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Abstract 

 The 18O composition of atmospheric CO2 is a potentially valuable tracer of global 

interactions between the hydrologic and carbon cycles.  The observed 18O composition of 

atmospheric CO2 (hereafter δCa, where δ =(R/Rstandard-1) × 1000 and R is the molar ratio of heavy 

to light isotopes) does not show a clear long-term trend, though almost all monitoring stations 

observed an impressive decrease in δCa from 1992 to 1998.  The cause(s) of this and other 

interannual δCa variations are still relatively unknown, and this work aims to better understand 

the driving mechanisms that caused the observed interannual δCa variations. 

Observed interannual δCa anomalies from Mauna Loa were correlated with anomalies of 

certain meteorological variables that could potentially affect δCa.  Negative correlation existed 

between δCa and both relative humidity and precipitation amount within parts of the tropics. 

Positive correlations existed between δCa variations and the 18O content of precipitation for the 

same tropical regions.  Rough estimates suggest that about 20% of the decrease in δCa during the 

1990s was due to increases in relative humidity and about 80% of the decrease was due to 

decreases in the δ18O value of precipitation (and likely a consequence of increases in the amount 

of precipitation). 

A global model was constructed to simulate atmospheric CO2 and CO18O (and thus δCa). 

 This model employed an isotopic land model (ISOLSM) and the Community Atmosphere 

Model (CAM).   The model is used for a series of sensitivity experiments to better understand 

how both steady-state and interannual varying δCa respond to changes in relative humidity, δ18O 
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values of precipitation and water vapor, temperature, and light levels. δCa responded the most to 

changes in the δ18O values of precipitation and water vapor, with moderate responses to relative 

humidity changes.  Model results suggest that the decrease in δCa during the 1990s was due 

primarily to decreases in the 18O composition of precipitation with a smaller a contribution from 

increased relative humidity. Thus, observations of δCa may become a powerful integrative tool in 

the coming decades for monitoring large scale changes in the hydrological cycle should it 

accelerate under a warming climate, as predicted. 
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    Chapter 1 
 

Chapter 1 Introduction 

 Atmospheric CO2 is an important greenhouse gas in Earth’s atmosphere, and its recent 

short-term variability (relative to geological times) is mostly controlled by five net fluxes.  These 

include photosynthetic leaf fluxes, respiration, fluxes to and from the oceans, fossil fuel 

consumption, and biomass burning [Sarmiento and Gruber, 2002].  These last two fluxes have 

lead to the increase in atmospheric CO2 concentration over the past several decades (Figure 1a). 

The same fluxes are also believed to be the primary cause for observed decrease in the carbon-13 

content of atmospheric CO2.  This is because of 13C/12C ratios within present-day plants and 

ancient plants (i.e. fossil fuels) are lower than atmospheric ratios by about 2% [Quay et al., 

1991].  However, the oxygen-18 content of atmospheric CO2 (hereafter denoted Ca, where 

=(R/RStandard-1) × 1000 and R is the molar ratio of heavy to light isotopes) is not observed to 

have any long-term increasing or decreasing trend (Figure 1.1).  Instead, Ca was about constant 

during the early 1990s, then decreased throughout the mid and late-1990s, and then began to 

increase after the year 1999.  To better understand any potential cause for these variations, it is 

useful to examine the budget equation for Ca values, which can be written as: 

   FBFoorrAA
a

a FFFFF
MCt

C



 1

    (1.1) 

where Ca is atmospheric CO2 mixing ratio, M is a flux conversion factor,  F values are fluxes 

(GtC yr-1), Δ values are (apparent) discriminations (‰) against δCa and subscripts A, r, o, F, and 

B refer to assimilation, respiration, ocean, fossil fuel and biomass burning, respectively. Francey 
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and Tans [1987] and Farquhar et al. [1993] have shown that the respiratory and photosynthetic 

leaf fluxes (i.e. the first two terms of equation 1) can largely influence δCa values.  

 

 

Figure  1.1 Observed seasonal and interannual variations of δCa (‰) at Barrow (a), Mauna Loa 
(b), Cape Grim (c), and the South Pole (d).  The green line represents the observed values, while 
the red line represents monthly anomalies. 

 

 The respiration term can be rewritten as:  

   SaSrrr CCFF         (1.2) 

where CS is the isotopic composition of soil CO2 and, εS is fractionation associated with 

diffusion through the soil column.  Autotrophic and heterotrophic respiration produces CO2 

within the soil column and the value of CS is largely dependent on the isotopic signature of 

local water (i.e., either root or bacterial medium water).  The isotopic composition of soil-
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respired CO2 is further dependent on differential diffusion of CO2 and CO18O through the soil 

column (εS), as well as the equilibration with soil water. A third process that influences Ca is the 

“invasion effect”  [Tans, 1998; Miller et al., 1999; Riley et al., 2002] in which atmospheric CO2 

diffuses into the top layer of the soil, attains the isotopic signature of the surface soil water 

through rapid isotopic equilibration, and diffuses back to the atmosphere.  This invasion process 

is influenced by soil temperature and water content and atmospheric mixing conditions adjacent 

the surface, which in turn are influenced by radiation and evaporation, as well as the 

concentration of CO2 immediately above the soil surface [Miller et al., 1999; Stern et al., 2001; 

Riley, 2005].   

 Similar to equation (1.2), the 2nd term in equation (1) can be rewritten as: 

   










 lal

Ca

C
AAA CC

CC

C
FF       (1.3) 

where Cl is the isotopic composition of CO2 inside the stomatal cavity (CC) and εl is the 

fractionation factor associated with diffusion through the stomatal interface. 

 The oxygen isotope exchange in leaves between water and CO2 occurs primarily in 

mesophyll cells (adjacent to the stomatal cavity), where dissolved CO2 molecules exchange 

oxygen atoms with mesophyll water [Farquhar and Lloyd, 1993; Gillon and Yakir, 2000].  In the 

presence of carbonic anhydrase, the catalyzed reaction occurs almost instantaneously [Gillon and 

Yakir, 2001]. During transpiration, the lighter water isotopologue evaporates and diffuses 

through the stomata more efficiently than the heavy isotopologue, thereby enriching leaf water.  

Craig and Gordon [1965] formulated a model to predict the isotopic composition of surface 

water, and Flanagan et al. [1991] modified the model to show that during steady-state 

conditions, the ratio of H2
18O/H2

16O (Rl) at the evaporation site of a water body can be written as 
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
 11

/1   (1.4). 

In equation (1.1) RX is the ratio of the xylem/stem water (H2
18O/H2O), RCV is the ratio of canopy 

water vapor, ei (Pa) is the vapor pressure within the leaf, es is the vapor pressure at the leaf 

surface, ec is the vapor pressure in the canopy, αk is the water vapor kinetic fractionation for 

molecular diffusion, αkb is the vapor kinetic fractionation for diffusion through a laminar 

boundary layer, and αe is the temperature dependant equilibrium fractionation factor.  The simple 

mass balance equation shows that the isotopic composition of the leaf water (Wl) is related to 

that of the stem water (WX) which is set by the isotopic composition of soil water (WS) and also 

to the relative humidity (hl = ec/ei).  A relative humidity equal to zero causes the leaf water ratio 

to depend only on the ratio of the soil water (i.e., transpiration is a one-way flux out of the leaf).  

Likewise a relative humidity of 100% creates a thermodynamic equilibrium between water in the 

leaf and the ambient vapor, thus stopping transpiration.  Observational studies [e.g., Flanagan et 

al., 1991; Roden and Ehleringer, 1999] show that the isotopic composition of bulk leaf water 

under steady-state conditions varies with the isotopic composition of water vapor and relative 

humidity, in close agreement with the Craig-Gordon model.  Therefore, changes in humidity can 

have significant impacts on the isotopic composition of leaf water, and consequently the 18O 

composition of CO2 fluxes from leaves to the atmosphere.   

 Farquhar et al. [1993] presented a basis for modeling Ca and constructed a quantitative 

model based on isotopic budget considerations and included leaf exchanges.  Ciais et al. [1997] 

extended this work by using an atmospheric tracer transport model to examine latitudinal 

variations as well as seasonal cycles of Ca.  Their model ingested surface fluxes generated from 

monthly mean statistics from a number of sources, including previous runs from a land surface 
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model [Sellers et al., 1996a, 1996b], to evaluate terms describing ecosystem exchange in the 

budget proposed by Farquhar et al. [1993].  Peylin et al. [1999] used the same model framework 

to examine the role of different ecosystems on the seasonal and latitudinal variations of Ca.  

This approach yielded promising results in the mean distributions (e.g. inter-hemispheric 

gradient) and amplitudes of seasonal variations, as well as dependence of Ca on ecosystem type. 

Cuntz et al. [2003a, 2003b] examined such variations further by constructing the first 

comprehensive global three-dimensional model that allowed the atmosphere to interact with the 

biosphere, and thereby simulate diurnal cycles and transport of CO2, C18OO, and H2
18O in a 

more consistent manner than previous “off-line” calculations.  In this manner, CO18O exchanges 

also depend explicitly on Ca.  The model simulated the observed north-south gradient credibly, 

and confirmed that the largest contribution to the gradient comes from assimilation and 

respiration fluxes.  However, this comprehensive model simulated a seasonal cycle in Ca with a 

two month phase lead over the observations, particularly at high northern latitudes. This 

deficiency was attributed to poorly modeled seasonal cycles in the isotopic composition of soil 

water. 

 Based on the National Center for Atmospheric Research (NCAR) Land Surface Model 

(LSM) [Bonan, 1996], Riley et al. [2002] developed an isotopic scheme (ISOLSM) that 

simulates the 18O values of H2O reservoirs of the soil and plant, and the oxygen isotope 

exchanges of H2O and CO2.  This model divides the canopy into sunlit and shaded leaves, and 

differentiates direct and diffuse light fluxes.  Riley et al. [2002, 2003] used ISOLSM to show 

with sensitivity tests that significant changes in the isotopic composition of leaf, soil, and surface 

soil water result from variations of the δ18O value of atmospheric water vapor and CO2.  They 
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also found that changes in the isotopic composition of leaf and stem water were as large as 2‰ 

with variations in assumed root depth, further supporting the claim of Cuntz et al. [2002b] that 

the details of the soil hydrology are very important for Ca.  These findings demonstrate that 

even subtle changes in the meteorological or physiological conditions can have substantial 

influences on the isotopic state of the terrestrial biosphere and consequently that of atmospheric 

CO2 and CO18O. 

  To obtain a better understanding of the observed variations of Ca this body of work 

explores how variations in environmental conditions can affect the oxygen-18 content of CO2 in 

the atmosphere.  Considering equation 1.1-1.4, the interannual Ca time-series observed at 

Mauna Loa is correlated with observed variations in the potential drivers of Ca, and resulting 

changes to Ca are approximated for regions where correlations exist (Chapter 2).  Motivated by 

the findings of the correlation analysis, a model is constructed to simulate atmospheric CO2 and 

CO18O.  ISOLSM is used to predict CO2 and CO18O ecosystem fluxes, which (along with 

dataset-derived fluxes from oceans, fossil fuel consumption, and biomass burning) are 

incorporated into the NCAR Community Atmosphere Model (CAM) to simulate Ca.  

Sensitivity tests are conducted using this model framework to evaluate how steady-state Ca 

responds to changes in humidity, and the δ18O value of precipitation and water vapor, 

temperature, and radiation levels (Chapter 3).  This model is then reconfigured to simulate the 

interannual variations in Ca, and experiments are conducted by eliminating the interannual 

variations of individual variables in order to quantify each variable’s contribution to the year-to-

year change in Ca values (Chapter 4). The focus of the work then shifts to examine the isotopic 

composition of precipitation, and specifically how local and non-local processes affect the 
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annual mean and seasonal phases of observed and modeled WP (Chapter 5).  This work then 

examines an additional application of ISOLSM in which the model is used to demonstrate how 

leaf water enrichment may have been different during an earlier point in time (Chapter 6).  

Specifically, ISOLSM is used to show how changes in environmental conditions can alter the 

isotopic composition of leaf water and influence the validity of a particular climate proxy.  This 

work concludes with a recap of the findings and how they relate to one another, and perhaps 

more importantly, what knowledge is gained from this collective body of work (Chapter 7). 
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Chapter 2 

Chapter 2 Correlations between the observed interannual variations in 18O of atmospheric 

CO2 and the hydrological cycle 

2.1 Introduction 

 Direct monitoring of atmospheric CO2, an important greenhouse gas, began at Mauna 

Loa in the late 1950s, and the global secular increase of CO2 has been attributed to increases in 

fossil fuel emissions and land cover changes that release CO2 [Keeling, 1961; Denman et al., 

2007].  These fluxes have also influenced the carbon isotope composition of atmospheric CO2.  

For example, the 13C/12C content of atmospheric CO2 has been gradually decreasing from year-

to-year due to increases in fossil fuel burning and subsequent changes in isotopic ocean fluxes 

[Quay et al., 1992; Francey et al., 1995; Keeling et al., 1995; Fung et al., 1997; Rayner et al., 

2008].  On the other hand, the δ18O value of atmospheric CO2 (δCa) has not shown a multi-

decadal trend at any of the monitoring stations (e.g., the measurements shown in Figure 1.1).  

However interannual variations appear to be consistent amongst these stations [Ishizawa et al., 

2002].  This work aims for a better understanding of the processes controlling these variations. 

 Modeling studies have led to a better understanding of the spatial structure and 

seasonality of atmospheric δCa [Farquhar et al., 1993; Ciais et al., 1997a, 1997b; Peylin et al., 

1999; Cuntz et al., 2003a, 2003b]. Using relatively simple atmospheric mass balance models, 

Francey and Tans [1987] and Farquhar et al. [1993] demonstrated that terrestrial ecosystem 

components largely determine the spatial structure of δCa.  Studies using more complex models 

have shown that both the north-south gradient and the seasonal cycle in Ca are almost entirely 

driven by terrestrial ecosystem fluxes and atmospheric transport [Ciais et al., 1997a, 1997b; 
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Peylin et al., 1999; Cuntz et al., 2003a, 2003b].  None of these global modeling studies were 

aimed at understanding the interannual Ca variations, though others have suggested that the 

year-to-year changes could be a result of terrestrial carbon flux anomalies [Gillon and Yakir, 

2001; Stern et al., 2001; Ishizawa et al. 2002; Flanagan 2005]. In contrast, Still et al. [2009], 

using a land surface isotope model, showed that regional Ca variations could be driven by 

changes in the hydrological cycle (such as humidity and cloud cover variations).  As such, there 

is no clear indication of what is controlling the observed interannual Ca variations 

 This study seeks empirical evidence of potential drivers of the year-to-year variations in 

δCa. To this end, both station observations and assimilated meteorological data were used to 

compute correlation coefficients between meteorological data and observed δCa variations to 

determine regions and quantities that are potential drivers of the variability. Based on the 

magnitude of the temporal variations in the meteorological data and the relationships between 

meteorological variables and δCa, first-order approximations are applied to evaluate which 

factors associated with climate variations might have contributed to the observed variability in 

δCa and the decrease during the mid-1990s in particular. 

 

2.2 Atmospheric Budget for δ18O of atmospheric CO2 

2.2.1 CO2 fluxes to and from the atmosphere 

 The total gross CO2 flux from the surface to the atmosphere (Fsa) is the sum of individual 

gross fluxes from the five major sources: 

  ufoarlasa FFFFFF     (2.1) 
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where F values are fluxes to the atmosphere (GtC y-1) and subscripts la, r, oa, f, and u refer to 

leaf-to-atmosphere, soil and stem respiration, ocean-to-atmosphere, fossil fuel and land use 

changes, respectively (A complete list variables used here is given in Appendix 2.B). Denman et 

al. [2007, Figure 7.3] estimated these CO2 fluxes (from Sarmiento and Gruber [2006], Sabine et 

al. [2004], and Houghton [2003]) as follows: Fr = 119.6 GtC y-1; Foa = 90.6 GtC y-1; Ff = 6.4 

GtC y-1; and Fu = 1.6 GtC y-1.  Denman et al. [2007] also estimated global Gross Primary 

Production (GPP) to be 120 GtC y-1. The global leaf-to-atmosphere CO2 flux can be estimated as 

GPP times the enhancement factor [Farquhar et al., 1993], CC / (Ca-CC) (where Ca and CC are 

the CO2 mixing ratio in the atmosphere and at the surface chloroplast within leaf stomata, 

respectively). This enhancement factor varies primarily with the relative amounts of C3 and C4 

vegetation, as each plant type exhibits very different CC values [Still et al., 2009]. Using a 

biophysical model Cuntz et al. [2003a] calculated a global average of CC /(Ca-CC) to be 

approximately three.  The global mean estimates calculated by Ciais et al. [1997a] and Farquhar  

et al. [1993] were 1.7 and 1.3, respectively. Any one of these three estimates could be correct.  

As such, the unbiased value assumed here is the average of the three estimates, which is two. 

Using an enhancement factor of two results in a flux from leaves of approximately 240 GtC y-1. 

Combining Fla with the other fluxes yields a total gross global CO2 flux from the Earth’s surface 

to atmosphere (Fsa) of 458 GtC y-1.  Thus, approximately 52% (240 / 458) of the surface-to-

atmospheric CO2 should carry the isotopic composition of CO2 that is set inside leaves, while 

26% (119.6 / 458) should carry the isotopic label of respiration. 

 The total gross flux from the atmosphere to the surface (Fas) can be written as: 

. aoalas FFF     (2.2) 
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where subscripts al and ao refer to atmosphere-to-leaf and atmosphere-to-ocean, respectively.  

The global atmosphere-to-leaf CO2 flux can be estimated as GPP times Ca / (Ca-CC). With an 

atmospheric CO2 mixing ratio of 385 ppm and an enhancement factor of two, would suggests 

that the Ca / (Ca-CC) factor is approximately three (i.e., Fal is three times GPP). Using GPP 

reported by Denman et al. [2007] results in the global atmosphere-to-leaf CO2 flux equal to 360 

GtC y-1. Denman et al. [2007] estimated the atmosphere-to-ocean flux to be 92.8 GtC y-1. Thus, 

80% of the global atmosphere-to-surface CO2 flux is due to atmosphere-to-leaf fluxes. Theses 

fraction as well as the ones mentioned above will be used to estimate changes to δCa values in 

section 2.5. 

  

2.2.2 Potential drivers of δ18O of atmospheric CO2 

 The mass balance for δCa can be written fluxes defined above and their apparent 

discriminations against atmospheric CO18O (Δ, ‰) [Farquhar et al., 1993; Ciais et al., 1997a, 

1997b, Cuntz et al., 2003a, 2003b]: 

.  
    fufoorrAA

a

a FFFFF
MCdt

Cd


1
   (2.3) 

where M is a CO2 unit conversion factor (2.122 PgC ppm-1) and subscripts A, r, o, f, and u refer 

to assimilation, respiration, ocean, fossil fuel consumption, and land use changes, respectively.   

In equation (2.3), FA equals GPP minus leaf respiration, and thus all other ecosystem respiration 

is contained in the Fr term.  The terrestrial ecosystem fluxes comprise the first two terms within 

the brackets of equation (2.3), which can be rewritten as [Farquhar and Lloyd 1993; Ciais et al. 

1997a]: 
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   SaSrrr CCFF         (2.5) 

where ε values are diffusive fractionation factors, and subscripts l and S refer to leaves and soil, 

respectively.  Equation (2.3) shows that δCa may respond to changes in assimilation or 

respiration due to factors such as light levels, relative humidity or precipitation.  Similarly, one 

would expect δCa to be affected by changes in Cl and CS (the 18O value of leaf and soil CO2), 

via changes to ΔA and Δr in equation (2.3). 

 Cl and CS are primarily controlled by the isotopic composition of the water pools with 

which CO2 interacts (the leaf and soil water, Wl and WS) during leaf photosynthesis and soil 

and stem respiration.  The isotopic composition of soil-respired CO2 also depends on isotopic 

kinetic fractionation from diffusion of molecular CO2 and CO18O (accounted for in the εS term).  

Another process that influences the isotopic composition of soil CO2 fluxes is atmospheric CO2 

diffusing into the upper layers of the soil, attaining the isotopic signature of the surface soil water 

through rapid equilibration, and diffusing back to the atmosphere without any net flux to or from 

the atmosphere (the so-called amount effect [Tans 1998; Miller et al., 1999; Riley et al., 2002; 

Riley, 2005]). This effect is not directly accounted for in the analysis below, though the isotopic 

composition of CO2 fluxes from soils is assumed to be dependent on the isotopic composition 

soil water.  

Within leaves, CO2 in the stomatal pore equilibrates with liquid water rapidly through 

hydration reactions catalyzed by the ubiquitous enzyme carbonic anhydrase. Thus, Cl is 

primarily determined by Wl plus a temperature-dependent equilibrium offset. Craig and Gordon 
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[1965] formulated a model to predict the isotopic composition of surface water, and the model 

has been modified [Flanagan et al., 1991] to estimate the steady-state isotopic composition of 

leaf water at the evaporation site at the bottom of leaf stomata 

   CVlkXlLVCGl WhWhTW   1)(     (2.6), 

where εLV(T) is the temperature-dependent equilibrium fractionation of H2
18O during the liquid-

vapor phase transition (~9.8‰ at 298K [Horita and Wesolowski, 1994]), εk is the kinetic 

fractionation of H2
18O during diffusion of vapor across the stomata (-32‰ [Cappa et al., 2003] 

or 28‰ [Luz et al., 2009]) and leaf boundary layer (-21‰ [Cappa et al., 2003]), hl is relative 

humidity at the leaf surface, WX is the isotopic composition of the xylem (stem) water, and 

WCV is the isotopic composition of the canopy vapor. WX and WCV are primarily influenced by 

the isotopic composition of soil water (which is dependent on the isotopic composition of 

precipitation, WP) and atmospheric vapor, WAV. Because the isotopic composition of soil water 

is typically enriched relative to vapor [Dansgaard, 1964; Ciais et al., 1998a; Zhang et al., 2009] 

and because hl determines kinetic fractionation strength, equation (2.6) predicts Wl will 

decrease as relative humidity increases (and vice versa).  As such, it is likely that interannual 

variability in relative humidity would cause variations in δCa via changes in the isotopic 

composition of leaf water (and thus CO2) within the stomatal cavity. Indeed, differentiating 

equation (2.6) with respect to hl shows that a relative humidity increase of 1% at constant 

temperature corresponds to a Wl decrease of approximately 0.36‰ (given εk = -26‰ and WCV - 

WS = -10‰).  However, this dependence is reduced when considering non-steady state effects 

and diffusive mixing of xylem water and water at the leaf evaporation site (i.e. the Péclet effect) 

[Farquhar and Lloyd, 1993]. 
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 Oceanic fluxes of CO2 are thought to only have minor influences on δCa [Ciais et al., 

1997a; Cuntz et al., 2003a], largely because of low discriminations (Δo), relative to terrestrial 

fluxes.  Because of this small influence, this study will focus mostly on the terrestrial ecosystem 

components of equation (2.3), with minor considerations to the ocean component in the middle 

and high-latitudes where the ocean discrimination may be larger.   

 The budget consideration given above highlights three processes that could potentially 

dominate variations in δCa: (1), relative humidity and its influence on leaf water isotopic 

composition; (2) the isotopic composition of precipitation and water vapor and their impact on 

leaf and soil water δ18O values; and (3) gross CO2 fluxes, especially assimilation and respiration, 

which are sensitive to changes in temperature, light levels, and moisture availability. The intent 

of this paper is to seek quantitative evidence for the relative importance of each of these from 

observations.  

  

2.3 Methods and Data 

2.3.1 Isotope Data 

 Observed δCa used here come from the Stable Isotope Lab at the Institute of Arctic and 

Alpine Research and NOAA’s Earth System Research Laboratory, Global Monitoring Division.  

These data span 1990 to 2007 and come from flask samples that are dried to avoid potential 18O 

exchange between water and carbon dioxide [Gemery et al., 1996].  CO2 is then extracted from 

the sample and its isotopic composition is measured relative to CO2 in a reference gas using a 

dual-inlet mass spectrometer.  The precision of these measurements is 0.03‰ and the uncertainty 

of the absolute value is 0.07‰ [White and Vaughn, 2009].  
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Observed interannual variations in the isotopic composition of precipitation (WP) used 

here comes from the Global Network for Isotopes in Precipitation (GNIP) database, which is a 

joint project of the International Atomic Energy Agency and the WMO [Isotope Hydrology 

Section, 2006].  Unfortunately, there are only 295 stations that have at least 1 continuous year of 

observed monthly mean 18O values.  Furthermore, many of the stations ceased to measure water 

isotopes after 1990 (when consistent δCa observations typically began), thus there is only a 

limited amount of precipitation isotope data to use for the statistical analysis.  Only 69 GNIP 

stations (most of which are located in Europe) have 90 or more months of data that overlap with 

the Mauna Loa δCa record used in the analysis. 

2.3.2 Meteorological Data 

Relative humidity and temperature data were compiled from the Global Summary of the 

Day from the National Climatic Data Center and the World Meteorological Organization 

(WMO). This network of observations consists of 30,727 stations, though only about 7000 have 

sufficient data in recent years (130 or more months of data from 1990 to 2007). These stations 

cover mostly continental regions with large gaps in Sahara, Siberia, Greenland, and Antarctica. 

The WMO station observations span from 1929 (i.e., well before modern CO18O measurements 

began) to the present and are updated daily within 1-2 days after the observation.  The solar 

radiation data came from the gridded product of Qian et al. [2006], who adjusted the 

NCEP/NCAR reanalysis radiation data based on radiation/cloud cover relationships and station 

cloud cover data [New et al., 2002; Mitchell et al., 2004; Dai et al., 2006]. The mean bias in the 

reanalysis radiation is further minimized by using an atmospheric radiation transfer model and 

the cloud, surface, and atmospheric properties from the International Satellite Cloud Climatology 
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Project (ISCCP) [Zhang et al., 2004], which was found to correlate well with the high-quality 

Baseline Surface Radiation Network measurements for the 1992-2001 period (r = 0.98). Monthly 

precipitation data was taken from version-2 of the combined precipitation dataset of the Global 

Precipitation Climatology Project (GPCP) [Adler et al., 2003], which is a gridded product (at 

2.5° resolution) based on low-orbit satellite microwave data, geosynchronous-orbit satellite 

infrared data, and surface rain gauge observations.  Monthly mean values were calculated for 

each station (or grid-cell in the case of radiation), and similar to the observed δCa values, long-

term monthly means were removed from each station or grid-cell’s time series.  This is done 

because it is the interannual variations (not the seasonal variations) that are of interest.   

 

2.4 Results 

2.4.1 Correlations among station observations 

 The auto-correlations of monthly δCa anomalies approach zero with a 3-year lag for all 

four sites (Figure 2.1).  The highest correlations at zero lag between different stations are 

between Mauna Loa and Barrow and Cape Grim. Between Barrow and Mauna Loa, the 

correlation is the highest when Barrow is lagged by 1-2 months (Figure 2.1b).  This small lag 

suggests that near synchronous interannual δCa variations are observed throughout the Northern 

Hemisphere on a monthly time-scale and perhaps the source of the variations originates within 

the tropics. This signal takes about 6 to 8 months to reach Cape Grim as the correlation increases 

from r = 0.714 to r = 0.746 when the Cape Grim time series is lagged by 6 months.  Similar 

results also emerge for the South Pole, where correlations are higher and statistically significant 

(p ≤ 0.05, as per the discussion below) when the South Pole time-series is lagged by 9 to 10 
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months with respect to Mauna Loa and Barrow observations, and 7 to 8 months when correlated 

with Cape Grim. This suggest that the δCa signal originates in the tropics and/or Northern 

Hemisphere and then is transported into the Southern Hemisphere, which is expected considering 

the scarcity of productive ecosystems in the Southern Hemisphere outside of the tropics.  

Furthermore, these variations are first observed at Mauna Loa before reaching the other 3 

stations.   

 

 

Figure  2.1 Correlation coefficient when four NOAA stations are correlated with one another 
with different lags.  The thin solid line shows where the correlation is significant at the 95% 
level, assuming 11 degrees of freedom. 
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 In light of these findings, the remainder of this study will focus on the Mauna Loa time 

series.  The Mauna Loa record begins in January 1990 and goes through December 2007, with 11 

missing months from December 1992 to October 1993, making for a total of 205 months to use 

for the correlation analysis.  Figure 2.1b shows that the autocorrelation is above 0.602 (p ≤ 0.05) 

for a lag of 1 to 6 months, but goes to zero with more than a 33-month lag.  To estimate the 

degrees of freedom with the Mauna Loa time series, the turnover time of isotopic oxygen in 

atmospheric CO2 (τ) is calculated assuming the atmosphere contains 762 GtC [Denman et al., 

2007] and the surface-to-atmosphere flux equals 458 GtCy-1 (section 2.2.1), yields a turnover 

time of 1.66 years.  Thus, it is assumed here that every 1.66 year interval is independent (τ ~1.66 

year), and the degrees of freedom (N) is not 205 monthly values but rather 11.  With this value of 

N, the statistical significance limits of r (using 2 sided p-values) at the 99%, 95%, 90%, and 80% 

confidence level are 0.735, 0.602, 0.521, and 0.419, respectively.  Correlation coefficients were 

computed from the monthly anomalies (r), and to decipher the contribution of low frequency 

variations to the values of r, low frequency correlations (rL) are found with high frequency 

variations in the meteorological data and δCa removed by applying a low pass filter that removes 

periods shorter than 3 years (the approximate lag with which the autocorrelation of Mauna Loa 

δCa goes to zero).  Similarly, correlations are calculated with low frequency variations, periods 

longer than 3 years, removed (rH). 

 

2.4.2 Correlations with Mauna Loa δCa 

 The Mauna Loa δCa record exhibits robust negative correlations with relative humidity 

(which is consistent with enrichment of leaf water) in Southeast Asia / Indonesia / Northern 
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Australia (hereafter Asia Pacific region); southern Central America and northern South America 

(hereafter the Tropical Americas); Central and Eastern Europe; central North America; 

Southeastern Africa; and near the coast of Antarctica (Figure 2.2a).  Regions where 

meteorological station density is high are resolved in Figures 2.2c-2.2f, which also shows 

positive correlations in each region that oppose the anticipated leaf water enrichment 

mechanism.  There were no stations with negative r values above the 99% confidence level, 2 

above the 95% level, 13 above the 90% level, and 60 above the 80% level.  Many of the 

correlation values found in North America increase when δCa was lagged by 2 years (Figures 

2.2e and 2.2f). The increase in correlation values may be expected, as τ is approximately 1-2 

years (section 2.4.1), so δCa may take 1-2 years to respond to sustained forcing from that region 

over that period. Positive correlations are found in France, Eastern U.S., the Middle East, and 

Argentina (with no lag). Since one might expect the strongest signal to be associated with the 

time of year when CO2 fluxes are largest, the analysis was repeated using a dataset in which only 

the growing season months were retained. The growing season analysis was remarkably similar 

to the full annual data (specifically, no change in the regions where consistent negative and 

positive correlations were found). 

 Only five GNIP stations within the tropics have over 90 months of WP observations 

during the 1990-2005 period, while no systematic observations of tropical WAV exist.  Two of 

these five stations have positive correlations with δCa above 0.2: Bangkok, Thailand (r = 0.284, 

rL = 0.682) and Izobama, Ecuador (r = 0.201 and rL = 0.553).  Two of the other three stations are 

on remote islands and the fifth station is in Ethiopia.  Darwin, Australia has the 2nd longest 

record for the Asia Pacific region during the 1990-2005 period: 64 months, r = 0.296, rL = 0.639 

(Figure 2.3).  For all three stations, values of rH were much smaller and of opposite sign.  
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Furthermore, the values of rL were always positive and larger, an indication that the positive 

correlations were primarily due to low frequency (periods greater than 3 years) variations. 

 

  

Figure 2.2. Negative (a) and Positive (b) station correlation coefficient (r) of observed relative 
humidity and Mauna Loa δCa values (‰).  Zoomed in correlations are shown for Southeast 
Asian region (c), Europe (d), and North America (e).  Correlations in North America increase 
when a 2-year lag is applied for the North American shown in (f).  
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Figure 2.3. Station δWP (‰) time-series (thin solid line) for 2 stations within the Southeast 
Asian region (a and c) and 1 in the tropical Americas (b).  Also shown is the Mauna Loa δCa (‰) 
time-series (dotted line). High frequency filtered δWP values are shown as a thick solid line. 
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Assimilation of carbon by plants can be limited by a number of factors including air 

temperature.  Temperature can also influence terrestrial CO18O exchanges in many ways, 

including changes to H2O-CO2 equilibrium fractionation, changes to liquid-vapor equilibrium 

fractionation, and influencing leaf surface relative humidity and stomatal conductance (which in 

turn influence CC, Fla, and Fal) [Still et al., 2009].  Negative correlations were found between 

observed air temperatures and δCa over Eastern Canada and various arid regions such as the 

Middle East, Argentina, and the Chihuahuan Desert (Figure 2.4a).  Because τ is approximately 1-

2 years, correlation coefficients were also calculated with 1 and 2 year lags. The magnitude of 

the correlations was reduced with the lags, though with a 2-year lag robust negative correlations 

are found throughout much of South America (Figure 2.4c).  Positive correlations with 

temperature are found in the same regions where negative relative humidity correlations are 

found (Figure 2.4b), such as central and western North America, Southeastern Africa, Central 

and Eastern Europe, Tropical Americas, and the Asia Pacific.  Similar to the relative humidity 

results, correlations are stronger over North America with lags applied to δCa (Figure 2.4d). 

 As discussed above, δCa could also be influenced by a change to one of the fluxes in 

equation (2.3).  Within the tropics, a change to assimilation could occur due to a change to either 

solar radiation at Earth’s surface or water availability [Nemani et al., 2003]. As such, and to 

facilitate budget calculations below, δCa at Mauna Loa was also correlated with solar 

downwelling radiation and precipitation totals.  Within the Asia Pacific region, positive 

correlations exist between solar downwelling radiation and δCa (Figure 2.5a). No clear 

correlation sign was found for the Tropical Americas and the Congo.  Similar to relative 

humidity, precipitation amount negatively correlates with Mauna Loa δCa values in the Asia 

Pacific and most of the Tropical Americas, which extends across the Atlantic and into the 
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Western Congo (Figure 2.5b). Also the correlations for solar radiation flux and precipitation do 

not improve when lags are applied to δCa.  

 

 

  

  

Figure 2.4. Stations with positive (a) and negative (c) correlations with observed temperature 
and observed Mauna Loa δCa values (‰). Correlation coefficient (r) is represented via the color 
bar.  Positive correlations with a 2-year lag (b) and negative correlations with a 2-year lag (d) are 
also shown.   
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Figure 2.5 Correlation coefficients between observed monthly δCa (‰) anomalies from Mauna 
Loa with solar radiation (a) and precipitation (b).  Black contour line indicates the 0 contour line. 
 

2.5 Discussion   

2.5.1 Magnitude of relative humidity variations 

 This study seeks to reconcile the magnitude of the relative humidity variations identified 

by the correlation analysis with the budget and observed variations in δCa.  In particular, the 

focus here is on the difference in δCa that arose from the gradual decrease during the mid-1990s.  

Specifically, the aim here is to determine which components contributed to the low frequency 



 

 

 

25

δCa drop of 0.5‰ over the course of the decade.  Derived in Appendix 2B, the change in δCa due 

to changes in the isotopic composition of a CO2 flux F (e.g. the leaf-to-atmosphere flux) is 

estimated as: 

       Rga ffFDCD         (2.7) 

where D refers to the finite change (during the 1990s), δF is the isotopic composition of a flux F, 

fg is the fraction of the global gross flux to the atmosphere from equation (2.1) (and computed in 

section 2.2.1), fR is the fraction of the global flux from a particular region.  The value of fR was 

calculated from results of the CASA (Carnegie-Ames-Stanford) biosphere model [Potter, 1999; 

Potter et al., 1999], which includes Net Primary Production (NPP) and heterotrophic respiration. 

As mentioned above, high negative correlations were found for relative humidity within 

the tropics in the Asia Pacific and Tropical American regions, though some positive correlations 

were found in these regions. These high negative correlations are consistent in sign with the 

relationship between relative humidity and 18O values of leaf and soil water (Wl and WS) and 

the subsequent effects on the isotopic composition of soil and leaf CO2 fluxes (Fla and Fr). 

The regional average relative humidity time series is computed using all stations with 130 or 

more months of temperature and dew-point observations (i.e. relative humidity observations) 

within a particular region. The results for six regions are shown in Figure 2.6, and the longitudes 

and latitudes used to define each region is given in each panel in Figure 2.6.  Observed δCa 

anomalies at Mauna Loa are also shown with the scale reversed to reflect the expected 

relationship.  Also shown in Figures 2.6 are humidity and δCa variations with high frequency 

variations removed by applying a low-pass filter that removes periods shorter than 3 years. The 

time series shows that these higher correlations were largely associated with low humidity in the 
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early 1990s, higher humidity in the late 1990s, and decreasing relative humidity after then.  

Indeed, the correlations in these six regions are primarily a consequence of the low frequency 

variations in both relative humidity and δCa (as is reflected in the values r, rL, and rH in Figure 

2.6). These results suggest the potential for the low frequency tropical relative humidity 

variations to be a control on the inter-annual variability of δCa. 

Equation (2.7) was used to estimate the change in δCa due to changes to the isotopic 

composition of leaves within the tropics induced by relative humidity variations.  It was found 

that the regional mean increase in relative humidity during the 1990s for the stations in the Asia 

Pacific and Tropical America regions was 4.0% and 3.0% (respectively) when high frequency 

variations were removed (Figures 2.6a and 2.6b). Weighting these two numbers by regional NPP 

(from CASA) results in an average increase in relative humidity of 3.3%. Assuming 

∂(δWl)/∂h=0.36‰%-1 (section 2.2.2), a 3.3% increase in relative humidity would drive a 1.2‰ 

decrease in δWl and the δ18O value of fluxes from leaves, resulting in D(δF) = 1.2‰. 

Furthermore, results from the CASA model suggest that the two regions in Figure 2.6a and 2.6b 

comprise about 19% of the global annual NPP (i.e., fR = 0.19).  From equation (2.7), these 

numbers result in an estimated change in δCa of 0.12‰ due to the influence of tropical relative 

humidity variations on the isotopic composition of tropical leaf water (i.e,. 1.2‰ × 0.52 × 0.19 = 

0.12‰).  This is less than half of the 0.5‰ observed during the 1990s. 

The increase in relative humidity in these two tropical regions would also cause changes 

in other variables that would affect δCa.  For example, increases in humidity would decrease soil 

evaporative enrichment and cause the isotopic composition of soil respiration to decrease, thus 

enhancing the 0.12‰ change from tropical leaf fluxes.  On the other hand, an increase in 

humidity would likely drive an increase in photosynthesis (due to an increase in stomatal 
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conductance), which would tend to enrich the atmosphere, opposing any decrease in δCa.  This 

latter issue will be addressed further in subsection 2.5.3. 

  

 

 

Figure 2.6. Station relative humidity (%) time-series (thin solid line) averaged over the Asian 
Pacific (a), Tropical Americas (b), Central North America (c), Central and Eastern Europe (d), 
Siberia (e), and off the Antarctic coast (f).. High frequency filtered time-series is shown as a 
thick solid line.  Observed δCa values from Mauna Loa are also shown (dotted line and thick 
gray line) and the scale is reversed for better comparison. 
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In the northern middle to high-latitudes, high negative correlations are found in Central 

and Eastern Europe, Central North America, and a region within Siberia.  Figures 2.6c through 

2.6e shows the average relative humidity variations for these three regions.  The increase in 

relative humidity during the mid-1990s is most prominent in central North America, where the 

low frequency component increases by 6.0%.  The regional average humidity in Europe and 

Siberia only increased by 3.3% and 1.6%, respectively.  Weighting these values by regional NPP 

resulted in an average 3.2% increase in relative humidity, which would yield a 1.2‰ decrease in 

δWl values (assuming steady-state).  The estimated change to δCa due to relative humidity 

variations in these northern regions are computed assuming D(δF) = 1.2‰, fg = 0.52, fR = 0.12 

(from the CASA model), yielding a δCa change of 0.075‰.  This estimated value indicates that 

relative humidity in the middle and high-latitudes did contribute to the decrease in δCa during the 

1990s.   

Figure 2.2b reveals that Mauna Loa δCa positively correlates with relative humidity for 

some regions: France, Eastern U.S., Mexico, the Middle East, and Argentina.  However, it was 

found that there was little to no decrease in relative humidity over the Eastern U.S. and the 

Middle East during the 1990s, rather the positive correlations were mostly related to variations 

after the 1997/1998 El Niño.  For the other regions it was found that NPP-weighted relative 

humidity decreased by 4.1% during the 1990s.  Using the same reasoning as before would imply 

that D(δF) has a value of 1.5‰. Results from CASA reveal that these regions contribute 6.9% to 

the global total NPP (fR = 0.069).  With these values and fg equal to 0.52 results in an estimated 

increase of 0.054‰.  Thus, the overall change in δCa from relative humidity variations outside of 

the Asia Pacific and Tropical Americas is relatively small (0.021‰). 
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Relative humidity values in coastal Antarctica increased during the 1990s (Figure 2.6b). 

Considering only low frequency variations, it was found that the regional average relative 

humidity increased by 8.0% from 1991 to 1997.  This is a region where ocean fluxes are high 

and tend to enrich the atmosphere with CO18O.  It is not likely that the relative humidity 

variations would affect either ocean fluxes or the isotopic composition of the ocean-to-

atmosphere fluxes. However the relative humidity increase could be a result of changes in 

boundary layer conditions.  For example, the increase in relative humidity could be a result of 

less mixing with dry mid-atmosphere air, which could be related to reductions in wind stress, 

thus preventing the influence of enrichment from ocean fluxes off the coast of Antarctica to be 

widespread.    

2.5.2  Influences from 18O of precipitation 

It is likely that variations in relative humidity and the isotopic composition of 

precipitation are related. In the tropics, there is a well-known statistical relationship between 

precipitation amount and its isotopic composition (WP) such that WP values typically decrease 

as precipitation rates increase (the so-called amount effect [Dansgaard, 1964]).  Furthermore, 

studies [Lu and Zeng, 2005; Lu and Takle, 2010] have found tight positive relationships between 

precipitation and relative humidity, which are related to changes in water vapor and/or 

temperatures. Indeed, regional monthly precipitation anomalies were correlated with regional 

relative humidity anomalies for the Asia-Pacific and Tropical Americas, resulting in r equal to 

0.661 and 0.546, respectively.  With this reasoning an increase in precipitation during the 1990s 

would be consistent with a decrease in WP for the decade, and thus WP would positively 

correlate with the observed δCa variations.  
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Correlations at Bangkok, Izobama, and Darwin were consistent with this (amount effect) 

relationship during the 1990s.  At Bangkok and Darwin, WP decreased during the 1990s 

followed by an increase after 2000, which correlates well with the low frequency variations in 

observed δCa, as is reflected in the values of rL (section 2.4).  Also, δCa anti-correlated with 

precipitation amount throughout the Asia Pacific, most of the Tropical Americas, and parts of the 

Congo (Figure 2.5b). These results suggest that observed WP variations at these three GNIP 

stations were not unique to these three stations alone, but likely extended to most tropical land 

masses. Precipitation increased in the Asia Pacific and Tropical America regions during the 

1990s (with the exception of the 1997/1998 El Niño event) (Figure 2.7), and like relative 

humidity, the negative correlations in these two regions were primarily due to low frequency 

variations (as is suggested by the values of r, rL, and rH in Figure 2.7).  Low frequency 

precipitation increased during the 1990s for the Asia Pacific and Tropical Americas by 2.3mm d-

1 and 1.3mm d-1, respectively. Using the amount effect “slope” quoted by Bony et al. [2008] of 

0.6‰ mm-1 d would imply that WP in these regions decreased by 1.4‰ and 0.78‰ in the Asia 

Pacific and Tropical Americas, respectively. However, the low-frequency decrease in WP was 

greater for the stations shown in Figure 2.3.  Nonetheless, this increase in precipitation suggests a 

decrease in WP during the mid-1990s, which would likely drive changes in δCa values of the 

same sign as those observed. 

Stewart [1975] showed through a set of experiments that that vapor near the surface can 

potentially reach isotopic equilibrium with falling liquid precipitation.  Similarly Lee et al. 

[2006] and Wen et al. [2010] found positive temporal correlations between measured isotopic 
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composition of vapor and measured WP.  As such, variations in the 18O composition of water 

vapor are assumed to follow that of precipitation. 

 

 

Figure 2.7.  Averaged interannual precipitation variations (mm day-1) for the Asian Pacific (a) 
and Tropical Americas (b).  The thick solid line shows the low frequency component of the 
radiation anomalies. Observed δCa values from Mauna Loa are also shown (dotted line and thick 
gray line) and the scale is reversed for better comparison. 
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 At steady state, a change in the 18O composition of precipitation and water vapor will 

result in the same change to the 18O composition of leaf (via equation 2.6) and soil water 

[Farquhar et al., 1993], as these are the primary sources of water to land and plants.  Calculated 

from the low frequency curves on Figure 2.3, δWP decreased from the early 1990s to the end of 

the decade by 3.1‰ at Bangkok and 3.3‰ at Izobamba. Assuming δWP decreased in the same 

regions where relative humidity and precipitation amount was observed to increase (Asia Pacific 

and Tropical Americas), it was estimated that regional δWP decreased by 3.2‰ (weighting the 

two regions by NPP). The 18O composition of soil respired CO2 (and the leaf-to-atmosphere flux) 

is primarily determined by δWS (δWl) [Ciais and Mejier, 1999; Yakir and Sternberg, 2000], and 

δWS is primarily (but not solely) determined by δWP [Welker, 2000].  As such, it is assumed that 

the 3.2‰ decrease in δWP caused the same decrease in the isotopic composition of soil 

respiration.  From section 2.2.1 it was estimated that 26% of the total surface-to-atmosphere 

global CO2 flux comes from respiration, and results from CASA suggest that 19% of global 

respiration comes from these two regions.  With these values, equation 2.7 estimates that δCa 

decreased by 0.16‰ during the 1990s due to the influence of δWP on the 18O composition of 

tropical respiration.   

Tropical values of δWl will also be affected by the decrease in δWP through the isotopic 

composition of xylem water in equation 2.6. For reasons stated above, it is assumed that δWAV 

follows the δWP variations [Stewart, 1975; Lee et al., 2006; Wen et al., 2010].  The 3.2‰ 

decrease in δWP and δWAV would have caused a 3.2‰ decrease in δWl (equation 2.6) during the 

1990s, which in turn caused the same change to δFla. Using fg = 0.52 and fR = 0.19 as in the 

previous subsection, the estimated change in δCa (equation 2.7) would be 0.32‰.  Thus, the total 
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influence from changes to δFla and δFr due to isotope hydrology variations would be ~0.48‰.  

This finding is based on a very small dataset (3 viable station records), however, and a better 

characterization of the processes influencing δCa requires more thorough measurements of the 

18O content of precipitation and vapor, especially near the major tropical rain forests. 

 

2.5.3 Controls on ecosystem fluxes 

Nemani et al. [2003] showed regions where water availability, light, and temperature 

limit assimilation, and found that the limitation by each variable largely depends on latitudinal 

zones.  For instance, assimilation is most dependent on temperature and radiation in the middle 

and high-latitudes, on water in most arid subtropical regions, and on radiation in the tropical rain 

forests. In this section, the 1990s variations of these meteorological variables are examined, and 

the potential influence of the variations on assimilation and subsequently δCa will be assessed.  

An estimate of changes to δCa due to assimilation is used here, accounting for one-way fluxes 

into and out of the leaves, is: 

     alllaallRAa ffCCffCD      (2.8). 

where fA is the fractional change in assimilation, fal is the fraction of global atmosphere-to-leaf 

flux relative to the total atmosphere-to-surface flux (equal to 0.80 from section 2.2.1), fla is the 

fraction of global leaf-to-atmosphere flux relative to the total atmosphere-to-surface flux (0.52 

from section 2.2.1).  Equation (2.8) takes into account kinetic fractionation from diffusion of 

CO2 and CO18O into and out of the stomtal pore (l, taken to be –7.4‰ [Cuntz et al., 2003a]). δCl 

is calculated from an estimate of zonal mean δWl [Hoffmann et al., 2004] and an equilibrium 

fractionation equation (εeq, [Brenninkmeier et al., 1983]) (i.e., δCl = δWl + εeq, relative to 

SMOW).  Knowing that other variables might be limiting photosynthesis, equation (2.8) is used 
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to estimate how a change in one photosynthesis-limiting variable (e.g. temperature) influenced 

photosynthesis during the 1990s (all other limiting variables assumed constant) to ultimately 

approximate a change in δCa.  

 As shown above, precipitation and relative humidity increased from 1993 to 1997 for the 

Asian Pacific and Tropical American regions. Leaf fluxes in these regions normally enrich the 

atmosphere of CO18O, and the increase in precipitation (and thus water availability) would cause 

fluxes to increase and further enrich the atmosphere. However, this assumes that tropical 

vegetation is water stressed, which without a land surface model or adequate soil moisture data 

cannot be confirmed unambiguously. 

 Assimilation depends on the leaf stomatal conductance. Ball et al. [1987] proposed a 

model that estimates stomatal conductance based on its observed relationships with leaf 

temperature, photon flux density (though indirectly through the assimilation rate), CC, and leaf 

surface relative humidity. This model is given by: 

   0g
C

h
mFg

C

l
As        (2.9)  

where m is the stomatal sensitivity factor [Harley and Tenhunen, 1991] and g0 is the residual 

stomatal conductance as assimilation goes to zero. This relationship shows that stomatal 

conductance depends linearly on relative humidity, and therefore equation (2.9) predicts 

assimilation would increase as a response to the relative humidity increase discussed in section 

2.5.1. Assuming the same 3.3% increase in relatively humidity during the 1990s as in section 

2.5.1, and that assimilation increases linearly with relative humidity, fA in equation (2.8) is 

estimated to be 0.033. From section 2.2.1 fla and fal are estimated to be 0.52 and 0.84, 

respectively, and from section 2.5.1 fR is approximately 0.19. The tropical mean value of δCa is 
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estimated to be 0.5‰, which is the mean value at Mauna Loa [White and Vaughn, 2009]. To 

estimate δCl, the mean value of δWl within the tropics is assumed to be 7‰ [Hoffmann et al., 

2004] and a temperature of 300K would yield δCl equal to 6.0‰.  Given these estimates, 

equation (2.8) predicts an increase in δCa of 0.037‰. This is a smaller magnitude change than 

that associated with either humidity driven changes to the isotopic composition of ecosystem 

fluxes or changes to the direct water isotope forcing (-0.14‰ and -0.48‰, respectively), though 

it would slightly oppose the effect of a decrease in leaf water enrichment on δCa during the 

1990s.   

This estimate however does not factor in the dependence of stomtal conductance on 

photosynthesis in equation (2.9).  This dependency implies that fA could be larger than 0.033.  

However, model results from Chapter 3 reveal that a 3.3% global increase in atmospheric 

relative humidity caused 2.0% increase in flux-weighted leaf surface relative humidity, which 

yielded a 2.7% increase in assimilation (and in close agreement with the estimate used here). 

Similarly, within the tropics Nemani et al. [2003] estimated that a 7.4% increase in 

photosynthesis occurred over an 18-year period that spanned all of the 1990s (1982-1999).  

Assuming this trend was linear implies a 4.1% increase over the 1990s, which is also consistent 

with the 3.3% estimate used here.  However, their estimated photosynthesis increase may have 

been influenced by light level changes (discussed below), as many tropical forests are radiation-

limited.    

 The tropical regions with the largest (positive) correlation between δCa and radiation are 

those where correlation coefficients between relative humidity and δCa were high and negative: 

the Asia Pacific and, to a lesser extent, the Tropical Americas.  These radiation correlations are 

consistent with the relative humidity variations, as any increase in relative humidity will likely 
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accompany an increase in cloud cover and a decrease in surface solar downwelling radiation 

[Still et al., 2009], thus providing a consistent check for the opposite signs of the correlations 

between the variables in these regions.  Figure 2.8 shows the time series of average solar 

downwelling for the Asian-Pacific and tropical American region, along with δCa variations.  

Considering the low-pass-filtered time series, both regions show a decrease in solar radiation 

during the 1990s by 11 Wm-2 for the Asia Pacific region and 7.8 Wm-2 for the Tropical 

Americas.  For the Asia Pacific and Tropical Americas, early 1990s radiation levels were 240 

Wm-2 and 233 Wm-2, which corresponds to a 4.6% and 3.3% reduction for the two regions, 

respectively.  The parameterization in the CASA model uses a linear dependence of radiation on 

NPP [Potter et al., 1999], and results of Nemani et al. [2003] suggested that photosynthesis in 

most tropical regions is light limited.  As such, it is assumed here that photosynthesis is light 

limited and linearly dependent on radiation for these two regions.  Thus, fA values are taken as -

0.046 and -0.033 for the Asia Pacific and Tropical Americas (NPP-weighted average of -0.036).  

Using the same values for fla, fal, fR, δCa and δCl as above (i.e. 0.52, 0.80, 0.19, 0.5‰ and 6.0‰, 

respectively), and evaluating equation 2.8 results in an estimated -0.040‰ change in δCa.  This 

small change suggests that interannual δCa variations are not direct responses to fluxes 

constrained by solar radiation.   This estimate is of opposite sign and similar magnitude to 

photosynthetic changes induced by the increase in relative humidity.  Thus, the overall change to 

δCa due to changes to CO2 fluxes in the Asia Pacific and Tropical Americas is likely relatively 

small. 
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Figure 2.8. Averaged interannual solar radiation variations (thin solid line in units of Wm-2) the 
Asian Pacific (a) and Tropical Americas (b)   The thick solid line shows the low frequency 
component of the radiation anomalies.  Observed δCa anomalies from Mauna Loa are also shown 
(dotted line and thick gray line). 
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 These small estimated changes from land ecosystem CO2 fluxes were largely related to 

small values of fA.  Considering equation (2.8) it was found that the value of fA would have to be 

0.11 (i.e. an 11% change in assimilation) to cause a 0.1‰ change to δCa, which would still be 

smaller than the observed change in δCa during the 1990s.  Results from Nemani et al. [2003] 

suggest that tropical assimilation changes were much less than 11% during the 1990s.  Hence, 

there was very little evidence found here that the 1990s decrease in δCa was related to 

assimilation changes in the Tropical Americas and/or the Asia Pacific.   

 

Figure 2.9. Averaged interannual temperature variations (ºC) in Eastern Canada.  The thick solid 
line shows the low frequency component of the temperature anomalies.  Observed δCa anomalies 
from Mauna Loa are also shown with the scale reversed for an easier comparison (dotted line). 
 
 

Temperature has been found to constrain assimilation in many regions in the northern 

middle and high-latitudes [Nemani et al., 2003].  From Figure 2.4, the most robust temperature 

correlation with δCa outside of the tropics is in eastern North America, especially within the 
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Canadian providence of Quebec. Eastern Canada experienced a large increase in temperature 

during the 1990s of about 2K (Figure 2.9). Because ecosystem fluxes become trivial when 

ground and vegetation temperatures drop below freezing, the increase in temperatures would 

cause a longer growing season (Figure 2.10) [Menzel and Fabian, 1999; Kafaki et al., 2009] and 

subsequent increases in annual photosynthesis and respiration [Baldocchi et al., 2001].  

Furthermore, Richardson et al. [2009] showed how an earlier spring onset increased annual GPP 

for this region.  Taking the annual growing season length as defined by the number of days that 

average observed daily temperatures are above freezing, and using only years that have at least 

364 days of reported observations are considered in the calculation, it is found that in 1992 the 

average growing season was ~219 days and by 1996 it reaches ~232 days (an increase of 13 

days).  Richardson et al. [2009] found that GPP increased by 7.3 gC m-2 for each day increase in 

growing season length, implying a 94.9 gCm-2 increase in GPP for a 13 day increase in the 

growing season. Furthermore, results from Hollinger et al. [2001] revealed that the gross 

ecosystem production from a nearby forest (northeastern United States) was about 1339 gC m-2, 

which would suggest that photosynthesis in this eastern North American region increased by 

7.2%. 
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Figure 2.10. Variations in growing season length (number of days) in Eastern Canada.   
 

 

Results from the CASA model indicate that photosynthesis in this North American region 

contributes ~1.8% to global photosynthesis (i.e. fR = 0.018).  The mean δCa, calculated for the 

NOAA station closest to this region (Argyle, Maine), was -0.5‰.  From Hoffmann et al. [2004], 

Northern middle latitude values of δWl are typically about -5‰, which at 280K would result in a 

δCl of -1.3‰.  Using the same values for fla and fal as above (0.52 and 0.80, respectively) results 

in an estimated 0.0022‰ decrease in δCa.  This estimation remained small even when using 

different values of δCl (ranging from -15‰ to 15‰ resulting in a D(δCa) range of -0.0072‰ to 

0.013‰). Because these estimates included a small value of fR, another growing season length 

time series (like the one shown in Figure 2.10) was computed for all of the northern middle and 

high-latitudes (north of 40ºN). The resulting time series (not shown) did not have any increase in 

growing season length during the early and mid-1990s (no increase until 1997, well after δCa had 
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decreased considerably). These results suggest that it is unlikely that the influence of temperature 

on ecosystem fluxes caused much of a change to δCa over the 1990s.  

   

2.6 Conclusion 

 Using WMO station observations, observed δCa from Mauna Loa was found to be 

negatively correlated with relative humidity over a broad geographic range in the Asian Pacific 

region and parts of the Tropical Americas. Because the two regions were not completely devoid 

of stations that positively correlated with Mauna Loa δCa, regional average time series of relative 

humidity were computed (factoring in all station regardless of correlation sign), and it was found 

that relative humidity in the two regions do indeed negatively correlate with δCa in the mean. It 

was estimated that relative humidity variations contributed ~0.14‰ (0.12‰ from the tropics and 

0.021‰ from the middle and high-latitudes) to the observed 0.50‰ decrease in δCa during the 

1990s, and changes in the isotopic composition of precipitation and water vapor may have 

contributed another ~0.48‰ to the decrease.  This overestimation is likely due to the uncertainty 

in the contribution from WP, as there are very few stations that measured this quantity during 

the 1990s.  The results suggest that variations in precipitation, radiation, and temperature were 

not large enough and do not span a large enough geographic area to alter ecosystem CO2 fluxes 

enough to explain the interannual δCa variations.   

The results suggest that about 20% of the 1990s δCa variations were due to the influence 

of relative humidity on the isotopic composition of leaf water, and about 80% of the signal was 

due to isotopic changes to the hydrological cycle (i.e., WP and WAV). The suggestion that 

interannual δCa variations are linked to hydrological changes via the isotopic composition of leaf 
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and soil water is in contrast to other studies that point to land ecosystem flux anomalies as the 

driver of interannual variability in δCa [Gillon and Yakir, 2001; Stern et al., 2001; Ishizawa et al. 

2002; Flanagan 2005].  Some of these studies suggested land ecosystem flux anomalies as the 

mechanism for the mid-1990s decrease, though it was not the central focus of those works.  The 

present study provides evidence from the observational record for a potential dominant role of 

hydrology in influencing δCa, and for a much smaller role of land ecosystem CO2 fluxes. 

Previous modeling studies sought to better understand the spatial structure and seasonality of δCa 

[Farquhar et al., 1993; Ciais et al., 1997a, 1997b; Peylin et al., 1999; Cuntz et al., 2003a, 

2003b].  To better understand the mechanisms influencing δCa variations, future modeling work 

should focus on understanding interannual variations in the observations.  If modeling studies 

can confirm the proposed hydrological mechanisms presented here, then observed δCa could be 

used as an indicator of recent hydrological changes.  Thus, observations of δCa may become a 

powerful integrative tool in the coming decades for monitoring large scale changes in the 

hydrological cycle should it accelerate under a warming climate, as predicted [Meehl et al., 

2007]. 

Appendix 2A: Notation 

Ca CO2 mixing ratio in the atmosphere (mole fraction). 

CC CO2 mixing ratio at the surface chloroplast within leaf stomata (mole 

fraction). 

Fal CO2 flux into leaves (PgC y-1). 

Fao CO2 flux from the oceans to the atmosphere (PgC y-1) 

Ff CO2 flux due to fossil fuel consumption (PgC y-1). 
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Fla CO2 flux out of leaves (PgC y-1). 

FA Gross Primary Product minus leaf respiration (PgC y-1). 

Fo net flux of CO2 from ocean water (PgC y-1). 

Foa CO2 flux into the oceans (PgC y-1) 

Fr CO2 flux from soil respiration (PgC y-1). 

Fu CO2 flux due to land use changes (PgC y-1). 

fA fractional change in assimilation 

fal the fraction of global atmosphere-to-leaf flux relative to the total 

atmosphere to surface flux 

fg fraction of the global gross flux to the atmosphere from equation (2.7) 

fla the fraction of global leaf-to-atmosphere flux relative to the total 

surface-to-atmosphere flux 

fR fraction of the global flux from a particular region that observes the 

change 

gs stomatal conductance 

g0 residual stomatal conductance 

hl relative humidity at leaf surface (range of 0 – 1.0) 

M the stomatal sensitivity factor 

M Mass to concentration conversion factor (2.122 PgC ppm-1).   

T Surface Temperature of either soil or vegetation (K). 

ΔF Apparent discrimination from fossil fuel consumption and land use 

changes 
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Δo Apparent discrimination from net ocean fluxes 

ΔA Apparent discrimination from assimilation 

Δr Apparent discrimination from respiration 

Ca 18O-CO2 value of free air (‰ versus VPDB-CO2). 

Cl 18O-CO2 value of CO2 equilibrated with leaf water (‰ versus VPDB-

CO2). 

CS 18O-CO2 value of CO2 equilibrated with soil water (‰ versus VPDB-

CO2). 

Fla 18O-CO2 value of leaf-to-atmosphere CO2 flux (‰ versus VPDB-CO2). 

Fr 18O-CO2 value of soil respiration (‰ versus VPDB-CO2). 

WAV 18O value of atmospheric water vapor (‰ versus VSMOW-H2O). 

WCV 18O value of canopy water vapor (‰ versus VSMOW-H2O). 

Wl 18O value of leaf water (‰ versus VSMOW-H2O). 

Wl-CG 18O value of leaf water (‰ versus VSMOW-H2O) using the Craig-

Gordon estimation. 

WP 18O value of precipitation (‰ versus VSMOW-H2O). 

WS 18O value of root-weighted soil water (‰ versus VSMOW-H2O). 

eq temperature dependent CO2 equilibration factor (‰ versus VSMOW) 

k H2
18O kinetic fractionation factor for molecular diffusion (‰ versus 

VSMOW-H2O) 

l Effective kinetic fractionation factor for CO18O diffusion in and out of 

the stomata (‰ versus VPDB-CO2) 
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εLV  the temperature dependent equilibrium fractionation of H2
18O during the 

liquid-vapor phase transition (‰ versus VSMOW-H2O) 

εS  Effective kinetic fractionation factor for CO18O diffusion out of soil (‰ 

versus VPDB-CO2) 

Τ residence time of oxygen in atmospheric CO2 

  

 

Appendix 2B: Derivation of equation 2.7 

At steady-state δCa equation 2.3 becomes: 

   
    0  ii
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a F

dt

Cd
MC


     (2B.1) 

where subscripts i refers to a particular component of the carbon cycle (e.g., respiration). In 

equation (2B.1), δCa refers to the global mean, Δi is the flux-weighted global mean, and Fi is the 

global total:  

   
Globe

j
jii FF ,        (2B.2) 

where subscript j accounts for fluxes in particular regions. In general, apparent discrimination is 

defined as:  

    aii CF         (2B.3). 

Expanding the summation of equation (2B.1) results in: 

         0......2211  aaii
i

CFFCFFF   (2B.4). 

Solving for δCa gives: 
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where fi is defined as the fraction of a given CO2 surface flux relative to the total surface-to-

atmosphere flux. (Fsa). From equation (2B.5), a small finite change in the global mean δCa, 

D(δCa), could be brought upon by a small (linear) change to the isotopic composition of any 

flux, D(δFi), or a change to the fi, values D(fi): 

        iiiia fDFfFDCD     .  (2B.6). 

Because the total surface-to-atmosphere flux is large relative to the individual components, it is 

assumed that the values of D(fi) are small. Considering the summation of equation (2B.2), 

equation (2B.6) would then be written as:  

      
j sa

ji
jia F

F
FDCD ,

,       (2B.7). 

The summation in equation (2B.7) need not be global.  If the summation were evaluated over a 

particular region (R), then the equation becomes: 
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,      (2B.8). 

Defining fR = Fi,R/Fi, then equation (2B.8) can be rewritten as: 

       RiRia ffFDCD ,       (2B.9). 
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Chapter 3 

Chapter 3 Modelling the Response of the Terrestrial Biosphere and 18O of Atmospheric CO2 

to Changes in Atmospheric Conditions 

3.1 Introduction  

 Land use changes and rising levels of industrial activity have increased the atmospheric 

CO2 concentration over the past several decades [Denman et al., 2007].  Nevertheless, terrestrial 

photosynthesis and respiration still play a dominant role in the seasonal cycling of CO2, annually 

exchanging 20% of the atmospheric stock [Sarmiento and Gruber 2002].  A number of 

approaches have been developed to attribute observed atmospheric CO2 concentrations to its 

various sources, including inversions [Guerney et al., 2003, 2004], bottom up approaches 

[Denman et al., 2007], and isotopic tracers (13C, 14C, and 18O [Quay et al., 1992; Fung et al., 

1997; Peylin et al., 1999; Ogée et al., 2004; Naegler et al., 2007; Rayner et al., 2008]).  In this 

chapter I focus on the sensitivity of the 18O composition of atmospheric CO2 (Ca) to changes in 

climate forcing. Since Ca is believed to be sensitive to respiratory and photosynthetic fluxes and 

the 18O content of water pools in the soil and plants [Francey and Tans, 1987; Farquhar et al., 

1993], it is a potentially valuable atmospheric tracer of global interactions between the 

hydrologic and carbon cycles. 

 Farquhar et al. [1993] concluded through a global model analysis that the land 

ecosystem fluxes largely impact the spatial structure of δCa.  Studies using more complex models 

have concluded that both the north-south gradient and the seasonal cycle in Ca are almost 

entirely determined by land ecosystem fluxes and atmospheric transport [Ciais et al., 1997a, 

1997b; Peylin et al., 1999; Cuntz et al., 2003a, 2003b].  However, Still et al. [2009] showed 
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through observations and an isotopic land model the possible linkage between δCa and the 

hydrological cycle (such as humidity and cloud cover variations). Similarly, Chapter 2 presented 

empirical evidence of a connection between interannual δCa variations and changes within the 

hydrological cycle. In this chapter I apply a similar (global) version of the model used by Still et 

al. [2009] (and described in detail by Riley et al. [2002]) to evaluate the sensitivity of δCa to 

meteorological changes. Large variations in Ca were observed during the 1990s (Figure 1.1), 

though the scope of this chapter is to better understand how Ca responds to changes in climatic 

forcing and not on modeling the interannual variations (which is addressed in Chapter 4).  

 In Chapter 1, the observed interannual Ca variations were presented, which showed a 

consistent decrease in Ca during the mid-1990s, followed by an increase after 1999 and then 

another decrease after 2004. The causes of these variations have not been determined, though 

some studies [Gillon and Yakir, 2001; Stern et al., 2001; Ishizawa et al. 2002; Flanagan 2005] 

have suggested that the variations are due to changes in ecosystem CO2 fluxes. Examining the 

Ca budget equation revealed possible influences from assimilation (FA) and respiration (FR) and 

the isotopic composition of leaf water (Wl) and soil water (WS).  The two ecosystem fluxes are 

primarily dependent on solar radiation, temperature and water availability (i.e. precipitation and 

relative humidity). WS is set by the isotopic composition of precipitation (WP), which can be 

further enriched in 18O via soil evaporation. 

 The Craig and Gordon [1965] model adjusted for leaf water can be examined to 

understand the influences on Wl: 

   CVlkXlLVCGl WhWhW   1       (3.1). 
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In equation (3.1), εLV is the temperature dependent equilibrium fractionation of H2
18O during the 

liquid-vapor phase transition, εk is the kinetic fractionation of H2
18O during the diffusion of vapor 

across the stomata and leaf boundary layer, hl is relative humidity at the leaf surface, WX is the 

isotopic composition of the xylem water, and WCV is the isotopic composition of the canopy 

vapor (a complete list of the variable notation is provided in Appendix 3.A). The simple mass 

balance equation shows that the isotopic composition of leaf water (Wl) is related to that of 

stem/xylem water (WX) and canopy vapor (WCV), the relative humidity at the leaf surface, and 

temperature (through equilibrium fractionation). Other factors can influence Wl, including the 

Péclet effect [Farquhar and Lloyd 1993] and leaf water levels. WX reflects a convolution of the 

vertical profiles of soil water 18O and root water uptake, thus WX is determined by WS (which 

is set by WP).  

 In Chapter 2 I looked for empirical evidence of possible influences by the variables 

mentioned above on Ca.  It was found that the interannual Ca variations were negatively 

correlated with observed relative humidity in certain tropical regions.  Positive correlations were 

found between Ca and WP in the same tropical regions, though WP data was limited. By 

examining the magnitude of the relative humidity and WP variations, it was estimated that the 

mid-1990s decrease in Ca was primarily driven by decreases in WP within the tropics, with a 

smaller contribution from an increase in relative humidity in the same tropical regions.   

Motivated by those estimations, the work of this chapter involves the construction of a 

global model to simulate CO2 and CO18O (and thus Ca) and perform experiments to explore 

how meteorological changes can affect Ca.  Land simulations were performed using an isotope 

version of the National Center for Atmospheric Research (NCAR) Land Surface Model 



 

 

 

50

(ISOLSM) [Bonan, 1996; Riley et al., 2002, 2003].  The simulations used predicted surface to 

atmosphere fluxes from ISOLSM as input to the NCAR Community Atmosphere Model (CAM) 

to estimate Ca.  This model configuration is intermediate in approach between the original off-

line global simulations of Farquhar et al. [1993], Ciais et al. [1997a and 1997b] and Peylin et al. 

[1999] and the interactive model of Cuntz et al. [2002a and 2003b].  I first present a comparison 

between a control simulation and observed Ca variations to demonstrate model performance.  I 

then apply this model framework to determine how changes in humidity, temperature, light 

levels, and the 18O value of precipitation and water vapor can affect Ca via changes in gross 

CO2 fluxes and the isotopic composition of leaf and soil water.   

3.2   Model and Experiments 

3.2.1 The land surface model (ISOLSM) 

 LSM simulates the exchanges of energy, momentum, H2O, and CO2 between the 

atmosphere and the terrestrial biosphere.  Riley et al. [2002] developed integrated modules 

within LSM1.0 (together called ISOLSM) to compute the exchanges of CO18O and H2
18O to and 

from the terrestrial biosphere. The model calculates canopy water vapor, vertically resolved soil 

water, and shaded and sunlit leaf water, as well as the 18O isotopic composition of each pool.  

ISOLSM accounts for 18O in water and carbon exchanges by including various fractionation 

processes.  The leaf water model in ISOLSM employs a time-dependent mass balance that 

includes a transpiration-dependent leaf turnover time-scale to calculate Wl [Dongman, 1974; 

Still et al., 2009]. The model uses an advective transport model, non-fractionating root water 

uptake estimate, and surface boundary layer resistance to predict the soil water isotopic ratio. 

The δ18O value of soil gas CO2 is predicted considering gaseous diffusion, surface boundary 



 

 

 

51

layer resistance, and temperature-dependent equilibration between gaseous CO2 and water 

[Brenninkmeijer et al., 1983]: 
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where Ts (K) is surface temperature (i.e., ground or leaf temperature).  Kinetic isotopic 

fractionation associated with CO2 diffusion through the leaf boundary layer is used to calculate 

isotopic leaf fluxes.  While the details of the fractionation schemes for H2O and CO2 are given in 

detail by Riley et al. [2002], I note here that kinetic effects account for diffusion during transport 

of gas phase CO2 through the soil and during transport from the chloroplast during leaf 

respiration through the leaf boundary layer.  Similarly, the isotopic water vapor kinetic 

fractionations are dependent on near-surface turbulent intensity as well as the ratio of H2
18O 

diffusivity to H2O diffusivity [Mathieu and Bariac, 1996].  

 The model computes gross CO2 leaf fluxes from the atmosphere-to-leaf, Fal (mol m-2 s-1), 

and from leaf-to-atmosphere, Fla as [Ciais et al., 1997a]: 
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where Ci is the CO2 concentration inside the stomatal pores.  The CO18O fluxes from leaves are 

calculated as: 

    lallla FRF 18

    (3.5) 
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where l is the diffusive fractionation factor across the laminar leaf boundary layer and through 

the stomata and Rl is the CO18O to CO2 ratio within the leaves.  The non-leaf CO2 and CO18O 

respiration fluxes (Fr and 18Fr, respectively) are calculated as the sum of microbial, growth, and 

root and stem maintenance respiration. 

 ISOLSM simulations are forced with two sets of meteorological data: radiation, 

precipitation, height, and sea-level and surface pressure from the reanalysis of Qian et al. [2006]; 

and temperature, relative humidity, and wind speed from the Global Summaries of the Day, 

which was obtained through the World Meteorological Organization and the National Climatic 

Data Center Climate Services Branch.  A method similar to Cressman [1959] objective analysis 

was used to interpolate the station observations onto the model grid, and a detailed description of 

this dataset is given in Appendix 3.B.  The 18O value of precipitation (WP) is prescribed from a 

dataset that is discussed in Chapter 5, which was constructed using a regression/Fourier 

Transform approach and constrained by global observations [Isotope Hydrology Section, 2006].  

The isotopic composition of atmospheric vapor (WAV) is prescribed using calculated 

precipitation and vapor offsets modeled by the Melbourne University General Circulation Model 

[Noone and Simmonds, 2002]. 

3.2.2  Ocean and Anthropogenic Fluxes 

 The global distribution of net CO2 fluxes between the ocean and the marine atmosphere, 

Fo (mol m-2 s-1), and sea-air CO2 partial pressures, po and pa (Pa), were taken from a dataset 

produced by the Takahashi CO2 Group [Takahashi et al., 2002; Gurney et al., 2002].  However, 

the two one-way CO2 fluxes (atmosphere-to-ocean (Fao) and ocean-to-atmosphere (Foa)) must be 

considered independently (like the leaf fluxes), as their isotopic compositions differ. To calculate 



 

 

 

53

the two one-way fluxes (equations 3.7 and 3.8), the air-sea gas exchange coefficients, Kex must 

first be calculated (equation 3.6): 

   aoexo ppKF       (3.6) 

aexao pKF        (3.7) 

oexoa pKF        (3.8) 

The ocean-to-atmosphere CO18O flux (mol m-2 s-1), 18Foa, is given by 

oaowoa FRF 18      (3.9) 

where Ro is the 18O/16O ratio of dissolved CO2 and w is the fractionation associated with CO2 

crossing the air-sea interface, using the value Vogel et al. [1970] measured at 0ºC of +0.8‰ (w 

= 1 + w / 1000, w = +0.8‰).  The ratio Ro is calculated as 

owseqo RTR )(      (3.10) 

where eq is the temperature dependent equilibrium fractionation factor, Ts is sea surface 

temperature, and Row is the 18O/16O ratio of ocean surface water.  Using reconstructed sea-surface 

temperatures, Ts, from the NOAA_ERSST_V3 (data provided by the NOAA/OAR/ESRL PSD; 

Smith et al. [2007]), the value of eq(Ts) was calculated using equation (3.2a).  The values of Row 

were obtained via data generated by LeGrande and Schmidt [2006].    

 Emissions from fossil fuel combustion, Ff, were acquired from the dataset produced by 

Andres et al. [1996].  Also included in the model are fluxes from biomass burning Ff, using the 

Global Fire Emissions Database version 2 (GFEDv2) [Van der Werf, 2006].  Both of the 

anthropogenic fluxes are assumed to not fractionate and take on the isotopic ratio of atmospheric 

oxygen, RO2 (where O2 = -17‰). Thus, the CO18O fluxes from both fossil fuel emissions and 

biomass burning are calculated as: 
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  fOf FRF 2
18          (3.11) 

  bOb FRF 2
18          (3.12) 

3.2.3 Atmospheric transport model (CAM)     

Atmospheric concentrations of CO2 and CO18O are simulated using the NCAR 

Community Atmosphere Model, CAM [Collins et al., 2006].  Taking into account the processes 

of the terrestrial biosphere, the ocean, and anthropogenic sources, the temporal changes of CO2 

and CO18O can be written as: 

  )(
1

aoalbfoarla
a

a FFFFFFF
Mdt

dC
    (3.13) 

 aaowallbfoarla
a

a RFFFFFFF
Mdt

Cd
)(

1 1818181818
18

   (3.14) 

where Ra is the instantaneous ratio of atmospheric CO18O to CO2 (18Ca/Ca) and Ma is a 

conversion factor (with units of moles of air m-2).  While all fluxes in equation (3.13) are 

computed by either ISOLSM or calculated from datasets, the atmosphere-to-surface fluxes of 

CO18O, and thus Ra, are found by integrating equation (3.14) with the atmospheric transport 

model CAM. Specifically, only by allowing the atmosphere to interact with the surface fluxes 

will a steady state Ca be found (i.e., simulated local annual mean Ca stays relatively constant).  

Moreover, to resolve the 3-dimensional Ca field, account needs to be made for the advection 

tied to the material evolution on the left hand side, which again is a task for which CAM is well 

suited. 

ISOLSM simulations ran twice through the 1979-2004 period and the twelve (January 

through December) monthly mean fluxes of CO2 and CO18O were computed using the last 
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twenty six years of the simulation (i.e., the 2nd cycle through the 1979-2004 period).  To ensure a 

realistic rise in atmospheric CO2 over the long-term, a correction was used to adjust the (non-

leaf) respiratory fluxes so that the surface ecosystem CO2 fluxes were close to being balanced for 

every grid point in a manner similar to Denning et al. [1996] and Riley et al. [2005] (i.e., a 

method similar to the so-called “R*” approach).  Global respiration was slightly adjusted even 

further such that simulated CO2 concentrations gradually rose at a rate consistent with 

observations during the 1990s (3.2 GtC yr-1 [Denman et al., 2007] implying a slight ecosystem 

uptake of CO2.  These fluxes along with the fluxes described in section 3.2.2 were then used as 

input for CAM.  CAM simulations ran for 30-years with the last 10 years used for the analysis. 

3.2.4 Experiments 

 Eleven experiments were performed to examine the influence of atmospheric relative 

humidity, light levels, temperature, and the 18O value of precipitation and water vapor on Ca.  

Table 3.1 gives a brief explanation of each experiment along with the experiment name, which is 

used hereafter.  The magnitude of some of the perturbations for these sensitivity experiments 

were based on the observed variations discussed in Chapter 2 (e.g., a 3.3% increase in relative 

humidity in the Asia Pacific and Tropical Americas). The sensitivity of Wl, WS, and Ca to 

relative humidity was investigated by performing experiments that increased the prescribed 

relative humidity at each grid point by 3.3% units globally (RH) and only within the tropics 

(equatorward of 20°N and 20°S, RHTROP).  To examine the influence of isotope hydrology on 

Ca, a global 3.2‰ reduction was applied to the prescribed 18O value of precipitation (PREC).  

To examine how much of the response was from the tropics another experiment was performed 

in which the reduction is only applied within the tropics (PRECTROP).  The same specifications 
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were applied to the 18O values of water vapor (WV and WVTROP) and to both 18O values of 

precipitation and water vapor (PRECWV and PREC/WVTROP) to further deduce the role of 

hydrological isotopic forcing on Ca. To estimate the influence of light levels on Ca, 7.5% of 

the prescribed direct radiation is repartitioned to diffuse radiation (a 15% total change), while 

lowering the total radiation by 4% (denoted LIGHT).  The sizes of these anomalies were chosen 

to be comparable to those following the eruption of Mount Pinatubo, as implied by Gu et al. 

[2003]. The eruption of Mount Pinatubo also affected global air temperatures, and the role of 

temperature changes on Ca is evaluated through an experiment in which global temperatures are 

increased by 1K (TEMP).  In the TEMP experiment relative humidity is unchanged; thus there 

will also be a slight increase in specific humidity.  To evaluate how a change to the 

assimilation/respiration partitioning may influence Ca, an experiment was conducted where 

photosynthetic leaf fluxes were increased globally by 3.6% (offline from both ISOLSM and 

CAM) without any change to non-leaf respiration (ASSIM).  This size of the increase is 

reflective of the increase in radiation discussed in chapter 2. Another experiment was conducted 

that increased non-leaf respiration globally by 3.6% without any change to photosynthetic leaf 

fluxes (RESP).  
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Table 3.1. List of the experiment names with a brief description. 

Experiment Name Description 

RH Global relative humidity is increased by 3.3%. 
 
 

RHTROP Relative humidity is increased by 3.3% between 25°S and 25°N 
 

PREC Reduced the prescribed 18O of precipitation by 3.2‰ globally 
 

PRECTROP Reduced the prescribed 18O of precipitation by 3.2‰ between 
25°S and 25°N 
 

WV 
 
 

Reduced the prescribed 18O of atmospheric water vapor by 
3.2‰ globally 
 

WVTROP 
 
 

Reduced the prescribed 18O of atmospheric water vapor by 
3.2‰ between 25°S and 25°N 
 

PRECWV Reduced the prescribed 18O of precipitation and atmospheric 
water vapor by 3.2‰ globally 
 

PRECWVTROP Reduced the prescribed 18O of precipitation and atmospheric 
water vapor by 3.2‰ between 25°S and 25°N 
 

LIGHT Repartitioning 7.5% of the direct radiation to diffuse 
and a 4% reduction in global downwelling solar radiation 
 

TEMP Global temperatures are increased by 1K 
 
 

ASSIM Global 3.6% increase in Fla and Fal without any change to Fr 
 
 

RESP Global 3.6% increase in Fr without any change to leaf fluxes 
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3.3 Simulated CO2 and CO18O 

 To facilitate later discussion I first present results from an unperturbed control 

simulation.  The global annual average quasi-steady state Ca at the lowest level in the model 

(about 50 meters above the surface) was found to be 0.5‰ (V-PDB), which agrees well with the 

observed value of about 0.9‰ (e.g., NOAA/GMD data presented by Cuntz et al., 2003b).  Figure 

3.1a shows observed and modeled zonal mean Ca at the ground level as well as the 

contributions from the five components of the budget equation (1.1). Recognizing that the model 

results were slightly lower than the observed values, Ca in Figure 3.1 was normalized such that 

the South Pole value is the observed 1.20‰ as is conventional in previous model studies (e.g., 

Ciais et al. [1997b]; Cuntz et al. [2002b]).  The model simulated a north-south Ca gradient that 

agrees well with observations, as is reflected in the correlation coefficient in Figure 3.1a 

(correlating 20 observed annual means with simulated values from the nearest grid-cell).  There 

is no significant change to the correlation coefficient when comparing the observations with the 

4th model level, though the simulated gradient was not as steep at this level (Figure 3.1b).  These 

correlations suggest that the model is reasonably capturing the spatial variations of Ca.  
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Figure 3.1. Simulated north-south gradient in Ca (‰) (solid line) and the contributions from 
leaves (dark dotted), respiration (dark dashed), oceans (dash dot), fossil fuel consumption (light 
dotted), and biomass burning (light dashed). Asterisks represent an observed mean value, and the 
squares are from the closest grid-cell to each observation.  Panel (a) shows the model’s surface 
layer and the bottom panel shows the model’s 4th atmospheric layer. 
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 Similar to the results of Ciais et al. [1997b] and dissimilar to those of Cuntz et al. 

[2002b], the model predictions implied very small contributions to the gradient from biomass 

burning and fossil fuel consumption, and only about a 0.2‰ global contribution from ocean 

fluxes.  Respiration contributed the most to the gradient, while leaf-to-atmosphere fluxes caused 

a stronger equator-pole gradient (i.e., not necessarily a north-south gradient).  This contribution 

from the leaves was much like the findings of Cuntz et al. [2002b] and contrasts with the model 

results of Ciais et al. [1997b], whose leaf contribution acted to reduce the gradient. 

 In agreement with others studies, the highest annual mean surface CO2 concentrations for 

the control simulation were in the northern hemisphere, specifically over the northeastern United 

States and Eastern Europe (Figure 3.2a) and consistent with a seasonal “rectifier effect” 

[Denning et al, 1996] (Figure 3.2b).  These regions also had large seasonal amplitudes (Figure 

3.2b), with high CO2 concentrations during the northern hemisphere winter when there was little 

photosynthetic activity.  Yet, the largest seasonal amplitudes were over western tropical Africa, 

primarily due to large seasonal variations in biomass burning.   

 The 18O composition of CO2 (Figure 3.2c) was lowest over middle to high-latitude forests 

where the 18O value of precipitation is relatively depleted and thus carbon fluxes deplete Ca.  

These areas include the boreal forests of North America, Asia, and Eastern Europe.  The 

simulations of Ciais et al. [1997b] showed high levels of depletion in the Northern Hemisphere’s 

boreal forests, as well as in the Amazon, the Congo, and Southeast Asia, which were attributed to 

ecosystem fluxes; however, the simulations of Cuntz et al. [2003b] had slightly depleted values 

over the Amazon, and to a lesser extent Southeast Asia with enriched values over the Congo.  

The simulated tropical Ca shown here (Figure 3.2c) agree more with the results of Cuntz et al. 
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[2003b] with slight depletion over the Amazon and Southeast Asia and enrichment over the 

Congo.   

 

 

Figure 3.2. Simulated annual mean values of (a) CO2 and (c) Ca in units of ppm and ‰, 
respectively.  The seasonal amplitude (December, January, February minus June, July, August) 
of CO2 (b) and Ca (d) are also shown. 
 

 

 The global Ca seasonal amplitude (Figure 3.2d) was similar to that of CO2 (Figure 3.2b) 

with large amplitudes over tropical Africa and the northern boreal forests. In Africa, predicted 

minimums in seasonal cycle of Ca were displaced north of those for CO2. Also, the minimum in 

the Ca seasonal cycle predicted in the southern U.S. also did not correspond to a minimum in 

the CO2 seasonal cycle. The model also predicted the largest Ca seasonal amplitude in the high-
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latitudes (especially in Canada. and Russia), which was due to large seasonal variations in 18O 

depleting ecosystem CO2 fluxes.  For instance, when ecosystem fluxes were highest over North 

America during June, July, and August, Ca decreased locally because local ecosystem fluxes 

acted to deplete the atmosphere in CO18O at middle and high latitudes.  During winter months, 

ecosystem leaf fluxes are small, which allows Ca to slowly approach the global mean of Ca via 

large-scale transport, thus causing large seasonal amplitudes. 

 I compared the simulated seasonal cycle of CO2 and Ca to observed cycles at twenty 

sites where there are many observations for the 1990-2007 period (Figures 3.3 and 3.4).  Results 

from the lowest, 4th and 7th model levels are shown in the figures to demonstrate the simulated 

seasonal cycles near the surface, the top of the boundary layer and within the free troposphere, 

respectively.  Model results away from the surface are shown because many of the observing 

stations collect air samples when meteorological conditions favor a free atmosphere 

measurement (thus, limiting the influence of local fluxes).  To quantify the model’s performance, 

correlation coefficients were calculated for the observed monthly means and the modeled means 

at the model’s surface, 4th, and 7th levels (corresponding to r1, r4, and r7, respectively).  These 

values are shown in Figures 3.3. and 3.4 for each station.  Also, the seasonal range (maximum 

minus minimum) was computed at each station for both the observed and modeled values, and 

model-observation differences are given in Tables 3.2 and 3.3.  Similarly, the phase of the first 

harmonic (defined as the seasonal maximum) of each seasonal time series was computed using 

Fourier transforms, and the first harmonic phase differences between model and observations are 

shown in Tables 3.2 and 3.3.  For the Northern Hemisphere stations, observed values mostly fell 

on the curves derived from modeled surface values or in between the surface and the free 

atmosphere, thus accurately capturing the seasonal amplitude and phase of atmospheric CO2. For 
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example, at Cape Kumakahi (Figure 3.3n) the seasonal cycle is well-captured at all three layers, 

as is reflected in the correlation coefficients and the low model-observation differences in Table 

3.2.  On the other hand, at Niwot Ridge (Figure 3.3g) simulated amplitudes and phases match up 

better with observations at the 4th and 7th levels (reflected in the values of r1, r4, and r7 and the 

values in Table 3.2), as this station is at an elevation of 3475 m and the model does not resolve 

topography well for this region.  One model weakness found here is inaccurate simulation of 

CO2 amplitudes in the Southern Hemisphere (Figure 3.3p-3.3t).  An additional model simulation 

where all ocean fluxes are set to zero revealed that this discrepancy was due to inaccurate ocean 

fluxes and not a problem with calculated land fluxes from ISOLSM.   

 
 
Table 3.2. Model-observation differences in CO2 seasonal cycles. 
  1Amplitude 

difference 
  1Phase 

difference 
 

 Surface 4th level 7th level Surface 4th level 7th level 
Alert 9.34 ppm 7.08 ppm 0.628 ppm -7.21 days -3.93 days 1.34 days 
Barrow 9.27 5.69 -1.06 -5.65 0.370 7.14 
Storhofdi 4.41 3.04 -2.33 0.0518 2.31 10.7 
Mace Head 4.67 3.53 -1.54 3.74 5.14 12.4 
Shemya Island 1.03 -0.293 -4.74 11.0 13.2 14.6 
Ulaan Uul 1.37 -0.648 -4.92 10.1 11.0 24.4 
Niwot Ridge -2.81 -1.59 0.00870 9.01 7.89 25.4 
Tae-ahn -1.44 -1.72 -5.38 5.79 2.50 19.8 
Mt. Waliguan 2.61 1.82 -0.0562 8.37 4.71 14.3 
Pacific 30N 1.16 1.05 -1.47 4.73 13.4 22.1 
Midway Island 2.15 2.04 0.461 11.4 10.1 10.2 
Pacific 25N 1.51 1.26 -1.16 -2.61 6.11 14.8 
Mauna Loa 3.46 3.61 1.51 -17.5 -15.4 10.3 
Cape Kumukahi 1.65 1.80 -0.299 -3.50 -1.37 3.72 
Pacific 0N 1.21 0.721 1.16 11.5 7.68 25.5 
Tutuila 1.46 2.02 2.07 -134 -158 -159 
Pacific 30S 2.19 2.41 3.51 -15.8 -18.9 -46.2 
Cape Grim 1.48 1.64 2.78 -5.16 3.39 2.21 
Syowa 1.66 1.67 1.84 19.6 17.9 16.0 
South Pole 1.47 1.45 1.53 16.3 14.4 13.4 
1Model minus observed 
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Figure 3.3. Observed seasonal cycles of CO2 (ppm) for twenty stations around the world that 
have many observations on record (shown as asterisks).  Solid line is the simulated seasonal 
cycle at the model’s surface level for the closest grid-cell, while the dotted and dashed lines are 
the 4th and 7th model level, respectively. 
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Figure 3.4. Observed seasonal cycles of Ca (‰) for twenty stations around the world (shown as 
asterisks).  Solid line is the simulated seasonal cycle at the model’s surface level for the closest 
grid-cell, while the dotted and dashed lines are the 4th and 7th model level, respectively. 
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 Examining the simulated Ca seasonal cycle (Figure 3.4) revealed that the amplitude and 

phase for some stations agreed well with observations at the lowest model level (e.g., Shemya 

Island and Pacific Ocean 0º), while most stations agreed well at the 4th or 7th atmospheric layer 

(e.g., Alert, Barrow, Mauna Loa), and others were not accurately predicted at any atmospheric 

layer (e.g., Midway Island, Ulaan Uul, Mt. Waliguan).  There was also good agreement at 

stations in the Southern Hemisphere like the South Pole, Cape Grim, and American Samoa, 

though the agreements are questionable due to inaccurate CO2 amplitudes at these stations.  

Alternatively, at Barrow and Alert the modeled surface amplitude was too large and the phase 

leads the observations by about 2 months (63.5 days for Barrow) when comparing with the 

model surface level, but there was much better agreement at higher levels in the atmosphere 

(30.3 days).  Based on the correlation coefficients in Figure 3.4 and the amplitude and phase 

differences in Table 3.3, the station where the model performed the worst is at Mt. Waliguan, 

where both the amplitude and phase were inaccurately simulated. It was found that the model 

performs better when comparing the observations with levels further up in the atmosphere 

beyond the 7th level, which would suggest that the model/observation mismatch is likely due to 

the model not resolving certain topographic features well for this region.  Nonetheless, these 

results suggest that the model adequately predicted Ca at most of the observing stations around 

the world. Furthermore, the results shown in this section give confidence in the model’s ability to 

accurately predict the global mean, the north-south gradient, and the seasonal cycle of Ca. 
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Table 3.3. Model-observation differences in Ca seasonal cycles. 
  1Amplitude 

difference 
  1Phase 

difference 
 

 Surface 4th level 7th level Surface 4th level 7th level 
Alert 0.673‰ 0.443‰ -0.772‰ -36.6 days -34.9 days -16.8 days 
Barrow 0.628 0.310 -0.0803 -63.5 -56.2 -30.3 
Storhofdi 0.307 0.249 -0.282 -47.4 -45.2 -30.2 
Mace Head 0.108 0.0494 -0.392 -49.1 -46.6 -31.5 
Shemya Island 0.0639 0.0142 -0.514 -36.4 -38.0 -23.3 
Ulaan Uul -0.298 -0.408 -0.633 -60.1 -57.0 -39.5 
Niwot Ridge -0.334 -0.394 -0.529 -60.7 -45.2 -45.0 
Tae-ahn -0.332 -0.667 -1.02 -3.76 26.8 36.7 
Mt. Waliguan -0.138 -0.220 -0.429 -89.3 -72.8 -56.5 
Pacific 30N 0.239 -0.040 -0.381 -43.7 -18.8 13.0 
Midway Island -1.05 -1.07 -1.11 29.9 36.4 28.2 
Pacific 25N 0.218 -0.0160 -0.312 -45.4 -16.5 19.5 
Mauna Loa 0.167 0.100 -0.0596 -47.6 -19.1 25.7 
Cape Kumukahi -0.0283 -0.0947 -0.255 -55.7 -27.2 17.6 
Pacific 0N 0.0700 0.0877 -0.854 -19.0 -18.7 13.2 
Tutuila 0.0259 0.0735 -0.0102 13.2 29.3 42.0 
Pacific 30S -0.125 -0.113 -0.0612 32.4 34.8 22.7 
Cape Grim -0.0553 -0.0269 -0.0766 41.5 43.8 40.2 
Syowa -0.0538 -0.0552 -0.0808 51.4 47.6 46.3 
South Pole -0.0125 -0.0219 -0.0559 48.4 45.1 36.3 
1Model minus observed 

 

3.4 Sensitivity of Ca 

3.4.1 Sensitivity to Relative Humidity 

Transpiration is driven by the diffusion of vapor from leaves, and that rate is driven by 

the difference between the vapor pressure in the interior of plant leaves and the vapor pressure of 

the surrounding air (which is largely in balance with energy budget constraints).  As such, 

transpiration (and latent heat exchange in general) is expected to change when atmospheric 

relative humidity increases, as has been seen in observations during the mid-1990s for some 



 

 

 

68

high-flux regions (Chapter 2).  Indeed, when relative humidity was increased by 3.3% units, the 

global mean transpiration decreased by 3.6% (Table 3.4) due to a decrease in the vapor pressure 

gradient.   

 

Table 3.4. Changes in the global annual means of Transpiration (QT), Evaporation (QE), 
photosynthesis (PSN), Fla, Fr, Wl, Ws, and Ca.  
 1QT 1QE 1PSN 1Fla 

1Fr 2Wl 
2WS 

2Fla 
2Fr 

2Ca 

RH -3.6 -2.9 2.7 4.2 2.3 -0.38 -0.081 -0.33 -0.096 -0.21 

RHTROP -2.4 -1.1 1.3 1.9 1.1 -0.14 -0.0045 -0.10 -0.0029 -0.073 

PREC - - - - - -2.1 -2.7 -1.8 -3.8 -1.8 

WV - - - - - -1.4 -0.065 -1.3 -0.054 -0.78 

PRECWV - - - - - -3.5 -3.0 -3.2 -3.9 -2.6 

PRECTROP - - - - - -1.0 -0.91 -0.89 -1.9 -0.92 

WVTROP - - - - - -0.67 -0.0010 -0.64 -0.0048 -0.37 

PRECWVTROP - - - - - -1.7 -0.91 -1.5 -1.9 -1.3 

TEMP 0.89 -0.63 0.25 -1.8 -0.44 -0.19 -0.055 -0.22 -0.17 -0.16 

LIGHT -0.059 -1.6 3.0 4.4 2.8 -0.19 -0.013 -0.16 0.019 -0.048 

ASSIM - - 3.6 3.6 - - - - - 0.10 

RESP5 - - - - 3.6 - - - - -0.10 

1 Units are in % 
2 Units are in ‰ 
 

A similar result also occurred for soil water where the increase in humidity causes a 2.9% 

reduction in evaporation and a slight increase (1.4%) in soil moisture. These changes in latent 

heat fluxes likely caused a change to the CO18O isoforcing to the atmosphere from the leaves 

(Ila) and respiration (Ir), which can be quantified by: 

 )( alalala CFFI        (3.15) 

 )( arrr CFFI        (3.16) 
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It can be seen from equations (3.15) and (3.16) that the isoforcings are dependent on both the 

magnitude and the isotopic composition of the fluxes.  Because the isotopic composition of the 

flux is strongly related to the isotopic composition of leaf and soil water, changes to Wl and WS 

are first evaluated and then fluxes from leaves and soils (Fla and Fr).  

The predicted decrease in transpiration is consistent with a reduction in kinetic 

fractionation (equation 3.1).  This change reduced leaf water 18O enrichment, resulting in a 

reduced enrichment of the CO2 molecules upon equilibration within the stomatal cavity.  The 

global changes in the isotopic compositions of leaf and soil water were -0.38‰ and -0.081‰, 

respectively.  Differentiating equation (3.1) with respect to humidity gives an upper limit to the 

expected relationship between leaf water 18O content and humidity; for typical values of WS, 

WCV, and the fractionation coefficients, Wl-CG / h  -0.36‰/1%.  ISOLSM predicted that the 

3.3% increase in relative humidity only caused a 2.0% increase in photosynthesis-weighted hl.  

This change in hl caused a global reduction in photosynthesis-weighted Wl to be slightly over 

half the theoretical value expected from the Craig-Gordon [1965] steady-state model. This 

difference was partially due to the fact that ISOLSM used the time-dependent leaf water model 

rather than the steady-state model. The non-steady-state model reduced the diurnal amplitude of 

leaf water enrichment, and in particular restricted the otherwise extreme enrichment during early 

afternoon.  

Predicted changes in leaf and soil CO2 fluxes are shown in Table 3.4. The increase in 

relative humidity caused a global increase in predicted assimilation, which in turn increased the 

leaf-to-atmosphere flux globally by 4.2%, and thereby increased the isoforcing to the 

atmosphere.  However, this effect will be partially balanced by the reduction in Fla.  The RH 
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experiment also showed similar changes to the soil respired CO2 fluxes, which for many regions 

depletes the atmosphere of CO18O.  Growth respiration is related to both the leaf area index and 

assimilation, and because assimilation increased, growth respiration also increased, which led to 

an overall increase in total respiration.  For regions where soil respiration depletes Ca values, 

the combination of more depleted soil water (and thus decreased Fr) and an increase in 

respiration both act to increase the depleting isoflux, Ir.   Thus, it was not clear if the changes to 

leaf fluxes caused Ca to go up or down from equation (3.15) alone, though the changes to 

respiratory fluxes should cause Ca to decline (through equation 3.16), which highlights the need 

to use a full energy balance model like ISOLSM. 

 To disentangle the two effects (the leaf flux increase and the isotopic depletion) the RH 

and RHTROP sensitivity experiments (where relative humidity was increased by 3.3% globally 

and only within the tropics, respectively) were examined.  Globally, the RH experiment depleted 

Ca by 0.21‰, and results from RHTROP indicate that 0.073‰ of this response was from the 

tropics.  Thus, most of the response to the relative humidity change was from regions outside of 

the tropics.  The largest changes to Ca were in the Northern high-latitudes and in particular over 

northern Canada and Siberia (Figure 3.5a).  When the relative humidity anomaly was only 

applied to the tropics the change in Ca over the Northern regions was greatly diminished, an 

indication that the large response was largely locally driven.  These two Northern regions have 

strong depleting isofluxes from both leaf and soil components, and the relative humidity increase 

not only further depleted the isotopic composition of fluxes, but also increased the fluxes 

themselves.  This response was not the case for regions within the subtropics and parts of the 

middle latitudes where leaf fluxes do not always deplete the atmosphere of CO18O.  These results 
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suggest that small changes in global relative humidity could have an influence on Ca, and 

potentially explain some of the decrease observed in the mid-1990s (Chapter 2). 

 

 

Figure 3.5. Global distribution of the change in annual mean Ca (‰) for the RH (a) and 
RHTROP (b) experiments.  Contour intervals are 0.02‰, which is a different interval than 
Figure 3.6.   
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3.4.2  Sensitivity of Ca to δ18O Values of Precipitation and Water Vapor 

 The isotopic compositions of leaf and soil water depend on the 18O values of 

precipitation and atmospheric water vapor (WP and WAV).  The soil water 18O content should 

be closely linked with WP, and Wl depends on the 18O values of soil water (via root uptake 

without fractionation; equation 3.1) and the 18O values of canopy vapor.  Therefore, it is 

hypothesized here that decreases in WP will reduce both Wl and WS, which would ultimately 

reduce Ca. 

 As described in section 3.2.3, two experiments were constructed to examine the effects of 

changes in WP: 1) an overall 3.2‰ decrease in WP (PREC) and 2) a 3.2‰ decrease in WP in 

only the tropics (PRECTROP).  The reduction of WP by 3.2‰ caused Wl and WS to decrease 

globally by 2.1‰ and 2.7‰, respectively (Table 3.4).  Results from the PRECTROP simulation 

reveal that the tropics contributed about half of the change in photosynthesis-weighted Wl, (i.e. 

the tropics make up about half of global photosynthesis).  

To examine the impact of the 18O value of atmospheric water vapor (WAV) on the 

isotopic composition of leaf and soil water, the same perturbations were applied to WAV.  

Lowering WAV by 3.2‰ (WV) caused a global decrease in Wl and WS of 1.4‰ and 0.065‰, 

respectively.  When the change was only applied to the tropics there was approximately no 

change to the global mean WS.  These results suggest that Wl is sensitive to changes in the 

isotopic composition of atmospheric vapor as implied by equation 3.1, though soil water is not.  

Not surprisingly, these simulations revealed that WS is mostly dependent on the isotopic 
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composition of precipitation, but Wl depends on both the isotopic composition of precipitation 

and vapor. 

In the PRECWV simulation, where WP and WAV were both reduced by 3.2‰, the 

isotopic composition of soil water only decreased by 3.0‰.  The small discrepancy between the 

perturbation and the response was a result of bottom layer recharge when the soil column dried 

out.  In the model, the recharged water carries the same isotopic composition of the bottom soil 

layer, so the recharge of bottom layer water is only indirectly affected by the isotopic forcing.  

The isotopic composition becomes even less dependent on precipitation if the rate of recharge is 

greater than the infiltration rate. Results from the PRECWVTROP simulation showed that 1.7‰ 

of the change in Wl comes from the tropics, which again is a consequence of about half of 

global photosynthesis coming from the tropics. 

The changes in the isotopic composition of the water pools induced similar changes to the 

isotopic composition of ecosystem fluxes and subsequently of atmospheric CO2, as expected 

(Table 3.4 and Figure 3.6).  For the experiments in which only the isotopic composition of 

precipitation is reduced (PREC and PRECTROP) global and annual mean Ca decreased by 

1.8‰ and 0.92‰, respectively.  The reduction in Ca was not as large when only WAV was 

decreased in the WV and WVTROP simulations (-0.78‰ and -0.37‰, respectively).  When the 

isotopic composition of both precipitation and water vapor were reduced in the PRECWV and 

PRECWVTROP experiments, the model predicted a larger change to the global and annual mean 

Ca (-2.6‰ and -1.3‰, respectively). 

For all three globally perturbed experiments, the largest impacts to Ca occurred over the 

continents, and as a consequence most of the change was in the Northern Hemisphere (Figure 
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3.6).  Thus, a global decrease in WP or WAV would drive an increase in the Ca latitudinal 

gradient, and vice versa.  On the other hand, when the offset was only applied to the tropics the 

opposite occurred (i.e., the largest Ca decrease occurred in the Southern Hemisphere).  Hence, 

the tropical only change acted to decrease the Ca latitudinal gradient.   

 

 

 

Figure 3.6. Global distribution of the change in annual mean Ca (‰) for the PREC (a), 
PRECTROP (b), WV (c), WVTROP (d), PRECWV (e), and PRECWVTROP (f) experiments.  
Contour intervals are 0.1‰, which is different than Figures 3.5, 3.7, and 3.9. 
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3.4.3 Sensitivity to Radiation 

The LIGHT experiment attempted to represent light levels following the eruption of Mt. 

Pinatubo by reducing total downwelling solar radiation by 4% and repartitioning 7.5% of the 

direct light to diffuse light (15% total) [Gu et al., 2003].  Two additional simulations were also 

conducted that imposed each light level change separately to better understand which change 

dominates the model response.  Model predictions revealed that these radiation changes caused 

global mean transpiration to decrease by only 0.059%.  Because diffuse light is able to reach the 

leaves deeper within the canopy, proportionally more evaporation from shaded leaves can result, 

and thus more diffuse light could drive an increase in ecosystem transpiration when and where 

the leaf area index is high.  On the other hand, the 4% reduction in total solar downwelling will 

cause decreases in leaf temperature and water evaporation from the mesophyll cells.  Results 

from the additional experiments revealed that the 4% reduction caused global transpiration to 

decrease by 1.85%, while the repartitioning from direct to diffuse radiation caused a 1.80% 

increase in transpiration.  Thus, the two radiation changes opposed one another and resulted in a 

very small change in global average transpiration. 

The very small change in transpiration is not expected to impact the isotopic composition 

of the leaf water.  However, photosynthesis-weighted Wl was reduced globally by 0.19‰.  

About 0.1‰ of the change was due to a 0.3% global increase in photosynthesis-weighted values 

of hl that resulted from the radiation changes. The other 0.09% was due to increases in 

photosynthesis, especially over the northern boreal forests where Wl was low relative to the 

global mean. The 0.19‰ decrease in Wl resulted in a 0.16‰ decrease in Fla.  The decrease in 

soil evaporation lowered WS by only 0.013‰, though the values of Fr increased globally by 
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0.019‰.  The difference in sign between these two isotopic changes was a result of a slight 

decrease in soil temperatures, which influenced H2O-CO2 equilibrium fractionation. 

Ca was most sensitive to radiation changes in the interior of northern Canada and 

northern Asia, the same regions where relative humidity and isotope hydrology changes caused 

the largest Ca response.  These responses occurred because Fla was lowest for these two 

northern regions (Figure 3.8), and thus had the most negative isoforcing from leaves (equation 

3.15) than any other continental region.  Any decrease to Fla (as occurred in the global 

sensitivity experiments shown here) will have caused the isoforcing to be even more negative 

and drive down regional Ca even further.  However, the light level changes only caused a 

0.048‰ decrease in the global mean Ca, which was a much smaller response compared to 

relative humidity and isotope hydrology changes (Table 3.4). 

 

3.4.4 Sensitivity to Temperature 

Temperature influences the isotopic composition of leaf and soil water and CO2, partially 

through its impact on equilibrium fractionation Majoube [1971]: 
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Differentiating equation (3.17) with respect to temperature results in a sensitivity of dεLV/dT = -

0.099‰K-1 at 280K.  Furthermore, in the middle and high-latitudes, temperature can also 

constrain ecosystem fluxes [Nemani et al., 2003].  Thus, temperature influences both the isotopic 

composition and the magnitude of the CO2 and H2O fluxes.   
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Figure 3.7. Global distribution of the change in annual mean Ca (‰) for the LIGHT (a) and 
TEMP (b) experiments.  Contour intervals are 0.02‰, which is different than Figure 3.6. 
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Figure 3.8. Global distribution of annual mean Fla (‰) for the control simulation. 

 

 Results from the TEMP experiment showed a change in global transpiration and soil 

evaporation of 0.89% and -0.63%, respectively.  WS decreased globally by 0.055‰, which was 

less than the theoretical sensitivity based on equilibrium fractionation.  Photosynthesis-weighted 

Wl decreased globally by 0.19‰. By calculating the global means of other variables (such as 

relative humidity and surface temperature) it was determined that 0.014‰ of the decrease due to 

the decrease in WS, 0.088‰ from the change of εLV in equation (3.1), 0.010‰ from changes to 

photosynthesis, and about 0.055‰ due to a slight increase in relative humidity at the surface of 

the leaf. 

 Temperature-dependent equilibrium fractionation also takes place as CO2 interacts with 

leaf and soil water, dεeq/dT = -0.22‰/K at 280K (equation 3.2b).  Both Fla and Fr decreased 
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more than the isotopic composition of leaf and soil water, which was a result of the change in 

equilibrium fractionation due to increases in ground and leaf temperatures (both of which 

increased globally by about 0.89K). Ca decreased globally by 0.16‰ (Table 3.4; Figure 3.7b). 

As in the other experiments, the largest response to the increase in temperature was in the 

northern parts of Canada and Asia where the negative isoforcing in the control simulation was 

the greatest.  These results indicate that the influence of changes in temperature on the isotopic 

composition of leaf and soil water, and thereby on the isotopic composition of ecosystem fluxes, 

can affect Ca.  However, the imposed 1K global increase in temperature was larger than the 

0.74K observed increase over the past 100 years [Trenberth et al., 2007].  In fact, the model 

results shown here suggest that global temperatures would have to increase by 3.1K to cause the 

observed decrease in Ca of 0.5‰.    

 

3.4.5 Sensitivity to assimilation/respiration partitioning 

Ca is commonly thought of as a tracer of the partitioning between assimilation and 

respiration. In the ASSIM experiment, assimilation was increased globally by 3.6%, while non-

leaf respiration fluxes were held unchanged relative to the control simulation.  Thus, there is was 

no change to the isotopic composition of the fluxes for this experiment.  Unlike the other 

experiments, the largest response of Ca to the change in leaf fluxes was in equatorial Africa 

(Figure 3.9a), where assimilation is high and the isoforcing is positive.  Globally, the 3.6% 

increase in photosynthetic fluxes caused a 0.10‰ increase in Ca. Simulated global GPP (minus 

leaf respiration) was 123.9 GtC y-1 for the control simulation, thus the ASSIM experiment 



 

 

 

80

increased FA by 4.5 GtC y-1.  This implies that the sensitivity of Ca to increases in assimilation 

is 0.022‰ y GtC-1 (assuming no change to non-leaf respiration). 

 

 
Figure 3.9. Global distribution of the change in annual mean Ca (‰) for the ASSIM (a) and 
RESP (b) experiments.  Contour intervals are 0.02‰, which is different than Figure 3.6. 
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The largest Ca response to the 3.6% increase in non-leaf respiration (the RESP 

experiment) was over equatorial and southern Africa (Figure 3.9b). Globally, the RESP 

experiment increased respiration by 4.4 GtCy-1. This change to respiration decreased the global 

mean Ca by 0.10‰.  Thus, the model results suggest Ca decreases by 0.023‰ for every 1 

GtCy-1 increase in respiration (assuming all other fluxes remain unchanged). These results 

suggest that Ca would decrease by 0.5‰ if either global assimilation decreased by 18% or non-

leaf respiration increased by 18%, two scenarios that appear very unlikely. 

 
 
 

3.5 Conclusion 

 A mechanistic land model (ISOLSM) was used to simulate isotopic fluxes of CO2, which 

were then used in a 3-dimensional global transport model (CAM) to simulate atmospheric CO2 

and CO18O.  This framework accurately captured the global mean, north-south gradient, and to a 

lesser extent the seasonal cycle of Ca.  To develop an understanding of the controls on observed 

global-scale Ca variations, model sensitivity experiments were performed to examine the effects 

of changes in humidity, 18O values of precipitation and water vapor, light levels, temperature, 

and assimilation/respiration partitioning on Ca.   

An imposed global 3.3% increase in relative humidity increased ecosystem fluxes and 

depleted the isotopic composition of leaf water and leaf CO18O fluxes.  The increase in 

assimilation acted to increase Ca, while the lighter isotopic composition of leaf and soil water 

caused Ca to become lower.  The overall effect was a decrease in Ca, indicating that Ca 
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responded more to changes in the isotopic composition of the water reservoirs than to changes in 

ecosystem fluxes. 

 The experiments that decreased the isotopic composition of precipitation and atmospheric 

vapor by 3.2‰ further demonstrated the sensitivity of Ca to changes in the isotopic composition 

of leaf and soil water.  Ecosystem fluxes did not change for this set of experiments, yet these 

perturbations resulted in the largest Ca response.  The 3.2‰ decrease in WP and WAV resulted 

in a change to Ca that exceeded the 0.5‰ decrease observed during the mid-1990s.  Model 

results indicate that WP and WAV would have to decrease by 0.62‰ globally or by 1.2‰ within 

the tropics to cause the observed 0.5‰ change.  The results reveal the possible influence of 

isotope hydrology on temporal variations of Ca. 

 Model results indicated that Ca decreased by 0.16‰ for every 1K increase in global 

temperatures.  This was primarily a result of changes to the isotopic composition of leaf and soil 

water and not changes to ecosystem CO2 fluxes.  However, this small sensitivity indicates that to 

cause the observed 0.50‰ decrease in Ca, global temperatures would have to increase by 3.6K 

(and such a large change does not exist in the global temperature records). 

 The model was also used to simulate a post Pinatubo-like light level condition by altering 

direct and diffuse radiation levels and examining the effects on ecosystem CO2 and CO18O fluxes 

and the resulting change to Ca.  The light level experiments presented here agree with other 

studies [Gu et al., 1999; Roderick et al., 2001] that argue from observations and theory that 

increases in diffuse light should increase global photosynthesis (and also increase the one-way 

leaf CO2 fluxes).  The overall effects of the light perturbations on Wl and WS were small 

(<0.20‰).  CO2 fluxes from the leaves increased (4.4% globally) due primarily to the increased 
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diffuse fraction, which caused photosynthesis to increase deeper within the canopy.  Respiratory 

fluxes also increased (globally by 2.8%) due to increased photosynthesis and subsequent 

increases in growth respiration. However, the changes in respiration and leaf-to-atmosphere 

fluxes did not substantially impact Ca, due to minimal changes in water pool isotopic 

compositions.   

To understand the role of assimilation/respiration partitioning, the ASSIM and RESP 

experiments increased assimilation and non-leaf respiration (respectively) by 3.6% globally. 

Model results revealed that a 3.6% increase in assimilation caused a 0.10‰ increase in Ca, 

while the increase in respiration lowered Ca by 0.10‰.  These results suggest that there would 

need to be a large global change to either assimilation or respiration (~18%) to cause a Ca 

response that is comparable to the observed change during the 1990s. Because there have been 

no studies that have found such a drastic change to either flux indicates that the observed Ca 

variations during the 1990s were not primarily driven by changes to ecosystem CO2 fluxes. 

 The results presented here suggest that Ca is strongly dependent on hydrologic changes, 

such as changes to relative humidity and isotope hydrology (i.e., WP and WAV).  Furthermore, 

the increase in ecosystem fluxes due to an increase in relative humidity was not large enough to 

outweigh the decrease in leaf water enrichment.  In fact, model results shown here suggest Ca 

responded mostly to changes in the isotopic composition of leaf and soil water rather than global 

changes to ecosystem CO2 fluxes.  This result contrasts with previous conclusions that Ca can 

be interpreted primarily as a tracer of photosynthetic and respiratory fluxes [Farquhar et al., 

1993; Cuntz et al., 2003b]. 
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  In the mid-1990s observations showed a global decrease to Ca, which some studies 

have attributed to terrestrial carbon flux anomalies [Gillon and Yakir, 2001; Stern et al., 2001; 

Ishizawa et al. 2002; Flanagan 2005].  The results presented here do not support this claim, but 

instead were consistent with the empirical work shown in Chapter 2, which suggested that the 

global decrease in Ca during the mid-1990s may have been a result of decreases in WP and 

WAV and an increase in relative humidity within the tropics. In Chapter 2, empirical evidence 

was provided for changes to these variables during the 1990s, and the present modeling study has 

shown that these variables do indeed influence Ca.  It remains, however, to demonstrate 

(through model simulations) that the interannual variability in Ca can be quantitatively 

explained by hydrologic mechanisms exposed here. 

 

Appendix 3.A: Notation  

Ca CO2 mixing ratio in the atmosphere (mole fraction). 

18Ca CO18O mixing ratio in the atmosphere (mole fraction). 

CC CO2 mixing ratio at the surface chloroplast within leaf stomata (mole fraction). 

Ci CO2 mixing ratio inside the stomatal pores (mole fraction). 

Fal CO2 flux into leaves (mol m-2 s-1). 

18Fal CO18O flux into leaves (mol m-2 s-1). 

Fao CO2 flux into the ocean surface (mol m-2 s-1). 

18Fao CO18O flux into the ocean surface (mol m-2 s-1). 

Fb CO2 flux from biomass burning (mol m-2 s-1). 
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18Fb CO18O flux from biomass burning (mol m-2 s-1). 

Fla CO2 flux out of leaves (mol m-2 s-1). 

18Fla CO18O flux out of leaves (mol m-2 s-1). 

Ff CO2 flux due to fossil fuel consumption (mol m-2 s-1). 

18Ff CO18O flux due to fossil fuel consumption (mol m-2 s-1). 

FA Gross Primary Product minus leaf respiration (mol m-2 s-1). 

Fo net flux of CO2 from ocean water (mol m-2 s-1). 

Foa CO2 flux from the ocean surface (mol m-2 s-1). 

18Foa CO18O flux from the ocean surface (mol m-2 s-1). 

Fr CO2 flux from soil respiration (mol m-2 s-1). 

18Fr CO18O flux from soil respiration (mol m-2 s-1). 

hl relative humidity at leaf surface (range of 0 to 1.0) 

Ila Isoforcing from leaf-to-atmosphere fluxes (‰ mol m-2 s-1) 

Ir Isoforcing from soil respiration (‰ mol m-2 s-1) 

Kex air-sea gas exchange coefficient (mol m-2 s-1 Pa-1) 

Ma Unit conversion factor (moles of air m-2).   

pa partial pressure of CO2 in the atmosphere (Pa). 

po partial pressure of CO2 at ocean surface (Pa). 

PSN Photosynthesis (μmol m-2 s-1). 

QE Soil Evaporation (μmol m-2 s-1). 

QT Transpiration (μmol m-2 s-1). 

Rlw 18O isotopic ratio of leaf water. 
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Rl 
18O isotopic ratio of CO2 equilibrated with leaf water. 

Ro 
18O isotopic ratio of CO2 equilibrated with surface ocean water. 

Row 18O isotopic ratio of surface ocean water. 

RO2 
18O isotopic ratio of atmospheric O2. 

Rsw 
18O isotopic ratio of root weighted soil water.  

Rs 
18O isotopic ratio of CO2 equilibrated with root-weighted soil water. 

Rcv 
18O isotopic ratio of canopy water vapor. 

Rv 
18O isotopic ratio of atmospheric water vapor. 

RVPDB, RVSMOW 2.0883510-3, 2.005210-3 

Ts Surface Temperature of either: ocean, soil, or vegetation (K). 

eq temperature dependent CO2 equilibration factor. 

l Effective kinetic fractionation factor for CO18O diffusion in and out of the 

stomata.  

w effective kinetic fractionation factor for CO18O diffusion in and out of surface 

ocean water. 

Ca 18O-CO2 value of free air (‰ versus VPDB-CO2). 

Cl 18O-CO2 value of CO2 equilibrated with leaf water (‰ versus VPDB-CO2). 

Co 18O-CO2 value of CO2 equilibrated with surface ocean water (‰ versus 

VPDB-CO2). 

CS 18O-CO2 value of CO2 equilibrated with soil water (‰ versus VPDB-CO2). 

Fla 18O-CO2 value of leaf-to-atmosphere CO2 flux (‰ versus VPDB-CO2). 

Fr 18O-CO2 value of soil respiration (‰ versus VPDB-CO2). 
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WAV 18O value of atmospheric water vapor (‰ versus VSMOW-H2O). 

WCV 18O value of canopy water vapor (‰ versus VSMOW-H2O). 

Wl 18O value of leaf water (‰ versus VSMOW-H2O). 

WL-CG 18O value of leaf water (‰ versus VSMOW-H2O) using the Craig-Gordon 

estimation. 

WP 18O value of precipitation (‰ versus VSMOW-H2O). 

WS 18O value of root-weighted soil water (‰ versus VSMOW-H2O). 

l Effective kinetic fractionation factor for CO18O diffusion in and out of the 

stomata (‰).  

w effective kinetic fractionation factor for CO18O diffusion in and out of surface 

ocean water, equal to +0.8‰. 

eq temperature dependent CO2 equilibration factor in  notation. 

k H2
18O kinetic fractionation factor for molecular diffusion. 

εLV  the temperature dependent equilibrium fractionation of H2
18O during the 

liquid-vapor phase transition 

  

Appendix 3.B WMO Forcing Data  

A Cressman-like objective analysis [Cressman, 1959] is used to interpolate WMO station 

observations onto a grid.  The procedure entails finding the weighted mean value of some 

quantity X (e.g. relative humidity or temperature) on a grid, given a number of values Xj with 

irregularly distributed positions j, j. That is,  
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where A is the area of each grid cell, and included for quantities needed in per unit area. An 

example is where a probability distribution of observational points is desired and where X is set 

to one for all points j, and the resulting field has units of probability per unit area. The weight W 

is a function of the great circle distance (dj) between each grid cell center and each observation, 
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Rc is a critical radius that ensures W is positive for all dj larger than the critical radius, Rc. The 

shape of the weighting is modified by the “pinching” factor (), such that the mean radius of the 

weighting is reduced with smaller values. 

This method results in missing values when the critical radius is small enough.  On the 

other hand, the spatial structure of a variable maybe compromised due to over smoothing when 

the critical radius is too big. To avoid these problems, the objective analysis is looped 6-times for 

each day, such that the critical radius goes from large to small (Rc = 5000, 1000, 800, 600, 400, 

200 km), and the pinching factor starts extremely small and only gets larger for the first two 

loops (=0.0002,0.002,0.02,0.02,0.02,0.02).  Thus, the previous value with the larger radius is 

used to fill in grid-cells with missing values.  This approach ensures local-scale features are 

retained where data coverage is good, but provides an interpolated value where observations are 

sparse. 

The chosen grid has a horizontal resolution given by triangular truncation of the spherical 

harmonic spectrum at wave number 62, which corresponds to a Gaussian grid of about 1.875 
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degree longitude x 1.875 degree latitude. The computational grid is the same as the reanalysis 

dataset of Qian et al. [2005], which has eight time-samples per day.  For each day and for each 

grid-cell in the Qian et al. [2005] dataset, daily means are calculated and removed for each of the 

eight-time samples.  The remaining ‘anomalies’ are then added to the interpolated WMO data, 

thus imposing a diurnal cycle onto the observed daily means. 

To demonstrate that this method accurately captures the station observations, Figure 3.9 

compares examples of the observed seasonal cycle with the nearest neighbor grid-cell for the 

interpolated dataset, the reanalysis dataset of Qian et al. [2005], and the NCEP reanalysis 

[Kalnay et al., 1992].   The comparison is done for three stations in three separate regions (two 

tropical and one mid-latitude).  The station chosen for the comparison were ones with long 

observational records that show clear interannual variability and seasonal cycles.  For both 

tropical regions, the two reanalysis datasets over-predict the amplitude of the seasonal cycle, 

with wet-season values that are too high and close to 100%.  The interpolated dataset accurately 

matches the station observation. In the mid-latitudes, the seasonal cycle in relative humidity is 

not as clear with no monsoon to bring in a dry and wet-season.  Instead the variations are 

dominated by atmospheric waves that bring in moisture every 5 to 7 days on average.  This 

particular mid-latitude region does observe an annually occurring dry period during the late 

spring/early summer.  In the reanalysis data, the dry period is slightly later in the year, and thus 

the seasonal cycle is not accurately captured.  The interpolated data again matches up well with 

the stations observations, and the timing of the dry period is correct. These comparisons are the 

reason why the interpolated dataset is preferred over the reanalysis data to force ISOLSM.   

Given the importance of relative humidity found here, it is particularly important to force the 

model with realistic relative humidity.  
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Figure 3.10. Comparison between observed variations in relative humidity and relative humidity 
from gridded datasets at Tan Son Hoa, Vietnam (a and b), Belem, Brazil (c and d), and 
Saskatoon, Canada (e and f).  The black line shows the station observations, the blue line shows 
the reanalysis data from Qian et al. [2005], green line represents the NCEP Reanalysis, and the 
red line is the interpolated data used to force ISOLSM. 
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Chapter 4 

Chapter 4 Causes of the interannual variations in 18O of atmospheric CO2 inferred from 

dynamical model simulations 

4.1 Introduction 

 Carbon dioxide is believed to be the most important anthropogenic greenhouse gas in 

Earth’s atmosphere, and its global long-term positive trend has been attributed to increases in 

fossil fuel consumption and biomass burning [Keeling, 1961; Denman et al., 2007].  It is 

believed that increases in fossil fuel consumption and subsequent changes in ocean fluxes have 

contributed to the global decrease in 13C content of atmospheric CO2.  However, the 18O content 

of atmospheric CO2 (δCa) does not clearly show any sustained trend of increase or decrease at 

any of the monitoring stations.  Figure 1.1 shows the observed interannual variations in δCa at 

Mauna Loa, Barrow, Cape Grim, and the South Pole, and although no trend is apparent the 

observations show a decrease during much of 1990s followed by a slight increase after 1999.  

 In Chapter 1 the δCa budget equation was examined to identify variables that could 

potentially drive the observed interannual δCa variations. Considering the five major exchanges 

of CO2, δCa can be influenced by changes to either the magnitude of or the isotopic composition 

of a flux.  Assuming the changes are related to ecosystem fluxes would suggest that the decrease 

in δCa during the 1990s was due to either a change in assimilation (FA) or respiration (Fr) or a 

decrease in the 18O composition of leaf water (δWl) or soil water (δWS). Both ecosystem fluxes 

have potential to be influenced by temperature, solar radiation, or hydrological changes.  δWl and 
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δWS can potentially be influenced by relative humidity, temperature, or isotope hydrology (i.e., 

changes to the isotopic composition of precipitation (δWP) and/or vapor (δWAV)). 

 In Chapter 2 it was shown that observed interannual Ca variations negatively correlates 

with relative humidity and positively with WP within some regions of the tropics and mid-

latitudes. First order approximations suggested that the 1990s decrease in δCa was primarily due 

to decreases in δWP and/or δWAV in highly productive regions. Results from Chapter 2 also 

revealed evidence of a smaller contribution to the δCa decrease from increases in relative 

humidity in the same regions. In Chapter 3 a modeling sensitivity study showed that Ca has a 

large response to global relative humidity changes as well as variations in WP and WAV. In 

particular, equilibrium model simulations showed tropical and mid-latitude relative humidity and 

water isotope variations were leading candidate to explain the observed interannual variations in 

Ca. Motivated by these results, this study slightly modifies the model used in Chapter 3 to 

simulate the year-to-year changes in Ca to examine if these mechanisms can explain interannual 

(or transient) Ca variations or if the variations are a result of ecosystem CO2 flux anomalies, as 

has been suggested by others [Gillon and Yakir, 2001; Stern et al., 2001; Ishizawa et al. 2002; 

Flanagan 2005].   

 Below is a brief description of the model used to simulate the year-to-year variations in 

Ca, which also includes an explanation of the experiments used with the model (a more detailed 

description of the model was given in Chapter 3).  A control simulation is examined by assessing 

the ability of the model to reproduce the observed interannual Ca variations.  Experimental 

simulations are then conducted where one forcing variable has no interannual variations. The 

experiments are compared to the control simulation to evaluate how the potential driving 
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variables influenced the year-to-year changes in Ca.  Finally, the results found here are put into 

context with respect to other studies that have examined Ca variations. 

4.2 Methods 

4.2.1 Control Simulation and Interannual Forcing 

This study uses a similar modeling framework used in Chapter 3 to simulate Ca.  This 

framework uses an atmospheric transport model along with fluxes from the various components 

of equation 1.1 to simulate CO2 and CO18O concentrations.  A land surface model [Bonan, 1996; 

Riley et al., 2002] was employed to calculate CO2 and CO18O ecosystem fluxes. The exchange 

rates to and from the ocean are derived from various datasets [Vogel et al., 1970; Takahashi et 

al., 2002; LeGrande and Schmidt, 2006], as are fluxes from fossil fuel consumption [Andres et 

al., 1996] and biomass burning [Van der Werf et al., 2006]. The specific details about how these 

datasets are used in the model can be found in Chapter 3, though certain specifics about the 

forcing of the land model are given below.  

Photosynthetic and respiratory fluxes come from an isotopic version of NCAR’s Land 

Surface Model (ISOLSM).  ISOLSM is forced with a combination of meteorological and isotope 

datasets. Solar downwelling, precipitation rate, wind speed, and air pressure forcing data is taken 

from the daily reanalysis dataset of Qian et al. [2005].  Relative humidity and surface air 

temperature are derived from the World Meteorological Organization’s Global Summary of the 

Day, which consists of a network of over 24,000 weather stations.  Observations from each day 

are placed onto a grid by a method similar to Cressman [1959] objective analysis, which is 

described in detail elsewhere (Appendix 3.B). The meteorological data contains interannual 

variations, and can thus potentially drive year-to-year changes in FA, Fr, Cl and CS. 
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ISOLSM is forced with the 18O value of precipitation (WP) from the Global Network 

for Isotopes in Precipitation (GNIP) database.  GNIP is a joint project of the International 

Atomic Energy Agency and the WMO [Isotope Hydrology Section, 2006], and the station data 

includes monthly means of WP, temperature, precipitation amount, and vapor pressure.   The 

methods used to place long-term monthly means of WP onto a grid is discussed Chapter 4.  

Within the tropics (equatorward of 25°), interannual WP variations were calculated using the 

isotope-precipitation relationship found by Risi et al. [2008]: 0.6‰ mm-1 d.  Outside of the 

tropics, the temporal isotope-temperature relationship found by Jouzel et al. [2000] (0.6‰ K-1) is 

used for interannual WP variations. The precipitation and temperature variations used for the 

interannual regression come from the Global Precipitation Climatology Project [Adler et al., 

2003] and the National Center for Environmental Prediction [Kalnay et al., 1996], respectively. 

The isotopic composition of atmospheric water vapor is computed by first calculating the offset 

between modeled WP and WAV values from the Melbourne General Circulation Model [Noone 

and Simmonds, 2002], and then applying the offset to values of WP.  This methodology 

provides a consistent dataset for interannual variations in monthly WP and WAV, though the 

offset between the two will not change from year-to-year. 

ISOLSM simulations are forced with data that span 1979 to 2004.  The simulations go 

through two cycles of the 26-year period, using the last of the two cycles as input into CAM. 

CAM simulations were performed with a perpetual 1985 for the first 6 years, after which the 

interannual variability in ecosystem fluxes begins (starting with 1985). 

Ocean fluxes were also employed into CAM, though no interannual variations are applied 

to the ocean CO2 and CO18O fluxes.  The isotopic composition of fossil fuel and biomass 
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burning fluxes maintain a constant value of -17‰, the 18O value of atmospheric oxygen.  There 

were no interannual variations applied to biomass burning or fossil fuel consumption fluxes. 

 

4.2.2 Interannual Experimental Simulations 

 Along with a control simulation that includes all variations described above, experimental 

model runs were conducted to examine which variables are causing the variations in Ca.  These 

simulations do not include interannual variations to one of the potential drivers in Ca, thus the 

influence from the potential driver can be inferred when compared to the control simulation.  

With the name of the individual simulations in parenthesis, the potential drivers that were held 

constant include relative humidity (RHCON), WP (PRECCON), WAV (WVCON), temperature 

(TEMPCON), and radiation (RADCON).  A complete list of the experiments is given in Table 

4.1. 

 

4.3 Model Simulation Results 

4.3.1 Control Simulation 

 Figure 4.1 shows the global mean Ca from the ALLVAR simulation; also shown are 

observed Ca from Mauna Loa. The seasonal cycle for each time-series is removed by applying a 

12-month running mean.  Results are shown for the 7th model level to show mid-tropospheric 

values. Model results are correlated with the Mauna Loa time-series, and r values are also shown 

in Figure 4.1. The control simulation reasonably matches the observed Ca values, with a global 

correlation coefficient of 0.679 (when compared to Mauna Loa). The model is able to capture the 
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decrease in Ca during the 1990s and (to a lesser extent) the increase after the year 1999 (i.e. it 

captures the low frequency variability).  Also, the model captures some high frequency features 

such as the strong 1997/1998 El Nino event that resulted in an increase in Ca. 

 
Table 4.1. Name and description of each model experiment. 
 
Experiment Name Description 

ALLVAR Includes interannual variations in all atmospheric forcing. 
 
 

RHCON No interannual variations in relative humidity. 
 
 

ISOCON No interannual variation in 18O of precipitation and water 
vapor. 
 

ISOPCON No interannual variation in 18O of precipitation. 
 
 

ISOVCON No interannual variation in 18O of water vapor. 
 
 

TEMPCON 
 
 

No interannual variations in temperature. 
 

RADCON 
 
 

No interannual variations in solar radiation. 
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Figure 4.1. Modeled interannual global variations of δCa (‰).  The green line represents the 
observed values at Mauna Loa and the black line represents the simulated values. 
 
 

 The magnitude of the simulated variations was smaller when compared to the observed 

variations.  For example, at Mauna Loa, observed δCa decreased by 0.50‰ from 1992 to 1997, 

while the model simulates a decrease of only 0.34‰.  The increase in δCa after 1999 was also 

much smaller (about 0.3‰) when compared to observations. These model shortcomings could be 

a result of no interannual variability in factors unrelated to ecosystem fluxes, such as fluxes to 

and from oceans, fluxes from biomass burning and fossil fuels, or atmospheric transport 

variations.  The shortcomings could also be due to inaccuracies in the atmospheric forcing data. 
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4.3.2 Experimental simulations  

 The RHCON simulation included no interannual relative humidity variability, and the 

results of the simulation are shown in Figure 4.2.  To quantify the influence of relative humidity 

on interannual Ca variations, Ca from the RHCON simulation is subtracted from the results of 

the ALLVAR simulation. These residuals are then correlated with the observed interannual 

variations to quantify the influence of relative humidity on interannual Ca variations (rRH).  The 

relative humidity variations caused the simulated Ca to decrease during the 1990s and to 

slightly increase after 2000, as was observed (rRH = 0.577).  However, the magnitude of the 

induced variations was smaller than that for the ALLVAR simulation.  The differences between 

the two simulations indicate that relative humidity contributed about 0.10‰ to the simulated 

0.34‰ decrease during the 1990s.  This is in good agreement with Chapter 2, which estimated 

that the increase in relative humidity during the 1990s caused a ~0.14‰ decrease in Ca during 

the 1990s. In general, these results indicate that relative humidity contributed about 25% to the 

simulated decrease in Ca during the 1990s. 
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Figure 4.2. Global model results from the sensitivity experiments.  The contribution from 
relative humidity is shown as the ALLVAR simulation (Purple line in Figure 4.1) minus the δCa 
results from the experimental simulations.  Correlation coefficients are found by comparing each 
contribution time-series with observations from Mauna Loa.  
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As stated above, relative humidity can affect Ca in a number of ways that include 

changes to the isotopic composition of leaf and soil water and changes to ecosystem fluxes.  The 

relative humidity variations caused the global annual photosynthesis-weighted mean of Wl to 

decrease during the mid-1990s (Figure 4.3a), while global photosynthesis increased during that 

time period (Figure 4.3b). This is an indication that the response to relative humidity was due 

changes in Wl and not increases in photosynthesis, which usually enriches atmospheric CO2 in 

18O. 

In the PRECCON and WVCON simulations there were no year-to-year changes in the 

isotopic composition of precipitation and water vapor, respectively. The simulated Ca was 

subtracted from the results of the ALLVAR simulation, and the contribution from WP and WAV 

are shown in Figure 4.2a.  Both WP and WAV contributed to the simulated decrease in Ca 

during the 1990s; by 0.13‰ and 0.080‰, respectively (Figure 4.2a). These results are consistent 

with the magnitude estimates given in Chapter 2 and the model results presented in Chapter 3, 

both of which suggested that the decrease in Ca during the 1990s was largely driven by changes 

to WP and/or WAV.  Because there was no change in ecosystem CO2 fluxes for either 

experiment, it can be certain that the response was completely driven by changes to the isotopic 

composition of leaf and soil water and subsequently Fla and Fr.  Thus, these results suggest 

that ecosystem CO2 fluxes may not have as large of influence on interannual Ca variations as 

previously suggested [Gillon and Yakir, 2001; Stern et al., 2001; Ishizawa et al. 2002]. Similar to 

the equilibrium results presented in Chapter 3, the model results presented here suggest that the 

isotopic composition of precipitation contributed more to the decrease in Ca during the 1990s 

than the isotopic composition of water vapor (Figure 4.2a). Nonetheless, it is clear that the 18O 
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content of both precipitation and water vapor can potentially have large impacts on the 18O 

content of atmospheric CO2. 

 

 

 

 

Figure 4.3. The influence of relative humidity (a and b), temperature (c and d), and radiation (e 
and f) on photosynthesis weighted global mean Wl and global mean photosynthesis. Results are 
presented as NOVAR minus experimental simulation.  
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Figure 4.4. Variations in the photosynthesis-weighted global mean temperatures (K) from 
ISOLSM results and interpolated station data. 
 
 

 From 1992 to 1998, model global photosynthesis-weighted temperatures increased by 

about 0.70K (Figure 4.4). Results from the TEMPCON simulation suggest that the temperature 

increase caused a 0.30‰ decrease in global flux-weighted mean Wl (Figure 4.3c) for the same 

period. As discussed in Chapter 3, this leaf water response is due to a combination of factors, 

such as changes to water-vapor equilibrium fractionation and increases in temperature-limited 

photosynthesis in the middle and high-latitudes.  The temperature variations did not cause global 

mean photosynthesis to increase or decrease from 1992 to 1998 (Figure 4.3d), though it does 

increase by 0.80% from 1992 to 1995 as a result of the temperature increase. On average, 

temperature caused a gradual decrease in Ca during the 1990 to 2004 period of about -0.014‰ 

y-1, though from 1994 to 1999 temperature caused δCa to decrease by 0.19‰. The temperature 
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induced changes were correlated with observed δCa variations from Mauna Loa, and the 

resulting r values are shown in Figure 4.2b (rtemp = 0.322).  The correlation was relatively low 

mostly because increases in temperature have caused a gradual decrease in Ca. This result 

suggests that temperature was likely not the primary driver of interannual Ca variations, though 

temperatures likely contributed partially to the decrease of Ca during the mid-1990s, 

particularly from 1994 to 1996 (Figure 4.5). 

 Results from the RADVAR simulation suggest that radiation variations caused flux-

weighted global mean Wl to increase by 0.020‰ from 1992 to 1997 (Figure 4.3e). Also, the 

radiation variations caused a global decrease in photosynthesis of 0.048% for the same time 

period (Figure 4.3f). These small changes resulted in Ca variability that was both small and 

inconsistent with observed Ca variability (as is shown and reflected in the low rrad value in 

Figure 4.2b). These results indicate that the overall influence of radiation on Ca was small, and 

the observed decrease in Ca during the 1990s was not likely a result of radiation changes (which 

is consistent with the previous two chapters). 

 

4.4 Conclusion 

 The present study simulated the interannual Ca variations with moderate success. The 

model presented here was able to accurately simulate the decrease in Ca during the 1990s, but 

the increase after the year 1999 was greatly under simulated.  In general, the magnitude of the 

simulated interannual Ca variations was smaller than what was observed.  In particular, the 
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simulated global decrease in Ca during the 1990s was 0.34‰, which was about 0.16‰ lower 

than what was observed at Mauna Loa. 

This study focused on explaining the modeled variability with sensitivity tests. If the 

underlying causes for the variability were similar to that of the real world, then the sensitivity 

tests could provide insight into the causes of the observed Ca variations. Results from 

sensitivity experiments demonstrate the strong influence of the isotopic composition of 

precipitation and water vapor, relative humidity, and temperature on simulated interannual Ca 

variations. Model results reveal that approximately 0.21‰ of the simulated decrease in Ca 

during the 1990s was due to WP and WAV, and about 0.10‰ was due to relative humidity.  

Temperature may have also contributed 0.19‰ to the decrease, though the temperature induced 

decrease in δCa was found to begin in 1994 (i.e., after observed δCa began to decrease). The 

strong influence of the 18O content of precipitation and water vapor on the 18O content of 

atmospheric CO2 is qualitatively consistent with the results of Chapters 2 and 3. 

 The results presented in this chapter reveal that the observed interannual Ca variations 

were very likely a result of changes to the hydrological cycle. In particular, the model 

simulations suggest that interannual Ca variations are mostly caused by interannual WP and/or 

WAV variations.  This is in contrast to other studies [Gillon and Yakir, 2001; Stern et al., 2001; 

Ishizawa et al. 2002; Flanagan 2005] that have suggested that interannual Ca variations were 

caused by changes to ecosystem CO2 fluxes.  This work suggests that Ca can be used as an 

indicator for changes in the hydrological cycle.  Specifically, this work suggests that interannual 

Ca variations track flux- (photosynthesis-) weighted changes in relative humidity and 

precipitation.  For example, when the tropics go through periods of high relative humidity and 
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precipitation (like it did during the late 1990s), Ca values will decrease as a result of a decrease 

in the 18O content of leaf and soil water.  Should this be the case Ca may prove to be a powerful 

metric for monitoring changes in tropical hydrology. 
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 Chapter 5 

Chapter 5 An evaluation of annual mean and seasonal timing of local and non-local processes 

controlling the isotopic composition of precipitation from observations and 

comprehensive models 

5.1  Introduction 

Stable isotopes in precipitation (in particular oxygen-18 and deuterium) are commonly 

used in studies of hydrology [e.g., Lee et al., 1999; Kendall and Coplen, 2001; Vachon et al., 

2007] and past climate variability [e.g., Dansgaard, 1964; Dansgaard et al., 1969; Lorius et al., 

1979; Grootes et al., 1993; Thompson et al., 1995].  Such studies make use of the statistical 

features that that precipitation becomes isotopically heavier with increasing temperature (the 

temperature effect) and lighter with increasing precipitation amount (the amount effect).  The 

physical basis for the so-called temperature effect comes from the influence of temperature on 

the saturation vapor pressure, and preferential rain-out of the heavier isotopologue.  The amount 

effect comes about due to the diffusive exchanges of re-evaporated precipitation with the 

background vapor and the recycling of vapor within convective fluxes [Worden et al., 2007; Lee 

et al., 2007; Risi et al., 2008].  However, the emergence of the “effect” correlations in time-mean 

data need not be simple and often arises due to variations in the timing and spatial characteristics 

of moisture advection [e.g., Werner et al., 1999; Brown and Simmonds, 2005; Noone, 2008].  

 These relationships between isotopic composition (hereafter denoted as δ, where δ = 

R/RVSMOW - 1, R is the heavy to light isotope ratio, and RVSMOW is the Vienna Standard Mean 

Ocean Water ratio) and temperature or precipitation amount have been exploited by studies that 

aim to map the isotopic composition of precipitation from spatial data networks [Farquhar et al., 
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1993; Bowen and Wilkinson, 2002; Bowen and Revenaugh, 2003].  Bowen and Wilkinson [2002] 

identified regions where a regression based on latitude and altitude failed to predict δ values and 

suggested that for some regions the misfit was due to zonal variations in vapor advection.  The 

present study aims at expanding on this work to identify to what degree isotope equipped 

General Circulation Models (GCMs) are able to accurately capture the role of vapor advection on 

the isotopic composition of precipitation and thus determining the role of non-local processes on 

both δ values and deuterium excess values (d, defined as: d = δD – 8 δ18O).  This analysis aims 

to demonstrate the use of isotopic information to evaluate how GCMs simulate the balance of 

local and non-local (advective) processes within their hydrological cycles, and thereby detect 

shortcomings in the model hydrology via agreement with observed isotopic compositions.  

 In the following section, both the observational data and GCM output used for the present 

study are described.  The balance between local and non-local influences on the isotopic 

composition of precipitation is evaluated by developing an empirical model and calculating the 

misfit with data, which is taken as a measure of the importance of non-local processes.  The 

empirical model makes use of regressions and Fourier Transforms (hereafter, referred as the RT 

approach) to predict δ18O and d values. Justification for the RT approach and the details of the 

development are given and show that in addition to providing a diagnostic tool in this study, the 

RT approach is useful for gap-filling spatial isotopic data to a more regular dataset. To evaluate 

the performance of three GCMs, the RT approach is applied to both the observational data and 

the model output, and the differences in the RT misfit is argued to provide a measure of the 

ability of GCMs to represent the role of non-local processes. The magnitude and phase of the 

seasonal cycle in the δ18O values is evaluated and is compared to the phase of temperature and 

precipitation seasonal cycles, such that the misfit in time provides another measure of non-
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local/or transport effects.  The analysis of the seasonal cycles here will extend the work of 

Bowen [2008] and Feng et al. [2009], by comparing the observed cycles with those from isotope 

equipped GCMs.  This study aims to use the isotopic simulations to offer insight as to with 

which components of the hydrological cycle the GCMs accurately simulate and what 

components need improvements. 

5.2 Data and GCM simulations 

5.2.1 Observational data  

 The observed isotopic data used here comes from the Global Network for Isotopes in 

Precipitation (GNIP) [Isotope Hydrology Section, 2006], a project run by both the International 

Atomic Energy Agency (IAEA) and the World Meteorological Organization (WMO).  The GNIP 

database is composed of monthly mean δD and δ18O measurements from about 850 stations 

around the globe.  Along with geographic position and station altitude, the dataset also reports 

precipitation amount, surface air temperature, and vapor pressure.  Long-term mass weighted 

monthly means are calculated for the 1961-2005 period, and the stations that are included in the 

means have at least one-year of measurements on record.  The latest release of the GNIP data 

includes many more stations in regions where records had previously been sparse, especially in 

Siberia and Antarctica.  The density of the stations is shown in Figure 5.1 as a probability 

distribution, and with most of the stations located on continents.  In particular, many of the 

stations are located in Europe, and to a lesser degree Southeast Asia, Canada, and Central/South 

America. It should be noted that a regression model based on these data will, in turn, be biased 

towards these continental regions.  Furthermore, certain stations report some values that are 
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unreasonable (δ18O values lower than -80‰, and d values outside the range -20‰ to 35‰), 

which are excluded, as are records that do not include temperature and precipitation data. 

 

Figure 5.1. Probability density of GNIP stations derived as the total weights from equation (B1) 
in units of station probability per 106 km2. The global integral equals the number of stations and 
is 298.  Contours are given at 0.1, 0.2, 0.5, 1, 2, 4, 8, and 16×106 km-2.  Stations added to the 
GNIP archive for the analysis here are shown as an “X”. 
 
 
 Four Antarctic ice cores are added to the dataset that are not part of the GNIP database 

(indicated by an ‘X’ in Figure 5.1).  These are located near the South Pole [Mayewski and 

Whitlow, 2000], one in east Antarctica [Mirny and Vostok B37; Ekaykin et al., 2001; Lipenkov et 

al., 1998] and two in west Antarctica [ITASE 2001-2 and 2001-5; Steig et al., 2005], and each 

has sub-annual resolution.  Although many more values from Antarctic ice cores exist [e.g., 

Schneider and Noone, 2007; Masson-Delmotte et al., 2008], I choose to include only four so that 

the global regression model is not unfairly biased toward the polar region. The addition of these 

ice cores results in a total of 298 stations used in the analysis below.  
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 The regression models presented here require gridded datasets of elevation, temperature, 

and precipitation, interpolated onto the nominal working grid (2° longitude x 2° latitude).  

Elevation data were taken from a revised version of terrain height data originally prepared at the 

Scripps Institute of Oceanography [Gates and Nelson, 1975].  The National Center for 

Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) 

Reanalysis [Kalnay et al., 1996] were used to obtain the spatial and temporal distribution of 

surface air temperature (data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 

USA, http://www.cdc.noaa.gov/).  Long-term mean precipitation data were taken from the 

Climate Prediction Center Merged Analysis of Precipitation (CMAP) [Xie and Arking, 1997].  

5.2.2 General Circulation Model results 

 To evaluate the fidelity of isotope simulations, three GCMs with isotope tracers are used 

in both the regression analysis and the seasonal cycle evaluation.  These models include the 

Melbourne University General Circulation Model (MUGCM), the European Centre Hamburg 

Model (ECHAM), and the Goddard Institute for Space Studies model (GISS) [Joussaume et al., 

1984; Jouzel et al., 1987; Hoffmann et al., 1998; Noone and Simmonds, 2002].  These models 

participated in the first isotope intercomparison experiment of the IAEA/GEWEX Stable Water 

Isotope Intercomparison Group (SWING) [Werner et al., 2004; Noone, 2006]. 
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Figure 5.2. GCM simulated error in annual mean values of δ18O (a, c, and e) and d (b, d, and f), 
using the closest grid cell to each station and interpolated onto a 2° x 2° grid.  The models are 
MUGCM (a and b), ECHAM (c and d), and GISS (e and f). Units are in ‰ and contour intervals 
are 2‰.  Solid lines indicate positive values and dotted lines indicate negative values.  Gray 
shading indicates region where the absolute value of the error is above 2‰, and stippling 
indicates regions where observational data are sparse (station probability is less than 0.1×10-6 km 
-2). 
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It is useful to point out the skill with which GCMs reproduce δ and d values.  The GCM 

error is calculated by choosing the closest grid cell for each GNIP station, taking the difference, 

and interpolating the difference onto a grid for visualization of results (see Appendix B).  Figure 

3.2 shows the GCMs perform fairly well at predicting δ values in the tropics and subtropics 

(particularly over oceans), but begin to diverge from the observations in the mid to high-latitudes 

where simulated δ values are not low enough.  The MUGCM has the largest error in the high 

northern latitudes, and GISS has the lowest.  However, GISS predicts the values to be too 

depleted throughout the southern high latitudes, unlike ECHAM which simulates values that are 

not depleted enough in the high latitudes of both hemispheres.  All three GCM results generally 

simulate d values that are too high in the Southern Ocean and western North America and values 

that are too low over much of the Asia.  Given these errors, this study will use regressions to test 

if the models are simulating the correct hydrological influences (i.e. those correlated with local 

temperature and precipitation, and non-local processes) that ultimately dictate the distribution of 

the isotopes. 

5.3 Construction of a regression/transform approach  

The spatial and temporal variations in δ18O, δD, and d, are represented by an empirical fit 

that is composed of three components: the annual mean, seasonal anomaly, and model bias.  At 

each position on some grid, denoted by longitude and latitude positions (λ,), the final values (f) 

are computed as a function of time (t, months) and are found via the summation of three 

independent components: 

  ),,(),,(),(),,( 1 ttt maf            (5.1) 
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where a is the stationary annual mean (predicted by a regression), m is the monthly variation for 

a climatological year, and 1 is a bias correction that captures physics not explained by the 

regression and is the mismatch between the regression and the observations (i.e. the regression 

residual also used by Bowen and Wilkinson [2002]).   

The annual mean term in (1) is calculated as a spatial regression, such that 

765
2

43
2

21 aaZaPaPaTaTaa   ,    (5.2) 

where T (K) is annual mean temperature, P (mm month-1) is annual mean monthly precipitation, 

Z (m) is elevation, and a values are regression coefficients used to fit the station data.  These 

particular variables were chosen via a stepwise multiple regression approach (see Appendix A).  

The mean seasonal cycle, m, is evaluated by taking a Fourier transform of the data at each GNIP 

station, interpolating the first four harmonic coefficients (cf. two harmonics used by Feng et al. 

[2009]) onto a grid, and finally performing the inverse transform.  This Fourier fitting method is 

found to produce more reliable predictions of the annual cycle in data sparse regions because it 

retains the out-of-phase relationships with temperature and precipitation that are lost in a 

regression approach. 

 There is some bias (full model residual) associated with the model misfit, and evaluated 

as 

  Oma  1 ,         (5.3) 

where O is the observed monthly mean at each station.  The bias term is then interpolated onto a 

grid, so that an estimate of the bias field exists for each month of the 12 months.  The physical 

significance of the bias terms is that it measures the variability in isotopic composition not 

associated with physics captured by the predictors (particularly local temperature and 
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precipitation), and is a quantity of intrinsic interest in the analysis below because it is dominated 

by non-local influences.  

5.4 Evaluation of the biases in the annual mean 

The regression fits the spatial distribution of the annual mean station observations of δ18O 

values remarkably well, with a fitting correlation value of rfit = 0.932.  Cross-validation is done 

by removing each station when calculating regression coefficients; the coefficients are then used 

to predict the observed value of the removed station.  This method generates another set of 

correlation coefficients that measures the regression’s predictive capability [Michaelson, 1987].  

The predictive correlation for the RT approach is rpredict = 0.917 (or 84% of the variance), which 

is only slightly less than the rfit fitting value, and a reminder that there is clear spatial structure in 

the isotope fields.  Removing the zonal means (taken in 10° latitude bins) gives much smaller 

correlation coefficients: ŕfit = 0.765 and ŕpredict = 0.747 (or 56% of the variance), which indicates 

that much of the predictive skill comes from the very strong latitudinal gradient poleward of the 

subtropics.  For deuterium excess (d) the correlations show significantly less skill (rfit = 0.410 

and rpredict = 0.368) and show that the controls on the kinetic fractionation that yields d values are 

more complicated. 
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Figure 5.3. Annual mean RT bias for δ18O 
(a), δD (b), and d (c), interpolated onto a 2° 
x 2° grid, and in units of ‰.  Contour 
intervals are 1‰ for δ18O and d and 10‰ for 
δD.   Solid lines indicate positive values and 
dotted lines indicate negative values.  Gray 
shading indicates region where the absolute 
value of the bias is above 2‰, and stippling 
indicates regions where observational data 
are sparse (station probability is less than 
0.1×10-6 km-2). 

 

Figure 5.3 shows the annual mean of the bias term (ε1) in the RT approach for δ18O, δD 

and d values (found independently of the two δ values).  The model bias has a root mean square 

value of 2.20‰ for δ18O, 18.2‰ for δD, and 2.89‰ for d; however, the regression performs 

poorly at certain locations and results in large magnitude biases.  The δ18O and δD patterns 

largely reaffirm the similar work of Bowen and Wilkinson [2002], and are presented here to 

facilitate discussion of the bias derived from the GCM-based regressions. The RT bias is large 

where there is a strong influence associated with non-local processes (i.e. largely affected by 

transport as described by Bowen and Wilkinson [2002]) not captured by local predictors and thus 
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I define this as a measure of non-local influences.  The regression predicts both δ18O and δD 

values to be too low over the Southern Ocean, over eastern Africa, and over the Arctic Ocean 

north of Scandinavia.  However, as stippling in Figure 5.3 indicates, there are certain regions of 

the Southern Ocean where data are too sparse for the RT approach to be well constrained.  Over 

most of Canada and Alaska, the regression predicts both δ18O and δD values that are not depleted 

enough.  These large biases can be explained by differences in vapor transport within the 

latitudinal zones.  For example, vapor in the North Atlantic (where temperatures are high) are 

advected northeastward towards the Arctic Ocean where the resulting rain will be enriched in the 

heavy isotopes compared to other locations within the latitudinal zone.    A similar argument for 

significant biases found in a different regression model was also given by Bowen and Wilkinson 

[2002]. 

Biases in deuterium excess values, d, show a different distribution.  The magnitude of the 

bias is large (and positive) over the Antarctica Peninsula and a large portion of Russia.  The 

western coast of North America and the southern tip of Greenland are also regions where the 

biases are large, which is likely due to omission of the most relevant predictors of  the d values in 

the regression for these locations.  For instance, Vimeux et al. [2001] suggest SSTs, sea ice 

conditions, and relative humidity over the source water region are highly correlated with d 

values, which are absent in the RT approach used here.  
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Figure 5.4. Annual mean GCM bias for δ18O (a, c, and e), and d (b, d, and f) values, and in units 
of ‰.  Contour intervals are 2‰.   The models are MUGCM (a and b), ECHAM (c and d), and 
GISS (e and f). Solid lines indicate positive values and dotted lines indicate negative values. 
Gray shading indicates region where the absolute value of the bias is above 2‰. 
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To assess the degree to which the GCM errors described above are due to a failure in 

simulating the balance between local and non-local processes, regression models were 

established based on the GCM output rather than the GNIP observations.  The GCM 18O values 

are “predicted” by applying equation (2) to the simulated fields, and the bias relative to the GCM 

simulated δ18O values are computed. Figure 5.4 shows that many of the biases that appeared in 

the observationally based regression also appear in the regressions based on GCM output; 

however, the magnitudes and geographic extent differ in detail.  For example, all four of the δ18O 

regression biases are large and positive in northern Canada; though, the GCM-based biases are 

higher in the eastern portion of the continent and are generally large throughout the high and mid 

northern latitudes.  This indicates that the GCMs inadequately simulate the non-local controls of 

the hydrological cycle for the northern continents.  Furthermore, the observational and GCM-

based regressions all have negative biases in the Southern Ocean.  However, the extent and 

magnitude of this bias over the oceans is much greater than the observational-based regression 

(with the exception of the regions adjacent to Africa).  Similarly, there is a region in the Arctic 

Ocean north of Scandinavia that also has large negative bias for both the observational-based and 

GCM-based regressions.  As noted above, this bias is suspected to be due to moisture transport 

from lower latitudes, and is a feature of the hydrological cycle that the models over-emphasize.  

The models’ overemphasis of these non-local processes is likely responsible for the model errors 

in δ18O values within the mid and high high-latitudes (Figure 5.2).  In other words, the models 

overemphasize the role of large-scale transport in the simulation of the hydrologiocal cycle.  

These findings also suggest that the role of local cloud processes is modeled to be less important 

than is suggested by the observed isotopes in precipitation. As such, these three GCMs give a 
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misleading view of the atmospheric hydrology as being (overly) dominated by dynamical 

controls rather than cloud microphysical controls. 

Similar results emerge in the d value regressions; however, d values are believed to be 

largely affected by non-local meteorological conditions (specifically conditions over the source 

region), so differences between observed and GCM biases could be due to incorrect source 

region and/or non-local meteorological conditions within correct regions.  For instance, the 

GCMs simulate d values that are too high (positive errors) over Siberia and much of Asia, with 

MUGCM being a slight exception (Figure 5.2).  The observational-based regression has large 

positive biases for this region, indicating that the non-local influence act to lower d values in this 

region.  On the other hand, the GCMs all have large negative biases over much of Asia, which 

indicates that the non-local influence causes d values to increase (and not decrease as the 

observation-based bias would suggest).  This non-local increase in d values could be the cause 

for simulated values that are too high when compared to observations.  There could be a number 

of causes of these improper simulations.  For example, in the GCM simulations, the vapor over 

Asia could be derived from waters with higher sea surface temperatures or waters in more arid 

regions than those actually occurring in nature.   However, it is important to note that while 

MUGCM has a smaller negative bias over Asia, which is similarly reflected in the smaller model 

errors in the region, it is unlikely that the simulation of the regional hydrology is perfect. 

Within the GCMs, δ18O and d values are known quantities at each grid-cell, and yet the 

regression approach has significant bias for many regions.  This implies that although regression-

type of mapping gives reasonable qualitative similarity, the use of temperature and precipitation 

as predictors has significant quantitative limitations, especially for d values.  This is because of 

both the strong non-local influences and physical dependence of d on other quantities.  Because d 
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values are not as well predicted using the RT approach, the following section focuses on δ18O 

values only. 

5.5 Controls on the seasonal cycle 

Figure 5.5 compares observed seasonal cycles in δ18O values for six representative 

stations with those produced by the RT approach. Also shown are simulated δ18O values from 

the SWING GCMs (using the three model mean), a case where the RT approach excludes the 

bias term, and a case when the station of interest is removed from the fitting to illustrate the 

cross-validation.  GCM and RT values use the nearest grid cell for the comparison.  The RT 

approach in its complete form is able to capture both the phase and amplitude of the seasonal 

cycle for five of the six stations (Reykjavik, Iceland being the exclusion).  Furthermore, when the 

bias term is removed from the RT approach, the phase and amplitude of the seasonal cycle 

change little.  The GCM mean and RT prediction (station of interest removed for cross-

validation) curves are similar in a number of respects.  In the mid-latitudes (Vienna, Ottawa, and 

Melbourne), the models adequately predict the phase and amplitude of the seasonal cycle (for 

both hemispheres).  However, in the tropics and high-latitudes both the RT approach prediction 

and the GCM mean are less capable of predicting the phase and (especially) the amplitude well.  

Thus, there must be some component of the seasonal variation in the hydrological cycle that the 

models are not accurately capturing at these locations.  Given the local nature of the RT 

approach, this is likely to be from shortcomings in rainfall recycling or seasonal moisture 

transport. 
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Figure 5.5. Seasonal cycles of δ18O for the GNIP observations (solid line) and the SWING GCM 
means (dash dotted line) for six separate regions: a) Reykjavik, b) Vienna, c) Ottawa, d) 
Bangkok, e) Belem, and f) Melbourne.  Also plotted is the RT approach using all of the stations 
(thick dotted line) and using all but the given station in the regression and transform (dashed), 
and without the bias term (dashed line). 
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Figure 5.6. Spatial distribution of the amplitude (a, c) and phase (b, d) of the 1st harmonic in the 
δ18O seasonal cycle from the RT approach and GCM mean.  Contours of the phase plots indicate 
the fraction of the total amplitude explained by the 1st harmonic.  Phases are represented by 
arrows that are oriented such that the angle relative to north indicates the phase of the harmonic.  
Bottom key is used to determine the phase in terms of the month of maximum value. The 
amplitude is half of the difference between maximum and minimum values. Stippling in a and b 
indicates regions where observational data are sparse (station probability is less than.0.1×10-6 
km-2).  
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5.5.1 Physical drivers of seasonality in the 1st harmonic 

The geographic variations in the shapes of the seasonal cycle predicted by the RT 

approach and simulated by the GCMs are established in Figure 5.6, which shows the spatial 

distribution of the amplitude and phase of the 1st harmonics of the seasonal cycle.  Although the 

amplitude and phase of the 1st harmonic have been shown by others [Bowen, 2008; Feng et al., 

2009], I focus here on evaluating the simulated seasonal distribution relative to that which is 

captured by GNIP observations.  The observed amplitude of the 1st harmonic is largest in the mid 

and high-latitudes and over continents, which is believed to be a result of the temperature effect 

and large seasonal temperature variations.  In the U.S., the amplitude of the 1st harmonic is 

largest in the interior of the country (i.e. the Midwest and along the Rocky Mountains) and 

decreases towards the coasts, a result that is consistent with findings of Vachon et al. [2007] and 

Bowen [2008].  GCM simulations also capture these high amplitude regions in the mid and high-

latitudes, though the amplitudes are typically smaller in the GCM simulations (Figure 5.6).  

Because the models generally capture the geographic areas with high amplitudes in temperature 

it is likely that the subsequent seasonal influence on isotopic rainout in the mid and high-

latitudes can be considered robust, albeit of reduced amplitude in the models. 

 Although observed amplitudes are smaller within the tropics there are still many regions 

where the 1st harmonic contributes more than half (shading in Figure 5.6b) of the total amplitude 

(e.g., much of South America, Southeast Asia, and a region centered on Madagascar).  The 

largest observed 1st harmonic amplitude within the tropics is on the east coast of South America, 

which is a feature that the GCMs simulate remarkably well.  The models also simulate a high 

amplitude region in southwestern Africa.  This does not appear in the RT results due to lack of 

data within this region, an indication of the need for more isotope measurements within the 
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global network.  Because this feature over Africa is geographically similar to the one over South 

America, it is likely real.  Both high amplitude regions do not have unusually large amplitudes in 

precipitation amount (not shown), which suggests that the high amplitudes could be largely due 

to shifts in wind and water source regions, a result consistent with the findings of Feng et al. 

[2009]. 

To better understand the degree to which temperature and precipitation correlations 

accurately explain the underlying thermal and hydrological controls on variations in both the 

observed and simulated seasonal cycle of δ18O values, the differences in the phases between δ18O 

values and both temperature and precipitation amount are plotted in Figure 5.7.  These can be 

considered in relation to the phase of the leading harmonic of δ18O alone shown in Figures 5.6b 

and 5.6d.  In the mid and high-latitudes, the observed phase of the 1st harmonic is such that the 

maximum is in July in the Northern Hemisphere and January in the Southern Hemisphere, and 

indicative of the dominating role of seasonal temperature variations. However, in the Northern 

Hemisphere oceans the δ18O values leads by 1-2 months because temperature maxima are 

typically later in the summer. Similarly in the Southern Hemisphere, the phase of the 1st 

harmonic in δ18O values begins to diverge from the phase of temperature, suggesting that other 

processes are playing a role in the seasonal cycle.  For instance, changes in cloud processes 

(perhaps linked to precipitation amount), storm track position and strength, and advection 

pathways from the source region would all give rise to phase offsets.  Some aspects of these 

mechanisms were explored recently and shown by Feng et al. [2009] in the context of seasonal 

changes in the position and strength of the Intertropical Convergence Zone, and a moisture 

source in the region of subtropical highs.  The GCMs simulate δ18O values that are in phase with 

temperature over land, and slightly lead over the ocean (in the 1st harmonic).  This is consistent 
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with the RT results and associated with the strong temperature control on saturation and isotopic 

rainout in mid and high-latitudes that gives rise to the temperature effect in both spatial and 

temporal data. 

 
Table 5.1. Average phase lead of the precipitation maximum with δ18O minimum in the 1st 
harmonic (lags are negative).  Average phase lead of the precipitation maximum with δ18O 
maximum in the 2nd harmonic.  Bold numbers show statistical significance at the 90% level.  

  1st harmonic (anti-phase)   2nd harmonic (in phase) 

Region RT1 GCM1 RT-GCM1  RT1 GCM1 RT-GCM1

   
Pacific Ocean2 8.5 (5.6) -7.6 (3.0) 16.1 (2.6) -6.9 (4.9)  -24 (0.92) 17.1 (3.5)

South America3 6.6 (5.5) -1.3 (2.0) 7.9 (3.5) -17 (4.1) -15 (0.66) -2 (3.1)

Atlantic Ocean4 -46 (16) -7.4 (5.6) -39 (10) -41 (21) -15 (1.6) -26 (22)

Africa5 15 (23) -17 (5.4) 32 (18) -17 (10) -27 (1.9) 10 (10)

Indian Ocean6 16 (4.8) 30 (3.8) -14 (1.0) -20 (10) 0.16 (1.1) -20 (8)

SE Asia7 2.7  (8.9) -12 (5.7) 15 (3.2) -29 (9.1) 10 (1.8) -39 (7.3)

   

Total8 1.3 (4.8) -2.1 (1.7) 3.4 (3.1) -23 (4.1)  -15 (0.58) -8 (3.5)

                
1Unit in days, standard deviation in parenthesis 
2From 15°S to 15°N and 150°E to 280°E 
3From 15°S to 15°N and 280°E to 330°E 
4From 15°S to 15°N and 330°E to 10°E 
5From 15°S to 15°N and 10°E to 55°E 
6From 15°S to 15°N and 55°E to 110°E 
7From 15°S to 15°N and 110°E to 150°E 
8From 15°S to 15°N 
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Figure 5.7. Spatial distribution of the phase differences of the 1st harmonic between δ18O values 
and temperature (a and c) and precipitation (b and d) seasonal cycles from the RT approach and 
GCM mean.  Phase differences are represented by arrows that are oriented such that the angle 
relative to north indicates the extent to which the two variables are out of phase. Stippling in a 
and b indicates regions where observational data are sparse (station probability is less 
than.0.1×10-6 km-2). 
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Within the tropics and subtropics, precipitation amounts are believed to be the most 

prominent predictor in determining the phase of the seasonal cycle in δ18O values [Noone and 

Simmonds, 2002; Bowen, 2008].  Indeed, for the regions within the tropics where the 1st 

harmonic is considerably large (e.g., South America, Southeast Asia, and Madagascar), it is 

found here that both the observed and simulated phase of the 1st harmonic in δ18O values appears 

to be mostly in anti-phase with the 1st harmonic phase in precipitation.   

Table 5.1 shows phase differences between precipitation maximum and the δ18O 

minimum for various tropical regions.  Statistical significance in these differences are found via 

a Monte Carlo method, where the RT approach is applied after 50 random stations (or 2700 grid 

cells from model output) are removed; phase differences are then calculated, and the process is 

repeated 10,000.  The phase differences that are larger than 1.645 standard deviations (for a 

given regions) of the 10,000 samples are viewed as significant at the 90% level.  Within the 

entire tropics (between 15°S and 15°N,), the precipitation maximum typically leads the δ18O 

minimum by only 1.3 day using the RT approach, while the GCMs simulate the maximum 

lagging by 2.1 days. Both values are lower than the significance threshold, and the two variables 

can be viewed as in anti-phase with one another within the tropics (in both observations and 

GCMs).  These findings are consistent with an explanation of the variability in terms of the 

statistical relationship described as the amount effect.  

When examining particular regions of the tropics, the leads and lags become larger.  Over 

the Indian Ocean the precipitation maximum leads the δ18O minimum by 16 days (Table 5.1), 

which is likely a result of local cloud processes that are typically attributed to the negative 

correlation between precipitation amount and δ18O values [Worden et al., 2007; Lee et al., 2007; 

Risi et al., 2008]. On the other hand, over the Atlantic, the maximum in precipitation lags the 
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δ18O minimum by 46 days, and could be result of a change in the advective origin of the 

moisture within the region, a result that is consistent with the findings of Feng et al. [2009]. 

Despite these possible dissimilar mechanisms, the seasonal temperature and amount effect 

appear to be consistent with the phase of the 1st harmonic of the seasonal cycle in δ18O values 

within the tropics. 

The GCMs simulate leads and lags that are somewhat inconsistent with those found from 

the RT approach.  For example, over Africa, the GCMs simulate the precipitation maximum 

lagging the δ18O minimum by 17 days, while the RT approach has the precipitation maximum 

leading the δ18O minimum by 15 days. These types of inconsistencies are likely a result of 

improper simulations of the physical processes (advective or cloud processes) that lead to the 

amount effect.    As such this analysis suggests that these processes are a specific shortcoming 

that should be resolved in the GCMs, in order to properly simulate the hydrological cycle. 

5.5.2  Physical drivers of seasonality in the 2nd harmonic 

The observed amplitude of the 2nd harmonic is largest over equatorial regions of eastern 

South America and Africa (Figure 5.8), which is largely due to hydrologic changes linked to the 

semi-annual passage of the sun.  However, the importance of the 2nd harmonic is not constrained 

to only the tropics.  For example, the amplitude is high over much of Australia and above 0.5‰ 

over most of the middle to high-latitude regions of North America and Asia.  The GCMs do 

remarkably well at capturing the correct regions  
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Figure 5.8. Spatial distribution of the amplitude (a, c) and phase (b, d) of the 2nd harmonic in the 
δ18O seasonal cycle from the RT approach and GCM mean.  Contours of the phase plots indicate 
the fraction of the total amplitude explained by the 2nd harmonic.  Phases are represented by 
arrows that are oriented such that the angle relative to north indicates the phase of the harmonic.  
Bottom key is used to determine the phase in terms of the month of maximum value. The 
amplitude is half of the difference between maximum and minimum values. Stippling in a and b 
indicates regions where observational data are sparse (station probability is less than.0.1×10-6 
km-2). 
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Figure 5.9. Spatial distribution of the phase differences of the 2nd harmonic between δ18O values 
and temperature (a and c) and precipitation (b and d) seasonal cycles from the RT approach and 
GCM mean.  Phase differences are represented by arrows that are oriented such that the angle 
relative to north indicates the extent to which the two variables are out of phase. Stippling in a 
and b indicates regions where observational data are sparse (station probability is less 
than.0.1×10-6 km-2).  
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where the 2nd harmonic amplitude is high as well as the correct relative size of the amplitude.  

Furthermore, the simulated phase of the 2nd harmonic agrees well with the observations in these 

regions where the 2nd harmonic amplitude is large.  This suggests that the models reasonably 

capture the physics that cause the semi-annual cycle in δ18O values for certain regions across all 

latitudes. 

To better understand what is driving both the observed and simulated semi-annual cycle 

in δ18O values, phase differences between δ18O values and both temperature and precipitation are 

shown in Figure 5.9.  Over the two northern mid-latitude continental regions when a temperature 

effect may be expected, Figure 5.9a shows the phase of the 2nd harmonic in δ18O values does not 

match-up with that of the 2nd harmonic in air temperature (arrows not vertical in Figures 5.9a).  

Similarly, simulated δ18O values are not consistently in phase with temperature in the 2nd 

harmonic (Figure 5.9c).  Thus, both observations and model simulations indicate that the phase 

of the 2nd harmonic outside of the tropics is unrelated to the temperature effect and likely due to 

other processes like variations in vapor transport and baroclinicity  

In tropical regions where the observed 2nd harmonic amplitude is high, the maximum in 

δ18O values is not completely in anti-phase with precipitation amount (arrows are not horizontal 

in Figures 5.9b).  Table 5.1 shows the 2nd harmonic phase difference between δ18O values and 

precipitation amount for certain regions within the tropics.  The values in Table 5.1 reveal that 

the 2nd harmonic is closer to being in phase with precipitation than in anti-phase.  The simulated 

2nd harmonic in δ18O values also does not appear to be in anti-phase with the precipitation as the 

1st harmonic was.  On average, the phase of the simulated 2nd harmonic in precipitation lags δ18O 

values by only 23 days (far from 90 days, which would be anti-phase).  Similar to the findings 



 

 

 

132

for the mid and high-latitudes, these results suggest that the phase of the semi-annual cycle 

within the tropics is largely influenced by processes other than those which control precipitation 

amount, and as such a description of the variability as a simple amount effect is misleading.  

Instead, variations in moisture transport direction are more likely drivers.  In addition, these 

results indicate that the GCMs not only simulate the correct amplitude and phase of the 2nd 

harmonic globally, but also correctly simulate non-local processes as a major driver of the 

seasonality of the 2nd harmonic. 

5.5.3 Conclusion 

An analysis was performed to establish to what degree GCMs are able to simulate the 

relationships between the isotopic composition of precipitation and temperature and precipitation 

amount and to illustrate that the model errors are largely results from an inability to correctly 

simulate the balance between the local controls on isotopic composition and the variable 

processes which set the isotopic composition at some upstream location.  The use of a statistical 

model in the analysis confirms the work of Bowen and Wilkinson [2001] and Farquhar et al. 

[1993] in that simple regressions can predict the annual mean δ18O values well, however, I note 

that the apparent great skill with which regression-based models reproduce isotopic distribution 

stems from the dominant role of the latitudinal variations poleward of the tropics.  While about 

84% of the total spatial variance is modeled, only 50% of the variance in zonal anomalies is 

captured by the empirically based RT approach.   

By comparing the biases of the observation-based regression with that of the GCM-based 

regressions, it was found that the biases from GCM-based regressions are much larger and have 

greater spatial extent than those from observations. Because the isotopic composition is known in 
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GCMs, these results show that temperature and precipitation are not completely accurate 

predictors, and that a regression model based on these has clear quantitative limitations even 

though there are reasonable qualitative similarities in the spatial maps that result.  These results 

also suggest that the GCMs overemphasize the role of non-local processes (e.g., large scale 

transport) in the simulation of the hydrological cycle, and, in so doing, downplay the role of local 

microphysical cloud processes and local surface exchange.  Furthermore, the regions where the 

GCM mismatch is greatest (the mid and high-latitudes) are also large regions where the models 

simulate δ values that are not depleted enough.  Thus, the overemphasis of large scale transport 

without temperature controlled condensation, or under emphasis of local cloud processes acting 

on the large-scale, is likely causing simulated δ values to be less negative in the mid and high-

latitudes. Beyond transport the GCMs could also be simulating too much evaporation and 

boundary layer mixing that would tend to re-enrich a poleward moving air mass.  In both cases 

the lack of agreement provides a clear indicator that the balance of different fluxes which 

contribute to the hydrolocial cycle is incorrectly simulated.  

  From both observations and GCM simulations, the phase of the 1st harmonic of the 

seasonal cycle is very uniform in the mid to high-latitudes, and corresponds to a maximum that is 

consistent with temperature maxima. Similarly, the phase of the 1st harmonic within the tropics 

and subtropics is consistent with precipitation minima where 1st harmonic amplitudes are high.  

However, my  analysis of the leads and lags suggests that for some tropical regions (like over the 

Atlantic) the observed seasonal amount effect is likely caused by seasonal air mass changes, 

which would be consistent with the findings of Feng et al. [2009] of seasonal changes in 

subtropical vapor sources.  On the other hand, for other regions (like over Africa and the Indian 

Ocean) the amount effect is expected to be due to cloud processes described by Risi et al. [2008].  
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Thus, the present study argues that the cause of the seasonal amount effect is not the same 

throughout the tropics, but is expected to be due to a combination of local and non-local controls 

depending on the region. 

 GCM simulations produce lags and leads associated with the amount effect, but which 

are inconsistent with the RT approach.  Thus, the causality of the amount effect in the 

simulations is not in agreement with the causes reflected in the observed data.  This would 

indicate that either the models are not correctly simulating the processes that are leading to the 

seasonal amount effect or that the RT approach needs to be better constrained by observations, 

which would indicate a need to measure δ values at more tropical locations.  

Both the observed and simulated phase of the 2nd harmonic does not seem to be related to 

the amount effect within the tropics or the temperature effect in the mid and high-latitudes.  

Thus, the phase of the 2nd harmonic is likely to arise from variability in storm track activity or 

other non-local processes such as vapor transport and/or mixing, and is a feature which is not 

explained well with regression techniques. This result provides a cautionary example of the need 

to better understand the underlying physics to be confident in simple empirical relationships. 

 While local temperature and precipitation are used as predictors in the regressions, and 

deviations are viewed as the non-local component, local temperature and precipitation 

themselves are also influenced by non-local processes such as advection, which must be borne in 

mind for the definition of “non-local” used here.  A limitation in the analysis here is that 

regression coefficients for the GNIP stations are unfairly biased to fit the large number of 

European stations, and not the more remote stations, whereas the GCM based regression 

coefficients do not favor a particular region. Consequently, the RT results from regions like 

Europe can be viewed with more confidence.  Nonetheless, the challenge still remains for GCMs 
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to correctly simulate the impact of non-local processes on the water cycle, and specifically shift 

the balance more towards local processes like cloud physics and boundary layer exchange.  This 

would likely reduce the large errors seen in simulated δ and d values over the mid and high-

latitudes and also have beneficial implications for the simulated water and energy balance.   

5.6 Appendix 5A: Detailed Model Description 

The annual mean values at each (GNIP) location are estimated by establishing a 

regression model.  The variables considered are the five used by Farquhar et al. [1993], T, T2, P, 

P2, and Z1/2; the three used by Bowen and Wilkinson [2001], ||, 2, and Z, and three others, P1/2, 

potential temperature (θ), and θ2. It is neither necessary nor statistically rigorous to include a 

large subset of these variables in the regression.  As such, a stepwise approach is used to select a 

limited set of predictors.  Table 5.2 shows the dependence of annual mean δ18O values on these 

variables, as the correlation with each of the variables (left-hand column of Table 5.2).  The T 

term had the highest correlation, which was then chosen for a single variable regression to 

estimate annual mean δ18O values.  The remaining predictor candidates were then correlated with 

the regression residual.  As indicated in the table, the variable that had the highest correlation 

with the residual was the P1/2 term, which was added to the regression.  This method was 

repeated until the separate variables and the regression residual failed to produce a correlation 

coefficient of r = 0.0535 (significant at the 80% level). As such, a total of five variables were 

selected: T, P1/2, P2, Z, and ||.  However, when these five variables are used in the regression, 

they produce many large and positive values within the tropics and subtropics.  Additional 

regressions were calculated using the five selected variables plus one of each of the non-selected 

variables.  It was found that the addition of the T2 term greatly reduced the number of high and 



 

 

 

136

positive values, thus leading to the regression equation (2). Once the regression coefficients are 

found, they are applied to gridded T, P, and Z fields to obtain the gridded δa(λ,) field. 

A second step in evaluating (5.1) makes use of a Fourier transform to estimate the 

seasonal cycle at each GNIP station for each of the 12 months.  The transform produces a set of 

six complex coefficients that capture the leading harmonics that make up the seasonal cycle 

without aliasing.  The time series for each station can then be represented by the summation of 

these six harmonics: 
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where k is the frequency, and Ak and Bk are the real and imaginary parts of the complex 

amplitudes, respectively.  For many stations, only 3 to 4 years of data exist, which in turn can 

cause the long term mean of the seasonal cycle to be noisy, and unlikely to be statistically 

stationary.  To avoid over fitting, particularly where there are only a few years of data, only the 

first four harmonics are used.  Once Ak and Bk are obtained for each station, they are interpolated 

onto a grid as Ak(λ,) and Bk(λ,) (see Appendix B).  At each gridcell the monthly mean anomaly 

is calculated by evaluating a summation similar to equation (A1), to produce fields for the 12 

monthly values that characterize the mean seasonal anomalies δm(λ,,t). The bias term is 

calculated by applying (3) and interpolated onto a grid using the method described in Appendix 

5B. 
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Table 5.2. Correlation of variables with 18O and regression residuals. 

 r r1 r2 r3 R4 r5 

T 0.902 - - - - - 

|| -0.686 0.211 - - - - 

Z -0.149 -0.115 0.152 - - - 

P1/2 0.529 -0.063 0.034 0.060 - - 

P2 0.280 -0.201 -0.080 -0.034 -0.089 - 

T2 0.893 -0.020 -0.012 -0.010 -0.010 -0.008 

P 0.425 -0.140 -0.023 0.014 0.047 -0.013 

Z1/2 -0.144 -0.103 0.119 -0.034 -0.034 -0.031 

2 -0.783 0.094 -0.045 -0.024 -0.025 -0.015 

Θ 0.737 -0.056 0.086 0.003 0.003 0.003 

Θ2 0.718 -0.070 0.082   -0.002 -0.001 0.001 

 

5.7 Appendix 5B: Interpolation  

A Cressman-like objective analysis [Cressman, 1959] is used for many of the 

components that make up (1).  The procedure entails finding the weighted mean value of some 

quantity X on a grid, given a number of values Xj with irregularly distributed positions j, j. That 

is,  
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where A is the area of each grid cell, and included for quantities needed in per unit area. An 

example is where a probability distribution of observational points is desired where X is set to 
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one for all points j, and the resulting field has units of probability per unit area. The weight W is 

a function of the great circle distance (dj) between each grid cell center and each observation, 
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 (5B.2) 

Rc is a critical radius that ensures W is positive for all dj larger than the critical radius, Rc. The 

shape of the weighting is modified by the “pinching” factor (), such that the mean radius of the 

weighting is reduced with smaller values.  Here the weight is defined with Rc = 4100 km, and 

=0.008, and yields a mean effective radius of 312 km.  The computational grid is chosen to be 

2.0° longitude x 2.0°.  
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Chapter 6 

Chapter 6 Climatic controls on the deuterium isotopic composition of modeled leaf wax n-

alkanes and implications for Eocene climate proxies 

6.1 Introduction 

Organic matter derived from plants has the potential to capture the deuterium/hydrogen 

ratio of precipitation, as meteoric water provides the hydrogen source for most plant organisms 

on Earth [Epstein et al., 1976]. The hydrogen isotopic composition of a plant’s leaf wax n-

alkanes reflects the D value (expressed as the deviation of the measured hydrogen isotope ratio 

from a standard) of a plant’s source (i.e. soil) water [Sessions et al., 1999].   In turn, the isotopic 

composition of source water is largely controlled by the D value of local precipitation. 

Numerous studies have demonstrated spatial and temporal relationships between D values of 

precipitation and temperature and precipitation amount [Dansgaard, 1964].  Provided that the D 

values of water isotope proxies (e.g. through leaf wax derived n-alkanes) are preserved, past 

changes in local environmental conditions can be reconstructed. 

Past temperature reconstructions using n-alkane D values are based on a local D-T 

conversion factor derived from modern observations, and are typically around 9‰/K [Jouzel et 

al., 1993, 1996; Petit et al., 1999].  An uncertainty in proxy-derived D values due to variable 

leaf water enrichment, as a consequence of evapotranspiration (e.g. Leaney et al. [1985] found 

deuterium enrichment ranged from 20‰ to 80‰) on the order of 50‰ results in an error in 

estimates of local past temperature of about 5.6K. 
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In addition to the potential variations in the original D value of source water, the final 

isotopic composition of n-alkanes found in leaf waxes is influenced by a sequence of 

fractionation processes prior to and during the biosynthesis of the hydrocarbons. Evaporation of 

soil and leaf water causes leaf water D values to become enriched relative to precipitation 

[Craig and Gordon, 1965; Flanagan et al., 1991; Still et al., 2009], while fractionation during 

the biosynthesis of the n-alkanes causes depletion of D values through preferential 

incorporation of the lighter isotopologue. Recent studies suggest that fractionation during 

biosynthesis is constant (amongst plant species and under varying environmental conditions) at a 

value of about -160‰ [Sessions et al., 1999; Sachse et al., 2004, 2006]. Evaporative enrichment 

from leaf and soil water is rarely large enough to outweigh the large -160‰ fractionation from 

biosynthesis [Sachse et al., 2006]. Consequently, the overall offset between the isotopic 

composition of precipitation (DP) and that of the n-alkanes (Da) (hereafter εw/a =Da - DP) is 

almost always negative. Using an εw/a value, measured Da values from ancient sediments are 

converted to DP values, which are used to estimate past temperatures and infer hydrological 

changes. However, Sachse et al. [2006] and Liu et al. [2006] have shown differing εw/a values 

between different plant species due to variations in both plant anatomy and environmental 

conditions. 

Craig and Gordon [1965] presented a steady-state theory for approximating the isotopic 

composition of surface water, which has been modified by Flanagan et al. [1991] to predict the 

isotopic composition of leaf water (DL) under steady state conditions such that: 

   CVkSWVLL DhDhTD    1)(         (6.1) 
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where εL-V(T) is the temperature (T) dependent equilibrium fractionation of HDO during the 

liquid-vapor phase transition, εk is the kinetic fractionation of HDO during the diffusion of vapor 

across the stomata and leaf boundary layer, h is relative humidity at the surface of the leaf, DSW 

is the isotopic composition of the soil water taken up by roots, and DCV is the isotopic 

composition of the canopy vapor. Still et al. [2009] have shown that this steady state assumption 

is remarkably robust during the daytime when transpiration and photosynthetic production are 

high. Equation (6.1) shows that the isotopic composition of leaf water is largely controlled by the 

D values of soil water and canopy vapor, which in turn are set by D values of precipitation and 

atmospheric vapor.  Equation (6.1) shows how relative humidity influences the balance between 

soil water and canopy vapor contributions to DL, as well as that it regulates the strength of the 

kinetic fractionation term.  Indeed, equation (6.1) predicts that a relative humidity change of 10% 

units corresponds to a leaf water change of approximately 12‰.  Also, the value of εL-V(T) 

changes by -1.1 ‰/K at a temperature of about 300K, which is typically neglected for proxy-

reconstructions. 

 It is likely that many of the parameters controlling DL were different during different 

periods of the past. For example, the Eocene (57.8–36.6 Ma) was characterized by high 

temperatures and an intensified hydrological cycle relative to today [Jahren and Sternberg, 

2003], which likely modified εL-V, h, DSW and DCV values (Equation 6.1). Using a 

comprehensive isotopic fractionation model fitted to a detailed land surface model and 

atmospheric general circulation model, this study evaluates the degree to which Eocene 

environmental conditions cause changes to DL values and thus εw/a as recorded in leaf wax n-

alkanes.  
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6.2 Model Description and Experiment Configuration 

The H2O, HDO, and H2
18O content of precipitation and water vapor as well as 

meteorological conditions for both the Eocene and the present-day were simulated using 

ISOCAM. ISOCAM is a modified version of CAM3, the National Center for Atmospheric 

Research (NCAR) Community Atmosphere Model (CAM) [Noone, 2003, 2006; Noone and 

Sturm, 2010]. The fractionation scheme is based on that of Noone and Simmonds [2002] but 

includes a more detailed multiphase cloud microphysical model adapted from Federer et al. 

[1982] and a more detailed treatment of convective transport of moisture [Noone and Sturm, 

2010].  Output from ISOCAM was used to force the isotopic version of the NCAR Land Surface 

Model (ISOLSM) [Bonan, 1996; Riley et al., 2002; Noone et al., 2002].  ISOLSM simulates the 

D and 18O values in soil, xylem, and leaf waters based on modeled hydrologic and energy 

balance constraints. The leaf water model within ISOLSM employs a time-dependent mass 

balance that includes a transpiration dependent leaf turnover time-scale to calculate DL values 

[Dongman, 1974; Still et al., 2009]. The deuterium content of leaf wax n-alkanes (Da) was then 

estimated by computing the photosynthesis-weighted D value of leaf water and subtracting 

160‰ to account for biosynthetic fractionation [Sessions et al., 1999; Sachse et al., 2004]. 

Finally, εw/a values were calculated by subtracting the amount weighted D of local precipitation 

from local Da values. 

 

 

 

 



 

 

 

143

 

 

 

Table 6.1. Name and description of the three Eocene and three present-day simulations and the 
four sensitivity experiments. 
Simulation Description 
PD-VAR Forced with a present day ISOCAM simulation with varied best 

guess vegetation type 
EOC-VAR Forced with an Eocene-like ISOCAM simulation with varied best 

guess vegetation type 
PD-BET Forced with a present day ISOCAM simulation with broadleaf 

evergreen tress at each grid-cell 
EOC-BET Forced with an Eocene-like ISOCAM simulation with broadleaf 

evergreen trees at each 
PD-BDT Forced with a present day ISOCAM simulation with broadleaf 

deciduous trees at each grid-cell 
EOC-BDT Forced with an Eocene-like ISOCAM simulation with varied best 

guess vegetation type 
EOC/PD-CO2 EOC-BDT with present day CO2 levels 

 
EOC/PD-TEMP EOC-BDT with present day temperatures 

 
EOC/PD-RAD EOC-BDT with present day solar radiation 

 
EOC/PD-RH EOC-BDT with present day relative humidity 

 
 

Both present-day and Eocene simulations were performed with ISOCAM and described 

in detail elsewhere [Speelman et al., submitted]. For the Eocene simulations, I incorporated 

realistic, best guess, Eocene bathymetry, topography, land surface conditions, and vegetation as 

boundary conditions (described in Sewall et al. [2000]). The Eocene ISOCAM simulations were 

initialized using the atmospheric state from an equilibrium simulation of a fully coupled CSM1.4 

Eocene run [Huber and Nof, 2006]. Eocene sea surface temperatures (SST) were adapted using a 

fixed, zonally constant, offset based on TEX86 SST estimates from the Early/Middle Eocene 
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[Brinkhuis et al., 2006; Pearson et al., 2007].  To evaluate the influence of vegetation type on 

εw/a values, three separate sets of ISOLSM simulations were conducted for each time period 

(Table 6.1).  The first of these simulations sets the vegetation at each grid cell to be the type 

closest to the plant function type used in ISOCAM.  The two other sets of simulations were 

configured to have only 1) broadleaf evergreen trees and 2) broadleaf deciduous trees at every 

land grid-cell that contains vegetation. Thus, these last two sets of simulations can be used to 

evaluate differences irrespective of vegetation type. For similar reasons, the soil type is 

prescribed to be the same for all simulations and for all grid-cells (43% sand, 41% silt, and 16% 

clay, with 5% of the land fraction lakes and 5% wetlands).  The horizontal resolution of the 

model is given by triangular truncation of the spherical harmonic spectrum at wave number 31, 

which corresponds to a Gaussian grid of about 3.75 degree longitude x 3.75 degree latitude.  The 

ISOCAM simulations ran for 30 years, with the last 10 individual years used cyclically to force 

ISOLSM. ISOLSM simulations ran for 40 years with the last 20 years averaged and used for the 

analysis.   

This off-line model configuration did not allow feedbacks to local canopy level relative 

humidity and the D values of precipitation and vapor, and there were no diurnal cycles within 

the CAM forcing data.  These limitations should be kept in mind while considering the analysis 

below. 
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6.3 Model Results 

6.3.1 Present-day Eocene comparison 

 Many studies that measure Da values also calculate the apparent fractionation (ε'), which 

is slightly different than my definition of the Da-Dp offset (εw/a).  Apparent fractionation is on 

average 7‰ lower than εw/a values and is defined as: 
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Table 6.2. Present-day model results and comparison with other studies. 

Plant Reference aReference ε’ aModel ε’ 

Quercus Yang and Huang [2003] -117 -110 

Platanus Yang and Huang [2003] -93 -110 

Salix Yang and Huang [2003] -144 -110 

C3 plants Chikaraishi and Naraoka [2003] -117 ± 27 -130 

C4 plants Chikaraishi and Naraoka [2003] -132 ± 12 -131 

CAM plants Chikaraishi and Naraoka [2003] -147 ± 10 -131 

Fern Chikaraishi and Naraoka [2003] -131 ± 6 -136 

Lake sediments Sachse et al. [2004] -128 ± 12 -119 

C3-gymnosperm Chikaraishi et al. [2004] -91 to -152 -128 

C3 grasses Smith and Freeman [2006] -165 ± 12 -137 

C4 grasses Smith and Freeman [2006] -140 ± 15 -139 

Deciduous trees Sachse et al. [2006] -122 -121 

Sphagnum  Sachse et al. [2006] -131 -119 

Plant biomass Sachse et al. [2006] -118 -119 
aUnits of ‰ 
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For validation, I compared measured ε' values with modeled values.  For modeled values, single 

grid-cell simulations are conducted for the region where the measured values were taken from. 

Vegetation type was adjusted for each simulation to best reflect the plant species from which the 

n-alkanes were derived.  Table 6.2 shows estimated ε' values from these simulations, and 

compares them with measured present-day values.  The modeled values were within the 

measured range for deciduous trees in Idaho [Yang and Huang, 2003], C4 grass in South Dakota 

[Smith and Freeman, 2006], and ferns, C3 and C4 plants in Japan [Chikaraishi and Naraoka, 

2003; Chikaraishi et al., 2004].  Modeled values also fell within the observed range for European 

deciduous trees and terrestrial lake sediments [Sachse et al., 2004, 2006].  The model failed to 

predict ε’ values for Japanese CAM plants and European Sphagnum, though this might have 

been due to inadequate (or complete lack of) representation of these particular plant species in 

the model. Simulated values also did not agree with C3 grasses measured by Smith and Freeman 

[2006], which could have been a consequence of mismatch between model conditions and their 

greenhouse growing conditions. Nonetheless, results in Table 6.2 demonstrate that the model 

does an adequate job in predicting fractionation processes that controlled Da values. 

 Figure 6.1a and 6.1b show simulated εw/a values for present-day and Eocene conditions 

using the most realistic, “best guess”, vegetation type, while Figures 6.1c-6.1e shows how εw/a 

values spatially vary when the vegetation type is constant.  For present-day, simulated εw/a values 

were noticeably high (less negative) in regions of Asia and North America. However, εw/a values 

were remarkably lower in northwest North America when the grid-cells contained broadleaf 

evergreen trees.  Importantly, the model results demonstrate strong spatial variations in present-

day εw/a values, a result of variations in local meteorological and environmental conditions.  For 

the present-day simulations, the choice of vegetation type partially affected the spatial variations 
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in εw/a values, though many features in panels 6.1a, 6.1c, and 6.1e are consistent across all three 

present-day simulations (e.g. high εw/a values over most of Asia). 

Table 6.3. Simulated mean εw/a values and the spatial standard deviation of εw/a values. 

Simulation Standard  
Deviation εw/a (‰) 

Global Mean εw/a (‰) NH mid and high-lat 
Mean εw/a (‰)a 

PD-VAR 19.2 -102 -90.5 
EOC-VAR 9.6 -103 -97.2 
PD-BET 13.2 -105 -96.4 
EOC-BET 10.4 -105 -98.0 
PD-BDT 16.7 -109 -96.2 
EOC-BDT 10.9 -110 -102.8 
apoleward of 35°N 

 Compared to the present-day simulations, the Eocene spatial variations in εw/a values 

were less dependent on vegetation type. Table 6.3 displays the global mean, the northern mid- 

and high-latitude mean, and the global standard deviation in εw/a values for the three present-day 

and three Eocene simulations. The predicted global mean Eocene εw/a values tend to be just 

slightly more negative than present day (Table 6.3).  When comparing the mean for the northern 

mid- and high-latitude (where most of the world’s deciduous trees are found), the difference 

between Eocene and present-day εw/a values was much greater, however, the difference was not 

spatially uniform. For example, for the broadleaf deciduous tree simulations εw/a values were 

almost the same during the Eocene compared to the present-day simulation over much of Europe 

(~1‰ difference) and eastern North America (~2‰ difference), whereas differences were large 

over Siberia (~18‰ difference), central Asia (~20‰ difference), and western North America (a 

22‰ difference in the Yukon and a -18‰ difference in the western U.S.).  In the Eocene 

southwestern region of North America, εw/a values were remarkably higher (less negative with a 

maximum value of -67‰), while values were lower to the north. Figure 6.1 clearly shows that 
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Eocene εw/a values differ from present-day values depending on location, and these discrepancies 

have potential to bias estimates of past DP values and past temperature. 

 

 

  

Figure 6.1. Global distribution of the offset value, εw/a (‰), for the Present simulations and 
Eocene simulations using best guess vegetation type (a and b) broadleaf evergreen trees (c and 
d), and broadleaf deciduous trees (e and f). 
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Figure 6.2. Mean εw/a values (‰) for five regions for the six separate simulations listed in Table 
6.1 (a).  The locations of the five regions are shown in (b) as solid-line boxes for Present and 
dashed line boxes for Eocene.  Continental locations during the Eocene are shown with light gray 
shading in panel b. 



 

 

 

150

 Assuming DP changes by 9‰/K [Jouzel et al., 1993; 1996; Petit et al., 1999; Noone, 

2009] outside of the tropics, an average Eocene/present-day difference in εw/a values of 7‰ at the 

northern mid- to high-latitudes would introduce a temperature estimate error of about 0.9K. 

However in specific regions where the difference between Eocene and present-day εw/a values 

was relatively large reconstructed temperature errors will also be large. In Siberia, for instance, 

the modeled 18‰ difference results in an error of about 2K.   

6.3.2 Results from sensitivity experiments 

Relative humidity and air temperature directly influence equation (6.1) and therefore εw/a. 

Furthermore, atmospheric CO2 concentration and solar fluxes influence stomatal resistance 

indirectly and can thus change h in equation (6.1). All of these variables were probably different 

during the Eocene. Four sensitivity experiments were performed in which each one of these four 

variables (temperature, relative humidity, solar radiation, or atmospheric CO2 concentration) 

were set to present-day values, while maintaining Eocene-based values for all other variables. 

These sensitivity experiments were performed using only broadleaf deciduous trees to control 

physiologically induced differences.  A list and description of each sensitivity experiment is 

given in Table 6.1.  The influence of variables set to present-day values on Eocene model results 

is compared in five selected regions.  The size of these regions is set to 10º of longitude by 10º of 

latitude, positioned at present day Central Asia, Siberia, the Yukon Territory, Western U.S., and 

Patagonia (shown as solid-line boxes in Figure 6.2b).  To account for continental drift, Eocene 

results examined here are taken from regions that have been subjectively positioned at the 

approximate former location of these 5 areas (shown as dashed–line boxes in Figure 6.2b). 
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Figure 6.2a compares model results for these regions that showed a clear discrepancy between 

the present-day and Eocene modeled εw/a values. 

 The EOC/PD-TEMP sensitivity simulation used modern-day surface air temperatures to 

reveal the impact of high temperatures on latent heat fluxes, stomatal conductance, fractionation, 

and ultimately the value of εw/a.  For this simulation, specific humidity was adjusted to match 

Eocene relative humidity, ensuring that the model’s response was not associated with a vapor 

pressure response. The lower present-day temperatures caused εw/a values to increase (less 

negative), which can be seen in Central Asia, Siberia, and in the Yukon regions. This 

temperature response was partially due to changes in the equilibrium vapor pressure offset above 

a liquid surface (εL-V).  At temperatures around 300K, the fractionation factor changes by -1.1 

‰/K.  For the Central Asia region (where the modeled response was largest) the ISOCAM 

results suggest that the growing season temperatures were about 21K warmer during the Eocene, 

which decreased the fractionation factor by 23‰. The modeled difference in εw/a values between 

the Eocene and EOC/PD-TEMP simulations were about 64‰ for this region, so changes in the 

fractionation factor alone can potentially account for about one-third of the total εw/a response to 

temperature changes. 

Comparing the Eocene simulation with a simulation in which relative humidity is set to 

present-day values (EOC/PD-RH experiment) shows drastic changes in D of leaf water and εw/a 

for some regions.  In general, the use of present-day relative humidity caused εw/a values to be 

more negative (with the exception of Patagonia). For these regions, the higher present-day 

relative humidity decreased leaf water isotope fractionation, due to decreased transpiration, 

causing D of leaf water (and subsequently D of n-alkanes) to be less enriched. The strongest 

isotopic response to relative humidity was found in Central Asia, where flux-weighted relative 
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humidity was 24% lower during the Eocene. Taking the derivative of equation (6.1) and 

assuming a kinetic fractionation factor of 42‰ and an 80‰ difference between DSW and DCV 

values gives sensitivity: ∂DL/∂ha = -1.22‰/%. The modeled decrease in relative humidity 

would, therefore, cause DL values (and εw/a values) to decrease by about 29‰ using the Craig-

Gordon derived sensitivity, which is close to the modeled change of 33‰. A similar sensitivity 

was found in Chapter 3 in a set of experiments that simulated the 18O content of leaf water, 

which was supported by observations of atmospheric CO18O in Chapter 2.  For Patagonia, the 

lower present-day relative humidity does bring εw/a values closer to present day simulated values, 

which indicates relative humidity is one of the variables that contributed to higher εw/a values 

during the Eocene.  For the other four regions, however, the model results suggest that relative 

humidity was not the main driver for the difference in εw/a values between the two climatic states.  

In fact, in most regions humidity kept present day and Eocene εw/a values from becoming too 

dissimilar by opposing changes associated with temperature and other factors (Figure 6.2a). 

The Eocene simulations using modern-day radiation and modern-day CO2 concentration 

only slightly altered D and εw/a values relative to the Eocene base simulation. In the Yukon 

region, however, radiation did appear to play a role as the region was at higher latitudes during 

the Eocene.  The drastically lower solar energy input would have limited photosynthesis (Figure 

1a in Nemani et al. [2003]), and caused both stomatal conductance and isotope fractionation to 

decrease. 

To quantify the sensitivity of εw/a to the parameters that showed the strongest impact, 

small perturbations were applied to both atmospheric temperature (T in units of K) and 

atmospheric relative humidity (ha in units of %).  Additional simulations were performed to test 

the sensitivity of the global mean εw/a value to small global perturbations in temperature and 
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relative humidity.  Sensitivities are thus approximated in terms of partial derivatives (∂εw/a/∂T 

and ∂εw/a/∂ha).  These sensitivities can be written as partial derivatives (rather than total 

derivatives) since the change in the forcing is on that of the parameter of interest (i.e., all other 

forcing terms held fixed).  The sensitivities can be used to construct a prediction model where 

deviations from the global mean value can be estimated as: 
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The resulting modeled sensitivities were approximately: ∂εw/a/∂T = -1.4‰/K and ∂εw/a/∂ha = -

0.43‰/%. Consequently, these values can be used together with equation (6.3) to better estimate 

the εw/a value to apply for any Da given known temperature and relative humidity anomalies.  

Because ΔT appears on the right, (6.3) must be modified to be useful for paleo-temperature 

reconstructions. Specifically, the reconstruction problem is posed as TEocene = TPresent + ΔT. 

Noting that one can write:  
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Substituting equation (6.3) into (6.4) gives 
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which can be combined with equation (6.5) and rearranged to find an expression for the change 

in temperature: 
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The value of ΔδDa is derived from analysis of deuterium in leaf wax n-alkanes from present-day 

and from those found within Eocene sediments.  With the temperature isotope relationship 

specified by others (e.g. ∂T/∂(δDP) [Jouzel et al., 1993, 1996; Petit et al., 1999]) and ∂w/a/∂T and 

∂w/a/∂ha derived here, equation 6.7 provides a more accurate estimate of past temperatures given 

a known difference in Da values and an assumed change in ha, which could be difficult to 

estimate. 

 

Table 6.4. Values used in equation (6.7) for the three simulated cases. 

 Case 1 Case 2 Case 3 
a∂T /∂(DP) 0.11 K‰-1 0.11 0.11 

bDa
 -0.43‰ 7.6 7.2 

cha
 1% 0 1% 

d∂εw/a/∂ha
 -0.43‰%-1 -0.43 -0.43 

e∂εw/a/∂T -1.4‰K-1 -1.4 -1.4 
fT 0K 1 1 

 

 To demonstrate the usefulness of equation (6.7), three additional ISOLSM simulations 

were conducted to validate the reconstruction.  The three scenarios considered here were 1) a 1% 

increase in relative humidity; 2) a 1K increase in global temperatures; and 3) both a 1K increase 

in temperature and a 1% increase in relative humidity.  For the last two additional simulations, 

the D values of precipitation and atmospheric vapor were also increased by 9‰.  The values 

used in equation 6.7 and the simulated change in global mean Da values are shown in Table 6.4.  

There was no temperature change in case 1, only a 1% increase in relative humidity, which 

caused the simulated global Da value to decrease by 0.43‰. Evaluating equation (6.7) with this 
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change in Da values and the other values listed in Table 6.4 results in an estimated temperature 

change of 0K, which was the expected result. For the 2nd case, the 1K increase in temperature 

and the 9‰ increase in the D values of precipitation and vapor caused global Da values to 

increase by 7.6‰, yielding a predicted temperature change of 1.0K (Table 6.4).  When both 

changes are applied (case 3) ISOLSM simulates a 7.2‰ increase to global Da values, which 

also predicts a 1K increase in global temperatures.  Thus, all 3 simulations demonstrate the 

ability of equation 6.7 to estimate temperature changes given differences in Da values and 

relative humidity. 

 Comparing Eocene and present-day simulations, equation (6.7) works remarkably well 

for some locations but poorly for others. For example, in Siberia, relative humidity and Da 

values were simulated to be about 10% and 25‰ higher during the Eocene, respectively, and 

equation (6.7) accurately backs out the 4K temperature difference. On the other hand, in the 

western U.S., equation (6.7) only predicts temperatures to be 1K higher during the Eocene, 

whereas the set temperature difference was 9K. The reason why equation (6.7) did not work for 

certain locations is that it relies on the seasonality of the growing season, precipitation amount, 

and the D value of precipitation to be constant in time. 

6.3.3  Validity of annual mean proxy 

 In addition to environmental controls on the biophysics, the premise that the n-alkane D 

values can be used as a proxy for annual mean D of precipitation (DP) rests on the stability in 

the seasonality of D of precipitation relative to the growing season in which the leaf wax n-

alkanes are produced. To evaluate these influences, the processes resulting in the final εw/a value 

were broken down into three separate fractionation steps, including (1) precipitation to plant 
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xylem water, (2) xylem water to leaf water, and (3) leaf water to leaf wax n-alkanes.  The focus 

here is on the isotopic fractionation within the first two processes, assuming as before, the 

fractionation in the final step is approximately constant at –160‰.   

 

 

Figure 6.3. Photosynthesis weighted D of xylem water minus amount weighted annual mean 
D of precipitation (‰) for both Present and Eocene simulations (a and b).  Also plotted are 
photosynthesis weighted mean D of leaf water minus photosynthesis weighted mean D of 
xylem (‰) (c and d). 
 

Simulated amount-weighted DP values were subtracted from the photosynthesis 

weighted xylem DX values (1st component), and the same DX values were subtracted from 

photosynthesis weighted DL values (2nd component). Results are shown in Figure 6.3 for both 

present-day and Eocene broadleaf deciduous tree simulations.  For the present-day simulation, 
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the DP and DX difference exerted a minor influence on εw/a values, with an exception for 

Patagonia and parts of Asia where it acts to keep εw/a values relatively high. On the other hand, 

much of the spatial variation in εw/a values was a consequence of the differences between DX 

and DL values.  For instance, in the Siberian and Yukon regions the high simulated εw/a values 

(Figure 6.1e) largely reflect the DL-DX difference (Figure 6.3c).  These findings suggest that 

present-day εw/a values are largely influenced by the DL-DX difference (as modeled by equation 

6.1), with the exception of some locations (Patagonia and Central Asia) where water isotope 

seasonality appears to play some role. 

Compared to the present-day simulation (Figures 6.3c and 6.3d), the Eocene simulation 

predicted less enrichment from xylem to leaf water (with an exception to a broad region in 

western North America).  As shown through the sensitivity experiments, this was largely a result 

of higher temperatures during the Eocene growing season, causing εw/a values to become 

relatively low. Additionally, the influence of the DX-DP difference was not the same during the 

Eocene. Particularly, in Patagonia the DX-DP difference (Figure 6.3b) decreased εw/a values on 

average by 14‰, in contrast to the present-day simulation, which increased εw/a values by about 

2‰.  This decrease in  values seems to primarily reflect seasonality in the isotopic composition 

of precipitation relative to the growing season and is partially responsible for the lower εw/a 

values during the Eocene in this region.  These results suggest that differences or changes in the 

seasonality of precipitation and/or the isotopic composition of precipitation can potentially 

change the values of εw/a, which is a factor that has not previously been accounted for in n-alkane 

proxy reconstructions.  
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6.4 Conclusion 

 This study showed that the offset between D values of precipitation and D values of 

leaf wax n-alkanes (εw/a) varies in space and that the relationship was different under Eocene 

environmental conditions. Results from model simulations suggest that in the northern mid- to 

high-latitudes εw/a values were on average 6‰ lower during the Eocene. Sensitivity experiments 

showed temperature and relative humidity exert a large influence on εw/a values, where the 

influence of temperature is partially associated with the temperature dependence of equilibrium 

fractionation.  Over Siberia and Central Asia the lower εw/a values found for the Eocene 

simulation were largely a result of the higher growing season temperatures, which reduced the 

efficiency of fractionation during evaporation from leaves.  Over the Yukon differences in εw/a 

values resulted from changes in solar radiation and temperature, while the differences in 

Patagonia were driven by a combination of relative humidity and the seasonal timing of the 

isotopic composition of precipitation.   

Model results suggest that using a constant εw/a value for reconstructing D of paleo-

precipitation from measured D of n-alkanes is inaccurate. For the Eocene, the offset should be 

more negative than εw/a values typically found today.  This holds for many regions outside of the 

tropics (with the large exception in the western U.S.).  Hence, when modern-day εw/a values are 

used to reconstruct D of paleo-precipitation, the reconstructed values will be skewed towards 

lower values, which in turn will lead to inaccurate interpretations of the paleo-hydrological 

cycle. Similarly, when using modern-day εw/a values to estimate Eocene temperatures based on 

the D of n-alkanes, the reconstructed values will be biased towards lower temperatures.  This 
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would suggest that the Eocene epoch might have been warmer than suggested by temperatures 

previously derived from n-alkane proxies.  Differences in leaf water enrichment introduce an 

uncertainty in temperature reconstruction from D values of leaf wax n-alkanes and should be 

taken into account when using Da values as a temperature proxy. 
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Chapter 7 

Chapter 7 Conclusions 

The first portion of the work presented here (Chapters 2-4) aims to better understand Ca 

and specifically to understand the mechanisms that drive the interannual Ca variations.  I first 

examined the Ca budget equation and identified meteorological variables that would potentially 

influence the Ca year-to-year changes. To this end, I looked for empirical evidence of potential 

driving mechanisms by correlating interannual Ca variations with various meteorological 

variables.  Negative correlations were found between Ca observations and relative humidity 

observations in both the Asia-Pacific and the Tropical Americas.  I also found evidence for 

positive correlations between WP (the isotopic composition of precipitation) and Ca variations.  

Examining the variations, I calculated rough estimates of changes to Ca due to relative humidity 

and the isotopic composition of precipitation.  These results indicated that interannual changes in 

Ca were potentially driven by changes to isotope hydrology (i.e. WP) with a smaller and non-

trivial contribution from relative humidity. 

A model was constructed to simulate atmospheric CO2 and CO18O, and thus predict 

values of Ca.  Motivated by the correlations and estimations from the correlations analysis, 

sensitivity experiments were conducted (after demonstrating excellent model performance).  The 

experiments revealed that Ca was sensitive to relative humidity and temperature, but especially 

to the isotopic composition of precipitation and water vapor.  The model was then reconfigured 

to simulate the interannual Ca variations, and experiments were performed to quantify the 

contribution of a certain variable to the overall interannual Ca variations.  The simulated Ca 

variations were greatly dependent on the WP variations, with some contribution from other 
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variables such as relative humidity and temperature.  I suggest here that interannual Ca 

variations are mostly caused by interannual WP and/or WAV variations.  This does not agree 

with other studies [Gillon and Yakir, 2001; Stern et al., 2001; Ishizawa et al. 2002; Flanagan 

2005] that have suggested (with little or no empirical evidence) that interannual Ca variations 

were caused by changes to ecosystem CO2 fluxes.  My results suggest that Ca is (and can be 

used as) an indicator of hydrological cycle within high flux regions. 

Motivated by these results, the second portion of this work (Chapter 5) focused on the 

observed and simulated 18O values of precipitation.  In particular this work focused on 

understanding the controls of local and non-local processes on the observed annual means of 

WP.  This was done through regression analysis, with regressions applied to both isotope 

equipped General Circulation Models (GCMs) and observations.  I found that the GCM inability 

to simulate the relative importance of local and non-local processes may explain why the models 

inadequately simulate WP at mid and high latitudes.  When examining leads and lags between 

the phase of the 1st and 2nd harmonic in WP and that of temperature and precipitation amount, I 

found that the phase of the 1st harmonic in the mid and high latitudes is consistent with what 

would be expected from a temperature effect.  However, the 2nd harmonic was likely due to non-

local processes such as advection changes and shifts in the storm track.  A similar analysis was 

performed on GCM results and it was found that the models accurately simulate these phase 

dependencies.  In general, it was found that the models do reasonably well at simulating the 

influences of local and non-local processes on the seasonality of WP though when analyzing the 

annual mean, the models overestimate the role of non-local (dynamical) processes in determining 

the annual mean WP at mid- and high-latitudes. 
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Finally, the third portion of this work (Chapter 6) focuses on differences between the 

offset of the D value of precipitation and the D value of leaf wax n-alkanes during two 

different periods of geological time.  In particular, this work examined how the offset between 

the two D values (εw/a) may have been different during the Eocene.  To solve this problem, I 

employed the same isotope equipped land model (ISOLSM) that I used in Chapters 3 and 4 to 

simulate values of εw/a for the two time-periods.  The model results revealed that the values of 

εw/a were not spatially uniform, nor were they same during the Eocene (which some studies 

assume to be true), depending on the location. The reason for the discrepancies involved 

differences in temperature, relative humidity, and the seasonality of the isotopic composition of 

precipitation and water vapor relative to the growing season. The implication of these results is 

that paleo-climate reconstructions may be inaccurate without accounting for the change in 

environmental conditions.  In fact, the environmental conditions that are attempting to be 

reconstructed may be causing the inaccurate reconstructions.  
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