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Abstract

We present a new algorithm for relational equi-join. The algorithm is a modification of
merge join but promises superior performance for medium-size inputs. In many cases, it even
compares favorably with hybrid hash join. We present I/O cost comparisons for a sequential
implementation but also discuss parallel versions of the new algorithm.

1. Introduction

One of the most expensive operations in relational database systems is the join which
matches tuples (rows, records) from two relations (tables, files) with equal key values. While there
seems to be an abundance of relational join algorithms, e.g. [1-6,9,12,13,16,17,19-29,31-34,36-
40], some cases still allow improvement. In this brief report, we present a new algorithm which
is a variant of the well-known merge join algorithm. In essence, it avoids merging sorted runs of
the outer input and merges them directly with the inner input. This method avoids a substantial

amount of I/O for sorting the outer input at the expense of increased 1/O for the inner input.

In the following section, we discuss two join algorithms that are commonly regarded as very
effective, namely merge join and hybrid hash join, and derive their cost formulas. The new algo-
rithm, called heap-filter merge join, is described in Section 3. In Section 4, we provide an analyt-
ical performance comparison of merge join, hybrid hash join, and heap-filter merge join. Section 5
contains a summary and our conclusions from this effort.

2. Competitive Join Algorithms

In this section, we discuss two known join algorithms and their cost formulas. We have
chosen merge join because heap-filter merge join is a derivative of it, and hybrid hash join
because it was shown to be a very efficient join algorithm [8]. Please note that in all our cost

formulas, we omit the cost of creating unsorted streams of input tuples and any cost associated



with storing the output tuples since these costs are common to and equal for all the algorithms.
2.1. Merge Join

Merge join has been one of the first join algorithms to be published and analyzed, e.g. in
[2,3,33,37], and is the algorithm of choice for large inputs in almost all commercial database sys-
tems. The idea is quite simple and well-known: Sort both inputs on the join attribute!, and merge
them advancing a scan pointer in each input. If both inputs contain duplicate join attribute values,

the scan pointer in the inner input sometimes has to be backed up.

The major cost is created by the sort steps. For simplicity, we only concern ourselves with
I/O costs, even though we realize that the CPU cost can be non-trivial. The I/O during sorting
consists of sequential write operations while writing initial runs, and random read operations while
reading and merging these runs. We assume that the memory size is a reasonable fraction of the
input sizes; therefore we calculate the cost for only one merge level [30,31]. Using the cost
parameters in Table 1, the cost for sorting the inner input is

sort_inner = (seq + rnd) inner.

If we assume that the output of both sort operations is immediately passed to the merge join
operator, i.e., without additional I/O, the total I/O cost for the merge join is

(seq + rnd) outer + sort_inner

We will come back to this formula in Section 4.

inner size of inner input in pages
outer size of outer input in pages
memory  memory size in pages

seq sequential I/O, 10ms

md random I/O, 30ms

Table 1. Cost Components.

! We assume without loss of generality that there is only one join attribute. Our discussion is equally
valid for multi-attribute equi-joins.



2.2, Hybrid Hash Join

Hashing is a very fast method for finding equality matches and a number of hash-based join
algorithms have been proposed, e.g. [4-6,12,31]. A memory-resident hash table is built with the
first input, called the build input, and then probed with the other input, called the probe input.
This algorithm is simple and fast if the build input fits into main memory. A number of strategies
have been proposed to deal with the case when the build input is larger than memory [5,12,31]
In a recent comparison of several algorithms, hybrid hash join was found to provide superior per-

formance over a wide range of parameters [8].

Hybrid hash join is an optimistic hash join algorithm; we call it optimistic since it starts out
with the assumption that the hash table will fit into memory and uses hash table overflow resolu-
tion when it becomes necessary. When hash table overflow occurs, some of the hash buckets are
dumped from main memory to a build overflow file on disk. Further tuples from the build input
are first checked whether they belong to a hash bucket still in memory or to one on disk; in the
latter case, they are not kept in memory but immediately added to the overflow file. If the
remaining hash buckets overflow again, more buckets are dumped, etc. Thus multiple overflow
files can be created and added to while building the hash table. Notice that overflows are dealt

with more efficiently if multiple overflow files are used [6].

After the build input is exhausted, the probe input is consumed. If a probe input tuple
matches with a hash bucket in memory, the join is performed immediately. Otherwise, it is added
to a probe overflow file. It makes good sense to build multiple probe overflow files using the
same partitioning rule used for the build overflow files. After both inputs are consumed, the over-
flow files are joined using the same algorithm. For our analysis, we assume that a sufficient
number of overflow files has been built such that no further overflow occurs, i.e., both inputs have

been partitioned into small enough disjoint subsets.

The I/O cost for the overflow files depends on what fraction of these files has to be written

to disk; we determine this fraction using the formula

F = (inner — memory) [ inner

optimistically assuming a perfect hash function and partitioning. Writing to overflow files is



sequential if there is only one such file, otherwise it requires random writes. Reading overflow
files always uses sequential I/O. Thus, if inner > 2 memory, the I/O cost is
(rnd + seq) F (inner + outer),
otherwise, it is
(2 seq) F (inner + outer)

3. Heap-Filter Merge Join

Merge join uses two sorted inputs and computes their (equi-) join by maintaining scan
pointers in each, advancing them based on comparisons of join attributes and resetting them some-
times in the presence of duplicate join attribute values. The cost of the actual merge join algo-
rithm is relatively small compared to the cost of sorting the inputs. Our effort was inspired by

the desire to reduce the sorting costs.

We assume that the outer input is the larger of the two inputs. Classic hash join? performs
very well and is hard to improve on if the inner input fits in main memory; therefore we will not
concern ourselves with this case. Let us assume that the inner input’s size is a moderate multiple
of the memory size, say twice to ten times the size of memory, and that the outer input is quite

large.

The new algorithm, which we call heap-filter merge join, avoids sorting the outer input com-
pletely (which is different from completely avoiding the sort!) and instead joins the initial sorted
runs immediately with the inner input. Thus, such runs do not need to be written to disk or read
for merging. The I/O savings compared to merge join are substantial — the outer input is never

written to temporary files and therefore does not incur any I/O costs.

These saving, however, do not come without a cost, namely scanning the sorted inner input
repeatedly. If replacement selection is used for run generation, ie., if all tuples from the outer
input have to travel through a sorting heap which gives this join algorithm its name, the number
of runs can be expected to be the size of the outer input divided by twice the memory size [18].

Since the inner input must be joined with each of these runs, the inner input must be retrieved

2 Classic hash join is hash join without overflow avoidance or resolution [31].



repeatedly from disk, once for each run of the outer input.

While this algorithm seems reminiscent of nested loops join and therefore very expensive, it
does warrant a closer examination. Let us develop this algorithm’s cost formula. First, we need
to sort the inner input, at cost sort_inner developed above. Second, we need to scan the sorted
inner input once for each run from the outer input. The number of these runs is equal to

R = outer | (2 memory)

The cost for each scan over the inner input is

seq inner
Thus, the total I/O cost for heap-filter merge join is
R inner seq + sort_inner

In his thesis, Kooi used a "sortedness factor" for the outer input of nested loops join to
determine how effective block accesses to the inner input could be, ie., how often a block of the
inner input would be used consecutively [19]. In Kooi’s terminology, heap-filter merge join uses a
heap to enforce high "sortedness" of the outer input and to allow efficient access to the inner
input.

3.1. Alternating Heap-Filter Merge Join

It would be desirable to leverage at least some of the I/O performed during a scan over the
inner input for the next scan. This can easily be done by creating alternating runs from the outer
input. This means that the first run is ascending, the next one descending, the third one ascending
again, etc. For these runs, the sorted inner input can be scanned forward, backward, forward,
backward, etc., using the last page of one scan as the first of the nmext without I/O. We call this
algorithm alternating heap-filter merge join. Careful analysis will show that only one page should
be used; using more memory pages will decrease the size of runs from the outer input and there-

fore increase the number of scans over the inner.

Unfortunately, when alternating runs are produced from the outer input, the average run size

will decrease to 1'% times the size of memory, and more passes over the sorted inner input are



required®>. The number of runs from the outer input, and therefore the number of scans of the
sorted inner input, will be

R’ = outer | (12 memory)
For alternating heap-filter merge join, the total I/O cost is

(R’ (inner — 1)+ 1) seq + sort_inner
which will be higher than the cost of the heap-filter merge join discussed earlier if inner is
greater than 3, ie., alternating heap-filter merge join outperforms heap-filter merge join only when

classic hash join outperforms either variant of heap-filter merge join.
3.2. Complex Queries

We would like to point out that heap-filter merge join not only has good performance as a
single operator in a query (as we will see in the Section 4), it also allows dataflow between
operators in a complex query. In particular, as soon as the first tuple from the outer input has
traveled through the heap, it can be joined with the inner input and an output tuple can be pro-
duced. Note that all algorithms discussed here consume one input completely (for sorting or to

build a hash table) before starting to consume the other input and to produce results.
3.3. Parallelism

Heap-filter merge join can also be used in parallel query evaluation systems. Let us consider
three forms of parallelism, namely pipelines, bushy-tree parallelism, and intra-operator parallelism
[14]. Pipelines can be exploited as discussed above, and therefore multiple sub-trees in a bushy

query evaluation plan can be executed in parallel.

For intra-operator or data parallelism, there are basically two methods to parallelize join algo-
rithms, fragment-and-replicate, e.g. [1,10-], and partitioning on the join attribute, e.g. [6,7], as well
as mixed algorithms, e.g. [34]. Heap-filter merge join can be used with any of these. In fact, the
parallelization strategy and the choice of join algorithm are orthogonal for equi-joins. Since we

always assumed that the outer relation is the larger of the two input relations, it should be parti-

3 If the memory size is M, and the independent probability that subsequent runs have opposite direc-
tion is p, the average run length is 6/(3+p) M; see exercise 5.4.1-24g on p. 265 in [18]. In altemating
heap-filter merge join, this "independent” probability is 1.



tioned or fragmented and not be replicated. If the inner input is also partitioned, its partitions can
easily be sorted in parallel [15], and we would expect linear speedup for all phases of the join. If
the inner input is replicated on a distributed-memory ("shared-nothing" [35]) machine, it has to be
sorted before replication or locally on each machine after replication. If it is replicated to
processes on a shared-memory machine, it may be possible to scan the inner relation synchronously
by all join processes, thus saving most of the I/O and some buffer memory (which can be used to

increase the heap size) at the expense of increased synchronization needs.

Notice that on a shared-memory machine, it may be advantageous to use only one heap (or
very few heaps) for the outer relation because the larger the heap is, the longer the runs will be
and the fewer passes over the inner relation will be required. Thus, depending on the concurrent
access protocol to this heap, it may not be possible to exploit all available parallelism on a highly
parallel shared-memory machine. This caveat is entirely analogous with the detrimental effect of

memory division in parallel external sorting on such machines [15].
4. Analytical Performance Comparison

In this section, we will compare merge join, heap-filler merge join, and hybrid hash join.
As mentioned before, we assume that the inputs are unsorted. We omit the cost of reading the
unsorted inputs and writing the output to disk since these costs are equal for all algorithms and do

not assist in the comparison.

Figure 1 shows the join cost for the three algorithms discussed here for a memory size of
100 pages and inner input size of 250 pages. The outer input size varies from 250 to 10,000
pages. All three algorithms have linear cost functions because we assumed a single level merge
for all sort operations and single-level (not recursive) hash table overflow resolution. It is obvious
that merge join is inferior to hybrid hash join. However, the difference between heap-filter merge
join and hybrid hash is probably surprising for most readers. The reason, as pointed out above, is

that no part of the larger, outer input is ever written to temporary disk files.

We have to admit that we carefully selected the inner-to-memory ratio for this graph. If the
ratio is below two, the cost of hybrid hash join is less because only sequential I/O is necessary to

write the overflow file. If the ratio is too high, the cost of repetitive scans becomes dominating.
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Figure 1. Join Costs depending on Outer Input Size.

In fact, if this ratio is above four, the number of I/Os required for merge join is less than that for
heap-filter merge join. Considering the fact that we estimate triple the cost of sequential I/O for
random I/O, the break-even point between these two algorithms is characterized by an inner input

size eight times the size of memory.

To get a more realistic view of heap-filter merge join, we fixed the outer input and memory
sizes and varied the inner input size from 100 to 1,000 pages. Figure 2 shows the join costs for
the three algorithms depending on the inner input size. Merge join is most expensive over most
of the range shown, dominated by the sort cost for the large outer input. The break-even point
between merge join and heap-filter merge join is at 800 pages for the inner input, eight times the

memory size.

The cost curve for hybrid hash join is the most interesting: This algorithm is superior if
there is little overflow, but the cost is substantial if the large outer input must be partitioned into
multiple overflow files requiring random I/O. Only when the inner input size is a large multiple

of the memory size, hybrid hash join becomes superior to heap-filter merge join. Clearly, the
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Figure 2. Join Costs depending on Inner Input Size.

asymptotic cost of hybrid hash join is superior to both of the other algorithms, but there seems to

be a substantial window in which heap-filter merge join outperforms hybrid hash.

To illustrate this window, we fixed the memory size and varied both inner and outer input
sizes. In Figure 3, we shaded the area in which heap-filter merge join outperforms hybrid hash
join. As can be seen from Figure 3, this area is substantial for medium-size inputs, i.e., where the
inner input size is a small multiple of the outer input size. Basically, for medium-size inner rela-
tions (about two to six times as large as memory, 220 to 660 pages), heap-filter merge join dom-
inates hybrid hash join for all but the smallest outer inputs (< 500 pages). For medium-size outer
inputs (500 to 2,500 pages) and not-so-small inner inputs (480 to 650 pages) hybrid hash join out-
performs heap-filter merge join because the I/O cost for repetitive scans is higher than the cost of

writing parts of the outer input to overflow files.
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5. Summary and Conclusions

We have described a new equi-join algorithm based on the well-known merge join algorithm,
which we call heap-filter merge-join. For moderately large inputs, it outperforms merge join by a
significant margin. When compared to hybrid hash join, commonly regarded as a very efficient
algorithm, heap-filter merge join is superior in some parameter ranges, namely if the inner input

size is a small multiple of the memory size.

As hybrid hash join, heap-filter merge join depends on randomness of data to perform well.
In hybrid hash join, if the hash values are not uniformly distributed, the partitions may not be of

even size and require recursive overflow resolution which may lead, in the absolutely worst case,
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to the rather inefficient simple hash join [6,31]. In heap-filter merge join, if the keys in the outer
are not random but somewhat presorted in reverse order, the number of outer runs may be larger

than estimated in the cost comparisons. However, while hybrid hash join may deteriorate by a

factor equal to the number of pages in memory*, heap-filter merge join will deteriorate at most by
a factor of two since the runs will be at least as large as memory. Furthermore, if the outer keys
are somewhat presorted in correct order, heap-filter merge join will produce runs larger than
estimated above and the I/O cost due to repetitive passes over the inner input can be significantly
reduced. In the best case, only a single run is produced and heap-filter merge join becomes true

merge join with only a single scan of the sorted inner input.

The results of this study have surprised us; we expected heap-filter merge join to be inferior
to hybrid hash join for all input sizes, or to be marginally superior in a very narrow range, but
we found that this range is actually not very narrow and overlaps with the range in which the
difference of hash and merge join algorithms is most pronounced; thus, the new algorithm may

help understanding and closing the gap between sort- and hash-based query processing algorithms.
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