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ABSTRACT

Roughly speaking, DOS systems formalize the notion of generatively deter-
ministic context free grammars. We explore the containment relationships
among the class of languages generated by DOS systems and other subclasses of
the class of context free languages. Leaving the axiom of a DOS system
unspecified yields a DOS scheme, which defines a mapping from words to
languages over a given alphabet. We explore the algebraic properties of DOS
mappings and obtain an algebraic characterization of a fundamental subclass of
the DOS mappings generated by DOS schemes which are propagating (non eras-
ing) and have no cycles of derivability among letters of the alphabet. We apply
this characterization to show that the mapping equivalence problem for pro-

pagating DOS schemes iz decidable.

INTRODUCTION

The two basic types of deterministic restrictions studied in formal language
theory are restrictions on the class of recognition devices for a given class of
languages, and restrictions on the type of grammar which generates a given

class of languages. The consequences of generative determinism (i.e., grammat-
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feal determinism) in the various classes of paraliel rewriting systems are exten-
gively studied (ses e.g., [7]) as are the effects of numerous types of recognition
oriented determinism on langusges generated by the sequential rewriting sys-
tems ernbodied in the context free grammars {see e.g., [4]). In this paper we
continue the investigation begun in [1] [2] and {3] into generatively determinis-

tic sequential rewriting systems.

The systems we study are called Deterministic 0 context Sequential rewrit-
ing systems, or DOS systems, which are specified by a triple G = <Z h,w> where
Z is a finite alphabet, h : 2-X* and w € £* As the notation suggests, DOS sys-
tems are intended to be the "sequential analogue” of DO/ systems (see e.g., [7]).
The language generated by G consists of all words derivable from the "axiom" w
by successive applications of "productions” given by the function A. In DOS sys-
tems there is no distinction between terminal and non-terminal letters, thus this
work is closely tied with the study of sentential forms in context free languages
(see [B], [8], [B]). Further, in [R] it is demonstrated that the addition of a termi-
nal alphabet to DOS systems does not increase the class of languages generated
by these systems except by adding the empty language, thus there is no need to

include this distinction.

In this paper we concentrate on two aspects of DOS systems. First, we
investigate the containment relationships among the class of DOS languages and
its close relatives, In [3] it is demonstrated that DOS languages have a strong
representational power, In particular, we can obtain representatioﬁs of the con-
text free languages and the recursively enumerable languages by using DOS
languages in conjunction with certain basic language operators (intersection,
intersection with a regular set and homomerphism). Hence we include in this
investigation the class of homomorphic images of DOS languages, and the class
of languages produced by the intersection of DOS and regular languages. We go
on to investigate how the various classes obtained from DOS languages are
related to the standard hierarchy of context free grammars which includes the

finite, regular, deterministic context free and context free languages.

By leaving the axiom unspecified in a DOS system, we obtain a DOS scheme,
in many respects, the "heart” of a DOS system. Each scheme defines a mapping

from words to languages over the given alphabet, where the image of a word is
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the language generated using that word as an axiom for the given scheme. The
second aspect of DOS systemns we investigate is the algebraic properties of the
mappings induced by their underlying schemes. We obtain a complete algebraic
characterization of the subclass of DOS mappings induced by DOS schemes
which are propagating (non erasing) and contain no cycles of derivability among
the letters of the alphabet. We call these APDOS schemes. We also obtain a
uniqueness result for this class of mappings. It should be noted that while the
AFDOS mappingé are a proper subclass of the PDOS mappings (i.e. mappings
generated by propagating DOS schemes), the class of APDOS languages is ident-
ical to the class of PDOS languages, thus the APDOS systems can be considered
as canonical forms for the PDOS systems. As a result of our characterization
theorem it is easily decided whether or not two APDOS schemes generate the
same mapping. We show that this is also easily decidable for PDOS schemes.
However, the problem of whether or not two APDOS systems generate the same
language appears to be much harder. It is not known at the present time

whether the APDOS or DOS language equivalence problerns are decidable.

The paper is organized as follows. Section 1 gives the formal definitions of
the basic notions used in the paper. Most of them are familiar notions in formal
language theory except perhaps the definitions of some of the basic algebraic
properties of mappings which we use, including the concept of acyclic mappings,

and the definitions specific to DOS schemes, systemns, mappings and languages,

In Section 2 we explore the containment relationships among the classes of
DOS languages and other subclasses of the context free languages. The results
are summarized in Figure 1. Explicit preofs of the numerous short lemmas

cited in this section can be found in the appendix.

Finally, in Section 3 we obtain the characterization and uniqueness results

described above.

We assume the reader is familiar with basic formal language theory, in par-

- ticular with the rudiments of the theory of context free languages (see e.g., [9]).

LU b
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Section 1 : BASIC NOTATION

Throughout this paper X denotes an arbitrary finite alphabet and A denotes
the empty word. For a word w, fw| denotes the length of w. For a € %, #, (w)
denotes the number of occurrences of the letter a in w. N denotes the set of
natural numbers, including 0. For any set S, P(S) denotes the set of all subsets
of S and card(S) denotes the cardinality of 5, To avoid cumbersome notations,
we will often take the liberty of identifying the singleton fz] with its element z

when no confusion results,

Given a partial order <= on a set § and a subset 7 of § )
ming(7) = {t € T:foralls € T,ifs <t thens =£]. = is well founded on S if
and only if for all nonempty T € S, ming(7) # ¢.

A mapping [ : L-P(E¥) is propagating it A £ f(o) for all o €3, Given a
mepping f : Z-P(X*), a cyele in f is a sequence <a,,...,q,> of distinet letters in
Lsuchthatk =2 a, € f(o) and oy, € f (o) forall 1< <k. f is acyclic if f
has no cycles,

Given a mapping f : Z-P(Z¥), F° : 8*>P(2*), the sequential extension of 7.
is defined by

TN = 1A,
fi(a) = f(a)fora €3 and
Jay @)= U oy f (@)ag, g forallay,.,a €8

1si<k
and
J® : L*=P(X*), the parallel exlension of [, is defined by
FEN) = 1A,

fP(a) = fla)fora € ¥ and
fPlay @) =flay) o flog)foralae,,. o, €.
A mapping g : L*sP(LY) is a sequential substifufion if g = f% for some
f 1 E-P(EY), g is a parallel substitution if g = JP for some f : X-%P(Z*‘)? Follow-
ing the traditional convention, a parallel substitution is called simply a substitu-
tian.
A mapping [ : Z*»P(L¥) is
reflexive if and only if for all w € 2% w € f{w),

trensitive if and only if for all wv,w €I* if w € f(v) and w € f{u) then
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w e flu),

antisymmetric it and only if for all u, v € $* if w € f{v) and v € f(u) then
w =wv,and
non decreasing if and only if for all w,w € £*, ifuw € f (v) then |u| = |v].

Note that when f :X-P(L*) is propagating, fP and f° are both non
decreasing.

Given sets S and 7 and mappings f , g : S=>P(7), f Ug : S>P(T) is defined
by (f Ug)(s) =f(s)Ug(s) for all s € S. Given sets R, S, and T and mappings

f  R-P(S) and g : S-P(T), fg: R-P(T) is defined by (f g)(r)= U gls)
& €f(r)

forallr € /.
Let [ Z*»P(2*) be déﬁned by [{w) = {w} for all w € &* Given a mapping
[ E*2P(Z¥), the reflexive and transitive closure of f, denoted f* is defined
inductively by:
fo=1,
fori=0, fi*!l = ft. 7 and

fr=urt
=0

An OS scheme is a pair S = <X,f> where [ : L»P(Z*) and card(f (a)) is
finite and nonzero for each @ € X, f is called the underlying mopping of S and
S% is called the sequential substifution or s-substitution of S. M(S), the 0S
maopping induced by S, is (f*)* For any w € £* and scheme S = <X,f >, the
triple G = <2, f w> is called an 0S5 sysfem and S is called the underlying
scheme of G; w is called the aziom of G, The 0S lenguage of G, denoted L(G)
is (f*)*(w).

An OS scheme S = <I¥,f > is deferministic if card (f (a)) =1 for all o € &,
In this case we usually give S as <2, h> where h :MEQE*, Here h® is called the
s —homomorphism of S. S is propagating or acyclic whenever f is propagating

or acyclic. We use the prefixes D, P, and A4 to denote the fact that § is deter-
| ministic, propagating and acyclic, respectively. Given an abbreviation such as
APDOS, L{APDOS) denoctes the class of APDOS languages, i.e., all OS languages
generated using deterministic, propagating and acyclic 0S systems and

M(APDOS) denotes the class of APDOS mappings.
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Given any class of languages L{C) the class L{REGNC) = {KNL : K is regu-
lar and L € L(C)}, the class L{g(C)) = {¢(L)): ¢ is any homomorphism and
L € {C){ eand the class L{EC) = {£*N\L: T is any finite alphabet and Z € L{C)].
Also

L{FINITE) is the class of all finite languages,

L{REG) is the class of all regular languages,

I{DCFL) is the class of all deterministic context free languages and
L(CFL) is the class of all context Iree languages.

The language DYCK, is the Dyck language generated by the context free
grammar <AZ P,.§>where 2 = {(,).[ L}, A = ZU{S] and P = {S-($)S|[S]5 Al

Section 2 : INCLUSION RESULTS

In this section we explore the containment relationships between the class
L{DOS) and its relatives. Our goal is to verify the containment relationships

diagramed in Figure 1 below.

,

L(CFL) = L(E0OS) = L(cf)(}?E('} (M pos)) = L(ﬁo(OS)) = L(REG () 03)
)

L(DCFL) L(RE@!(}DOS) L(0s L(q?(DOS))

L (REG) L(D0S) = L(EDOS)

L(FDOS) = L(APDOS) = L(EPDOS)

\WWM
L(FINITE)

Figure 1.

v UL
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Our notation may be explained as follows: Whenever there is an arrow in
Figure 1, the language class at the head of the arrow properly contains the
language class at the base of the arrow. Whenever there is no explicit path from
one language class to another, these languages classes are incomparable. In the
case of L{REG) and L{REG MDOS), the inclusion is restricted to those languages
not conltaining A. Also the equivalence between L(DOS) and L{EDOS), and
between L{PDOS) and L{EPDOS) is only with respect to nonempty languages.

Theorem 2.1. The containment relationships diegramed in Figure 1 hold.

Proof. The verification of Figure 1 is presented as a series of assertions fol-
lowed by short proofs. Numerous lemmas are cited, the proofs of which are
mostly straightforward. The interested reader is referred to the appendix for
detailed proofs of these lemmas.

LI{APDOS) ¢ L{DOS) < W{REG (\DOS), L{p(DOS)) ¢ Lg(REG\DOS)) < L{CFL).
This is obvious.

2. L{DOS) c L{0S).
This is obvious.

8. LFINITE) < L(REG) ¢ L{DCFL) ¢ L{CFL).
This is well known, see e.g. [4].

4. It R € L{REG) then R—{\ € L{REG\DOS).

This follows from the fact that X' € L{APDOS) ¢ L{POS) for any % (Lemma
4.2).
5. LFINITE) ¢ L{p(DOS)).

This is proved as follows. Let 7 ={w, - -, w}, where w, € L* for
i:1<i=k, be an arbitrary finite language. Let A= {a,, - - .@ ] be a finite
alphabet. Define h @ A=A* by A(a;) = g, forall 11 <k and A(a) = a,. Let G
be the DOS system <Ah,a;> and let ¢ @ A*5* be the homomeorphism defined by
pla;) =w; for all 1=i=<k. 1t is apparent that ¢(L(G)) =7, and thus
L{FINITE) € L{p(DOS)).

6. W{APDOS) £ W{FINITE).

at € L{(APDOS) by Lemma 4.2.
7. LFINITE) £ 1{0S).
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fa?, b?] £ 1{0S) by Lemma 4.1.
Note: The placement of the class L{FINJ/TE) in Figure 1 has been verified.
8. L{(PDOS) = L{APDOS).

This result is Lemma 4.11,

9. L{EPDOS) = {PDOS)ip] and L{EDOS) = LDOS) i),

In Theorem 3 of [2] it is proved that L{EDOS) = L{DOS) ). The method
used there can be applied directly to show ‘ghat L{EPDOS) = L{PDOS) i),
10. L{FDOS) c L{DOS).

{6, ab] € L(DOS)-L(PDOS). (See Theorem 2 of [2]).
11. L(APDOS) £ L{DCFTL).

This is proved as follows.

Let Z=ta b] and let h:3Z+5* be defined by h(a) = aab, h(b) = abbb,
Obviously, A is propagating and acyclic. Let & be the APDOS systemn <2,k ,ab >,
Let S ={a™™ n,m >0and n £m < 2n-1}. By Lemma 4.3, L(G)Na*b* = S,
and by Lemma 4.4, S £ L{(DCFL). Since the class L{DCFL) is closed under inter-
section with a regular set (see e.g., [4]), the result follows.

Note: the placement of L{APDOS), L(PDOS), L{EPDOS) and L{EDOS) in Figure 1
has been verified.
12. L{g(D0S)), UREGN\DOS), L(REG) £ 1{DOS),

This follows from the fact that I{FINITE) ¢ L{DOS) (part 7).
13. L{DOS) c L{0S).

This follows from Theorem 10 of [2].
14. L{DOS) & L{DCFL).

This follows from the fact that I{APDOS) ¢ L(DCFL) (part 11).
Note: The placement of L{DOS) in Figure 1 has been verified.
15. W{REGNDOS) , KLOS) , L{g(DOS)) £ L(REG).

This follows from the fact that {REG) C L{DCFL) but L{APDOS) ¢ L(DC’FL)
(part 11).
18. L{REG) £ 1{05).

This follows from the fact that L{FINITE) £ L{0S) (part 7).
17. L{REG) £ L{p(DOS)).
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This follows from the fact that L*(JAY £ L{p(DOS)) for disjoint alphabets
Z,A# ¢ (Lernma 4.5),
Note: The placement of I{RFG) in Figure 1 has been verified.
18. L(0S) , LREG\DOS) , L{DCFL) £ L{g(DOS)).

This is proved as follows,

Let % = fa,b,c} and let S : L-P(E*) be defined by

S(e) ={b,c}
S(8) = (b5}
S(c) = {ec)

Let & be the OS system <Z,5,a>. Obviously, L(G) = o (Jb*{Jc*, which is not in
Up(DOS)) by Lemma 45 Hence L(OS) £ Le(DOS)).  Similarly,
et Ub* € {REGNDOS) and I(DCFL) but a*(b* £ L{¢(DOS)) by Lemma 4.5,
Hence L{REGN\DOS)Y , LUDCFL) £ L(g(DOS)).
19. L{g(DOS)) , REG N\DOS) , LIDCFL) £ 1{0S).

This follows from the fact that L{FINITE) £ L{0S) (part 7).
20. L(DCFLY , L{OS) , W@(DOS)) # L(REG\DOS).

By Lemma 4.8, DYCKp, the semi Dyck language over T = {(,),[,}}, is not in
L REGMDOS). However:
(i), 1tis well known that DYCK, € 1{DCFL).
(ii). Let o be aletter not in &. Then T = (DYCKz—{A\)Ufe} € L{OS) by Lemma
4.8. Since T € L{REGMDOS) implies that DYCK, € L{REGM\DOS), it follows that
T £ W{REGNDOS).
(iii). DYCKz € K{p(DOS)) by Lemma 4.7.

Hence L{DCFL), 1{05), L{¢(D0S)) £ L{REGNDOS).
1. L(REGNDOS) , 1{0S) , W(DOS)) £ L(DCFL),

This follows from the fact that I{APDOS) 2 L{DCFL) ( part 11).
Note: The placement of L{DCFL) , LREGNDOS) , L(0S) and L{p(DOS)) in Fig-
ure 1 has been verified.
22. L(CFL) = L{EOS).

This is Lernma 4.9.
23. L{CFL) = L{g(REG M\ DOS)).
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This is Theorem 12 of [2].
4. L(CFL) = UREGMOS).

Obviously I{REGNOS) C L(CFL). Since L{E0S) C L{REGN0S), the result
follows by part 22. A
25, L{CFL) = L{g(0S)).

This is Lemma 4.10.

This completes the verification of Figure 1.

Section 3 : FUNDAMENTAL PROPERTIES OF DOS MAPPINGS

In this section we shift our attention from D05 systerns to the underlying
DOS schemes. At the heart of each DOS scheme is a function A ; £+%* Under
the interpretation we have imposed on DOS schemes, each scheme defines a
mapping from words to languages called a DOS mapping, given by (h®)*. Under
another interpretation, in spirit with the work on parallel rewriting systems, the
same scheme defines a DOl mapping, given by (h?)*. The crucial difference in
the algebraic approach to DOS mappings as opposed to DOL mappings is con-
tained in the following observation. Beginning with a simple substitution such as
the homomorphism A?, if we take its reflexive and transitive closure, the result-
ing mapping is in general no longer a substitution. A simple example is the map-
ping (h?)*:a*>P(a*) generated by h(a) =an. Obviously, a , za € (RP)*(a),
hence aaa € ((h?)*(a))®. However maa £ (hP)*(aa). On the other hand, if we
take the reflexive and transitive closure of a sequential substitution such as the
s-homomorphism A®, the result will be a substitution, as is shown in the next

lemma.
Lemma 3.1. If g is a gsequential substitution, then g* is a substitution. .

Froof. Assurne that g :Z*-P(Z*) is a sequential substitution. Since

g (N = i\, g*(A\) = AL Hence we need only show that

g¥ay ) =g*(a) - g*a) for any ay, - .0 €5 Since g*= gt it
=0

suffices to prove that for all n € N, g™{a; - o) Cg*(a,) - - - g*(e) and con-

versely for allmn € N and iy, - - % <n, gi"(al)v . 'gi’k(ak) Cg*la, o) We

use induction enn.



Ehrenfeucht et al i0
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Let us first consider the casen =4; = -+ =4 = 0. Since g%w) = jw] for

al wel* we have g%, @) oy oo = {ag) - fog]

=g%a;) - g%ax). Thus the above staternent holds easily. Now assume that

i

the statement holds for some n = 0. If x € g"*}{a, - - - ¢,) then there exists a
¥ €9"(a, - o) suchthatz € g(y). By hypothesis, ¥ € g*(a,) - - - g*(a), thus
there exist ¥, - - .y € E* such thaty =y, y and y; € g*o;) for 1 =i <k,
Since g is a sequential substitution, there must exist i, 1=i =k, y',y" € 2%
o €% and w € g(a) such that y oy =y and z =y, - - - YW WY "Yev1 " Ye
But then since w;'oy;" € g*(e;), vi'wy;”" € g*(e;) and hence z € g*{a,;) - - g*(a)
as desired. We conclude that g**(a, - - ;) Cg*(a,) - g*a).

Now assume that z € gji{rzl) c gj&(mk) where 7, <n+1 for 1 =4 < k. Thus
there exist z,, - - 2, ¥ " Y € L% such that =z =x, - - 2, and for all 1,
l=i=sk, y € 9" ;) and z; € g(y:) for §; # 0, ¥, = x; = 0; otherwise. Hence
for eachi , 1=i=k, if j; # O then there exist ;' , ," €2*, o € L and w € g{a)

guch that g =y'oy"” end z; =y'wy”. By our induction hypothesis,

oy €g*ay o ag), le, Y1y €g%a, ) for some L € N, But
1 Yi: &
then z =z, -z, € g"""(a, - @) for some m =<k, Thus z € g¥a, o)

and hence gjl(al) ce gj’“(zz,c) Cg*ay - a,). The result follows by induction on

n
Lemmn 3.2 Every DOS mapping is a reflexive and transitive substitution.

Proof. It follows from Lemma 3.1 that every DOS mapping is a substitution.
DOS mappings are reflexive and transitive since the reflexive and transitive clo-

sure of any mapping from ¥ into P(L) has these properties.

Lemma 3.2 is still far from characterizing the class of DOS mappings, since
the reflexive and transitive closure of any sequential substitution satisfies this
lemma. In particular, every OS mapping is a reflexive and transitive substitu-
tion, even if we extend the notion of the underlying mapping in an 0S scheme to
include mappings with infinite sets in their range. It can be shown however, that
. any reflexive and transitive substitution on a one letter alphabet is an OS map-
ping, thus we obtain a characterization of the OS mappings on single letter

alphabets in this way.
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We have not been able to find a simple algebraic property which will distin-
guish the DOS mappings from mappings generated by these "extended’ 0OS
schemes. However, the class of APDOS mappings has some additional algebraic
properties which make these mappings more amenable to algebraic characteri-
zation. Here it should be noted that while it is obvious that
M(APDOS) ¢ M(PDOS) C M(DOS), we have demonstrated in Section 2 that
{APDOS) = I{PDOS) C L(DOS). Thus the APDOS mappings are a natural sub-
class of the PDOS mappings, obtained by restricting ourselves to the underlying
schemes of PDOS systems in a “canonical form," ie., with all the cycles

removed.
Lemma 3.3 Every APDOS mapping is nondecreasing and antisymmetric,

Proaf. Obviously every APDOS rmapping is nondecreasing. Let us suppose
that f : Z¥»P(X*) is an APDOS mapping which is not antisymmetric. Since f is
nondecreasing, for any wv € L* if uw € f(v) and v € f(u) then |u|=|v|

Since f is a substitulion mapping by Lemma 3.1, this implies that we can find

@y 0,0y b €Y such that w =a;y - o, v = by - b, o € F(b;) and
b; € fu)for 1<4i <k, Nowassumethat o, # b, for somel , 1=<1 <k. Since ¥
is nondecreasing, there must exist ¢, - ,c,,d,, - ,d, €¥ such that
fla) =cy fle) =ciyy for 1<i<n and flc,) = b, and likewise f(b,) = d,,
F{d) = d;,, for 1<i<m and J{dy) = q. But then
<@y.Cy o Cplbpdy, oo - dy > constitutes a cycle in f, contradicting the fact

that j is acyclic. Hence every APDOS mapping is antisymmetric.

These few properties do not yet characterize the APDOS mappings, in fact,
we van generate quite complicated mappings which satisfy these properties of

APDOS mappings we have discussed.

Lemma 3.4, There exists a nondecreasing substitution which is reflexive,
transitive and antisymmetric but not an APDOS mapping.

Proof. let Z={a.b] and let S be an arbitrary subset of b* Let
J 1 Z-P(Z*) be defined by f(a) = {a}US , f(b) = {b}. Then f® will be a pro-
pagating substitution which is reflexive, transitive and antisymmetric. However,
since fP(a) = {a}| S, where S can be chosen to be of arbitrary complexity, it is

apparent that f? is not in general an APDOS mapping.
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To achieve a characterization of the APDOS mappings, we must use one
more property which is characteristic of DOS mappings in general. This pro-
perty has to do with the existence of parent words, introduced in [2]. In that
paper this notion was used as a combinatorial criterion on the basis of which
numerous languages were shown not to be DOS languages. For the purposes of
this paper, we reformulate the definition given in [2] in terms of mappings.

Definition. Given a mapping f : L*»P(£*) and u,v € 8% if w =v = A then
PARENT (1,v) = §A} , otherwise PARENTy (w,v) =

{z €' thereexistk =1 ,uu, € *and z;, € £%, 1 =14 <k, such that

U S Uy Uy, V=V Y, T aandforall 1wd <k,
either x; = u; and v; € f () or z; = v; and u; € f (w;)].

Definition. Given a mapping f @ £*-»P(Z*), f is parental if and only if for any

vvw e T*ifu € f(w) and v € f(w) then PARENT; (u )N\ f (w) # ¢.

Lemma 3.5, Every DOS mapping is parental.
FProof. This follows from Theorem B of [2].

Definition. A substitution is called a good substitution if it is nondecreasing,

reflexive, transitive, antisymmetric and parental.
Lemma 3.6 Every APDOS mapping is a good substitution.
Proof. This follows directly from Lemmas 3.2, 3.3 and 3.5.

We now show that the good substitutions exactly characterize the class of
APDOS mappings. We begin by analyzing the elementary properties of the
PARENT relationship.

femma 3.7. For any mapping f : £*»P(E*) and u,v € T*

1. It A€ PARENT; (u,v) thenu =v = X,

€ If o € PARENT; (u,v) where a € %, then either w = a and v € f(a) orv = a
end z € f{a).

3 If|lu|,|v|=2thenforalz ¢ PARENT; (wv) , |z | =2

Proof. ad.1, ad.2 These results follow directly from the definition of
PARENT; (u,v),

ad. 3. This follows from parts 1 and 2.

Lo
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Definition. Given a mapping f : Z*»P(L*), Aset 7 ¢ Z* is f —parental if and
only if for allu,w € T, PARENT; (u )T # .

lemma 3,8, Given a mapping f : L*-+P(Z*), if f has the parental property
then for allw € Z¥and A C ¥, f(w)—Ais f-parental.

Proof. Let us suppose that we are given uww € f(w)-A for some
ACZ ,wel* It b is parental then since uw € f(w),
PARENT; (w v)Nf (w)‘ # ¢. Choose z EPAREN’Z} (wwynflw) I =z €A then
either w =2 or v =z, by Lemma 3.7 part 2. However, then either u € A or
2 €A, contrary to assurmption. Thus z £ A and hence
PARENT; (uw,v)\(f (w)—4) # ¢. Thus f (w)—Ais f-parental.

Definition. Given a mapping f @ 2*»P(E*) and z,y € £* z <, y if and only if
y € flz).

Lemma 3.9 1t f L*sP(2*) is a good substitution then
1. <, is a partial order on X*,

2. For any nonempty 7 ¢ Z* if 7 is f-parental then there exists a unique
minimal element m € T such that for all £ € T, m <, £,

Froof. ad.1. This follows directly from the fact that f is reflexive, transitive
and antisymrmetric.

ad.R. Since f is nondecreasing, <, is well-founded. Thus for any nonempty
T CL* ming ,(T} # ¢b. Assume that 7 is f -parental and that » and v are distinet
elements  of  ming y (7). Since I is  f-parental, there exists
x € PARENT; (w,w)\T. Since z € PARENT;(uv), £ <y w and = <; v. Thus it
cannet be the case that both v and v are minimal elements of 7. This contrad-
iction shows that mmﬁf('}’) = {mj for some m € I. Since =, is well founded, for
all £ € T there exists z € ming),(T) such that z <; t. Hence for all £ € T,
m <g t,

Definition. Given a good substitution f : Z¥>P(Z*), hy : Z-L* is defined by
he(a)= minsf(f (@)—{ai)if f(a) # {a], k;(a) = o otherwise. '

Note: here it is convenient to identify fz | with =,

Lemma 3.10, Given a good substitution f : Z*-P(I*)
1. hy is well defined.
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2. hy is propagating and acyclic.
3. Foralla € Z, f{a) = f(h(a))Ufal.
4. For all w € Z%, (hf)*(w) C f (w).

Proof. ad.1. This follows directly from Lemma 3.8 and Lemmma 3.9 part 2,

ad.2. Since f ’is’ nondecreasing, hy must be propagating. Now assume hy
has a cycle <ay, » - - ,&k> where k£ > 1 and @y, - - - ,0; are distinct elerments of .
Since @,y € hy(ey) for all 1=4 <k and o, € hy(a,), we have a;,, € f (q;) for all
1=14 <k and a) € f (). Thus since f is transitive, a, € f (ay) and az € f{a,).
However, since @, # ag, this contradicts the fact that f is antisymmetric. Thus
hy is acyclic.

ad.3. I f(a)={a] then h;(a)=c and the result follows. Otherwise
hela) = mimﬁf(f (a)wiai).’ Hence x € f(a) implies that hf(a) £,z Oor T =a,
that is, = € f (he(2))Ute]. On the other hand if z € f (hs(a))Jfa] then either
z=a € f(a)orz € f(he(a)) and hence z € f(e) since hrla) € f(a) and f is
transitive,

ad.4 Let g =hf. It suffices to show that g™{w) C f(w) for all n € N,
w €X* We induct on n. If w =X the result holds trivially, hence we may
assume w € L. If n =0 then g%w) = {w} C f(w) for all w € T* since f is
reflexive. Assume the result holds for some m =0, TFor any w ¢ ¥, if
z € g™ (w) then there exists y =a, - - o, where g; € L for all 1 =5 <k, and
all 1=i<k, such that y € g"(w) and = =0, - o hs(a;)a,, - - a. By
hypothesis, ¥ € f(w). Since f is a reflexive substitution and h;(a;) € f (),
z € f(y). Thus since f is transitive, z € f{w) and hence g™*'(w) C f (w) as

desired.

Lemma 3.11. If f : Z*-P(L*) is a good substitution then
1. #y is well defined and (hA})* = f and
. for any h : Z-Z* if (h%)* = f then h = h;.

Praof. ad.1. Letg : Z*»P(L*) = h§. By Lemma 3.10 parts 1 and 4, it suffices
to show that f{w) € g*(w) for all w € £* Since by Lemma 3.1 g*is a substitu-
tion, we need only show that f(a) Ccg*a) for all @ € 3. Let us assume that

R = (f(a)-g*(a)) is not empty. Choose = among the shorlest words in &

a &l

14
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and find oy € ¥ such that z € f (zg)~g*{ey). Since h; is acyclic by Lemma 3.10

part 2, we can iteratively use Lemma 3.10 part 3 to find ay, - - - 0, € %, where
k= 0. such that hf (Um) = g forall0=1i < k, f (ag) = f(h‘f (ak))uiag, e vﬂ‘kg
and either

(1) hylme) = o or
(i) fhp(a)| > 1. 7’
If (i) holds then f (h;(a;)) = {a,] and hence f (ag) = {ag, - o} = g*ay), con-

trary to fact that z € f (ag)—g *(es). Hence we may assume that (ii) holds.

Let w =hg{og). Since [f(ag) = f(w)Uloe - ), we must have
z € f{w). Since f is propagating and w # A, we can find &,, -+ ,b; €% and
zy, - xm ext such that w =86, b ,z =%, - 2 sand = € F{b) for all

l=i=1. Since |w|>1and each z; € ¥, |z;]| < || for all 1 =4 =<1. Thus by
our choice of x, we must have z; € g*(b;) for alli , 1 =i =<l Thus z € g¥*w).
However, since w € g*(a,), this implies that z € g*(ag) contrary to hypothesis.

Thus /¥ is empty and the result follows.

ad.2. Assume thal we are given h : L-L* such that (A%)* = f. For any
a €, if f(a)={a], then h(a) =a = h;(a). So let us assume that f{a) # {ai,
hence he(a) =m, = minﬁf(f(m)—«zai} and h(a) # a. By the definition of (A%)*
we  have  f(a)=(h*)*a) = (h%)*(h(a))Uta} = f (h(a))Ufa}.  Since
my € f{a)-{a], we must have m, € f(h{(a)), ie., h{a)<; m, Since
h{a) € f (a)—{a}, this implies that A{a) = m, = h,(a). Thush = h,.

The characterization theorem for APDOS mappings is now easily esta-

blished.

Theorem 3.18. Given a mapping J @ L*-»>P(Z*) the following are equivalent
(i) f € M(4APDOS),
(ii) f is a good substitution,
(iii) hy is well-defined, propagating and acyclic and f = (h})*.
Proof. That (i) implies (ii) is given by Lemma 3.6, That (ii) implies (iii) fol-
lows from Lemrma 3.11 part 1 and Lemma 3.10 part 2. Finally, (i) follows directly

frorn (iii).
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We also obtain a "uniqueness' result for APDOS mappings.

Theorem 3.13. Given APDOS schemes S;=<Sh;> and S,= <Ay,
M(5,) = M(Sy) if and only if by = ha.

FProof. Follows from Theorem 3.12 and Lemma 3.11 part 2.

Definition. Given a clags of mapping descriptions M with domain 5, the
equivalence problem for M is the problem: given m.j, my € M, is my(s) = my(s)

foralls € 57

Obviously, Theorem 3.13 implies that the equivalence problem for the
APDOS mappings on X* is decidable. As an application of the characterization
and uniqueness theorems for APDOS mappings, we will explore the more general

question of PDOS mapping equivalence.

Definition. Given a mapping h : Z-Z%, the relation =, on IxZ is defined by
a=xb if and only ifa € (A*)*(b) and b € (h®)*(a), o, b € L.

Lemmuo 3.14. For any h : 3-57%,
1. =, 13 an equivalence relationon 2 and

2. forany a,b € Z,a=,b ifand only if @ = b or @ and b are in a cycle of h.
Froof. This is obvious.

Definition, Given a mapping h :Z-L*, for a €3, [al., denotes the

=h
equivalence class of a under =, 3I/=, = %{a];_h ra €%}, For a word
@y @ €57, where gy €% forall 1<i<k | [a - @ lsy, = (ayds, o {ads,
When =, is understood, this subscript will be omitted. The mapping
h/ s, 18/ =>(L/ =)* is defined by h/ =n(la]s,) = [R(a)]s,. Given a PDOS
scheme S = <X,h>, 5/ =, is the scheme <Z/ =, h/ =, >
Lemma 3.15. Given a mapping h : L%
1. h/ =y is well defined and

R foralluw € L% w € (h®)*(v) if and only if [u]., < ((h/ =) ([v]s,)

Froof. ad.l. It suffices to show that if a=,b where a,b €L then
'[h(a)] =[A(b)]. If a=,b thena =b or a and b are in the same cycle of i, by
Lemma 3.14 part 2. If @ = b the result is obvious, otherwise both h(a) and k(b)

are in this same cycle, and thus [2(a)] = [R{b)] in this case as well.

L4
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ad.2. For brevity, let g = A% and § = (h/ =,)®. It suffices to show that for
all », u €g™(v) implies that [u] € g*(v]) and [u] € g™([v]) implies that
u € g*v). We use induction on m. If v €g%w) then w =wv, and hence
[ul€d%[v]). On the other hand if [u]€g%w]) then there exists & >0,
ay, by by €N suchthatw =a) - g andw = b+ - by, and g;=,b;
for all 1=<1i=<k. But this implies that v € g*(v). Hence the above assertion
helds if n = 0. Assume that it holds for some n = 0. If uw € g®*1(v) then we can

find ay, - - -, €Lsuchthata; - g € g"(v) and

u=ay o goah{og)a,, oo

for some 1 <i < k. By our assumption [a,]- - [m] € 5%« ]). This implies that
(w]=[a] - [e]lh(e)][an] - [m]eg*(v]).
On the other hand if [u] € g**'([v]) then we can find a,, - - - @, € ¥ such that

(@1] - [ax] € g7 ([ ]) and

(ul =loa] - [oa]h(@)lan] - (o],

Hence there exist by, - bjcy, - ¢ €8 such that h{g) = b, - b,
U=y GOy GOy oy and by=pc; for all 1 <4 <1, By hypothesis
a; o € g*w), hence w € g*(v). Thus our assumption holds for n+1. The

result follows by induction.

Lemma 3.16. For any PDOS schemes F' = <%,f > and G = <Zg>
1. F/=; and G/ =, are APDOS schemes.

R. M(F)=M(G)if and only if =, = =, and M(F/ =r) = M(G/ =g).

Proof. ad.1. This follows from Lermnma 3.14 part 2.

adR let f=f/=;, §=g/=,, F=F/=; and G = G/ =y. First, assume
that =, = =, and M(#) = M(G). Since M(F) = M(G), J =7 by Theorem 3.13.
Thus since =, = =;, for any w €Z* and a €% we have w € (f¥)*a) <
[w:}gf € (fs}*([a]gj) = [w]gg € (gs)*({a}%) <> w € (g°)*(a), using Lemma 3.15
part 2. Hence M(F) = M(G), since both these mappings are substitution map-
pings by Lemimna 3.1. |

On the other hand, let us assume that M(F) = M(G). Then if <ay, - -« >
is a cycle in f, (f*)*(e;) ={ay, - .0 for all 1 =i <k. Since (F*)* = (g5)*
this implies that (g°)*(a;) = {ay, -+ - ¢} for all 1 = ¢ < k. Hence <a,, - - - ,a; > is

a cycle ing. Using Lemma 3.14 part 2, this shows that =y = =5, By Lemma 3.16
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part 2 [wl, € (F)Mlel,) o welf)He) o welE)r) o
[w]‘,sg € (g‘s)*([m]gp). Hence since M(F) and M(G) are substitutions,
M(F) = M(G). (

Theorem 3.17. The equivalence problem for the PDOS mappings on L* is
decidable.

Proof. Follows directly from Theorem 3.13 and Lemma 3.18 using Lemma
3.14 part 2.

Related to the above mapping equivalence problem is the APDOS language
equivalence problem: given two APDOS systermns G, and Ge, is it decidable if
L(Gy) = L(Z2)? In spite of the simplicity of the APDOS mapping equivalence

problem, the above problem remains open.

Section 4 : APPENDIXK

In this section we present proofs of the lemmas cited in Section 2. We will
often use the derivability notation common to formal language theory in place of

the mapping notation we have been using.

Definition, Given an OS5 system G = <&, f w> and v, v € L* u derives v in

one step in &, written w 2(? v, if and only if v € f%(w). w derives v in G, written

¥

e
u ‘—’:(;- v, if and only if v € (f®)*(u). The letter & will be omitted in this notation
when the system used is clear from the context.

Lemma 4.1, {a®b%} £ L{OS).

Proof. Let ¥ =fa,bi and let T = {a®b%]. Suppose G = <I.f w> is an 08

system such that (&) = 7. Either w = af or w = 5% Without loss of generality,
2

assume w = g*, Since all words in 7 have length 2, for all z such that
# *
o =>z,|zr| = 1. Obviously, there exists z € L*» Z* such that &« => . Hence

#
o =>b. But this implies that ab € 7, contrary to assumption. Hence

T £ L{0S),

e b

14
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Lemma 4.2, LY € L{APDOS) for any nonempty ¥.

Proof Let & = {a,,..., ] for some k > 0. Leth : I - %* be defined by
h{a) =gy forall 1<i <k and
h(@k> = g ag.

Obviously h is propagating and acyclic. Let & be the APDOS system <Z,h,a,>.
*
Since a, :G> o; for all 1 =i <k, £ ¢ (&) Assume that for a given n > 0, for all

w € Z* such that |w| =n, w € L(G). Let z € £* be given such that |z | = n+1.
Buppose z =z'a; 0;, for some 1=<4;i,<k. By hypothesis, z'g; € L{G). But

*
z'oy = a0, = x'og @, Hence z € L{G). It follows that £* ¢ L(G). Since

A £ L{G), this implies that L(G) = &+,
lemma 4.3 L(<feblhab>) N a** = {a™™: nm >0 and
n=<m < 2n~—1§ where hfo, b} -» {a,b}*is given by h(a) = aoh and h(b) = abbb,
Proof Let £ = fa,b}, let G = <¥ h,0b> and let
A={@"™ :nm >0andn =m < 2n -1},
Let P : &* » NxN be defined by
Plw) = <, (w),# {w)> for w € 5*,
Forany L ¢ ¥*let P(L) = {P{w) :w ¢ L}. Let
V=t{<n,m>: nm >0andn <m < 2n-1].

To complete the proof, we must show that P(L(G) M a*s*) = V.

First note that if p(w) = <n,m> and w' is derived from w b}} replacing a,
then p(w') = <n+1,m+1> By the same token, if w' is derived by replacing b,

then p(w') = <n+1,m+2>. Thus for any word w € .(G) there exist i,j = 0 such

that p(w) = <l+i+j, 1+i+27>  Furthermore, for any m,m =1, a®b™ :0>

a™tipml and gnp™ => a™*'p™*?  Hence for each 4,5 = 0 there exists
w e L(G) M a*b* such that p(w) = <l+i+j 1+i+2j>  Since

{<l+i+j 1+1+27> 4,5 = 0} = V, this completes the proof.
Lemma 44, {a™b™ ;n,m =1 and n <m < 2n -1} is not in L{DCFL).

FProof. let T ={a™ nm=1landn <=m <2n-1}, and let I = fa,b].
Assume that T € L{DCFL). Then applying Theorem 11.8.3 of [4] there exists
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Po € N such that for all p > pg there exist v, v,vqv4,vs € L* such that

(1). aPb®P =u, . wg

(R). va# A

(3). vrBugvivge Tforalln =0

(4). |vavgusl < po

(5). if vy # A then for each n,m >0 and w € $* v ™giu ¢ T if and only if

v viusu € T

Ifwy € % then there exists p' < p such that v,uqug = oPb?', contrary to the
fact that v,vgus € T given by (8) above. Ifwg € a*b* then v whvgufvy £ 7, con-
trary to (8). Thus vz € e*. Hence b? is a suffix of vgv s and thus since py <p,
vs # A by (4). TFurther, since wyca', if vyca* Ua'bt (A, then
vguvgufus £ T contrary to (3). Hence v, € b*. Find ¢,5 > 0 such that vy = a,
vy = b7, Again since vwdvgufus € T, we must have 4 = 7. On the other hand,
since vvaug € T, we must have 7 <1, Henced = 3.

Let u = vsbP7", Since vywpwguau € 1, we can apply (5) withn = 1, m =0 to
deduce that vywgu € T. However, v wau = vwaugh? I = af *HP1pP-1 Hence
pw‘.»ﬁy::ml <R(p-i), ie, i+1>2i, Since 4 >0, this yields a contradiction.
Hence T' £ L{DCFL).

Lemma 4.5. 1f L) and Ly are two infinite languages over disjoint alphabets
then Ly () Ly £ L{p(DOS)).

FProof. let L, CZf, and Lp < g be two infinite languages, where
Ly Zp=¢. Let =3,y Ls Assume that there exists an alphabet A, a DOS
system G =<MAhw> and a homomor phism ¢ A* > Z*  such that
e(L(G)) =L, U Lo Let T = L{G).

Let Ly =¢ (L) N T and Ly = ¢ ML) N\ T. Since £, M Iz = ¢, there
must  exist A;,0, CA such that A N Ay =¢, L, CAr and Ly CAF Let
m = max{|g(a)]| 1o € A Since L, and L, are infinite there exist u € L,' and
v € L' such that |g(u)| |e(w)| =2m. Hence there exist wu,ugug € Af,
ty,0p €4y, wuvavus €A, bBbpeA; such that  w = w,gusazuy  and
v = b vgbug and gla,).e(ag).e(b).e(bs) # A

Since w,v € T € {DOS), there exists z € PARENT,(uwv). It is easily

verified that whatever the structure of z with respect to v and v, there exists z’'
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%
such that = =G> z' and z' contains both an occurrence of a letter a € {a,,a,] and

& letter b €{b;,bp]. Thus ¢(x') contains letters from both £, and ¥ Since
#' € T this contradicts the fact that ¢(7) = L, (j L where L, C £F and L, C 54
Hence L, \J Ly £ L(p(DOSY).

Lemma 4.8, (DYCKp—{A}) U {e] € L{0S). where a £ {(,).[.13.

Proof Let ¥ ={(,).[.]} andlet A =2 { {a} Let f : B>P(X*) be defined by

7 (0O = HCOCIL04
F0)=UN.0OM03
£ = HLOLITLIOS

7 ()= {11.01101104 and

f(e) =001

Let G = <A, f.a>and let T = (DYCK,~{\]) U {a]. We claim that L(G) = 7.

e *
It is obvious that for any w such that () =>w or [] =>w, w € DYCKp—{Al.

Hence L(G) C T.

Since a € L(G), it remains to show that DYCKy~{A\] € L(G). Every word in
DYCK, has even length, so we will use induction on the even lengths. Obviously,
for any w € DYCKy—~{A\{ such that |w| =<2, w € L(G). Now assume that for a
given n = 1, every word w € DYCK; of length 2n is in L(G). For any w € DYCK,
of length 2(n + 1) we can find w,, w, € £* such that w = w,)w, or w = w{ |ws,
where w,wy € DYCKp By the inductive hypothesis, w,w; € L(G) Since
|w | =4, one of w, wé is non-null. Hence it is obvious that we can apply one of
the four "productions” for the letters (,),[ or ] to w,w, to derive w, and thus
that w € L{G). 1t follows that any w € DYCK, of length 2(n + 1) is in L(G), and
thus by induction, DYCK, C L(G).

Lemma 47 DYCK, € L{¢(DOS))
FProof. Let ¥ = {(,),[,]§ and let 4 = {a;,ay) where & (A4 = ¢b. Let «a = a0,
and let A=2% U A.
Let h ; A»A*be defined by
h{a,) = a{a)a,,

h(az) = agla]a
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and h{a) = a for alla € %.

Let G = <Ah,o> and let g : A*<Z* be defined by:
pla)=afor a €l
pla) =Xfora € A.

It is readily verified that ¢(L(G)) = DYCK,.

Lemmuo 4.8. DYUKy £ L(REG (1 DOS)

Proaf. Let G = <Ahw> be a DOS system such that DYCK, ¢ L(G). Thus
=401} cA Bince () and [] are in L(G), by Lemma 3.5,
PARENT,(().[D) M L(G) # ¢. Since PARENT,(().[1) ¢ 7 = {0.[1.(1.])}. there must

# *
exist z € T such that z =p> {) and xp) []. This implies that either

- #
(i) there exists o € % such that o =G> A or

* * * *
W ([ [=>( )=>] or 1=3)

Now assume in addition that R CZ* is a regular set such that
R M L(G) = DYCK,. Thus DYCK, ¢ R. Let =p be the right invariant equivalence

relation induced on L*XZ* by R (see e.g., [4]). Let us assume that condition (i)

e
holds. We will assume that ) :G> A, the other cases being similar.

Since =g partitions Z* into a finite number of distinct equivalence classes,

we can find n > m > 0 such that ("=x(™. Thus since (™)™ ¢ E, (")™ € K. Since
*

(™™ € L{G) and ) =2 A (™)™ € L(G). Hence (™)™ € B M L(G) contrary to the

assumption that 7 M L(G) = DYCK,.

On the other hand let us assume that condition (ii} holds. We will assume

L 2
) :G> ], the other cases being similar. Find I,mn,s.f >0 such that
m+n =s+i =1, n>s and ("["=x([*. Hence { >m. Since (°[*']')° € R,

(*{™])® € . Since ("[™]™)" ¢ L(G) and ):z> I, (*[™])° € L(G). Since this

word is not in DYCK,, we again have a contradiction. Hence it cannot be the
case that L(G) M R = DYCK,.

(e

2
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Lemnma 4.9 L{CFL) = 1{£0S)

Proof. Since W{0S) C L{CFL) and £* N T € L{CFL) for any T € L(CFL) and
any finite alphabet ¥, L(EOS) ¢ I{CFL). On the other hand, assume that
G = <AL F,.5>is a context free grammar. Let j : A>P(A*) be defined by

FlA)={w .  A»w € P{for A € A-%
S(g)=lalfora cg.
Let = <A f.,S> Obviously L* 1 L(H) is the language generated by &. Thus
L{CFL) € L{EOS). Hence L(CFL) = L{EOS).
Lemma 4.10. L(CFL) = L{¢(0S))

Proof Let G = <AX,P,3> be a context free grammar generating a language
& C L* such that each nonterminal letter derives at least one terminal word. It
is well known that such a grammar exists for any context free language (see e.g.,
[4]). Let f and H be defined as above.
For each A € A-% let T4 be a word in the context free language generated by
<AL F A> Let ¢ : A*-5* be the homomorphism defined by
p(A) = Ty for A € A-Y and
pla) =afora €3,
@ C 9(L{H)) since every word in § can be derived in H. On the other hand
¢(L(H)) < & because every word in L(H) is a sentential form for G, and p takes
a sentential form in G into a word in @ Hence § = ¢(L{H)). Thus
L{CFL) = L{p(0S)). ’
Lemma 4.11. L{PDOS) = L{APDOS)

Froof. Tt is obvious that I{APDOS)C L(PDOS). To show that
{PDOS) € L(APDOS), we will exhibit a method of removing a cycle from a given
PDOS system lLe., given a PDOS system G, = <%k, w> where h has n cycles, we
will exhibit a PDOS system Gp= <Lh'w'> where h' has m—1 cycles and
L(G) = L(Gy). Iterating this construction, we can obtain an APDOS system for
any PDOS language.

Given G, as above, let us assume that k& has a cyele <ay, - - 03> where
k=Cando; €% forall 1 =i<k. Let f 6 E*s5* be the homomorphism defined
by

fle)=aifa cfa,, i,
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() = a otherwise
let g : £-+2* be defined by

gla) =0, forall 1 <i <k,

g{a) = @ and

gla)=f(h(a))fora € Z-fa), - a4l
Let Gp = <8.g ./ (w)>. Since h(a) is unique for any a € Z, the cycles of h must
be disjoint, Thus g has no cycles not already present in k. Since the cycle
iy, 0 > s misszing in g, g has one fewer cycle than h. To complete the
proof, we must establish that L{G)) = L(Gg), i.e., (A%)*(w) = (g%)*(f (w)) I
w = A the result is obvious, hence we will assume that w # A, For brevity, let
H = (h*)*(w) and G = (g°)*(f (w)).

First, we will show that ¢ ¢ H by demonstrating that (g%)*(f {w)) ¢ H for

all n., We use inductiononn.

Observe that since <a,, - > isacycleinh, forall z,y € ¥* if za;y € H
for any l=i<k, then zogy € H for all 1si<k. Thus since w € H,
Fw) =(g:)%f(w)) € H, and the result holds for n = 0. Now assume that
(gs)”(:f {(w)) ¢ H for some n=0 Given z € (g%)""(f (w)), there exists
y € (g°)*(f (w)) such that = € g5(y). Hence there exist y,,¥, € L* and @ € &
such that y =y,oy, and =z =y,;g(a)ys,. By hypothesis, yeH. U
o€ tay, gl then yoyype H for all 1=<di=<k, and thus since
gla)€ia, ) in this case, we have x € H. If a £ {a,, - -, a4 then
z =y f (R{a))ys. Now since wyoyz€ H  and yh(a)ys € AS(y,ay2).
yih(a)ys € H. Since f takes g; to o, for all 1 =1 =k and leaves other letters
unchanged, this implies that z € H, by the above observation. Hence

(g%)"*(f (w)) € H and thus by induction, & C 7.

-

To prove our claim, it remains to show that H C . First observe that if
f(z)€ G then y € G for every y such that f ('y)‘z f{z), since u; € g*(a,) for
each 1 =i <k, Hence it suffices to prove that for all n € N, if z € (h%)*{w) then

F{z) € G. We use induction on n. Since (h*)%(w) =w and f (w) € g, this asser-
tion holds for m = 0. Assume that the assertion holds for some n=0. If
z € (h*)"*1(w) then there exists ¥ € (A%)"(w), ¥,y € Z* and a € £ such that
y = y,0yp and 2 =y, hla)y,. By hypothesis, f(y) € G. If o € {a,, - ,0) then
f(x)=f(y) hence f(z)€ G. On the other hand, if a £ {a,;, -, then

L
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gla) = f (h(a)), Hence J @)= Fy)g(e)f (ye). Thus since
Fly) = flyyef(ys) € G, flz) € G Hence (R5)"*Yw) C G. This completes the

induction and the proof.
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