Object Management in a Distributed Software Environment *

Geoffrey M. Clemm
Stanley M. Sutton, Jr.
Lloyd G. Williams

CU-CS-333-86

(== |
%University of Colorado at Boulder

DEPARTMENT OF COMPUTER SCIENCE

* Supported in part by the U. 8. Department of Energy under contracts no. DE-AC02-80ER 10718 and DE-FG02-84ER 13283, and in part
by the National Science Foundation under grants no. MCS80-00017 and DCR-8403341.

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT
NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE
ACKNOWLEDGMENTS SECTION.

Object Management
in a Distributed Software Environment

Geoffrey M. Clemm", Stanley M. Sutton, IS,
and Lloyd G. Williams

Department of Computer Science
University of Colorado
Boulder, Colorado 80309

CU-CS-333-86 " June 1986

"Supported in part by the U.S. Department of Energy under contracts no. DE-
AC02-80ER10718 and DE-FG02-84ER 13283, and in part by the National Science
Foundation under grants no. MCS80-00017 and DCR-8403341. '

Abstract

This report describes object management in the Keystone project. Keystone is an
experimental prototype for a software environment in which software development
activities are distributed over a (possibly heterogeneous) network of personal worksta-
tions. Its purpose is to explore requirements and design issues for distributed software
environments. Keystone is based on a single-machine object manager, the Odin
software environment. Odin manages objects local to individual workstations.
Management of objects which are imported from or exported to other workstations is
accomplished using importer and exporter processes running on each node together with
lists of data which describe these objects. The report presents details of this architec-
ture. To date, two levels of prototypes for Keystone have been implemented. Experi-
ence in implementing and using these prototypes is also described with particular atten-
tion to issues of object management, extensibility, object typing and persistent objects,
and support for heterogeneous resources.

Table of Contents

LI T O C IO veieeereeeeereersieseeanmaaeeeeenasreeaseessaessaranssesesnnsseanearesnnseseasssesessnsstsanssnmasseneneasssns

The Object Management SYSEEIM .iiciiiiiiiiiriiiiiiii
(@ 15 13 RO U PO P ISP PSP

Object Management in Odin ..coiimniiiiiinini
USEE INEEITACE iivirieiiiiiriirerececrrea e et ee e ereeeessbbe e s s snaraas e s as s rnneaasseseeues

Extensions £0 OdIN coveeiveeeeeieiieeeeieeeeeereeeessosesssatesssseassrereseeanssererasossessnrnsiesssnes

Modifications t0 Odin ...cooiiviiiiiiiiiiereenn i
Extensions to the Derivation Graph ..
Additional Tools .t s

Management of Imported and Exported Objects .cocininiiiiiiiiinin

The Databases cioueiiieireiirreireeiriineeeeeeinreterisneesssnaesssssssnrssasssassesinessaseess
The TMPOTHET woveirriiinieiiiii it s
The EXPOTHET verieiiiiiieiiiiiiiiiiic et s

Experience with Keystone ..ot

Configuration Managementccccviiiiimnimiini s

Ver

Discussion

Obj

Implementation ...
Comparison with Other Environments ...,
I Te Yo B 0703 1178 o) H U U P OO PP PPPIPPI
Implementation ..o

Comparison with Other Environments ...

...

€t MANAZEMENT Levivrveiiiieiiiiiice i
Distribution of Operations ...,
Control Over ODbJects .uuiviieririiriiiiiiiii i s

Extensibility coeeeieeiiiieeeree i e e

Obj

Log

Summary

€CH TYPIIE wevereenieirriecrein ittt
Persistent ODbJectS woiiiieereriniiiiiiiiiiii e
Heterogeneous ReSOUTCES ..oiviiiiiiiiiiieiiiinie

ical View of the ENVIFONMENT couivieiiiiiiiiieeierieiieereeiisesniaesasnneerenscairennainaes

..

AcKNOWIEdZemMENTS .ueviereietiiiiie i

References

..

© 00 00 00 O & U e W W D

[
<

11
12
12
13
14
14
16

16
17
17
17
18
18
19
20
20

20

21

Figure 1
Figure 2

Figure 3

..

..

..

1. Introduction

A software system is a complex entity which is actually made up of a number of indivi-
dual objects. These objects are the various artifacts of the software process which
include specification and design documents, source code, object modules, test cases, and
others. One very important function of an automated software environment is the
management of these objects.

Management of the objects associated with a software development project is a difficult
task. The individual objects are typically quite complex and may themselves be com-
posed from other, also complex, objects. In addition, any given object is likely to be
related to many other objects by a number of different relations. Typical relations
among objects in a software environment include:

Derives: An object is produced by carrying out one or more transforma-
tions on another object. For example, object code is derived from
source code via the compiler. In this case, the compiler is viewed as a
transformer.

Constrains: The state of an object is constrained to bear a particular
relation to the state of one or more other objects. An example of the
constrains relation would be the maintenance of consistency between
corresponding versions of two objects.

Hierarchical relations: An object is composed of other objects. The
sense of hierarchical as used here is intended to convey more than the
typical tree-structured hierarchy. Hierarchical relationships are
diverse and can be quite complex, possibly even cyclic. Possible
hierarchical relationships include: imports_from, exports_to,
inherits_from, is_an_instance_of, is_an_interface_of, ts_a_version_of,
and 7s_a_view_of [Zdon85].

The relationships among software objects {and therefore the management of those
objects) becomes considerably more complex if the software environment is distributed
(either logically or physically) over multiple hosts. In a distributed environment, multi-
ple copies of objects can exist on different nodes. This introduces additional complexity
due to the need to manage concurrent updates and maintain consistency among the
various copies in a distributed context. If hardware and/or software resources differ
from host to host, the type hierarchy is complicated with additional elements or nota-
tions. If, for example, the hosts can have different CPUs, object modules derived from a
single source are no longer necessarily equivalent.

In this report, we describe our experience with a simple approach to distributed object
management in Keystone, a prototype distributed software environment. Keystone was
constructed to explore issues which arise when the various functions of a software
environment are physically distributed over a network of workstations. The logical
view presented to the user by Keystone is also a distributed one, although facilities are
provided to remove much of the burden of dealing with the distributed aspects of the
environment.

Three fundamental assumptions embodied in the Keystone approach are that each
developer will have his or her own individual workstation, that these workstations will
not necessarily have the same CPU, and that each workstation will have its own local

-1-

mass storage. (While the use of specialized "file servers” is not precluded, it is felt that
reliance on local storage will make the environment more robust and potentially more
widely applicable.) The principal design goals for Keystone are:

(1) To develop a distributed environment which is easily extensible by the
user.

(2) To provide support for arbitrary, user specified sharing of resources
within the environment.

(3) To provide a vehicle to study cooperation and user work patterns in a
distributed software environment.

(4) To provide a vehicle for studying the effect of a distributed environment
on the software process.

The first two goals support the latter two by making it possible to easily extend or
reconfigure the environment to respond to new needs or explore new possibilities.

Authority for object management in a distributed software environment may be
assigned in several different ways. First, a single, global object manager may be used.
All authority for object management, both for the local node and for distributed tran-
sactions rests with the global manager. Second, it is also possible to make use of local
object managers from individual nodes if facilities are provided for handling objects in
the distributed system. Here, authority for object management is local and local
managers cooperate to provide management of distributed transactions. Finally, a "dis-
tribution manager” may be used to control object managers on individual nodes. In this
case, authority for management of local objects is local while authority for manage-
ment of distributed transactions rests with the "distribution manager.” The first of
these corresponds to centralization of authority for object management. The latter two
feature decentralized object management with different degrees of coupling between the
local object managers.

Keystone uses the second of these approaches. An existing local object manager is aug-
mented with capabilities for importing and exporting objects in cooperation with
remote object managers. To date, two prototype versions of Keystone have been imple-
mented on a network containing several different types of processors using version 4.2 of

Berkeley Unix.” The configuration of the network which supports Keystone is shown in
Figure 1. This report describes the current status of the Keystone project, the architec-
ture of the Keystone object management system, and our experience with its implemen-
tation and use.

2. The Object Management System

The overall approach used in constructing the Keystone environment is described in
[Clem85]. Briefly, Keystone is based on the Odin software environment [Clem84]. Odin
provides an integrated interface to software tools and enables users to extend the capa-
bilities of the environment by adding tools of their own.

The distributed nature of the environment is supported using the Federation concept
|[Heim85|. This approach, originally developed for distributed database systems,

"Unix is a registered trademark of AT&T Laboratories

supports the sharing of data among autonomous elements (databases) which do not
necessary share a common schema. In a Federated system, cooperation replaces central
authority and procedures are provided to facilitate sharing. Each member of the
Federation specifies the information that it is willing to export and the information
that it wishes to import from other members.

Management of objects in Keystone is divided into two distinct spheres of responsibility.
Odin manages objects local to individual workstations. Management of objects which
are imported from or exported to other workstations is accomplished using importer
and exporter processes running on each node together with lists of data which describe
these imported and exported objects. In this section we describe the Odin environment
from an object-management point of view, extensions to Odin for operation in a distri-
buted environment, and management of import and export operations within Keystone.

2.1. Odin

The Odin system is an automated object manager for single-machine software environ-
ments. Objects in Odin correspond to artifacts of the software development process
(source code, object modules, test data, etc.). They are, in fact, files in the host file sys-
tem and the terms "file" and "object" will be used somewhat interchangeably in this
report. These objects may be either simple or compound. Simple objects correspond
directly to host system files while compound objects are sets of files. For example, the
set of files that makes up the source code for a program is a compound cbject; the files
corresponding to individual modules are simple objects. Odin provides {or user-defined
object types and various types of objects are distinguished by file extensions, such as
".c" (for a C source file) or ".txt" (for an ordinary text file).

2.1.1. Object Management in Odin

The principal relationship among objects supported by Odin is the derives relation.
Derivations are controlled using an internal directed graph, called a deriwation graph,
which specifies how the various object types known to Odin are related. An example
derivation graph is shown in Figure 2. Each node in the derivation graph represents an
object type and each edge represents the derivation required to produce the object at
its head from the object at its tail. Tools are thus considered to be transformers which
convert objects (files) of one type into objects of another type. For example, the C com-
piler converts objects of type C_source to objects of type object_code.

The results of derivations are maintained automatically in a special database and are
available for satisfying subsequent requests. This database, together with the deriva-
tion graph and command scripts used for tool invocation, resides in a special directory
on each node, known (naturally) as the Odin directory. The location of this directory
within the overall directory structure is not fixed and may vary from machine to
machine or even from user to user on a given machine. [t must, however, be known to
the system. This directory is also used by some of the Keystone processes and func-
tions, as indicated below.

The derivation graph may be extended by the user to encompass new object types and
derivations. This is accomplished by describing object types and their associated opera-
tions using a built-in specification language. For example, an object of type

formatted_C_source might be specified as follows:

fmt "Formatted C source code”
"pp <$(c) >H(fmt)"
¢
In this example, "fmt" is a type designation for an object corresponding to formatted C
source code. A file containing an object of this type will have the extension ".fmt.” The
string in quotes on the first line provides a descriptive comment. The second line is the
host system command which invokes the formatter (a "pretty-printer”); "f(c)" and
"$(fmt) are replaced with the appropriate host system file names at run-time. On the
final line, "c" defines the type of object from which a ".fmt" object may be derived.

Odin objects are strongly typed. The set of operations (i.e. transformations) which are
valid for a given object are determined from the derivation graph, based on the type of
the object. If an invalid operation is attempted (e.g. executing a symbol table), the
Odin system will generate an error message and will not perform the operation.

2.1.2. User Interface

Objects are requested by naming the desired derivation. This type of request is known
as a display request since, when the object is requested, it is displayed to the user in an
appropriate fashion. For example, the command

test.c

would display (i.e. list) the file named "test.c" from the current working directory. The
object "test.c” is a atomic object; no derivation is needed to produce it. The command

test.c :run

requests the object produced by performing the run derivation on "test.c” (a derived
object). Execution of this command would display the result of compiling and executing
"test.c."

Given the starting and ending points of a derivation, Odin searches the derivation
graph for a series of transformations (a path) which will produce the desired object. In
the case of "test.c :run,” Odin invokes the C compiler and the loader to create an exe-
cutable object. That object is then executed and the output collected for display to the
user. The process of compiling, loading, and executing "test.c” are performed invisibly.
Intermediate objects, such as the object code, are derived automatically and cached so
that they are available for use in filling future requests. The maximum amount of
space to be used for storing derived objects may be specified by the user. When this
limit is exceeded, derived objects are deleted using a least-recently-used strategy.

If intermediate objects are available, Odin will use them to perform the derivation in
the "cheapest” way possible. If multiple paths from one object type to another exist,
Odin will use a default path to resolve the ambiguity and avoid cycles.

When the user requests a derived object which is not currently in the database, Odin
replaces macro names in a skeleton command script with the appropriate input and
output host system files. The resulting command script is then invoked. This, in turn,
invokes the tool that performs the appropriate transformation.

The user may also request that derivations be performed on compound objects. A com-
pound object contains the names of the objects from which it is composed. When a
derivation is requested, it is applied to these objects =s a group, rather than

-4 -

individually. If the contents of the compound object "myprog.ref” are

modulel.c
module2.c
module3.c

the object
myprog.ref :exe

will contain the result of compiling and linking "modulel.c,” "module2.c,” and
"module3.c.” This form of derivation corresponds to the view that an executable pro-
gram is derived from the set of its individual components.

In addition to displaying objects, a user must also be able to modify objects. The
modification of atomic objects from within Odin is performed through the use of a
second type of command known as a transfer command. The transfer comm::nd is used
to copy the contents of one object into another. Syntactically, the «bjects are
separated by a right angled- bracket and the copy occurs in the direction implied by
the arrow. For example,

test.c :fmt > good.fmt
places the result of formatting "test.c” into the file "good.fmt."

An extension of the transfer command makes it possible to interface to host system
commands for use as "filters” or "editors.” The command

test.c :fmt > :more

would display the result of running the system command "more” on the formatted
source object derived from "test.c.” ("more” is a Unix filter which displays a text file,
one screenfull at a time, on a CRT.) The command

test.c > :emacs
would invoke the host system editor "emacs" on "test.c.”

Odin also provides two forms of consistency maintenance among objects. The first form
is similar to that of the Unix make utility [Feld79]. Objects in Odin are constrained to
be consistent with respect to their creation/derivation times. If the object "test.exe" is
derived from "test.c,” in order for "test.exe" to be "consistent” with "test.c,” the most
recent derivation of "test.exe” must have occurred after the last modification of "test.c.”
When a request for "test.exe" is issued (e.g. "test.c :exe"), Odin consults its database. If
"test.exe" already exists, its time of modification is compared with that of "test.c.” If
"test.c" has not been modified since "test.exe" was derived, no new derivation is neces-
sary and none is performed. The existing object is simply returned from the database.
If "test.exe” is out of date with respect to "test.c,” a new derivation is performed.

The second form of consistency maintenance involves the use of "sentinels” [Clem84|.
This is a more general mechanism that allows the specification of arbitrary semantic
constraints. It is, however, weaker in that violations of these constraints are detected
but not automatically corrected.

2.2. Extensions to Odin

To allow management of objects in the distributed system, some minor modifications
and extensions to Odin were made. Modifications involved changes to the Odin code
itself. These were kept to a minimum and were accomplished by adding new functions

-5 -

in self-contained modules. The majority of Keystone’s distributed capabilities were
implemented using features already present in Odin. This was done by extending the
derivation graph to provide types representing remote objects and adding new tools for
manipulating these types. The following sections describe these modifications and
extensions.

2.2.1. Modifications to Odin

Two new functions, do_export and do_import, were added to the Odin system. These
functions are used to provide notification across the network when an object has been
modified. This notification makes it possible for a node to notice when an object which
it imports has changed and mark its local copy, as well as any objects derived from it,
as out of date.

The do_export function is invoked when the user exits from Odin. If an exported object
has been modified, do_export checks the export list to see who has received that object.
Those nodes are then notified of the change. Currently, one node (the original owner)
serves as the master node for an object. Remote nodes are notified of changes to an
object only when they occur on the master node.

The do_import function is invoked when the user enters Odin. It checks a special, tem-
porary file which contains the names of any imported objects which are out of date.
Any such objects are then marked and the next access causes a new derivation (which
necessarily involves an import).

Note that, since do_import is called only on entry to Odin and do_export is called only
on exit, changes to global objects are not immediately visible to remote nodes. In prin-
ciple, this could cause difficulty due to the use of out-of-date or inconsistent versions of
objects. In practice, the granularity of notification which is required is not particularly
fine and users seem to enter and exit Odin frequently enough that problems do not
arise. If this proves to be a problem in other contexts, it can easily be addressed by
having Odin call do_export and do_import more frequently.

2.2.2. Extensions to the Derivation Graph

The present version of Keystone relies heavily on several extensions to Odin’s derivation
graph. These extensions were made using capabilities already present in Odin. They
were described using the specification language presented in Section 2.1.1.

The principal extension is the definition of a set of object types known as
remote_object_references. There may be one remote-object reference corresponding to
each atomic type in the derivation graph. Files of this type are denoted by adding the
suffix ",x" to the file extension associated with the object’s base type. For example,

test.c,x

denotes an object of type remote_C_source_ref and is a reference to a remote object of
type C_source.

The name of the remote-object reference is intended to provide a "local” name through
which the remote object may be accessed. For this reason the remote-object reference
contains the global name by which the remote object is known over the network. The
contents of a remote-object reference are thus a pointer to the actual file. For example,
"test.c,x" might contain

sol: /toolpack /sutton/src/prog.c

where "sol" denotes a node and "/toolpack/sutton/src/prog.c” is the pathname of an
object (file) on that node.

For purposes of importing and exporting objects it is unnecessary and probably undesir-
able to restrict global names to node/pathname combinations that indicate the actual
location of an object. It is expected that objects will migrate and that they will exist in
multiple copies. Under such conditions it would be difficult to maintain global names as
actual network locations. In view of this, it seems most appropriate to treat global
names as symbolic identifiers that bear no necessary relation to the locations of the
objects they represent. In fact, the import/export mechanism does not depend on this
correspondence. In the present implementation, however, the mechanism for notifying
nodes of changes to imported objects does depend on the correspondence between the
global name and actual location of an object. Consequently, for the current prototype,
it is necessary to restrict global names as described above.

The derivation graph has also been extended to include derived types which may be
produced from remote-object references. By convention, these are denoted by append-
ing the prefix "imp_" to the usual type designation. Thus,

test.c,x :imp_run

denotes the imported object produced by compiling and running (on the remote
machine) the file pointed to by "test.cx."

Although intermediate objects, such as object code, are produced and cached on the
remote machine, they are not exported. Only the requested object is exported. These
objects are, however, available for local use on the remote machine or for subsequent
exports without rederivation. Imports thus cause changes to the database which are
not initiated by the local user. In this sense, the database may be said to be shared.
Since Odin manages the objects in the database automatically, this is usually tran-
sparent to the user and is, at worst, only a minor inconvenience. In fact, there may be
an advantage to the remote user since these objects are now cached and subsequent
requests which involve them may be filled more quickly.

An "imp_c" derivation makes it possible to import the actual source object correspond-
ing to "test.c,x." Once the source has been imported, derivations may be performed
locally. For example,

test.c,x :imp_c :run

imports the source and compiles, loads, and executes it on the local machine. All inter-
mediate objects are produced and cached locally.

Note that, due to the heterogeneous nature of the network, it is necessary to carefully
specify certain objects in order to avoid nonsensical derivations. For example, the com-
mands

test.c,x :imp_exe
and
test.c,x :imp_c :exe

will produce identical executable files if the local and remote machines are identical.
However, in the first case, the compilation is performed on the remote node and the
result is imported. In the second case, the source is imported and the compilation is

-y

performed locally. If the two nodes have different instruction sets, the objects of type
"exe" and "imp_exe" will be different.

2.2.3. Additional Tools

As described above, derivations may be performed on objects which are remote object
references. In fact, importing an object is viewed as a derivation from a remote object
reference. To perform these derivations, an import fool was added to Odin. The import
tool receives (via shell variables) the name of the object from which the derivation is to
be made, the derivation specification (e.g. ":imp_exe"), and the name of an object in the
local database which will serve as the repository for the derivation. The import tool
then invokes the importer process as described in Section 2.3.2.

2.3. Management of Imported and Exported Objects

As noted above, Odin provides management only for objects local to an individual
workstation. Management of objects which are imported from or exported to other
workstations is handled by a complementary pair of processes: the importer and the
exporter. Both the importer and the exporter are long-lived processes which run in the
background on each node.

The importer and exporter processes make use of three databases, a translation table,
an import list, and an export list, to store the information required to manage objects in
the distributed system. The following sections describe these databases and the func-
tions of the importer and exporter processes. Figure 3 illustrates the flow of control
among the databases, the importer and exporter processes, and Odin.

2.3.1. The Databases

The translation table contains pairs of corresponding local and global object-names.
Given either a local or global name for an object, the translation table can be used to
obtain the other. Local names may be absolute or relative (to the current working
directory) pathnames for files on the local node; they are known only on the node to
which they apply. Global names are identifiers which are shared among all nodes in the
network that may have access to the corresponding object.

Local names may denote objects that are references to remote objects (see discussion of
remote-object references, in Section 2.2.2). It is not necessary for the user to explicitly
create these remote-object references. They are created automatically when the
local /global name pair for such objects is entered in the translation table. Since the
remote-object reference should contain the global name of the object it is simple and
appropriate to automate the creation of these references in this way.

The import list specifies those objects which may be obtained from other nodes. In par-
ticular, an entry in the import list contains the global name of an object, the name of a
node that may export that object, and the locations of the Odin directories on both the
local and remote nodes. Since a given object may be obtainable from more than one
node, it may appear in the import list more than once (although each time with a dis-
tinct node name). The global object names and node names are used by the importer
process when attempting to import an object. The locations of the Odin directories are
used to set up files that are used by the do_import and do_export functions (Section
2.2.1).

The export list specifies those objects which have been provided to other nodes. Each
entry in the export list contains the global name of an object and the name of a node to
which it has been exported. Since an object may be exported to multiple nodes, it may
appear several times in the export list. Entries are added to the export list by the
exporter process whenever an object is exported.

An additional database will be needed to specify access control for objects in the distri-
buted environment. The levels of control are intended to be more than simple
read/write access. For example, the user of a given node should be able to specify that
a particular object is exportable only if the current load average on that node is below
a certain limit [Clem85]. This database is planned, but has not yet been implemented.

Each Keystone process also maintains two other lists of information to which it has
exclusive access. These include the node list and connection list. The node list contains
information describing each node in the network, including the conventional "port
numbers" used to establish connections with the Keystone and Odin processes on those
nodes. This information is the same for all processes since the network is relatively
fixed, and it could be kept in a shared database. However, the node list is a small
structure, and once it is initialized it is only read, so for efficiency each process keeps its
own copy in memory. The connection list contains information and buffers used by a
process in managing its connections to other processes. These connections are unique to
the process and may change with every transaction.

2.3.2. The Importer

The importer process manages the importing of objects from remote nodes. The
importer may be invoked in response to a request for an "import” derivation. If the
request is for an object which has been previously imported, that object will have been
cached locally. In that case, the local version will be returned unless it is out of date
and the importer will not be invoked. The importer is actually invoked whenever the
object of the import is not available locally or the local copy of the object is known to
be out of date.

When an import derivation is performed, information necessary to perform the deriva-
tion is passed to an import command script. This information consists of the name of
the local atomic object from which the derivation is to be made (a remote-object refer-
ence), the derivation specification, and the name of the object in the local database into
which the derivation is to be deposited. The import command script extracts the global
name from the remote-object reference and passes the global name, together with the
derivation specification and local destination, to the import tool. The import tool pack-
ages this information into the Keystone message format, establishes a connection with
the importer, and sends it the import-request message.

When the importer receives a request, it uses the global name to determine, from the
local import list, which nodes export the object. The importer then sends each poten-
tial exporter a request for information on the cost of obtaining the object (see the dis-
cussion of costs, Section 2.3.3). These requests contain the global name of the object
and the derivation specification. When the costs have been received from all of the
exporters (or when a time-out period has expired), the importer examines the costs
returned and requests the object from the least expensive source (if any of the nodes

can in fact supply the object). Object requests also include the global name of the
object and the derivation specification.

The importer may request an object from a remote exporter only to find that the
exporter cannot supply the object. This might occur if, for example, the node went
down between sending the cost information and actually supplying the object itself. In
that case the importer tries to obtain the object from the least costly of the remaining
sources, if any.

The importer may be unable to identify a node that can supply the requested object,
either because the export list includes no exporters for the object or none of the listed
exporters is currently able to provide it. Currently, the request will fail under these cir-
cumstances. Future versions of Keystone will include provisions for polling other nodes
to find other suppliers.

If the importer successfully obtains the object, it is deposited in the local Odin data-
base. In any case the importer returns a message to the import tool that indicates the
success of the derivation. The import tool then exits with the appropriate status, which
is captured by the import command, which, in turn, provides Odin with error or warn-
ing messages as needed.

2.3.3. The Exporter

The exporter process manages the exporting of local objects to remote nodes. The
exporter responds to requests from remote importers; it does not communicate, even
indirectly, with the user’s local copy of Odin. To fill remote requests, the exporter does,
however, create its own (temporary) Odin processes.

" The exporter receives two principal types of request from importers: requests for cost
information and requests for objects (see below). With both types of request the
exporter receives the global name of the object and a derivation specification. It then
translates the global name into a local name using the translation table. It also con-
verts the import derivation to the corresponding local derivation which, by convention,
can be determined by deleting the "imp_" prefix from the import derivation. If the glo-
bal name cannot be found in the translation table then the requesting importer is sent

an INFO_REQUEST_ERROR message and the request is not otherwise answered.

If the request is for cost information the exporter carries out the following series of
actions. First, it invokes an Odin process to check whether the object exists (or can be
derived) locally. If the object is a derived object that is not already in the local Odin
database (or is in the database but is out of date) then the check for existence forces a
new derivation of the object. If the object does then exist, the exporter returns a cost
of AVAILABLE. If not, the exporter searches its own import list for another node from
which it may be able to import the object. If it finds such a node it returns a cost of
IMPORTABLE. Otherwise a cost of NOT_AVAILABLE is returned.

This cost is actually an index of the "effort” required on the part of the exporter to
export the object. It is not a measure of something to be paid by the importer, except
that the importer may have to wait longer to obtain the object from a more costly
source than from a less costly source. At present only the cost values described above
are used in Keystone. A cost of NOT_AVAILABLE indicates that the remote node does
not have the requested object and does not know of any node from which it could
import the object. A cost of IMPORTABLE indicates that the remote node does not
have the requested object but does know of one or more nodes from which it may be

- 10 -

able to import it before in turn exporting it to the requester. A cost of AVAILABLE
indicates that the requested object is directly available on the remote node. The
importer does not request an object from any remote node that returns a cost of
NOT_AVAILABLE. The importer may request an object from a node that returns a
cost of either AVAILABLE or IMPORTABLE, although AVAILABLE is considered to
be a lower cost than IMPORTABLE and is chosen preferentially.

The exporter must perform a similar series of actions in response to requests for objects
since there is no guarantee that the information previously supplied to the requester is
still current (or even that the requester has previously asked for information, although
checks for this could easily be implemented). Checks are again made to determine
whether the object exists locally or is importable. If the object does not exist locally
and is not importable, then an OBJECT_REQUEST_ERROR message is returned. If
the object exists then the exporter returns it directly. Otherwise, if the object is
importable, then the exporter invokes a temporary Odin to obtain the object from yet
another node, and then returns it to the original importer.

The export mechanism described here allows for transitive requests which may span
several nodes. The transitive nature of a request is transparent to the requester except
for the additional time required to establish multiple node-to-node connections and
move the object. It is possible that a transitive request could generate a cycle (i.e. A
requests an object from B, B requests the object from C, and C requests it from A). To
avoid this, each requesting node in the sequence adds its own name to a request list that
is included with the request. No node that has already been asked for the object as a
part of the current derivation will be asked for it a second time.

Whenever an object is exported, the exporter adds an entry to the export list. These
entries specify the object that was exported and the node to which it was exported.

3. Experience with Keystone

As mentioned, two successive prototype versions of Keystone have now been imple-
mented. Both versions run on a network consisting of Sun workstations, a Vax, and a
Pyramid. Both were implemented on top of Berkeley Unix, version 4.2, and both make
use of the interprocess communication mechanisms provided by this operating system.
Neither version required any changes to the standard Unix operating system. The first
prototype was implemented using a combination of C language routines to manage the
import and export lists and shell scripts to perform importer and exporter functions.
For the second prototype, the importer and exporter were implemented directly in C to
improve the speed of network requests.

One of the principal goals of the Keystone project is to study cooperation and sharing
of information in a distributed software environment. Accordingly, we are particularly
interested in coordination tools, tools which facilitate cooperation among individuals
working on a software project.

Typical coordination tools include tools for the automated construction of programs
from their component parts (configuration management) and tools for tracking and con-
trol of modifications (version control or history management). While some would lump
both sets of tools together under the general category of "configuration management”
(see e.g. [Baze85]), it is useful to treat them separately here. Configuration manage-
ment and version control were chosen as research vehicles for the current version of

- 11 -

Keystone because they offer the opportunity to explore the extension of both basic
environment capabilities and user-defined tools to the distributed context.
Configuration management in Keystone involves distribution of Odin’s capabilities for
performing derivations on compound objects. Version control involves the addition of
external tools to the environment using the framework established by remote-object
references and the import tool.

In this section we describe our experience in extending these tools to a distributed
environment using the object management paradigm embodied in Odin/Keystone.

3.1. Configuration Management

For the purposes of this discussion, we will consider configuration management to be the
automated generation of a software system from its component parts. The essential
features of configuration management are the ability to specify the components of a
system and the ability to automatically generate the system from that specification.

3.1.1. Implementation

Several different versions of configuration managers have been implemented, most of
them traceable to the Unix make utility [Feld79]. Make enables the user to specify the
configuration of a software system in terms of the binary files from which it is com-
posed. This specification is described in a makefile which also lists the various com-
ponents upon which each binary file depends. Once a system has been built using make,
it is rebuilt only if one of the components has changed. This is accomplished by com-
paring the date and time of modification for each component specified in the makefile.
If no components have changed, the system is not rebuilt. If some components have
changed, only those which have been modified are recompiled. This approach insures
that the system is up to date and saves processing time by only recompiling those com-
ponents which are no longer current. Because make always uses the most recent version
of a component, if multiple versions of a system are desired, each must be specified in a
separate makefile.

Keystone includes comparable capabilities for configuration management. These capa-
bilities arise naturally from Odin’s ability to specify and perform derivations on com-
pound objects (objects composed of multiple simple files). Configuration management is
accomplished by using "reference” files to specify the names of component source files
that make up the compound source object for a system as described in Section 2.1." As
with make, subsequent requests for an executable object will result in a new derivation
only if one of the components has changed since the last derivation. If a new derivation
is required, it will involve only those components which have changed.

While the use of reference files provides a capability comparable to that of make,
several differences are readily apparent. The most obvious difference is that reference
files list the source objects which make up the system rather than binaries as in a
makefile. ‘Another important difference pertains to the amount of information which
must be used to describe a system. With make, it is necessary to explicitly describe all
dependencies for a given object. If other files are to be included at compile time (e.g.
"#include"s in C) these must be specified as part of the dependency information. In
Odin, these dependencies are computed (when necessary) at run-time using tools
specified in the derivation graph. Thus, the user need only specify the simple objects
which make up a system.

- 12 -

The example presented in Section 2.1 assumes that all of the components of "myprog”
are available locally. If one or more of the objects must be imported, this will be
reflected by the presence of remote-object references in the .ref file. For example, if
both modulel.c and module3.c are imported from other nodes, "myprog.ref” will contain

modulel.c,x :imp_c
module2.c
module3.c,x :imp_c

By specifying the "imp_c" derivations of "modulel.c,x" and "module3.cx" we insure
that the source object will be imported and compiled locally, avoiding potential prob-
lems from importing code compiled on a foreign (and possibly different) machine. Since
each node which imports an object is notified in the event of changes, the derived object
will be consistent with its components.

3.1.2. Comparison with Other Environments

Keystone’s configuration management facilities are implemented using Odin’s inherent
capacity to perform derivations on compound objects. Management of objects in the
distributed system is accomplished using standard import derivations. Our experience
indicates that this mechanism provides a straightforward and logical extension of
Odin’s capabilities to the distributed environment. Configuration management in Key-
stone may be compared with that in two other environments which support software
development in a distributed context: Cedar [Teit85] and the Domain Software

Engineering Environment (DSEE) |Lebl84].

Configuration management in Cedar is accomplished using the System Modeller
[Schm82], [Lamp83a]. The Cedar programmer describes a piece of software by writing a
system model in SML, a module interconnection and system description language
[Lamp83b]. The system model specifies: the versions of the modules which make up the
system together with some information about their locations in the distributed file sys-
tem; the interconnections among the modules; and additional information needed for
compiling and loading the system. The System Modeller then automatically builds an
executable form of the software by compiling and loading the appropriate modules.
The Cedar editor notifies the System Modeller when a new version of a source module is
created and this change is automatically incorporated into the system model. As in
make and Odin, only those modules which have changed are recompiled.

Configuration management in DSEE is performed by the Configuration Manager. As in
Cedar, the configuration for a system is specified in a system model using a system
model language. In DSEE, however, the description of which components (modules)
comprise the system is distinguished from the configuration thread, a description of
which version of each component is to be used in actually assembling the system
[Lebl85]. Prior to performing a build, the system model and configuration thread are
used to generate a bound configuration thread based on rules specified by the program-
mer. The bound configuration thread contains the specific versions which are to be used
in assembiing the system. It is thus possible to construct several versions of a system
from a single DSEE system model.

Our intent in studying configuration management in Keystone was not to develop a
highly sophisticated configuration management tool. The purpose of this work was to
determine the feasibility of distributing Odin’s basic capabilities by using extensions to

- 13-

the derivation graph in conjunction with the import tool. The configuration manage-
ment facilities provided by Keystone are, however, comparable to those found in Cedar
although less extensive and less flexible than those provided by DSEE. In addition, the
Keystone approach supports the existence of multiple copies of a module. A system
may be constructed from any of the available copies. This feature has no counterpart
in either Cedar or DSEE. Finally, other approaches to configuration management are
possible within the Odin/Keystone framework. Tools which meet special needs may
developed and added to the environment by specifying new entries in the derivation
graph. In particular, capabilities which are equivalent to those of DSEE could be pro-
vided in this fashion.

3.2. Version Control

In a software environment, it is necessary to manage revisions to modules or groups of
modules. This is especially true in cases where more than one individual may be
involved in the development of those modules. Access to objects for update purposes
must be controlled and multiple, simultaneous updates must be prevented. Recording
the nature of changes as well as their rationale is also an important aspect of version
control.

3.2.1. Implementation

Again, several different change or revision management systems have been imple-
mented. Most of these are variations on the theme established by SCCS [Roch75] and
RCS [Tich82]. These utilities represent all versions of an object in a special file. While
SCCS and RCS differ in implementation details, both store revisions as incremental
changes or "deltas," rather than storing each version in its entirety, to save space.
When a particular version is requested, it is generated by applying the appropriate del-
tas to the base object.

Both SCCS and RCS use a reserve/replace discipline in which a user wishing to modify
a file obtains a separate copy of that file for editing. Once a file has been checked out
for modification, additional writeable copies may not be obtained. This prevents simul-
taneous updates to a file. When the changes are complete, the user places the back in
the management system, thus creating a new version. When the file is replaced, log
messages may be included to describe the changes which were made and the reasons for
making them.

Under the Odin/Keystone approach, version control is viewed as a capability which
may be added via tools provided by the user. To manage changes to objects in the dis-
tributed system, Keystone uses RCS as an external tool. The decision to use RCS was
made because RCS is readily available and familiar. [t also provides an array of ¢ pa-
bilities which make it possible to explore various aspects of object management in :.ey-
stone. The use of RCS made it unnecessary to construct a special version control tool
for investigation in the distributed environment. However, other tools, such as SCCS,
could also have been used or new tools with different capabilities could have been built.

The basic commands available in RCS are "checkin" (ci), "checkout™ (co), and "get log
info" (rlog). The checkin command is used to place a file under RCS control and to
deposit modifications back into the system. When a file is checked in, the user is
prompted for a log message. The checkout command is executed to obtain a copy of
the current (or any other) version of the file. The copy may be read only or, if

- 14 -

modifications are to be made, a writeable copy may be obtained. If the copy is write-
able, the RCS file is locked, preventing other users from also checking out writeable
copies. Additional read-only copies may still be obtained using checkout, however. The
rlog command displays log entries as well as other information about the revisions to a

file.

As described in Section 2.1, there are two kinds of tools that can be used from
Odin/Keystone: "derivation tools" and "editor tools.” A derivation tool is one that reads
a set of input files and produces a set of output files. It cannot modify its input files or
any global information. Derivation tools cannot read any global information and they
cannot be interactive. All other tools are editor tools. The use of derivation tools is
specified in the derivation graph while editor tools are invoked directly by the user via
the "> :" operator.

The RCS tools "co” and "rlog" are both derivation tools and are thus specified in the
derivation graph. Since "ci" produces a change in and atomic object (the RCS file), it is
an editor tool and is therefore invoked using the "> :" operator.

Implementation of distributed versions of co and rlog in Odin/Keystone was straightfor-
ward. Two derivations from RCS files were already available in Odin: ":¢,” which per-
forms a checkout, and ":log,” which performs an rlog. These commands simply invoke
the appropriate RCS function, depositing the result in the corresponding object in the
Odin database. Extension of these commands to the distributed system required only
extension of the derivation graph and addition of appropriate command scripts as was
done for other import derivations.

Implementation of the distributed checkin command is substantially more difficult. In
order to accomplish this, it would be necessary to write an "editor” script to perform a
distributed checkin. This script might be named "dci" and would be invoked with the
request

object > :dci
The dci script needs to perform the following four functions:
(1) Look up the global name of the RCS file from which "object” was derived.
(2) Determine the new version that is to be stored in "object.”
(3) Transfer "object” to the remote node.
(4) Perform a checkin on the remote node.

The additional difficulty in implementing a distributed checkin is due to the difference
in the ways in which Odin treats changes to derived and atomic objects. The inclusion
of derivation tools such as co and rlog is supported quite naturally within this frame-
work. The use of editor tools for operations like checkin is logically consistent with
Odin’s approach to changing atomic objects. But, development of appropriate com-
mand scripts can present user interface difficulties as, for example, in specifying options
on the dci command or providing log messages. The design of a command script with
an appropriate user interface is still under study.

Change management and configuration control can be integrated quite easily in
Odin/Keystone. In specifying the compound object corresponding to a system the user
simply names the RCS file (denoted by the extension ",v") and specifies the appropriate
derivation. Such an object might have the following contents

- 15 -

modulel.c,v :c
module2.c,x,v :c
module3.c,v :c

Here, modulel and module3 are local RCS files module2 is a remote object which is also
under RCS control. Although it is not shown in this example, the checkout derivation is
also capable of accepting parameters which specify the particular version of the source
module which is to be produced.

3.2.2. Comparison with Other Environments

It is also useful to compare change management capabilities in Keystone with those in

Cedar and DSEE.

Cedar does not provide special facilities for source code control. In fact, Cedar is based
upon a model of software development in which only one individual has responsibility
for developing and testing a given module. Thus, coordination tools of this sort are not
needed.

Cedar does, however, allow several versions of a module to exist at any time. This is
accomplished by considering each file in the Cedar file system to be a unique, immut-
able object characterized by a unique identifier (UID). Thus, when a file is modified to
create a new version, a new object, with its own UID, is created. In Cedar, each version
is stored in its entirety, in contrast to the use of incremental changes (deltas) as in
SCCS and RCS. As noted above, the Cedar editor notifies the System Modeller when a
new version of a source module is created and this change can be incorporated into the
system model.

Source code control in DSEE is performed by the history manager. The history manager
is similar to SCCS and RCS in that the user reserves a file for editing and a new ver-
sion is created by replacing the file when the modification is complete. When the
module is replaced, additional information, such as the time of modification, the reason
for the change, and the name of the person making the change are also saved. When a
new version of an object is created, the local history manager notifies managers on
other nodes.

Keystone, then, provides version control support comparable to that of DSEE. Again,
however, our intent was not to implement a specialized version control system but
rather to investigate the issues associated with adding tools which require the distri-
buted use of editor-type operations. While there are clearly some implementation-level
issues to be resolved, we expect that it will be possible to add tools which provide
appropriate support.

4. Discussion

Development and use of the Keystone prototypes has provided valuable insight into the
utility of the basic approach used for this research. This work has also helped to define
and clarify a number of issues concerning object management in a distributed software
environment. This section discusses several observations based on our experience with
Keystone. '

- 18 -

4.1. Object Management

Experience with Keystone has demonstrated that an object management system based
on local object managers augmented with capabilities for importing and exporting
objects is indeed a viable approach for distributed software environments. Object
management in such a distributed environment will, however, depend strongly on the
capabilities of the local environment. This is especially true with respect to the ease
with which basic operations may be distributed and control over persistent objects.
Our experience with these aspects of the Odin/Keystone environment is discussed
below.

4.1.1. Distribution of Operations

Distribution of the derivation capabilities of the Odin environment has been straightfor-
ward. Implementation has required only the addition of importer and exporter
processes, and an import tool, together with data management facilities to keep track of
objects in the distributed system. Implementation of distributed derivations required
only minimal changes to the local object manager.

Distribution of "editor” functions is substantially more difficult (see e.g. Section 3.2 for a
discussion of the difficulties encountered in implementing a distributed RCS "checkin"
command). Distributed editor operations require more complicated mechanisms for the
exchange of objects and information between nodes than do distributed derivations.

One approach to solving these problems is the addition of new, user-level tools to per-
form distributed editor functions. The existence of "local” and "distributed” versions of
tools is undesirable, however, because it forces the user into two different modes of
interaction. The need to develop distributed counterparts of common tools also reduces
the extensibility of the environment. An alternative would be to extend the basic capa-
bilities of the environment to allow better integration of editor tools.

4.1.2. Control Over Objects

Object in Odin/Keystone are standard files in the host file system. Thus, they generally
outlive any invocation of the tools that create and use them, or even of the Odin
environment itself. Odin provides varying degrees of control over these objects in the
local environment.

Control over atomic objects is loose. Atomic objects are created by the user, typically
using "editor” tools, and these objects exist in the user’s directory, rather than in the
Odin database. Atomic objects are therefore easily accessible both from within Odin
and from user operations performed outside of Odin. Consequently, it is possible for the
user to inadvertently modify an atomic object, making it inconsistent with its original
specification. The advantage of this loose control is that a user can experiment with a
variety of mechanisms for creating and modifying atomic objects. Whether this flexibil-
ity can be preserved while exerting tighter control over atomic objects is an open ques-
tion.

Control over derived objects is stronger. Derived objects are created systematically
within the Odin system and are stored automatically in the Odin database. While
derived objects are still host system files, they are stored in special directories under
names known only internally to Odin. Thus, it is difficult for a user to alter or other-
wise use derived objects outside of Odin.

- 17 -

4.2. Extensibility

One of the principal goals of the Keystone project is to construct an extensible distri-
buted software environment. Extensibility goes well beyond the ability to configure an
environment to accommodate individual preferences (e.g. aliasing). Extensibility is the

“ability to modify an environment in response to changes in the ways that the environ-
ment will be used" [Ridd85].

The Odin system provides a general mechanism by which users may incorporate arbi-
trary tools into an environment. Odin provides the ability to structure relations among
tools and objects; otherwise its capabilities derive principally from the tools included by
users. Tools to meet specific needs can be developed independently and may be added
without restructuring the environment. The object-oriented command language pro-
vides a straightforward means of external (user-level} integration of these tools. Inter-
nal integration is achieved by allowing tools and tool fragments to communicate via
host system files. This communication is controlled by the specifications in the deriva-
tion graph.

The Odin approach provides a high degree of extensibility for a centralized environ-
ment. One of the principal questions to be answered by the Keystone project is
whether the Odin approach to extensibility can be straightforwardly adapted to a dis-
tributed environment. Consequently, in the initial prototypes, our goal was to modify
Odin as little as possible and implement most of the capabilities for managing distri-
buted objects via the derivation graph.

As described above, processes for importing and exporting objects are provided. An
tmport tool which invokes these processes in response to a request for a remote object is
also provided. This tool is called by user command scripts to accomplish the actual
importing of an object. Given the import tool as part of the Keystone system, the user
can add an import derivation in a manner exactly analogous to the addition of a new
derivation in a single-node Odin system. The derivation graph is simply extended to
include the new object type and the corresponding command script (which includes the
import tool) is created. Once this has been done, there is no need to use special com-
mands to accomplish an import derivation. This has the advantage that the tool used
for the single-node derivation may be used for the distributed derivation without
modification. Thus, the implementation of distributed derivations has been straightfor-
ward and has not required new user-level tools.

As noted above, the distribution of editor tools is more difficult and presently requires
the development of new user-level tools. The need to develop new, specialized tools
means that these capabilities are not easily extensible by users. Mechanisms that
might support this extensibility are still under investigation.

4.3. Object Typing

Work on Keystone has highlighted two central issues associated with object typing: per-
sistent objects and the influence of heterogeneous resources. Strength of typing is an
issue in all software environments; approaches to this problem will, however, be affected
by the distributed nature of an environment, particularly if multiple object managers
are involved. Problems due to differences in resources from machine to machine in a
network, such as the existence of several different CPUs, can be avoided by simply
requiring the system to be homogeneous. However, since one of the principal

- 18 -

advantages of a distributed environment based on individual workstations is the ability
to tailor the workstation to the task which it will perform, such a requirement is overly
restrictive.

4.3.1. Persistent Objects

Atomic objects on Odin are strongly typed. However, since atomic objects are created
by the user, the user must insure that the type of the object is properly indicated by
the extension to the file name which is recorded in the derivation graph. Since Odin
objects are persistent (i.e. they have lifetimes which are significantly longer than a sin-
gle invocation of Odin), they are not always under Odin’s control. Thus, even if an
atomic object is created and identified properly, it may still be edited in such a way as
to become inconsistent with its type indication. There is no provision for the checking
the types of atomic objects. If a derivation is applied to an incorrectly-typed atomic
object then a runtime error will result.

Derived objects are more strongly controlled. As noted in Section 2.1, the user is
responsible for insuring that the operations defined in the derivation graph are
appropriate for a given type of object. If a derivation defined in the derivation graph is
not appropriate for a given type of object then Odin will still attempt the derivation,
again producing a runtime error. Odin will, however, prevent any derivation that is not
defined in its derivation graph. If the derivation graph has been correctly specified then
type conventions will be enforced for any derivation performed from within Odin. Of
course, since Odin objects are files in the host system, it is possible to (inadvertently or
intentionally) circumvent these restrictions by performing some operations outside of
Odin. As discussed above, however, it is difficult to access derived objects from outside
Odin.

Keystone extends the Odin approach to typing to a distributed context. As in Odin,
there is no control over the typing of atomic objects. This creates additional problems
in Keystone because remote-object references are atomic objects, and there is no
guarantee that a "x" object in fact contains a remote-object reference. In addition, the
type of an imported atomic object is not constrained to correspond to the type of its
remote-object reference (a type mismatch could occur, for example, if the remote object
were incorrectly typed).

As in Odin, the type of derived objects is more strongly controlled. Successfully
imported derived objects are guaranteed to be of the type indicated by the derivation
and may be used accordingly in future derivations. Furthermore, since imported
objects are stored in the Odin database, imported atomic objects are maintained like
derived objects. Thus they are relatively protected from capricious changes on the
importing node.

The distribution of an environment poses some problems for the typing of objects that
do not arise in a single-machine environment. A major concern is consistent type
definitions for objects that may be shared between nodes; this problem is compounded
by the existence of multiple object managers. Another concern is differences in
resources between machines that may affect the equivalence of objects that are ostensi-
bly of the same type. This problem is discussed in more detail in the next section.

-19 -

4.3.2. Heterogeneous Resources

The existence of heterogeneous resources across the network creates additional prob-
lems in specifying object types and manipulating their instances. CPUs are perhaps the
most important resource that may vary from machine to machine. Differences in CPU
types will strongly affect the meaning of "type" for certain objects. Another example is
the versions of software tools, such as compilers or debuggers, that are used to derive or
access objects. The potential problems introduced by differing types of CPUs are dis-
cussed below.

While some derivations (e.g. formatting source code) are machine independent, others
(e.g. compilation) are not. Thus, an object of a given "type" which is derived on one
machine may not have the same attributes as an object of the same "type” derived on a
machine with a different CPU. The approach used in Keystone is to have the user
specify whether the derivation is to be performed locally or remotely. Other, similar
approaches, such as a default derivation site which may be overridden by the user, may
also be employed. It may also be desirable to have a more general mechanism which
allows the user to specify the machine (or CPU type) on which a given derivation is to
be performed. This approach can be extended to other types of resources, as well.

4.4. Logical View of the Environment

A physically distributed environment may present a user view which is logically central-
ized or logically distributed. The notion of a logically central repository for project
information [Oste81] has become an established principle for environment design.
Recently, however, this concept has been re-examined [Ridd86]. Many researchers now
feel that it may, in fact, be desirable to have several logically distinct information repo-
sitories.

The current implementation of Keystone presents a logically distributed view to the
user. The external nature of an object is apparent because it must be accesses via a
remote-object reference whose name includes the "x" suffix. To obtain access to a
remote object, the user need only know its global name; there is no need to keep track
of the physical location of the object. From the user view, then, Keystone partitions

the information repository into two logical classes: local objects and remote objects.

The question of whether to present a logically centralized or distributed view to the
user is still an open one. The utility of a centralized view is well established. It may,
however, be desirable to provide special subnetworks for different functions, such as
maintenance, and provide several logically separate databases which correspond to
these functions. If the host network is to be heterogeneous, it will be difficult (and
probably undesirable) to hide the distributed nature of the environment from the user.
The answers to these questions are also likely to be context dependent. It may also be
desirable to support different views for different purposes, in different organizational set-
tings, or at different points in the software process. In these cases, a flexible approach
will be necessary. The resolution of these questions will require additional experience
with both centralized and distributed views in a variety of settings.

5. Summary

This report has described object management in the Keystone distributed software
environment. Keystone was developed to explore issues which arise when the various

- 20 -

functions of software development are distributed over a (possibly heterogeneous) net-
work of workstations.

The research reported here has investigated the feasibility of managing objects in a dis-
tributed software environment by augmenting an existing, single-machine object
manager (Odin) with facilities for exporting/importing objects to/from remote nodes.
This approach corresponds to creating a "federation” of local object managers in which
responsibility for local objects remains local and users are able to specify the objects
they are willing to share as well as the circumstances under which access to those
objects may be obtained. An object manager based on such an architecture offers
several potential advantages, chief among them the ability to use existing tools rather
than develop new tools for the distributed environment and fexibility both in
configuring the environment and in establishing cooperation among users.

Keystone provides distributed versions of Odin derivations. Users may import both
atomic and derived objects from remote nodes using the standard Odin command syn-
tax. Once imported, these objects become part of the local information repository and
may be used in the same manner as locally derived objects. Our experience indicates
that this capability is a natural extension of derivations to the distributed context and
that the present architecture supports it well. By providing a simple import tool, it has
been possible to allow users to easily add their own import derivations, thus preserving
the extensibility provided by the Odin environment.

Tools which alter remote atomic objects ("editor” tools) have proven more difficult to
distribute. These tools require more complex exchanges of information between nodes
and, in some cases (e.g. RCS) require interaction with the user. Suitable approaches for
distributing these types of functions are still being explored.

Our experience with Keystone indicates that the architecture described here represents
a viable approach to distributed object management for distributed software environ-
ments. Future work on the Keystone project will make use of the extensibility and
flexibility provided by this architecture to explore other issues in distributed software
environments. This work will have two principal thrusts. The first will be continued
enhancement of the capabilities of the system itself. The second will be evaluation of
the system through use on actual software development projects to determine both the
utility of the Keystone architecture and the impact of the distributed environment on
the software process.

8. Acknowledgements

Lee Osterweil has provided much of the motivation and support for the Keystone pro-
ject. The initial design for Keystone evolved through discussions with Dennis Heim-
bigner and Lee Osterweil.

- 21 -

7. References

[Baze85]

[Clem85]

[Clem84|

[Feld79)]

[Heim85)]

[Lamp83al

[Lamp83b]

[Lebl85]

Lebl84]

(Oste81]

Ridd8s]

R. Bazelmans, "Evolution of Configuration Management,” Software En-
gineering Notes, vol. 10, no. 5, pp. 37-46, 1985.

G. M. Clemm, D. M. Heimbigner, L. J. Osterweil, and L. G. Williams,
"KEYSTONE: A Federated Software Environment,” Proceedings of the
Workshop on Software Engineering Environments for Programming-in-the-
Large, Harwichport, Massachusetts, June 1985, pp. 80-88.

G. M. Clemm, "Odin: An Extensible Software Environment,” Technical
Report CU-CS-262-84, University of Colorado, Department of Computer
Science, 1984.

S. I. Feldman "Make - A Program for Maintaining Computer Programs,”
Software Practice and Ezperience vol. 9, pp. 255-265, 1979.

D. Heimbigner and D. McLeod, "A Federated Architecture for Information
Mangement,” ACM Transactions on Office Information Systems, vol. 3, no.
3, pp. 253-278, 1985.

B. W. Lampson and E. E. Schmidt, "Organizing Software in a Distributed
Environment," Proceedings of the SIGPLAN 83 Symposium on Program-
ming Language Issues in Software Systems, published as SIGPLAN Notices,
vol. 18, no. 6, pp. 1-13, 1983.

B. W. Lampson and E. E. Schmidt, "Practical Use of a Polymorphic Appli-
cative Language,” Proceedings of the 10th Symposium on Principles of Pro-
gramming Languages, pp. 237-255, 1983.

D. B. Leblang and G. D. McLean, Jr., "Configuration Management for
Large-Scale Software Development Efforts," Proceedings of the Workshop
on Software FEngineering Environments for Programming-in-the-Large,
Harwichport, Massachusetts, June 1985, pp. 122-127.

D. B. Leblang and R. P. Chase, Jr., "Computer-Aided Software Engineering
in a Distributed Workstation Environment,” Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, published as Software Engineering
Notes vol. 9, no. 3, pp. 104-112, 1984.

L. J. Osterweil, "Software Environment Research Directions for the Next
Five Years," Computer, vol. 14, no. 4, pp. 35-43, 1981.

W. E. Riddle and L. G. Williams, "Software Environments Workshop Re-
port,” Software Engineering Notes, vol. 11, no. 1, pp. 73-102, 1986.

- 22 .

[Ridd85]

Roch75]

Schm82]

[Teit85]

[Tich82]

[Zdon85]

W. E. Riddle and J. C. Wileden, "Environment Extensibility,” Technical
Report SDAM/19, software design and analysis, inc., Boulder, Colorado,
1985.

M. J. Rochkind, "The Source Code Control System,” IEEE Transactions on
Software Engineering, vol. SE-1, no. 4, pp. 364-370, 1975.

E. E. Schmidt, Controlling Large Software Development in a Distributed En-
vironment, Ph.D. Thesis, EECS Department, University of California,
Berkeley, 1982 and Technical Report CSL-82-7, Xerox PARC, 1982.

W. Teitleman, "A Tour Through Cedar,” [EEE Transactions on Software
Engineering vol. SE-11, no. 3, pp. 285-302, 1985.

W. F. Tichy, "Design, Implementation, and Evaluation of a Revision Con-
trol System," Proceedings of the Sizth International Conference on Software
Engineering, pp. 58-67, 1982.

S. B. Zdonik and P. Wegner, "A Database Approach to Languages, Li-
braries and Environments," Proceedings of the Workshop on Software En-
gineering Environments for Programming-in-the-Large, Harwichport, Mas-
sachusetts, June 1985, pp. 89-112.

- 23 -

Vax Pyramid

Ethernet

AR
Sun Workstation

—i]

Figure 1: The Keystone Network.

.24 .

c_source

formatted c_source list_of included files

object_code

executable code

output_from_run

Figure 2: Example Odin Derivation Graph. Each node represents an object type and
each edge represents a transformation which derives the object at its head from the
object at its tail.

- 25 -

Import/
Export
Database

“‘.\'\.\\‘x\\\

‘x\\\\\\\.‘g O djn

\\\\.\\.\\\.\\"

trrrs

()

Network

‘;\\\x\.\\\\\\

§
{
3

s.
O j : 1 & .
5"‘@\\\
Nan, s

Anrnnunaaayt

Import/
Export
Database

Figure 3: Keystone Processes. KEYSTONE processes for two nodes are illustrated
together with intra- and inter-node control flow. The Odin process in the dashed box

indicates a copy of Odin which may be invoked by the Cohort to satisfy a network
request.

- 26 -

