect to conversion (Figure 3.2), there was a precipitous rise in the modulus for each filler 

loading level after an initial slow change. This rise in modulus can be associated with the onset 

of the glassy state of the material [24]. The accelerated rise in modulus occurred at progressively 

lower values of conversion as the filler content increased. This means that for any given level of 
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conversion, higher filler loading provides a higher modulus value.  Studies measuring modulus 

of fully cured composites with respect to filler loading show an exponential rise in modulus as 

the amount of filler increases [25]. The positive effect of the filler on modulus is evident in that 

even though the limiting conversion is reduced as the filler content rises, the modulus values 

increase significantly. The rationale for the modest reduction in conversion with increasing filler 

includes a progressive reduction in overall light transmission and a reduced exothermic potential. 

Scattering and absorption of light by filler particles leads to a progressive reduction in light 

penetration as the thickness of the composite increases [26–28]. The reaction exotherm potential 

is also reduced by addition of filler due to the reduction in the overall reactive group 

concentration. These factors, along with the reduced mobility of the polymer and early 

vitrification, lead to the gradual lowering of conversion with increased filler loading. For an 

equivalent, lower level of conversion within the rubbery regime, there are relatively small 

differences in the modulus among composites containing 0 to 60 wt% filler fraction. The 

composite with 70 wt% filler fraction shows significantly higher modulus at all conversion levels 

compared to the other samples. As the filler fraction increases and the matrix shrinks with 

increasing conversion, there is increased potential for interparticle interactions due to the reduced 

spacing between the particles. As conversion increases, there is progressive covalent attachment 

between the filler surface with the densifying matrix and this additional reinforcement of the 

network also contributes to the late stage modulus development in addition to the corresponding 

increase in the matrix crosslink density. The most significant modulus effect associated with the 

filler would be expected where the filler surface affected interphase region becomes a continuous 

phase, which assuming a relatively small hybrid interphase dimension, would only be expected 

at very high filler loading levels. 
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Shrinkage stress and methacrylate conversion were measured simultaneously in real-time 

under different irradiation conditions.  Figure 3.3 shows the variation in stress as conversion 

progresses at various loading levels, for the highest irradiance conditions (250 mW/cm
2
 for 60 s). 

At the very early stages of polymerization, as conversion increases there is no corresponding rise 

in the shrinkage stress level. At about 5-6 % conversion, which reasonably approximates the gel 

point of dimethacrylate systems, stress begins to rise slowly. In order for the tensometer to start  

 

Figure 3.2. Flexural modulus development profiles as a function of conversion for different filler 

loading levels. Lines connecting the data points are provided for visual assistance. 

 

registering a positive stress value, it is impicit that a continuous load-bearing network form 

within the sample and thereby covalently attach the upper and lower rods in the tensometer. This 

can only occur once the gel point has been reached along the z axis. Since gel point is achieved 
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very early in dimethacrylate network formation and our experience suggests that the reaction 

between the silane-treated glass rod of the tensometer and the sample is essentially 

instantaneous, we can say with confidence that the onset of stress development is very close to 

the gel-point of the sample.  Shrinkage that occurs before the gel point does not contribute to 

stress since this stage of shrinkage is represented as viscous flow [29], [30] that has no elastic 

memory. After a steady increase in stress initially through the rubbery and leathery regimes, as 

the limiting conversion is reached in the final vitrification stage of polymerization, stress 

increases rapidly over a fairly narrow range of conversion. Bulk vitrification occurs when a 

significant portion of the sample’s evolving Tg exceeds the effective curing temperature. 

 

Figure 3.3. Real-time polymerization shrinkage stress versus conversion. Irradiation condition – 

250 mW/cm
2
 for 60 s. 

Addition of increasing amounts of filler increases the available surface area that is in 

contact with the developing polymer phase. As mentioned earlier, the filler surface places 

restrictions on the mobility of the polymer in its immediate vicinity [31]. As the volume fraction 
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of fillers increases, this relatively immobile phase can cause reduced cooperative movement 

between the polymer chains. In addition to this, the contribution of the highly rigid filler particles 

to the overall composite modulus and the covalent linkage with the resin phase, all promote the 

earlier vitrification of the composite. 

The dynamic stress data presented in Figure 3.3 represents just one of the irradiation 

conditions used during the stress measurements. Using the final values of stress and conversion 

at the end of each such run, Figure 3.4 was generated. It is evident that the progression of data in 

Figure 3.4 is very similar to the analogous dynamic data in Figure 3.3. This demonstrates that 

static measurements can be used to represent the dynamic progression of property development, 

as long as accurately correlated conversion data is included. There are a few subtle differences 

between the two plots. In considering just the end point of the real-time data, the effect of any 

exotherm during curing is lost. The exotherm contributes to a delay in vitrification with respect 

to the conversion and also imparts a thermal contraction effect to the dynamic measurement as 

the system cools beyond the point of the maximum reaction rate. In the static data, the change in 

the stress with respect to conversion is somewhat more gradual than in the real-time data.  

Figure 3.5 shows the development of shrinkage, modulus and stress as a function of 

metharylate conversion, for the 0 and 70 wt% samples, which are compared here since they 

represent the extremes of filler loading for the samples considered in this study. Shrinkage 

increases linearly for the two samples, albeit at different rates, with respect to conversion due to 

the different resin phase volume fractions. Modulus and stress progress along an exponential 

route and follow each other closely. However, while the final stress levels achieved are similar, 

the final modulus of the unfilled resin remains much lower than that of the highly filled 

composite. At the limiting conversion for the stress values, in case of the 0 wt% sample, the 
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Figure 3.4. Plot of shrinkage stress as a function of conversion and filler loading. Lines 

connecting the data points are provided for visual assistance. 

 

Figure 3.5 Plot of shrinkage, modulus and stress as a function of methacrylate conversion. 

Curves with only lines represent the unfilled resin and lines with points represent the 70 wt% 

composite. (Color legend: - Blue =Modulus; Black = Shrinkage; Red = Stress). 
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 modulus is approximately 2.5 GPa and the shrinkage is 6.5 %, while for the 70 wt% filled 

sample, the modulus is about 3 GPa and the shrinkage is 3%. Multiplying modulus and 

percentage shrinkage to get the stress value, for the 0 wt% sample, in accordance with Hooke’s 

law, gives a value of 16.3C MPa, where C is a proportionality factor that is assumed to be the 

same for both the systems. For the 70 wt% sample, this procedure gives us a stress value of 9.0C. 

Since the final stress values are the same, the discrepancy based on that predicted by Hooke’s 

Law needs to be resolved. It should be noted that the 70 wt % sample has a resin volume of 

approximately 51 %. With this consideration, the effective strain experienced by the resin phase 

in the composite sample is double the value of measured strain. Taking this into account, the 

calculated stress is 18C, which is much closer to the value obtained for the 0 wt% sample. 

Therefore, the volume fraction of the resin of any material must be taken into account when 

considering the stress development potential. The small differences in the values can be 

explained by the fact that the samples are cured in different geometries and hence the exotherm 

effect is bound to be different in each measurement. Another factor that should be kept in mind is 

that the magnitude of the measured shrinkage stress values depends on compliance of the 

measuring system [32]. Higher elastic modulus due to higher filler loading led to high stress in a 

system with feedback to eliminate compliance [8], and a system with no compliance 

compensation was found to show that shrinkage stress reduced with filler loading [33]. In our 

system, we have tried to replicate the effect of a clinically relevant situation in which a shrinking 

composite causes a slight deflection of the bonded tooth substrate [34]. 

An alternate way of looking at the stress data is to compare the final stress values when 

the different samples are subjected to similar irradiation conditions or energy density (Figure 

3.6). For the highest irradiance levels (Conditions 5 and 6 in Figure 3.6) the final shrinkage stress 
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reduces steadily along with conversion as the filler content is increased from 0 to 40 wt%. Above 

40 wt% filler loading, the reduction in conversion continues as additional filler is incorporated, 

but the shrinkage stress increases. This trend is most prominent for the two highest irradiance 

conditions and less obvious or not present at all in the lower ranges of conversion (Conditions 1 

– 4 in Figure 3.6). This has significant implications in a practical situation where a dentist may 

use a particular curing protocol, regardless of the formulation of the dental composite being used. 

With the wide variety of filler loading levels and monomer formulations available in current 

commercial dental restoratives, the same curing protocol used for all of them is certain to result 

in significant differences in final conversion, shrinkage, modulus and stress. For each particular 

material, there may exist a region where there is an acceptable target range of conversion that is 

sufficient for the modulus and other desirable material properties such as fracture toughness to be 

high and yet have a reasonably lower stress. It is imperative to employ a curing protocol that 

maximizes the benefits across a wide range of properties without overly sacrificing any one of 

them. 

The effect of energy density on polymerization stress in commercial dental composites 

has been studied [35] with conversion and stress values found to have a tendency to level off at 

higher energy densities. Saturation of the conversion is in agreement with our results since the 

limiting conversion for all loading levels at the higher irradiance conditions is in a fairly narrow 

range. However, as the limiting conversion is reached, the stress values actually keep on 

increasing. The disagreement can be explained by the fact that the authors looked at a narrower 

range of conversion as compared to the range studied in the current research and the stress 

actually starts building up most rapidly at latter stages of conversion, after vitrification is 

reached. 
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Figure 3.6. Plot of shrinkage stress versus fractional conversion. Each line represents the same 

irradiation condition but different filler contents – Condition 1 – 35 mW/cm
2
 for 5 s; Condition 2 

– 35 mW/cm
2
 for 10 s; Condition 3 – 35 mW/cm

2
 for 20 s; Condition 4 – 700 mW/cm

2
 for 5 s; 

Condition 5 – 700 mW/cm
2
 for 10 s; Condition 6 – 700 mW/cm

2
 for 60 s. Lines connecting the 

data points are provided for visual assistance. 

Fillers functionalized with a methacrylate silane added to a resin that is based on 

methacrylates react covalently with the resin upon polymerization. It has been observed that 

when fillers with non-functional silanes are introduced in a resin matrix, the resulting final stress 

is lower than composites with fillers that have functional silanes, at the same loading level [36]. 

This is due to the fact that the reactive surface silanes introduce additional constraints on the 

polymerizing resin, restricting free shrinkage. This can lead to higher stress concentrations at the 

surface of the fillers. With an increase in surface area, the magnitude of these stresses increases. 

Two opposing forces are at work here when the amount of filler is increased. At low to moderate 

filler loading levels, the fillers tend to reduce the amount of stress as compared to the unfilled 

resin matrix due to the reduction in total volume of the resin. At higher filler loading levels, the 
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increased modulus and surface area play a larger role and lead to an increase in shrinkage stress. 

The extent and type of surface coverage would definitely influence the magnitude of stress 

development. 

Up to about 20 % conversion, there is essentially no difference in modulus as a function 

of filler loading (Figure 3.2). The stress follows the same trend (Figure 3.4) with the exception 

that the highest filler loading shows a trend towards higher early stage stress development. As 

conversion continues to increase, the filler loading level contributes to the dramatic increase in 

modulus with the corresponding increase in stress. At the lower levels of conversion, the 

covalent link between the particles and developing polymer is most likely not fully developed. 

Hence the particles are not able to constrain the resin and the modulus is still not very high 

resulting in low stress.At these lower levels of conversion, it is the conversion and not the filler 

particles that determine the modulus, and hence stress, of the composite, while at the higher 

levels of conversion, it is the modulus and filler loading that dominates to determine the stress 

levels.  

SEM Characterization  

Representative SEM images were obtained to examine the dispersion of the filler particles in the 

polymer matrix and the interparticle distance between them (Figure 3.7). It can be seen that as 

the filler loading increases, the average distance between the particle surfaces reduces. There are 

increased chances of particle-particle interactions at close distances and this can contribute to the 

increased modulus that is observed at all levels of monomer conversion. Also, as the distances 

between particles approach the nanometer scale, confinement effects due to the narrow spacing 

can come into play [37]. There is evidence that there is a change in the glass transition 

temperature of the polymer in the immediate vicinity of particle with respect to the bulk [38]. 
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There can be a gradient in glass transition and consequently, modulus of the polymer layer 

around the particles. Though this effect possibly extends to a few nanometers, when particles are 

very close to each other, layers that have properties different from the bulk overlap and this can 

have a reinforcing effect. This seems to be reflected in the increased modulus of the 70 wt% 

sample, especially at higher values of conversion where the volumetric shrinkage of the resin 

phase effectively raises the filler volume fraction.  

The abrupt rise of the modulus of the 70 wt% for all values of conversion is noteworthy 

and reinforces the concept of a threshold where particle-particle interactions become 

predominant. While modulus represents the bulk properties, the surface properties are also 

important for dental composites as it is the surface that has to withstand masticatory forces and 

display appropriate wear resistance. Indentation hardness tests give a relevant measure of the 

surface strength of materials. Figure 3.8 shows the variation in Vicker’s hardness number (HV) 

with respect to filler loading. It can be seen that after a slow and steady rise in the hardness 

value, there is a more abrupt rise for the 70 wt% sample. This follows the same trend that the 

modulus values show with respect to filler loading levels and further highlights a transition from 

particle-resin to particle-particle interactions.  

The proximity of interfaces of neighboring particles should also affect modulus 

development. The contribution of the surface-bound methacrylate groups from the fillers on the 

total methacrylate group concentration for the model composite can be seen in Figure 3.8. The 

peak area representing methacrylate group concentration, which is obtained from the uncured 

material NIR spectra (fixed pathlength and cross-section) is plotted as a function of filler 

loading. As filler content increases, the reduction in the volume of the resin lowers the overall 

methacrylate group concentration. The total methacrylate peak area is represented by curve (a).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 3.7. Scanning electron micrographs of polished surfaces of samples: (a) 0 wt%; (b) 20 

wt%; (c) 40 wt%; (d) 60 wt%; (e) 70 wt%. All images are taken at 2000x magnification. The 

scale bar is 10 µm.  
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Figure 3.8. Contribution to methacrylate peak areas as a function of filler loading level from: (1) 

Composite (♦), (2) Resin (▲) and (3) Interface (■). 

 

 

Figure 3.9. Vicker’s hardness number (HV) as a function of filler loading. 
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This includes contributions from the bulk matrix as well as the surface-bound methacrylates. The 

contribution from just the resin can be calculated by using the volume fraction of the resin and 

the peak area for an unfilled resin sample (curve (b)). These values are lower than the overall 

methacrylate contribution, indicating that there is contribution from the filler surface. The 

difference between the two curves can be used to generate curve (c), which is an estimate of the 

contribution to the total methacrylate groups from those that are attached to the filler surface. As 

the filler content increases, the contributions from the resin and the filler approach each other and 

the filler contribution becomes increasingly significant. Given that the fillers used in this study 

are surface treated with a 5 wt% layer of silane and considering the available filler surface area, 

the thickness of the silane layer can be significant. At high loading levels, it is quite possible that 

the interfacial layers of silane on neighboring particles would impinge on each other. This 

interaction of neighboring interface regions also explains the accelerated increase in modulus at 

the highest filler loading level (70 wt%).  

Vicker’s Hardness Test 

The abrupt rise of the modulus of the 70 wt% for all values of conversion is noteworthy 

and reinforces the concept of a threshold where particle-particle interactions become 

predominant. While modulus represents the bulk properties, the surface properties are also 

important for dental composites as it is the surface that has to withstand masticatory forces and 

display appropriate wear resistance. Indentation hardness tests give a relevant measure of the 

surface strength of materials. Figure 3.9 shows the variation in Vicker’s hardness number (HV) 

with respect to filler loading. It can be seen that after a slow and steady rise in the hardness 

value, there is a more abrupt rise for the 70 wt% sample. This follows the same trend that the 
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modulus values show with respect to filler loading levels and further highlights a transition from 

particle-resin to particle-particle interactions.  

3.4 Conclusion 

The evolution of shrinkage, modulus and shrinkage stress was evaluated as a function of 

filler loading and metharylate group conversion. It was found that shrinkage varied linearly with 

conversion, while stress and modulus exhibited exponential behavior. The final value of stress in 

the filled systems appeared to be lower than what would be expected by the magnitude of the 

modulus and shrinkage. Taking the actual shrinkage of the polymer into consideration by 

subtracting the volume fraction of the filler solved this anomaly and the stress appeared to be 

proportional to the product of modulus and shrinkage for the entire range of conversion. The use 

of conversion as a basis for measurement for all the properties allowed legitimate comparison of 

all the measured properties. Further work can be done in a similar manner by incorporating 

fillers of different sizes, to represent current commercial dental composites that have mixed sizes 

of fillers. 
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CHAPTER 4 

4 SHRINKAGE STRESS REDUCTION IN POLYMER-BASED DENTAL 

RESTORATIVES BY SURFACE MODIFICATION OF FILLERS 

Abstract 

Polymerization shrinkage stress is detrimental for the long term performance of dental 

composites. The role of the interface between the fillers and resin matrix in the development of 

shrinkage stress has not been explored. This gap in the knowledge provides a unique opportunity 

to explore the interface effect on stress development. A novel surface modification technique has 

been designed that explore its utility in reducing shrinkage stress. Commercial oligomers of 

varying molecular weights (1075, 4000, 6100) were attached to the surface of OX50 filler 

particles (40 nm diameter). The oligomers had a structure similar to BisGMA, one of the 

components of the resin system, to have compatibility with the resin. An industry standard, γ-

MPS was used as the control filler. The oligomers had pendant hydroxyl groups, which were 

partially or fully reacted with isocyanatoethyl methacrylate, to have variation in reactivity on the 

oligomer backbone. It was found that shrinkage stress was reduced by using the experimental 

surface modification. The shrinkage stress for the γ-MPS-based composite was  2.60 ± 0.04 MPa 

and that for the best performing oligomer, 6100 molecular weight oligomer with 10 % 

methacrylate functionality, was  1.81 ± 0.11 MPa. A general trend was that shrinkage stress 

decreased as the length of the oligomer increased. Increasing the methacrylate functionality on 

the oligomer increased the shrinkage stress. The shrinkage and modulus of the experimental 

composites were similar to the γ-MPS-based composite control. The reason for the reduction in 

shrinkage stress was postulated to be the compliance of the interface.  
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4.1 Introduction 

Polymer-based dental composite materials have been in use for more than 50 years [1][2] 

and now account for the majority of more than 100 million restorations that are placed each year 

in the US. These esthetic amalgam alternatives were introduced in the late 1950s for anterior 

restorations as an advancement over the existing silicate cements that do not bond to dentin and 

erode quite rapidly [3]. Despite their widespread use and steady improvements [4] there remain 

major issues with the use of polymeric dental restoratives regarding their contraction during 

polymerization, which in turn promotes considerable shrinkage stress [5][6]. The placement of a 

shrinking composite in a confined, adhesively bonded setting, as is the case when a restoration is 

placed in dental cavities, exacerbates the stress levels within the composite and can cause failure 

of the restoration or even damage the adjacent tooth structure.  There has been a tremendous 

amount of research directed toward addressing the shrinkage, stress and mechanical properties of 

composite materials based on modification to the resin phase [7], but new studies focused on 

these concerns based on alteration of the filler component of the composites are lagging behind.  

 A commercial dental composite consists of three main components – 1) a polymeric resin 

matrix that forms a continuous phase throughout the composite, 2) a dispersed phase consisting 

of high modulus inorganic fillers that can be of a variety of shapes, sizes and composition and 3) 

an interface or interphase that bonds the two main phases that critically promotes stress transfer 

and helps to maintain mechanical integrity of the entire composite [8]. The interphase has a 

significant effect on the mechanical properties of composites under conditions of stress and 

strain. Good interfacial bonding between the filler and resin phases is extremely important to 

maintain excellent mechanical properties required for this challenging application of in-situ 

polymerized materials [9][10]. The absence of filler-resin interfacial adhesion can negatively 
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affect composite properties like wear resistance [11], fracture toughness [12] and bulk strength 

[13]. In the dental composites literature in particular, surprisingly little attention has been paid to 

the optimization of the interphase created by the presence of a coupling agent that binds the two 

phases together [14]. γ-Methacryloxypropyltrimethoxysilane (γ-MPS) has been the silane 

coupling agent of choice in the dental industry since the development of the modern composite 

since its hybrid functionality is capable of binding to both the filler surface and the organic resin 

via the respective presence of a surface condensable group and methacrylate functionality. It has 

been reported, however, that most of the methacrylate functionality due to the γ-MPS remains 

unreacted and buried in a disordered multi-layered interphase [15]. This can lead to inefficient 

covalent coupling between the filler and resin matrix phase, reducing the efficiency of stress 

transfer to the filler and leading to failure of the composite.  

 In the case of dental fillers, the application of γ-MPS is usually done at or near room 

temperature under relatively mild conditions as higher temperatures would degrade or consume 

the C=C bonds from the methacrylates [16]. The conditions of silane application are widely 

varied but usually involve aqueous conditions, which typically leads to a multi-layered 

interphase of the silane around the filler. The 3-carbon spacer of γ-MPS is relatively rigid and 

when combined with the multiple layers of the silane, it is essentially immobile near the surface 

of the filler and not very accessible to the resin monomers and propagating polymer chains 

adjacent to the filler during polymerization [17]. There have been a limited number of attempts 

to modify the interfacial region to improve composite properties. A mixture of functional and 

non-functional silanes on the filler surface was used in order to improve the hydrolytic stability 

of the composites [18][19]. Longer spacers than γ-MPS (up to C10) have also been tried with the 

effect of creating a more hydrophobic interfaces and enhanced filler loading [20]. More recently, 
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dendrimers have been used to functionalize the filler surface to successfully reduce shrinkage 

stress [14].  

 With this background in mind, it is evident that the design of an efficient interface is 

essential for successful filler reinforcement of dental composites. It has been reported that the 

interface between a solid surface and a cross-linked polymer can be strengthened considerably 

by the addition of chains that are tethered at one end to the solid surface and extend into the 

polymer matrix [21]. The level of adhesion depends on the grafting density of these chains, 

which can be called  “polymer brushes” that can be referred to as an assembly of polymer chains 

that are tethered to one end of a surface or an interface [22]. The use of a chemically grafted 

polymer brush with controlled spatial geometry and chemical functionality produces a significant 

increase in the strength and fracture energy of the interphase [23]. It has also been reported that a 

polymer brush layer exhibits greater wear resistance as compared to a conventional surface 

coating [24].  

 The benefits of polymer brushes encouraged us to explore its use in dental composites to 

design a novel surface treatment that involved tethering oligomeric chains on the surface of filler 

particles in order to enhance various properties in comparison to the traditional γ-MPS treatment. 

The primary targeted property studied here is polymerization shrinkage stress in the dental 

composites with the acknowledgement that properties such as conversion and mechanical 

strength must not be compromised. Another goal of the research was to study the effect of the 

interphase on material property development in dental composites and apply the knowledge 

gained to the design of improved materials.  
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4.2 Materials and Methods 

4.2.1 Materials 

Silica nanoparticles (Aerosil OX50, average diameter = 40 nm, surface area 50 m
2
/g) 

were donated by Degussa (Germany). OX50 silanized with γ-MPS (γ-methacryloxypropyl-

trimethoxysilane) was kindly donated by Septodont-Confi-Dental (Louisville, Colorado, USA). 

N-Methylaminopropyltrimethoxysilane (MAPTS) was purchased from Gelest. 2,2-Bis[4-(2-

hydroxy-3-methacryloyloxypropyl-oxy)phenyl]propane (BisGMA) and triethylene glycol 

dimethacrylate (TEGDMA) monomers were donated by Esstech. A visible light initiating system 

consisting of 0.3 wt% camphorquinone (CQ) as initiator and 0.8 wt% ethyl 4-

dimethylaminobenzoate (EDAB) (Sigma-Aldrich, Milwaukee, WI) as co-initiator was 

incorporated. Isocyanatoethylmethacrylate (IEM), poly(bisphenol A-co-epichlorohydrin), 

glycidyl end-capped, (referred to here as epoxy oligomer, with number average molecular 

weights of 1075, 4000, and 6100 Da), methylene chloride, anhydrous N,N-dimethyl formamide 

(DMF), anhydrous toluene, and dibutyltin dilaurate were obtained from Sigma-Aldrich (USA).  

4.2.2 Modification of Epoxy Oligomers  

The structure of the epoxy oligomers used is shown in Figure 4.1. This particular 

oligomer series was chosen as the structures are similar to that of BisGMA, which is one of the 

components of the resin system and is a dimethacrylate monomer developed for dental polymer 

applications with widespread use in current commercial dental composite materials. The 

structural similarity ensures enhanced compatibility of the treated fillers and the resin system. 

The epoxy oligomers were varied in chain length, with n in Figure 4.1 going from 2 to 20. Three 

oligomers were used with molecular weights 1075 (n=2), 4000 (n=12) and 6100 (n=20). This 
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allowed the study of the effect of length of the brush on the properties of the composite. The 

epoxy oligomers had pendant hydroxyl groups along their length that afforded a controllable and 

convenient way to introduce reactive methacrylate groups along the length of the oligomers. The 

reactive groups are necessary in order for covalent bonding to occur between the interface and 

the resin, thus completing the coupling between the filler and the matrix. A covalent attachment 

usually results in enhanced bulk mechanical properties in a composite, primarily in flexure or 

tension rather than compression. Hence it is viewed as necessary to maintain at least some degree 

of reactivity at the surface of the fillers.  

 

Figure 4.1 Structure of epoxy oligomer series used to modify the OX50 surface (n varies from 2 

to 20)   

The hydroxyl groups on the oligomers were reacted with IEM in order to introduce methacrylate 

functionality along their length. Two series of modified oligomers were created using this 

synthesis; one series utilized 10 % of all the possible hydroxyl groups in a urethane-forming 

reaction with IEM, while the other had all of the hydroxyls converted to the urethane 

methacrylate functionality. The 10 % group would have a reduced level of reactive group 

concentration minimizing the degree of covalent linkage with the resin while the 100 % group 

would have the maximum covalent engagement with the resin. By this modification, the effect of 

the length of the oligomer and the reactive group concentration on the properties of the 

experimental composites could be examined somewhat independently. The representation of the 

final oligomer structure is shown in Figure 4.2. 
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Figure 4.2. Final structure of the epoxy oligomers 

4.2.3 Modification of the Filler Surface 

The bare silica particles were first treated treated with MAPTS and then the epoxy-

terminated, pre-formed oligomers were attached to the amine end groups of the silane. OX50 

particles were first dried in a rotary dryer at about 165 
o
C under vacuum for 3 hours before 

further treatment. This was done to ensure removal of surface bound moisture that can 

potentially react with the silanes and promote the formation of multiple layers of the silane. 

Anhydrous toluene was used as a solvent for the silanization process. It was refluxed for 

twohours and then the particles were added and further refluxed for an hour to ensure good 

dispersion. The MAPTS was added to the solution so that the final concentration in the mixture 

was 1.5 % by weight. This reaction mixture was allowed to reflux for 6 hours after which the 

particles were separated from the solvent by centrifugation. The particles were washed three 

times with toluene and two times with methylene chloride to ensure that all traces of unreacted 

silane were removed. The silanized particles were then dried overnight under vacuum at 50 
o
C to 

remove all traces of solvent. The dried and silanized particles were then added to anhydrous 

DMF, which contained a five-fold excess of the modified epoxy oligomers to minimize potential 
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head and tail surface coupling. The reaction mixture was heated to 45 
o
C and the reaction was 

allowed to continue for 24 hours. The particles were separated and isolated by following the 

centrifugation procedure described above. 

4.2.4 Composite Preparation 

The resin matrix for the composites was a mixture of BisGMA and TEGDMA in the ratio 

70:30 by mass. The resin included a free radical visible light initiating system comprised of 0.3 

wt% camphorquinone and 0.8 wt% ethyl 4-N,N-dimethylaminobenzoate. The fillers were added 

to the resin and homogeneously dispersed with a centrifugal speedmixer (DAC 150 FVZ, 

Flakteck Inc.). All composite pastes had a final filler loading level of 30 wt%. Composites with 

γ-MPS-treated OX50 particles were similarly prepared and used as the control. The freshly 

prepared composites were allowed to sit under vacuum to ensure elimination of air bubbles prior 

to being used.   

4.2.5 Characterization of Fillers 

Thermogravimetric analysis (Pyris 7 TGA, Perkin Elmer) was used to determine the 

amount of surface functionalization on the OX50 particles after each stage of modification. 

Samples were placed in platinum pans in a nitrogen atmosphere and heated from 50 
o
C to 850 

o
C 

at 10 
o
C/min and the mass loss as a function of temperature was recorded. 

4.2.6 Shrinkage Stress Measurements 

Shrinkage stress was measured using a cantilever beam based instrument referred to as 

the tensometer (American Dental Association, Paffenberger Research Center, MD, USA). This 
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instrument measures the force generated by an actively polymerizing material that is partially 

constrained from a free shrinkage state. The material is bonded to the opposing ends of two 

diametrically placed quartz rods. The polished ends of the glass rods are freshly treated with γ-

MPS, to promote bonding with the polymerizing material. The upper quartz rod is attached to the 

cantilever beam and is able to move along with the shrinking composite. The resistance of the 

calibrated cantilever beam to deflection is controlled by the position of the attached rod. The 

lower quartz rod is fixed to the tensometer base and is immobile. A dental curing light (IQ2, 

Caulk, Dentsply), with an output wavelength of 465 nm, was adapted to the bottom of the lower 

quartz rod, which serves as a light guide to transmit the curing light to the material.  A detailed 

description of the stress measurement involving the tensometer has been published previously 

[25]. The testing protocol uses specimen discs of 1.5 mm thickness and 6 mm diameter. For the 

initial shrinkage stress measurements (Figure 4.5), the light intensity reaching the sample was 

measured at 350 mW/cm
2
. The samples were irradiated for 40 s with the dynamic stress 

development profile continuously monitored for 20 min. Real-time double bond conversion 

measurements based on simultaneous near-IR spectroscopy were made during the stress 

measurements.  

4.2.7 Shrinkage Measurements 

Polymerization shrinkage was measured using a linomter (ACTA Foundation, 

Netherlands). In this method composite paste specimens were placed between an aluminum disc 

and a glass slide that were greased to allow the free shrinkage of the sample along the radial 

direction. Specimens were 1.5 mm in thickness and 6 mm in diameter. The sample was irradiated 

from the top of the glass slide (350 mW/cm
2
 for 40 s). The displacement of the freely moving 
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aluminum disc was measured by linear variable differential transformer (LVDT) and converted 

to a dynamic volumetric shrinkage plot that extended to 10 minutes to capture the initial post-

cure shrinkage behavior. 

4.2.8 Flexural Modulus and Strength Measurements 

Flexural modulus and strength were measured in a 3-point bending mode (858 Mini 

Bionix II, MTS Systems, Eden Prairie, MA). The composite pastes were injected into a cavity 

measuring 2x2x10 mm. The mold cavity was formed by Teflon spacers on the sides and clamped 

glass slides on the top and bottom. The composite samples were cured using the dental curing  

light at 550 mW/cm
2
 for 3 minutes on both the sides to promote uniform conversion throughout 

the sample. The crosshead speed used was 1 mm/min.  

4.2.9 Infrared Spectroscopic Characterization 

Infrared spectroscopy was used to monitor the conversion of the resin and the surface 

modification of the fillers using an FTIR (Nexus 670, Nicolet Instruments, Madison, WI). 

Double bond conversion was monitored in transmission mode using near-infrared (NIR) 

spectroscopy. The area of the peak at 6165 cm
-1

 representing the methacrylate =CH2 absorption 

was used to track conversion. For the simultaneous measurement of conversion with shrinkage 

stress and also during rheometry measurements, the NIR signal from the source was guided 

through the sample using an outbound optical fiber and the NIR signal transmitted through the 

sample was collected by the inbound optical fiber and conducted to the detector. Diffuse 

reflectance infrared Fourier transform spectroscopy (DRIFTS) was used to study the filler 

surfaces. For the DRIFTS experiments OX50 filler particles representing the various surface 
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treatments, including the unmodified filler, were mixed with KBr powder and spectra were taken 

at a resolution of 4 cm
-1

, using KBr as a background.  

4.3 Results and Discussion 

The amount of surface coverage due to the epoxy oligomer attachment was determined by 

thermogravimetric analysis (TGA). Figure 4.3 represents the TGA curves for the various 

systems. The nomenclature of the brushes used here is as follows:- OX50 Mw-10% or OX50 

Mw-100%, where Mw represents the molecular weight of the brush and 10% or 100% represents 

the percentage of hydroxyl groups on the oligomer that were  pre-reacted with the IEM.  It can 

be seen that there is an increase in the weight loss going from unmodified OX50 particles to 

silanized particles and then those modified with the epoxy brushes. There is an approximately 1 

% mass loss difference between the unmodified and silanized particles. Technical data (Degussa, 

Inc.) reveals that the OX50 particles have a surface silanol group density of 2.2 per nm
2
. If we 

assume each silanol group reacts with a MAPTS molecule then using the molecular weight of the 

silane, we can estimate that the weight loss should be about 3 %. Since the weight loss is about 1 

%, this indicates that about 1/3
rd

 of the silanol sites have reacted with the MAPTS. Using this 

data the relative coverage of the different epoxy brushes on the surface were estimated. Table 4.1 

gives the net weight loss of each of the epoxy brushes and fraction of the silane sites that are 

covered.  

From Table 4.1 it is apparent that the fraction of epoxy oligomers attached to the filler surface 

reduces as the length of the oligomer increases beyond that of the shortest oligomer used here. 

This is due to the fact that the longer the oligomer, the greater the steric hindrance encountered in 

the “grafting-to” approach employed here that reduces the amount of oligomers reaching the 
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surface of the filler. It can also be seen that the fillers with the epoxy oligomers exhibit a 2-stage 

decomposition process. The first decomposition step at around 200 
o
C when some of the less 

thermally stable components on the attached chains start decomposing. The second stage where 

much more mass loss is observed may be due to the breakage of Si-C bonds and subsequent 

decomposition and volatilization of the decomposition products.   

 

 

 

 

 

Figure 4.3. TGA curves for the OX50 particles with different surface modifications 
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Table 4.1. Weight loss contribution on the filler and fraction of the surface silanol sites covered 

by the modified epoxy oligomer series.  

Sample % mass loss Fraction of surface  

silanol sites covered 

OX50_1075-10% 3.4 0.17 

OX50_1075-100% 3.4 0.16 

OX50_4000-10% 4.5 0.06 

OX50_4000-100% 4.6 0.05 

OX50_6100-10% 4.6 0.04 

OX50_6100-100% 5.4 0.03 

 

4.3.1 FTIR Characterization 

 Mid-IR spectra of OX50 at various stages in the modification process are shown in 

Figure 4.4.  Unmodified and dried OX50 particles showed a sharp peak at about 3747 cm
-1

 

representing free silanol groups. Upon silanization with MAPTS, this peak disappears, indicating 

reaction of the surface silanols and also hydrogen bonding with the carbonyl of the methacrylate 

group on MAPTS. A broad peak representing the N-H stretching appears around 3346 cm
-1

. The 

multiple peaks at 2871-2972 cm
-1

 correspond to the stretching mode of C-H in –CH2, -CH- and –

CH3. When the epoxy oligomers are added on top of the MAPTS layer, a carbonyl peak appears 

at about 1720 cm
-1

 and the C=C peak appears at 1635 cm
-1

. The two peaks are stronger in the 

filler with the 6100-100% oligomer, confirming the presence of a greater number of methacrylate 

groups than the 6100-10% oligomer.  



 

73 

 

,  

Figure 4.4. DRIFTS spectra of OX50 particles at various stages of surface modification -  (a) 

Unmodified OX50, (b) OX50 with MAPTS, (c) OX50_6100-10%, and (d) OX50_6100-100%. 

4.3.2 Shrinkage Stress Results 

Figures 4.5 and 4.6 show the shrinkage stress of all the modified composites compared 

with a γ-MPS-based control. The epoxy oligomers that have only 10 % of their pendant hydroxyl 

groups modified are presented in Figure 4.5 whereas the ones with 100 % hydroxyl group 

conversion are shown in Figure 4.6. In both the cases, it can be seen that the experimental 

composites produce lower shrinkage stress as compared to the γ-MPS based control. In Figure 

4.5, the γ-MPS control has the highest shrinkage stress at 2.59 ± 0.04 MPa. The modified 

composites show a reduction in the shrinkage stress that follows the increase in the molecular 

weight of the epoxy oligomers with the OX50_1075-10% at 2.20 ± 0.02 MPa, OX50_4000-10% 

at 2.08 ± 0.04 MPa and OX50_6100-10% at 1.81 ± 0.11 MPa. Figure 4.6 does not show the same 

linear progression of the shrinkage stress with respect to the molecular weight of the oligomers. 

The OX50_4000-100% shows the least reduction in stress with the final stress at 2.36 ± 0.04  
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Figure 4.5. Shrinkage stress measurements of experimental composites with 10 % hydroxyl 

group modification of oligomers, compared with the γ-MPS control. Irradiation conditions – 

Visible light at 350 mW/cm
2
 for 40s 

 

Figure 4.6. Shrinkage stress measurements of experimental composites with 100 % hydroxyl 

group modification of oligomers compared with the γ-MPS control. Irradiation conditions – 

Visible light at 350 mW/cm
2
 for 40s.   



 

75 

 

MPa, followed by OX50_1075-100% at 2.19 ± 0.03 MPa and OX50-6000-100% at 2.15 ± 0.02 

MPa. In comparisons between the two series it can be seen that the oligomers with 10 % 

hydroxyl group modification produced lower stress as compared with their 100 % hydroxyl 

group modified counterparts of equivalent molecular weight, except for the oligomer with 1075 

molecular weight where there is no significant difference between the two functionalization 

levels. It must be noted that the matrix double bond conversion at the end of all the runs was at 

the same level at around 65 %, ascertaining that the reduction in shrinkage stress was not due to 

reduction in shrinkage caused by a decrease in the conversion of the experimental systems.  

Figure 4.7 shows the development of double bond conversion of the resin in the 

composites. This provides confirmation of the fact that all the composites reach an equivalent 

limiting level of final conversion, regardless of the surface treatment and degree of 

functionalization. The rate of reaction is the same in all the cases as well. So it is apparent that 

the surface treatment does not directly affect the reaction kinetics of the composite systems or 

restrict conversion in the vicinity of the interface.  

Shrinkage measurements revealed no significant difference between any of the composite 

materials (Figure 4.8). The composites contracted by the same amount, about 5%, under similar 

irradiation conditions. The rate of shrinkage development in the initial stages was found to be 

similar for all the composites. The conversion of all the composites at the end of the shrinkage 

run was also at similar levels. 

The results of the flexural modulus and strength measurements are shown in Figure 4.9. 

Again there is no significant difference between the various composites. All of them showed 

equivalent strength and modulus values. This is encouraging, as it is confirmation of the fact that  
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Figure 4.7. Comparison of double bond conversion of experimental composites with γ-MPS-

based control. Irradiation conditions – Visible light at 350 mW/cm
2
 for 40s.  

 

 

Figure 4.8. Comparison of shrinkage of experimental composites with γ-MPS-based control. 

Irradiation conditions – Visible light at 350 mW/cm
2
 for 40s. 
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the novel surface treatment does not have a detrimental effect on the basic properties of the 

composites. Composites with untreated fillers show a reduction in mechanical strength due to 

lack of covalent attachment with the resin. In the experimental fillers, as seen from the TGA 

data, very few of the surface sites are covered with the oligomers. It is encouraging that the 

mechanical properties are sustained in spite of this relatively low coverage.  

It was interesting to note the significant decreases in the shrinkage stress of the 

experimental composites in comparison with the γ-MPS-based control, while the degree of 

conversion, shrinkage and flexural modulus/strength were maintained. Shrinkage stress 

development in polymerizing composites is a complicated process, with dependence on factors 

such as shrinkage, resin matrix conversion, filler loading level, viscoelastic properties, modulus 

of the composite and kinetics. Unlike the comparisons drawn in the dental materials literature 

involving polymerization stress of different commercial composite formulations, here most of 

these factors were held constant with the focus on the filler/resin interface. Factors within each 

measurement technique such as sample geometry, irradiation conditions and filler loading level 

were also kept constant for all the samples. The only difference between the samples was the 

surface treatment of the fillers. By maintaining the other factors constant, we could better 

elucidate the effect of the surface treatment on the properties of the dental composites.  

Most of the research involving reduction in the stress levels in polymerizing dental 

composites has dealt with the design of new resin compositions or the application of alternative 

curing strategies [7]. Very little work has focused on modifying or designing new filler systems 

to deal with stress development. Fillers are used for a variety of factors including the necessary 

esthetic tooth-like appearance but a primarily role of the filler is to reinforce the resin and 

improve the mechanical properties of the composite to a level that is beyond the reach of the 
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lower moduli resins being used. Coupling is necessary between the filler and the resin phase in 

order to reduce wear of the composite particularly in occlusal conditions and silane coupling 

agents like γ-MPS are used for this purpose. Efficient coupling between the filler and the resin 

matrix helps to transfer the applied stress to the filler, thereby minimizing the stress on the 

weaker matrix phase. The attachment of the resin monomers to the filler surface actually places a 

restriction on their movement while it is polymerizing and actually increases the localized 

internal stress in the composite.  

The “polymer brush” approach used here helps to reduce the stress in the composites, 

while maintaining mechanical integrity, as can be seen from the results shown above. Figure 4.4 

shows that as the length of the oligomer increases the final stress in the composite decreases. We 

hypothesize that the oligomer layer actually acts as a stress-relieving layer and helps in reducing 

the absolute stress levels in the composite. As the resin matrix monomers start to cure, 

copolymerization occurs with the pendant methacrylates along the length of the oligomers. The 

resin actually tries to shrink away from all the surfaces, including the walls of the cavity in which 

it is placed as well as the surfaces of the fillers. In doing so, the shrinking resin would pull at the 

surface of the fillers, potentially extending the oligomer layer. By virtue of their flexible nature 

and attachment to both the filler surface and the polymerizing matrix, the oligomeric chains act 

as springs, akin to springs in a viscoelastic model. These springs can help to relieve the 

developing stress due to their movement to adjust the shrinking of the resin. It has been 

hypothesized, that in the initial stages of cure when the cross-linking in the resin is in its nascent 

stages, the growing polymer chains can compensate for shrinkage and relieve stress by flow [26]. 

A comparison can be made between this theory and the mechanism by which the oligomer layer 

relieves stress. The oligomers are relatively free to move and in the initial stages of curing can  
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(a) 

 

(b) 

Figure 4.9. Flexural (a) strength and (b) modulus of experimental composites compared with γ-

MPS-based control 
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help relieve the stress by “flowing”. The longer the oligomer length the more flexible it is and 

more is its ability to relieve stress, as proved by the results in Figure 4.4.  

 If the oligomer layer were very dense, however, then the chains would not have much 

freedom of movement and would not be able to relieve the stress to the same extent. Due to the 

grafting-to approach used here, as can be seen from the TGA results described before, the 

grafting density of the chains is quite low and we hypothesize this low surface density helps in 

giving the chains an additional degree of freedom in movement.  

 When the methacrylate functionality on the oligomers is increased by reacting all the 

hydroxyl groups on the chains with IEM, there are now more points along the oligomer length 

where the resin monomers can react and be pinned into the developing polymeric network 

structure. As the resin polymerizes and more of the pendant methacrylates react, this places more 

restrictions on the movement of the oligomeric chains. Consequently, there are restrictions 

placed on the movement of the resin due to the reaction too. Both these factors combine to 

partially negate the effect of the stress relieving capacity of the oligomers. Comparing Figures 

4.5 and 4.6, we can see that for the oligomers with 6100 and 4000 molecular weight the stress 

increases as the methacrylate functionality on the chains increases. In the case of the oligomer 

with the 1075 molecular weight, the stresses in both the cases are the same. This may be due to 

the fact that this oligomer only has an average of 2 hydroxyl groups per chain, whereas the 4000 

and 6100 series have 12 and 20 respectively. There is very little difference between the low and 

the high level of methacrylate functionality in the 1075 molecular weight case, as compared with 

the greater oligomeric lengths. The difference is not significant enough to have an impact and 

hence the stress levels are similar in both the cases.  
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 The γ-MPS control has a higher magnitude of relatively rigid methacrylate functionality 

on the filler surface. There is rapid attachment of the resin monomers at these reactive sites and 

subsequent restriction on their mobility. This results in an increase in the stress build up at the 

interface and hence the overall internal stress. The rigid interphase created as a result of this 

reaction does not allow in the reduction of stress by flow. Hence the γ-MPS based composite 

displays a higher level of stress as compared to the experimental composites.  

 Stress reduction can also be a result of reduction in modulus due to reduction in 

conversion or other factors such as effective crosslink density of the polymer network. But it was 

verified that all the composites reached the same final level of shrinkage (Figure 4.8). There was 

no significant difference between the moduli of all the composites either. As stated before, the 

conversion was similar in all the cases (Figure 4.7), giving a good basis for comparing the other 

properties, as all the properties can change with changes in conversion. A plot of real time 

shrinkage stress versus conversion for the composites is shown in Figure 4.10. Only the 

composites with the 10 % hydroxyl group modification are compared with the γ-MPS control 

here. In all cases the shrinkage stress develops gradually with increase in conversion in the initial 

stages. As volumetric shrinkage progresses and the composite crosses its gel point, the stress 

starts increasing perceptibly. It is after this point that subtle differences between the control and 

the experimental composites can be seen. Stress development in the γ-MPS control increases at a 

faster rate than the experimental surface-treated composites. A precipitous increase in the stress 

values with respect to small changes in the conversion is observed in all the composites. This 

would be the region near the vitrification point of the systems. It can be seen that the vitrification 

point is reached at earlier stages of conversion for the control. The control also reaches a higher 

value of final stress. There is a delay in reaching vitrification for the experimental composites 
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and their ultimate stress values are also lower. A delay in the vitrification could be due to the 

enhanced mobility afforded by the flexible oligomer layer. A decrease in the vitrification time 

has been observed with an increase in filler loading (Chapter 3). Altmann et al. [27] hypothesize 

that the increase in viscosity is due to the increase in filler content and increase in the glass 

transition temperature. The increased filler-matrix interaction places restrictions on the mobility 

of the polymer chains near filler surfaces. By the reverse logic, the higher mobility of chains near 

the experimental filler surfaces should allow for a delay in reaching the vitrification point. This is 

precisely what we notice in our experimental composites. This is also validated by the 

observation that if the filler particles have non-reactive surfaces that do not have a strong 

interaction with the resin, there is no effect of increase filler loading on the Tg values [28].   

 

 

Figure 4.10. Real-time shrinkage stress with respect to conversion. 
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 Viscosity of all the composite pastes was also measured to study the effect the particles 

have on the rheological properties. In Figure 4.11, it can be seen that the lowest viscosity is 

shown by the γ-MPS control. All the experimental composites exhibit higher viscosity levels, 

which might have implied that vitrification could be expected to occur at lower rather than the 

higher conversion levels observed here. This indicates that the strength of the interaction of the 

interfacial layer with the uncured resin is higher. Also, the layer could have a wider sphere of 

influence due to the flexible nature of the oligomers. Each of these factors would have an effect 

on the viscosity. Within each molecular weight, the 10 % composite series are higher in viscosity 

than their 100 % counterparts. This is due to the fact that 10 % composite series has more 

hydroxyl groups per chain and these have a higher degree of hydrogen bonding, thus increasing 

the viscosity. It has been theorized that a higher degree of viscosity does not allow for stress 

relaxation by flow in the pre-gel stage, leading to higher final stresses. Condon et al. [29] tested 

the effect of using non-functional but silanated fillers versus using unsilanized and functionally 

silanized particles in a composite on shrinkage stress. They found that composites with filler 

with a non-functional silanated surface showed the lowest viscosity and produced the lowest 

stress upon polymerization. The functional silanized filler bonded covalently to the resin and 

showed higher stress, while the unsilanized filler based composite showed the highest viscosity 

due to the stronger interactions between the surface silanol groups with the components of the 

resin phase and possibly due to filler particle aggregation effects. The unmodified filler yielded 

composites with stress equivalent to that of the functional filler based composite. However, the 

mechanical strength of composite materials with non-functional silane treated or untreated filler 

was significantly reduced compared with γ-MPS-treated filler based composites.  
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Figure 4.11. Viscosity of composite pastes 

In our study, the experimental composite pastes have a higher viscosity than the γ-MPS 

control, but have similar modulus in their polymeric state. Intuitively, a higher initial paste 

viscosity would lead to early gelation and development of modulus. A consequence of this would 

be higher stress. However, we see the opposite effect where the stress develops later in the high 

viscosity system. The only way this can happen is due to the interfacial treatment with the brush 

structures likely delaying the effective transfer of stress between the matrix and filler. This 

further validates the effect the modified interface has in alleviating the final stress levels in the 

composite.   

Dynamic mechanical analysis tests were conducted to determine the effect of the 

interfacial treatment on the thermomechanical properties of the composites. The storage modulus 

and loss tangent are plotted versus temperature in Figures 4.12 and 4.13 respectively. In Figure 

4.12, it can be seen that in the glassy region, the storage modulus of the experimental composites 

increased as compared to the control. The results are summarized in Table 4.2. 
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Table 4.2. Storage modulus and Tg of composites 

 

  

 

 

 

 

 

 

 

 

The increase in storage modulus in the glassy region for the experimental composites 

shows a reinforcing effect due to the modified interface. In the rubbery region however the 

storage modulus of the experimental composites is lower than that of the γ-MPS control, 

indicating a weakening of the interface in the rubbery regime. This result is consistent with the 

delayed vitrification noted in the polymerization stress evaluation of the brush-modified fillers. 

The Tg of the γ-MPS control was found to be slightly higher than that of all the other samples 

Table 4.2). This could be due to lesser adhesion at the interface or the flexibility of the interface 

region.

Sample Storage modulus 

value at 25 
o
C (MPa) 

Tg (
o
C) 

OX50-γ-MPS 2530 ± 300 164 ± 4 

OX50_1075-10% 3880 ± 350 158 ± 3 

OX50_1075-100% 3660 ± 450 158 ± 3 

OX50_4000-10% 4070 ± 250 157 ± 2 

OX50_4000-100% 3640 ± 200 158 ± 5 

OX50_6100-10% 3810 ± 500 149 ± 4 

OX50_6100-100% 4220 ± 400 156 ± 3 
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Figure 4.12. Storage modulus of experimental composites compared with γ-MPS control. 

 

 

Figure 4.13. Loss tangent of experimental composites compared with γ-MPS control. 
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4.3.3 SEM Characterization 

SEM images of cryogenically fractured composite bars were obtained to get information 

on the morphological effects due to the surface treatment. Figure 4.14 (a) shows the fractured 

surface of the γ-MPS based control and figure 4.14 (b) shows the surface of the 4000-100% 

based composite. It can be seen that the fracture surface of the experimental composite has a 

much rougher topography as compared with the control. This implies that in the experimental 

composites, the propagating crack has to travel a larger distance and dissipates more energy 

while doing so. This would potentially lead to an increase in the fracture toughness of the 

composites.  

 

 

Figure 4.14. SEM fracture surface images of (a) OX50-γ-MPS based composite, (b) 

OX50_4000-100% based composite. 

4.4 Conclusion 

A novel surface modification technique was employed in order to improve 

polymerization shrinkage stress in dental composites. Oligomers with different chain lengths and 

different levels of surface reactivity were used to modify the surface of nanofillers. The results 

[a] [b] 
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show that the experimental composites have reduced shrinkage stress by as much as 30 % as 

compared with the traditionally used γ-MPS-based control while otherwise maintaining similar 

final conversion, shrinkage and modulus behavior. The surface modification procedure also has 

the potential to affect other properties such as dynamic modulus development and fracture 

toughness. It can be concluded that the surface modification technique used here has great 

potential to improve dental composites in terms of the critical property of polymerization stress 

development. 
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CHAPTER 5 

5 INFLUENCE OF SURFACE MODIFICATION ON SHRINKAGE STRESS IN A 

MODEL DENTAL COMPOSITE: A MECHANISTIC STUDY 

Abstract 

Surface modification of fillers for optimizing material properties in dental composites has 

received very little attention. Current research mostly focuses on the development of low-

shrinkage monomers for resin systems. We have designed a novel way to reduce shrinkage stress 

by treatment of filler surfaces with polymer brushes. We synthesized two series of oligomers – 

one with a rigid backbone and the other with a more flexible backbone. Each series of oligomers 

was made with three different molecular weights. Each such oligomer was then either used as it 

was or modified to contain methacrylate functional groups. In this manner, eighteen different 

oligomers were made, with sizes in the range of about 2000 to 20000 Da. These were attached to 

the OX50 filler surface and mixed with resin to test shrinkage stress reduction potential, with 

OX50 filler treated with γ-MPS as the control. The shrinkage stress for OX50- γ-MPS was 3.16 

± 0.14 MPa while that for the material with the lowest shrinkage stress was 2.17 ± 0.12 MPa. 

Shrinkage stress was found to vary greatly with methacrylate functionality on the oligomer. 

Increase in methacrylate functionality increased the stress. Increase in length only slightly 

reduced the shrinkage stress, while more flexibility of the oligomer structure appeared to 

increase the stress. Rheometry measurements showed a tendency toward a delayed network 

formation in the experimental composites. It was postulated that the delay in a system-wide 

network formation is due to the hindrance caused by the particle surfaces. Particles treated with 

γ-MPS formed a network faster due to the ease of accessibility to the surface methacrylate 

groups and hence showed an early rise in stress. The surface modification of filler particles with 
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oligomers was successful in reducing shrinkage stress in a model dental composite and the 

method has enormous potential to improve properties with more refinement. 

5.1 Introduction 

The trend in the last decade for the incorporation of nanosized fillers in polymeric dental 

composites [1], [2] has led to the exciting possibility of exploiting the high surface area to 

volume ratio of these inclusions to enhance the performance of these materials. In the dental 

industry, nanoparticles have been promoted to improve the wear properties and achieve superior 

polish compared to composites based on micron-sized particles[1], [3]. The high surface area 

maximizes the interaction of the reinforcing filler particle with the resin matrix. Filler surfaces 

are treated with functional organosilanes that can react covalently with the resin matrix phase, 

thus helping the fillers adhere to the resin [4]. The utility of the surface area of fillers has been 

limited to this link between the two phases to provide adequate stress transfer when the 

composite is stressed due to physical and thermal effects and also to improve filler dispersion. 

This leaves an enormous gap in the application of these nanoparticle-based composites that does 

not take full advantage of their potential.  

 Polymerization shrinkage stress due to shrinkage in constrained conditions has been a 

continuing problem in dental composite systems since their introduction [5]. Addition of high 

modulus fillers that are covalently linked to the polymer matrix results in additional constraints 

being placed on shrinkage of the resin. Studies conducted with untreated fillers and fillers treated 

with non-functional silanes that do not bond with the matrix phase show reduced stress 

development as compared with those that have covalent attachment with the resin [6]. The 

surfaces of such particles can serve as defect sites where localized free shrinkage can take place. 
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This reduces the overall volumetric shrinkage and consequently, stress development. This points 

to the significant role of the interface between the filler and matrix phases in controlling the 

stress development in the composite. Keeping these factors in mind, this research focuses on 

utilizing the high surface area of filler particles to aid in controlling shrinkage stress in polymeric 

dental composites.  

 Current research directed towards the reduction of shrinkage stress mainly focuses on the 

development of low shrinkage monomers and polymerization strategies. Novel resin 

formulations that include silorane materials (combination of siloxane and oxirane chemistries) 

that undergo a cationic ring-opening polymerization process [7], thiol-ene photopolymerizations 

that offer a hybrid chain/step-growth reaction mechanism [8], [9] and phase separation during 

polymerization to create internal interfaces within the resin phase. In a clinical situation, 

diagonal layering techniques are used wherein instead of filling the entire cavity with the 

restorative material, incremental portions of composite are sequentially placed and polymerized 

until the entire cavity is filled [10]. This technique relies on the fact that the more free surface a 

shrinking composite has as compared to its bonded surfaces, the lower is the stress that develops.  

 Since dental composite materials are typically characterized by very high filler contents 

and there is now a trend toward the incorporation of increasing amounts of nanosized fillers in 

these formulations, new strategies to improve material performance should include consideration 

of the resin-filler interface. Interfaces in dental composites have not received much attention. 

They serve as links between the resin phase and the fillers, but have no utility beyond that. This 

provides an excellent chance to use surface modification schemes to improve material properties. 

Polymer brushes have been used to modify surfaces and interfaces in a variety of applications. 

They find applications in adhesives, protein-resistant biosurfaces, surfactants and compatibilizers 
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[11–15]. They can be used in nanocomposites to be able to combine properties their properties 

like environmental responsiveness and that of fillers like mechanical and optical properties. 

This work has used fillers grafted with polymer brushes to create either more rigid or 

more flexible interfaces of controlled dimension within particulate-filled polymeric materials as 

a means to test their effect on properties of model dental composites. The main property of 

interest was the shrinkage stress that develops during polymerization while also verifying that 

other critical properties such as modulus were not adversely affected. The goal of this 

investigation was to demonstrate and elucidate a mechanism the uses interfacial surface 

modification to control stress development. The specific factors that were studied were: brush 

flexibility, length and reactive group placement.   

5.2 Materials and Methods 

5.2.1 Materials  

Silica nanoparticles (Aerosil OX50, average diameter = 40 nm, surface area 50 m
2
/g) 

were donated by Evonik (Germany). OX50 silanized with γ-MPS (γ-methacryloxypropyl-

trimethoxy silane) was kindly donated by Septodont Confi-Dental (Louisville, Colorado, USA). 

N-methylaminopropyltrimethoxysilane (MAPTS) was purchased from Gelest. 2,2-bis[4-(2-

hydroxy-3-methacryloyloxypropyl-oxy)phenyl]propane (BisGMA) and triethylene glycol 

dimethacrylate (TEGDMA) monomers were donated by Esstech, Inc.. . A visible light initiating 

system consisting of 0.3 wt% camphorquinone (CQ) as initiator and 0.8 wt% ethyl 4-

dimethylaminobenzoate (EDAB) (Sigma-Aldrich, Milwaukee, WI) as co-initiator was 

incorporated. Isocyanatoethylmethacrylate (IEM), methylene chloride, reagent alcohol, 

anhydrous toluene, and dibutyltin dilaurate, triethylamine were obtained from Sigma-Aldrich 
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(USA). Monomers used for making flexible oligomers – 1,6 - Hexanediylbis[oxy(2-hydroxy-3,1-

propanediyl)] bisacrylate (HPDA) and 1,6-Hexanedithiol (HDT) and those used for rigid 

oligomer synthesis – Bisphenol A glycerolate (1 glycerol/phenol) diacrylate (BisGDA) and 1,2-

Ethanedithiol (EDT), were also purchased from Sigma-Aldrich (USA) and used without further 

purification  

5.2.2 Synthesis of Oligomers 

Two related series of oigomers that were relatively either more flexible or more rigid 

were synthesized in various molecular weights (Table 5.2) using a Michael addition reaction 

between the diacrylate and dithiol monomers. The structures of the monomers used are shown in 

Figure 5.1. Scheme 1 shows the monomers, HPDA and HDT, used to synthesize the flexible 

oligomer series and Scheme 2 shows the monomers BisGDA and EDT used to synthesize the 

rigid oligomer series. For the synthesis, in general, monomers in each scheme were dissolved in 

chloroform in varied ratios. It was desired to have oligomers with acrylate functionalities at the 

ends and so acrylates were always kept in excess. A few drops of triethylamine as catalyst were 

added to the reaction mixture. The mixture was stirred constantly and progress of the reaction 

was monitored using FT-IR by following the reduction of the thiol peak at 2575 cm
-1

. Upon 

completion of the reaction, the oligomer was separated from the unreacted mixture by dropwise 

addition in hexanes. The supernatant solution was discarded and the oligomers were isolated by 

removal of the residual solvent under reduced pressure.  

The reasons for selecting HPDA and BisGDA were two-fold. HPDA has a flexible core 

structure while BisGDA has a more rigid core structure. The HDT molecule is also flexible and 

contributes to the overall flexibility of the final oligomer. The EDT molecule is flexible but 
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smaller and combining it with the BisGDA structure gives semi-rigid oligomers that can be 

compared with the more flexible structural analogs. The second reason was that both BisGDA 

and EDT introduce hydroxyl groups all along the oligomer backbone. These can be modified 

with a variety of functionalities to promote specific interactions with the resin. In this study, the 

oligomers were mainly modified with IEM, which has a methacrylate functionality that can react 

with the methacrylate-based resin system. For each of the oligomers synthesized, either all, i.e., 

100%, 50% or none, i.e., 0% of the hydroxyl groups were reacted with IEM. Thus each oligomer 

was transformed into three different oligomers that had the same core structure but differed in 

the amount of pendant methacrylate groups along the chain. Figure 5.2 shows the general scheme 

of attaching IEM to any oligomer. Table 5.1 shows the general scheme of naming the oligomers.  

 

 

 

 

 

 

 

 

 

Figure 5.1. Monomers used in the synthesis of flexible and rigid oligomers. 
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Figure 5.2. General scheme for attaching isocyanatoethyl methacrylate (IEM) to an oligomer. A 

generic structure representing the final oligomer is presented. R’ and R” represent the different 

functionalities that can replace the existing –OH functionality. 3 cases are presented -1) R’, R” = 

OH - 0 % methacrylate on oligomer; 2) R’ = OH and R” = urethane functionality with 

methacrylate at free end – 50 % methacrylate on oligomer; 3) R’,R” = urethane functionality 

with methacrylate at free end – 100 % methacrylate on oligomer. 

5.2.3 GPC Characterization 

A Viscotek triple detector gel permeation chromatography (GPC) system, equipped with 

Viscotek VE 3580 refractive index detector and Viscotek 270 dual light scattering/viscosity 

detector, was used for characterization of the size of the oligomers. The mobile phase was HPLC 

grade tetrahydrofuran at a flow rate of 1 mL/min. Samples were prepared in HPLC grade THF to 

a concentration of about 5g/L and 10 µL of sample was injected for analysis.  

5.2.4 Differential Scanning Calorimetry 

Calorimetric transitions of the materials were determined by DSC runs in a Netzsch 

Instruments 204 F1 DSC. About 5 mg samples were sealed in aluminum pans and run in the 

range -110 
o
C to 50 

o
C at 10 

o
C/min. Indium was used as the calibration standard. The glass 

transition temperatures were determined from the mid-point of the phase transitions in the DSC 

scans.  
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Table 5.1. Terminology that is used for the synthesized oligomers 

 Rigid brush Flexible brush 

Methacrylate 

functionality as % of 

hydroxyls on oligomer 

0 % 50 % 100 % 0 % 50 % 100 % 

Low molecular weight RL0 RL50 RL100 FL0 FL50 FL100 

Medium molecular 

weight 
RM0 RM50 RM100 FM0 FM50 FM100 

High molecular weight RH0 RH50 RH100 FH0 FH50 FH100 

 

5.2.5 Modification of the Filler  

The bare silica particles were first treated treated with MAPTS and then the oligomers 

were attached to the amine end of the silane. OX50 particles were first dried in a rotary dryer at 

about 165 
o
C under vacuum for 3 hours before further treatment. This was done to ensure 

removal of surface bound moisture that can potentially react with the silanes and promote the 

formation of multiple layers of the silane. Anhydrous toluene was used as a solvent for the 

silanization process. It was refluxed for two hours and then the particles were added and further 

refluxed for an hour to ensure good dispersion. The MAPTS was added to the solution so that the 

final concentration in the mixture was 1.5 % by weight. This reaction mixture was allowed to 

reflux for six hours after which the particles were separated from the solvent by centrifugation. 

The particles were washed three times with toluene and two times with methylene chloride to 

ensure that all traces of unreacted silane were removed. The silanized particles were then dried 

overnight under vacuum at 50 
o
C to remove all traces of solvent.  The dried and silanized 
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particles were then added to reagent alcohol in which 5X excess of oligomers were already 

mixed. The reaction mixture was heated to 45 
o
C and the reaction was allowed to continue for 

three days. The particles were then centrifuged to remove the solvent and washed five times with 

methylene chloride to remove excess solvent and dried in a vacuum oven at 45 
o
C. Figure 5.3 

shows the general scheme of attaching the silane and then oligomers to the silica particles. 

 

Figure 5.3. Scheme for attaching oligomer to silica particle. 

5.2.6 Composite Preparation 

The resin matrix for the composites was a mixture of BisGMA and TEGDMA in the ratio 

70:30 by weight. The resin included a free radical visible light initiating system comprised of 0.3 

wt% camphorquinone and 0.8 wt% ethyl 4-dimethylaminobenzoate. The fillers were added to the 

resin and mixed in a speedmixer (DAC 150 FVZ, Flakteck Inc.) and dispersed in the resin to 

make a composite paste that had a final filler loading of 30 wt%. Composites with γ-MPS-treated 
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OX50 particles were used as the control. The freshly prepared composites were evacuated to 

ensure elimination of air bubbles prior to being used.  

5.2.7 Thermogravimetric Analysis 

Thermogravimetric analysis (Pyris 7 TGA, Perkin Elmer) was used to determine the 

amount of surface functionalization on the OX50 particles after each stage of modification. 

Samples were placed in platinum pans in a nitrogen atmosphere and heated from 50 
o
C to 850 

o
C 

at 10 
o
C/min and the mass loss as a function of temperature was recorded. 

5.2.8 Shrinkage Stress Measurements 

Shrinkage stress was measured using a cantilever beam based instrument referred to as 

the tensometer (American Dental Association, Paffenberger Research Center, MD, USA). This 

instrument measures the force generated by an actively polymerizing material that is partially 

constrained from a free shrinking state. The material is bonded to the opposing ends of two 

diametrically placed quartz rods. The polished ends of the glass rods are freshly treated with γ-

MPS, to promote bonding with the polymerizing material. The upper quartz rod is attached to the 

cantilever beam and is free to move along with the shrinking composite and the lower quartz rod 

is fixed to the base. A dental curing light (IQ2, Caulk, Dentsply), with an output wavelength of 

465 nm, was adapted to the bottom of the lower quartz rod, which serves as a light guide to 

transmit the curing light to the material.  A detailed description of the stress measurement 

involving the tensometer has been published previously [16]. The testing protocol uses specimen 

discs of 1.5 mm thickness and 6 mm diameter. The light intensity reaching the sample was 

measured at 350 mW/cm
2
. The samples were irradiated for 40 s with the dynamic stress 



 

102 

 

development profile continuously monitored for 16 min. Real-time double bond conversion 

measurements based on simultaneous near-IR spectroscopy were made during the stress 

measurements. 

5.2.9 Shrinkage Measurements 

Polymerization shrinkage was measured using a linomter (ACTA Foundation, 

Netherlands). In this method composite paste specimens were placed between an aluminum disc 

and a glass slide that were greased to allow the free shrinkage of the sample along the radial 

direction. Specimens were 1.5 mm in thickness and 6 mm in diameter. The sample was irradiated 

from the top of the glass slide (350 mW/cm
2
 for 40 s). The displacement of the freely moving 

aluminum disc was measured by linear variable differential transformer (LVDT) and converted 

to a dynamic volumetric shrinkage plot that extended to 10 minutes to capture the post-cure 

shrinkage behavior.  

5.2.10 Flexural Modulus and Strength Measurements 

Flexural modulus and strength were measured in a 3-point bending mode (858 Mini 

Bionix II, MTS Systems, Eden Prairie, MA). The composite pastes were injected into a cavity 

measuring 2x2x10 mm. The cavity was surrounded by Teflon spacers on the sides and clamped 

glass slides on the top and bottom. They were cured using visible light from both the sides to 

promote uniform conversion throughout the sample. The crosshead speed used was 1 mm/min. 
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5.2.11 Infrared Spectroscopic Characterization 

Infrared spectroscopy was used to monitor the conversion of the resin and the surface 

modification of the fillers using an FTIR (Nexus 670, Nicolet Instruments, Madison, WI). 

Double bond conversion was monitored in transmission mode using near-infrared (NIR) 

spectroscopy. The area of the peak at 6165 cm
-1

 representing the methacrylate =CH2 absorption 

was used to track conversion. For the simultaneous measurement of conversion with shrinkage 

stress and also during rheometry measurements, the NIR signal from the source was guided 

through the sample using an outbound optical fiber and the NIR signal transmitted through the 

sample was collected by the inbound optical fiber and conducted to the detector. Diffuse 

reflectance infra-red fourier transform spectroscopy (DRIFTS) was used to study the filler 

surfaces. For the DRIFTS experiments OX50 filler particles representing the various surface 

treatments, including the unmodified filler, were mixed with KBr powder and spectra were taken 

at a resolution of 4 cm-1, using KBr as a background.  

5.2.12 Dynamic Mechanical Analysis 

Elastic modulus and tan δ measurements were made on rectangular specimens (1x3.5x25 

mm) in a DMA Q800 (TA Instruments) in the multifrequency strain mode. A sinusoidal force at 

1 Hz frequency was applied. The measurements were done from -50 
o
C to 250 

o
C at 2 

o
C/min.  

5.2.13 Rheometery  

A rheometer (ARES 4400, TA instruments) was used for rheometer measurements. Two 

types of rheometer measurements were made. One was a frequency scan in the dynamic mode to 

measure complex moduli and viscosity, using a parallel plate mode. These measurements were 
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made on the uncured pastes of the samples. The second measurement was made to find the 

crossover point during cure. For this, the samples were placed between two quartz plates (22 mm 

diameter) in a parallel plate geometry with a sample spacing of 0.5 mm. A dynamic method was 

used to measure G’ and G” with a frequency of 20 Hz and a starting strain of 40%. A torque-

based automatic strain reduction was used to prevent overloading of the instrument as the 

modulus increased during cure. The frequency and strain were chosen such that the sample was 

always in the linear viscoelastic region, before and during cure. A light source (Acticure, EFOS, 

Mississiaugua, Ontario, Canada) with a 400-500 nm filter was used to cure the samples. 

Crossover point was taken as the point at which the value of G’ surpassed G”.  

5.3 Results and Discussion 

The interface between filler particles and polymer matrix in model dental composites was 

modified with oligomers/polymers that had differences in flexibility, length and reactive group 

concentrations. This was done using a grafting-to approach by preparing the oligomers in 

advance and then attaching them to the filler surface via an organofunctional silane (MAPTS). In 

general, it was found that all three parameters – flexibility, length and reactive group 

concentration had a significant effect on the polymerization shrinkage stress.  

5.3.1 GPC and DSC Characterization of Oligomers 

The molecular weight of the synthesized oligomers was measured using GPC. Glass 

transition measurements were done using DSC. The aim of the synthesis was to get a broad 

range of molecular weights and glass transition temperatures so that interfaces with a variety of 

physical properties could be created. Table 5.2 shows the molecular weight and glass transition 
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temperatures of the starting oligomers. The range of Tg was from -9.3 
o
C to about -65.4 

o
C. To 

put things in perspective, the Tg of a BisGMA/TEGDMA (70/30 wt/wt) mixture in its uncured 

state is about -22 
o
C. So oligomers that had Tgs on either side of the resin Tg were made.  

 

Table 5.2. GPC and DSC characterization of oligomers. 

Oligomer Type Size Mol. Wt. Tg (
o
C) 

Rigid High 21000 -9.3 

Rigid Medium 8000 -14.1 

Rigid Low 3000 -32.1 

Flexible High 16000 -52.2 

Flexible Medium 5500 -59.8 

Flexible Low 2000 -65.4 

 

A word must be said about the nomenclature of oligomers used in this chapter. There are 

two main series – “rigid” and “flexible”. The rigid series represents the oligomers made by 

reacting BisGDA and EDT, while the flexible series represents the oligomers made by reacting 

HPDA and HDT. In each series, oligomers with three different sizes were made – low, medium 

and high (Table 5.2). Each of these oligomers then had 0%, 50% or 100% of its hydroxyl groups 

reacted with IEM. So if a rigid, high molecular weight oligomer had 100% of its hydroxyl groups 

replaced by methacrylate groups, it would be referred to as – “Rigid High 100% or RH100”. This 

scheme, in addition to the naming scheme given in Table 5.1, is followed throughout the entire 

chapter to refer to the oligomers.  
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5.3.2 Shrinkage Stress Measurements 

Figure 5.4 shows the comparison of shrinkage stress measurement for the γ-MPS control and the 

long rigid brush series. The γ-MPS control shows the highest shrinkage stress among all the 

samples at 3.16 ± 0.14 MPa. As the amount of methacrylate groups on the brush increase, there 

is a corresponding increase in the shrinkage stress from 2.18 ± 0.12 for the RH0 to 2.48 ± 0.04 

MPa for the RH50 and 2.66 ± 0.05 for the RH100 sample. It can be seen that the shrinkage stress 

increase rates also follow the same trend. The rate is smallest for the RH0 and follows the 

increase in the methacrylate group concentration on the brush.  

 

Figure 5.4. Comparison of shrinkage stress of the rigid high molecular weight series with the γ-

MPS control. Visible light irradiation at t = 30s, for 40 s.  
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A summary of all the shrinkage stress, shrinkage, flexural modulus, glass transition and 

storage modulus results for the entire series of oligomers and also the γ-MPS control is shown in 

Table 5.3.  Figures 5.5 and 5.6 show the final values of stress, for the rigid and flexible series, 

respectively. In both the series, there is a rise in shrinkage stress as the amount of reactive 

methacrylate groups increases from 0 % to 100 %. For the rigid oligomer series, there is no 

significant difference in stress as the length of the attached oligomer increases. For the flexible 

oligomer series, the lowest molecular weight brush shows a higher shrinkage stress as compared 

with the two higher molecular weight brushes. Except for the flexible low molecular weight 

brush, all the other brush systems exhibited lower shrinkage stress as compared to the control γ-

MPS system.  

 

Figure 5.5. Shrinkage stress values for the rigid oligomer series at varied reactive group 

concentration. Visible light irradiation at t = 30s, for 40 s. Shrinkage stress values were taken at 

the end of the run at t = 16 min. 
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Figure 5.6. Final shrinkage stress values for the flexible brush series at varied reactive group 

concentration.  Visible light irradiation at t = 30s, for 40 s. Shrinkage stress values were taken at 

the end of the run at t = 16 min. 

Due to the simultaneous measurement of shrinkage stress and monomer conversion with 

respect to time, it is possible to plot stress as a function of conversion by use of the common time 

index. Two representative plots are presented here. Figure 5.7 shows the results for the rigid high 

molecular weight series when compared with the γ-MPS control. It can be seen that the onset of 

stress development in the control sample occurs at a very early stage in conversion and increases 

at a uniform rate until there is a rapid, late-stage rise in stress that is linked to the vitrification 

process. The stress development profile in the rigid high molecular weight system with 0 % 

methacrylate is the last to take off. This happens after about 20 % conversion and is followed by 

an initially very low rate of stress increase that progressively accelerates until the steep rise that 

coincides with vitrification. The stress in the 100 % methacrylated (RH100) sample starts to rise 
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after about 10 % conversion and rises at a similar rate but at lower values compared with the γ-

MPS control. The RH100 surface treatment yields the highest final stress among the different 

brushes. The RH50 brush system lies in between the two extremes, in terms of rate of stress 

increase and final stress.   

 

 

Table 5.3. Shrinkage stress, Shrinkage, Flexural Modulus, Glass Transition and Storage Modulus 

for the entire range of samples.   

Surface 

treatment 

Shrinkage 

Stress (MPa) 

Shrinkage 

(%) 

Flexure 

modulus 

(MPa) Tg (
o
C) 

Storage 

Modulus ( at 

25 
o
C)(MPa) 

GAMMA 

MPS 3.16 ± 0.14 5.50 ± 0.06 4410 ± 320 140.1 ± 0.1 2700 ± 300 

            

RL0 2.29 ± 0.04 5.41 ± 0.10 4400 ± 490 144.0 ± 0.6 3900 ± 300 

RL50 2.52 ± 2.01 5.35 ± 0.07 4600 ± 180 144.8 ± 2.0 3000 ± 500 

RL100 2.84 ± 0.09 5.40 ± 0.15 4380 ± 240 146.9 ± 3.7 2800 ± 500 

RM0 2.39 ± 0.03 5.37 ± 0.16 4240 ± 300 147.0 ± 3.8 3000 ± 600 

RM50 2.56 ± 0.08 5.24 ± 0.14 4570 ± 180 142.8 ± 4.0 3000 ± 100 

RM100 2.70 ± 0.08 5.31 ± 0.07 4500 ± 250 146.3 ± 1.7 2900 ± 400 

RH0 2.17 ± 0.12 5.35 ± 0.05 4640 ± 300 148.9 ± 1.0 3700 ± 400 

RH50 2.48 ± 0.04 5.27 ± 0.06 4550 ± 120 143.4 ± 4.8 2700 ± 300 

RH100 2.66 ± 0.05 5.37 ± 0.21 4490 ± 200 147.6 ± 1.7 3400 ± 100 

            

FL0 2.98 ± 0.23 5.49 ± 0.10 4890 ± 260  150.5 ± 5.4 2600 ± 600 

FL50 3.21 ± 0.23 5.35 ± 0.06 4900 ± 160 141.5 ± 3.1 3400 ± 500 

FL100 3.26 ± 0.05 5.42 ± 0.06 4730 ± 200 150.1 ± 2.3 3500 ± 300 

FM0 2.26 ± 0.04 5.20 ± 0.10 4100 ± 470 148.3 ± 1.3 2700 ± 300 

FM50 2.72 ± 0.10 5.57 ± 0.14 4790 ± 160 145.6 ± 2.1 2700 ± 200 

FM100 2.92 ± 0.16 5.28 ± 0.15 4730 ± 290 147.3 ± 0.1 2800 ± 100 

FH0 2.33 ± 0.18 5.49 ± 0.10 4440 ± 220 146.5 ± 1.8 2900 ± 600 

FH50 2.60 ± 0.13 5.55 ± 0.06 4230 ± 780 144.9 ± 2.2 3400 ± 200 

FH100 3.04 ± 0.05 5.42 ± 0.06 4610 ± 200 146.3 ± 1.3 3300 ± 500 
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Figure 5.7. Variation of shrinkage stress with respect to conversion of the rigid high molecular 

weight series with the γ-MPS control. Visible light irradiation at t = 30 s, for 40 s. Shrinkage 

stress values were taken at the end of the run at t = 16 min. 

 

 

 Figure 5.8 compares the development of stress with respect to conversion for both the 

high molecular weight rigid and flexible brushes, each with no methacrylate reactive groups 

appended on the oligomeric chains. Both the systems show a similar onset for the stress 

development. The rigid brush system reaches a lower final stress compared with the flexible 

system. It is interesting to note that during the vitrification stage, which is where the stress rises 

very steeply, both the systems follow almost the same path in approaching their respective final 

stress points.   
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Figure 5.8. Variation of shrinkage stress of the rigid and low high molecular weight systems that 

have 0 % methacrylate groups. Visible light irradiation at t = 30s, for 40 s. Shrinkage stress 

values were taken at the end of the run at t = 16 min. 

Figures 5.7 and 5.8 point to toward the formation of a load bearing network strong 

enough to register a positive force on the tensometer that varies considerably depending on the 

surface treatment of the filler particles. Gelation is the formation of an infinite network and it is 

assumed that at this point the network becomes strong enough to be able to bear and exert loads. 

In our study, the “gelation” we are looking at is the formation of an infinite network that includes 

particles as crosslinkers and not at the gelation of just the monomer. This is the point where the 

shrinkage stress starts rising. In order to confirm whether the “gel-point” conversion was indeed 

changing with addition of fillers with different surface treatments, a rheometric analysis was 

used that coupled a photo-rheometer with FT-IR spectroscopy to measure the point in conversion 

where the storage modulus (G’) crosses the loss modulus (G”). This crossover point represents 
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the initial transformation of liquid to solid character and it is widely accepted as an indication of 

macrogelation [17]. 

5.3.3 Crossover Point Measurements 

A typical plot showing crossover of G’ with respect to G” is shown in Figure 5.9. Before cure, 

the material is in a liquid state and G’ is lower than G”. As the material cures, the storage 

modulus rises faster than the loss modulus and this gives rise to a crossover point. This 

measurement, when done in conjunction with real-time FT-near-IR measurements, can give the 

conversion where gelation occurs. Figures 5.10 and 5.11 give the gel-point conversion values for 

the rigid and flexible brush systems, respectively.  

There is a reasonable similarity between Figures 5.10 and 5.11 and their counterparts, 

Figures 5.5 and 5.6, respectively. The progression of shrinkage stress with respect to the 

oligomeric brush flexibility, length and methacrylate functionality in Figures 5.5 and 5.6 follows 

the progression of the crossover point with respect to the same parameters. The curing conditions 

are different in both the measurements but the similarity of the trends in the properties shows that 

indeed there is a change in the gel point of the experimental systems due to the filler surface 

modification. As mentioned before, for gelation to occur, an infinite network has to form in the 

polymer due to chemical or physical cross-linking. The particles being introduced into the 

composite paste can either act as multifunctional rigid bridges between the growing polymer 

chains or they can suppress bulk matrix network formation. The interaction of the particles with 

the resin during polymerization depend on the surface treatment of the filler particles. Assuming 

that the particles are well dispersed in the resin monomer, upon curing, if they can quickly form 

covalent linkages that contribute rigidity similar to or greater than that of the bulk matrix, then a 
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continuous network can be formed quickly with a gel point conversion similar to that of the 

unfilled resin. If however, the surface treatment is such that the covalent linkage between the two 

phases is delayed or absent, then a delay in the gelation of the system with respect to conversion 

would be anticipated since the minimum network percolation path length is increased. 

 

 

Figure 5.9. Typical plot of crossover of storage modulus (G’) over loss modulus (G)” during cure 

during real time cure in a photorheometer.   

For the brush systems with no appended methacrylates, there is at most only one acrylate 

functionality at the end of each tethered brush. If the oligomeric brush layer around the particle is 

reasonably thick, there is a significant probability of the acrylate functionality being buried in the 

interface and relatively inaccessible to the growing polymer chains around the particle. If the 

particles are present at a high volume fraction, they, along with the interfacial layer around them 

can form a percolating network [18]. This confines the resin between particles and limits its 



 

114 

 

ability to form a continuous network. If however, the brushes had reactive groups that could 

copolymerize with the resin and which were accessible to the resin, it would increase the chances 

of promoting covalent linkages between the two phases. In Figures 5.10 and 5.11, there is an 

initial steep decline in the crossover conversion, going from 0 % methacrylate to 50 % 

methacrylate but it levels off in leading to the 100 % methacrylate brush. This indicates that, for 

a given length of the brush, once a certain effective reactive group threshold concentration has 

been reached, there is no further effect of increasing it further.  

 

Figure 5.10. Effective gel point of photocured composite samples based on rigid ologomers. 

Irradiation intensity = 1 mW/cm
2
 for the duration of the experiment. 

The flexibility of the chains also has an effect on the crossover point. There are certain 

subtle differences between Figures 5.10 and 5.11. In Figure 5.10, all the curves are packed 

closely together with no significant differences at each methacrylate concentration level, which 
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is an indication that the length of the oligomer has very little effect on the crossover point. In 

case of the flexible oligomers, however, there is a significant difference between the lowest 

molecular weight oligomer and the two higher molecular weight brush structures

 

 

Figure 5.11. Effective gel point of photocured composite samples based on flexible oligomers. 

Irradiation intensity = 1 mW/cm
2
 for the duration of the experiment. 

At moderate to high filler loading involving micro- or nano-fillers, interparticle distances 

begin to approach the dimensions that can be accessed by modified interfacial surface layers. For 

matrix gelation to occur, a continuous network has to start forming in the entire sample. If 

particles are dispersed in the resin, they would have to form essential parts of the network, unless 

the network can bypass them and form around them. At higher filler loadings this becomes 

increasingly difficult as the growing microgels would have to connect through at least somewhat 

constrained spaces in between the particles. If however the particles have reactive groups on 
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them, the resin can react with these and form a covalent connection at any stage of the 

polymerization reaction. Filler particles can act as bridges or extended rigid crosslinks, helping 

the network to form. If there is an interface around the particles with reduced reactivity towards 

the resin, either due to low concentration of monomers in the interphase or due to a low 

concentration of polymerizable groups on the oligomeric chains, the network connections 

between the resin and filler would take a longer time, or a later stage of network development, to 

form. Gelation is clearly occurring in the resin that surrounds the particles. So the filler particles 

are not interfering with the microscale gelation. The particles only affect the overall gelation of 

the material, considered as a whole. This is the effect that is observed in the rheometer studies. 

There is very scarce literature studying the effect of chemical cross-linking due to fillers on the 

gelation of the network. In one of the few studies that have been done [19], the authors studied 

fumed silica with two different surface treatments – an octyl silane and a methyl silane. It was 

found that using both the fillers increased the gel times of the reaction, although no reasons were 

given as to why this occurred. Gaines and co-workers [20], while looking at effect of 

nanoparticles on network formation in disordered block copolymers found that at high 

concentrations, the effect of the nanoparticles was to impart a solid-like behavior to the polymer 

melt, suggesting an existence of a colloidal network comprised of the nanoparticles. This 

suggests the synergistic effect a network of nanoparticles can have on the polymer around them. 

5.3.4 Rheology of Composite Pastes 

Linear oscillatory measurements on a rheometer were performed to explore the effect of 

the surface treatment on the viscoelastic behavior of the composite pastes. Changes in viscosity 

and also storage and loss moduli with respect to frequency were monitored. Measurements were 
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conducted on samples with fillers treated with  oligomers that had either a low or high level (0 % 

and 100 %) of methacrylate functionality along the backbone. These represent the two extremes 

in terms of methacrylate functionality and it was assumed that the mid-level functionalized 

methacrylate oligomers (50 %) would fall in between the two extremes. 

 

 

 

Figure 5.12. Complex viscosity as a function of frequency for composites based on particles 

treated with flexible oligomers. (The terms short, medium and long refer to high, medium and 

low molecular weight oligomers, respectively). 

 

 

Figure 5.12 shows the comparison of viscosity the OX50-GammaMPS control samples 

with the composites based on the flexible oligomer series. A general observation that can be 



 

118 

 

made is that composite pastes that had particles with brushes treated with the methacrylate 

functionality had a lower viscosity as compared with those without the appended methacrylate 

groups. The analogous oligomer structure with no methacrylates has hydroxyl groups that can 

hydrogen bond with the BisGMA monomers, thereby increasing the particle-matrix interactions 

and the overall viscosity. When the hydroxyl groups are reacted with IEM, the resulting urethane 

methacrylates contribute weaker hydrogen bonding and the composite pastes exhibit lower 

viscosity. Further reduction in the composite viscosity would be anticipated if the hydroxyl 

groups were replaced with simple methacrylate esters via reaction with methacrylic acid or 

methacryloyl chloride. The highest molecular weight oligomer-based composite shows the 

lowest viscosity. Polymer brushes have been known to stabilize particles in colloidal systems by 

improving the dispersion character of the particles in the matrix. Reduction of aggregation and 

better dispersion reduces the viscosity of colloidal systems and this effect is observed in these 

composite systems. As both the methacrylated and unmethacrylated version of the high 

molecular weight oligomer-based composite show a lower viscosity, it can be inferred that the 

brush structure aids in the filler dispersion. It can be surmised that the longer the oligomers 

(within limits), the better the stabilization of the particles and the accompanying reduction in 

viscosity. The low molecular weight oligomer-based composite with no methacrylate groups (0 

%) produced the highest viscosity. This again may be partially due to less stabilization of the 

filler dispersion and also due to the presence of interactions involving the hydroxyl groups. Both 

these factors would work in favor of increasing the attractive interaction with the resin and lead 

to an increased viscosity. The OX50-GammaMPS control and the medium-sized flexible 

oligomer-based composite had viscosities in between the two extremes. 
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Figure 5.13. Complex viscosity as a function of frequency for composites based on particles 

treated with rigid oligomers . (The terms short, medium and long refer to high, medium and low 

molecular weight oligomers, respectively). 

The trend in viscosities for the rigid oligomer-based composite systems shows some significant 

differences from that of the composite paste materials based on the flexible oligomer-based ones. 

With the rigid oligomer-based composites, once again the zero-methacrylate systems (0 %) 

provide a higher paste viscosity than the corresponding high-methacrylate (100 %) systems. 

However, the major difference is that the high molecular weight rigid oligomer-based composite 

does not have the lowest viscosity but has higher viscosity than the composites based on the 

short and medium molecular weight oligomers at 100 % methacrylate coverage. The rigid 

oligomers are made of an aromatic backbone and the resin system has BisGMA that also has an 

aromatic backbone. There are attractive interactions due to pi-pi stacking of the aromatic rings 

between all the oligomers and the resin. This leads to an increase in the viscosity of the systems. 

The long oligomers, due to their increased size have more potential for the attractive, 
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predominantly intermolecular interactions and the viscosity of composites with fillers treated 

with these oligomers is higher. The composites with particles with medium and low molecular 

weight oligomers with low methacrylate coverage however have higher viscosities than those 

based on the high molecular weight oligomers. This may be due to the fact that in addition to the 

pi-pi stacking interactions, the hydrogen bonding interactions are also present. The length effect 

of the long rigid oligomer may not be as strong as the hydrogen bonding effect and this can 

explain the higher viscosity of the shorter chains.  

 A common observation for the viscosity measurements for both the rigid and flexible 

oligomer-based materials is that the viscosity decreases with increasing frequency, showing 

psuedoplastic behavior. The higher shear forces at higher frequencies can more effectively 

disrupt the attractive interactions that exist between particles as well as between the particles and 

the resin matrix, which favors alignment of particles. This offers less resistance to flow and 

results in a lowering of the viscosity. It must be noted that that absolute value of viscosity is 

higher for the rigid brush system and this is due to the stronger attractive force between the 

oligomers and the resin.   

The storage and loss moduli for all the flexible oligomer-based composite pastes  with 0 % 

methacrylate and the γ-MPS control are shown in Figure 5.14. The composite pastes mostly 

show liquid-like behavior over the entire frequency range. The trend in modulus values is very 

similar to the corresponding viscosity plots (Figure 5.12). The long flexible oligomer-based 

composite paste shows a predominantly liquid-like behavior, while the medium-sized oligomer 

system shows a cross-over from solid-like to liquid-like behavior and for the short oligomer-

based composite paste, the G’ and G” curves lie on top of each other, indicating that this is near 

an effective gel point of the system. The OX50-γ-MPS control system is liquid-like and shows 
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higher moduli than the high molecular weight oligomer-based system but lower than that of the 

medium and low molecular weight oligomer-based composites.  

Figure 5.15 shows the moduli for the composites with flexible oligomers with 100 % 

methacrylate on the backbone. The moduli of these oligomer-based systems are lower than those 

of the γ-MPS control systems with the longest oligomer system having the lowest moduli. This 

trend is also the same as seen in the viscosity plot for this system (Figure 5.12). 

 

 

 

Figure 5.14. Storage and loss moduli of composites based on particles treated with flexible 

oligomers with no methacrylate coverage compared with the γ-MPS control system. (The terms 

short, medium and long refer to high, medium and low molecular weight oligomers, 

respectively). 
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Figure 5.15. Storage and loss moduli of composites based on particles treated with flexible 

oligomers with 100 % methacrylate coverage compared with the γ-MPS control system. (The 

terms short, medium and long refer to high, medium and low molecular weight oligomers, 

respectively) 

 

Figure 5.16. Store and loss moduli of  composites based on particles treated with rigid oligomers 

with no methacrylate coverage compared with the γ-MPS control system. (The terms short, 

medium and long refer to high, medium and low molecular weight oligomers, respectively) 
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Figure 5.17. Store and loss moduli of composites based on particles treated with rigid oligomers 

with 100 % methacrylate coverage compared with the γ-MPS control system. (The terms short, 

medium and long refer to high, medium and low molecular weight oligomers, respectively)   

 

Figure 5.16 shows the complex moduli of the rigid oligomer-based system with no 

methacrylates on the chains. All the experimental systems have higher moduli as compared to 

the OX50-γ-MPS control. The slopes of the frequency-dependent moduli are reduced compared 

to the flexible oligomer-based systems, indicating a tendency toward a more solid-like behavior. 

In fact, for the high molecular weight oligomer-based sample, G’ is higher than G” over the 

entire frequency range. For the medium-molecular weight  oligomer-based sample, G’ and G” 

overlap each other and for the small-sized brush, G’ is slightly higher than G”.  
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Figure 5.17 shows the complex moduli of rigid oligomer-based composites with high 

level of methacrylate (100 %). The high molecular weight oligomer-based sample shows solid-

like behavior. The G’ has a plateau region, which is indicative of the solid behavior. The 

medium-molecular weight sample initially shows solid-like behavior and then G’ and G” cross 

over to exhibit liquid-like behavior. The low molecular weight sample is liquid like throughout 

the frequency range.  

5.3.5 Interface Characterization by Staining with RuO4 

In order to study the interaction of the interfacial structure with the resin matrix upon 

polymerization, it was crucial to be able to look directly at the interface. This was done using 

TEM of sections of composites. The organic layer on the particles was stained with ruthenium 

tetroxide. In TEM measurements without staining, there was insufficient contrast between the 

interfacial layer and the polymer matrix and the staining created a contrast that helped to 

differentiate between the two phases. Imaging was done on the isolated free particles and also 

polymerized composite samples to detect changes in the interface before and after curing.  

 Figure 5.18 (a) shows the TEM image for an OX50 particle that has been functionalized 

with the high molecular weight rigid 0 % methacrylated oligomer. These particles were lightly 

scattered on a TEM grid and the image taken. A faint interfacial layer can be seen around the 

particle. From the observations, the thickness of the interface appeared to be between 1 nm and 4 

nm. It must be mentioned that these thicknesses are representative of a large number of particles 

that were scanned. When these stained particles are mixed in the resin and polymerized, a 

dramatic change takes place in the interfacial layer. A representative image is shown (Figure 

5.18 (b)). Here, it can be seen that the interface layer is now more clearly visible and extends 
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away from the filler surface to a greater extent than in free particle. The thickness of the interface 

here is between 8 to 9 nm. Similar measurements were carried out with the particles that were 

untreated, representing a negative control, γ-MPS, which is the positive control and the rigid 

high molecular weight oligomer with 100% methacrylates, to compare the effect of methacrylate 

functionality. Figures 5.19 (a) and (b) show the free γ-MPS control particles and those embedded 

in the polymer matrix, respectively. The free γ-MPS particles show a smaller interfacial layer of 

about 2 nm and this layer does not show an appreciable increase in thickness in the composite 

after polymerization. This is to be expected, since the γ-MPS is a short molecule so there can be 

no extension of the layer away from the surface. In the case of the untreated OX50 particles 

(Figures 5.20 (a) and (b)), we see no presence of any interface in the free particles or the 

composite specimen. This is expected again as there is no functionality on the surface of the 

untreated fillers that can be stained by the ruthenium tetroxide. Figures 5.21 (a) and (b) show the 

fillers treated with the high molecular weight rigid oligomer with 100 % methacrylate 

functionality. The bare particles (Figure 5.21 (a)) clearly show the presence of the oligomer 

attached to the surface. Figure 5.21 (b) shows the fillers embedded in the polymer matrix. The 

figure is not very clear and there was no sign of an expanded interface on the particles. There 

was a faint trace of an interface region that had similar thicknesses as the bare particles, but it 

was not conclusive. This particular oligomer, since the methacrylate functionality is high, it was 

expected from the gel-point rheology measurements that the since the gel-point was reached 

faster than in the corresponding 0 % methacrylate sample, the oligomer layer would have less 

time to extend away from the surface along with the resin that is shrinking away from the 

surface. Once the network is in an advanced stage of development, it is frozen in place and the 

oligomers cannot be stretched further.   
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Figure 5.18. TEM images of OX50 particles treated with RH0 oligomer (rigid, high molecular 

weight, 0% methacrylate functionality. (a) Particles sprinkled on TEM grid (b) Section of 

composite with particles embedded in the resin 

   

Figure 5.19. TEM images of OX50 particles treated with γ-MPS (a) Particles sprinkled on TEM 

grid (b) Section of composite with particles embedded in the resin 

 

[a] [b] 

[a] [b] 
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Figure 5.20. TEM images of untreated OX50 (a) Particles sprinkled on TEM grid (b) Section of 

composite with particles embedded in the resin. 

 

   

Figure 5.21. TEM images of particles treated with RH100 oligomer (rigid, high molecular 

weight, 100% methacrylate functionality. (a) Particles sprinkled on TEM grid (b) Section of 

composite with particles embedded in the resin. 

[a] [b] 

[a] [b] 
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From all the measurements, it is apparent that the filler and filler modification play a very 

important role in the stress development of composites. From the way the stress measurements 

are conducted in the tensometer, it is necessary for a continuous load-bearing network to form in 

the material in order for the tensometer to register a force capable of deflection of the cantilever 

beam. Similarly, in the crossover point experiments conducted with the rheometer, a significant 

network has to form to register an increase in the modulus. When fillers are at a high volume 

fraction, a continuous network can only efficiently form when the particles are integrated into the 

network rather than forcing network development to bypass the filler particles. It can be 

visualized that the interface between the particles and the resin matrix would play a significant 

role in connections between the developing polymer with the particles. The oligomer length, 

flexibility and reactive methacrylate groups concentration on the polymer are varied here to 

allow focus on each of these parameters in a more isolated fashion.  

 As the length of the oligomer increases, in our grafting-to approach, there are fewer 

chains per unit area on the particles, due to steric hindrance while depositing them on the surface. 

Depending on the interaction between the resin monomer and the brush and entropic 

considerations, the brush structure may be extended or collapsed on the surface. The length and 

surface density of the brushes will determine the thickness of the brush layer. In our studies we 

have detected an approximately 2 - 5 nm layer of the brush. As the polymerization begins, the 

polymerizing resin has a tendency to shrink away from the surface of the filler. At the same time, 

the resin is engaged with interactions with the brush layer, either through copolymerization with 

the methacrylate reactive sites along the brush or through non-covalent interactions or a 

combination of both. With these attractive interactions and the potential retraction of the matrix 

from the filler particle, the surface-bound oligomeric chains start getting pulled away from the 



 

129 

 

surface. The extent to which they move is anticipated to depend on the strength of the 

interactions and physical nature of the brush. This movement of the brush layer that is partially 

attached to the moving polymerization front can be seen as a compliance effect. It is well 

understood that shrinkage stress is reduced when fillers with non-functional or with no surface 

treatment at all are introduced in a dental resin [21]. On a macroscale, the application of a low 

modulus liner to the interface between a tooth and the dental restorative has been shown to 

relieve some of the shrinkage stress [22]. The situation encountered with the brush layer is 

similar but over a much smaller length scale. In the γ-MPS control case, the polymerizing resin 

front in contact with the interface/surface is not allowed to move away from the surface, creating 

restrictions and leading to the stress being built up. In the brush modified filler, the polymerizing 

resin has additional freedom to shrink, due to the compliance of the interfacial layer. This delays 

the stress build up, a fact that we have seen in the shrinkage stress development results. It can be 

inferred that as the length of the tethered brush structures is increased, the brushes can extend to 

a greater degree. This effectively delays the time (and conversion) at which significant stress 

build up starts to occur as demonstrated here.  

 Restriction on polymer mobility around filler particles has been studied extensively [23–

26]. Attractive interactions between the surface of the fillers and the polymer around them can 

cause slowing down of the relaxation of the polymers. The existence of a bound polymer layer 

around filler particles that has also been hypothesized [25], [27], [28]. This bound layer can vary 

in thickness depending on the strength of the interactions between the two phases. As observed 

in the rheology work, the surface modifications indeed have a very wide range of viscosities and 

complex moduli, showing liquid-like to solid-like behavior. It can be expected that the mobilities 
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of the different oligomers used in this study will also vary and affect the relaxation behavior and 

dynamics around the particles, ultimately affecting the curing behavior of the monomer.  

 The reactive methacrylate group concentration on the brushes also has a significant effect 

on the development of polymerization stress. As the concentration of methacrylate groups 

increases, the shrinkage stress was found to increase. As mentioned previously, free shrinking 

resin produces lower stress than it would have had it had an anchor points to restrict the 

shrinkage. Reactive groups can act as anchors. If there are very few reactive groups on the 

oligomers, the polymerizing resin has nothing to hold on to and can shrink away from the 

surface, essentially shrinking freely. With greater concentrations and absolute numbers of 

reactive groups on the brush structures, the resin matrix phase can copolymerize with these 

groups and form sufficient links with the interfacial layer to impose restrictions on the free 

shrinkage. If the reaction with the brushes happens quickly and crosslinked network can be 

formed at the interface, then the restriction on mobility occurs earlier and the shrinkage stress 

rises faster. If the number of reactive groups on the brush is low but not zero or if the available 

reactive sites are not very accessible, effectively slowing down the reaction between the brush 

and the resin, the stress does develop but more slowly. All these factors work in conjunction to 

decide the ultimate stress in a polymerizing composite

5.4 Conclusion 

A variety of oligomers were synthesized having a wide range of properties. Composites 

made with particles treated with these oligomers showed superior performance by having low 

shrinkage stress as compared with composites that had fillers treated with a conventional silane. 

Shrinkage stress was reduced by as much as 30 % in the experimental composites. The 
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mechanism of stress reduction was hypothesized to be a delayed network buildup due to a slow 

reaction at the interface. Rheology experiments confirmed the delayed buildup of a load-bearing 

network. Concentration of reactive groups on the surface of the filler particles were found to be 

an important factor in determining the stress reduction potential. Fine tuning this surface 

modification technique can be used to even further improve its stress reduction capacity.  
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CHAPTER 6 

6 STRESS RELAXATION BEHAVIOR OF A MODEL DENTAL RESIN FILLED WITH 

CONVENTIONAL AND EXPERIMENTAL FILLERS 

Abstract 

 Stress relaxation is an intrinsic part of stress evolution that occurs during the 

polymerization process. Real-time measurement of stress during polymerization cannot capture 

the stress relaxation aspect. Slight variations in the formulation of dental composites can lead to 

dramatic differences in final stress values upon polymerization. This is likely due to differential 

stress relaxation processes occurring during cure. The stress relaxation potential of the material 

changes as the network develops upon polymerization. This work evaluates the potential for 

stress relaxation in different systems, using a classic stress relaxation test. Unfilled resin and a 

filled composite with Ba glass fillers were evaluated initially. It was found that the degree of 

stress relaxation decreased for both the systems with increasing conversion. This was attributed 

to the stiffening of the network with increasing cross-link density, leading to reduced cooperative 

moments, thus hindering stress relaxation. Incorporation of fillers placed additional restrictions 

on polymer network development, thus reducing stress relaxation potential. The effect of 

composite filler surface modification on stress relaxation was tested by incorporating fillers that 

were altered with two different oligomers. An oligomer with a rigid backbone structure was 

synthesized was and then further modified to yield two different oligomers – RH0, which had no 

methacrylate groups on its backbone and RH100, which had a high concentration of 

methacrylate groups that could copolymerize with the resin matrix. γ-MPS-treated fillers were 

used as the control. Stress relaxation was modeled using a Maxwell-model with two elements, 

giving two characteristic times for stress relaxation. All composites showed equivalent stress 
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relaxation for moderate values of conversion. However, at the highest value of conversion tested 

(ca. 60 %) the RH0-based composite showed greater stress relaxation compared to the γ-MPS 

control and the RH100-based composites. Characteristic relaxation times showed that the RH0-

based composite exhibited faster relaxation at short time scales. The slower relaxation in the 

RH100 and γ-MPS-based composites was attributed to the creation of a network with higher 

crosslink density in the vicinity of the filler particles, inducing less mobility in this interfacial 

region. At longer time scales, the γ-MPS-based composite had slower relaxation compared to 

either composite with the oligomer-based surface treatment with both RH0- and RH-100-based 

composites showing similar relaxation times. This implies that the longer relaxation times were 

more dominated by the general structure of the interface and its long-range effects. This study 

showed that the interface can be modified to alter stress relaxation characteristics of composites 

and can lead to beneficial properties for clinical applications.  

6.1 Introduction 

The use of polymeric dental restoratives in a clinical situation involves the placement of a 

highly filled liquid monomeric paste into the confined volume of an adhesive-pretreated cavity 

preparation followed by photopolymerization under ambient conditions in either single or 

multiple increments [1], [2]. This polymerization is accompanied by volumetric shrinkage and 

progressive free volume reduction as the liquid monomeric matrix phase is transformed into a 

glassy, high modulus polymer network [3], [4]. When this thermodynamically derived 

polymerization-based volumetric shrinkage is limited as a consequence of the constraint imposed 

by the bonded interfaces, stresses are generated within the composite restorative that are further 

transferred to the adhesively bonded interface as well as to the surrounding tooth structure. The 

heterogeneous stress thus generated can lead to failure of the restorative itself or disruption of the 
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bond with the tooth if the force exceeds the bond strength at any point within this interface. It has 

been suggested that viscoelastic materials like dental restoratives can relieve stress by flow 

before the gel-point is attained [5], [6]; however, gelation is known to occur at very low 

conversion in the bulk dimethacrylate polymerizations typical in dental composite materials. As 

the restorative polymerization progresses through the post-gel rubbery regime and into the glassy 

state, stress continues to build up in the system. Any potential stress relaxation in such a 

constrained system depends on the continuously changing elastic properties and elastic limits 

associated with the dynamic polymeric network formation within the composite. Stress relief as 

polymer network evolution occurs as well as the stress relaxation potential of fully cured 

composite materials is of interest to better understand the practical application of dental 

restorative materials [7]. The rate at which these stresses relax is also important as the faster the 

relaxation process at certain phases of the polymerization, the better the practical outcome may 

be in terms of the final residual stress level. 

 The rate and amount of relaxation in such a situation can be measured using classical 

mechanical stress relaxation experiments. These experiments provide information about the 

time-dependent viscoelastic nature of polymeric materials. In a typical stress relaxation 

experiment, a sample is “instantaneously” deformed to a certain strain and held at that strain. 

This deformation stresses the sample and the stress gradually decays. The stress can decay due to 

a number of factors like molecular rearrangement near the Tg, viscous flow, bond interchange 

and chain scission [8]. Stress relaxation would depend on a number of factors including the 

modulus and viscosity of the material, double bond conversion, strain rate of deformation and 

deformation amount.  



 

138 

 

 This technique can be applied to the study of dental polymers and composite stress 

relaxation. There is scant literature focused on the effect of double bond conversion on stress 

relaxation. Fillers impart very significant effects on modulus and polymerization shrinkage so 

the presence of fillers and more specifically, the type of interfacial coupling between the resin 

matrix and the reinforcing filler used in a dental composite, may be expected to have a 

significant effect on not only stress development, but also stress relaxation behavior. The 

composite materials used here contain fillers modified with either a conventional γ-

methacryloxypropyltrimethoxysilane (γ-MPS)-based reactive coupling agent or a series of 

experimental interfacial brush systems. It is of interest to compare stress relaxation between 

unfilled polymers as well as filled systems that contain either control or experimental fillers. This 

study when done as a function of methacrylate conversion can yield useful information about 

stress relaxation potential during polymerization including guidance on the design of filler resin 

interfaces to mitigate stress development in polymeric composite materials.   

6.2 Materials and methods 

6.2.1 Materials 

Barium glass (mean particle size 0.7 µm) with a coating of 5 wt % γ-

methacryloxypropyltrimethoxysilane (γ-MPS), was used as the inorganic filler (Esstech, Inc., 

Essington, PA). Silica nanoparticles (Aerosil OX50, average diameter = 40 nm, surface area 50 

m
2
/g) were donated by Evonik (Germany). OX50 silanized with γ-MPS (γ-methacryloxypropyl-

trimethoxysilane) was donated by Septodont-Confi-Dental (Louisville, Colorado, USA). N-

methylaminopropyltrimethoxysilane (MAPTS) was purchased from Gelest. 2,2-bis[4-(2-

hydroxy-3-methacryloyloxypropyl-oxy)phenyl]propane (BisGMA) and triethylene glycol 
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dimethacrylate (TEGDMA) monomers were donated by Esstech. A visible light initiating system 

consisting of 0.3 wt% camphorquinone (CQ) as initiator and 0.8 wt% ethyl 4-

dimethylaminobenzoate (EDAB) (Sigma-Aldrich, Milwaukee, WI) as co-initiator was 

incorporated. p-xylene bis-(N,N-diethyldithiocarbamate) (XDT) was made according to the 

synthesis described by Otsu, et al. [9]. Isocyanatoethylmethacrylate (IEM), bisphenol A 

glycerolate (1 glycerol/phenol) diacrylate (BisGDA) and 1,2-ethanedithiol (EDT) were 

purchased from Sigma-Aldrich (USA) and used without further purification. 

6.2.2 Oligomer Synthesis 

The structures of the monomers used for the synthesis are shown in Figure 6.1. For the 

synthesis, monomers were dissolved in chloroform in the ratio – BisGDA/EDT = 1.25/1.00. It 

was desired to have oligomers with acrylate functionalities at the ends and so BisGDA was kept 

in excess. A few drops of triethylamine as catalyst were added to the reaction mixture. The 

mixture was stirred constantly and progress of the reaction was monitored using FT-IR by 

following the reduction of the thiol peak at 2575 cm
-1

. Upon completion of the reaction, the 

oligomer was separated from the unreacted mixture by dropwise addition in hexanes. The 

supernatant solution was discarded and the oligomers redissolved in chloroform. This solution 

was dried in a roto-vap and then under a high-vac to remove the solvent. The oligomer had 

pendant hydroxyl groups on its chain and these were reacted with IEM to give an oligomer with 

100% hydroxyl functionality replaced with methacrylates. The final structures of the oligomer 

are shown in Figure 6.2. This particular oligomer scheme was chosen as it had been proven in 

Chapter 5 to give good results for reduction of shrinkage stress.   
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Figure 6.1. Structures of monomers used for the oligomer synthesis 

 

 

 

Figure 6.2. Structures of oligomers used to treat fillers 

 

6.2.3 GPC Characterization 

A Viscotek triple detector gel permeation chromatography (GPC) system, equipped with 

Viscotek VE 3580 refractive index detector and Viscotek 270 dual light scattering/viscosity 

detector, was used for characterization of the size of the oligomer. The mobile phase was HPLC 

grade tetrahydrofuran at a flow rate of 1 mL/min. Samples were prepared in HPLC grade THF to 

a concentration of about 5g/L and 10 µL of sample was injected for analysis.  
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6.2.4 Modification of the OX50 filler  

The bare OX50 silica particles were first treated treated with n-

methylaminopropyltrimethoxysilane and then the oligomers were attached to the amine end of 

the silane. For this, the OX50 particles were first dried in a rotary dryer at about 165 
o
C under 

vacuum for three hours before further treatment. This was done to ensure removal of surface 

bound moisture that can potentially react with the silanes and promote the formation of multiple 

layers of the silane. Anhydrous toluene was used as a solvent for the silanization process. It was 

refluxed for two hours and then the particles were added and further refluxed for an hour to 

ensure good dispersion. The MAPTS was added to the solution so that the final concentration in 

the mixture was 1.5 % by weight. This reaction mixture was allowed to reflux for 6 hours after 

which the particles were separated from the solvent by centrifugation. The particles were washed 

three times with toluene and two times with methylene chloride to ensure that all traces of 

unreacted silane were removed. The silanized particles were then dried overnight under vacuum 

at 50 
o
C to remove all traces of solvent.  The dried and silanized particles were then added to 

reagent alcohol in which 5X excess of oligomers were already mixed. The reaction mixture was 

heated to 45 
o
C and the reaction was allowed to continue for three days. The particles were then 

centrifuged to remove the solvent and washed 5 times with methylene chloride to remove excess 

solvent and dried in a vacuum oven at 45 
o
C.  

6.2.5 Composite Preparation 

The resin matrix for the composites was a mixture of BisGMA and TEGDMA in the ratio 

70:30 by weight. Two different initiating systems were used. For the study on unfilled resin and 

composite with 0.7 µm filler, 0.1 wt% of p-xylene bis-(N,N-diethyldithiocarbamate) (XDT) as a 
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photoiniferter (initiator-chain transfer agent-terminator). XDT was used as it was desired to have 

a wide range of stable monomer conversions. [10]. XDT can initiate living radical 

polymerization when a formulated sample is irradiated. When the irradiation stops, the 

propagating radical is capped by the less active iniferter radical. This capping is thermally stable. 

The liquid samples were put in a 1x3x25 mm Teflon mold and sandwiched with glass slides. A 

curing light (Acticure 4000) with a 365 nm filter, was used to cure the samples. Samples were 

placed about 8 cm away from a collimating lens attached to the light source and irradiated on 

both sides with a light intensity of about 10 mW/cm
2
 for different times to get a wide range of 

conversions.  

For the OX50 filler-based composites, the resin included a free radical visible light 

initiating system comprised of 0.3 wt% camphorquinone and 0.8 wt% ethyl 4-

dimethylaminobenzoate. The fillers were added to the resin and mixed in a speedmixer (DAC 

150 FVZ, Flakteck Inc.) and dispersed in the resin to make a composite paste that had a final 

filler loading of 30 wt%. Composites with γ-MPS-treated OX50 particles were used as the 

control. The freshly prepared composites were evacuated under vacuum to ensure elimination of 

air bubbles prior to being used. Samples were put in a Teflon mold (dimension 1x3x25 mm)  and 

sandwiched between glass slides. They were cured with the Acticure 4000 light equipped with a 

400-500 nm filter. Light intensity was again kept at 10 mW/cm
2
 for a range of times to get a 

wide range of conversion. 

6.2.6 Stress Relaxation Test 

The stress relaxation tests were carried out on an MTS machine (858 Mini Bionix II, 

Eden Prairie, MN USA ). Samples were placed between two grips in the MTS machine. They 
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were then quickly extended to a constant strain of 0.5 % and held at that position for 10 min and 

the stress decay monitored.   

6.3 Results and Discussion 

Stress relaxation measurements are used to understand the viscoelastic behavior of 

polymers and polymer-based materials. Double bond conversion and fillers can affect the 

viscoelastic properties of the composite. In a polymerizing composite, the developing stress 

consists of two components – stress development and stress relaxation. Stress measurements give 

us an idea of the overall stress in the composite, without looking at the contribution of the 

individual components. The stress relaxation work in this chapter is done with a view to 

evaluating the stress relaxation potential of the unfilled polymer and filled composites – with 

fillers treated with the γ-MPS control and also with an interfacial brush structure.  

Stress relaxation experiments were carried out on unfilled BisGMA/TEGDMA resin and 

composites made with this resin and 1) 60 wt% 0.7 µm barium glass filler silanized with γ-MPS, 

2) 30 wt% OX50 silanized with γ-MPS, 3) 30 wt% OX50 with high molecular weight rigid brush 

surface-treated with 0 % (sample name RH0) and 100 % (sample name RH100) methacrylate 

functionality.  

6.3.1 Stress Relaxation of Unfilled Resin and Composite with 0.7 µm Barium Glass Filler 

Table 6.1 summarizes the values of peak stress, normalized stress relaxation amount 

compared to the peak stress in each case and the maximum stress relaxation rate, normalized to 

the peak stress. It can be seen that the peak stress for each system increases as the methacrylate 

conversion increases. This would be expected since the modulus is known to increase with 
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conversion and a basic definition of stress is that it is proportional to modulus/strain. For the 

unfilled resin, the peak stress increases from 0.04 ± 0.01 MPa at 29.0 ± 1.5 % conversion to 

10.35 ± 0.05 MPa at 89.9  ± 1.0 % conversion. For the filled system with 0.7 µm fillers, the peak 

stress increases from 1.18 ± 0.21 MPa at 26.1 ± 1.3 % conversion to 16.63 ± 0.98 MPa at 85.0 ± 

2.0 % conversion. The peak stresses for the intermediate conversions lie in between the two 

extremes with the peak stress levels rising rapidly in the latter stages of conversion as a result of 

the exponential increase in modulus as a function of conversion. For calculations of stress 

recovery and stress relaxation rates, the stress data for each sample was normalized with respect 

to the peak stress for that particular sample. The higher peak stress for the filled systems as 

compared to the unfilled system, at similar levels of conversion, is related to the reinforcing 

effect of the high modulus fillers [11]. As the materials are strained to the same extent, the high 

modulus fillers (barium glass has an elastic modulus of approximately 75 GPa) contributes to a 

higher overall modulus and stress in the composite. It should be noted, however, that efficient 

coupling between the filler particles and the resin matrix is essential for the elastic modulus to 

increase. Efficient transfer of the applied load between the two phases is necessary for the filler 

phases to absorb the strain energy, otherwise decoupling of the two phases can occur, leading to 

lower modulus materials and also to bulk mechanical failure of the composite.  

 Figure 6.3 shows typical stress relaxation curves obtained for these two systems. The 

monomer conversion of the unfilled system is at 57.3 ± 1.8 % and that for the filled system is at 

56.6 ± 1.5 %, so the two systems have similar conversions and can be legitimately compared. 

The data has been normalized with respect to the highest initial stress value at the same strain for 

each system. It can be seen that the amount of stress recovery in the unfilled system is more than 
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that of the filled system. Also the stress relaxation rate of the unfilled system is faster than that of 

the filled system.  

A look at what happens during a stress relaxation test can explain these observations. 

When the unfilled resin sample is suddenly extended and held at a constant strain, the polymer 

chains try to relax to restore the isotropy. Polymers can relax via chemical or physical 

mechanisms. In the present case, we do not expect any chemical changes under the test 

conditions, which are well within the elastic limit of all these materials. Physical mechanisms for 

relaxation include viscous flow before gelation [12], relaxation of trapped entanglements and 

molecular relaxation below or near the glass transition temperature [8]. For the case in Figure 

6.3, the conversion of the samples puts them well over the gel-point conversion [7] and into the 

glassy, vitrified state. The most likely mechanism for relaxation would be relaxation of 

entanglements and molecular motion.  With the addition of fillers that are covalently bound to 

the polymer matrix, additional restrictions are placed on the polymer chain movement due to the 

restricted movement near the surface of the filler particles [13], [14]. The reduced resin volume 

fraction means that for a given level of strain, the resin phase of the filled materials experiences a 

greater effective strain than in the unfilled polymer. These restricted movements have “long 

range” effects as the entire network is crosslinked. Upon being strained, as the polymer chains 

relax, the restrictions on mobility hinder the process, leading to a slowing down of the relaxation. 

This explains the slower rate of relaxation seen in the filled system. A lower stress recovery can 

also be explained by the fact that the viscous component of the composite is increased by the 

addition of fillers. The elastic recovery is reduced with the addition of fillers and the viscous loss 

is increased.  
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Figure 6.3. Comparison of normalized stress relaxation curves for (a) Unfilled 

BisGMA/TEGDMA resin at approximately 60 % conversion and (b) BisGMA/TEGDMA resin 

filled with 0.7 µm barium glass particles at 60 wt%. Stress values have been normalized by the 

peak stress for the respective measurement. 
 

 

Figure 6.4. Comparison of fractional residual stress for (♦) Unfilled resin at 60% conversion and 

(■) resin filled with 0.7 µm particles at 60 wt%. All stress values have been normalized with 

respect to the peak stress for the respective measurement. 
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Table 6.1. Summary of results for unfilled resin and filled composite (0.7 µm filler at ca. 60 

wt%) 

 

Error! Reference source not found.4 shows the normalized stress relaxation or recovery 

amount over a wide range of conversion. It can be seen that the stress recovery decreases as the 

methacrylate conversion increases, for both the systems. For the unfilled system, the stress 

recovery ranges from 85 ± 5 % at 29.0 ± 1.5 % conversion to 60 ± 3 % at 90.0 ± 1.0 % 

conversion. For the filled system, the stress recovery is in the range of 82 ± 6 % at 26.1 ± 1.3 % 

conversion to 21 ± 7 % at 85.0 ± 2.0 % conversion. So it is evident that there is more stress 

recovery in the unfilled resin system than the filled system, except at the lower range of 

  

Methacrylate 

Conversion (%) 

Peak Stress 

(MPa) 

Fractional stress 

relaxation amount 

(normalized to peak 

stress) 

Stress relaxation 

rate (normalized to 

peak stress) s
-1

 

 

Unfilled 

resin 

29.0 ± 1.5 0.04 ± 0.01 0.85 ± 0.05 5.93 ± 1.15 

38.5 ± 0.06  1.05 ± 0.12 0.78 ± 0.03 5.59 ± 0.35 

57.3 ± 1.8 7.25 ± 0.9 0.70 ± 0.05 3.56 ± 0.20 

89.9 ± 1.0  10.35 ± 0.5 0.60 ± 0.03 2.50 ± 0.10 

  

   

  

Filled 

composite 

26.1 ± 1.3 1.18 ± 0.21 0.82 ± 0.06 5.75 ± 1.10 

41.1 ± 1.3 3.51 ± 0.43 0.72 ± 0.01 4.17 ± 0.81 

56.6 ± 1.5 11.55 ± 1.22 0.44 ± 0.05 1.61 ± 0.28 

85.0 ± 2.0 16.63 ± 0.98 0.21 ± 0.07 1.16 ± 0.36 
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conversion. At the low end of conversion, the material has a lower viscosity and is capable of 

enhanced stress relaxation by plastic deformation. As conversion increases, the material becomes 

more viscous and stiffer, it loses this capability and this results in a lower stress recovery.  In 

case of the filled system, at the lower end of conversion, the covalent linkage between the filler 

surface and the polymerizing monomers around it is not fully developed. Hence there are fewer 

restrictions placed on the early polymer network with respect to relaxation and the limiting 

extent of relaxation does not depend on the presence of the filler. It is also essential that the 

fillers do not present a hindrance in terms of a percolation network, so that the resin phase is 

continuous and can relax without being affected by the fillers. As the monomer conversion and 

the crosslinking degree increase, the system becomes more viscous and the network loses 

mobility as its glass transition temperature and stiffness increase. The free volume in the polymer 

also reduces, reducing the freedom for relaxation of polymer chains by segmental motion. This 

can explain the progressive reduction in stress recovery as the conversion increases in both the 

systems. The rate of stress relaxation is affected by the same factors as the stress recovery and 

follows the same trend as that of stress recovery (Figure 6.5). The network loses mobility with 

increasing crosslink density as the monomer conversion increases and relaxation at the molecular 

level becomes slower. The addition of fillers enhances the effect of lower mobility, more so with 

increasing conversion, and the rates of relaxation here are even slower. In literature, researchers 

have noticed faster relaxation rates with the addition of fillers [11], [15]. They attribute these to 

debonding of the polymer from the filler surface and also breaking down of aggregates, 

particularly at high strain values. With the strong covalent binding between the fillers and the 

polymer in our system and the low strains being used, these debonding and “de-aggregation” 

processes are not expected to occur. Also with the 0.7 µm filler particles, aggregation is unlikely 
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to occur due to their large size. Hence the reduced rate of relaxation with addition of well-

bonded fillers is not considered to be an anomaly. 

 

Figure 6.5Comparison of stress relaxation rates for (♦) unfilled resin and (■) resin filled with 0.7 

micron filler at 60 wt %, as a function of conversion. All stress values have been normalized 

with respect to the peak stress for the respective measurement. 

6.3.2 Effect of Surface Modification on Stress Relaxation 

The high surface area of particulate fillers increases their potential for interaction with the resin. 

Different filler surface treatments would be expected to respond differently in terms of stress 

relaxation. Modification of the filler surface could introduce a gradient in filler properties, 

starting from the filler surface and going towards the bulk polymer until the properties match 

those of the polymer. This can lead to gradients in the glass transition temperature and elastic 

modulus. If the volume fraction of the particles is high and they have a smaller size, the effective 

percolation limit, which refers to the point at which the hybrid interfacial zones begin to overlap, 
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can be reached fairly quickly and the particles can start interacting with each other or the 

polymer brush chains can start bridging the particles together. All these factors would affect the 

viscoelastic properties of the composite and consequently, stress relaxation.  

The high surface area OX50 fillers with three different surface modifications were used 

for studying the effect of the interface on stress relaxation. γ-MPS was used as the control while 

the high molecular weight rigid brushes (Chapter 5) with either 0 % or 100 % methacrylate 

functionality were used as the experimental materials (Table 6.2). As described in the Materials 

and Methods section, collimated light was used to cure the sample uniformly to different 

conversion values, depending on the time of irradiation. The stress relaxation test was carried out 

as soon as conversion became effectively constant, which was about five minutes after starting 

the polymerization.  

Table 6.2. Listing and terminology for OX50 filler-based samples used in the stress relaxation 

study. 

Sample Terminology used 

OX50-GammaMPS OX50-GammaMPS 

OX50 with high Mw rigid oligomer 

that has no methacrylates on the chain 

 

OX50 – RH0 

OX50 with high Mw rigid oligomer 

that has complete coverage of 

methacrylate groups on the chain 

 

OX50 – RH100 

 

Figure 6.6 shows the final normalized stress recovery data for all the samples at the end 

of the tests. The data were taken at three separate points of conversion, as listed in Table 6.3 and 

an attempt was made to have overlapping conversion at the point of measurement for all the 

samples, to facilitate comparison between the different samples. It can be seen that in the low to 
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moderate range of double bond conversion, the stress relaxation amounts seem to be similar for 

all the samples. Over the whole range, however, the stress relaxation amount for sample OX50-

RH0 is constant and it does not vary with the conversion. The stress relaxation amount for 

OX50-γMPS and OX50-RH100 samples is also constant in the low to moderate range of 

conversion. However, at the higher end of conversion, when the samples reach a vitrification-

limited maximum conversion value under the ambient photopolymerization conditions, there is a 

reduction in the degree of stress relaxation. From the results of the previous section on relaxation 

of unfilled resin and filled system with 0.7 µm-size filler, the degree of stress recovery was 

reduced as the double bond conversion increased. This was attributed to the increased 

crosslinking and stiffness of the material, which reduced the mobility of the polymer chains. The 

drop in the extent of stress relaxation observed at the high end of conversion for the OX50-filler-

based systems can also be attributed to the increasing cross-linking between the fillers and the 

developing matrix, which subsequently contributes to the reduced mobility of the polymer 

chains. However, this is only for the OX50-γMPS and OX50-RH100, which have many 

polymerizable methacrylate groups on the surface and hence the ability to covalently react with 

the polymer. The OX50-RH0 sample, however, does not have methacrylate groups along the 

oligomer brush chains. It only has one terminal acrylate group at the chain end that can 

potentially co-polymerize with the methacrylate-based resin. Given the low density of the 

brushes on the surface of the filler, this offers relatively few sites for covalent attachment 

between the filler and the matrix. As hypothesized in Chapter 5, the brush layer around the filler 

particle is compliant and upon co-polymerizing with the resin monomer, it can be extended away 

from the surface of the filler. If this indeed happens, this provides an avenue for the developing 

stress to relax due to the flexibility in the layer. While continued polymerization within the resin  
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Figure 6.6. Comparison of stress relaxation of 30 wt% OX50 in BisGMA/TEGDMA with three 

different surface modifications – 1) (●) – γ-MPS; 2) (■) – High Mw rigid brush – 100% 

methacrylate; 3) (▲) High Mw rigid brush – 0% methacrylate. 

phase would lead to more entanglements with the surface-bound brush structure, these physical 

interactions can re-equilibrate significantly when micro- or macro-scopic strain is applied. The 

OX50-γMPS particles have the short chain γ-MPS molecules on the surface and they do not have 

the same kind of flexibility to be able to relax the stress. The OX50-RH100 fillers have the same 

rigid brush backbone as the OX50-RH0 fillers, with the difference being the presence of 

significant numbers of methacrylate groups all along the oligomer backbone. So the structure of 

the backbone should allow the brush to assist in relaxing the stress, but due to the more extensive 

co-polymerization with the resin monomer, the brushes have a greater potential to become fixed 

in the network. As the network becomes more rigid at higher levels of conversions, the brush 

structure lacks the potential mobility available to the 0 % methacrylate analog. Chances of 

copolymerizing with the resin also increase as the resin infiltrates the brush layer and the 
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conversion increases, leading to increasing rigidity around the filler particle. This could explain 

the lower stress relaxation amount seen at the high end of conversion. 

Table 6.3. Summary of stress relaxation results for composites based on OX50 filler particles 

with different surface treatments. Loading level of OX50 is 30 wt %. 

Surface treatment Conversion 

Peak Stress 

(MPa) 

Normalized stress 

relaxation amount 

Normalized 

stress 

relaxation rate 

GammaMPS 32.1 (0.1) 0.57 (0.02) 0.79 (0.03) 4.56 (0.01) 

 

47.3 (4.2) 2.66 (0.55) 0.78 (0.02) 8.32 (5.56) 

 

59.0 (0.3) 3.31 (0.09) 0.73 (0.01) 6.84 (0.28) 

     High Mw brush - 0% 31.9 (4.4)) 0.14 (0.10) 0.83 (0.02) 6.09 (0.23) 

 

52.0 (3.0) 3.06 (0.25) 0.84 (0.02) 7.01 (0.67) 

 

60.4 (0.8) 3.51 (0.28) 0.83 (0.01) 7.96 (0.06) 

     

     High Mw brush - 100% 33.9 (0.8) 0.36 (0.10) 0.81 (0.03) 5.48 (0.25) 

 

53.2 (0.8) 3.01 (0.33) 0.81(0.01) 6.00 (1.85) 

 

60.4 (0.8) 3.84 (0.26) 0.74 (0.02) 6.23 (0.39) 

 

6.3.3 Stress Relaxation Modeling  

Stress relaxation modeling can help in understanding the mechanisms that underlie the 

observed behavior of various materials due to changes in their structure. This understanding can 

help with better designs for application specific problems.  A simplistic way of representing 

viscoelastic behavior of polymeric materials is via springs and dashpots to denote purely elastic 

and purely viscous behavior, respectively [8], [16]. A combination of these two elements in 

series is called a Maxwell element (Figure 6.7) and can generally be used to describe stress 

relaxation. The spring component responds immediately to applied stresses and the dashpot 

responds gradually, representing elasticity and viscous flow.  
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Figure 6.7. Maxwell element, representing series array of springs and dashpots. 

The solution of the Maxwell model for a single time constant and finite, non-zero final 

stress gives rise to the following expression: 

            
 (

 
 
)
                                          [6.1] 

Where, σt = stress at time t, σ∞ = stress at infinite time or final equilibrium stress, σo = initial 

stress at t = 0, and τ   = relaxation time constant. 

The one element Maxwell model is usually too simple and inadequate to describe stress 

relaxation in polymers. Crosslinked polymers can be very heterogeneous systems with a 

distribution of relaxation times. For explaining such systems a generalized Maxwell model may 

be more appropriate. This consists of Maxwell elements connected in parallel, as shown in 

Figure 6.8. This model represents a distribution of relaxation times that a heterogeneous system 

consisting of materials with different properties might have. The solution for stress as a function 

of time for this particular model is expressed as: 

        ∑   
 (

 
  

)
 

   

                                           [6.2] 

Where, τi = relaxation time constant for the i
th

 element, σi = stress in the i
th

 element at time t, and 

Z = number of elements.  
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This element, as opposed to the single Maxwell element, is very complicated and difficult 

to interpret. An alternate approach is the intermediate path that makes use of the two elements in 

parallel. The reason for doing this is that the filler phase in composite can be considered to be 

surrounded by two phases – an interphase due to the surface modification and a non-

homogeneous bulk polymer. Different relaxation times can be associated with the structural 

character of the various regions of the polymeric composite materials.  

 

Figure 6.8. Generalized Maxwell model, consisting of Maxwell elements connected in parallel.  

The final model that was used to model the stress relaxation results was: 

            
 (

 
  

)
    

 (
 
  

)
                                          [6.3] 

The data for each sample was normalized with respect to the peak stress for that 

particular sample and fitted to the model using Matlab’s curve-fitting toolbox. Table 6.4 

summarizes the results of the simulation. We focus on the two time constants, τ1 and τ2.  
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Table 6.4. Results of fitting stress relaxation data to a two time constant Maxwell model 

Surface treatment Conversion 

τ1, 1
st
 time 

constant (s) 

τ2, 2
nd

 time 

constant (s) 

γ-MPS 

33.9 (0.8) 1.14 (0.07) 42.4 (0.9) 

53.2 (0.8) 1.90 (0.20) 71.3 (3.1) 

60.4 (0.8) 2.60 (0.09) 84.6 (2.5) 

        

High Mw brush – 0% 

32.1 (0.1) 0.78 (0.01) 33.6 (0.7) 

47.3 (4.2) 0.99 (0.20) 60.1 (3.0) 

59.0 (0.3) 1.21 (0.18) 72.5 (3.5) 

        

High Mw brush – 100% 

31.9 (4.4)) 0.85 (0.03) 32.2 (4.7) 

52.0 (3.0) 1.97 (0.00) 63.5 (3.4) 

60.4 (0.8) 2.18 (0.08) 73.7 (0.6) 

 

 

 

Figure 6.9. First time constant, τ1, plotted a function of conversion for composite samples based 

on OX50 filler - – 1) (●)  γ-MPS; 2) (■)  High Mw rigid oligomer – 0% methacrylate; 3) (▲) 

High Mw rigid oligomer – 100% methacrylate. 
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Figure 6.10. Second time constant, τ2, plotted a function of conversion for composite samples 

based on OX50 filler – 1) (●)  γ-MPS; 2) (■)  High Mw rigid brush – 0% methacrylate; 3) (▲) 

High Mw rigid brush – 100% methacrylate. 

The two time constants, τ1 and τ2, are plotted as a function of conversion in Figures 6.9 

and 6.10, respectively. A noteworthy trend in each case is that the OX50-RH0 composite sample 

displays the lowest relaxation times in terms of both τ1, which represents the short time scales 

and τ2 that corresponds to the extended time scale of the relaxation times. For the slow relaxation 

regime, at low conversion, the OX50-RH0 and OX50-RH100 composites have a similar 

relaxation time but as the conversion proceeds, the relaxation time of the OX50-RH0 composite 

increases slowly, while the increase for the OX50-RH100 material is more rapid. The OX50-

GammaMPS composite has a higher relaxation time at the low conversion region and then the 

curve accelerates and at the high end of conversion, the composite has the highest relaxation time 

amongst all the samples. For the longer relaxation time scales in Figure 6.10, the OX50-RH0 and 
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OX50-RH100 overlap completely over the entire conversion range. OX50-GammaMPS shows 

higher relaxation times for any given conversion range. It is of interest that the curves are 

parallel to each other, which means that even at low conversion, differences in the interfacial 

structure are responsible for differences in stress relaxation behavior.  

 According to Viovy et al. [17], a polymer chain subjected to a step strain can relax in the 

following manner - immediately in response to the strain, “there is local equilibration [18], [19] 

followed by the retraction of inside its “tube” (the tube here is the sort of a casing in which the 

polymer can be assumed to be confined in a relaxed state), followed by “reptation” by which the 

chain recovers an isotropic configuration”. Although these theoretical studies have been made in 

less constrained systems, where there is no cross-linking, we can still apply the same 

fundamentals in explaining the relaxation processes here. The fast relaxation process is due to 

local equilibration and is the immediate consequence of the imposed step strain. Due to the 

crosslinked nature of the composite as a whole, cooperative movements would determine the 

speed of this process. The OX50-GammaMPS and OX50-RH-100 composites have interfaces 

between the fillers and the growing polymer that have a high number of methacrylate groups that 

can covalently react with the polymer. This can impose restrictions on mobility of the polymer 

around the filler, leading to a slower response time. The restrictions would be increased as the 

connection points or the mobility of the connecting segments between the surface-attached 

molecules and the polymer increase. This can explain the faster relaxation times for these two 

composites. The fact that the relaxation time for the OX50-GammaMPS composite at the higher 

range of conversion increases more than the OX50-RH100 can be explained by the fact that the 

filler surface in the OX50-GammaMPS sample is covered entirely by methacrylate 

functionalities that are fully exposed to the monomer/polymer around the filler, increasing the 
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chances of reacting quickly with the surrounding polymer, thereby slowing down the relaxation 

faster than that for the OX50-RH100 composite. In case of the OX50-RH0 composite, the 

surface-tethered oligomer has only one terminal acrylate group that can co-polymerize with the 

methacrylate-based monomers. This effectively reduces the chances of a quick reaction, or at 

least an immediate increase in the mobility restriction between the two phases, allowing the 

polymer phase to relax faster than in the case of the other two composites.  

 In the case of the slow relaxation regime, the polymers relax by reptation or slower short 

range movements, once the polymer has recoiled in its “tube”. There is a significant difference in 

the relaxation times between the OX50-GammaMPS composite and the two experimental 

composites, OX50-RH0 and OX50-RH100, which have the same relaxation times. Due to the 

similar relaxation times of the experimental composites, in spite of their different influence on 

the short relaxation time regime, it appears that the slower relaxation may be more influenced by 

the bulk polymer than by the interface effects. The influence of the interface can extend deep 

into the bulk polymer, depending on the way the interface is modified. If the bulk polymer 

influences the slower relaxation more and the OX50-GammaMPS composite shows higher 

relaxation times, then it can be speculated that the γ-MPS treated fillers have longer range 

influence on the mobility restrictions of the bulk polymer than any of the experimental materials.  

 Interactions between nanoparticles and polymers have been studied quite extensively 

over the last few years. A study on effects of silica and alumina nanosphere addition to 

polystyrene, PMMA and poly (2-vinylpyridine) found the glass transition to either increase, 

decrease or stay the same, depending on the strength of the interactions between the fillers and 

the polymers [20]. In another study, a slower relaxation of PDMS polymer chains near the 

polymer-filler interface was attributed to the mobility restriction imposed by physical 
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interactions [21]. Regions of reduced or enhanced mobility near the filler surface that interact 

with their neighbors have been postulated [14]. As the filler particle size is reduced and a 

percolation threshold is approached, the regions around the filler particles start to interact with 

each other Depending on the type of interactions, the glass transition could be either lowered or 

increased and this would accordingly alter the overall stress relaxation characteristics of the 

material.   

6.4 Conclusion 

Stress relaxation measurements were carried out on unfilled resin and composites with 

large filler (0.7 µm) treated with a conventional silane (γ-MPS) and nano filler (fumed silica, 40 

nm diameter), that were surface treated with a conventional silane (γ-MPS) and with 

experimental oligomers. It was found that surface interactions influence the stress relaxation 

characteristics of the materials to a great extent. The addition of micron-sized filler slowed down 

the relaxation process when compared to the unfilled resin matrix, for the same levels of 

methacrylate conversion. The stress recovery was also reduced due to the fillers. In case of the 

nano fillers, it was found that the stress recovery in the experimental systems was fast when 

fewer reactive groups were present at the filler interface. The higher stress recovery is attributed 

to the reduced mobility restrictions due to the interfacial interactions with the bulk polymer. This 

has very important implications in the design of future dental materials and also for the 

nanocomposites field in general. The increased stress recovery implies that there is potential for 

enhanced stress reduction in dental composites by merely changing the interface between 

otherwise conventional fillers and polymer matrices. 
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CHAPTER 7 

7 INFLUENCE OF NANOFILLER AND MICROFILLER FRACTIONS ON SHRINKAGE 

STRESS AND LIGHT TRANSMISSION IN DENTAL COMPOSITES 

Abstract 

Objectives: Shrinkage stress due to polymerization is a major problem that complicates 

the placement and decreases the service life of commercial dental composites. In addition, light 

transmission in dental composites, which are reliant on visible light photopolymerization their 

formation, is affected due to the presence of a high volume of filler particles. This chapter 

explores the effects of an experimental filler surface modification approach as a way of 

addressing both these problems.  

Methods: An oligomer made from bisphenol A glycerolate (1 glycerol/phenol) diacrylate 

(BisGDA) and 1,2-ethanedithiol (EDT) was synthesized and attached to the surface of Aerosil 

OX50 particles (average diameter - 40 nm) and barium glass particles (0.7 µm). A conventional 

silane treatment (γ-methacryloxypropyltrimethoxysilane) was used as the control. The shrinkage 

stress and light transmission of composites having varying proportions of the OX50 and Barium 

glass particles, with a total filler mass fraction of 50 %, were measured. Refractive index 

measurements were used to elucidate the light transmission behavior of the composites. 

Results: The experimental surface-modified composites outperformed the conventional 

silane-treated control composite in both shrinkage stress reduction and light transmission. 

Addition of OX50 particles treated with the experimental oligomer had a significant effect on 

shrinkage stress and light transmission, while the type of surface treatment on the larger barium 

glass filler had no significant effect. At constant overall filler content, increasing the ratio of 
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OX50 particles treated with γ-MPS with respect to the barium glass fillers treated with the same 

silane resulted in an increase in shrinkage stress. Steady increase the ratio of the OX50 fillers 

treated with the experimental oligomer resulted in a significant lowering of the polymerization 

shrinkage stress. Optical clarity upon cure also increased with the addition of the experimental 

fillers as compared to the same ratios of γ-MPS treated fillers.  

Significance: Reduction of shrinkage stress and increase in light transmission due to a 

single surface treatment has important implications in the field of dental composites and also 

nanocomposites in general. Shrinkage stress reduction can potentially increase the durability of 

the composites while the improved light transmission will increase the depth of cure, which leads 

to higher conversion and consequently, better overall mechanical properties.  

7.1 Introduction 

Polymer-based dental restoratives, by tradition, are a mixture of several major components: 

1) a monomeric phase usually consisting of dimethacrylate-based resin monomers, 2) a 

reinforcing phase consisting of particulate inorganic fillers and 3) an organosilane coupling agent 

to serve as a link between the two phases. Minor components include initiating systems, 

stabilizers and coloring agents [1], [2]. The resin system generally consists of 2,2-bis[p-(2’-

hydroxy-3’methacryloxypropoxy)phenyl]-propane, popularly known as BisGMA, or related 

dimethacrylates combined with other liquid organic monomers that serve as diluents to give the 

resin mixture a workable consistency [3]. The filler phase is very crucial in giving the restorative 

mechanical integrity, having a significant effect on mechanical strength, toughness, 

polymerization shrinkage, viscoelastic properties, wear resistance and appearance [4]. With the 

basic formulation of the resin phase remaining fairly consistent over time, it is the fillers that 
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have undergone substantial changes over the last few decades in efforts to optimize the 

formulations to suit various clinical applications [5].  

The sizes of filler particles in current dental restoratives range from approximately 10-40 

nm up to about 0.2-2 µm and the filler volume fraction in these composite materials can range 

from about 20 % to 70 % [1], [2], [6]. Current dental composites have either a mixture of micron 

and nano-sized particles or purely nanosized ones [7]. The implications of introducing nano-

sized fillers in composites are tremendous. The very high surface area to volume ratio of 

nanoparticles gives them unique properties that are different from their micrometer-sized 

counterparts. The enhanced interactions can result in improved toughness, strength, moduli and 

optical properties [8–10]. At the same time it can also have a negative effect on the filler loading 

limits and the glass transition temperature [11]. The negative or the positive effects of these 

properties depends on the strength of the interfacial interactions.  

In practice, nanofillers form only a small fraction of the total filler loading in modern 

dental composites. Most often the nanofillers are added as “space fillers”, to increase the loading 

of fillers by way of the nanoparticles getting into the interstitial spaces in between the micro 

particles. The increased interactions with the nanoparticle surfaces lead to large increases in 

viscosity of the material, limiting their use. Nanofillers also help in reducing the wear and 

improving polishing characteristics in composites. Due to their small size, nanoparticles pose 

less and in some cases no effect on visible light transmission [8].  This allows improved 

restoration esthetics where the significant translucency of tooth enamel can be better matched.  

Additionally, since dental composites are photocured with visible light (typically 400-500 nm), 

curing efficiency and depth of cure are potential advantages for composite material with 

excellent light transmission characteristics.  
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Despite all the advances in materials science technology in dental materials, they still 

suffer from the problem of shrinkage and the associated shrinkage stress. Stresses in these 

composites are a result of the restricted shrinkage during polymerization. As stress is 

proportional to both shrinkage and modulus, the addition of high modulus fillers affects it in two 

ways. As fillers are added to the resin, the fractional volume of the resin is reduced and there is 

lower volumetric shrinkage as compared to the case of an unfilled resin. This leads to a reduction 

in the stress. At the same time, the fillers can also contribute to increasing stress due to their 

higher modulus. Fillers become covalently attached to the resin, usually via an organosilane such 

as γ-methacryloxypropyltrimethoxy silane (γ-MPS). This link helps transfer the stresses that the 

composite experiences in a cavity onto the filler. These attachments can also serve as sites that 

restrict the shrinkage of the resin, leading to stress development. Confirmation of this 

observation can be seen in reports that show that composites that have untreated fillers or those 

treated with non-functional silanes can lead to lower stresses compared to composites that have 

functional fillers [12].  

 It can be inferred that for a given mass fraction of filler, the higher the surface area of the 

fillers in a composite, the larger the number of sites where the shrinking resin can be attached. 

Nanoparticles, due to their high surface area, would amplify this effect. Prior work (Chapters 4 

and 5) has shown that interfaces can be modified in order to mitigate the shrinkage stresses that 

arise in dental composites. The specific interactions between the interfacial layer and the resin 

phase can lead to substantial reductions in the final shrinkage stress without compromise in the 

interrelated properties of polymerization shrinkage and final modulus development. The previous 

studies were carried out mainly on OX50 nanofiller particles, which have an average diameter of 

40 nm. The high interfacial area helps in reinforcing the positive effect of the interfacial layer. 
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However, as mentioned before, modern dental composites have fillers that are generally a 

mixture of both microparticles and a small amount of nanoparticles. Although the nanoparticles 

have a high surface area, if their amount is small, then the effect of the large area may not be 

significant. Using micro particles is also essential to achieve higher filler loading, which is 

essential for enhanced wear behavior and low coefficients of thermal expansion in the composite 

materials. Nanoparticles, due to their high surface energy, increase the viscosity of the system, 

which can make handling and placement of the restorative difficult. Micron-sized particles are 

needed to overcome this and increase filler loading. Hence it is practically important to use both 

micro- and nano-particles to get the best overall properties from dental composite materials.  

 This work provides an examination of an experimental polymer brush-based interfacial 

treatment applied to both micron and nano-sized fillers with an emphasis on gaining a better 

understanding of how the interface affects shrinkage stress in dental composites composed of 

bimodal fillers. As a control, γ-MPS functionalized micro- and nano-particles are used. Ratios of 

both the particles are varied in a continuous manner to examine how the shrinkage stress varies 

with respect to each type of filler.   

7.2 Materials and Methods 

7.2.1 Materials  

Silica nanoparticles (Aerosil OX50, average diameter = 40 nm, surface area 50 m
2
/g) 

were donated by Evonik (Germany). 0.7 micron Barium glass particles, both unmodified and 

treated with γ-MPS (γ-methacryloxypropyl-trimethoxy silane) and OX50 particles silanized with 

γ-MPS were kindly donated by Septodont Confi-Dental (Louisville, Colorado, USA). N-

methylaminopropyltrimethoxysilane (MAPTS) was purchased from Gelest. 2,2-bis[4-(2-
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hydroxy-3-methacryloyloxypropyl-oxy)phenyl]propane (BisGMA) and triethylene glycol 

dimethacrylate (TEGDMA) monomers were donated by Esstech, Inc.. A visible light initiating 

system consisting of 0.3 wt% camphorquinone (CQ) as initiator and 0.8 wt% ethyl 4-

dimethylaminobenzoate (EDAB) (Sigma-Aldrich, Milwaukee, WI) as co-initiator was 

incorporated. Isocyanatoethylmethacrylate (IEM), methylene chloride, reagent alcohol, 

anhydrous toluene, and dibutyltin dilaurate, triethylamine were obtained from Sigma-Aldrich 

(USA). Monomers used for making for the oligomer synthesis – Bisphenol A glycerolate (1 

glycerol/phenol) diacrylate (BisGDA) and 1,2-Ethanedithiol (EDT), were also purchased from 

Sigma-Aldrich (USA) and used without further purification. 

7.2.2 Synthesis of Oligomer 

The structures of the monomers used for the synthesis are shown in Figure 7.1. For the 

synthesis, monomers were dissolved in chloroform in the ratio – BisGDA/EDT = 1.25/1.00. It 

was desired to have oligomers with acrylate functionalities at the ends and so BisGDA was kept 

in excess. A few drops of triethylamine as catalyst were added to the reaction mixture. The 

mixture was stirred constantly and progress of the reaction was monitored using FT-IR by 

following the reduction of the thiol peak at 2575 cm
-1

. Upon completion of the reaction, the 

oligomer was separated from the unreacted mixture by dropwise addition in hexanes. The 

supernatant solution was discarded and the oligomers redissolved in chloroform. This solution 

was dried in a roto-vap and then under a high-vac to remove the solvent. The final structure of 

the oligomer is shown in Figure 7.2. This particular oligomer scheme was chosen as it had been 

proven in Chapter 5 to give good results for reduction of shrinkage stress.  
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Figure 7.1. Structures of monomers used for synthesis of the oligomer 

   

 

Figure 7.2. Structure of final oligomer.  

7.2.3 GPC Characterization 

A Viscotek triple detector gel permeation chromatography (GPC) system, equipped with 

Viscotek VE 3580 refractive index detector and Viscotek 270 dual detector, was used for 

characterization of the size of the oligomer. The mobile phase was HPLC grade tetrahydrofuran 

at a flow rate of 1 mL/min. Samples were prepared in HPLC grade THF to a concentration of 

about 5g/L and 10 µL of sample was injected for analysis.  
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7.2.4 Modification of the Filler  

The bare silica particles were first treated treated with MAPTS (N-

methylaminopropyltrimethoxysilane) and then the oligomers were attached to the amine end of 

the silane. OX50 particles were first dried in a rotary dryer at about 165 
o
C under vacuum for 

three hours before further treatment. This was done to ensure removal of surface bound moisture 

that can potentially react with the silanes and promote the formation of multiple layers of the 

silane. Anhydrous toluene was used as a solvent for the silanization process. It was refluxed for 

two hours and then the particles were added and further refluxed for an hour to ensure good 

dispersion. The MAPTS was added to the solution so that the final concentration in the mixture 

was 1.5 % by weight. This reaction mixture was allowed to reflux for six hours after which the 

particles were separated from the solvent by centrifugation. The particles were washed three 

times with toluene and two times with methylene chloride to ensure that all traces of unreacted 

silane were removed. The silanized particles were then dried overnight under vacuum at 50 
o
C to 

remove all traces of solvent.  The dried and silanized particles were then added to reagent 

alcohol in which 5X excess of oligomer was already mixed. The reaction mixture was heated to 

45 
o
C and the reaction was allowed to continue for three days. The particles were then 

centrifuged to remove the solvent and washed 5 times with methylene chloride to remove excess 

solvent and dried in a vacuum oven at 45 
o
C.  

7.2.5 Composite Preparation 

The resin matrix for the composites was a mixture of BisGMA and TEGDMA in the ratio 

70:30 by weight. The resin included a free radical visible light initiating system comprised of 0.3 

wt. % camphorquinone and 0.8 wt. % ethyl-4-dimethylaminobenzoate. The fillers were added to 
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the resin and mixed in a speedmixer (DAC 150 FVZ, Flakteck Inc.) and dispersed in the resin to 

make a composite paste. Composites with γ-MPS-treated particles were used as the control. The 

ratios of the different fillers used to make the composite are shown in Table 7.1. The total weight 

of the fillers was 50 % of the composite. The freshly prepared composites were allowed to sit 

under vacuum to ensure elimination of air bubbles prior to being used.  

Table 7.1. Filler combinations used in the mixed filler composites 

Ratio of OX50 to 0.7 µm filler Gamma MPS series Brush series 

5/45 C1 L1 

10/40 C2 L2 

15/35 C3 L3 

20/30 C4 L4 

25/25 C5 L5 

 

7.2.6 Shrinkage Stress Measurements 

Shrinkage stress was measured using a cantilever beam based instrument referred to as 

the tensometer (American Dental Association, Paffenberger Research Center, MD, USA). This 

instrument measures the force generated by an actively polymerizing material that is partially 

constrained from a free shrinking state. The material is bonded to the opposing ends of two 

diametrically placed quartz rods. The polished ends of the glass rods are freshly treated with γ-

MPS, to promote bonding with the polymerizing material. The upper quartz rod is attached to the 

cantilever beam and is free to move along with the shrinking composite and the lower quartz rod 

is fixed to the base. A dental curing light (IQ2, Caulk, Dentsply), with an output wavelength of 

465 nm, was adapted to the bottom of the lower quartz rod, which serves as a light guide to 
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transmit the curing light to the material.  A detailed description of the stress measurement 

involving the tensometer has been published previously [13]. The testing protocol uses specimen 

discs of 1.5 mm thickness and 6 mm diameter. The light intensity reaching the sample was 

measured at 350 mW/cm
2
. The samples were irradiated for 40 s with the dynamic stress 

development profile continuously monitored for 10 min. Real-time double bond conversion 

measurements based on simultaneous near-IR spectroscopy were made during the stress 

measurements. 

7.2.7 Flexural Modulus Measurements 

Flexural modulus and strength were measured in a 3-point bending mode (858 Mini 

Bionix II, MTS Systems, Eden Prairie, MA). The composite pastes were injected into a cavity 

measuring 2x2x10 mm. The cavity was surrounded by Teflon spacers on the sides and clamped 

glass slides on the top and bottom. They were cured using the dental curing light from both the 

sides to promote uniform conversion throughout the sample. The crosshead speed used was 1 

mm/min.  

7.2.8 Infrared Spectroscopic Characterization 

Infrared spectroscopy was used to monitor the conversion of the resin and the surface 

modification of the fillers using an FTIR (Nexus 670, Nicolet Instruments, Madison, WI). 

Double bond conversion was monitored in transmission mode using near-infrared (NIR) 

spectroscopy. The area of the peak at 6165 cm
-1

 representing the methacrylate =CH2 absorption 

was used to track conversion. 
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7.2.9 Light Transmission 

Light transmission measurements were made using an Ocean Optics UV-vis detector 

(189.8 - 890.6 nm). Infrared light was passed through the specimen and light intensity was 

recorded during photopolymerization (Acticure 4000, 320-500 nm, 25 mW/cm
2
, 10 min cure 

time, 3 cm from sample). Specimen material was placed in a Teflon mold (1 mm thickness, 10 

mm diameter) sandwiched between glass slides, and mounted on an optical bench. The fiber 

from the IR light source was fixed to a collimating lens placed approximately 5 cm from the 

sample. The UV-vis fiber (SMA connection) was placed approximately 3 cm from the sample. 

Spectra Suite software was used to monitor and record the light transmission at 760 nm 

wavelength for 10 min, with an integration time of 50 ms and 20 scans to average.  

7.2.10 Refractive Index Measurements 

Refractive index measurements were made using an ATAGO refractometer. . For 

polymer and composite disc samples, 1-3 drops of a high refractive index liquid 

(bromonaphthalene) was placed on the measurement surface. The top cover was closed and 

secured and the light was turned on. The refractive index was measured using the viewing 

window by focusing and aligning the horizontal light-to-dark transition with the crosshairs and 

recording the numerical refractive index value.  

7.3 Results and Discussion 

Current research focused on the study of variations in shrinkage stress and light 

transmission in dental composites made by combining fillers of two different sizes and with two 

different surface treatments. The fillers used were 1) Barium glass – average size 0.7 µm and 2) 
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Fumed silica – Aerosil OX50 (diameter – 40 nm). The surface treatment used as the control was 

γ-MPS and the experimental surface treatment being compared was based on the high molecular 

weight rigid oligomeric brush structure. The particular oligomer was used here as it had the best 

performance for shrinkage stress reduction (Chapter 5).  

7.3.1 Shrinkage Stress Study 

Initial shrinkage stress measurements were carried out on composites made from a single 

filler type and particle size, in order to determine how each filler individually affected the 

shrinkage stress.  Figure 7.3 shows the shrinkage stress variation as a function of filler loading 

for the 0.7 µm barium glass particles, for both the surface treatments. The stress values taken are 

the final stress values at the end of the 10 min evaluation interval. Over the range of filler 

loading evaluated here, the shrinkage stress decreased as a function of filler loading for both the 

systems. This is a trend that was seen during investigation of the effect of filler loading on 

mechanical properties of composites in Chapter 3. As the filler loading increases, the volume 

fraction of the resin phase decreases, which is known to contribute a proportional reduction in 

shrinkage for a given level of conversion. In general, the lower shrinkage translates to a lower 

stress. There is a small difference between the two systems, with the long rigid oligomer system 

showing a slightly lower stress as compared to the γ-MPS control for all the loading levels, 

except for the 5 wt% filled material where any differences would be expected to be minimal. The 

generally lower stress can be attributed to the effect of the oligomer to alter the stress transfer 

between the filler and the evolving matrix (Chapter 5).  

Following this, the effect of OX50 particles on shrinkage stress was evaluated (Figure 7.4). It can 

be seen that the γ-MPS system shows no change in shrinkage stress as the OX50 loading level 
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increases. The greater interfacial surface area and lower volume fraction of the OX50 filler 

compared with equivalent loading contents of the micron-sized barium glass filler particles 

explains why the effect of reduced shrinkage and increasing modulus are balanced in terms of 

polymerization stress production as the OX50 filler loading is increased. However, the 

composites with fillers treated with the oligomer show a decrease in stress as the OX50 loading 

is increased. The 10 wt% sample has similar shrinkage stress as its γ-MPS counterpart and then 

there is a significant decrease in stress as the oligomer modified OX50 loading level reaches 20 

wt%. There is a continued but not statistically significant reduction in stress between the 20 wt% 

and 30 wt% composites with the oligomer system. The reduction of stress in the experimental 

system can again be attributed to the interface modification that delays the effective stress 

transfer between filler and matrix when compared to γ-MPS-based interface.  

 

Figure 7.3. Comparison of shrinkage stress between 0.7 µm fillers treated with γ-MPS control 

and experimental oligomer at various loading levels of the filler 
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These results were encouraging as the addition of increasing amounts of experimental 

OX50 filler led to significant reductions in the stress state developed during photopolymerization 

of the composites. It also makes a case for being able to increase the amount of nanofiller used in 

composites with important beneficial effects achieved by merely modifying the interface. The 

two filler types were then mixed with each other in order to test the effect of varying amounts of 

each particle type on shrinkages stress. The total loading of the two fillers was arbitrarily kept at  

 

Figure 7.4. Comparison of shrinkage stress between OX50 fillers treated with γ-MPS control and 

oligomer 
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Figure 7.5. Comparison of shrinkage stress for composites with varying ratios of OX50/0.7 µm 

barium glass fillers. The total mass fraction of fillers is 50 wt%. 

the 50 wt% level. For the γ-MPS-based composite system, there was a steady increase in the 

shrinkage stress as the fraction of OX50 was increased. For the composite system based on fillers 

treated with the oligomer, the shrinkage stress decreases from the L1 system to the L2 system. 

There is no significant difference between the L2 system and the others with increasing fractions 

of OX50 (Figure 7.5). 

Table 7.2. Shrinkage stress values for composite systems with a mixture of OX50 and 0.7 µm 

fillers. Standard deviation values are in parentheses. 

  Ratio of OX50/0.7 µm 

filler 

5/45 10/40 15/35 20/30 25/25 

 

 

 

 

Shrinkage Stress (MPa) 2.02 

(0.05) 

2.21 

(0.13) 

2.56 

(0.06) 

2.41 

(0.05) 

2.61 

(0.27) 
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Surface 

treatment 

γ-MPS Methacrylate Conversion 61.78 

(0.25) 

62.17 

(0.40) 

62.90 

(0.35) 

63.07  

(0.51) 

62.35 

(0.62) 

 

Oligomer 

 Shrinkage Stress (MPa) 1.87 

(0.01) 

1.61 

(0.08) 

1.65 

(0.07) 

1.60 

(0.13) 

1.55 

(0.03) 

Methacrylate Conversion 64.37 

(0.46) 

64.48 

(0.01) 

64.36 

(0.85) 

64.39 

(1.74) 

61.17 

(0.54) 

 

From Table 7.2 it is clear that the addition of OX50 fillers has a significant impact on the 

shrinkage stress of the composites. At 50 wt%, the systems with only 0.7 µm barium glass fillers 

have shrinkage stress of 2.11 ± 0.01 MPa for the γ-MPS control and 2.03 ± 0.07 MPa for the 

oligomer-based one, indicating no significant difference between them. The shrinkage stresses 

diverge from this point and at the highest OX50 loading for the γ-MPS system, the stress value is 

2.61 ± 0.27 MPa while that for the highest loading of the long rigid oligomer is 1.55 ± 0.03 MPa. 

So while γ-MPS surface treatment has the effect of increasing the stress, the oligomer treatment 

has the opposite effect. This is positive confirmation of the effect of the interface on influencing 

shrinkage stress and the role of nano-sized fillers in controlling it.  

 For a given level of filler loading, the 0.7 µm fillers have a much lower surface area as 

compared to the OX50 particles. The surface area of the untreated 0.7 µm fillers was found to be 

about 10 m
2
/g from BET surface area measurements and that of OX50 particles is 50 ± 15 m

2
/g 

(source: Evonik). So 50 wt% of 0.7 µm particles would have roughly the same surface area as 10 

wt% of OX50. Small increases in amounts of OX50 would increase the surface area 

significantly. As seen in Chapters 4 and 5, the application of oligomers on the surface of fillers 

can have the beneficial effect of reducing shrinkage stress. A higher surface area would only 
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enhance this effect since it is then able to directly interact with a greater fraction of the resin 

matrix.  

  At 50 wt% filler loading, the interparticle spacing is relatively small. As the resin starts 

polymerizing, it starts to interact with the methacrylate groups on the surface of the γ-MPS based 

fillers. The γ-MPS molecules present a short tether between the surface connection of the filler 

and the reactive methacrylate group that potentially engages with the resin-based monomer 

molecules in matrix network formation. In the case of the oligomer, the molecules form a thicker 

layer around the surface, as evidenced from the TEM images in Chapter 5. The only 

polymerizable groups that this oligomer has are the acrylate groups at the end of the chains. The 

oligomer seems to lie in a collapsed state on the surface of the filler. The oligomer has hydroxyl 

groups along its length and the MAPTS silanes that have not reacted with the oligomer and the 

free silanols on the silica surface, can have attractive hydrogen bonding with them [14]. These 

forces would make it more probable for the oligomer to be in a collapsed state. The acrylate 

groups at the ends of the filler would most likely be buried in this layer and the resin molecules 

would have to diffuse through this to be able to polymerize with them.  

For shrinkage stress to start developing, it is essential to form a continuous network in the 

sample for the LVDT to detect the deflection of the cantilever beam of the tensometer to register 

a positive stress reading. To form this network, the filler particles act as multifunctional bridges 

between different parts of the resin that are polymerizing. From the lower shrinkage stress rates 

of the long rigid oligomer based composites as compared to the γ-MPS control and similar 

polymerization rates, it can be concluded that the interface in the experimental composite is 

delaying the formation of a continuous network structure. This is likely due to the delay in 

forming covalent links between the resin monomers and the interfacial layer or possibly that 
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there is a delay in the effective network reinforcement by the filler based on when these covalent 

connections can become network reinforcing structures. 

As the fraction of OX50 increases, the surface area in contact with the resin and the 

interparticle spacing are inversely related. In case of the γ-MPS control, this would mean many 

more points of restrictive attachment with the resin phase. This is reflected as increasing 

shrinkage stress with increasing OX50 fraction since this effect appears to supersede the 

volumetric shrinkage reduction associated with the higher filler content. In case of the oligomer, 

the interaction is different and the delay in reaction is more enhanced. There is a drop in the 

shrinkage stress going from the L1 sample to the L2 sample but further increases in OX50 do not 

lead to any significant reduction in shrinkage stress. This implies that there is a limit to the 

effectiveness of the interfacial area increase on the reduction in shrinkage stress. This indicates 

that perhaps a certain critical interparticle distance is necessary for the interfacial layer to be 

effective. Reducing the interparticle distance beyond this limit does not aid the mechanism by 

which the stress is reduced. 

7.3.2 Modulus Measurements 

 A reduction in shrinkage stress can be the result of a reduced modulus as stress is a 

function of modulus. To ascertain whether there was any lowering of modulus with the 

corresponding reduction in shrinkage stress, flexural modulus measurements were made on all 

the mixed filler samples (Figure 7.6). It was found that there was no significant difference in 

modulus within both the systems across all the ratios of OX50 fumed silica to 0.7 µm barium 

glass fillers and also between composites with the same ratio from the two different surface 
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treated systems. This ensured that any reduction in stress was not due to an undesirable 

corresponding reduction in modulus. 

 

Figure 7.6. Flexural modulus of composites with different ratios of OX50 to 0.7 µm glass filler.  

7.3.3 Light Transmission 

Figure 7.7 shows the discs made of the mixed filler samples for the γ-MPS control and 

the experimental brush system samples, placed on series of numbers printed on a paper. Each 

number represents a specific ratio of OX50 to 0.7 µm fillers. It is apparent that overall, the 

experimental interfacial brush system provides composites with lower optical density or greater 

translucency as compared to analogous composites based on the γ-MPS filler surface treatment.  
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Figure 7.7. Comparison of optical translucency of composites made with fillers treated with 1) γ-

MPS and 2) Experimental oligomer. The proportion of OX50 is increasing from left to right. 

To quantify the optical clarity of the different composite samples, light transmission was 

measured for these systems (Figure 7.8), in their uncured and cured states. The light transmission 

intensity here has been normalized with respect to the intensity of light passing through an 

uncured BisGMA/TEGDMA resin mixture that does not contain any initiator (assuring a photo-

inert state). It can be seen that there is no difference in transmitted light intensity through the 

uncured pastes in either of the systems. Upon polymerization, the transmitted light intensity 

increases for all the samples at all the filler fractions. The increase is highest for the 5/45 

OX50/0.7 µm filler fraction and lowest for the 25/25 OX50/0.7 µm filler fraction, in both the 

systems. Increase in the light transmission efficiency during polymerization in composite 

materials has been observed before [15]. There is a large refractive index mismatch between the 

uncured resin and the glass fillers. The uncured resin has a refractive index of 1.5216 ± 0.003 

and the barium glass filler has a refractive index of 1.5449 ± 0.0027 [15]. The refractive index of 

the OX50, which in the unmodified state is pure silicon dioxide, which has a much lower 

refractive index of 1.4603 at 486 nm. As the resin polymerizes, the refractive index increases due 

to densification of the matrix and moves towards that of the glass filler. This results in an 

increase in the light transmission due to the narrowing of the difference in the refractive indices. 
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Due to the lower refractive index of OX50 particles, increasing their amount would increase the 

difference in refractive index with the polymerized resin and this trend is reflected in the reduced 

light intensity.  

The experimental brush-modified composites show a higher degree of light transmission 

than the γ-MPS control for each of the filler fractions. The difference increases for moderate 

amounts of OX50 (10/40 and 15/35 fractions) and again reduces as the amount of OX50 

increases. There are two possible reasons for the improved light transmission. One reason is that 

the brush surface treatment improves the dispersion of the filler particles in the resin matrix. This 

can lead to better light transmission by reducing the scattering of light due to particle aggregation 

[16]. The other reason is that the filler surface modification locally changes the refractive index 

within the composites. Light transmission is reduced when there is a mismatch between the 

refractive indices of the different phases that make up the composite. If refractive index is the 

reason for the improved light transmission, the resin matrix refractive index has to be closer to 

the filler refractive index.  

Filler dispersion was tested by taking SEM images of the samples (Figure 7.9). Although 

not very clear, the images do not seem to indicate any difference in dispersion of the 0.7 µm  
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Figure 7.8. Comparison of light transmission through samples with different filler ratios and 

surface treatments. The light source was an infrared beam from the FT-IR with a wavelength of 

760 nm. 

             

(a)      (b) 

Figure 7.9. SEM images of polished surfaces of composites with 10/40 ratio of OX50/0.7 µm 

fillers surface treated with (a) γ-MPS and (b) Experimental oligomer.  
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fillers. The OX50 particles cannot be seen clearly so no comment can be made about their 

dispersion in the matrix.  

Figure 7.10 shows the variation of the refractive index of cured composite samples with 

varying amounts of OX50 and Figure 7.11 shows the variation of refractive index for the cured 

composites with 0.7 µm barium glass filler, for both types of filler surface treatment. It can be 

seen that for the OX50 system, in case of the γ-MPS treated particles, there is a steady decrease 

in the refractive index going from 10 wt% to 30 wt%. In case of the oligomer system, the 

refractive index at 10 wt% and 20 wt% is equivalent to that of its γ-MPS counterpart. At 30 wt%, 

however, there is no further decrease and the refractive index is at the same level as 20 wt%. For 

the 0.7 µm particles, the refractive index stays fairly constant with loading and there is no 

significant difference in its value between the different loading levels. It should be pointed out 

that the refractive index of the cured unfilled resin is 1.5495 at a conversion of 65 % [15].  

 Figure 7.12 shows the variation of refractive index for cured composite samples that had 

mixed fillers. As the relative amount of OX50 increased, the refractive index of all the samples 

decreased steadily. The decrease for the γ-MPS-based system was more rapid than the brush-

treated system. The reduction in transmission due to an increase in the relative amount of OX50 

particles follows from the observations in Figures 7.10 and 7.11, where intensity again decreased 

as OX50 particle concentration in the composite increased. 

Transmission loss due to light scattering by small particles can be depicted by the 

Rayleigh approximation –  
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Where, T = transmission loss, I and Io are the intensities of transmitted and incident light 

respectively, φp is the particle volume fraction, x is the optical path length, r is the radius of the 

particles, np and nm are the refractive indices of the particles and polymer matrix respectively and 

λ is the incident wavelength. From this equation it is clear that to minimize transmission losses, 

for a given incident wavelength, there are a few parameters that can be experimentally adjusted. 

Particle size and volume fraction, path length and refractive indices of the particle and matrix are 

the parameters that can be changed. In our system, the path length is the same for all the samples. 

Particle size for OX50 is the same in both the systems, for a given ratio. Hence for the same 

volume fraction of particles and geometry, the main parameters that can be controlled are the 

refractive indices of particles and the polymer matrix. A smaller the refractive index difference 

between the particles and polymer matrix results in less of a transmission loss. The refractive 

index of the particle is an intrinsic constant and cannot be changed. Hence it is the refractive 

index of the polymer matrix that has to be controlled. Howard et al. [15] have shown that the 

refractive index of the resin system that has been used in this study increases as the conversion 

increases and reaches close to the refractive index of the 0.7 µm barium glass filler particles. It 

follows that in order for the experimental brush-modified filler system to exhibit higher 

transmission, the refractive index of the polymer matrix and consequently, the monomer 

conversion must be higher than that of the γ-MPS-based system. The bulk conversion was 

monitored in these systems and there is no significant difference in its value in between the 

different systems. 
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Figure 7.10. Refractive indices of cured samples with varying OX50 particle loading and filler 

surface treatment. 

 

Figure 7.11. Refractive indices of cured samples with varying 0.7 µm particle loading and filler 

surface treatment. 
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Figure 7.12. Refractive index variation in cured composites with different filler ratios and filler 

surface treatments 

There are two possible explanations of this dichotomy that lies at the interface between 

the filler particles and the polymer matrix. The oligomer is made up of aromatic groups that can 

give high refractive index to the bulk material [17]. It was shown in Chapter 5 in TEM images 

that there is a distinct interphase around the filler particles modified with the oligomer. This 

interphase, made with the aromatic oligomer, could possibly have a high refractive index. The 

resin, with BisGMA as one of its components, also has a high refractive index. The surface of the 

fillers has a low density of the oligomer. This should allow the high refractive resin to infiltrate 

into the oligomer layer. This may lead to a gradual gradient of refractive index around the filler. 

One the other hand, the interface due to the γ-MPS molecules can create a sharp gradient due to 

the mismatch in refractive index with the resin matrix. It has been reported that the γ-MPS layer 

around particles actually consists of multiple layers of γ-MPS molecules [18] and this may lead 
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to an even more abrupt gradient in refractive index. This maximizes the scattering potential, 

which should be less in the composites with the oligomer-treated fillers. The enhanced scattering 

could result in the loss of light transmission that is observed in the γ-MPS-based composites.  

 A second explanation is as follows. It was discussed in Chapter 5 that the interface 

created due to the brush treatment on the fillers places less restriction on the polymerizing 

monomer around it than that around the γ-MPS-treated fillers. It is known that double bond 

conversion is hampered if restrictions are placed on its mobility during cure [19]. The enhanced 

mobility of the monomers due to the reduced restrictions can potentially cause an effective delay 

in gelation and may also result in a higher limiting conversion. However, since the overall bulk 

conversion of the sample is not significantly different across the samples, it can be inferred that 

any difference is small and is due to the conversion difference at the interface. There is 

suggestive evidence that there is a gradient of properties in the interphase region around particles 

in nanocomposites due to confinement effects that affect the mobility of the polymer around 

filler particles [20–22].  The length and slope of the gradient would depend on the interaction 

between the interface and the polymer. If, as in the case of the γ-MPS-treated fillers, there is an 

unfavorable interaction between the particles and the polymer in terms of restricting the mobility 

of the growing polymer, the gradient can be large. If, however, there is less restriction on the 

developing polymer and the polymers near the particle surface are allowed to reach the same 

conversion as the bulk polymer, the gradient would be shortened. This would be the case of the 

brush-treated filler-based composite systems. If the gradient is shortened, there would be more 

total polymer at a higher conversion in the experimental composites as compared to the γ-MPS-

based ones. This would narrow down the gap between the refractive index of the polymer and 
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the 0.7 µm filler particles. This explains the improved light transmission in the experimental 

composites.  

It is noteworthy that the interphase effect due to the brush-modified nanoparticles helps 

in pushing up the refractive index of the polymer closer to that of the 0.7 µm particles. This is a 

very interesting relationship at play in these clinically relevant bimodal composites. If the filler 

nanoparticles are present without the near micron-sized particles, the refractive index mismatch 

would increase due to the low refractive index of the nanoparticles. This leads to reduced light 

transmission. If the micro particles alone were present as the filler, this leads to good 

transmission with little effect of the surface treatment, as seen in Figure 7.11. But the 

formulation of current dental composites demands the inclusion of nanoparticle to have better 

wear properties, higher filler loading and improved aesthetics [7]. Hence to have the best 

composites, both sizes of particles are necessary but the optical properties are enhanced quite 

substantially by the introduction of the oligomeric surface modification of the nano-sized filler.  

 

7.4 Conclusion 

Modern dental composites are multicomponent mixtures consisting of filler particles with 

a distributed range of sizes. Low shrinkage stress is necessary for long term durability whereas 

optical clarity is necessary for increased depth of cure and also for the ability to manipulate color 

characteristics. The mixed mode filler particles that have large differences in sizes and refractive 

indices make it difficult to achieve optimal properties. Tailoring of the interface is one way of 

improving these properties. The modification of the interface done in this chapter gave 

composites with not only reduced shrinkage stress but also better optical clarity. This has 
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significant implications as one single surface treatment led to the improvement of multiple 

properties of the composite.  
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CHAPTER 8 

CONCLUSION AND RECOMMENDATIONS 

Dental composite materials are now widely accepted and used due to their aesthetic 

qualities, ease of use, less cavity preparation than the erstwhile amalgam-based restoratives and 

also less environmental risks than the amalgams. With almost half a century of use, these 

materials have come a long way in terms of improvement of mechanical properties and clinical 

performance. However, there are still concerns regarding the long-term durability of these 

composites, mainly due to the problems of volumetric shrinkage and the associated shrinkage 

stress. Shrinkage is inevitable with the polymeric nature of the composites and a majority of the 

current research focuses on developing new monomer systems with lower shrinkage. Less focus 

is given to utilizing the other two components of the composites – the fillers and the interface 

between the resin and the fillers – as a tool to reduce shrinkage stress. There are reports in 

literature, however, showing that low shrinkage does not necessarily lead to lower stress. This 

necessitates a detailed examination of the factors that determine shrinkage stress development in 

photocured composite materials. This thesis explores this question by focusing on the filler phase 

of model dental composites.  

 Firstly, we have explored the relationship of shrinkage stress with shrinkage and modulus 

by varying filler content and double bond conversion. Studies looking at variation of shrinkage 

stress mostly focus on one or two of the above parameters. Double bond conversion is also rarely 

reported for such studies. As a monomer system is transformed into a highly crosslinked, 

vitrified polymer, there is a drastic change in material properties. The material is different at each 

point in its conversion profile, hence it is important to always report the conversion, to have a 
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legitimate basis of comparison of different materials. We have sought to bring the different 

parameters that affect shrinkage stress to create a clearer picture of the factors affecting its 

development. We found that shrinkage, modulus and stress all increase with respect to 

conversion. The amount and type of filler determines the magnitudes of the properties and alters 

the conversion dependence of the polymer property evolution in composites. While shrinkage 

increases almost linearly through most of the range of conversion, modulus and stress increased 

only gradually in the initial stages, followed by a precipitous rise as the limiting conversion value 

was approached. For higher filler loadings, when the volume fraction of the resin is less, the 

stress apparently did not increase in proportion to the modulus. At this stage, the shrinkage, 

although increasing slowly, seemed to be affecting the stress more than the modulus. The issue 

of whether shrinkage or modulus affect the stress more was resolved by considering the actual 

increased strain on the polymer that is present at a reduced volume fraction, rather than the strain 

on the entire composite. Taking this “real” strain into account reveals that the stress is indeed 

proportional to both modulus and shrinkage. 

 With this picture in mind, a novel way to alleviate the shrinkage stress was devised. This 

involved functionalizing the surface of the fillers with polymer brushes. The idea was that by 

tailoring the polymers or oligomers that were attached to the surface, a compliant interface could 

be designed. The compliance of the interface would locally help relieve the strain on the polymer 

phase, thereby reducing the stress. To test this hypothesis, commercial oligomers with three 

different molecular weights were taken and modified to have two different levels of methacrylate 

groups on their chains. It was found that, in general, the longer the length of the oligomer, the 

lower was the shrinkage stress, compared to the conventional silane (γ-MPS)-treated control. 

Also a higher number of methacrylate groups resulted in higher stress, for the same molecular 
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weight of the oligomer. This was encouraging and we went ahead with designing oligomers that 

could be varied in structure even more than the commercial oligomers. This would help in 

determining more parameters that affect stress development.  

 With this aim, two series of oligomers were synthesized. One series was made from 

monomers that had a more rigid backbone, while the other had a more flexible backbone. Each 

series had oligomers with three different molecular weights, to cover a wide range of oligomer 

lengths. Furthermore, each oligomer was modified to contain either no methacrylate groups or a 

high number of methacrylate groups on its backbone. In this manner, eighteen different 

oligomers were made, creating a wide range of properties. Composites made with fillers 

functionalized with these oligomers were tested for shrinkage stress development. It was 

observed that, similar to the commercial oligomers study, the addition of reactive groups to the 

oligomers resulted in an increase in shrinkage stress. An increase in the length of the oligomer 

also affected the shrinkage stress, but to a lesser extent. There was a tendency for the shrinkage 

stress to reduce with increase in oligomer length. There was no significant trend in the effect of 

the flexibility of the oligomer on shrinkage stress. A possible reason for this is that the “rigid” 

oligomers that were made not rigid enough to show a perceptible difference in properties.  

 This study showed the importance of the interface in affecting stress development. It was 

postulated that the filler surface played a significant role in the development of a network in the 

composite. The oligomer treatment hampered the formation of the network, slowing the speed at 

which the network was formed. Increase in reactive groups on the surface hastened the network 

development. An important lesson from this was the need to optimize surface reactive group 

concentration in composites. In commercial composites, fillers are overwhelmingly treated with 

reactive groups, with the idea that this will provide a strong link between the filler and polymer 
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phases. From our work, it can be inferred that this is not the best solution if stress is a major 

problem in the application.  

In addition, an interesting aspect of interface dynamics was observed. By staining the 

interface with ruthenium tetroxide, it was possible to view it on the filler surface, before and after 

polymerization. It was observed that in the composite that had the least shrinkage stress, the 

interface seemed to expand. This was in accordance with the hypothesis that interface 

compliance might play a role in the development of stress.  

The interface modification played an important role in changing optical properties of the 

composites. When fillers of different sizes were mixed together, it was found that fillers treated 

with the experimental oligomer had better light transmission than those with the conventional γ-

MPS treatment. Nanometer-sized fillers were found to affect the light transmission to a large 

extent, most likely due to their large surface area which affected the dynamics of the polymer 

layer around them. This has important implications for depth of cure in composites. Enhanced 

light transmission would allow light to penetrate deeper into the composite, increasing the degree 

of cure at larger depths.  

Stress relaxation forms an important component of stress development. But it is difficult 

to quantify during real-time cure. Standard stress relaxation experiments were carried out in 

partially cured samples, to estimate the potential for stress relaxation over the conversion range 

representing uncured monomer to the fully cured composite. Data from experiments was fitted to 

a two component Maxwell model. Here it was found that the experimental oligomers had a faster 

relaxation time and more stress recovery as compared to the γ-MPS-based composites, over the 
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range of conversion tested. This was attributed to the compliance of the interfacial layer created 

by the oligomers.  

Overall, the surface modification technique using oligomers helped alleviate stress and 

also improve optical properties in dental composites. This has implications for the general area 

of composite materials, and should not be limited to the dental field. Shrinkage and shrinkage 

stress are a problem in other areas of polymer application as well, like coatings, adhesives and 

optical storage devices. Our method can be used in all these fields to alleviate the problem of 

stress.  

This thesis also brings up new avenues for further research. From the effects of the 

interphase, it is obvious that the properties of the interface region have a significant effect on 

material properties. It would be interesting to probe the properties of this interface. The interface 

or interphase region is estimated to be of the order of nanometers, making it challenging to 

measure its properties. However, using mechanical and thermal nanoindentation with AFM, 

nanoscale properties can be measured accurately. Using thermal AFM tips, the glass transition 

region around the particles can be probed. High stiffness AFM tips can be used to probe the 

modulus around the particles. Combining these, we can get a very good picture of the properties 

of the interphase. This is, however, very challenging and that is what makes it more interesting to 

study. 

Another interesting area to study would be how a substrate affects the bulk glass 

transition temperature in thin films. It has been seen that the glass transition temperature very 

near the substrate in thin films can be different than the bulk glass transition temperature. It can 

be inferred that the surface treatment of the substrate would also affect this phenomenon. An 
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interesting study would be to see how far from the substrate do surfaces treated with polymer 

brushes affect the glass transition. Varying the properties of the brush should vary the distance 

from the substrate where the properties of the thin film match those of the bulk.  

The brush treatment in this thesis was done using a “grafting-to” approach. This results in 

a low density of brushes on the surface, which may in part account for the excellent success of 

the approach demonstrated here. To better control the surface grafting density without altering 

the range of the brush molecular weight, a “grafting-from” approach can be used, where brushes 

can be made by surface initiation from sites on the particles. This alternative would likely also 

need to include a strategy to control the concentration of the surface initiation sites. This would 

lead to more control of the brush density and length. It would be interesting to study the use of 

fillers made with this method on shrinkage stress development and possibly in combination with 

resin compositions designed as low shrinkage/low stress alternatives to the traditional 

dimethacrylate resins used here.  
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