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ABSTRACT 

Yevgeniy Kaufman 

The Influence of Different Size Representative Volume Elements (RVEs), and Isotropic 

Compression of Soil Fabric vs. Gravity Deposition Before Triaxial 

Compression in Three-dimensional Ellipsoidal Discrete Element Modeling (DEM) of 

Granular Assemblies in Addition to DEM Interparticle Elasto-Plasticity of Metallic 

Powder Simulations vs. Abaqus Results. 

Directed by Prof. Richard Regueiro, University of Colorado, Boulder 

 

In this comparative study of RVEs, a DEM code ELLIP3D is utilized to simulate 

quartz sand in triaxial compression tests with particle assemblies attained from an in 

situ fabric generated by synchrotron X-ray microcomputed tomography. In order to 

attain meaningful results for engineered systems at the macroscopic scale using DEM, 

RVE volume sizes play a significant role in the accuracy of simulating physical 

experiments. Simulation time or the number of particles limits the capacity of DEM to 

simulate large-scale granular systems, which is why it is crucial to determine an 

efficient quantity and quality of RVEs. 

ELLIP3D simulations have been carried out to evaluate a minimum threshold for 

RVE size for which a comparison of results from various sized boxed particle 

assemblies provides valuable information on the quantitative behavior of RVEs. The 

mid-progress and final results of the ELLIP3D simulations are compared to 
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experimental data from synchrotron micro-computed tomography (SMT) scans. These 

data containing the initial numerical packing from the scans provide us with the 

particles’ radii, positions, and orientations which are approximated as ellipsoids, which 

is a current limitation of ELLIP3D, but extension to poly-ellipsoids is being planned. 

Additionally, a comparison between simulations of triaxial compression on in situ fabric 

versus a slightly displaced fabric due to gravity deposition on an assembly of ellipsoidal 

particles is explored. 

Furthermore, a bilinear elasto-plasticity constitutive model is implemented into 

ELLIP3D to explore a more realistic phenomenon within the interparticle interaction for 

materials that exhibit such behavior. Elasto-plastic deformation is appropriate in studies 

involving metallic powders. The results of a two-particle compaction simulation using 

DE modeling are compared to finite element (FE) simulations. 
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NOMENCLATURE 

 

This section summarizes the symbols, notations, and units (when applicable) 

throughout this thesis, in the order that they are referred to.   

mi = mass of particle i (kg) 
ui = particle centroid displacement vector (m) 
Fi = resultant force vector at centroid of particle i (N) 
Ii = rotary inertia of particle i (kg∙m2) 

i = rotation vector of particle i (radians) 
Mi = resultant moment vector at centroid about the principal axes of inertial frame of 
particle i (N-m) 
nc = number of contacts for the ith particle  
Fxj,i = scalar component of the contact force exerted on the ith particle by the jth particle 
in the x direction (N) 
Mxj,i = scalar component of the contact moment exerted on the ith particle by the jth 
particle in the x direction (N-m) 
Mi = mass matrix (kg) 
ai = acceleration vector (m/s2) 
vi = velocity vector (m/s) 
Ki = stiffness matrix (N/m) 
Ci = damping matrix (N∙s/m) 
Pi = contact loads (N) 

α1 = coefficient of mass proportional damping 

α2 = coefficient of stiffness proportional damping 
cr = normal damping coefficient (kg/s) 

vr = normal relative velocity at the center of two particles i and j in contact (m/s) 

Fd = interparticle damping force (N) 
n= normal vector at contact 
R1 and R2 = radius of particles 1 and 2 (m) 
E1 and E2 = Young’s modulus of particles 1 and 2 (N/m2) 

1 and 2 = Poisson’s ratio of particles 1 and 2 
P = normal contact force (N) 

normal displacement (m) 

Poisson’s ratio 
f = inter-particle constant static coefficient of friction  
T = tangential force (N) 
G = shear modulus (N/m2) 

t = tangential displacement (m) 
kt = tangential stiffness (N/m) 
a = radius of contact area (m2) 
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t = time increment (s) 

max = angular velocity of the particles (rad/s) 

N and T = normal and tangential displacements (m) 

 = point of contact between two particles  

 vector of contact displacement (m) 
e = elastic component 
p = plastic component 
F = contact force vector (N) 
k = stiffness vector (N/m) 
kN = normal stiffness (N/m) 
kT = tangential stiffness (N/m) 


F = rate of change of contact force vector (N/s) 



NF = rate of change of normal contact force (N/s) 


TF = rate of change of tangential contact force (N/s) 

  = rate of change of displacement vector (m/s) 
f = yield function (N) 

 = single force-like internal state variable (ISV) (N) 
 ̂  = direction of the contact force vector 
H = hardening parameter (N/m) 

 = plastic multiplier (m/s) 

  1 n  
= variable at timestep n+1 

 n
   

= variable at timestep n 
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Chapter 1: Introduction to DEM 

1.1 Motivation 

The purpose of this research is to gain a better understanding of dense, dry 

granular material shear behavior through representative volume element (RVE) 

modeling using the discrete element method (DEM) as applied to RVE assemblies 

obtained directly from sub-volume synchrotron X-ray computed tomography (CT) 

images, as well as investigating elasto-plastic interparticle constitutive response of 

metallic particles using DEM. 

Predicting the behavior of engineered systems is significantly improved with 

numerical models and higher resolution experimental methods. Numerical models 

broaden the abilities of engineers by providing accurate and efficient calculations of 

physical phenomena. In general, physical experiments can be challenging and 

expensive to perform, which creates the demand for computational models that can 

accurately depict physical behavior. For one, granular materials may exhibit solid-like 

behavior and in an instant, transition to flowing like a fluid. By treating individual 

particles as discrete bodies, we can capture this overall system behavior of particle 

motion. One application to granular flow can be observed in modeling hopper grain 

flow as shown in Figure 1. In addition to particle flow, DEM can also model the shear 

resistance of granular materials, which is closely related to the subject of this research. 

For instance, Martian soil to tire interaction as shown in Figure 2, can be represented by 

a DEM model of the soil interacting with a FE tire model (Horner et. al., 2001). Three-

dimensional discrete element modeling has the potential to convey accurate multiscale 
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mechanical behavior of granular materials by considering the microscopic properties at 

the particle scale. Scaling up, or relating the particle scale behavior to the continuum or 

macroscale is an ongoing topic of research, and is beyond the scope of this thesis. 

 

 

Figure 1: DEM model of hopper flow (Wassgren and Sarker, 2008) 

 

Figure 2: Martian soil to tire interaction (Photo source: National Aeronautics and Space Administration) 

 

In designing geotechnical structures such as building foundations, earth 

embankment dams, or levees, engineers utilize continuum methods including the finite 

C. Wassgren, Purdue University 13

Modeling Approaches…

• Discrete Approach…

– very good for investigating phenomena occurring at the length scale of a 

particle diameter

– not well suited for modeling larger scale systems exactly

• e.g. Vsystem = 1 L, d = 100 mm Þ ~108 particles

• however, can use DEM to approximate system behavior and gain insight

– need information at the particle scale, e.g. particle shape, particle-particle 

friction, particle mechanical properties, etc.
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element method (FEM) for computational efficiency. However, for granular media and 

powder mechanics, continuum methods dismiss the essential mechanical behavior 

which is driven by the particle-to-particle interaction and potential for large motion. 

With the rapid advancements in computational power, DE methods have the potential 

to accurately model systems of granular materials and metallic powders. This paper 

considers two methods for simulating particle mechanics: Hertz-Mindlin contact DEM 

model for small elastic strains at contact in granular materials and an elasto-plastic 

DEM contact model, reasonable for simulations such as metallic powder compaction. 

Needless to say, the accuracy of DE and FE methods is limited by the accuracy of the 

constitutive models, and also the computing power available. For instance, a cylindrical 

specimen 20.2 mm in height and 9.46 mm in diameter contains approximately 4200 

ASTM 20/30 quartz Ottawa sand particles. Depending on the number of contacts and 

particle motion, a triaxial compression simulation may take roughly 24 hours on a 

single Intel Xeon 3.07GHz processor. A cubic meter of the same sand may have 1~2 x 

109 particles and would require ELLIP3D more than 106 hours (≈114 years) to run on a 

similar single processor. Although ELLIP3D has parallel processing capabilities in 

OpenMP, there is still a large interdependence of particle interactions which increases 

the complexity of parallel computing, and it would still require immense computing 

power to simulate large samples, and places more emphasis on the relevance and 

accuracy of RVEs.  
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1.2 Literature Review  

DEM was first introduced by Cundall (1971) while being applied to rock 

mechanics to assess the failure of jointed, blocky rock systems and was later applied to 

granular materials (Cundall and Strack, 1979). Its main limitation is the number of 

particles in an assembly or the simulation time, which are related to each other. With 

advancing computing power and parallel processing capabilities, these restraints are 

greatly reduced. Yet, it is currently too computationally costly to consider particle-to-

particle interaction within the soil in commercial applications, such as tool or bucket 

digging through gravel/sand, tire-soil interaction (Horner et. al., 2001; Mak et. al., 2011), 

cone penetrometer testing (Yan, 2008; Breul et. al., 2009), estimation of shear strength 

(Yan and Ji, 2010), etc. Laboratory tests such as triaxial compression tests give insight to 

the physical behavior of granular materials, which makes it a suitable measure for DEM 

simulations as performed by various authors (Ng, 2009; Lu, 2010; Plassiard et. al., 2009; 

Yan et. al., 2010; Yimsiri and Soga, 2010; Yimsiri and Soga, 2011). 

The use of DEM models places great emphasis on the fabric used in the 

simulations. The term “fabric” is coined as a qualitative and quantitative property 

which describes the geometric configuration in terms of (1) position and density, (2) 

shape and dimension, and (3) orientation of discrete particles (Oda, 1982). It describes 

the geometrical properties of discontinuities in geomaterials which are crucial in 

determining the macroscopic mechanical behavior of the material. In terms of its 

quantitative measure, a second-order fabric tensor was proposed by Oda and 

Nakayama (1989). Several authors including Yimsiri and Soga (2010), Yimsiri and Soga 
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(2011), and Gao and Zhao (2012) incorporated the concept of the fabric tensor proposed 

by Oda and Nakayama (1989) into DEM simulations of sands in order to understand 

the effect of soil fabric on mechanical behavior.   

The Hertz-Mindlin contact law formulates the interparticle mechanical behavior 

for simulations of granular material. Hertz (1882) developed the first contact law 

between elastic bodies in which he considered normal contact between isotropic, 

linearly elastic spherical bodies. Mindlin (1949) extended the classical Hertzian contact 

theory to various loading situations between two spheres in contact and tangential 

force-displacement relationships. The Hertz-Mindlin contact theory was extended by 

Misra (1995) in order to capture the mechanical behavior of asperity contact which 

characterizes the interface geometry of the particles. Misra’s formulation of the Hertz-

Mindlin theory accounts for normal elastic deformation and frictional sliding for rough 

surfaces.  

The Hertz-Mindlin contact theory is appropriate for modeling elastic behavior of 

inherently stiff materials such as quartz sand; however, the intrinsically irreversible 

deformative properties of metallic powders exhibit an elasto-plastic constitutive 

relationship for which the Hertz-Mindlin contact laws are not feasible during particle 

compaction. Micromechanical models of the powder compaction process have been 

analyzed using elastic, perfectly plastic, and elasto-plastic models. 

In the industry of powder metallurgy (PM), powder compaction is studied 

because it is an essential step in forming metals to a desired shape, prior to sintering. 
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The utilization of powder delivers a cost-efficient method for the production of low 

stressed components in the automotive and white goods industries (e.g., household 

appliances, dish washers, microwave ovens, etc.). Higher loads on metallic parts require 

compaction of powders to higher densities in order to achieve defect-free compacts 

(Khoei and Iranfar, 2003). Accurate modeling of the powder under an applied stress 

will ultimately enable manufacturers to build higher quality fabrications with proper 

design. Particle tracking by Computed Tomography (CT) techniques, combined with 

compaction-hardening continuum plasticity models (Fleck, 1995; Gu et. al., 2001; Zeuch 

et. al., 2001), and DEM modeling (Wu et. al., 2003; Wu and Cocks, 2006) are various 

methods that collectively aim to accurately capture the behavior of metallic powders. 

Basic deformation behavior of metallic powder was described early on through 

empirical means, in which simple uniaxial strain in compression tests were performed 

on iron powder by Kuhn and Downey (1971). In the industry of powder metallurgy, 

there are two conventional processes to isostatically compress a powder: cold 

compaction and hot compaction. Cold compaction is characterized by rate-independent 

plasticity while hot compaction is constitutively defined by power law and creep 

and/or diffusional flow (Storåkers, Fleck, and McMeeking, 1999). Wilkinson and Ashby 

(1975) attempted to model the constitutive relation for power-law creep to solve time 

dependent flow during the sintering process of metallic powders. Further work in 

modeling deformation of metallic powders by power-law creep during hot isostatic 

pressing (HIP) was extended by Kuhn and McMeeking (1992).  Fischmeister and others 
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attempted to evaluate plastic flow of spherical particle powders by isostatic and 

uniaxial compression (Fischmeister et. al., 1978; Fischmeister et. al., 1983). Many 

extensions have been made to rate-independent plasticity models (Fleck et. al., 1992; 

Fleck, 1995). Storåkers et. al. (1999) consider only plasticity and no elasticity in which 

they formulate yield surfaces and creep dissipation parameters to analyze strain 

hardening plasticity. They performed isostatic compaction on copper and tin powders 

for which a homogeneous strain field assumption is imposed. Essentially, the 

homogenous strain field assumption disallows local particle rearrangement or rotation 

during compaction (Martin, Bouvard, and Shima, 2003). Intricate constitutive models 

for powder mechanics have been developed to model compaction; however, this 

research grasps the fundamentals of elasto-plasticity through a bilinear force-

displacement constitutive relationship for powder compaction.   

1.3 Background Overview and Governing Equations: 

1.3.1 Governing and Constitutive Equations for Elastic Frictional Granular Materials  

In this paper, a 3D DEM code ELLIP3D (Yan, 2008) is utilized to simulate over 

several thousand ellipsoidal particle assemblies in conventional triaxial compression 

tests (CTCs). The code uses contact detection algorithms which allow particles to freely 

come into contact and break contacts with neighboring particles. ELLIP3D abides by 

Hertz-Mindlin contact laws for centric/eccentric impacting, rolling/sliding, and 

depositing of granular particles. It is capable of incorporating Mindlin or Coulomb 

friction models. Additionally, velocity proportional damping and mass/stiffness 

proportional damping at interparticle contacts are utilized in the code. ELLIP3D is 
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coded in C++ and uses an explicit time integration algorithm (central difference 

method), with mass scaling as well as “global” (background) mass-proportional 

damping for Dynamic Relaxation (DR) (Underwood, 1983) to simulate quasi-static 

loading of granular assemblies. DR determines a static solution by using a dynamic 

transient analysis and ultimately aims to resolve simulations with stable solutions in 

order to prevent erratic dynamic transitions. For dynamic loading, DEM is naturally 

well-suited.    

 The numerical stability of the simulations is restricted by the size of the time step 

which is controlled by the smallest particle mass and stiffest elastic contact (Yan, 2008). 

Since a considerably small time step may result in extremely long-computation time (i.e., 

many time steps) for larger assemblies, a fictitious background damping can be applied 

to maintain particle stability in order to accommodate a larger time step for quasi-static 

simulations using DR. Specific values for parameters used will be discussed in the 

proceeding sections.  

DEM is a method that simulates the interaction between distinct bodies by 

integrating the equations of motion of linear and angular momentum. A contact 

detection algorithm is utilized along with the fundamental equations of motion to 

compute particle movement by calculating particles’ displacements over a determined 

time step. The overall system behavior is determined by the governing equations: 

Equation (1.1) and Equation (1.2) for which these equations evaluate motion in the local 

coordinate system for each particle to be assembled into the global coordinate system.    
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mi = mass of particle i  

ui = particle centroid displacement vector in internal coordinate frame 

Fi = resultant force vector at centroid of particle i 

Ii = rotary inertia of particle i 

i = rotation vector of particle i 

Mi = resultant moment vector at centroid about the principal axes of inertial 

frame of particle i 

nc = number of contacts for the i
th

 particle 

Fx
j,i

 = scalar component of the contact force exerted on the i
th

 particle by the j
th

 

particle in the x direction 

Mx
j,i

 = scalar component of the contact moment exerted on the i
th

 particle by the j
th

 

particle in the x direction 

(1.4) 
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From the given values of mass densities and volumes of the particles, the mass 

matrix for each particle can be assembled from the particle masses and moment of 

rotary inertia as demonstrated in Equation (1.5).  

The general viscous damping matrix consists of mass and stiffness proportional 

damping. It is formulated by the mass matrix and stiffness matrix as shown in Equation 

(1.6). The equations of motion for the rigid body particles are applied to a system with 

viscous background damping, i.e. DR for quasi-static simulations. The viscous 

background damping applies a force acting in the opposite direction of the velocity 

vector. It is proportional to the velocity of the particles as shown in Equation (1.7), 

where the relative velocity of two particles in contact can be determined by the 

displacement history in time as in Equation (1.8). Equation (1.7) is essentially a force 

that contributes to the right-hand side of Equation (1.4). 
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Mi = mass matrix 

ai = acceleration vector 

vi = velocity vector 

Ki = stiffness matrix 

Ci = damping matrix 

Pi = contact loads 

α1 = coefficient of mass proportional 

damping 

α2 = coefficient of stiffness 

proportional damping 

c
r
 = normal damping coefficient 

v
r
 = normal relative velocity at the 

center of two particles i and j in contact 

Fd = interparticle damping force 

n= normal vector at contact 

 
 

(1.5) 

 

 

 
 
 

 

 

(1.6) 

 

(1.7) 

 

(1.8) 
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 The combined balance of linear and angular momentum equation in matrix form 

in Equation (1.8) are assembled for all particles i=1,.., nparticles, to obtain the global matrix 

balance equation to be interpreted in time using central difference method as in (Yan, 

2008). 

The governing equations are based on Newton’s laws of motion, while the 

constitutive force-displacement relationships for granular materials are established 

from the Hertz-Mindlin contact theory. The values of relative radius and relative 

Young’s Modulus of two particles in contact is defined by Equations (1.9) and (1.10). A 

conceptual schematic of the geometric parameters of two particles in contact is shown 

in Figure 3. 
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Figure 3: Schematic of Hertz contact between two spheres 

 

R1 and R2 = radius of particles 1 and 2 

 

E1 and E2 = Young’s modulus of particles 1 and 2 

 

1 and 2 = Poisson’s ratio of particles 1 and 2 

 

(1.9) 

 
(1.10) 
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The normal contact force P at particle contact is defined by Equation (1.11), following 

Hertz’s contact theory. This equation can be rearranged to formulate displacement as a 

function of normal force: Equation (1.12). The derivative of normal force in terms of 

normal displacement formulates the normal stiffness: Equation (1.13). 
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In ELLIP3D, tangential contact forces can be described by one of Mindlin’s three 

tangential-force/displacement relationships: no slip conditions, partial slip, or a 

decreasing tangential force. For general DEM applications to granular materials, it is 

physically feasible to use a partial slip condition since some slippage is likely to occur, 

where the tangential displacement is a function of normal and tangential forces acting 

at the point of contact. For the partial slip condition, the relationship between tangential 

force and tangential displacement is described by Equation (1.14). Similarly to the 

normal displacement, the tangential displacement and tangential stiffness can be 

derived as expressed in Equation (1.15) and (1.16) respectively.  

 

P = normal contact force 

normal displacement 

 

(1.11) 

 
 
 

 

(1.12) 

 

(1.13) 

 
 



13 
 

 



































2/3

t

P)f-3(2

8Ga
-1-11 Pf  




T  

3/2

t
Pf

T
-1-1 

Ga8

P)f-3(2
  

























 

2/1

t

t

t
P)f-3(2

8Ga
-1 

-2

4
  

d

dT


















Ga
k

 

Equation (1.17) gives the Regularized Coulomb Friction model with sliding, 

which is the linear approximation to the partial slip condition. The equation is a 

function of the radius of the contact area a, which changes with normal displacement. 

Figure 4 illustrates this constitutive relationship where sliding occurs when |  |     . 
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4
  

d

dT

t

t


Ga
k 

 

 

 

 

Additionally, mass scaling can be used when there is a requirement for a very 

small time step when simulating small particles with stiff contacts (Yan, 2008). Mass 

and moment of inertia are inversely proportional to the acceleration and angular 

Poisson’s ratio 

f = inter-particle constant static friction 

T = tangential force 

G = shear modulus 

a = radius of contact area 

 

 

 

(1.14) 

 
 
 
 
 

(1.15) 

 

 
 

(1.16) 

 
 
 
 

(1.17) 
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Figure 4: Regularized Coulomb Friction Model with Sliding
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acceleration of the particles by the definition of Newton’s second law. Thus, applying 

mass and moment of inertia scaling will reduce the linear and angular acceleration of 

the particles. Equation (1.18) conveys the theoretical critical time step obtained from 

linear stability analysis for which the solution will grow unboundedly if the critical time 

step is exceeded (Yan, 2008). 

   
 

    
  √     

 Although mass scaling permits a larger time step by slowing down the particles, 

it also causes instability due to large contact forces. For instance, in a well-graded 

granular material, it is possible that a very small particle comes in contact with another 

particle that is an order of magnitude larger. Normal force is a function of particle mass 

and the increase in relative mass due to mass-scaling would cause the smaller particle 

to repel at a high velocity, producing unrealistic results. Thus, an efficient value of 

mass-scaling should be weighted based on stability and computation time. Specific 

parameters used in ELLIP3D simulations will be discussed in the following chapter.

 

 

1.3.2 Constitutive Theory for Elastoplastic Metallic Powders  

Elasto-plastic DE modeling is relevant for modeling particulate materials with 

elasto-plastic particles such as metallic powders (Storåkers et. al., 1999). This elasto-

plastic constitutive model assumes that particles do not crush or fracture. For simplicity 

for now, the vector form of this model described below, incorporates a constant elastic 

stiffness k and constant hardening parameter H to define the normal contact force F and 

a single force-like internal state variable (ISV) . Major limitations of the model are the 

(1.18)  
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following: (1) particle shapes remain spherical (or ellipsoidal) upon deformation at 

contact; (2) the displacement vector at contact  is additively decomposed into elastic 

and plastic parts which is typically appropriate only for small deformations. A 

comparison of full finite element (FE) simulations and DE simulations are discussed in 

Section 2.2.1. The formulas in the preceding section depict the general scheme of 

ELLIP3D for elastic, frictional contact. The simple 1-D elastoplasticity constitutive 

model for powder compaction holds the following general formulation to be true:  

 

 

 

 

 

 

 

 

 

Vector Form 

Vector of contact displacement is given as: 
 

Figure 5: Two-Particle Contact Schematic with normal overlap displacement N and tangential displacement T 

T 

 

 

N 

Contact 

 
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







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T

N




    (1.19) 

for which the normal (labeled with subscript N) and tangential (labeled with subscript 

T) displacements are N and T, respectively. Additive decomposition into elastic and 

plastic parts is denoted as 

 

pe
δδδ 

 
 (1.20)

 

Where the superscript e is the elastic component and p represents the plastic 

component. The contact force vector F at contact  is expressed as  
 

e kF


 
(1.22)

 

where k is the stiffness matrix, and will be assumed isotropic for now where kN = kT.  
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(1.23) 

 In rate form,
 

)( pe    kkF
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(1.24)
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Yielding is determined by the yield function f, which is a function of the contact force 

vector F and the single force-like internal state variable (ISV) .  

0),(   
FFf

  
(1.26)

 

0f          elastic  (1.27) 

0f

          

plastic  (1.28) 

2

T

2

N )(F)(F 
F

 
(1.29)

 

With the associative plasticity, the plastic potential can be observed as g = f; the flow 

rule can be stated as  




FF 









fgp    (1.30) 

where  is the plastic multiplier. The direction of the contact force vector  ̂ , which is 

the direction of plastic displacement at contact is described by 

 








n

F

F

F
ˆ



f

  

(1.31) 

Through the definitions of the ISV evolution 

  H
 (1.32) 

consistency condition 
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0f
 (1.33) 

and Kuhn-Tucker conditions  

,0
  

,f 0
  

0f
 (1.34) 

With three equations (1.35) – (1.37) and three unknowns (Fe, , ), the ODEs of the 

system are integrated using Backward Euler in the following fashion:  

)( pe    kkF


 
(1.35)

 

 H
 (1.36) 

0f
 (1.37) 

tr,tr,tr,

nn
ˆˆ   nkFnδkFF  )()()( 1

 
(1.38)

 

tr,

tr,
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


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F

F
n 

 
(1.39) 

  Hnn 1  (N/m)
  

(1.40)
 

01 nf
 

(1.41)
 

To solve for 
 

0)( 111   nnnf 
F

 
(1.42)
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Then we can solve for the plastic multiplier increment  when plastic loading occurs 

by determining the yield function f at the current (n+1) timestep  

0,

1   Hkf n
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n F
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With the return mapping algorithm: 

Given
 nnnn  ,,1 δδδ  

  

Parameters k (N/m), H (N/m), 0 (N) 

1. Check for yielding: 
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If f tr > 0, plastic go to step 2. 

else if f tr < 0, elastic:  
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2. Plastic loading: 
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  Hnn 1
  

(1.59)
 

Notes: 1) There is no consistent tangent needed because ELLIP3D is explicit. 2) The 

preceding notation is in vector form with a single ISV0, stiffness k, and hardening 

parameter H; the component form with different values of 0, k, and H for normal and 

tangential directions is implemented as follows in order attain results in Figures 27/28 : 
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Chapter 2: Method 

2.1 Triaxial Compression 

2.1.1 Three-dimensional Particle Arrangement (Fabric) 

Various methods are used to generate initial particle assemblies. Most commonly, 

these methods lead to synthetic fabrics of randomly generated particles produced to 

achieve a specified size gradation and sample porosity (Wellmann, 2008; Pizette, 2010). 

The term fabric refers to the 3D particle arrangement within a RVE of granular particles. 

This research aims to simulate conventional triaxial compression tests with particle 

assemblies in their in situ state by obtaining the specimen fabric through X-ray 

synchrotron micro-computed tomography (SMT) imaging. The represented volume 

elements of the particle assemblies are generated from in situ SMT imaging provided by 

Professor Khalid Alshibli and co-workers at the University of Tennessee, Knoxville. 

These data of initial numerical packing are approximated as two-axis ellipsoids based 

on the numerical algorithm used to interpret particle shape from X-ray CT data 

(Thompson et. al., 2006). The SMT imaging provides the sand grain particles’ radii, 

positions, and orientation. Triaxial compression tests were performed on F-75 Ottawa 

sand and ASTM 20/30 Ottawa sand with SMT scans occurring throughout the test in 

order to provide initial, intermediate, and final images. This 3D imaging was achieved 

using the Beamline at the Advanced Photon Source (APS) of Argonne National 

Laboratory by having an X-ray source and imaging unit take cross-sectional images of a 

cylindrical soil specimen that rests on a rotating platform, for which cross-sectional 

images were taken every ¼ of a degree. The SMT imaging enables the validation of 
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numerical and visual results of ELLIP3D simulations in terms of particle displacements 

for the various assemblies as the specimen is compressed. In the ASTM 20/30 sample, 

there are apparently granular particulates which appear as very small particles in the 

DEM simulation. They too are approximated as ellipsoids and are not removed from 

the simulation in order to maintain the fabric. Instructions on converting the 

experimental data to ELLIP3D readable files can be found in Section 2.1 in Appendix C. 

An image of a CT scan from a full cylindrical specimen 20.2 mm height and 9.46 mm in 

diameter of ASTM 20/30 sand is shown in Figure 6 below. At this time, ELLIP3D does 

not have capabilities to perform simulations with cylindrical boundaries so a boxed 

RVE is trimmed from the cylindrical specimen as shown in Figure 6.   

 

 

2.1.2  Fabric Modifications for Computational Stability 

The initial particle assembly is formulated by an algorithm that interprets the 

raw X-ray SMT volume data (Thompson et. al., 2006). It approximates the sand grain 

Figure 6: 2-D CT Cross-Section, Computed Cylindrical Assembly, and Boxed RVE Trimmed from 

Cylindrical Assembly 
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geometries as two-axis ellipsoids which result in small gaps and overlaps. In order to 

maintain the fabric (three dimensional geometric arrangement), overlapping particles 

are separated to the point where their surfaces are just in contact as shown in the initial 

and final configurations of the particles in Figure 7. This is done by applying a 

parameter that controls viscous background damping and a relatively small time step 

while allowing the body forces to push the particles apart.   

   

Figure 7: Initial and Final States of Particle Separation 

Next, the small gaps are closed by isotropically compressing the particles to achieve the 

confining pressures used in the experiment (see Table 1 for confining pressures and 

other experimental parameters). Once the confining pressure is achieved by isotropic 

compression, triaxial compression simulations are performed. This is the procedure for 

triaxial compression tests on in situ fabric particle assemblies; these results are 

compared to triaxial compression tests where the fabric is lost due to deposition by 

gravity. Detailed instructions and the location of a repository directory containing 

example simulations with the various stages involved can be found in Appendix C. 

2.1.3  Experiment and ELLIP3D Parameters  

The two granular samples considered in this research have D50s, median grain 

sizes, of 0.160 mm (F-75 quartz Ottawa Sand) and 0.725 mm (ASTM 20/30 quartz 
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Ottawa Sand). See Figures 34 and 35 in Appendix A for gradation curves of the granular 

assemblies. Professor Alshibli and his team performed triaxial compression tests on the 

F-75 and ASTM 20/30 samples with vacuum confining pressures of 58 kPa and 70 kPa, 

respectively. The samples were compressed with the same displacement rates and were 

equal in height and diameter, see Table 1. A cross-sectional image of the X-ray SMT 

scan for the F-75 specimen is displayed in Figure 8.  

 F-75 ASTM 20/30  

Confining Pressure 58 70 kPa 

Specimen Height 20.2 20.2 mm 

Specimen Diameter 9.46 9.46 mm 

Displacement Rate 0.2 0.2 mm/min 

Initial Void Ratio 0. 518 0. 523  
Table 1: F-75 and ASTM 20/30 Ottawa Sands Triaxial Compression Experimental Data 

  

Young’s Modulus, E 2.9 x 1010 Pa 

Poisson’s ratio  0.25 

Specific Gravity Gs 2.65 
Table 2: Particle Parameters for Numerical Computation 

 
Figure 8: X-ray SMT Cross-section of the F-75 Quartz Ottawa Sand, 20.2 mm in Height 
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2.1.4 Deposition by Gravity 

The constitutive results of triaxial compression simulations with particle 

assemblies attained from SMT imaging are compared to those where the fabric of the 

particle assemblies is lost by gravity deposition. In the previous simulations, the 

parameter that controls the gravity force was set to zero, but in order to alter the fabric 

for the initial assembly prior to triaxial compression, the particles drop in such a way 

that the large particle motion displaces and alters the fabric. These simulations were run 

dynamically with zero background damping, i.e. no dynamic relaxation. The resulting 

assemblies will be discussed in Section 3.1. 

2.2 Elasto-Plastic Modeling of Powder Compaction  

Compaction simulations of metallic powder were performed on two spherical 

particles (courtesy of Y. Hammi) using the Finite Element Analysis (FEA) program 

Abaqus, and comparing the results to that of the DEM code ELLIP3D. The goal of the 

FE modeling is to understand the phenomenon of deformation, interaction, and flow 

behavior of metallic particles through the use of continuum plasticity models and 

contact laws (Hammi, 2011). In the Abaqus model, the nonlinear geometric effect 

function (NLGEOM) is used in order to account for finite deformations. Although FE 

methods achieve results with greater efficiency than DE methods for large scale geo-

structures, the ratio of finite elements to discrete bodies for simulations of powder 

compaction is in favor of the DEs in terms of computational cost at the particle scale. 

For instance, each particle in the Abaqus simulation is meshed with 2560 brick elements, 

while the ELLIP3D simulations will solely have as many “elements” as particles 
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simulated. A two-particle compaction simulation run implicitly in Abaqus requires 

approximately 16 hours to run; however, the two-particle compaction in ELLIP3D runs 

for about 30 seconds to reach 1e5 time steps. These two-particle simulations in Abaqus 

and ELLIP3D are compressed to 50% strain and appear in Figures 9 and 10 below, 

respectively. In these figures, it can be noted that the FE particles can become deformed; 

however, the DE particles undergo overlap rather than deformation. In order to obtain a 

proper calibration of material properties, the two-particle compaction in Abaqus and 

ELLIP3D are simulated simply to serve as a precursor to the 1000 plus particle 

assemblies to be modeled in future research. Dr. Youssef Hammi of Mississippi State 

University set up the Abaqus models to assess the normal and shear behavior of 

spherical nickel particles. In this study, the normal and tangential force-displacement 

elasto-plasticity behavior is considered. To compare the results, several measures were 

involved.  

First and foremost, the elasto-plasticity constitutive model discussed in Section 

1.3.2 required implementation into ELLIP3D, since the code had only Hertz-Mindlin 

contact theory for rigid, elastic bodies, combined with Coulomb friction. The ELLIP3D 

code needed to be calibrated with the Abaqus results in order to obtain the yield force 

0n and 0t, stiffness kn and kt, and hardening parameters Hn and Ht, as denoted in the 

component form of Section 1.3.2. The sum of the forces acting on the top platen as it 

displaces results in the force-displacement curve illustrated in Figure 11.  For simplicity, 

a bilinear elasto-plastic curve is determined.  
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Figure 10: Two-Particle Compaction in ELLIP3D 

Figure 9: Two-Particle Compaction in Abaqus (Hammi, 2011) 
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Figure 11: Force Displacement Curve from Abaqus simulations (Hammi, 2011) 

 

Since the bilinearity of the curve is difficult to assess on the force-displacement 

curve, the stress-strain curve is plotted in order to determine the normal yield force,  n. 

Note that the stress is the sum of the contact forces divided by the contact area, where 

the contact area of two spheres in contact at small strain is a = (R0)1/2. The bilinear 

approximation to the stress-strain curve is shown in Figure 12, from which the yield 

stress is approximated to be y = 75,000 Pa. The FE model consists of particles that have 

a diameter of D = 2 x 10-4 m, thus the formulation n = y n · a = y n · (R0yD)1/2 where 

the yield strain is y = 0.05. This results in 

  
  (     

 

  )√(
 

       
 

 

       
)
  

                         N so the yield 

force is n = 1.68 N. The elastic and elasto-plastic slopes result in a normal elastic 

0

1

2

3

4

5

6

7

8

9

0 0.00002 0.00004 0.00006 0.00008 0.0001 0.00012

Fo
rc

e
 (

N
) 

Displacement or Penetration (m) 

Force-Displacement for FE (Abaqus) 



31 
 

 

stiffness of kn = 1.68e5 N/m and a normal hardening parameter of Hn = 1.18e5 N/m. 

The FE particles were prescribed with the provided material properties for nickel 

powder: E = 69,000 MPa for the Young’s modulus and  = 0.3 for the Poisson’s ratio. 

The plasticity model used in Abaqus can be found in Appendix A, Figure 36. The 

plasticity model used in Abaqus is a Von Mises tabular isotropic hardening with linear 

isotropic elasticity. The mechanical constraint formulation, i.e., friction model used is 

the kinematic contact method with finite sliding, incorporating a coefficient of friction 

of 0.1 for both, particle-to-particle and particle-to-wall interaction. From the tangential 

force-displacement results in Abaqus, the ELLIP3D elasto-plasticity parameters could 

be calibrated with a tangential stiffness of kt = 3.65e5 N/m and tangential hardening 

parameter Ht = -1.08e4 N/m which can be referred to in Figure 28. The ELLIP3D and 

Abaqus simulations are shown in Figure 13. 

 

Figure 12: Bilinear Fit to Stress-Strain Results from Abaqus 
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Figure 13: Two-Particle Shear Simulation in ELLIP3D and Abaqus 
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2.3 Post-processing 

All post-processing for the DEM simulation data was achieved by ELLIP3D. The 

constitutive results were plotted using Excel. Visual three-dimensional particle 

assemblies were analyzed throughout the simulations using Paraview, an open-source 

data analysis and visualization software (www.paraview.org). Instructions for building 

Paraview plugins for ELLIP3D readable files can be found in Appendix D. See Figure 14 

for a flow chart of the methodology. 

 

Figure 14: DEM Flow Chart for Simulations of Granular Assemblies 
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Chapter 3: Results 

3.1 In situ vs. Gravity Deposition Simulations for Granular Materials in Triaxial 

Compression 

The DEM utilizes a particle-based material modeling approach in order to 

simulate the macroscopic system behavior. These simulations assess the constitutive 

results of three-dimensional particle arrangement (fabric), as well as RVE size.  In order 

to assess the accuracy of the ELLIP3D simulations, a comparison to experimental 

measures will not only enable the calibration of input parameters into ELLIP3D, but 

also support the validation of the DEM approach.  

The experimental results of the principal stress ratio (PSR) vs. axial strain for the 

ASTM 20/30 and F-75 specimens are shown Figures 15 and 16, respectively. It can be 

noted that only the initial elastic-plastic portion of the PSR vs. axial strain curve can be 

achieved with the rigid boundary walls in ELLIP3D. The overall behavior demonstrates 

that the samples begin to exhibit an increase in PSR to a peak value then soften, in 

which bulging and shear band formation occur (Alshibli, 2011). Additionally, sharp 

drops in PSR can be seen in the curves which are the points where the SMT scans were 

performed. During the imaging, data collection time takes ten minutes and 

reconstruction time requires five minutes (Alshibli, 2008).  
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Figure 15:  Principal Stress Ratio vs. Axial Strain for ASTM 20/30 Quartz Ottawa Sand (Alshibli, 2011) 

 

Figure 16: Principal Stress Ratio vs. Axial Strain for F-75 Quartz Ottawa Sand (Alshibli, 2011) 
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3.1.1 ASTM 20/30 Quartz Ottawa Sand ELLIP3D vs. Experimental Results 

Simulations of conventional triaxial compression tests were performed on the 

following assemblies of ASTM 20/30 quartz Ottawa sand: 4200 particle boxed RVE 

which will be called ASTM-Large-RVE, 897 particle boxed RVE trimmed from the same 

larger RVE which will be denoted as ASTM-Small-RVE, and the large RVE where the 

fabric is lost by gravity deposition which will be named ASTM-Large-RVE Post-Deposit. 

Figures 17 (a) – 17 (c) show the boxed RVEs of the ASTM 20/30 quartz Ottawa sand 

particles after each of the stages preceding the triaxial compression test, i.e., float, 

isotropic compression and/or gravity deposition followed by isotropic compression. 

Figures 18 (a) – 18 (c) show the final configurations of the assemblies after triaxial 

compression with a semi-transparent overlay of the initial particle assembly in order to 

visually recognize particle displacement. By characterizing the initial and final particle 

assemblies, it appears that the greatest particle motion occurs at the top and bottom 

portions of the assemblies, where the boundaries are displacement controlled. A close-

up image of the top of the ASTM-Small-RVE in Figure 18 (b) is shown in Figure 19. The 

initial and final void ratios of the ELLIP3D assemblies during triaxial compression 

simulations were higher than that in the experiment, e.g., e0  = 0.78 and ef = 0.77 at 2% 

axial strain for the ASTM-Small-RVE as compared to the e0  = 0.523 in the experiment. A 

higher void ratio is likely a consequence of the two-axis ellipsoid approximation. 

The triaxial compression test simulation parameters are presented in Table 3. The 

four vertical side walls of the rigid container move outward as the assembly is 
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compressed in order to maintain the prescribed constant confining pressure. These 

confining pressures on the four walls are given by the sum of the normal forces of the 

particles divided by the area of the wall. The top and bottom rigid boundaries are 

displacement controlled at prescribed strain rates shown in Table 3. A much higher 

axial displacement rate was required in the simulations than that used in experiment. 

This is due to the necessity of a very small time step in order to maintain stability in 

terms of particle motion, and using a realistic compression rate would take an 

unfeasible amount of time to run (approximately 2700 days or 7.4 years running in 

parallel on 2 or 3 processors for the ASTM-Large-RVE). The results in Figures 20-22 

demonstrate that the principal and deviator stress versus strain responses for the large 

RVE with the soil fabric from the CT imaging to be higher than that of the experiment, 

which is higher than that of the small RVE and the RVE where the fabric is lost by 

gravity deposition. The sole difference in input parameters among the simulations is 

that the Post-Deposit simulation uses a slower compression rate of 7x10-4 m/s. This 

results in a smoother response with less noise than the other two simulations; however, 

it required longer simulation time (2 weeks).  The two-axis ellipsoid particle shapes are 

crude in approximation to the more angular particles in Figure 6, and thus, a high 

interparticle friction coefficient is used to account for particle interlocking occurring in 

the experiment of the sand specimen. It can be presumed that the constitutive results 

are more sensitive to other factors besides the soil fabric, such as interparticle friction 

and mass and moment of inertia scaling (M&MoIS), but more analysis is needed. No 

experimental data were provided for the volumetric strain vs. axial strain plot for 
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comparison to the simulations in Figure 22. Here, negative volumetric strain is assumed 

to be compaction. The small and large RVEs with fabrics attained from CT imaging did 

not attain as dense of packing as the Post-Deposit RVE, which justifies the difference 

compaction observed in Figure 22. The Post-Deposit RVE undergoes initial compression, 

followed by dilation at low values of volumetric strain which can be seen more clearly 

in Figure 23; however, this is the typical response that a dry, dense sand with low 

confining pressure would undergo. This Post-Deposit simulation had initial and final 

void ratios of e0  = 0.701 and ef = 0.740. 

 

(a)                (b)                    (c)    

Figure 17: Initial assembly configurations of (a) ASTM-Large-RVE, (b) ASTM-Small-RVE (c) ASTM-Large-RVE 

Post-Deposit 
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(a)           (b)       (c)  
Figure 18: Final assembly configurations with a semitransparent overlay of the initial assembly for (a) ASTM-

Large-RVE, (b) ASTM-Small-RVE (c) ASTM-Large-RVE Post-Deposit 

 

 

Figure 19: Close-up of the top of the final assembly configurations with a semitransparent overlay of the initial 

assembly for the ASTM-Small-RVE  
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Figure 20: Principal Stress Ratio vs. Axial Strain for ASTM 20/30 Sand in Triaxial Compression 

 

Figure 21: Deviator Stress vs. Axial Strain for ASTM 20/30 Sand in Triaxial Compression 
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Figure 22: Volumetric Strain vs. Axial Strain for ASTM 20/30 Specimen in Triaxial Compression 
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Figure 23: Close-up Volumetric Strain vs. Axial Strain (Same as Figure 22 but with Smaller Y-axis Values) 

 ASTM-Large-
RVE 

ASTM-Small-
RVE 

ASTM-Large-RVE 
Post-Deposit 

Time Step Size 5.0 x 10-8 s 5.0 x 10-8 s 5.0 x 10-8 s 

Mass Scaling 10 10 10 

Moment Scaling 10 10 10 

Viscous Background Damping on Mass 1.0 x 104  1.0 x 104 1.0 x 104 

Viscous Bkrnd. Damp. on Mnt. of Inert. 1.0 x 104 1.0 x 104 1.0 x 104 

Contact Damping 0.1 0.1 0.1 

Particle-to-Particle Friction 20 20 20 

Particle-to-Boundary Friction 20 20 20 

Cohesion 0 0 0 

Boundary Wall Compression Rate 7.0 x 10-3 m/s 7.0 x 10-3 m/s 7.0 x 10-4 m/s 

Boundary Wall Release Rate 7.0 x 10-3 m/s 7.0 x 10-3 m/s 7.0 x 10-4 m/s 

Confining Pressure to Achieve 70 kPa 70 kPa 70 kPa 

Table 3: ELLIP3D Simulation Parameters for ASTM 20/30 Specimen 
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3.1.2 F-75 Quartz Ottawa Sand ELLIP3D vs. Experimental Results 

Selecting the parameters for the F-75 particle assemblies were particularly 

challenging. The synthesized particles used in previous ELLIP3D simulations (Yan, 

2008) were on average more than one order of magnitude larger than the D50 = 0.16 mm 

diameter F-75 particles. For a realistic gravity deposition simulation, the mass and 

moment of inertia scaling must be set to a value of one, and there may not be 

background damping. In view of the fact that the particles are so small, large particle 

overlaps will develop unless an especially small time step is used, since viscous 

background damping and mass and moment of inertia scaling should not be used to 

maintain stability during dynamic simulations. Using an extremely small time step 

(1x10-8 s) calls for a large number of time steps (>7x106) in order to complete the 

simulation. The gravity deposition simulations for the F-75, 2369 particle assembly, ran 

in parallel using Open MP for about seven days on six Intel Xeon 3.07GHz processors. 

The difficulty with compressing these small particles in isotropic compression 

was discovered with the selection of mass and moment of inertia scaling (M&MoIS). 

When employing a high value of M&MoIS (such as 1000), the confining pressure would 

be achieved while observing virtually no particle motion. Utilizing a M&MoIS of 100 

would result in a slightly greater particle motion at the boundaries, however, the 

confining pressure would be achieved before the particles could close in to create a 

dense packing. This means that a higher particle M&MoIS factor results in greater 

forces acting on the boundary walls by each particle, which may yield unrealistic results. 

When running simulations with a M&MoIS of 1, there is too much particle motion as 
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can be demonstrated in Appendix B. Using a M&MoIS of 10 would most likely lead to a 

stable result while maintaining a low force on the boundary walls in order not to attain 

the confining pressure prematurely; however, the computation time is the limiting 

factor. Again, the small size of the particles requires a small time step and low 

boundary wall compression rate for stability. The largest time step and highest wall 

compression rate values for the F-75 sample with a M&MoIS of 10 is 5x10-8 s and 1x10-4 

m/s, respectively. Running this simulation to 2x106 time steps required approximately 

48 hours to run on 6 processors. To achieve a dense packing through isotropic 

compression that would experience about 10% strain, the simulation would need to run 

to approximately 4x107 time steps and could take over 5 weeks to complete. In other 

words, the DEM is a severely limited by computation time when running simulations of 

very fine particles without the use of scaling. 

Here, we have a comparison of experimental data vs. ELLIP3D simulations for 

the 2369 particle F-75 quartz Ottawa sand. Previously, it was stated that the very small 

particles inhibited stable numerical solutions. These plots of PSR vs. axial strain and 

volumetric strain vs. axial strain were attained from CT imaging with particle size and 

orientations in their in situ state; however, the particle radii are greater than the actual 

size by a factor of 10. This volumetric scaling is equivalent to designating a M&MoIS of 

(10)3 = 1000. However, because the contact stiffnesses are nonlinear (Hertz-Mindlin) 

functions of particle size, the results will not be the same. Thus, it is more important to 

simulate actual particle sizes and shapes of the granular material using DEM. Figures 24 
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and 25 along with Table 4 demonstrate the severe sensitivity of M&MoIS and particle-

to-particle friction. It can be observed that a small increase in interparticle friction, while 

keeping other parameters the same, will cause a large increase in principal stress ratios. 

The input parameters noted in Table 4 demonstrate the influence of viscous 

background damping, mass and moment of inertia scaling, interparticle contact 

damping, and particle-to-particle friction. Viscous background damping can be 

conceptually thought of as subjecting the particles to a virtual viscous fluid that would 

reduce the particle motion. A comparison of the simulations of Trial 1 to Trial 2 

demonstrates that a reduction in viscous background damping on mass and moment of 

inertia from 105 to 103 will enable greater particle motion and reduce the PSR. In DE 

modeling, interparticle friction reduces the slippage of rounded particles which 

ultimately helps sustains the rigidity of the macroscopic structure. Trial 3 is simulated 

with the same parameters as Trial 1 but with an interparticle friction of 1.3 instead of 

1.73 and results in a greater initial PSR but lower PSR overall. The parameters 

implemented into Trial 4 are consistent with Trial 1 but uses a contact damping ratio of 

0.1 instead of 0.05. This increase in contact damping also induces a lower PSR by 

reducing the particle-to-particle and particle-to-boundary forces. Finally, Trial 5 exhibits 

a reduction in interparticle friction and an increase in contact damping. The greater 

initial surge in PSR leads to a gradual decrease in PSR for which the macrostructure 

undergoes strain softening.   
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Figure 24: Principal Stress Ratio vs. Axial Strain for F-75 Ottawa Sand in Triaxial Compression 

 

 

Figure 25: Volumetric Strain vs. Axial Strain for F-75 Ottawa Sand in Triaxial Compression 
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The volumetric strain vs. axial strain up to 2% strain in Figure 25 shows that the fine 

sand undergoes a decrease in volumetric strain, then dilation occurs after initial 

compression. To put this initial drop in perspective, a full volumetric strain vs. axial 

strain plot of the experimental (physical) results is shown in Figure 26. 

 

Figure 26: Volumetric Strain vs. Axial Strain for F-75 Ottawa Sand in Triaxial Compression from Experimental 

Results (Alshibli, 2011) 
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 Trial_1 Trial_2 Trial_3 Trial_4 Trial_5 

Time Step Size 3.2 x 10-8 s 3.2 x 10-8 s 3.2 x 10-8 s 3.2 x 10-8 s 3.2 x 10-8 s 

Mass Scaling 1.0 x 105 1.0 x 105 1.0 x 105 1.0 x 105 1.0 x 105 

Moment Scaling 1.0 x 105 1.0 x 105 1.0 x 105 1.0 x 105 1.0 x 105 

Viscous Background 
Damping on Mass 

1.0 x 105  1.0 x 103 1.0 x 105  1.0 x 105  1.0 x 105  

Viscous Bkrnd. Damp. 
on Mnt. of Inert. 

1.0 x 105 1.0 x 103 1.0 x 105 1.0 x 105 1.0 x 105 

Contact Damping 0.05 0.05 0.05 0.1 0.1 

Particle-to-Particle 
Friction 

1.73 1.73 1.3 1.73 1.3 

Particle-to-Boundary 
Friction 

0.5 0.5 0.5 0.5 0.5 

Cohesion 0 0 0 0 0 

Boundary Wall 
Compression Rate 

7.0 x 10-3 m/s 7.0 x 10-3 m/s 7.0 x 10-3 m/s 7.0 x 10-3 m/s 7.0 x 10-3 m/s 

Boundary Wall 
Release Rate 

7.0 x 10-3 m/s 7.0 x 10-3 m/s 7.0 x 10-3 m/s 7.0 x 10-3 m/s 7.0 x 10-3 m/s 

Confining Pressure to 
Achieve 

58 kPa 58 kPa 58 kPa 58 kPa 58 kPa 

Table 4: ELLIP3D Simulation Parameters for F-75 Specimen 

 

3.2 Compaction of Metallic Powder -- Elasto-Plastic Constitutive Model 

The bilinear elasto-plasticity model discussed in Section 2.2 was implemented in 

ELLIP3D. The calibration of constitutive parameters for the elasto-plasticity model 

yields the force-displacement relationship for the two-particle compaction and shear 

simulations as shown in Figure 27 and 28, comparing Abaqus to ELLIP3D results. The 

FE simulation for the uniaxial compaction was run with a displacement driven top 

boundary and fixed bottom boundary; the DE simulation employed top and bottom 

boundary displacements. For the centrically loaded two-particle compaction 

simulations, the penetration of the particles is equivalent to the axial displacement and 

these data are plotted in Figure 27. The two-particle shear simulations maintained the 
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bottom particle to be fixed while the top particle was displacement controlled; results 

are plotted in Figure 28.  

 

Figure 27: Force-Displacement Plot for Two-Particle Compaction in Abaqus and ELLIP3D 

 
Figure 28: Tangential Force-Displacement Plot for Two-Particle Compaction in Abaqus and ELLIP3D 
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Chapter 4: Conclusions and Future Work 

 The DEM simulations require extensive simulation time and computing 

power to achieve desired parametric accuracy. The simulations of the ASTM 20/30 

RVEs demonstrated the sensitivity of constitutive results by the selection of input 

parameters such as mass and moment of inertia scaling and interparticle friction. As 

concluded with the small F-75 particle assemblies, stability for small particles is limited 

by time step size, which induces a large number of time steps and simulation time. 

Solely preparing the particle assembly for triaxial compression is computationally 

demanding since the parameters used to maintain stability and decrease time step size, 

i.e. viscous background damping and mass and moment of inertia scaling, would 

essentially freeze the particles and generate a large force on the boundary walls, causing 

the boundary wall confining pressure to be reached prematurely and yielding trivial 

results. The simulations ran on the two-particle metallic powder compaction tests serve 

as a precursor to the larger assemblies of metallic powder which enable comparisons of 

the DE model to the FEA results.    

 Potential future work that relates to the topics presented in this thesis would 

include the implementation of cylindrical boundaries into ELLIP3D to simulate full 

assemblies or cylindrical RVEs. Polar coordinate implementation in ELLIP3D would 

simplify the analysis. The implementation of particle boundaries (Peters et. al., 2009) to 

model flexible membranes on triaxial compression tests of granular materials would 

ideally allow for bulging to occur and possibly even capture shear band formation as 

evident in Figures 15 and 16. Without flexible membranes, only a small portion of the 



51 
 

 

stress-strain curve can be captured (up to 2% strain). The DEM on its own is 

computationally expensive for general geotechnical applications; consequently, this 

work intends to support research involving multiscale, DE-FE coupling efforts.  

Additionally, utilizing poly-ellipsoids in ELLIP3D for sands of different morphology as 

opposed to two-axis ellipsoids may significantly reduce the rolling and sliding observed 

in the triaxial compression simulations (Peters et. al., 2009). This lack of particle 

interlocking using two-axis ellipsoids was compensated for with a high particle-to-

boundary and particle-to-particle friction. Another potential effort could be to track the 

displacements of selected particles throughout a test, which is a capability of CT 

imaging as well as ELLIP3D and could contribute to a greater understanding of shear 

band formation. This may lead to greater insight to shear band failure. 

Improvements can also be made to the current macroscopic stress and strain 

measures. The current stress measure consisting of the summation of forces acting on a 

boundary wall divided by the area of the boundary wall would be improved through 

the implementation of a proper overall macroscopic average stress measure for the RVE, 

which is based on the definition for stress in a granular medium (Christoffersen et. al., 

1981): 








N

V 1

)
2

1




fll(fσ  

where  stands for the average stress in the considered volume V;  represents the 

particle contact; N stands for the total number of contacts in the volume V considered; f 

represents the interparticle force at contact ; l is the branch vector connecting the 

(4.1)  
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centroids of the two-particles interacting at contact . Such a theory is proposed because 

the principal of noncoaxiality describes the phenomenon that the directions of the overall 

macroscopic stress tensor do not directly correspond to the principal directions of the 

deformation rate. This formulation is derived through the balance of moments and 

principal of virtual work. It is assumed that moments are not transmitted at contacts 

and only one of the two contact force pairs is used in the summation in Equation 4.1. A 

schematic of two particles at contact is shown in Figure 29.  A proper macro-scale strain 

measure is equally as valuable as having a suitable macroscopic stress measure. The 

current strain measure used in this DEM research is the classical Cauchy Strain L/L, 

which is the ratio of the total deformation to the current dimension of an RVE. Various 

authors have proposed methods to link microscopic to macroscopic strains for particle-

based mechanics using equivalent continuum methods (Bagi, 1993; Kruyt and 

Rothenburg, 1996; Kuhn, 1997; Cambou et. al., 2000; Dedecker et. al., 2000; Kruyt, 2003). 

Duran (2009) explores the validation and verification of various 3D micro-mechanical 

strain formulations using DEM codes. Their theories aim to account for discrete particle 

translations through microscale strain tensors and extend it to macroscopic strain 

theories. Figure 30 illustrates the contact vectors ri and rj that connect the centroids of 

the particles i and j to the point of contact . Translations of these contact points can be 

described by the displacements of the centers of the particles and the rigid-body 

rotations about their centers as follows: 

                   and                      (4.2) 
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where d represents the rigid body rotation. The displacement increment at contact can 

be defined by  

             .  (4.3) 

In order to attain the strain, the gradient of the vector field du is denoted as  

        .     (4.4) 

  Bagi (1993, 1996) proposed a method for 2D and 3D analysis of particles using 

space cells of a system. Figure 31 shows the general configuration of the 2D triangles 

that form the resulting space cell boundary used in the formulation. This configuration 

applies to 3D geometries with the use of tetrahedra instead of triangles. The space cells 

are created by connecting the centers of neighboring particles, which do not necessarily 

require contact, and the resulting boundary cell connects the centers of the boundary 

particles and this union provides the equivalent continuum. This configuration is 

ultimately employed by taking the summation of the translation gradient deC of each 

cell C over the entire volume (3D) or entire area (2D). For the 2D case, the left 

translation gradient is determined to be  

    
 

  ∮             
 

 
∑   

      (4.5) 

and for the 3D case 

    
 

  ∮      .       
 

 
∑   

      (4.6) 
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where n is the outwards unit normal vector to the surface of space cell C; du is the 

translation vector of the boundary point; A is defined as the area of space cell C (V is 

volume for 3D), and the integration is performed along the boundary line l (boundary 

surface S for 3D).  The symmetric part of dec is the microstructural strain tensor and the 

antisymmetric part is the average rigid body rotation of the cell. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Vectors from Particle 

Centroids to Point of Contact 

Figure 31: Space Cells and Resulting Boundary Space Cell for 2D 

Configuration of Particles 

Figure 30: Interparticle force (f) and 

branch vector (l) at contact  
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In essence, the relations between interparticle forces and macro-level stresses as 

well as the relation of particle-level displacements and macro-level strains, are intended 

to increase the accuracy of DEM simulations and ultimately allow researchers to 

develop micromechanically based constitutive theories. The formulations for 

calculating stresses and strains need to be modified from those derived by continuum 

methods since the assumptions, i.e., continuous domains and infinitesimally small 

points, do not hold true.  
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Appendix A: Additional Figures 

The gradation curves in Figure 32 compare the physical data provided by Dr. 

Alshibli and his group for the ASTM 20/30 sample (US Silica Product Data) used in the 

experiment to the gradation curve for the computed particles imported into ELLIP3D. 

Figure 33 exhibits the gradation curves for the experimental and computed particles for 

the F-75 specimen, respectively.  

 
Figure 32: ASTM 20/30 Gradation Curve 
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Figure 33: F-75 Gradation Curve 

Figure 34 plots the point-wise yield stress vs. plastic strain data that was contributed to 

the Abaqus particle compaction simulations (Hammi, 2011). These stress-strain 

parameters utilized in the FE model were calibrated to experimental data on the 

compaction of nickel powder. The ELLIP3D data was calibrated to the force-

displacement constitutive (with assumptions explained in Section 2.2) to the Abaqus 

model.  
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Figure 34: Plasticity Model for FEA from Abaqus 

Appendix B: Parametric Studies Examples 

The purpose of this appendix is to demonstrate the sensitivity of the input parameters 

in ELLIP3D. These simulations show the F-75 2369 particle assemblies undergoing 

isotropic compression, where all six walls compress the sample until the sum of the 

forces of the particles acting on a given wall, come to equilibrium when achieving a 

prescribed confining pressure. In Figure 35, the assembly was simulated in isotropic 

compression with mass and moment of inertia scaling of 1 and the simulation is set to 

achieve an isotropic confining pressure of 1 kPa. It is apparent that the boundary walls 

move inwards and outwards (compress and release) but the simulation cannot 

converge at 1 kPa. The small particles exhibit excessive motion resulting in the noise 

demonstrated in the plot.  

Figure 36 illustrates the same F-75 specimen in isotropic compression but with a higher 

value of mass and moment of inertia scaling (M&MoIS) and is set to achieve a higher 

confining pressure, 58 kPa. This also demonstrates that the results are meaningless for 

such small particles unless the compression rate and time step are small enough to 

allow the particles to move inwards rather than observing the boundary walls come in 

and out of contact with the outer particles. At the end of this simulation, ELLIP3D is 

made to believe that the walls have come to equilibrium, when in fact, the forces on the 

walls are due to particle-boundary overlap, magnified by M&MoIS, not the macroscopic 

stress from the particle skeleton interparticle forces. 
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Figure 35: F-75 ELLIP3D Isotropic Compression Simulation with Mass and Moment of Inertia Scaling of 1 to 

Achieve a Confining Pressure of 1 kPa 

 

 

Figure 36: F-75 ELLIP3D Isotropic Compression Simulation with Mass and Moment of Inertia Scaling of 10 to 

Achieve a Confining Pressure of 58 kPa 
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 Figure 16 Figure 17 

Time Step Size 5.0 x 10-6 s 5.0 x 10-6 s 

Mass Scaling 1 10 

Moment Scaling 1 10 

Gravity Scaling 0 0 

Viscous Background Damping on Mass 2/(time step) 2/(time step) 

Viscous Background Damping on Mnt of Inert 2/(time step) 2/(time step) 

Contact Damping 1 1 

Particle-to-Particle Friction 1 1 

Particle-to-Boundary Friction 0.5 0.5 

Cohesion 0 0 

Boundary Wall Compression Rate 1.0 x 10-3 m/s 1.0 x 10-3 m/s 

Boundary Wall Release Rate 1.0 x 10-3 m/s 1.0 x 10-3 m/s 

Confining Pressure to Achieve 1 kPa 58 kPa 

Table 5: Parameters for ELLIP3D Isotropic Compression Simulations 

Appendix C: ELLIP3D User’s Manual 

 

By Yevgeniy Kaufman 
Co-authored by Austin Nossokoff 
 
To learn the basics of linux, if you are a true beginner, I recommend the website: 
www.ee.surrey.ac.uk/Teaching/Unix 
 
1.1 Overview: 
 
ELLIP3D: C++ code to simulate Discrete Element Method  
Paraview: Open source, data analysis software used for visualization of particles 
 
1.2 Getting Started: 
 
Prior to installation, development and development_benchmark_XML folders need to be 
checked out from the TAHOE cvs repository (online web storage).   
 
1.2.1 Open your .cshrc file (c-shell text file that allows you to set paths to specific 
commands you will type in your terminal window) by opening a graphical user 
interface (GUI) folder or typing the following commands into a terminal: 
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cd /home/soils/cven/grad/yourname (or the path to where your home directory resides) 
 
to see the contents of the directory, type: ls  
to see the directory you’re currently in, type: pwd 
 
to edit your c-shell file, type the following in your terminal window: 
 
kedit .cshrc 
 
Type the following somewhere into your .cshrc: 
 
setenv CVS_RSH ssh     
 
The command above is different for Linux machines using bash shells  
 
1.2.2 Checkout the development directories separately (you will need to enter your 
password, and also accept the ssh connection 
 
cd (to the directory where you want these folders to reside)     
 
mkdir to make directory 
 
cvs -d [yourname]@tahoe.colorado.edu:/cvs/private/tahoe checkout development  
 
cvs -d [yourname]@tahoe.colorado.edu:/cvs/private/tahoe checkout 
development_benchmark_XML  
 
The relevant ELLIP3D and ParaView plugin files are in these folders once checked out. 
ELLIP3D: 
./development/src/elements/DEM_ellip3d/ellip3d     
 
ParaView plugin: 
./development/src/elements/DEM_ellip3d/ParaView/Ellip3dReader 
 
To log onto other computers in the lab from the computer you are logged into, the 
command is 
 ssh -X username@computername.colorado.edu, for example, for user Nossokoff 
log onto quince, it is 
  ssh -X nossokof@quince.colorado.edu 
If you are logged into soils, just type  
ssh quince or the computer desired 
 

mailto:username@computername.colorado.edu
mailto:nossokof@quince.colorado.edu
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 To open a GUI in the computer you are logged into while accessing the server 
externally, the command “konqueror &” will open a window 
 
1.3 Compiling ParaView plugins 
 
Tom Buzbee wrote two plugins that enable the input and output particle files from 
ELLIP3D to be interpreted by ParaView. Details can be found in Appendix D or in 
Tom’s Readme file located in: 
 
./development/src/elements/DEM_ellip3d/ParaView/Ellip3dReader/Readme 
 
Even though ParaView may already be installed on the computer, the only way I was 
able to load the plugins was to rebuild ParaView, version 3.6.2. Make sure, before 
generating, to enable shared libraries. Also, make sure that the correct version of QT is 
in your path, first. 
 
2.0 Running Repository Example Simulations 
 
2.1 Convert Raw Data (Creating particle assembly from .xls file) 
Start with directory  
./Repository_Example/1_xls_to_elp_conversion/LSU_Data_Initial_Particle_Assembly 
This directory contains: 
conv.cpp: a code Tom wrote to convert the raw data provided by LSU into a format that 
is compatible with ellip3d; 
ASTM2030_1000x1784_Boxed_RVE.xls: the last sheet in this Excel file contains the 4201-
particle assembly data that will be converted to data that can be read by ELLIP3D  
 
2.1.1 Copy and paste the contents (column A-L) from the spreadsheet into a textfile, and 
call it grain.txt 
 
2.1.2 Compile conv.cpp using the following commands 
 
 g++ -c conv.cpp 
 g++ -o convert conv.o 
 
This will generate the executable "convert"; then convert the raw data using the 
following command: 
 
 ./convert grain.txt out.txt 
 
The “./” gives the command to run the executable that resides in the current directory 
that you are in. There is a built-in convert command on the computer, but it is not the 
correct one for this case 
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2.1.3  Rename out.txt to  particle_input.elp 
 
Once the ParaView Plugins are loaded, particle_input.elp can be opened in paraview 
 
Copy particle_input.elp into the directory 2_floating_function 
 
*Note: The preceding three steps outline the process of creating particle input files for 
ELLIP3D. The file filtered.els contained in the ./LSU_Data_Initial_Particle_Assembly 
directory is an alternative particle file that is the same as the particle_input.elp file 
created from the spreadsheet but with all very small particles removed (containing a 
total of 3563 particles). For this example, I recommend renaming filtered.els to 
particle_input.elp and replacing the particle_input.elp file in the directory 
2_floating_function. Either will work. 
 
2.2 Creating Wall Boundaries from Raw Data 
 
Open Directory 
./Repository_Example/1_xls_to_elp_conversion/LSU_Data_Initial_Boundaries 
 
It contains BDRY_WALL_input.xls: this spreadsheet was made to calculate the initial 
boundary wall particle files based on maximum and minimum coordinate values of 
particle centroid positions.  
 
Copy highlighted contents from .xls into a text file and name it boundary_input.elp (see 
example of boundary_input.elp 
in ./Repository_Example/1_xls_to_elp_conversion/XLS_Data if unsuccessful in 
creating the boundary file) 
 
Copy boundary_input.elp  into the directories 2_floating_function and 3_isotropic_comp 
 
2.3 Float Function 
 
Since the particles are approximated as ellipsoids, there is going to be some particle 
overlap. The Float function allows contact forces to separate particles while a large mass 
and moment scaling, and large background viscous damping coefficients are applied in 
order to prevent the particles from blowing up. 
 
The directory 2_floating_function should contain three files: main.cpp, 
boundary_input.elp (from 2.2), and particle_input.elp (from 2.1) 
 
Note that the two input files listed in main.cpp:  boundary_input.elp and  
particle_input.elp can be renamed as long as the match the names of the input files in that 
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directory 
 
 To run the simulation: 
(1) Copy main.cpp into the ellip3d directory 
(2) In a terminal window, go to the /ellip3d directory 
(3) Type “make” (this compiles ELLIP3D) 
(4) Copy “ellip3d” executable into  2_floating_function directory 
After the ellip3d executable is copied, delete all new files created in the ellip3d directory 
so that it contains its original contents for future simulations. Overwriting when 
compiling can cause problems if the .d and .o files are still in the ellip3d directory. A 
quick way to delete the all .d and .o files is to type rm *.o and rm *.d 
However, think twice before typing the rm (remove command) since there is no 
command to undo it. 
 
Another way is to click on the View tab, go to View Mode, then click Detailed List View 
and rearrange by date modified. Delete the newest files up until main.cpp, including 
main.cpp 
 
(5) In a terminal window, open 2_floating_function directory 
(6) Type ellip3d > & outscreen & 
    
Go to the directory where you will be running the simulations and type the command  
./ellip3d > & outscreen &  
On computers using a bash shell such as soilblast, type nohup first. To run multiple 
processors on soilblast, type: 
nohup ./ellip3d 6 > outscreen & 
Do not run long simulations on soils, run them on scratch (the computer’s hard disk 
space). 
To get to the scratch directory,  
ssh to a computer such as poplar. (ssh poplar) 
cd .. (go back a directory)  as far as you can go 
cd /poplar/scratch 
mkdir yourname 
and run long simulations here 
 
(7) You can check the progress at any time by typing “tail outscreen” 
 
The simulation might run for several hours (or days), depending on the number of 
timesteps set. 
 
To quit a simulation, type top in a terminal window and find the PID for that job. Then 
type: 
kill -9 #### 
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#### represent the PID and -9 is “without reservations” 
 
After the simulation is complete, type the command elsadd  to run the executable in that 
directory in order to add the .els extension to the particle files. Then  check the 
animation in Paraview (Section 2.6). Note: there may possibly not have been overlap to 
begin with if the filtered.els file was used (from 2.1). Copy the final particle assembly file 
flo_particle_end into directory 3_isotropic_comp 
To copy a file from scratch to soils (where your home directory resides) type the 
following in the terminal window: 
scp ./file_I_want_to_copy soils:~/directory_I_want_it_in 
for a directory, 
scp -r ./directory_I_want_to_copy soils:~/directory_I_want_it_in 
 
2.4 Isotropic Compression 
 
The directory 3_isotropic_comp should contain three files: main.cpp, boundary_input.elp 
(from 2.2), and flo_particle_end (from 2.3) 
  
Follow the same simulation instructions (steps 1-6) as in 2.3 
 
The simulation could take a few days (depending on the number of timesteps used) 
 
After the simulation is complete, copy the final particle assembly iso_particle_end and 
final boundary iso_boundary_end  into directory 4_triaxial_comp. Check the animation in 
Paraview (Section 2.6) after running command ./elsadd,  and check & plot the 
constitutive results from the iso_progress file.   
 
2.5 Triaxial Compression 
 
The directory 4_triaxial_comp should contain these three files in order to run the triaxial 
compression test simulations: main.cpp, iso_particle (from 2.4), and iso_boundary (from 
2.4) 
 
Follow the same simulation instructions (steps 1-6) as in 2.3 
 
The simulation could take a few days depending on the number of timesteps selected. 
The tri_progress file contains stress-strain data. To plot ELLIP3D data versus the 
experimental data (ASTM.txt) run stress_v_strain_tri_astm.m using Matlab (First 
remove non-numerical values from the tri_progress file, i.e. first three lines).  
 
2.6 Visualization in ParaView 
  
In the .cshrc file, set your environment variables of ParaView_DIR, CMAKE_DIR, QT, 



71 
 

 

and LD_LIBRARY_PATH 
You can do this by entering the following: 
 
 setenv ParaView_DIR 
/home/soils/students/nossokof/Trial2_ParaView/ParaView3/bin/bin 
  (This is where I built Paraview and where the executable is located) 
 
 setenv CMAKE_DIR /usr/local/cmake 
  (This should be the same for all users) 
 
 setenv QT /usr/local/qt-4.6.3 
  (This should be the same for all users, although the version of QT may 
change) 
 
 setenv LD_LIBRARY_PATH /usr/lib:/usr/local/lib:$QT/lib 
  (This should be the same for all users) 
 
 set path=( $ParaView_DIR $CMAKE_DIR/bin $QT/bin $HOME/bin . $p) 
  (This should be the same, although there may need to be a /bin after 
$ParaView_DIR) 
 
Copy the plugins you built for ParaView, from section 1.3, to a directory labeled plugins 
within the same directory where the paraview executable is located. ParaView searches 
here for local plugins so you don’t have to manage local plugins every time. 
  
 
 
2.7 Plotting Data 
 
For triaxial compression, tri_progress contains the constitutive values of interest. Type: 
kwrite tri_progress  
when using kwrite, F10 allows you to see the values by turning word wrap off  
 
The data can be viewed and modified in MATLAB or could be saved as 
“tri_progress.txt” and it can be imported into excel (on a computer running Windows) 
and plotted there 
 
Alternatively, a Matlab file called stress_v_strain_tri_astm.m located 
in ./Repository_Example/4_triaxial_comp is set up to interpret the progress files but 
may need to be adjusted depending on what is to be plotted. Note: the first three lines 
of the progress file (non-numerical values) need to be deleted for this Matlab script to 
run 
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Running DEM Simulations (Particle Deposit / Isotropic Compression / Triaxial 
Compression): 
 
Ellip3d directory contains the necessary files to create the ellip3d executable (minus the 
input files noted in main.cpp). Ellip3d executable will run the simulation (Deposit / 
Isotropic Compression / Triaxial Compression) based on the input parameters in 
main.cpp and input files noted in main.cpp. 
 
Tom Buzbee’s Simple Repository Example: 
 
After checking out development and development_benchmark and getting ellip3d: 
./development/src/elements/DEM_ellip3d/ellip3d      
 
See Tom Buzbee’s example of Isotropic Compression from 0 kPa to 1 kPa: 
development_benchmark_XML/DEM_tom/triaxial/iso-0-1kpa 
 
Additional Notes on Post-Processing: 
  
 After the simulations have been run, 
 (1) Open iso_progress or tri_progress and remove all non-numerical text (first 3 
lines) 
 
 (2) Copy stress_v_strain.m file (if available) to the directory where the results 
reside to produce stress strain plot in Matlab 
 
 (3) Run stress_v_strain.m in Matlab to produce plot 
 
 (4) Open Paraview 
 
  (i) Load Plugins (Tools, Manage Plugins): 
 
  (ii) Open .els extension files from 

*If results do not produce .els files, check assembly.cpp to make sure 
“.elp” is replaced with “.els” and rerun simulations 

   Or use the elsadd executable (much easier)  
Main.cpp Parameters: 
 

 Mass and moment of inertial scaling give the particles a “heaviness” – this 
reduces the acceleration of the particles but it also increases the resulting forces 
on the boundaries 

 Viscous damping on mass and moment of inertia acts as a “viscous-like fluid” to 
resist particle motion 

 Control the axial strain by a simple hand calculation knowing the displacement 
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rate (m/s), timestep size (s), and number of timesteps 
 

 

 

Appendix D: Building ParaView Plugins 

 

In order to open ELLIP3D particle assembly files in ParaView, ELLIP3D Reader plugins 

must be built along with ParaView. The two plugins were written by graduated BS/MS 

student Tom Buzbee and instructions for building the ELLIP3D Reader plugins can be 

followed here or in the Readme provided by Tom (access to this readme and necessary 

files can be found in Section 1.3 in Appendix C. 

 

Paraview is open-source data analysis and visualization software that enables ELLIP3D 

users to view particle assembly snapshots and play full simulation animations. This is a 

plugin for ParaView, (www.paraview.org), that will render output files from ELLIP3D.  

 
The plugin is designed to recognize .elp (individual ELLIP3D particle files) and .els 
(series of ELLIP3D particle files), which enables the user to open them in Paraview.  
Tom mentioned that he modified ELLIP3D to use the .els extension instead of .elp. This 
requires a “find-and-replace” on all .elp with .els in assembly.cpp in ELLIP3D. 
Alternatively, elsadd, an executable written by  Dr. Beichuan Yan can be used to add 
a .els extension to all of the particle files so that they can be opened as a series in 
Paraview. The latter is much easier, it just requires the command ./elsadd in the directory 
that contains the particle files. 
.   
Paraview cannot be just installed, it must be built manually along with the plugins. The 
instructions for doing so are as follows: 
 
To build Paraview, follow the link http://paraview.org to obtain the source and follow 
the instructions on the wiki page: 
http://paraview.org/Wiki/ParaView:Build_And_Install or the included text files. To 
build Paraview: 
 
cd path/to/paraview_source 
mkdir bin 
cd bin 
ccmake .. 

http://www.paraview.org/
http://paraview.org/
http://paraview.org/Wiki/ParaView:Build_And_Install
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-> c to configure 
-> c to configure (usually need to do it more than once) 
-> g to generate makefiles 
make 
 
If it complains about missing libraries, you probably need to install them separately, i.e., 
if the commands cmake and ccmake are not found on the computer, email 
trouble@soils.colorado.edu and they will make them available to the user on all 
machines in the lab 
 
Building the plugin follows a similar process. First, though, you need to set the 
ParaView_DIR environment variable to point to the ParaView build directory. The 
sequence of commands should look like this: 
 
export ParaView_DIR="/path/to/paraview_source/bin" 
(Detailed instructions on setting your path for your .cshrc file can be found in Section 

2.6 of Appendix C) 

cd path/to/Ellip3dReader/Server 

mkdir bin 

cd bin 

ccmake .. 

-> c to configure 

-> c to configure (usually need to do it more than once) 

-> g to generate makefiles 

make 

 

This generates a .so binary library (or .dylib, .dll, etc. depending on your platform) that 

you can load into ParaView. 

 

Now you need the client resources. You should be able to use the .bqrc file in the Client 

directory as-is. You can build it yourself, too. This requires a working Qt installation. If 

you have one, you can just issue the 'make' command in the Client directory, or email 

trouble@soils.colorado.edu to install them. This should produce a .bqrc file you can load 

into ParaView. 

 

Usage: 

In Paraview, load the .bqrc and .so files by going to 'Tools > Manage Plugins' menu or 

automatically when it loads using the PV_PLUGIN_PATH by modifying the 

environment variable in the .cshrc file. Detailed instructions can be found on the wiki 

page stated earlier. 

mailto:trouble@soils.colorado.edu
mailto:trouble@soils.colorado.edu
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To open the .elp or .els particle assembly files, go to 'File > Open' dialog. The .els files 

should be numbered in sequential order so that the series will show up as a collapsed 

item in the dialog. Pick the whole group and it will load as an animation. Paraview has 

many visualization and animation capabilities that can be found on their page or 

through instructional youtube videos. 

 


